JPWO2018169064A1 - Rubber composition for tires for icy roads and studless tires - Google Patents

Rubber composition for tires for icy roads and studless tires Download PDF

Info

Publication number
JPWO2018169064A1
JPWO2018169064A1 JP2019506309A JP2019506309A JPWO2018169064A1 JP WO2018169064 A1 JPWO2018169064 A1 JP WO2018169064A1 JP 2019506309 A JP2019506309 A JP 2019506309A JP 2019506309 A JP2019506309 A JP 2019506309A JP WO2018169064 A1 JPWO2018169064 A1 JP WO2018169064A1
Authority
JP
Japan
Prior art keywords
group
rubber
rubber composition
mass
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019506309A
Other languages
Japanese (ja)
Other versions
JP6708783B2 (en
Inventor
佐藤 崇
崇 佐藤
真希 武田
真希 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otsuka Chemical Co Ltd
Original Assignee
Otsuka Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Chemical Co Ltd filed Critical Otsuka Chemical Co Ltd
Publication of JPWO2018169064A1 publication Critical patent/JPWO2018169064A1/en
Application granted granted Critical
Publication of JP6708783B2 publication Critical patent/JP6708783B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

ジエン系ゴム、及び下記一般式(1):[式中、X1及びX2は、置換基を有していてもよい複素環基を示す。]で表されるテトラジン化合物又はその塩を含有する氷雪路向けタイヤ用ゴム組成物であって、ジエン系ゴム100質量部に対して、前記テトラジン化合物又はその塩を0.1〜10質量部含む、ゴム組成物。Diene rubber and the following general formula (1): [wherein X1 and X2 represent a heterocyclic group which may have a substituent. ] A rubber composition for tires for ice and snow roads containing a tetrazine compound or a salt thereof represented by the formula: , Rubber composition.

Description

本発明は、氷雪路向けタイヤ用ゴム組成物及びスタッドレスタイヤに関する。   The present invention relates to a rubber composition for a tire for icy and snowy roads and a studless tire.

車両の安全性を向上させる観点から、乾燥路面のみならず、湿潤路面、氷雪路面等の様々な路面上でのタイヤ性能を向上させることが求められている。   From the viewpoint of improving the safety of vehicles, there is a demand for improving tire performance not only on dry road surfaces but also on various road surfaces such as wet road surfaces and ice and snow road surfaces.

例えば、氷雪路面上での操縦安定性(スノー性能)を向上させるために、特許文献1〜3に記載のゴム組成物が提案されている。特許文献1には、天然ゴム及び/又はブタジエンゴムを主体としたジエン系ゴム、窒素吸着比表面積が90m/g以上のカーボンブラック及びシリカ、並びに超高分子量ポリエチレンをそれぞれ特定量配合してなるゴム組成物が記載されている。特許文献2には、天然ゴムを50質量%以上含むゴム成分、熱可塑性樹脂、シリカを含む充填剤、加硫促進剤、シランカップリング剤、及び加硫剤をそれぞれ特定量含むゴム組成物が記載されている。特許文献3には、ミルセン系樹脂、窒素吸着比表面積が40〜400m/g以上のシリカ、及びシリカカップリング剤をそれぞれ特定量混練りし、得られたマスターバッチをゴム成分と混練りして得られたゴム組成物が記載されている。For example, rubber compositions described in Patent Documents 1 to 3 have been proposed in order to improve steering stability (snow performance) on ice and snow road surfaces. Patent Document 1 discloses that a specific amount of a diene rubber mainly composed of natural rubber and / or butadiene rubber, carbon black and silica having a nitrogen adsorption specific surface area of 90 m 2 / g or more, and ultra-high molecular weight polyethylene are blended. A rubber composition is described. Patent Document 2 discloses a rubber composition containing a specific amount of a rubber component containing 50% by mass or more of natural rubber, a thermoplastic resin, a filler containing silica, a vulcanization accelerator, a silane coupling agent, and a vulcanizing agent. Has been described. Patent Document 3 discloses that a specific amount of a myrcene resin, silica having a nitrogen adsorption specific surface area of 40 to 400 m 2 / g or more, and a silica coupling agent are kneaded, and the obtained master batch is kneaded with a rubber component. The resulting rubber composition is described.

これら特許文献1〜3に記載されている発明によれば、ゴム組成物のスノー性能を向上させることができ、その結果、スノー性能に優れたタイヤを得ることができる。   According to the inventions described in Patent Documents 1 to 3, the snow performance of the rubber composition can be improved, and as a result, a tire having excellent snow performance can be obtained.

しかしながら、これら特許文献1〜5のゴム組成物では、タイヤの発熱性を低くするという効果が不十分であった。   However, these rubber compositions of Patent Documents 1 to 5 have insufficient effect of reducing the heat generation of the tire.

日本国特開2006−241338号公報Japanese Patent Application Laid-Open No. 2006-241338 日本国特表2016−222871号公報Japanese Patent Publication No. 2006-222871 日本国特開2016−3266号公報JP-A-2006-3266

本発明の目的は、スノー性能を維持しつつ、優れた低発熱性を発現し得る氷雪路向けタイヤ用ゴム組成物を提供することである。   An object of the present invention is to provide a rubber composition for a tire for icy and snowy roads that can exhibit excellent low heat build-up while maintaining snow performance.

本発明の他の目的は、スノー性能が維持され、さらに低発熱性に優れたスタッドレスタイヤを提供することである。   Another object of the present invention is to provide a studless tire which maintains snow performance and is excellent in low heat generation.

本発明者らは、前記課題を解決するために鋭意検討を重ねた結果、ジエン系ゴムと特定のテトラジン系化合物とを混合することにより上記の課題を解決できることを見出した。本発明者らは、かかる知見に基づき、さらに検討を行った結果、本発明を完成するに至った。   The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that the above-mentioned problems can be solved by mixing a diene-based rubber with a specific tetrazine-based compound. The present inventors have further studied based on such findings, and have completed the present invention.

本発明は、以下に示す、氷雪路向けタイヤ用ゴム組成物及びスタッドレスタイヤを提供する。
項1.
ジエン系ゴム、及び下記一般式(1):
The present invention provides a rubber composition and a studless tire for a tire for icy and snowy roads described below.
Item 1.
Diene rubber and the following general formula (1):

Figure 2018169064
Figure 2018169064

[式中、X及びXは、置換基を有していてもよい複素環基を示す。]
で表されるテトラジン化合物又はその塩を含有する氷雪路向けタイヤ用ゴム組成物であって、
ジエン系ゴム100質量部に対して、前記テトラジン化合物又はその塩を0.1〜10質量部含む、ゴム組成物。
項2.
さらに無機充填材及び/又はカーボンブラックを含む項1に記載のゴム組成物。
項3.
ジエン系ゴム100質量部に対して、無機充填材及び/又はカーボンブラックを合計量で30〜130質量部含む項2に記載のゴム組成物。
項4.
無機充填材がシリカである、項2又は3に記載のゴム組成物。
項5.
トレッド部に用いられる項1〜4のいずれか一項に記載のゴム組成物。
項6.
項1〜4のいずれか一項に記載のゴム組成物を用いて作製された氷雪路向けタイヤ用トレッド。
項7.
項6に記載の氷雪路向けタイヤ用トレッドを用いて作製されたスタッドレスタイヤ。
[In the formula, X 1 and X 2 represent a heterocyclic group which may have a substituent. ]
A rubber composition for a tire for ice and snow roads containing a tetrazine compound or a salt thereof represented by
A rubber composition comprising 0.1 to 10 parts by mass of the tetrazine compound or a salt thereof with respect to 100 parts by mass of a diene rubber.
Item 2.
Item 2. The rubber composition according to Item 1, further comprising an inorganic filler and / or carbon black.
Item 3.
Item 3. The rubber composition according to item 2, comprising a total amount of the inorganic filler and / or carbon black of 30 to 130 parts by mass with respect to 100 parts by mass of the diene rubber.
Item 4.
Item 4. The rubber composition according to item 2 or 3, wherein the inorganic filler is silica.
Item 5.
The rubber composition according to any one of Items 1 to 4, which is used for a tread portion.
Item 6.
Item 5. A tread for a tire for icy and snowy roads produced using the rubber composition according to any one of items 1 to 4.
Item 7.
Item 7. A studless tire produced using the tread for ice and snowy roads according to item 6.

本発明によれば、ジエン系ゴムと一般式(1)で表されるテトラジン化合物又はその塩とを組み合わせることにより、スノー性能を維持しつつ、優れた低発熱性を発現し得るゴム組成物を提供することができる。   According to the present invention, a rubber composition capable of exhibiting excellent low heat build-up while maintaining snow performance by combining a diene rubber and a tetrazine compound represented by the general formula (1) or a salt thereof is provided. Can be provided.

