JPWO2018174179A1 - Light modulator - Google Patents

Light modulator Download PDF

Info

Publication number
JPWO2018174179A1
JPWO2018174179A1 JP2019506980A JP2019506980A JPWO2018174179A1 JP WO2018174179 A1 JPWO2018174179 A1 JP WO2018174179A1 JP 2019506980 A JP2019506980 A JP 2019506980A JP 2019506980 A JP2019506980 A JP 2019506980A JP WO2018174179 A1 JPWO2018174179 A1 JP WO2018174179A1
Authority
JP
Japan
Prior art keywords
line
optical
modulation
optical modulator
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019506980A
Other languages
Japanese (ja)
Other versions
JP7037199B2 (en
Inventor
榎原 晃
晃 榎原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Hyogo
Original Assignee
University of Hyogo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Hyogo filed Critical University of Hyogo
Publication of JPWO2018174179A1 publication Critical patent/JPWO2018174179A1/en
Application granted granted Critical
Publication of JP7037199B2 publication Critical patent/JP7037199B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本発明に係る光変調器は、少なくとも一部分が電気光学効果を有する導波路基板に形成され、2つの分岐光導波路を有する光導波路と、前記2つの分岐光導波路を挟設するように対向して配置された第1の線路と、第2及び第3の線路であって、互いに電磁的に結合しかつ入力される光変調用高周波信号に対して実質的に共振する線路長を有する第1〜第3の線路導体を備える変調電極とを備える。当該光変調器は、前記変調電極は、前記光変調用高周波信号に基づいて、前記第2の線路と、前記第3の線路とが互いに異なる符号の電圧が誘起されて前記変調電極が励振されるように配置された。An optical modulator according to the present invention is at least partially formed on a waveguide substrate having an electro-optic effect, and is opposed to an optical waveguide having two branch optical waveguides so as to sandwich the two branch optical waveguides. The first line, the second line, and the third line, which are arranged, are electromagnetically coupled to each other and have line lengths that substantially resonate with an input high frequency signal for optical modulation. A modulation electrode including a third line conductor. In the optical modulator, the modulation electrode is configured to excite the modulation electrode by inducing a voltage having a different sign in the second line and the third line based on the high frequency signal for optical modulation. It was arranged to be.

Description

本発明は、光ファイバによる大容量の情報伝送や無線信号の光ファイバ伝送の際に電気信号で光を変調するために用いられる光変調器に関する。   The present invention relates to an optical modulator used for modulating light with an electric signal when transmitting a large amount of information or transmitting a wireless signal through an optical fiber.

電波不感地帯の解消、マンションやオフィス内への無線信号配信を目的として、光ファイバ無線システムと呼ばれる無線信号で直接光変調を行い、光ファイバで遠方に伝送し無線信号に戻して放射させるシステムが注目されている。   A system called a fiber optic radio system that directly modulates light with a radio signal, transmits the signal to a distant place using an optical fiber, returns the radio signal, and radiates the signal to eliminate radio insensitive zones and deliver radio signals to apartments and offices. Attention has been paid.

光変調器は、このようなシステムではキーデバイスである。近年、無線信号の高周波化に伴い、光変調器はミリ波帯等の高い周波数での動作が要求されているが、一般的に周波数が高くなると損失の増加や構造上の問題で変調効率が低下する。そのため、ミリ波帯などの高周波帯でも高効率な光変調器が期待されている。従来、例えばミリ波帯などの高周波信号による高品質な光変調では、電気光学効果を利用した光変調器が用いられてきている。   Optical modulators are key devices in such systems. In recent years, as the frequency of radio signals has increased, optical modulators have been required to operate at high frequencies such as the millimeter wave band. However, in general, as the frequency increases, the modulation efficiency increases due to increased loss and structural problems. descend. Therefore, an optical modulator with high efficiency even in a high frequency band such as a millimeter wave band is expected. 2. Description of the Related Art Conventionally, for high-quality optical modulation using a high-frequency signal such as a millimeter wave band, an optical modulator using an electro-optic effect has been used.

図8Aは従来例1に係る一般的な光変調器の構成を示す平面図である。また、図8Bは図8Aの光変調器のE−E’線に沿った縦断面図である。   FIG. 8A is a plan view showing a configuration of a general optical modulator according to Conventional Example 1. FIG. FIG. 8B is a longitudinal sectional view of the optical modulator of FIG. 8A along the line E-E '.

図8A及び図8Bにおいて、従来例1に係る光変調器は、基板51、光導波路52、バッファ層53、変調電極54、接地電極(グランド電極)55,56を備えている。ここで、基板51は、電気光学効果のあるニオブ酸リチウムのzカット基板からなる。光導波路52は、基板51の表面に金属チタンの熱拡散などにより形成され、入力光導波路52aと、そこから二股に分岐した一対の位相変調導波路52b,52cと、それらが合流した出力光導波路52dからなり、マッハツェンダー干渉計を構成している。z方向の電界による屈折率の変化を利用するため、変調電極54は一方の位相変調導波路(ここでは位相変調導波路52b)の真上に配置されている。バッファ層53は、光導波路52を伝搬する光の一部が変調電極54及び接地電極55,56により吸収されることを防止するための薄膜である。   8A and 8B, the optical modulator according to Conventional Example 1 includes a substrate 51, an optical waveguide 52, a buffer layer 53, a modulation electrode 54, and ground electrodes (ground electrodes) 55 and 56. Here, the substrate 51 is a z-cut substrate of lithium niobate having an electro-optical effect. The optical waveguide 52 is formed on the surface of the substrate 51 by thermal diffusion of metallic titanium or the like, and includes an input optical waveguide 52a, a pair of phase modulation waveguides 52b and 52c branched from the input optical waveguide 52a, and an output optical waveguide in which they are merged. 52d, and constitutes a Mach-Zehnder interferometer. In order to utilize the change in the refractive index due to the electric field in the z-direction, the modulation electrode 54 is disposed directly above one phase modulation waveguide (here, the phase modulation waveguide 52b). The buffer layer 53 is a thin film for preventing a part of the light propagating through the optical waveguide 52 from being absorbed by the modulation electrode 54 and the ground electrodes 55 and 56.

以上のように構成された従来例1に係る光変調器において、変調電極54に変調波59を印加すると、電気力線151,152で示すように、位相変調導波路52bと52cには、垂直方向に互いに逆向きの電界が印加されるため、位相変調導波路52b,52cにおける電気光学効果による屈折率変化の方向が互いに逆向きとなる。このため、入力光導波路52aへの入力光57は、二分されて位相変調導波路52b,52cを伝搬しているときに互いに逆向きの位相変調を受け、この伝搬光が出力光導波路52dへの合流時に干渉して光強度が変調され、出力光58となる。   In the optical modulator according to the conventional example 1 configured as described above, when the modulation wave 59 is applied to the modulation electrode 54, as shown by the electric flux lines 151 and 152, the phase modulation waveguides 52b and 52c are vertically Since the electric fields in opposite directions are applied, the directions of the refractive index changes due to the electro-optic effect in the phase modulation waveguides 52b and 52c are opposite to each other. For this reason, the input light 57 to the input optical waveguide 52a is subjected to phase modulation in opposite directions while being split into two and propagating through the phase modulation waveguides 52b and 52c, and this propagating light is transmitted to the output optical waveguide 52d. The light intensity is modulated by interference at the time of merging, and becomes the output light 58.

図9は、特許文献1に開示された従来例2に係る光変調器の構成を示す平面図である。   FIG. 9 is a plan view showing a configuration of an optical modulator according to Conventional Example 2 disclosed in Patent Document 1.

図9において、従来例2に係る光変調器は、電気光学効果特性を持つ光路(光導波路)68と、光路68に沿って形成された、光路に電界を印加するための変調電極61と、変調電極61に対向して形成された共通電極(接地電極)66,67と、変調電極61のほぼ中心に斜めに接続されたスタブ64,65とを備え、その接続部に配線62及びテーパ状変成器63を含む給電線が接続されている。そして、変調電極61の終端を開放させることで共振動作を行わせ、変調効率を高めている。スタブ64,65は、変調波が反射せずに効率的に変調電極61に入力されるように、インピーダンス整合を取るため機能を持つ。   9, an optical modulator according to Conventional Example 2 includes an optical path (optical waveguide) 68 having electro-optical effect characteristics, a modulation electrode 61 formed along the optical path 68 for applying an electric field to the optical path, and Common electrodes (ground electrodes) 66 and 67 formed opposite to the modulation electrode 61, and stubs 64 and 65 obliquely connected to substantially the center of the modulation electrode 61 are provided. The feed line including the transformer 63 is connected. Then, by opening the end of the modulation electrode 61, a resonance operation is performed, thereby increasing the modulation efficiency. The stubs 64 and 65 have a function for impedance matching so that the modulated wave is efficiently input to the modulation electrode 61 without being reflected.

図10は、特許文献2に開示された従来例3に係る光変調器の構成を示す縦断面図である。   FIG. 10 is a longitudinal sectional view showing a configuration of an optical modulator according to Conventional Example 3 disclosed in Patent Document 2.

図10において、従来例3に係る光変調器は、厚さ10μm程度の薄板71に電気光学効果を有する光導波路72が形成され、上記薄板71を挟み込むように変調電極が配置されている。変調電極としては、薄板71の上面の第1電極と、上記薄板の下面の第2電極からなり、第1電極は信号電極74と接地電極75aからなり、第2電極は接地電極75bとなっている。バッファ層73a,73bは光導波路72を伝搬する光の一部が変調電極により吸収されることを防止するための薄膜である。薄板71は接着層76を介して支持基板77に接着されている。本構成の光変調器の特徴は、図8Aに示した一般的な光変調器に比べて、信号電極74と薄板71の裏面に形成された接地電極73bとの間の電圧によって生じる電界も光変調に利用できる点にある。これによって、変調効率を向上させている。   In FIG. 10, the optical modulator according to Conventional Example 3 has an optical waveguide 72 having an electro-optical effect formed on a thin plate 71 having a thickness of about 10 μm, and a modulation electrode arranged so as to sandwich the thin plate 71. The modulation electrode includes a first electrode on the upper surface of the thin plate 71 and a second electrode on the lower surface of the thin plate. The first electrode includes a signal electrode 74 and a ground electrode 75a, and the second electrode functions as a ground electrode 75b. I have. The buffer layers 73a and 73b are thin films for preventing a part of the light propagating through the optical waveguide 72 from being absorbed by the modulation electrode. The thin plate 71 is bonded to a support substrate 77 via an adhesive layer 76. The feature of the optical modulator having this configuration is that, compared to the general optical modulator shown in FIG. 8A, the electric field generated by the voltage between the signal electrode 74 and the ground electrode 73b formed on the back surface of the thin plate 71 is also optical. It can be used for modulation. This improves the modulation efficiency.