また、本発明のゴム組成物を用いてスタッドレスタイヤを作製することで、タイヤのスノー性能を維持し、かつタイヤの発熱性を一段と低くすることができることから、氷雪路面での走行に適したスタッドレスタイヤを提供することができる。   Further, by producing a studless tire using the rubber composition of the present invention, the snow performance of the tire can be maintained, and the heat build-up of the tire can be further reduced. Tires can be provided.

以下に、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

1.氷雪路向けタイヤ用ゴム組成物
本発明は、ジエン系ゴム、及び下記一般式(1):
1. The present invention relates to a diene-based rubber and the following general formula (1):

Figure 2018169064
Figure 2018169064

[式中、X及びXは、置換基を有していてもよい複素環基を示す。]
で表されるテトラジン化合物又はその塩(以下、「テトラジン化合物(1)」ということもある。)を含有する氷雪路向けタイヤ用ゴム組成物であって、
ジエン系ゴム100質量部に対して、前記テトラジン化合物又はその塩を0.1〜10質量部含む、ゴム組成物である。
[In the formula, X 1 and X 2 represent a heterocyclic group which may have a substituent. ]
A rubber composition for tires for ice and snow roads, comprising a tetrazine compound or a salt thereof (hereinafter, also referred to as “tetrazine compound (1)”) represented by
A rubber composition comprising the tetrazine compound or a salt thereof in an amount of 0.1 to 10 parts by mass with respect to 100 parts by mass of the diene rubber.

ジエン系ゴム
本発明のゴム組成物に配合されるゴム成分は、ジエン系ゴムである。ジエン系ゴムとしては、例えば、天然ゴム(NR)、合成ジエン系ゴム、及び天然ゴムと合成ジエン系ゴムとの混合物等が挙げられる。ゴム成分がジエン系ゴムであることにより、低発熱性に優れたゴム組成物を得ることができる。なお、本発明のゴム組成物は、ゴム成分としてジエン系ゴムのみを含むものであるが、不純物としてジエン系ゴム以外のゴム、例えば、非ジエン系ゴムが不可避的に含まれることも許容される。
Diene rubber The rubber component blended in the rubber composition of the present invention is a diene rubber. Examples of the diene rubber include natural rubber (NR), synthetic diene rubber, and a mixture of natural rubber and synthetic diene rubber. When the rubber component is a diene rubber, a rubber composition having excellent low heat build-up can be obtained. Although the rubber composition of the present invention contains only a diene rubber as a rubber component, it is also allowable that a rubber other than the diene rubber, for example, a non-diene rubber is inevitably contained as an impurity.

天然ゴムとしては、天然ゴムラテックス、技術的格付けゴム(TSR)、スモークドシート(RSS)、ガタパーチャ、杜仲由来天然ゴム、グアユール由来天然ゴム、ロシアンタンポポ由来天然ゴム、植物成分発酵ゴムなどの天然ゴムに加えて、エポキシ化天然ゴム、メタクリル酸変性天然ゴム、スチレン変性天然ゴムなどの変性天然ゴム等が挙げられる。   Natural rubber includes natural rubber latex, technical graded rubber (TSR), smoked seat (RSS), gutta percha, natural rubber derived from Tochu, natural rubber derived from guayule, natural rubber derived from Russian dandelion, and fermented rubber derived from plant components. In addition, modified natural rubbers such as epoxidized natural rubber, methacrylic acid-modified natural rubber, and styrene-modified natural rubber are exemplified.

合成ジエン系ゴムとしては、スチレン−ブタジエン共重合体ゴム(SBR)、ブタジエンゴム(BR)、イソプレンゴム(IR)、ニトリルゴム(NBR)、クロロプレンゴム(CR)、エチレン−プロピレン−ジエン三元共重合体ゴム(EPDM)、スチレン−イソプレン−スチレン三元ブロック共重合体(SIS)、スチレン−ブタジエン−スチレン三元ブロック共重合体(SBS)等、及びこれらの変性合成ジエン系ゴムが挙げられる。変性合成ジエン系ゴムとしては、主鎖変性、片末端変性、両末端変性などの変性手法によるジエン系ゴムが挙げられる。ここで、変性合成ジエン系ゴムの変性官能基としては、エポキシ基、アミノ基、アルコキシ基、水酸基、アルコキシシリル基、ポリエーテル基、カルボキシル基などのヘテロ原子を含有する官能基を1種類以上含むものが挙げられる。また、ジエン部分のシス/トランス/ビニルの比率については、特に制限はなく、いずれの比率においても好適に用いることができる。また、ジエン系ゴムの平均分子量および分子量分布は、特に制限はなく、平均分子量500〜300万、分子量分布1.5〜15が好ましい。また、合成ジエン系ゴムの製造方法についても、特に制限はなく、乳化重合、溶液重合、ラジカル重合、アニオン重合、カチオン重合などで合成されたものが挙げられる。   Examples of the synthetic diene rubber include styrene-butadiene copolymer rubber (SBR), butadiene rubber (BR), isoprene rubber (IR), nitrile rubber (NBR), chloroprene rubber (CR), and ethylene-propylene-diene terpolymer. Examples include polymer rubber (EPDM), styrene-isoprene-styrene triblock copolymer (SIS), styrene-butadiene-styrene triblock copolymer (SBS), and modified synthetic diene rubbers thereof. Examples of the modified synthetic diene rubber include a diene rubber obtained by a modification technique such as main chain modification, one end modification, or both terminal modification. Here, the modified functional group of the modified synthetic diene rubber includes at least one functional group containing a hetero atom such as an epoxy group, an amino group, an alkoxy group, a hydroxyl group, an alkoxysilyl group, a polyether group, and a carboxyl group. Things. The ratio of cis / trans / vinyl in the diene portion is not particularly limited, and any ratio can be suitably used. The average molecular weight and molecular weight distribution of the diene rubber are not particularly limited, and preferably have an average molecular weight of 5 to 3,000,000 and a molecular weight distribution of 1.5 to 15. The method for producing the synthetic diene rubber is also not particularly limited, and examples thereof include those synthesized by emulsion polymerization, solution polymerization, radical polymerization, anionic polymerization, and cationic polymerization.

なお、ブチル系ゴムは、イソブチレンと少量のイソプレンゴムとの共重合体であり、3モル%以下の二重結合を含有するが、本明細書においては、ジエン系ゴムに含まれない。   The butyl rubber is a copolymer of isobutylene and a small amount of isoprene rubber and contains 3 mol% or less of double bonds, but is not included in the diene rubber in this specification.

また、ジエン系ゴムのガラス転移点においては、−120℃から−15℃の範囲のものが低発熱性とスノー性能との両立の観点から有効である。本発明のゴム組成物は、ジエン系ゴム中の50質量%以上が、ガラス転移点が−70℃から−20℃の範囲にあるジエン系ゴムであることが好ましい。   In addition, the glass transition point of the diene rubber in the range of -120 ° C to -15 ° C is effective from the viewpoint of achieving both low heat generation and snow performance. In the rubber composition of the present invention, 50% by mass or more of the diene rubber is preferably a diene rubber having a glass transition point in the range of -70 ° C to -20 ° C.

ジエン系ゴムは、1種単独で、又は2種以上を混合(ブレンド)して用いることができる。中でも、好ましいジエン系ゴムとしては、天然ゴム、IR、SBR、BR、又はこれらから選ばれる2種以上の混合物である。また、これらのブレンド比率は、特に制限はなく、ジエン系ゴム100質量部中に、天然ゴム、SBR、BR又はこれらの混合物を70〜100質量部の比率で配合することが好ましく、75〜100質量部で配合することがより好ましい。天然ゴム、SBR及びBRの混合物を配合する場合には、天然ゴム、SBR及びBRの合計量が上記範囲であることが好ましい。   The diene rubber can be used alone or as a mixture (blend) of two or more. Among them, preferred diene rubbers are natural rubber, IR, SBR, BR, or a mixture of two or more selected from these. The blending ratio is not particularly limited, and it is preferable that natural rubber, SBR, BR or a mixture thereof is blended at a ratio of 70 to 100 parts by mass in 100 parts by mass of the diene rubber, and 75 to 100 parts by mass. It is more preferable to mix in parts by mass. When blending a mixture of natural rubber, SBR and BR, the total amount of natural rubber, SBR and BR is preferably within the above range.

テトラジン化合物(1)
本発明のゴム組成物には、下記一般式(1)で表される化合物又はその塩が配合される。
一般式1:
Tetrazine compound (1)
The rubber composition of the present invention contains a compound represented by the following general formula (1) or a salt thereof.
General formula 1:

Figure 2018169064
Figure 2018169064

[式中、X及びXは、置換基を有していてもよい複素環基を示す。][In the formula, X 1 and X 2 represent a heterocyclic group which may have a substituent. ]

本明細書において、「複素環基」としては、特に限定はなく、例えば、2−ピリジル基、3−ピリジル基、4−ピリジル基、2−ピラジニル基、2−ピリミジル基、4−ピリミジル基、5−ピリミジル基、3−ピリダジル基、4−ピリダジル基、4−(1,2,3−トリアジル)基、5−(1,2,3−トリアジル)基、2−(1,3,5−トリアジル)基、3−(1,2,4−トリアジル)基、5−(1,2,4−トリアジル)基、6−(1,2,4−トリアジル)基、2−キノリル基、3−キノリル基、4−キノリル基、5−キノリル基、6−キノリル基、7−キノリル基、8−キノリル基、1−イソキノリル基、3−イソキノリル基、4−イソキノリル基、5−イソキノリル基、6−イソキノリル基、7−イソキノリル基、8−イソキノリル基、2−キノキサリル基、3−キノキサリル基、5−キノキサリル基、6−キノキサリル基、7−キノキサリル基、8−キノキサリル基、3−シンノリル基、4−シンノリル基、5−シンノリル基、6−シンノリル基、7−シンノリル基、8−シンノリル基、2−キナゾリル基、4−キナゾリル基、5−キナゾリル基、6−キナゾリル基、7−キナゾリル基、8−キナゾリル基、1−フタラジル基、4−フタラジル基、5−フタラジル基、6−フタラジル基、7−フタラジル基、8−フタラジル基、1−テトラヒドロキノリル基、2−テトラヒドロキノリル基、3−テトラヒドロキノリル基、4−テトラヒドロキノリル基、5−テトラヒドロキノリル基、6−テトラヒドロキノリル基、7−テトラヒドロキノリル基、8−テトラヒドロキノリル基、1−ピロリル基、2−ピロリル基、3−ピロリル基、2−フリル基、3−フリル基、2−チエニル基、3−チエニル基、1−イミダゾリル基、2−イミダゾリル基、4−イミダゾリル基、5−イミダゾリル基、1−ピラゾリル基、3−ピラゾリル基、4−ピラゾリル基、5−ピラゾリル基、2−オキサゾリル基、4−オキサゾリル基、5−オキサゾリル基、2−チアゾリル基、4−チアゾリル基、5−チアゾリル基、3−イソオキサゾリル基、4−イソオキサゾリル基、5−イソオキサゾリル基、3−イソチアゾリル基、4−イソチアゾリル基、5−イソチアゾリル基、4−(1,2,3−チアジアゾリル)基、5−(1,2,3−チアジアゾリル)基、3−(1,2,5−チアジアゾリル)基、2−(1,3,4−チアジアゾリル)基、4−(1,2,3−オキサジアゾリル)基、5−(1,2,3−オキサジアゾリル)基、3−(1,2,4−オキサジアゾリル)基、5−(1,2,4−オキサジアゾリル)基、3−(1,2,5−オキサジアゾリル)基、2−(1,3,4−オキサジアゾリル)基、1−(1,2,3−トリアゾリル)基、4−(1,2,3−トリアゾリル)基、5−(1,2,3−トリアゾリル)基、1−(1,2,4−トリアゾリル)基、3−(1,2,4−トリアゾリル)基、5−(1,2,4−トリアゾリル)基、1−テトラゾリル基、5−テトラゾリル基、1−インドリル、2−インドリル基、3−インドリル基、4−インドリル基、5−インドリル基、6−インドリル基、7−インドリル基、1−イソインドリル基、2−イソインドリル基、3−イソインドリル基、4−イソインドリル基、5−イソインドリル基、6−イソインドリル基、7−イソインドリル基、1−ベンゾイミダゾリル基、2−ベンゾイミダゾリル基、4−ベンゾイミダゾリル基、5−ベンゾイミダゾリル基、6−ベンゾイミダゾリル基、7−ベンゾイミダゾリル基、2−ベンゾフラニル基、3−ベンゾフラニル基、4−ベンゾフラニル基、5−ベンゾフラニル基、6−ベンゾフラニル基、7−ベンゾフラニル基、1−イソベンゾフラニル基、3−イソベンゾフラニル基、4−イソベンゾフラニル基、5−イソベンゾフラニル基、6−イソベンゾフラニル基、7−イソベンゾフニル基、2−ベンゾチエニル基、3−ベンゾチエニル基、4−ベンゾチエニル基、5−ベンゾチエニル基、6−ベンゾチエニル基、7−ベンゾチエニル基、2−ベンゾオキサゾリル基、4−ベンゾオキサゾリル基、5−ベンゾオキサゾリル基、6−ベンゾオキサゾリル基、7−ベンゾオキサゾリル基、2−ベンゾチアゾリル基、4−ベンゾチアゾリル基、5−ベンゾチアゾリル基、6−ベンゾチアゾリル基、7−ベンゾチアゾリル基、1−インダゾリル基、3−インダゾリル基、4−インダゾリル基、5−インダゾリル基、6−インダゾリル基、7−インダゾリル基、2−モルホリル基、3−モルホリル基、4−モルホリル基、1−ピペラジル基、2−ピペラジル基、1−ピペリジル基、2−ピペリジル基、3−ピペリジル基、4−ピペリジル基、2−テトラヒドロピラニル基、3−テトラヒドロピラニル基、4−テトラヒドロピラニル基、2−テトラヒドロチオピラニル基、3−テトラヒドロチオピラニル基、4−テトラヒドロチオピラニル基、1−ピロリジル基、2−ピロリジル基、3−ピロリジル基、2−テトラヒドロフラニル基、3−テトラヒドロフラニル基、2−テトラヒドロチエニル基、3−テトラヒドロチエニル基等が挙げられる。中でも、好ましい複素環基としては、ピリジル基、フラニル基、チエニル基、ピリミジル基又はピラジル基であり、より好ましくはピリジル基である。   In the present specification, the “heterocyclic group” is not particularly limited and includes, for example, a 2-pyridyl group, a 3-pyridyl group, a 4-pyridyl group, a 2-pyrazinyl group, a 2-pyrimidyl group, a 4-pyrimidyl group, 5-pyrimidyl group, 3-pyridazyl group, 4-pyridazyl group, 4- (1,2,3-triazyl) group, 5- (1,2,3-triazyl) group, 2- (1,3,5- Triazyl) group, 3- (1,2,4-triazyl) group, 5- (1,2,4-triazyl) group, 6- (1,2,4-triazyl) group, 2-quinolyl group, 3- Quinolyl group, 4-quinolyl group, 5-quinolyl group, 6-quinolyl group, 7-quinolyl group, 8-quinolyl group, 1-isoquinolyl group, 3-isoquinolyl group, 4-isoquinolyl group, 5-isoquinolyl group, 6- Isoquinolyl group, 7-isoquinolyl group, 8-isoquinolyl group Ryl group, 2-quinoxalyl group, 3-quinoxalyl group, 5-quinoxalyl group, 6-quinoxalyl group, 7-quinoxalyl group, 8-quinoxalyl group, 3-cinnolyl group, 4-cinnolyl group, 5-cinnolyl group, 6- Cinnolyl group, 7-cinnolyl group, 8-cinnolyl group, 2-quinazolyl group, 4-quinazolyl group, 5-quinazolyl group, 6-quinazolyl group, 7-quinazolyl group, 8-quinazolyl group, 1-phthalazyl group, 4- Phthalazyl group, 5-phthalazyl group, 6-phthalazyl group, 7-phthalazyl group, 8-phthalazyl group, 1-tetrahydroquinolyl group, 2-tetrahydroquinolyl group, 3-tetrahydroquinolyl group, 4-tetrahydroquinolyl group , 5-tetrahydroquinolyl group, 6-tetrahydroquinolyl group, 7-tetrahydroquinolyl group, 8-tetrahydro Noryl group, 1-pyrrolyl group, 2-pyrrolyl group, 3-pyrrolyl group, 2-furyl group, 3-furyl group, 2-thienyl group, 3-thienyl group, 1-imidazolyl group, 2-imidazolyl group, 4- Imidazolyl group, 5-imidazolyl group, 1-pyrazolyl group, 3-pyrazolyl group, 4-pyrazolyl group, 5-pyrazolyl group, 2-oxazolyl group, 4-oxazolyl group, 5-oxazolyl group, 2-thiazolyl group, 4- Thiazolyl group, 5-thiazolyl group, 3-isoxazolyl group, 4-isoxazolyl group, 5-isoxazolyl group, 3-isothiazolyl group, 4-isothiazolyl group, 5-isothiazolyl group, 4- (1,2,3-thiadiazolyl) group , 5- (1,2,3-thiadiazolyl) group, 3- (1,2,5-thiadiazolyl) group, 2- (1,3,4-thiadiazolyl) group ) Group, 4- (1,2,3-oxadiazolyl) group, 5- (1,2,3-oxadiazolyl) group, 3- (1,2,4-oxadiazolyl) group, 5- (1,2,2 4- (oxadiazolyl) group, 3- (1,2,5-oxadiazolyl) group, 2- (1,3,4-oxadiazolyl) group, 1- (1,2,3-triazolyl) group, 4- (1, 2,3-triazolyl) group, 5- (1,2,3-triazolyl) group, 1- (1,2,4-triazolyl) group, 3- (1,2,4-triazolyl) group, 5- ( 1,2,4-triazolyl) group, 1-tetrazolyl group, 5-tetrazolyl group, 1-indolyl, 2-indolyl group, 3-indolyl group, 4-indolyl group, 5-indolyl group, 6-indolyl group, 7 -Indolyl group, 1-isoindolyl group, 2-isoindori Group, 3-isoindolyl group, 4-isoindolyl group, 5-isoindolyl group, 6-isoindolyl group, 7-isoindolyl group, 1-benzimidazolyl group, 2-benzimidazolyl group, 4-benzimidazolyl group, 5-benzimidazolyl group, 6-benzimidazolyl Group, 7-benzimidazolyl group, 2-benzofuranyl group, 3-benzofuranyl group, 4-benzofuranyl group, 5-benzofuranyl group, 6-benzofuranyl group, 7-benzofuranyl group, 1-isobenzofuranyl group, 3-isobenzofuran group A 4-isobenzofuranyl group, a 5-isobenzofuranyl group, a 6-isobenzofuranyl group, a 7-isobenzofurnyl group, a 2-benzothienyl group, a 3-benzothienyl group, a 4-benzothienyl group, 5-benzothienyl group, 6-benzothienyl group 7-benzothienyl group, 2-benzoxazolyl group, 4-benzoxazolyl group, 5-benzoxazolyl group, 6-benzoxazolyl group, 7-benzooxazolyl group, 2-benzothiazolyl group , 4-benzothiazolyl, 5-benzothiazolyl, 6-benzothiazolyl, 7-benzothiazolyl, 1-indazolyl, 3-indazolyl, 4-indazolyl, 5-indazolyl, 6-indazolyl, 7-indazolyl , 2-morpholinyl group, 3-morpholinyl group, 4-morpholinyl group, 1-piperazyl group, 2-piperazyl group, 1-piperidyl group, 2-piperidyl group, 3-piperidyl group, 4-piperidyl group, 2-tetrahydropyrani Group, 3-tetrahydropyranyl group, 4-tetrahydropyranyl group, 2-tetrahydrothiopyranyl Group, 3-tetrahydrothiopyranyl group, 4-tetrahydrothiopyranyl group, 1-pyrrolidyl group, 2-pyrrolidyl group, 3-pyrrolidyl group, 2-tetrahydrofuranyl group, 3-tetrahydrofuranyl group, 2-tetrahydrothienyl group , 3-tetrahydrothienyl group and the like. Among them, preferred heterocyclic groups are a pyridyl group, a furanyl group, a thienyl group, a pyrimidyl group or a pyrazyl group, and more preferably a pyridyl group.