図11Aは、特許文献3において開示された従来例4に係る光変調器の構成を示す平面図である。また、図11Bは図11Aの平行結合線路33で伝搬モードM11が励振されたときのF−F’線に沿った縦断面図であり、図11Cは図11Aの平行結合線路33で伝搬モードM12が励振されたときのF−F’線に沿った縦断面図である。   FIG. 11A is a plan view showing a configuration of an optical modulator according to Conventional Example 4 disclosed in Patent Document 3. 11B is a longitudinal sectional view taken along the line FF 'when the propagation mode M11 is excited by the parallel coupling line 33 of FIG. 11A. FIG. 11C is a longitudinal sectional view of the propagation mode M12 by the parallel coupling line 33 of FIG. 11A. FIG. 3 is a longitudinal sectional view taken along line FF ′ when is excited.

図11Aにおいて、タンタル酸リチウム(LiTaO)単結晶、ニオブ酸リチウム(LiNbO)単結晶などの電気光学効果を有する基板31の表面部に、安息香酸を用いたプロトン交換法などを用いて形成された光導波路32が設けられている。光導波路32は、2箇所の分岐点38a,38bで2つの分岐光導波路32a,32bに分岐しており、入口側光導波路32xから入力された入力光が一方の分岐点38aで分岐して2つの分岐光導波路32a,32bを通過した後、他方の分岐点38bで共通の出口側光導波路32yを進むように構成されている。In FIG. 11A, a surface of a substrate 31 having an electro-optical effect such as a lithium tantalate (LiTaO 3 ) single crystal or a lithium niobate (LiNbO 3 ) single crystal is formed by a proton exchange method using benzoic acid or the like. Provided optical waveguide 32 is provided. The optical waveguide 32 is branched into two branched optical waveguides 32a and 32b at two branch points 38a and 38b, and the input light input from the entrance-side optical waveguide 32x is branched at one branch point 38a to form a second branch. After passing through one of the branch optical waveguides 32a and 32b, the other branch point 38b is configured to travel along a common exit side optical waveguide 32y.

また、基板31の上には、光導波路32の各分岐光導波路32a,32bに沿うように延びる3つの線路33a,33b,33cからなる平行結合線路33が設けられている。各線路33a,33bの各内側端は、各分岐光導波路32a,32bのほぼ中央部の直上に位置するように形成されている。また、線路33cは、2つの線路33a,33bの中間に位置している。各線路33a,33b,33cの両端部は、接続線路36a,36bを介して互いにつながっている。さらに、基板31の上には、平行結合線路33の1つの線路33bに接続され平行結合線路33に共振を起こさせる入力信号を印加するための入力線路35が設けられている。平行結合線路33の各線路33a〜33c、接続線路36a,36b及び入力線路35は、真空蒸着法、フォトリソグラフィ及びエッチングなどのプロセスを用いて形成されたアルミニウムや金などの金属膜によってそれぞれ構成されている。また、基板31の裏面には、金属膜の蒸着法などを用いて形成されたグランドプレーン34が設けられている。   Further, on the substrate 31, there is provided a parallel coupling line 33 composed of three lines 33a, 33b, 33c extending along each of the branch optical waveguides 32a, 32b of the optical waveguide 32. Each inner end of each of the lines 33a and 33b is formed so as to be located immediately above a substantially central portion of each of the branch optical waveguides 32a and 32b. The line 33c is located between the two lines 33a and 33b. Both ends of each of the lines 33a, 33b, 33c are connected to each other via connection lines 36a, 36b. Further, on the substrate 31, there is provided an input line 35 connected to one line 33b of the parallel coupling line 33 for applying an input signal causing resonance in the parallel coupling line 33. Each of the lines 33a to 33c, the connection lines 36a and 36b, and the input line 35 of the parallel coupling line 33 are respectively formed of a metal film such as aluminum or gold formed by a process such as a vacuum deposition method, photolithography, and etching. ing. On the back surface of the substrate 31, a ground plane 34 formed by using a metal film deposition method or the like is provided.

入力光は、入口側光導波路32xから導入され、各分岐光導波路32a,32bを通過する際に、以下のように、光変調作用を受ける。入力線路35から高周波信号が入力されて、平行結合線路33の各線路33a,33b,33cに共振が生じると、各間隙部37a,37bには図11Bに点線で示すような電気力線で表される電界が生じる。そして、電気光学的効果により、分岐光導波路32a,32bを構成する材料の屈折率が電界強度に応じて変化する。従って、出口側光導波路32yでは、分岐光導波路32a,32bを通過した2つの光の干渉が生じ、この干渉によって出力光の強度が変化することにより、光強度変調器として動作する。   The input light is introduced from the entrance-side optical waveguide 32x, and undergoes an optical modulation action as described below when passing through the branch optical waveguides 32a and 32b. When a high-frequency signal is input from the input line 35 and resonance occurs in the lines 33a, 33b, and 33c of the parallel coupling line 33, the gaps 37a and 37b are represented by electric lines of force as shown by dotted lines in FIG. 11B. An electric field is generated. Then, due to the electro-optic effect, the refractive index of the material forming the branch optical waveguides 32a and 32b changes according to the electric field intensity. Accordingly, in the exit side optical waveguide 32y, interference between two lights passing through the branch optical waveguides 32a and 32b occurs, and the intensity of the output light changes due to the interference, thereby operating as a light intensity modulator.

ここで、3本の線路33a〜33cを有する平行結合線路33においては、通常、3種類の伝搬モードが存在し、このうちの2つの伝搬モードM11,M12について図11B及び図11Cを参照して以下に説明する。   Here, in the parallel coupling line 33 having the three lines 33a to 33c, there are usually three types of propagation modes, and two propagation modes M11 and M12 among these are described with reference to FIGS. 11B and 11C. This will be described below.

図11Bの伝搬モードM11において、2本の分岐光導波路32a,32bには上下逆方向の電界131,132が印加されるので、光波に位相差が生じ出口側光導波路32yで干渉を生じるので、本実施形態の光変調素子は、光強度変調器として機能する。一方、図11Cの伝搬モードM12においては、分岐光導波路32b,32bに形成される電界131,133の向きが相互に反対になるように、分岐光導波路32bの位置がシフトしている。   In the propagation mode M11 in FIG. 11B, the electric fields 131 and 132 in the opposite directions are applied to the two branch optical waveguides 32a and 32b, so that a phase difference occurs in the light waves and interference occurs in the exit-side optical waveguide 32y. The light modulation element of the present embodiment functions as a light intensity modulator. On the other hand, in the propagation mode M12 of FIG. 11C, the position of the branch optical waveguide 32b is shifted such that the directions of the electric fields 131 and 133 formed in the branch optical waveguides 32b and 32b are opposite to each other.

図11Bで構成された光変調器の伝搬モードM11では、3本の線路33a,33b,33cによる結合線路を変調電極に利用することで、3本の線路33a,33b,33cによる結合線路の中央の線路33cが0で両側の線路の電圧が互いに逆符号となる伝搬モードを使って高効率な光変調を行う。図11Cで構成された光変調器の伝搬モードM12では、3本の線路33a,33b,33cによる結合線路を変調電極に利用することで、3本の線路33a,33b,33cによる結合線路の中央の線路33cと、両側の線路33a、33bとの間の電圧が互いに逆符号となる伝搬モードを使って高効率な光変調を行う。この場合、光導波路32a、32bと、3本の線路33a、33b、33cとの配置関係は、図11a、図11bとは少し異なっている。より具体的には、分岐光導波路32bの位置を線路33cの下側に架かるように移動した配置としている。   In the propagation mode M11 of the optical modulator configured as shown in FIG. 11B, the coupling line formed by the three lines 33a, 33b, and 33c is used as a modulation electrode, so that the center of the coupling line formed by the three lines 33a, 33b, and 33c is used. In this case, highly efficient optical modulation is performed by using a propagation mode in which the line 33c of the line 33 is 0 and the voltages of the lines on both sides have opposite signs. In the propagation mode M12 of the optical modulator configured as shown in FIG. 11C, the coupling line formed by the three lines 33a, 33b, and 33c is used as the modulation electrode, so that the center of the coupling line formed by the three lines 33a, 33b, and 33c is used. The optical modulation is performed with high efficiency using a propagation mode in which the voltages between the line 33c and the lines 33a and 33b on both sides have opposite signs. In this case, the arrangement relationship between the optical waveguides 32a, 32b and the three lines 33a, 33b, 33c is slightly different from that in FIGS. 11A and 11B. More specifically, the position of the branch optical waveguide 32b is moved so as to extend below the line 33c.

特開2002−268025号公報JP 2002-268025 A 特開2008−89936号公報JP 2008-89936 A 特開2006−285288号公報JP 2006-285288 A

しかしながら、従来例1に係る光変調器においては、図8Bの縦断面図からもわかるように、変調電極の周りに誘起される電界の多くは光導波路の外に広がっている。また、図9に示した従来例2に係る光変調器の電界分布も、電極配置の構造上、図8Bと同様、変調電極の周りに誘起される電界の多くは光導波路の外に広がる。   However, in the optical modulator according to Conventional Example 1, as can be seen from the vertical cross-sectional view of FIG. 8B, most of the electric field induced around the modulation electrode spreads out of the optical waveguide. Also, in the electric field distribution of the optical modulator according to the conventional example 2 shown in FIG. 9, most of the electric field induced around the modulation electrode spreads out of the optical waveguide due to the structure of the electrodes, as in FIG. 8B.

さらに、従来例3に係る光変調器では、この点を改善することを目的の一つとして提案されたものである。しかし、この構成においても、信号電極74と接地電極75aとの間に誘起される電界は横方向を向き、かつ、電界は光導波路72の外側に分布することとなり、光変調とは無関係である。そのため、従来例3では、変調信号によって誘起される電界の一部しか光変調に寄与していない。光導波路外に広がる電界分布を減らすことができれば、変調効率をさらに向上させることができると考えられる。   Furthermore, the optical modulator according to Conventional Example 3 has been proposed as one of the objects to improve this point. However, also in this configuration, the electric field induced between the signal electrode 74 and the ground electrode 75a is oriented in the horizontal direction, and the electric field is distributed outside the optical waveguide 72, and has nothing to do with light modulation. . Therefore, in the conventional example 3, only a part of the electric field induced by the modulation signal contributes to the light modulation. It is considered that if the electric field distribution spreading outside the optical waveguide can be reduced, the modulation efficiency can be further improved.