複素環基は、置換可能な位置に、1個以上の置換基を有していてもよい。該置換基としては、特に限定はなく、例えば、ハロゲン原子、アミノ基、アミノアルキル基、アルコキシカルボニル基、アシル基、アシルオキシ基、アミド基、カルボキシル基、カルボキシアルキル基、ホルミル基、ニトリル基、ニトロ基、アルキル基、ヒドロキシアルキル基、水酸基、アルコキシ基、アリール基、アリールオキシ基、複素環基、チオール基、アルキルチオ基、アリールチオ基等が挙げられる。該置換基は、好ましくは1〜5個、より好ましくは1〜3個有していてもよい。   The heterocyclic group may have one or more substituents at substitutable positions. The substituent is not particularly limited, and examples thereof include a halogen atom, an amino group, an aminoalkyl group, an alkoxycarbonyl group, an acyl group, an acyloxy group, an amide group, a carboxyl group, a carboxyalkyl group, a formyl group, a nitrile group, and a nitro group. Groups, alkyl groups, hydroxyalkyl groups, hydroxyl groups, alkoxy groups, aryl groups, aryloxy groups, heterocyclic groups, thiol groups, alkylthio groups, arylthio groups and the like. The substituent may have preferably 1 to 5, more preferably 1 to 3.

本明細書において、「ハロゲン原子」としては、フッ素原子、塩素原子、臭素原子、及びヨウ素原子が挙げられ、好ましくは塩素原子、臭素原子、及びヨウ素原子である。   In the present specification, the “halogen atom” includes a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and is preferably a chlorine atom, a bromine atom, and an iodine atom.

本明細書において、「アミノ基」には、−NHで表されるアミノ基だけでなく、例えば、メチルアミノ基、エチルアミノ基、n−プロピルアミノ基、イソプロピルアミノ基、n−ブチルアミノ基、イソブチルアミノ基、s−ブチルアミノ基、t−ブチルアミノ基、1−エチルプロピルアミノ基、n−ペンチルアミノ基、ネオペンチルアミノ基、n−ヘキシルアミノ基、イソヘキシルアミノ基、3−メチルペンチルアミノ基等の炭素数1〜6(特に炭素数1〜4)の直鎖状又は分岐状のモノアルキルアミノ基;ジメチルアミノ基、エチルメチルアミノ基、ジエチルアミノ基等の炭素数1〜6(特に炭素数1〜4)の直鎖状又は分岐状のアルキル基を2つ有するジアルキルアミノ基等の置換アミノ基も含まれる。In the present specification, the “amino group” includes not only an amino group represented by —NH 2 , but also, for example, a methylamino group, an ethylamino group, an n-propylamino group, an isopropylamino group, an n-butylamino group. , Isobutylamino group, s-butylamino group, t-butylamino group, 1-ethylpropylamino group, n-pentylamino group, neopentylamino group, n-hexylamino group, isohexylamino group, 3-methylpentyl A linear or branched monoalkylamino group having 1 to 6 carbon atoms (especially 1 to 4 carbon atoms) such as an amino group; and 1 to 6 carbon atoms such as a dimethylamino group, an ethylmethylamino group, and a diethylamino group (especially A substituted amino group such as a dialkylamino group having two linear or branched alkyl groups having 1 to 4 carbon atoms is also included.

本明細書において、「アミノアルキル基」としては、特に限定はなく、例えば、アミノメチル基、2−アミノエチル基、3−アミノプロピル基等のアミノアルキル基(好ましくはアミノ基を有する炭素数1〜6の直鎖状又は分岐状アルキル基)が挙げられる。   In the present specification, the “aminoalkyl group” is not particularly limited, and may be, for example, an aminoalkyl group such as an aminomethyl group, a 2-aminoethyl group, and a 3-aminopropyl group (preferably having an amino group and having 1 carbon atom. To 6 linear or branched alkyl groups).

本明細書において、「アルコキシカルボニル基」としては、特に限定はなく、例えば、メトキシカルボニル基、エトキシカルボニル基等が挙げられる。   In the present specification, the “alkoxycarbonyl group” is not particularly limited, and includes, for example, a methoxycarbonyl group, an ethoxycarbonyl group, and the like.

本明細書において、「アシル基」としては、特に限定はなく、例えば、アセチル基、プロピオニル基、ピバロイル基等の炭素数1〜4の直鎖状又は分岐鎖状アルキルカルボニル基が挙げられる。   In the present specification, the “acyl group” is not particularly limited, and includes, for example, a linear or branched alkylcarbonyl group having 1 to 4 carbon atoms such as an acetyl group, a propionyl group, and a pivaloyl group.

本明細書において、「アシルオキシ基」としては、特に限定はなく、例えば、アセチルオキシ基、プロピオニルオキシ基、n−ブチリルオキシ基等が挙げられる。   In the present specification, the “acyloxy group” is not particularly limited, and includes, for example, an acetyloxy group, a propionyloxy group, an n-butyryloxy group, and the like.

本明細書において、「アミド基」としては、特に限定はなく、例えば、アセトアミド基、ベンズアミド基等のカルボン酸アミド基;チオアセトアミド基、チオベンズアミド基等のチオアミド基;N−メチルアセトアミド基、N−ベンジルアセトアミド基等のN−置換アミド基;等が挙げられる。   In the present specification, the “amide group” is not particularly limited and includes, for example, a carboxylic amide group such as an acetamide group and a benzamide group; a thioamide group such as a thioacetamide group and a thiobenzamide group; an N-methylacetamide group; N-substituted amide groups such as -benzylacetamide group; and the like.

本明細書において、「カルボキシアルキル基」としては、特に限定はなく、例えば、カルボキシメチル基、カルボキシエチル基、カルボキシ−n−プロピル基、カルボキシ−n−ブチル基、カルボキシ−n−ペンチル基、カルボキシ−n−ヘキシル基等のカルボキシ−アルキル基(好ましくはカルボキシ基を有する炭素数1〜6のアルキル基)が挙げられる。   In the present specification, the “carboxyalkyl group” is not particularly limited, and examples thereof include a carboxymethyl group, a carboxyethyl group, a carboxy-n-propyl group, a carboxy-n-butyl group, a carboxy-n-pentyl group, and a carboxy group. And a carboxy-alkyl group such as -n-hexyl group (preferably an alkyl group having 1 to 6 carbon atoms having a carboxy group).

本明細書において、「アルキル基」としては、特に限定はなく、例えば、直鎖状、分岐状又は環状のアルキル基が挙げられ、具体的には、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、s−ブチル基、t−ブチル基、1−エチルプロピル基、n−ペンチル基、ネオペンチル基、n−ヘキシル基、イソヘキシル基、3−メチルペンチル基等の炭素数1〜6(特に炭素数1〜4)の直鎖状又は分岐状アルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル等の炭素数3〜8(特に炭素数3〜6)の環状アルキル基等が挙げられる。   In the present specification, the “alkyl group” is not particularly limited, and includes, for example, a linear, branched, or cyclic alkyl group. Specifically, for example, a methyl group, an ethyl group, and n-propyl Group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, 1-ethylpropyl group, n-pentyl group, neopentyl group, n-hexyl group, isohexyl group, 3-methylpentyl group Linear or branched alkyl group having 1 to 6 (particularly 1 to 4 carbon atoms) such as cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group and cyclooctyl; And a cyclic alkyl group having 8 (particularly, 3 to 6 carbon atoms).

本明細書において、「ヒドロキシアルキル基」としては、特に限定はなく、例えば、ヒドロキシメチル基、ヒドロキシエチル基、ヒドロキシ−n−プロピル基、ヒドロキシ−n−ブチル基等のヒドロキシ−アルキル基(好ましくはヒドロキシ基を有する炭素数1〜6のアルキル基)が挙げられる。   In the present specification, the “hydroxyalkyl group” is not particularly limited, and for example, a hydroxy-alkyl group such as a hydroxymethyl group, a hydroxyethyl group, a hydroxy-n-propyl group, a hydroxy-n-butyl group (preferably An alkyl group having 1 to 6 carbon atoms having a hydroxy group).

本明細書において、「アルコキシ基」としては、特に限定はなく、例えば、直鎖状、分岐状又は環状のアルコキシ基が挙げられ、具体的には、例えば、メトキシ、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、t−ブトキシ基、n−ペンチルオキシ基、ネオペンチルオキシ基、n−ヘキシルオキシ基の炭素数1〜6(特に炭素数1〜4)の直鎖状又は分岐状のアルコキシ基;シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基、シクロヘプチルオキシ基、シクロオクチルオキシ基等の炭素数3〜8(特に炭素数3〜6)の環状アルコキシ基等が挙げられる。   In the present specification, the “alkoxy group” is not particularly limited, and includes, for example, a linear, branched or cyclic alkoxy group. Specifically, for example, a methoxy, ethoxy group, an n-propoxy group , An isopropoxy group, an n-butoxy group, a t-butoxy group, an n-pentyloxy group, a neopentyloxy group, a n-hexyloxy group having 1 to 6 (particularly 1 to 4 carbon atoms) linear or A branched alkoxy group; a cyclic group having 3 to 8 carbon atoms (particularly 3 to 6 carbon atoms) such as a cyclopropyloxy group, a cyclobutyloxy group, a cyclopentyloxy group, a cyclohexyloxy group, a cycloheptyloxy group, and a cyclooctyloxy group. And an alkoxy group.

本明細書において、「アリール基」としては、特に限定はなく、例えば、フェニル基、ビフェニル基、ナフチル基、ジヒドロインデニル基、9H−フルオレニル基等が挙げられる。   In the present specification, the “aryl group” is not particularly limited, and includes, for example, a phenyl group, a biphenyl group, a naphthyl group, a dihydroindenyl group, a 9H-fluorenyl group and the like.

本明細書において、「アリールオキシ基」としては、特に限定はなく、例えば、フェノキシ基、ビフェニルオキシ基、ナフトキシ基等が挙げられる。   In the present specification, the “aryloxy group” is not particularly limited, and includes, for example, a phenoxy group, a biphenyloxy group, a naphthoxy group, and the like.

本明細書において、「アルキルチオ基」としては、特に限定はなく、例えば、直鎖状、分岐状又は環状のアルキルチオ基が挙げられ、具体的には、例えば、メチルチオ基、エチルチオ基、n−プロピルチオ基、イソプロピルチオ基、n−ブチルチオ基、イソブチルチオ基、s−ブチルチオ基、t−ブチルチオ基、1−エチルプロピルチオ基、n−ペンチルチオ基、ネオペンチルチオ基、n−ヘキシルチオ基、イソヘキシルチオ基、3−メチルペンチルチオ基等の炭素数1〜6(特に炭素数1〜4)の直鎖状又は分岐状のアルキルチオ基;シクロプロピルチオ基、シクロブチルチオ基、シクロペンチルチオ基、シクロヘキシルチオ基、シクロヘプチルチオ基、シクロオクチルチオ基等の炭素数3〜8(特に炭素数3〜6)の環状アルキルチオ基等が挙げられる。   In the present specification, the “alkylthio group” is not particularly limited, and includes, for example, a linear, branched, or cyclic alkylthio group. Specifically, for example, a methylthio group, an ethylthio group, an n-propylthio group Group, isopropylthio group, n-butylthio group, isobutylthio group, s-butylthio group, t-butylthio group, 1-ethylpropylthio group, n-pentylthio group, neopentylthio group, n-hexylthio group, isohexylthio Or a straight-chain or branched alkylthio group having 1 to 6 carbon atoms (especially 1 to 4 carbon atoms) such as a 3-methylpentylthio group; cyclopropylthio group, cyclobutylthio group, cyclopentylthio group, cyclohexylthio Alkylthio group having 3 to 8 carbon atoms (particularly, 3 to 6 carbon atoms) such as a group, cycloheptylthio group, cyclooctylthio group, etc. And the like.

本明細書において、「アリールチオ基」としては、特に限定はなく、例えば、フェニルチオ基、ビフェニルチオ基、ナフチルチオ基等が挙げられる。   In the present specification, the “arylthio group” is not particularly limited, and includes, for example, a phenylthio group, a biphenylthio group, a naphthylthio group, and the like.

一般式(1)で表されるテトラジン化合物の「塩」としては、特に限定はなく、あらゆる種類の塩が含まれる。このような塩としては、例えば、塩酸塩、硫酸塩、硝酸塩等の無機酸塩;酢酸塩、メタンスルホン酸塩等の有機酸塩;ナトリウム塩、カリウム塩等のアルカリ金属塩;マグネシウム塩、カルシウム塩等のアルカリ土類金属塩;ジメチルアンモニウム、トリエチルアンモニウム等のアンモニウム塩等が挙げられる。   The “salt” of the tetrazine compound represented by the general formula (1) is not particularly limited, and includes all kinds of salts. Such salts include, for example, inorganic acid salts such as hydrochloride, sulfate and nitrate; organic acid salts such as acetate and methanesulfonate; alkali metal salts such as sodium salt and potassium salt; magnesium salt and calcium Alkaline earth metal salts such as salts; and ammonium salts such as dimethylammonium and triethylammonium.

好ましいテトラジン化合物(1)は、X及びXが、同一又は異なって、置換基を有していてもよいピリジル基、置換基を有していてもよいフラニル基、置換基を有していてもよいチエニル基、置換基を有していてもよいピラゾリル基、置換基を有していてもよいピリミジル基、又は置換基を有していてもよいピラジル基である化合物である。Preferred tetrazine compounds (1) are those wherein X 1 and X 2 are the same or different and have a pyridyl group which may have a substituent, a furanyl group which may have a substituent, and a substituent. A thienyl group which may be substituted, a pyrazolyl group which may have a substituent, a pyrimidyl group which may have a substituent, or a pyrazyl group which may have a substituent.

より好ましいテトラジン化合物(1)は、X及びXが、同一又は異なって、置換基を有していてもよい2−ピリジル基、置換基を有していてもよい3−ピリジル基、置換基を有していてもよい4−ピリジル基、置換基を有していてもよい2−フラニル基、置換基を有していてもよい2−チエニル基、置換基を有していてもよい1−ピラゾリル基、置換基を有していてもよい2−ピリミジル基、又は置換基を有していてもよい2−ピラジル基である化合物であり、具体的には、置換基を有していてもよい2−ピリジル基、置換基を有していてもよい3−ピリジル基、又は置換基を有していてもよい2−フラニル基である化合物が特に好ましい。More preferred tetrazine compound (1) is a compound in which X 1 and X 2 are the same or different and each may be a 2-pyridyl group optionally having a substituent, a 3-pyridyl group optionally having a substituent, 4-pyridyl group optionally having a group, 2-furanyl group optionally having a substituent, 2-thienyl group optionally having a substituent, optionally having a substituent It is a compound which is a 1-pyrazolyl group, a 2-pyrimidyl group which may have a substituent, or a 2-pyrazyl group which may have a substituent, and specifically has a substituent. A compound which is a 2-pyridyl group which may be optionally substituted, a 3-pyridyl group which may have a substituent, or a 2-furanyl group which may have a substituent is particularly preferred.