さらに、従来例2及び4では、共振器型の変調電極を用いて変調効率の向上を目指しているが、変調電極を伝搬する変調信号の一部が表面波として基板内に放射していくと言う問題がある。この現象は、基板が誘電体導波路として動作してしまい、変調電極中を伝搬している変調信号が基板内の伝搬波と結合してしまうことによる。そして、とりわけ、共振器型電極の光変調器では、変調信号を共振させて変調電極内にエネルギーを蓄積して高い変調効率を実現しようとするものであるので、その蓄積エネルギーの一部が基板に放射すると顕著にその変調効率が低下するという問題がある。   Further, in the conventional examples 2 and 4, the modulation efficiency is improved by using the resonator-type modulation electrode. There is a problem to say. This phenomenon is due to the fact that the substrate operates as a dielectric waveguide, and the modulation signal propagating in the modulation electrode is coupled with the propagation wave in the substrate. In particular, in the case of a resonator-type electrode optical modulator, a modulation signal is resonated to accumulate energy in the modulation electrode to achieve high modulation efficiency. There is a problem that the modulation efficiency is remarkably reduced when the light is radiated.

この影響は、基板の断面方向の寸法が大きいほど、基板の誘電率が高いほど、及び、変調信号の周波数が高いほど、より顕著になってくる。しかしながら、今後の光変調器はミリ波帯のような高い周波数域での利用が期待されており、変調信号の周波数を下げることはできない。また、基板に利用される電気光学結晶であるニオブ酸リチウムは誘電率が非常に高いが、代替の材料が見当たらないのが現状である。そのため、この表面波との結合による変調特性の劣化は深刻な課題である。   This effect becomes more remarkable as the dimension in the cross-sectional direction of the substrate is larger, the dielectric constant of the substrate is higher, and the frequency of the modulation signal is higher. However, it is expected that the future optical modulator will be used in a high frequency band such as a millimeter wave band, and the frequency of a modulated signal cannot be reduced. Lithium niobate, which is an electro-optic crystal used for a substrate, has a very high dielectric constant, but at present, no alternative material is found. Therefore, the deterioration of the modulation characteristic due to the coupling with the surface wave is a serious problem.

本発明の目的は以上の問題点を解決し、例えばミリ波帯などの超高周波信号に対しても、従来技術に比較して高い効率で光変調が可能な光変調器を提供することにある。   An object of the present invention is to solve the above problems and to provide an optical modulator capable of performing optical modulation with higher efficiency than ultra-high-frequency signals, for example, even in a millimeter-wave band. .

本発明の一態様にかかる光変調器は、
少なくとも一部分が電気光学効果を有する導波路基板に形成され、2つの分岐光導波路を有する光導波路と、
前記2つの分岐光導波路を挟設するように対向して配置された第1の線路と、第2及び第3の線路であって、互いに電磁的に結合しかつ入力される光変調用高周波信号に対して実質的に共振する線路長を有する第1〜第3の線路導体を備える変調電極とを備えた光変調器であって、
前記変調電極は、前記光変調用高周波信号に基づいて、前記第2の線路と、前記第3の線路とが互いに異なる符号の電圧が誘起されて前記変調電極が励振されるように配置されたことを特徴とする。
An optical modulator according to one embodiment of the present invention,
An optical waveguide having at least a portion formed on a waveguide substrate having an electro-optic effect and having two branch optical waveguides;
A first line, and a second and a third line, which are arranged opposite to each other so as to sandwich the two branch optical waveguides, and which are electromagnetically coupled to each other and input to the high frequency signal for optical modulation; A modulation electrode having first to third line conductors having a line length that substantially resonates with the optical modulator,
The modulation electrode is arranged such that a voltage having a different sign is induced in the second line and the third line based on the high frequency signal for light modulation, and the modulation electrode is excited. It is characterized by the following.

従って、本発明に係る光変調器によれば、例えばミリ波帯などの高周波信号に対しても、従来技術に比較して高い効率を有する光変調器が実現できる、   Therefore, according to the optical modulator according to the present invention, for example, even for a high-frequency signal such as a millimeter wave band, it is possible to realize an optical modulator having higher efficiency as compared with the related art.

本発明の実施形態1に係る光変調器の構成例を示す平面図である。FIG. 2 is a plan view illustrating a configuration example of the optical modulator according to the first embodiment of the present invention. 図1Aの光変調器のA−A’線に沿った縦断面図である。FIG. 1B is a longitudinal sectional view of the optical modulator of FIG. 1A along the line A-A ′. 図1A及び図1Bの光変調器の伝搬モードM1のときの線路導体14,15a,15bに発生する電圧の極性及び導波路基板11内の電界分布を表す縦断面図である。FIG. 2 is a longitudinal sectional view showing the polarities of voltages generated in the line conductors 14, 15a, 15b and the electric field distribution in the waveguide substrate 11 in the propagation mode M1 of the optical modulator of FIGS. 1A and 1B. 図1A及び図1Bの光変調器の伝搬モードM2のときの線路導体14,15a,15bに発生する電圧の極性及び導波路基板11内の電界分布を表す縦断面図である。FIG. 2 is a longitudinal sectional view showing the polarities of voltages generated in the line conductors 14, 15a, 15b and the electric field distribution in the waveguide substrate 11 in the propagation mode M2 of the optical modulator of FIGS. 1A and 1B. 図1A及び図1Bの光変調器の伝搬モードM3のときの線路導体14,15a,15bに発生する電圧の極性及び導波路基板11内の電界分布を表す縦断面図である。FIG. 2 is a longitudinal sectional view showing the polarities of voltages generated in the line conductors 14, 15a, 15b and the electric field distribution in the waveguide substrate 11 in the propagation mode M3 of the optical modulator in FIGS. 1A and 1B. 本発明の実施形態2に係る光変調器の構成例を示す平面図である。FIG. 9 is a plan view illustrating a configuration example of an optical modulator according to a second embodiment of the present invention. 図3Aの光変調器のB−B’線に沿った縦断面図である。FIG. 3B is a longitudinal sectional view of the optical modulator of FIG. 3A taken along line B-B ′. 本発明の実施形態2の変形例に係る光変調器の構成例を示す平面図である。FIG. 13 is a plan view illustrating a configuration example of an optical modulator according to a modification of the second embodiment of the present invention. 本発明の実施形態3に係る光変調器の構成例を示す平面図である。FIG. 13 is a plan view illustrating a configuration example of an optical modulator according to a third embodiment of the present invention. 図5Aの光変調器のC−C’線に沿った縦断面図である。FIG. 5B is a longitudinal sectional view of the optical modulator of FIG. 5A along the line C-C ′. 本発明の実施形態4に係る光変調器の構成例を示す平面図である。FIG. 14 is a plan view illustrating a configuration example of an optical modulator according to a fourth embodiment of the present invention. 図6Aの光変調器のD−D’線に沿った縦断面図である。FIG. 6B is a longitudinal sectional view of the optical modulator of FIG. 6A taken along line D-D ′. 図1A及び図1Bの光変調器に対する電磁界解析シミュレーション結果であって、反射損の周波数特性を示すグラフである。FIG. 4 is a graph showing electromagnetic field analysis simulation results for the optical modulators of FIGS. 1A and 1B, showing frequency characteristics of reflection loss. 従来例1に係る光変調器の構成を示す平面図である。FIG. 9 is a plan view illustrating a configuration of an optical modulator according to Conventional Example 1. 図8Aの光変調器のE−E’線に沿った縦断面図である。FIG. 8B is a longitudinal sectional view of the optical modulator of FIG. 8A along the line E-E ′. 従来例2に係る光変調器の構成を示す平面図である。FIG. 9 is a plan view illustrating a configuration of an optical modulator according to Conventional Example 2. 従来例3に係る光変調器の構成を示す縦断面図である。FIG. 13 is a longitudinal sectional view illustrating a configuration of an optical modulator according to Conventional Example 3. 従来例4に係る光変調器の構成を示す平面図である。FIG. 14 is a plan view illustrating a configuration of an optical modulator according to Conventional Example 4. 図11Aの光変調器の伝搬モードM11のときのF−F’線に沿った縦断面図である。FIG. 11B is a longitudinal sectional view along the line F-F ′ of the optical modulator of FIG. 11A in a propagation mode M11. 図11Aの光変調器の伝搬モードM12のときのF−F’線に沿った縦断面図である。FIG. 11B is a longitudinal sectional view along the line F-F ′ of the optical modulator of FIG. 11A in a propagation mode M12.

以下、本発明に係る各実施形態について図面を参照して説明する。なお、以下の各実施形態において、同様の構成要素については同一の符号を付している。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following embodiments, the same components are denoted by the same reference numerals.

実施形態1.
図1Aは本発明の実施形態1に係る光変調器の構成例を示す平面図である。また、図1Bは図1Aの光変調器のA−A’線に沿った縦断面図である。
Embodiment 1 FIG.
FIG. 1A is a plan view illustrating a configuration example of an optical modulator according to Embodiment 1 of the present invention. FIG. 1B is a longitudinal sectional view of the optical modulator of FIG. 1A along the line AA ′.

図1A及び図1Bにおいて、実施形態1に係る光変調器は、導波路基板11と、導波路基板11に設けられた光導波路12と、導波路基板11の上面に設けられたバッファ層13と、線路導体14と、導波路基板11の下面に間隙部16を挟んで配置された2本の線路導体15a,15bと、線路導体15bと間隙部18を介して配置された導波路基板11の上面に設けられた線路導体19cと、導波路基板11を支える誘電体基板である支持基板20と支持基板20の裏面に配置された接地導体21とを備えて構成される。   1A and 1B, the optical modulator according to the first embodiment includes a waveguide substrate 11, an optical waveguide 12 provided on the waveguide substrate 11, and a buffer layer 13 provided on the upper surface of the waveguide substrate 11. , A line conductor 14, two line conductors 15 a and 15 b disposed on the lower surface of the waveguide substrate 11 with a gap 16 interposed therebetween, and a waveguide substrate 11 disposed via the line conductor 15 b and the gap 18. It comprises a line conductor 19c provided on the upper surface, a support substrate 20 which is a dielectric substrate supporting the waveguide substrate 11, and a ground conductor 21 arranged on the back surface of the support substrate 20.