テトラジン化合物(1)の具体例としては、
3,6−ビス(2−ピリジル)−1,2,4,5−テトラジン、
3,6−ビス(3−ピリジル)−1,2,4,5−テトラジン、
3,6−ビス(4−ピリジル)−1,2,4,5−テトラジン、
3,6−ビス(2−フラニル)−1,2,4,5−テトラジン、
3,6−ビス(3,5−ジメチル−1−ピラゾリル)−1,2,4,5−テトラジン、
3,6−ビス(2−チエニル)−1,2,4,5−テトラジン、
3−メチル−6−(2−ピリジル)−1,2,4,5−テトラジン、
3,6−ビス(2−ピリミジニル)−1,2,4,5−テトラジン、
3,6−ビス(2−ピラジル)−1,2,4,5−テトラジン等が挙げられる。
Specific examples of the tetrazine compound (1) include:
3,6-bis (2-pyridyl) -1,2,4,5-tetrazine,
3,6-bis (3-pyridyl) -1,2,4,5-tetrazine,
3,6-bis (4-pyridyl) -1,2,4,5-tetrazine,
3,6-bis (2-furanyl) -1,2,4,5-tetrazine,
3,6-bis (3,5-dimethyl-1-pyrazolyl) -1,2,4,5-tetrazine,
3,6-bis (2-thienyl) -1,2,4,5-tetrazine,
3-methyl-6- (2-pyridyl) -1,2,4,5-tetrazine;
3,6-bis (2-pyrimidinyl) -1,2,4,5-tetrazine,
3,6-bis (2-pyrazyl) -1,2,4,5-tetrazine and the like.

中でも、好ましいテトラジン化合物(1)は、3,6−ビス(2−ピリジル)−1,2,4,5−テトラジン、3,6−ビス(3−ピリジル)−1,2,4,5−テトラジン、3,6−ビス(2−フラニル)−1,2,4,5−テトラジン、及び3,6−ビス(4−ピリジル)−1,2,4,5−テトラジンであり、さらに好ましいテトラジン化合物(1)は、3,6−ビス(2−ピリジル)−1,2,4,5−テトラジン、3,6−ビス(3−ピリジル)−1,2,4,5−テトラジン、及び3,6−ビス(4−ピリジル)−1,2,4,5−テトラジンである。   Among them, preferred tetrazine compounds (1) are 3,6-bis (2-pyridyl) -1,2,4,5-tetrazine and 3,6-bis (3-pyridyl) -1,2,4,5- Tetrazine, 3,6-bis (2-furanyl) -1,2,4,5-tetrazine, and 3,6-bis (4-pyridyl) -1,2,4,5-tetrazine, more preferably tetrazine Compound (1) includes 3,6-bis (2-pyridyl) -1,2,4,5-tetrazine, 3,6-bis (3-pyridyl) -1,2,4,5-tetrazine, and 3 , 6-Bis (4-pyridyl) -1,2,4,5-tetrazine.

テトラジン化合物(1)の配合量は、ゴム組成物中のジエン系ゴム100質量部に対して、通常0.1〜10質量部であり、好ましくは0.25〜5質量部であり、より好ましくは0.5〜2質量部である。   The compounding amount of the tetrazine compound (1) is usually 0.1 to 10 parts by mass, preferably 0.25 to 5 parts by mass, more preferably 0.25 to 5 parts by mass, based on 100 parts by mass of the diene rubber in the rubber composition. Is 0.5 to 2 parts by mass.

テトラジン化合物(1)が粉体である場合、その体積平均径は特に制限されない。低発熱性発現の観点から、体積平均径が300μm以下であることが好ましく、150μm以下であることがさらに好ましく、75μm以下であることが特に好ましい。   When the tetrazine compound (1) is a powder, its volume average diameter is not particularly limited. From the viewpoint of low heat build-up, the volume average diameter is preferably 300 μm or less, more preferably 150 μm or less, and particularly preferably 75 μm or less.

なお、体積平均径は、レーザー光回折法等による粒度分布測定装置を用いて、体積基準粒度分布から積算分布曲線の50%に相当する粒子径として求めることができる。   The volume average diameter can be determined from a volume-based particle size distribution as a particle size corresponding to 50% of an integrated distribution curve using a particle size distribution measuring device such as a laser light diffraction method.

また、取り扱い時のハンドリング性及び着火性又は爆発性リスク低減の観点から、粉体をオイル、樹脂、ステアリン酸などで表面処理したものを使用してもよく、又は粉体を炭酸カルシウム、シリカなどの充填剤などと混合して使用してもよい。   Further, from the viewpoint of handling properties and ignitability or explosive risk reduction at the time of handling, powders that are surface-treated with oil, resin, stearic acid, etc., may be used, or powders such as calcium carbonate, silica, etc. May be used in admixture with a filler or the like.

本発明のゴム組成物は、上記ジエン系ゴム及びテトラジン化合物(1)に加え、さらに無機充填材及び/又はカーボンブラックを含むことが好ましい。   The rubber composition of the present invention preferably further contains an inorganic filler and / or carbon black in addition to the diene rubber and the tetrazine compound (1).

無機充填材の配合量は、ジエン系ゴム100質量部に対して、通常20〜150質量部であり、好ましくは30〜120質量部であり、より好ましくは40〜90質量部である。   The compounding amount of the inorganic filler is usually 20 to 150 parts by mass, preferably 30 to 120 parts by mass, and more preferably 40 to 90 parts by mass with respect to 100 parts by mass of the diene rubber.

カーボンブラックの配合量は、ジエン系ゴム100質量部に対して、通常2〜150質量部であり、好ましくは4〜120質量部であり、より好ましくは6〜100質量部である。   The compounding amount of carbon black is usually from 2 to 150 parts by mass, preferably from 4 to 120 parts by mass, more preferably from 6 to 100 parts by mass, based on 100 parts by mass of the diene rubber.

なお、本発明のゴム組成物において、無機充填材及び/又はカーボンブラックは、両成分の合計量で、例えば、ジエン系ゴム100質量部に対して、通常30〜130質量部、好ましくは40〜130質量部、より好ましくは45〜100質量部となるよう各成分の上記配合量の範囲内で適宜調整すればよい。   In the rubber composition of the present invention, the inorganic filler and / or carbon black is usually 30 to 130 parts by mass, preferably 40 to 100 parts by mass, based on the total amount of both components, based on 100 parts by mass of the diene rubber. What is necessary is just to adjust suitably within the said compounding quantity range of each component so that it may be set to 130 mass parts, more preferably 45 to 100 mass parts.

無機充填材及び/又はカーボンブラックの合計の配合量が、30質量部以上であれば、ゴム組成物のスノー性能向上の観点から好ましく、130質量部以下であれば、転がり抵抗低減の観点から好ましい。なお、無機充填材及び/又はカーボンブラックを配合するときは、予めポリマーと湿式または乾式で混合されたマスターバッチポリマーを用いてもよい。   When the total amount of the inorganic filler and / or carbon black is 30 parts by mass or more, it is preferable from the viewpoint of improving the snow performance of the rubber composition, and when it is 130 parts by mass or less, it is preferable from the viewpoint of reducing rolling resistance. . When blending the inorganic filler and / or carbon black, a masterbatch polymer which has been mixed with the polymer in a wet or dry manner in advance may be used.

無機充填材
無機充填材としては、ゴム工業界において、通常使用される無機化合物であれば、特に制限はない。使用できる無機化合物としては、例えば、シリカ、γ−アルミナ、α−アルミナ等のアルミナ(Al);ベーマイト、ダイアスポア等のアルミナ一水和物(Al・HO);ギブサイト、バイヤライト等の水酸化アルミニウム[Al(OH)];炭酸アルミニウム[Al(CO]、水酸化マグネシウム[Mg(OH)]、酸化マグネシウム(MgO)、炭酸マグネシウム(MgCO)、タルク(3MgO・4SiO・HO)、アタパルジャイト(5MgO・8SiO・9HO)、チタン白(TiO)、チタン黒(TiO2n−1)、酸化カルシウム(CaO)、水酸化カルシウム[Ca(OH)]、酸化アルミニウムマグネシウム(MgO・Al)、クレー(Al・2SiO)、カオリン(Al・2SiO・2HO)、パイロフィライト(Al・4SiO・HO)、ベントナイト(Al・4SiO・2HO)、ケイ酸アルミニウム(AlSiO、Al・3SiO・5HO等)、ケイ酸マグネシウム(MgSiO、MgSiO等)、ケイ酸カルシウム(Ca・SiO等)、ケイ酸アルミニウムカルシウム(Al・CaO・2SiO等)、ケイ酸マグネシウムカルシウム(CaMgSiO)、炭酸カルシウム(CaCO)、酸化ジルコニウム(ZrO)、水酸化ジルコニウム[ZrO(OH)・nHO]、炭酸ジルコニウム[Zr(CO]、各種ゼオライトのように電荷を補正する水素、アルカリ金属又はアルカリ土類金属を含む結晶性アルミノケイ酸塩等が挙げられる。これらの無機充填材は、ゴム成分との親和性を向上させるために、該無機充填材の表面が有機処理されていてもよい。
Inorganic Filler The inorganic filler is not particularly limited as long as it is an inorganic compound usually used in the rubber industry. Examples of usable inorganic compounds include, for example, alumina (Al 2 O 3 ) such as silica, γ-alumina and α-alumina; alumina monohydrate (Al 2 O 3 .H 2 O) such as boehmite and diaspore; , Bayerite, etc .; aluminum hydroxide [Al (OH) 3 ]; aluminum carbonate [Al 2 (CO 3 ) 3 ], magnesium hydroxide [Mg (OH) 2 ], magnesium oxide (MgO), magnesium carbonate (MgCO 3) ), talc (3MgO · 4SiO 2 · H 2 O), attapulgite (5MgO · 8SiO 2 · 9H 2 O), titanium white (TiO 2), titanium black (TiO 2n-1), calcium oxide (CaO), hydroxide Calcium [Ca (OH) 2 ], aluminum magnesium oxide (MgO.Al 2 O 3 ), clay (Al 2 O 3 · 2SiO 2), kaolin (Al 2 O 3 · 2SiO 2 · 2H 2 O), pyrophyllite (Al 2 O 3 · 4SiO 2 · H 2 O), bentonite (Al 2 O 3 · 4SiO 2 · 2H 2 O), aluminum silicate (Al 2 SiO 5, Al 4 · 3SiO 4 · 5H 2 O etc.), magnesium silicate (Mg 2 SiO 4, MgSiO 3 etc.), calcium silicate (Ca 2 · SiO 4 etc.) Aluminum calcium silicate (Al 2 O 3 .CaO 2 SiO 2, etc.), magnesium calcium silicate (CaMgSiO 4 ), calcium carbonate (CaCO 3 ), zirconium oxide (ZrO 2 ), zirconium hydroxide [ZrO (OH) 2 · nH 2 O], zirconium carbonate [Zr (CO 3) 2] , to correct the charge as various zeolites Hydrogen, crystalline aluminosilicates such as containing alkali metal or alkaline earth metal. The surface of the inorganic filler may be organically treated in order to improve the affinity with the rubber component.

シリカは、ゴム強度を付与することができるため添加することが好ましい。シリカとしては、市販のあらゆるものが使用できる。中でも、好ましいシリカとしては、湿式シリカ、乾式シリカ、又はコロイダルシリカであり、より好ましくは湿式シリカである。これらのシリカは、ゴム成分との親和性を向上させるために、該無機充填材の表面が有機処理されていてもよい。   Silica is preferably added because it can impart rubber strength. Any commercially available silica can be used. Among them, preferred silica is wet silica, dry silica or colloidal silica, more preferably wet silica. These silicas may be organically treated on the surface of the inorganic filler in order to improve the affinity with the rubber component.

中でも、無機充填材としては、スノー性能の観点からシリカが好ましく、シリカのBET比表面積としては、特に制限はなく、例えば、40〜350m/gの範囲が挙げられる。BET比表面積がこの範囲であるシリカは、スノー性能及びゴム成分中への分散性を両立できるという利点がある。該BET比表面積は、ISO 5794/1に準拠して測定される。Among them, silica is preferable as the inorganic filler from the viewpoint of snow performance, and the BET specific surface area of the silica is not particularly limited, and for example, is in a range of 40 to 350 m 2 / g. Silica having a BET specific surface area within this range is advantageous in that it can achieve both snow performance and dispersibility in a rubber component. The BET specific surface area is measured according to ISO 5794/1.

この観点から、好ましいシリカとしては、BET比表面積が50〜250m/gの範囲にあるシリカであり、より好ましくは、BET比表面積が80〜230m/gであるシリカであり、特に好ましくは、BET比表面積が100〜210m/gの範囲にあるシリカである。また、これらのBET比表面積の異なるシリカを組み合わせて用いてもよい。From this viewpoint, preferred silica is silica having a BET specific surface area of 50 to 250 m 2 / g, more preferably silica having a BET specific surface area of 80 to 230 m 2 / g, and particularly preferably. , Silica having a BET specific surface area of 100 to 210 m 2 / g. Further, these silicas having different BET specific surface areas may be used in combination.

このようなシリカの市販品としては、Quechen Silicon Chemical Co., Ltd.製の商品名「HD165MP」(BET比表面積 =165m/g)、「HD115MP」(BET比表面積 =115m/g)、「HD200MP」(BET比表面積 =200m/g)、「HD250MP」(BET比表面積 =250m/g)、東ソー・シリカ株式会社製の商品名「ニップシールAQ」(BET比表面積=205m/g)、「ニップシールKQ」(BET比表面積 =240m/g)、デグッサ社製の商品名「ウルトラジルVN3」(BET比表面積 =175m/g)、ソルベイ社製の商品名「Z1085Gr」(BET比表面積=90m/g)、「Z Premium200MP」(BET比表面積=215m/g)、「Z HRS 1200MP」(BET比表面積=200m/g)等が挙げられる。Commercial products of such silica include trade names “HD165MP” (BET specific surface area = 165 m 2 / g), “HD115MP” (BET specific surface area = 115 m 2 / g) manufactured by Quechen Silicon Chemical Co., Ltd. “HD200MP” (BET specific surface area = 200 m 2 / g), “HD250MP” (BET specific surface area = 250 m 2 / g), trade name “Nip Seal AQ” manufactured by Tosoh Silica Corporation (BET specific surface area = 205 m 2 / g) ), “Nip Seal KQ” (BET specific surface area = 240 m 2 / g), Degussa product name “Ultrasil VN3” (BET specific surface area = 175 m 2 / g), Solvay product name “Z1085Gr” (BET) specific surface area = 90m 2 / g), "Z Premium200MP" (BET specific surface area = 215m 2 / g), "Z H S 1200MP "(BET specific surface area = 200m 2 / g), and the like.

シリカの配合量としては、ジエン系ゴム100質量部に対して、通常20〜120質量部であり、好ましくは30〜100質量部であり、より好ましくは40〜90質量部である。   The compounding amount of silica is usually 20 to 120 parts by mass, preferably 30 to 100 parts by mass, and more preferably 40 to 90 parts by mass based on 100 parts by mass of the diene rubber.

カーボンブラック
カーボンブラックとしては、特に制限はなく、例えば、市販品のカーボンブラック、Carbon-Silica Dual phase filler等が挙げられる。
The carbon black is not particularly limited, and examples thereof include commercially available carbon black and Carbon-Silica Dual phase filler.

具体的に、カーボンブラックとしては、例えば、高、中又は低ストラクチャーのSAF、ISAF、IISAF、N110、N134、N220、N234、N330、N339、N375、N550、HAF、FEF、GPF、SRFグレードのカーボンブラック等が挙げられる。中でも、好ましいカーボンブラックとしては、SAF、ISAF、IISAF、N134、N234、N330、N339、N375、HAF、又はFEFグレードのカーボンブラックである。   Specifically, as the carbon black, for example, high-, medium- or low-structure SAF, ISAF, IISAF, N110, N134, N220, N234, N330, N339, N375, N550, HAF, FEF, GPF, SRF grade carbon Black and the like. Among them, preferred carbon black is SAF, ISAF, IISAF, N134, N234, N330, N339, N375, HAF, or FEF grade carbon black.

カーボンブラックのDBP吸収量としては、特に制限はなく、好ましくは60〜200cm/100g、より好ましくは70〜180cm/100g以上、特に好ましくは80〜160cm/100gである。The DBP absorption of carbon black is not particularly limited, preferably 60~200cm 3 / 100g, more preferably 70~180cm 3 / 100g or more, particularly preferably 80~160cm 3 / 100g.

また、カーボンブラックの窒素吸着比表面積(N2SA、JIS K 6217−2:2001に準拠して測定する)は、好ましくは30〜200m/g、より好ましくは40〜180m/g、特に好ましくは50〜160m/gである。The nitrogen adsorption specific surface area (N2SA, measured according to JIS K 6217-2: 2001) of carbon black is preferably 30 to 200 m 2 / g, more preferably 40 to 180 m 2 / g, and particularly preferably. It is 50 to 160 m 2 / g.

カーボンブラックを配合するゴム組成物において、テトラジン化合物(1)を配合することにより、カーボンブラックの分散性が大幅に向上し、ゴム組成物の低発熱性が著しく改良できる。   By compounding the tetrazine compound (1) in the rubber composition containing carbon black, the dispersibility of carbon black is greatly improved, and the low heat build-up of the rubber composition can be remarkably improved.