ここで、線路導体14,15a,15bはそれぞれ金属薄膜などからなる接地導体21を共通に持つマイクロストリップ線路であり、3本の線路導体14,15a,15bは互いに電磁的に結合するように近接して配置されているので、互いに電磁的に結合した3結合線路を構成し、同時に変調電極として動作する。また、線路導体19cも接地導体21を共通に持つマイクロストリップ線路である給電線路19を構成する。なお、線路導体15bと間隙部18を介して近接配置された線路導体19cは、線路導体15bと容量的に結合する。   Here, each of the line conductors 14, 15a, 15b is a microstrip line having a common ground conductor 21 made of a metal thin film or the like, and the three line conductors 14, 15a, 15b are close to each other so as to be electromagnetically coupled to each other. , And thus constitutes three coupled lines that are electromagnetically coupled to each other and simultaneously operates as a modulation electrode. The line conductor 19c also forms the feed line 19, which is a microstrip line having the ground conductor 21 in common. The line conductor 19c disposed close to the line conductor 15b via the gap 18 is capacitively coupled to the line conductor 15b.

光導波路12は、導波路基板11の線路導体14の両側と線路導体15の片側に挟まれた2カ所の対向部分17に配置され、また、2本の線路導体15a,15bはそれらの両端が短絡部22で互いに短絡されている。   The optical waveguide 12 is disposed at two opposing portions 17 sandwiched between both sides of the line conductor 14 of the waveguide substrate 11 and one side of the line conductor 15, and the two line conductors 15a and 15b have both ends thereof. The short-circuit portions 22 are short-circuited to each other.

導波路基板11は、電気光学効果のあるニオブ酸リチウム(LiNbO)のzカット基板(結晶工学上のz軸が導波路基板11に垂直な方向を向く)からなる。光導波路12は、導波路基板11の表面に金属チタンの熱拡散などにより形成される。入力光25は、光導波路12に導入され、分岐部23で二つに分岐し、それぞれが対向部分17を通過した後、合波部24で合流し、出力光26となるマッハツェンダー干渉計を構成している。The waveguide substrate 11 is made of a z-cut substrate of lithium niobate (LiNbO 3 ) having an electro-optic effect (the z-axis in crystal engineering points in a direction perpendicular to the waveguide substrate 11). The optical waveguide 12 is formed on the surface of the waveguide substrate 11 by thermal diffusion of titanium metal or the like. The input light 25 is introduced into the optical waveguide 12, splits into two at the splitting portion 23, and after each passing through the opposing portion 17, merges at the multiplexing portion 24 and forms a Mach-Zehnder interferometer that becomes the output light 26. Make up.

また、導波路基板11の上面には、光導波路12中の光波の減衰を抑えるために酸化シリコンなどからなるバッファ(緩衝)層13が形成され、バッファ層13の上には金属薄膜などからなる1本の線路導体14が形成されている。また、導波路基板11の下面には、線路導体14に平行に金属薄膜などからなる2本の線路導体15a,15bが、間隙部16を挟んで並んでおり、線路導体14の両側の部分と、線路導体15a及び15bのそれぞれの内側(間隙部16の側)の部分とが、導波路基板11を挟んで対向している。また、導波路基板11は、サファイア(単結晶アルミナ)などからなる支持基板20上に固定されている。   In addition, a buffer (buffer) layer 13 made of silicon oxide or the like is formed on the upper surface of the waveguide substrate 11 to suppress attenuation of light waves in the optical waveguide 12, and a metal thin film or the like is formed on the buffer layer 13. One line conductor 14 is formed. On the lower surface of the waveguide substrate 11, two line conductors 15a and 15b made of a metal thin film or the like are arranged in parallel with the line conductor 14 with a gap 16 interposed therebetween. , The inner portions (on the side of the gap 16) of the line conductors 15a and 15b are opposed to each other with the waveguide substrate 11 interposed therebetween. The waveguide substrate 11 is fixed on a support substrate 20 made of sapphire (single crystal alumina) or the like.

以上のように構成された光変調器において、上記のように結合した3線路には以下に示すような電圧が生じる3つの伝搬モードM1,M2,M3が存在し、それぞれ独立に伝搬する。   In the optical modulator configured as described above, the three lines coupled as described above have three propagation modes M1, M2, and M3 in which the following voltages are generated, and propagate independently.

図2Aは図1A及び図1Bの光変調器の伝搬モードM1のときの線路導体14,15a,15bに発生する電圧の極性及び導波路基板11内の電界分布を表す縦断面図である。図2Bは図1A及び図1Bの光変調器の伝搬モードM2のときの線路導体14,15a,15bに発生する電圧の極性及び導波路基板11内の電界分布を表す縦断面図である。図2Cは図1A及び図1Bの光変調器の伝搬モードM3のときの線路導体14,15a,15bに発生する電圧の極性及び導波路基板11内の電界分布を表す縦断面図である。なお、図2A〜図2Cにおいて、線路導体19cの図示を省略している。   FIG. 2A is a longitudinal sectional view showing the polarities of voltages generated in the line conductors 14, 15a, 15b and the electric field distribution in the waveguide substrate 11 in the propagation mode M1 of the optical modulator of FIGS. 1A and 1B. FIG. 2B is a longitudinal sectional view showing the polarities of voltages generated in the line conductors 14, 15a and 15b and the electric field distribution in the waveguide substrate 11 in the propagation mode M2 of the optical modulator of FIGS. 1A and 1B. FIG. 2C is a longitudinal sectional view showing the polarities of voltages generated in the line conductors 14, 15a, and 15b and the electric field distribution in the waveguide substrate 11 in the propagation mode M3 of the optical modulator in FIGS. 1A and 1B. 2A to 2C, illustration of the line conductor 19c is omitted.

図2Bの伝搬モードM2を励振すれば、線路導体14の電圧は0で、2本の線路導体15a,15bでは互いに逆符号の電圧が生じる。そのため、電界分布は対向部分17に集中した強い電界101,102が生じ、かつ、2つの対向部分17で互いに逆方向となる。この電界101,102が電気光学効果を有する光導波路12に与えられるため、対向部分17を通る2本の光導波路12は互いに逆方向に屈折率が変化する。光導波路12への入力光25は、二分されてそれぞれ別々の光導波路12を伝搬し、ここで互いに逆向きの位相変調を受け、合波部24で干渉して光強度が変調され、出力光26となる。給電線路19に入力された変調信号が伝搬モードM2を励振し、伝搬モードM2が変調電極の両端で反射を繰り返すことで、線路導体の長さで決まる周波数で共振を起こす。共振によって変調信号のエネルギーが変調電極に蓄積されて、伝搬モードM2の電圧振幅が増加し、大きな電圧が誘起される。これによって、高効率な光変調が実現される。   When the propagation mode M2 in FIG. 2B is excited, the voltage of the line conductor 14 is 0, and voltages of opposite signs are generated in the two line conductors 15a and 15b. Therefore, in the electric field distribution, strong electric fields 101 and 102 concentrated on the opposing portion 17 are generated, and the two opposing portions 17 are in opposite directions. Since the electric fields 101 and 102 are applied to the optical waveguide 12 having the electro-optic effect, the two optical waveguides 12 passing through the facing portion 17 change in refractive index in directions opposite to each other. The input light 25 to the optical waveguide 12 is split into two and propagates in the respective different optical waveguides 12, where they undergo phase modulation in opposite directions, interfere with each other in the multiplexing unit 24, modulate the light intensity, and output light. 26. The modulation signal input to the feed line 19 excites the propagation mode M2, and the propagation mode M2 repeats reflection at both ends of the modulation electrode, so that resonance occurs at a frequency determined by the length of the line conductor. Due to the resonance, the energy of the modulation signal is accumulated in the modulation electrode, the voltage amplitude of the propagation mode M2 increases, and a large voltage is induced. Thereby, highly efficient light modulation is realized.

また、伝搬モードM2によって生じる電界は、図2Bに示すように、対向部分17の限られた領域にのみ生じる。そのため、入力した変調信号のエネルギーが効率的に電界の誘起に使われるため、図8Bの従来例1に比較して、変調効率の向上が期待できる。また、薄板状の導波路基板11を用いることによって、対向部分17の上下の線路導体の間隔を小さくできるので、同じ電圧でも強い電界を生じさせ、変調効率をさらに向上させることができる。また、薄板状の導波路基板11と比較的誘電率の小さなサファイアなどからなる支持基板20を使うことで、変調電極中の伝搬波から見た基板の等価的な誘電率を大きく減少させることができるので、変調信号が表面波に漏洩することを効果的に抑えることができる。このことは、本実施形態のように変調電極を共振器として利用する場合は特に有効である。   The electric field generated by the propagation mode M2 is generated only in a limited area of the facing portion 17, as shown in FIG. 2B. Therefore, since the energy of the input modulation signal is efficiently used for inducing the electric field, improvement in the modulation efficiency can be expected as compared with the conventional example 1 of FIG. 8B. In addition, by using the thin waveguide substrate 11, the distance between the line conductors above and below the opposing portion 17 can be reduced, so that a strong electric field is generated even at the same voltage, and the modulation efficiency can be further improved. Also, by using the thin waveguide substrate 11 and the supporting substrate 20 made of sapphire having a relatively small dielectric constant, the equivalent dielectric constant of the substrate viewed from the propagation wave in the modulation electrode can be greatly reduced. Therefore, it is possible to effectively prevent the modulated signal from leaking to the surface wave. This is particularly effective when the modulation electrode is used as a resonator as in the present embodiment.

また、このような薄板状の導波路基板11を用いる利点として、変調電極中の伝搬波と光導波路12中の光波との間の速度整合がある。電気光学結晶であるニオブ酸リチウムの高周波信号に対する誘電率は28以上であるため、変調電極中の伝搬波は光導波路中の光波に比べて速度が非常に遅くなり、そのために、変調効率が劣化していた。本構成の光変調器では、先に述べたように変調電極中の伝搬波から見た基板の等価的な誘電率を大きく減少させることができるので、前記伝搬波と前記光波との間の速度差を小さくすることが可能であり、それによっても、変調効率を向上させることができる。   Further, as an advantage of using such a thin waveguide substrate 11, there is velocity matching between the propagation wave in the modulation electrode and the light wave in the optical waveguide 12. Since the dielectric constant of high frequency signals of lithium niobate, which is an electro-optic crystal, is 28 or more, the speed of the propagating wave in the modulating electrode is much slower than that of the light wave in the optical waveguide, thereby deteriorating the modulation efficiency. Was. In the optical modulator having this configuration, as described above, since the equivalent permittivity of the substrate viewed from the propagating wave in the modulation electrode can be greatly reduced, the speed between the propagating wave and the light wave can be reduced. The difference can be reduced, thereby also improving the modulation efficiency.

ここで、変調信号の給電について説明する。線路導体19cと線路導体14,15a,15bとの位置関係によって、線路導体19cの給電線路19に入力された高周波信号と変調電極で共振する共振モードとの結合度を調節することができる。そして、最適な結合度に対応する位置関係を選ぶことにより、給電線路19に入力された高周波信号のエネルギーが、すべて上記共振モードに変換され、さらに効率が良くなる。また、3つの伝搬モードM1〜M3はそれぞれ伝搬速度が異なるため、共振周波数も異なる。そのため、所望の周波数で伝搬モードM2が共振するように、線路導体の長さを調節すれば、選択的に伝搬モードM2の共振モードを励振することができる。   Here, power supply of the modulation signal will be described. Depending on the positional relationship between the line conductor 19c and the line conductors 14, 15a, 15b, the degree of coupling between the high-frequency signal input to the feed line 19 of the line conductor 19c and the resonance mode in which the modulation electrode resonates can be adjusted. Then, by selecting a positional relationship corresponding to the optimum coupling degree, all the energy of the high-frequency signal input to the feed line 19 is converted into the resonance mode, and the efficiency is further improved. In addition, since the three propagation modes M1 to M3 have different propagation speeds, the resonance frequencies are also different. Therefore, if the length of the line conductor is adjusted so that the propagation mode M2 resonates at a desired frequency, the resonance mode of the propagation mode M2 can be selectively excited.

次いで、給電線路19と変調電極との位置関係と結合度について以下に説明する。ここで、線路導体19cと線路導体14,15a,15bとが交差する角度については、実用的な結合度を得るためには、図示のように、線路導体14,15a,15bと線路導体19cとが実質的に直交していることが望ましい。また、線路導体19cの先端と線路導体14,15a,15bとの位置関係と結合度との関係については、線路導体19cの先端を延ばして、線路導体19c側にある線路導体15bに間隙部18を介して深く被せるように配置することによって結合度を大きくすることができる。また、線路導体15bの長手方向の位置に対する線路導体19cの位置と結合度との関係については、図1Aのように、必ずしも線路導体19cを線路導体15bの中央に配置する必要は無く、線路導体19cを線路導体15bの中央に配置したときが、結合度が最も大きく、端にずらすことで結合度を減らすことができる。   Next, the positional relationship between the power supply line 19 and the modulation electrode and the degree of coupling will be described below. Here, as for the angle at which the line conductor 19c intersects with the line conductors 14, 15a, 15b, in order to obtain a practical coupling degree, as shown in FIG. Are desirably substantially orthogonal. As for the relationship between the positional relationship between the tip of the line conductor 19c and the line conductors 14, 15a, 15b and the degree of coupling, the tip of the line conductor 19c is extended so that the gap 18 is formed in the line conductor 15b on the side of the line conductor 19c. The degree of bonding can be increased by arranging them so as to cover them deeply. As for the relationship between the position of the line conductor 19c and the degree of coupling with respect to the position of the line conductor 15b in the longitudinal direction, the line conductor 19c does not necessarily have to be arranged at the center of the line conductor 15b, as shown in FIG. 1A. When the conductor 19c is arranged at the center of the line conductor 15b, the degree of coupling is the largest, and the degree of coupling can be reduced by shifting to the end.

図7は図1A及び図1Bの光変調器に対する電磁界解析シミュレーション結果であって、反射損(S11)の周波数特性を示すグラフである。図7において、横軸は入力する高周波信号の周波数(GHz)であり、縦軸は反射損(dB)である。図7から明らかなように、想定した共振周波数(10GHz付近)で反射が大きく減少し、ほぼすべての入力信号電力が変調電極に結合していることが分かる。共振周波数については、線路導体15a,15bの長さで調節することができるので、所望の周波数で共振させることが可能である。FIG. 7 is a graph showing a result of an electromagnetic field analysis simulation with respect to the optical modulators of FIGS. 1A and 1B, showing a frequency characteristic of a reflection loss (S 11 ). In FIG. 7, the horizontal axis represents the frequency (GHz) of the input high-frequency signal, and the vertical axis represents the reflection loss (dB). As is apparent from FIG. 7, the reflection is greatly reduced at the assumed resonance frequency (around 10 GHz), and almost all input signal power is coupled to the modulation electrode. Since the resonance frequency can be adjusted by the length of the line conductors 15a and 15b, it is possible to resonate at a desired frequency.

なお、本実施形態では、変調電極として、線路導体15a,15bの両端を短絡部22で短絡した共振器構造を用いたが、線路導体15a,15bの端を短絡させずに開放すること、あるいは、一方を短絡し、他方を開放することでも共振器構造を構成でき、同様に有効である。さらに、共振させずに高周波信号で励振した伝搬モードM2を光導波路12中の光波と同じ方向に伝搬させる進行波型構造も同様に有効である。
一方、図2Cに示した伝搬モードM3では線路導体15a.15bの電位が線路導体14に対し同相となるため、対向部分17に発生する電界101、103も図示するように同相となる。したがって2本の光導波路12は同方向の屈折率変化が生じ、光変調はできない。
In this embodiment, a resonator structure in which both ends of the line conductors 15a and 15b are short-circuited by the short-circuit portion 22 is used as the modulation electrode, but the ends of the line conductors 15a and 15b are opened without being short-circuited, or By short-circuiting one and opening the other, a resonator structure can be formed, which is similarly effective. Further, a traveling wave type structure in which a propagation mode M2 excited by a high frequency signal without causing resonance propagates in the same direction as the light wave in the optical waveguide 12 is also effective.
On the other hand, in the propagation mode M3 shown in FIG. 2C, the potentials of the line conductors 15a and 15b are in phase with the line conductor 14, so that the electric fields 101 and 103 generated in the opposing portion 17 are also in phase as shown. Therefore, the two optical waveguides 12 undergo a change in the refractive index in the same direction, so that light cannot be modulated.

実施形態2.
図3Aは本発明の実施形態2に係る光変調器の構成例を示す平面図である。また、図3Bは図3Aの光変調器のB−B’線に沿った縦断面図である。図3A及び図3Bにおいて、図1A及び図1B(実施形態1)と同一又は対応する構成要素には図1A及び図1Bと同じ参照符号を付す。それらの構成要素については、必要な場合を除き、その説明を省略する。
Embodiment 2. FIG.
FIG. 3A is a plan view illustrating a configuration example of an optical modulator according to Embodiment 2 of the present invention. FIG. 3B is a longitudinal sectional view of the optical modulator of FIG. 3A along the line BB ′. 3A and 3B, the same or corresponding components as those in FIGS. 1A and 1B (Embodiment 1) are denoted by the same reference numerals as those in FIGS. 1A and 1B. Descriptions of those components will be omitted unless necessary.

図3A及び図3Bにおいて、実施形態2に係る光変調器は、図1A及び図1Bの実施形態1に係る光変調器に比較して以下の点が異なる。
(1)図1A及び図1Bの線路導体14,15a,15bの配置を代えて、導波路基板11の上面に線路導体15a,15bを、導波路基板11の下面に線路導体14を設けた。
(2)導波路基板11の上面において、線路導体19cの先端を線路導体15bの側部に間隙部18を介して近づけて配置し、線路導体19cを線路導体15bに対して容量的に結合させて、共振モードを励振する。
それ以外の構成は実施形態1に係る光変調器と同じである。
3A and 3B, the optical modulator according to the second embodiment is different from the optical modulator according to the first embodiment in FIGS. 1A and 1B in the following points.
(1) The line conductors 15a and 15b are provided on the upper surface of the waveguide substrate 11 and the line conductor 14 is provided on the lower surface of the waveguide substrate 11 in place of the arrangement of the line conductors 14, 15a and 15b in FIGS. 1A and 1B.
(2) On the upper surface of the waveguide substrate 11, the tip of the line conductor 19c is arranged close to the side of the line conductor 15b via the gap 18, and the line conductor 19c is capacitively coupled to the line conductor 15b. To excite the resonance mode.
Other configurations are the same as those of the optical modulator according to the first embodiment.

以上のように構成された光変調器においても、図2Bの伝搬モードM2に対応する、線路導体14の電圧が0で両側の線路導体15a,15bの電圧が逆符号となるモードを励振することによって、電気力線が101,102で表されるような電界が生じる。これによって、2つの対向部分17に互いに逆方向の強い電界101,102が生じ、実施形態1と同様の原理で効率的な光変調が可能となる。この構成においては、線路導体19cと線路導体15bとが同じ面上にあるので、互いの位置関係や、間隙部18の間隔を精度良く作成することができ、結合度を実施形態1に比較して精度良く制御することができる。   Also in the optical modulator configured as described above, the mode corresponding to the propagation mode M2 in FIG. 2B in which the voltage of the line conductor 14 is 0 and the voltages of the line conductors 15a and 15b on both sides have the opposite sign is excited. As a result, an electric field whose electric lines of force are represented by 101 and 102 is generated. As a result, strong electric fields 101 and 102 in opposite directions are generated in the two opposed portions 17, and efficient light modulation can be performed based on the same principle as in the first embodiment. In this configuration, since the line conductor 19c and the line conductor 15b are on the same plane, the positional relationship between the line conductors and the interval between the gaps 18 can be created with high accuracy. Control with high accuracy.

実施形態2の変形例.
図4は本発明の実施形態2の変形例に係る光変調器の構成例を示す平面図である。図4において、実施形態2の変形例は、図3Aの実施形態2と比較して、間隙部18をなくして、線路導体19cと線路導体15bとを直接に接続することで、誘導性の結合方法を用いたことを特徴とする。この場合は、線路導体19cが接続される線路導体15b上の長手方向の位置によって結合度が決まるが、間隙部18による容量性の結合に比べてより大きな結合度を容易に得ることができる。
Modification of the second embodiment.
FIG. 4 is a plan view showing a configuration example of an optical modulator according to a modification of the second embodiment of the present invention. In FIG. 4, a modification of the second embodiment is different from the second embodiment in FIG. 3A in that the gap 18 is eliminated and the line conductor 19c and the line conductor 15b are directly connected to each other, so that inductive coupling is achieved. It is characterized by using the method. In this case, the degree of coupling is determined by the position in the longitudinal direction on the line conductor 15b to which the line conductor 19c is connected. However, a higher degree of coupling can be easily obtained as compared with the capacitive coupling by the gap 18.

実施形態3.
図5Aは本発明の実施形態3に係る光変調器の構成例を示す平面図である。また、図5Bは図5Aの光変調器のC−C’線に沿った縦断面図である。図5A及び図5Bにおいて、図1A及び図1Bの実施形態1と同一又は対応する構成要素には、図1A及び図1Bと同じ参照符号を付す。それらの構成要素については、必要な場合を除き、その説明を省略する。
Embodiment 3 FIG.
FIG. 5A is a plan view illustrating a configuration example of an optical modulator according to Embodiment 3 of the present invention. FIG. 5B is a longitudinal sectional view of the optical modulator of FIG. 5A along the line CC ′. 5A and 5B, the same or corresponding components as those in Embodiment 1 of FIGS. 1A and 1B are denoted by the same reference numerals as those of FIGS. 1A and 1B. Descriptions of those components will be omitted unless necessary.

図5A及び図5Bにおいて、実施形態3は、図1A及び図1Bの実施形態1に比較して、支持基板20の上面の、線路導体15a,15bが設置された部分に空洞部分27を設けたことを特徴としている。それ以外は実施形態1と同じである。以下、上記相違点について詳述する。   5A and 5B, the third embodiment is different from the first embodiment in FIGS. 1A and 1B in that a hollow portion 27 is provided on a portion of the upper surface of the support substrate 20 where the line conductors 15a and 15b are provided. It is characterized by: Other than that is the same as the first embodiment. Hereinafter, the difference will be described in detail.

上述のように、薄い導波路基板11と比較的誘電率の小さな支持基板20を使うことで、変調電極中の伝搬波から見た基板の等価的な誘電率を大きく減少させることができると述べたが、実施形態3に係る光変調器では、この効果をさらに強めることができる。すなわち、線路導体15a,15bが空洞部分27で空気と接するので、変調電極中の伝搬波から見た基板の等価的な誘電率がより一層小さくなり、それによって、より一層の、変調信号の表面波への漏洩の抑圧と、変調電極中の伝搬波と光波との間の速度の整合が実現し、さらに、変調効率が向上する。この空洞部分27の深さは僅かでもあれば有効であるが、特に、間隙部16の幅程度以上あれば大きな効果が発揮される。   As described above, by using the thin waveguide substrate 11 and the support substrate 20 having a relatively small dielectric constant, it is possible to greatly reduce the equivalent dielectric constant of the substrate viewed from the propagation wave in the modulation electrode. However, in the optical modulator according to the third embodiment, this effect can be further enhanced. That is, since the line conductors 15a and 15b come into contact with air in the hollow portion 27, the equivalent dielectric constant of the substrate as viewed from the propagating wave in the modulation electrode is further reduced, thereby further increasing the surface of the modulation signal. Suppression of wave leakage and speed matching between the propagating wave and the light wave in the modulation electrode are realized, and the modulation efficiency is further improved. If the depth of the hollow portion 27 is small, it is effective. However, if the depth is not less than the width of the gap portion 16, a great effect is exhibited.

実施形態4.
図6Aは本発明の実施形態4に係る光変調器の構成例を示す平面図である。また、図6Bは図6Aの光変調器のD−D’線に沿った縦断面図である。図6A及び図6Bにおいて、図5A及び図5Bの実施形態3と同一又は対応する構成要素には図5A及び図5Bと同じ参照符号を付す。それらの構成要素については、必要な場合を除き、その説明を省略する。
Embodiment 4. FIG.
FIG. 6A is a plan view illustrating a configuration example of an optical modulator according to Embodiment 4 of the present invention. FIG. 6B is a longitudinal sectional view of the optical modulator of FIG. 6A along the line DD ′. 6A and 6B, the same or corresponding components as those in Embodiment 3 in FIGS. 5A and 5B are denoted by the same reference numerals as those in FIGS. 5A and 5B. Descriptions of those components will be omitted unless necessary.

図6A及び図6Bにおいて、実施形態4は、図5A及び図5Bの実施形態3と比較して、実施形態3の空洞部分27の底面に導体膜28を形成したことを特徴とする。それ以外は実施形態3と同じである。以下、上記相違点について詳述する。   6A and 6B, the fourth embodiment is characterized in that a conductive film 28 is formed on the bottom surface of the hollow portion 27 of the third embodiment as compared with the third embodiment of FIGS. 5A and 5B. Other than that is the same as the third embodiment. Hereinafter, the difference will be described in detail.

導体膜28を空洞部分27の底面に形成すると、光変調器が伝搬モードM2で動作している場合、線路導体15a,15bと導体膜28との間の電圧差により、空洞部分27内にも電界が誘起される。そのため、伝搬波の感じる誘電率が空洞部分27内の空気の誘電率により強く影響されて低下する。そのため、実施形態4では、実施形態3の場合に比べて、より一層、変調電極中の伝搬波の伝搬速度が増加し、光導波路12中の光波との速度がより一層整合し、完全な速度整合も可能である。   When the conductor film 28 is formed on the bottom surface of the hollow portion 27, the voltage difference between the line conductors 15a and 15b and the conductor film 28 causes the optical modulator to operate inside the hollow portion 27 when the optical modulator operates in the propagation mode M2. An electric field is induced. Therefore, the dielectric constant felt by the propagating wave is strongly influenced by the dielectric constant of the air in the hollow portion 27 and is reduced. Therefore, in the fourth embodiment, the propagation speed of the propagating wave in the modulation electrode is further increased as compared with the case of the third embodiment, and the speed with the light wave in the optical waveguide 12 is further matched. Matching is also possible.

また、空洞部分27内に生じる電界は光変調には寄与しないが、空洞部分27内の空気の誘電率はニオブ酸リチウムなどの一般的な導波路基板に比べて遙かに小さいので、空洞部分27内に生じる電界のエネルギーは導波路基板11内に生じる電界エネルギーに比べて遙かに小さい。従って、空洞部分27に生じる電界による変調効率の低下はごく僅かであり、速度整合効果による変調効率の向上の影響の方が大きい。   Although the electric field generated in the cavity 27 does not contribute to the light modulation, the dielectric constant of air in the cavity 27 is much smaller than that of a general waveguide substrate such as lithium niobate. The energy of the electric field generated in 27 is much smaller than the electric field energy generated in the waveguide substrate 11. Therefore, the decrease in the modulation efficiency due to the electric field generated in the hollow portion 27 is very small, and the effect of the improvement in the modulation efficiency due to the speed matching effect is greater.

まず、実施形態4の構成に基づく実施例について以下に説明する。   First, an example based on the configuration of the fourth embodiment will be described below.

マッハツェンダー干渉計を構成する光導波路12の間隔を50μmとし、サファイア単結晶による支持基板20の厚さを0.5mmとし、zカットのニオブ酸リチウムによる導波路基板11の厚さを10μmとし、線路導体14の幅を55μmとし、線路導体15a,15bの幅を225μmとし、間隙部16の幅を45μmとし、線路導体15a,15bの長さを6.9mmとし、間隙部18の重なり長さ(平面図における線路導体15bと線路導体19cの先端部との重なりの長さ)を20μmとし、空洞部分27の深さを30μmとし、線路導体19cの線路幅を0.1mmとしたとき、10GHz付近で、内部インピーダンス50Ωの信号源からの変調信号に対して伝搬モードM2による共振が起こり、入力した変調信号がほぼ完全に共振モードと結合し、さらに、変調電極に伝搬波と光波との完全な速度整合が得られる。   The interval between the optical waveguides 12 constituting the Mach-Zehnder interferometer is 50 μm, the thickness of the support substrate 20 made of sapphire single crystal is 0.5 mm, the thickness of the waveguide substrate 11 made of z-cut lithium niobate is 10 μm, The width of the line conductor 14 is 55 μm, the width of the line conductors 15 a and 15 b is 225 μm, the width of the gap 16 is 45 μm, the length of the line conductors 15 a and 15 b is 6.9 mm, and the overlap length of the gap 18. When the length of the overlap between the line conductor 15b and the tip of the line conductor 19c in the plan view is 20 μm, the depth of the hollow portion 27 is 30 μm, and the line width of the line conductor 19c is 0.1 mm, 10 GHz Near the modulation signal from the signal source having an internal impedance of 50Ω, resonance occurs in the propagation mode M2, and the input modulation signal almost completely resonates. Coupled to the mode, and also provides perfect modulation of the propagating and light waves at the modulating electrode.

次に、各部の望ましい寸法について説明する。導波路基板11の厚さについては、より薄い方が変調効率の向上に有利である。しかし、現実には、ニオブ酸リチウムを導波路基板11の材料に使用し、波長1.5μmの光を変調する場合については、光導波路12を形成するためと実施形態4での機械的強度を維持するためには、5μm〜100μmの範囲が、有効性が高く、10μm程度の厚さが最も望ましい。   Next, desirable dimensions of each part will be described. As for the thickness of the waveguide substrate 11, a thinner one is more advantageous for improving the modulation efficiency. However, in reality, when using lithium niobate as the material of the waveguide substrate 11 and modulating light having a wavelength of 1.5 μm, the mechanical strength in the fourth embodiment and the mechanical strength in the fourth embodiment are reduced. In order to maintain the thickness, a range of 5 μm to 100 μm is highly effective, and a thickness of about 10 μm is most desirable.

また、マッハツェンダー干渉計を構成する光導波路12の間隔は、通常は、20〜500μm程度である。対向部分17の幅は導波路基板11の厚さの5倍程度以下にすることが望ましい。これらの寸法から、間隙部16の幅は必然的に決まる。線路導体15a,15bの線路幅は、狭くした方が伝搬波の特性インピーダンスが高くなり、より高電界を作ることもできるが、逆に、伝搬損失が増加する影響がある。そのため、線路導体15a,15bの厚さや材料にも依存し、一般的な最適値があるわけではないが、概ね、線路導体14の幅の1/2以上で、導波路基板11と支持基板20の厚さを合わせた長さよりもより小さい範囲で設定すれば本発明の効果は発揮される。   The interval between the optical waveguides 12 constituting the Mach-Zehnder interferometer is usually about 20 to 500 μm. It is desirable that the width of the facing portion 17 be about five times or less the thickness of the waveguide substrate 11. From these dimensions, the width of the gap 16 is necessarily determined. The narrower the line width of the line conductors 15a and 15b, the higher the characteristic impedance of the propagating wave and a higher electric field can be created, but on the contrary, there is an effect that the propagation loss increases. Therefore, although it depends on the thickness and material of the line conductors 15a and 15b, there is no general optimum value. If the thickness is set within a range smaller than the combined length, the effect of the present invention is exhibited.

空洞部分27の高さ(深さ)は、実施形態4では、深さは僅かでもあれば有効であるが、特に、間隙部16の幅程度以上あれば大きな効果が発揮される。また、実施形態4では、変調電極中の伝搬波と光波との速度整合を実現するためには、導波路基板11の誘電率と屈折率、支持基板20の誘電率、線路導体14,15a,15bの寸法、変調信号の周波数などの多くの要素に影響されるが、間隙部16の幅の1/10以上であれば、有効である。   In the fourth embodiment, the height (depth) of the hollow portion 27 is effective if the depth is small, but a great effect is exhibited particularly if the depth is about the width of the gap portion 16. Further, in the fourth embodiment, in order to realize velocity matching between the propagation wave and the light wave in the modulation electrode, the dielectric constant and the refractive index of the waveguide substrate 11, the dielectric constant of the support substrate 20, the line conductors 14, 15a, Although it is affected by many factors such as the size of the 15b and the frequency of the modulation signal, it is effective if the width of the gap 16 is 1/10 or more.

また、バッファ層13は、光導波路12中の光波の減衰を抑えるために形成するもので、導波路基板11よりも屈折率が低い材料が望ましく、酸化シリコン以外の材料であってもよい。また、バッファ層13の厚さは使用する光波の波長の1/50〜1/10程度が望ましいが、光変調動作のためには必ずしも必要ではなく、形成しなくてもよい。   Further, the buffer layer 13 is formed to suppress the attenuation of the light wave in the optical waveguide 12, and is preferably a material having a lower refractive index than the waveguide substrate 11, and may be a material other than silicon oxide. The thickness of the buffer layer 13 is desirably about 1/50 to 1/10 of the wavelength of the light wave to be used, but is not necessarily required for the light modulation operation, and need not be formed.

導波路基板11の材料には、電気光学結晶で機械的強度があるニオブ酸リチウム、もしくはタンタル酸リチウムが望ましいが、必ずしもこれらの材料に限られることはない。また、光導波路12の部分だけが電気光学効果を有していればよいので、機械的強度を有する他の材料で薄板を作成し、そこに部分的に電気光学効果を有する光導波路を作り込んでもよい。このような方法では、電気光学効果を有する有機材料やセラミックス材料なども利用することが可能である。支持基板20も、導波路基板11を支持できる材料であればよく、必ずしもサファイアでなくてもよい。ただし、上で述べたように誘電率が低い材料が望ましく、また、変調信号に対して誘電損のより小さい材料が望ましい。   As a material of the waveguide substrate 11, lithium niobate or lithium tantalate, which is an electro-optic crystal and has mechanical strength, is desirable, but is not necessarily limited to these materials. Further, since only the optical waveguide 12 needs to have the electro-optic effect, a thin plate is made of another material having mechanical strength, and the optical waveguide having the electro-optic effect is partially formed therein. May be. In such a method, an organic material or a ceramic material having an electro-optic effect can be used. The support substrate 20 may be made of any material that can support the waveguide substrate 11, and is not necessarily sapphire. However, as described above, a material having a low dielectric constant is desirable, and a material having a small dielectric loss with respect to a modulation signal is desirable.

以上の実施形態4の実施例について説明したが、導体膜28を形成しないときは、実施形態3においても同様に適用することができる。   Although the example of the fourth embodiment has been described above, when the conductive film 28 is not formed, the same can be applied to the third embodiment.

また、実施形態1〜3において、支持基板20は導波路基板11よりも誘電率の低い材料を使う方がより望ましい。また、状況によっては、支持基板20と導波路基板11とを接着するための接着剤を間に挟み込む必要がある。   In the first to third embodiments, it is more preferable that the support substrate 20 be made of a material having a lower dielectric constant than the waveguide substrate 11. Further, depending on circumstances, it is necessary to interpose an adhesive for bonding the support substrate 20 and the waveguide substrate 11 therebetween.

次いで、従来例4に係る特許文献3の図16(本願図11A〜図11C)の構造を有する光変調器と、実施形態4(図6A及び図6B)に係る光変調器と間の、変調効率の比較について以下に説明する。   Next, the modulation between the optical modulator having the structure of FIG. 16 (FIGS. 11A to 11C of the present application) of Patent Document 3 according to Conventional Example 4 and the optical modulator according to the fourth embodiment (FIGS. 6A and 6B). The comparison of the efficiency will be described below.

動作周波数(共振電極の共振周波数に対応)10GHzに、光導波路に電界を印加するための電極間隔を10μmに統一し、同じ入力電力の信号を入力したときの電極間の最大電界強度と電極長(光と変調波の相互作用長に対応)の乗算値で変調効率を見積った結果を以下に示す。   The operating frequency (corresponding to the resonance frequency of the resonance electrode) is 10 GHz, the electrode spacing for applying an electric field to the optical waveguide is 10 μm, and the maximum electric field strength between the electrodes and the electrode length when a signal of the same input power is input. The result of estimating the modulation efficiency by the multiplied value (corresponding to the interaction length between light and modulated wave) is shown below.

ここでは、上記2つの光変調器間で動作させた場合の変調効率の比較を、市販の電磁界解析ソフトHFSS(アンシス・ジャパン製)により行った。解析条件は、動作周波数(共振周波数に対応)を10GHz、各導体を膜厚10μmの金厚膜、導波路の存在する位置での線路電極の間隔を10μmとした。形状は、実施形態4に係る光変調器では上述の通りである。また、従来例4に係る光変調器では、基板31に0.5mm厚のz−cutニオブ酸リチウム結晶を仮定し、線路33a,33b,33cの線路幅をそれぞれ、50μm、50μm、30μmとした。また、間隙部37a,37bは実施形態4に係る光変調器と条件を合わせるために、ともに10μmとした。さらに、従来例4の入力線路35は、周波数10GHzで2番目の共振モードと整合が取れる位置(共振器電極の中央から0.8mm)に接続している。   Here, a comparison of the modulation efficiency when operating between the two optical modulators was performed using commercially available electromagnetic field analysis software HFSS (manufactured by Ansys Japan). The analysis conditions were as follows: the operating frequency (corresponding to the resonance frequency) was 10 GHz; each conductor was a thick gold film having a thickness of 10 μm; and the distance between the line electrodes at the position where the waveguide was present was 10 μm. The shape is as described above in the optical modulator according to the fourth embodiment. In the optical modulator according to Conventional Example 4, the substrate 31 is assumed to be a 0.5 mm thick z-cut lithium niobate crystal, and the line widths of the lines 33a, 33b, and 33c are set to 50 μm, 50 μm, and 30 μm, respectively. . The gaps 37a and 37b are both 10 μm in order to match the conditions with the optical modulator according to the fourth embodiment. Further, the input line 35 of the fourth conventional example is connected to a position (0.8 mm from the center of the resonator electrode) where the second resonance mode can be matched at a frequency of 10 GHz.

共振周波数の信号を入力したときの光導波路が位置する電極間の最大電界強度と、共振器長を以下の表1にまとめた。   Table 1 below summarizes the maximum electric field strength between the electrodes where the optical waveguide is located and the resonator length when a signal of the resonance frequency is input.

Figure 2018174179
Figure 2018174179

表1から明らかなように、実施形態4に係る光変調器では、従来例4に比較して電極間に3倍以上の強度の電界が誘起されることがわかる。また、実施形態4に係る光変調器では、空洞部分27を設けたことで変調電極中の伝搬波と光波との速度整合を実現でき、電極長が従来例4よりも長くなる。ここで、変調効率は、電界強度と電極長とを掛け合わせた値に比例するので、理論的な変調効率は従来例4の5.7倍程度になると見積られた。これにより、実施形態4に係る光変調器は従来例4よりも非常に高効率となることがわかる。   As is clear from Table 1, in the optical modulator according to the fourth embodiment, an electric field having an intensity three times or more between the electrodes is induced as compared with the conventional example 4. Further, in the optical modulator according to the fourth embodiment, the provision of the hollow portion 27 can realize speed matching between the propagation wave and the light wave in the modulation electrode, and the electrode length becomes longer than that in the conventional example 4. Here, since the modulation efficiency is proportional to the value obtained by multiplying the electric field strength and the electrode length, the theoretical modulation efficiency was estimated to be about 5.7 times that of Conventional Example 4. This indicates that the optical modulator according to the fourth embodiment has much higher efficiency than the fourth conventional example.

また、比較例及び実施形態に係る光変調器に関する、動作速度、変調電圧、サイズ、長所び課題について以下の表2にまとめた。   Table 2 below summarizes the operating speed, modulation voltage, size, and advantages of the optical modulators according to the comparative example and the embodiment.

Figure 2018174179
Figure 2018174179

以上の実施形態1〜4において、少なくとも以下の構成が必要である。線路導体14と、線路導体15a,15bとはバッファ層13、光導波路12,12及び導波路基板11を間に挟設しかつ互いに電磁的に結合するように近接して形成されて、給電線路19を介して入力される高周波信号に従って光導波路12,12を伝搬する光信号を変調するための変調電極を構成する。ここで、線路導体15a,15bは2つに分岐された光導波路12,12と対向するように形成されている。さらに、線路導体14,15a,15bは入力される高周波信号に対して実質的に共振する線路長を有する。また、上述したように、従来技術に比較して高い変調効率を得るためには、図2Bに示すように、光変調用高周波信号に基づいて、線路導体15a,15bに互いに異なる符号の電圧が誘起されるように変調電極が伝搬モードM2で励振される必要がある。なお、この場合において、線路導体14はフローティング電極となり、通常は0Vである。   In the above first to fourth embodiments, at least the following configuration is required. The line conductor 14 and the line conductors 15a and 15b are formed close to each other with the buffer layer 13, the optical waveguides 12 and 12 and the waveguide substrate 11 interposed therebetween and electromagnetically coupled to each other. A modulation electrode for modulating an optical signal propagating through the optical waveguides 12 according to a high-frequency signal input through the modulator 19 is formed. Here, the line conductors 15a and 15b are formed so as to face the two branched optical waveguides 12 and 12, respectively. Further, the line conductors 14, 15a, 15b have a line length that substantially resonates with an input high-frequency signal. Further, as described above, in order to obtain a higher modulation efficiency as compared with the related art, as shown in FIG. 2B, voltages having different signs are applied to the line conductors 15a and 15b based on the high frequency signal for optical modulation. The modulation electrode needs to be excited in the propagation mode M2 to be induced. In this case, the line conductor 14 becomes a floating electrode and is usually at 0V.

なお、導波路基板11は互いに実質的に平行な上面と下面を有する。実施形態1、3、4において、線路導体14はバッファ層13を介して、2つの分岐光導波路12,12を有する導波路基板11の上面上に形成される一方、線路導体15a,15bは導波路基板11の下面に形成されている。また、実施形態2において、線路導体15a,15bはバッファ層13を介して、2つの分岐光導波路12,12を有する導波路基板11の上面上に形成される一方、線路導体14は導波路基板11の下面に形成されている。さらに、線路導体19cは線路導体14,15a,15bのいずれかに電磁的に、容量的に又は直接に結合するように形成されればよい。導体膜28は、少なくとも空洞部分27の一部分において、線路導体15a,15bに対向するように形成されればよい。   The waveguide substrate 11 has an upper surface and a lower surface that are substantially parallel to each other. In the first, third, and fourth embodiments, the line conductor 14 is formed on the upper surface of the waveguide substrate 11 having the two branch optical waveguides 12, 12 via the buffer layer 13, while the line conductors 15a, 15b are conductive. It is formed on the lower surface of the waveguide substrate 11. In the second embodiment, the line conductors 15a and 15b are formed on the upper surface of the waveguide substrate 11 having the two branch optical waveguides 12 and 12 via the buffer layer 13, while the line conductor 14 is formed on the waveguide substrate. 11 is formed on the lower surface. Further, the line conductor 19c may be formed so as to be electromagnetically, capacitively, or directly coupled to any of the line conductors 14, 15a, 15b. The conductor film 28 may be formed so as to face the line conductors 15a and 15b at least in a part of the hollow portion 27.

詳述したように、本発明に係る光変調器によれば、例えばミリ波帯などの高周波信号に対しても、従来技術に比較して高い効率を有する電気光学光変調器が実現できる、   As described in detail, according to the optical modulator according to the present invention, for example, even for a high-frequency signal such as a millimeter-wave band, an electro-optical optical modulator having higher efficiency than the related art can be realized.

11…導波路基板、
12…光導波路、
13…バッファ層、
14,15a,15b…線路導体、
16…間隙部、
17…対向部分、
18…間隙部、
19…給電線路、
19c…線路導体、
20…支持基板、
21…接地導体、
22…短絡部、
23…分岐部、
24…合波部、
25…入力光、
26…出力光、
27…空洞部分、
28…導体膜、
101,102,103…電界、
M1,M2,M3…伝搬モード。
11: waveguide substrate,
12 ... optical waveguide,
13 ... buffer layer,
14, 15a, 15b ... line conductor,
16 gaps,
17 ... facing part,
18 gaps,
19 ... feeding line,
19c ... line conductor,
20 ... Support substrate,
21 ... Ground conductor,
22 ... short circuit part,
23 ... branch part,
24 ... multiplexing part,
25 ... input light,
26 output light,
27 ... hollow part,
28 ... conductor film,
101, 102, 103 ... electric field,
M1, M2, M3... Propagation modes.

Claims (8)

少なくとも一部分が電気光学効果を有する導波路基板に形成され、2つの分岐光導波路を有する光導波路と、
前記2つの分岐光導波路を挟設するように対向して配置された第1の線路と、第2及び第3の線路であって、互いに電磁的に結合しかつ入力される光変調用高周波信号に対して実質的に共振する線路長を有する第1〜第3の線路導体を備える変調電極とを備えた光変調器であって、
前記変調電極は、前記光変調用高周波信号に基づいて、前記第2の線路と、前記第3の線路とが互いに異なる符号の電圧が誘起されて前記変調電極が励振されるように配置されたことを特徴とする光変調器。
An optical waveguide having at least a portion formed on a waveguide substrate having an electro-optic effect and having two branch optical waveguides;
A first line, and a second and a third line, which are arranged opposite to each other so as to sandwich the two branch optical waveguides, and which are electromagnetically coupled to each other and input to the high frequency signal for optical modulation; A modulation electrode having first to third line conductors having a line length that substantially resonates with the optical modulator,
The modulation electrode is arranged such that a voltage having a different sign is induced in the second line and the third line based on the high frequency signal for light modulation, and the modulation electrode is excited. An optical modulator, comprising:
前記導波路基板は第1及び第2の面を有し、
前記第1の線路は前記導波路基板の第1の面上に形成され、
前記第2及び第3の線路は前記導波路基板の第2の面上に形成されたことを特徴とする請求項1記載の光変調器。
The waveguide substrate has first and second surfaces;
The first line is formed on a first surface of the waveguide substrate;
The optical modulator according to claim 1, wherein the second and third lines are formed on a second surface of the waveguide substrate.
前記導波路基板及び前記変調電極を支持する支持基板をさらに備えたことを特徴とする請求項1又は2記載の光変調器。   The optical modulator according to claim 1, further comprising a support substrate that supports the waveguide substrate and the modulation electrode. 前記支持基板の、前記第1〜第3の線路と対向する面とは反対側の面に接地導体を形成し、
前記第1〜第3の線路をマイクロストリップ線路として構成したことを特徴とする請求項3記載の光変調器。
Forming a ground conductor on a surface of the support substrate opposite to a surface facing the first to third lines;
The optical modulator according to claim 3, wherein the first to third lines are configured as microstrip lines.
前記支持基板は前記導波路基板の第2の面上に配置されたことを特徴とする請求項3又は4記載の光変調器。   The optical modulator according to claim 3, wherein the support substrate is disposed on a second surface of the waveguide substrate. 前記導波路基板の第2の面を含むように、前記支持基板に形成された空洞部分をさらに備えたことを特徴とする請求項5記載の光変調器。   The optical modulator according to claim 5, further comprising a hollow portion formed in the support substrate so as to include the second surface of the waveguide substrate. 前記空洞部分の一部分において、前記第2及び第3の線路に対向するように形成された導体膜をさらに備えたことを特徴とする請求項6記載の光変調器。   7. The optical modulator according to claim 6, further comprising a conductor film formed in a part of the hollow portion so as to face the second and third lines. 前記光変調用高周波信号を入力するための給電線路であって、前記第1〜第3の線路のいずれかに電磁的に、容量的に又は直接に結合するように形成された給電線路をさらに備えたことを特徴とする請求項1〜7のうちのいずれか1つに記載の光変調器。   A power supply line for inputting the optical modulation high-frequency signal, the power supply line being formed to be electromagnetically, capacitively, or directly coupled to any of the first to third lines; The optical modulator according to any one of claims 1 to 7, comprising:
JP2019506980A 2017-03-23 2018-03-22 Optical modulator Active JP7037199B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017057994 2017-03-23
JP2017057994 2017-03-23
PCT/JP2018/011467 WO2018174179A1 (en) 2017-03-23 2018-03-22 Optical modulator

Publications (2)

Publication Number Publication Date
JPWO2018174179A1 true JPWO2018174179A1 (en) 2020-02-13
JP7037199B2 JP7037199B2 (en) 2022-03-16

Family

ID=63585997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019506980A Active JP7037199B2 (en) 2017-03-23 2018-03-22 Optical modulator

Country Status (2)

Country Link
JP (1) JP7037199B2 (en)
WO (1) WO2018174179A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8409114B2 (en) 2007-08-02 2013-04-02 Boston Scientific Scimed, Inc. Composite elongate medical device including distal tubular member
US9072874B2 (en) 2011-05-13 2015-07-07 Boston Scientific Scimed, Inc. Medical devices with a heat transfer region and a heat sink region and methods for manufacturing medical devices
JP7218652B2 (en) * 2019-03-28 2023-02-07 住友大阪セメント株式会社 light control element
WO2022030489A1 (en) 2020-08-04 2022-02-10 Santen Pharmaceutical Co., Ltd. Agent for treating myopia, preventing myopia and/or suppressing myopia progression

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09211402A (en) * 1996-01-30 1997-08-15 Matsushita Electric Ind Co Ltd Broad-band light modulator
JP2003156723A (en) * 2001-09-05 2003-05-30 Ngk Insulators Ltd Optical waveguide device, optical modulator, mounting structure for optical modulator, and support member for optical waveguide substrate
JP2004062158A (en) * 2002-06-03 2004-02-26 Matsushita Electric Ind Co Ltd Optical modulator and communication system
WO2005019913A1 (en) * 2003-08-21 2005-03-03 Ngk Insulators, Ltd. Optical waveguide device and traveling wave type opticalmodulator
US20150043866A1 (en) * 2013-08-09 2015-02-12 Sifotonics Technologies Co., Ltd. Electro-Optic Silicon Modulator With Capacitive Loading In Both Slots Of Coplanar Waveguides

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09211402A (en) * 1996-01-30 1997-08-15 Matsushita Electric Ind Co Ltd Broad-band light modulator
JP2003156723A (en) * 2001-09-05 2003-05-30 Ngk Insulators Ltd Optical waveguide device, optical modulator, mounting structure for optical modulator, and support member for optical waveguide substrate
JP2004062158A (en) * 2002-06-03 2004-02-26 Matsushita Electric Ind Co Ltd Optical modulator and communication system
WO2005019913A1 (en) * 2003-08-21 2005-03-03 Ngk Insulators, Ltd. Optical waveguide device and traveling wave type opticalmodulator
US20150043866A1 (en) * 2013-08-09 2015-02-12 Sifotonics Technologies Co., Ltd. Electro-Optic Silicon Modulator With Capacitive Loading In Both Slots Of Coplanar Waveguides

Also Published As

Publication number Publication date
JP7037199B2 (en) 2022-03-16
WO2018174179A1 (en) 2018-09-27

Similar Documents

Publication Publication Date Title
JP7037199B2 (en) Optical modulator
US8737773B2 (en) Optical control element
US10018888B2 (en) Advanced techniques for improving high-efficiency optical modulators
US6646776B1 (en) Suppression of high frequency resonance in an electro-optical modulator
US6791733B2 (en) Resonance type optical modulator using symmetric or asymmetric electrode
JPH03229214A (en) Optical modulation element
JP3592245B2 (en) Resonant optical modulator
JP2000267056A (en) Waveguide type optical device
US20220146901A1 (en) Optical modulator
JPH04355714A (en) Optical control element
JP4926423B2 (en) Light modulator
US20220082876A1 (en) Optical device that includes optical modulator, and optical transceiver
JPH0713711B2 (en) High speed optical modulator
JP2007171452A (en) Optical waveguide, light modulator and optical communication system
JPWO2005001559A1 (en) Optical modulation element and communication system
JP3847274B2 (en) Optical modulation element and communication system
JP4754608B2 (en) Light modulator
JPH06308437A (en) Optical control element
JP2013210568A (en) Optical modulator
JP2758540B2 (en) Light modulation element and light modulation device using the same
KR102617408B1 (en) Electro-optic modulator
JP5416658B2 (en) Optical modulator and optical modulator module
JP2016145942A (en) Optical modulator
JP2006285288A (en) Optical modulator and communications system
JP2692715B2 (en) Light switch

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220225

R150 Certificate of patent or registration of utility model

Ref document number: 7037199

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150