その他の配合剤
本発明のゴム組成物には、上記テトラジン化合物(1)、並びに無機充填材及び/又はカーボンブラック以外にも、ゴム工業界で通常使用される配合剤、例えば、硫黄等の加硫剤を配合することができる。本発明のゴム組成物には、さらに、別の配合剤、例えば、老化防止剤、オゾン防止剤、軟化剤、加工助剤、ワックス、樹脂、発泡剤、オイル、ステアリン酸、亜鉛華(ZnO)、加硫促進剤、加硫遅延剤等を配合してもよい。これら配合剤は、本発明の目的を害しない範囲内で適宜選択して配合することができる。これら配合剤としては、市販品を好適に使用することができる。
Other Compounding Agents In addition to the above-mentioned tetrazine compound (1) and inorganic filler and / or carbon black, the rubber composition of the present invention may contain other compounding agents commonly used in the rubber industry, such as sulfur. A sulfurizing agent can be blended. The rubber composition of the present invention may further contain another compounding agent, for example, an antioxidant, an antiozonant, a softener, a processing aid, a wax, a resin, a foaming agent, an oil, stearic acid, and zinc oxide (ZnO). , A vulcanization accelerator, a vulcanization retarder and the like. These compounding agents can be appropriately selected and compounded within a range that does not impair the purpose of the present invention. Commercially available products can be suitably used as these compounding agents.

また、シリカなどの無機充填材が配合されたゴム組成物においては、シリカによるゴム組成物の補強性を高める目的、又はゴム組成物の低発熱性と共に耐摩耗性を高める目的で、シランカップリング剤を配合してもよい。   Further, in a rubber composition in which an inorganic filler such as silica is blended, silane coupling is used for the purpose of enhancing the reinforcing property of the rubber composition with silica, or the purpose of increasing the wear resistance together with the low heat build-up of the rubber composition. You may mix | blend an agent.

無機充填材と併用可能なシランカップリング剤としては特に制限されず、市販品を好適に使用することができる。このようなシランカップリング剤として、例えばスルフィド系、ポリスルフィド系、チオエステル系、チオール系、オレフィン系、エポキシ系、アミノ系、アルキル系のシランカップリング剤が挙げられる。   The silane coupling agent that can be used in combination with the inorganic filler is not particularly limited, and a commercially available product can be suitably used. Examples of such silane coupling agents include sulfide-based, polysulfide-based, thioester-based, thiol-based, olefin-based, epoxy-based, amino-based, and alkyl-based silane coupling agents.

スルフィド系のシランカップリング剤としては、例えば、ビス(3−トリエトキシシリルプロピル)テトラスルフィド、ビス(3−トリメトキシシリルプロピル)テトラスルフィド、ビス(3−メチルジメトキシシリルプロピル)テトラスルフィド、ビス(2−トリエトキシシリルエチル)テトラスルフィド、ビス(3−トリエトキシシリルプロピル)ジスルフィド、ビス(3−トリメトキシシリルプロピル)ジスルフィド、ビス(3−メチルジメトキシシリルプロピル)ジスルフィド、ビス(2−トリエトキシシリルエチル)ジスルフィド、ビス(3−トリエトキシシリルプロピル)トリスルフィド、ビス(3−トリメトキシシリルプロピル)トリスルフィド、ビス(3−メチルジメトキシシリルプロピル)トリスルフィド、ビス(2−トリエトキシシリルエチル)トリスルフィド、ビス(3−モノエトキシジメチルシリルプロピル)テトラスルフィド、ビス(3−モノエトキシジメチルシリルプロピル)トリスルフィド、ビス(3−モノエトキシジメチルシリルプロピル)ジスルフィド、ビス(3−モノメトキシジメチルシリルプロピル)テトラスルフィド、ビス(3−モノメトキシジメチルシリルプロピル)トリスルフィド、ビス(3−モノメトキシジメチルシリルプロピル)ジスルフィド、ビス(2−モノエトキシジメチルシリルエチル)テトラスルフィド、ビス(2−モノエトキシジメチルシリルエチル)トリスルフィド、ビス(2−モノエトキシジメチルシリルエチル)ジスルフィド等が挙げられる。これらの内、ビス(3−トリエトキシシリルプロピル)テトラスルフィドが特に好ましい。   Examples of the sulfide-based silane coupling agent include bis (3-triethoxysilylpropyl) tetrasulfide, bis (3-trimethoxysilylpropyl) tetrasulfide, bis (3-methyldimethoxysilylpropyl) tetrasulfide and bis ( 2-triethoxysilylethyl) tetrasulfide, bis (3-triethoxysilylpropyl) disulfide, bis (3-trimethoxysilylpropyl) disulfide, bis (3-methyldimethoxysilylpropyl) disulfide, bis (2-triethoxysilyl) Ethyl) disulfide, bis (3-triethoxysilylpropyl) trisulfide, bis (3-trimethoxysilylpropyl) trisulfide, bis (3-methyldimethoxysilylpropyl) trisulfide, bis (2-to (Ethoxysilylethyl) trisulfide, bis (3-monoethoxydimethylsilylpropyl) tetrasulfide, bis (3-monoethoxydimethylsilylpropyl) trisulfide, bis (3-monoethoxydimethylsilylpropyl) disulfide, bis (3-mono Methoxydimethylsilylpropyl) tetrasulfide, bis (3-monomethoxydimethylsilylpropyl) trisulfide, bis (3-monomethoxydimethylsilylpropyl) disulfide, bis (2-monoethoxydimethylsilylethyl) tetrasulfide, bis (2- Monoethoxydimethylsilylethyl) trisulfide, bis (2-monoethoxydimethylsilylethyl) disulfide and the like. Of these, bis (3-triethoxysilylpropyl) tetrasulfide is particularly preferred.

チオエステル系のシランカップリング剤としては、例えば、3−ヘキサノイルチオプロピルトリエトキシシラン、3−オクタノイルチオプロピルトリエトキシシラン、3−デカノイルチオプロピルトリエトキシシラン、3−ラウロイルチオプロピルトリエトキシシラン、2−ヘキサノイルチオエチルトリエトキシシラン、2−オクタノイルチオエチルトリエトキシシラン、2−デカノイルチオエチルトリエトキシシラン、2−ラウロイルチオエチルトリエトキシシラン、3−ヘキサノイルチオプロピルトリメトキシシラン、3−オクタノイルチオプロピルトリメトキシシラン、3−デカノイルチオプロピルトリメトキシシラン、3−ラウロイルチオプロピルトリメトキシシラン、2−ヘキサノイルチオエチルトリメトキシシラン、2−オクタノイルチオエチルトリメトキシシラン、2−デカノイルチオエチルトリメトキシシラン、2−ラウロイルチオエチルトリメトキシシラン等を挙げることができる。   Examples of the thioester silane coupling agent include 3-hexanoylthiopropyltriethoxysilane, 3-octanoylthiopropyltriethoxysilane, 3-decanoylthiopropyltriethoxysilane, and 3-lauroylthiopropyltriethoxysilane. 2-hexanoylthioethyltriethoxysilane, 2-octanoylthioethyltriethoxysilane, 2-decanoylthioethyltriethoxysilane, 2-lauroylthioethyltriethoxysilane, 3-hexanoylthiopropyltrimethoxysilane, 3-octanoylthiopropyltrimethoxysilane, 3-decanoylthiopropyltrimethoxysilane, 3-lauroylthiopropyltrimethoxysilane, 2-hexanoylthioethyltrimethoxysilane, 2-octa Ylthio ethyltrimethoxysilane, 2- deca Neu thio ethyltrimethoxysilane, and 2-lauroyl thio ethyl trimethoxysilane.

チオール系のシランカップリング剤としては、例えば、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシラン、3−メルカプトプロピルメチルジメトキシシラン、3−[エトキシビス(3,6,9,12,15−ペンタオキサオクタコサン−1−イルオキシ)シリル]−1−プロパンチオール等を挙げることができる。   Examples of the thiol-based silane coupling agent include 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropylmethyldimethoxysilane, and 3- [ethoxybis (3,6,9,12,15). -Pentaoxaoctakosan-1-yloxy) silyl] -1-propanethiol.

オレフィン系のシランカップリング剤としては、例えば、ジメトキシメチルビニルシラン、ビニルトリメトキシシラン、ジメチルエトキシビニルシラン、ジエトキシメチルビニルシラン、トリエトキシビニルシラン、ビニルトリス(2−メトキシエトキシ)シラン、アリルトリメトキシシラン、アリルトリエトキシシラン、p−スチリルトリメトキシシラン、3−(ジメトキシメチルシリル)プロピルアクリレート、3−(トリメトキシシリル)プロピルアクリレート、3−[ジメトキシ(メチル)シリル]プロピルメタクリレート、3−(トリメトキシシリル)プロピルメタクリレート、3−[ジメトキシ(メチル)シリル]プロピルメタクリレート、3−(トリエトキシシリル)プロピルメタクリレート、3−[トリス(トリメチルシロキシ)シリル]プロピルメタクリレート等を挙げることができる。   Examples of the olefin-based silane coupling agent include dimethoxymethylvinylsilane, vinyltrimethoxysilane, dimethylethoxyvinylsilane, diethoxymethylvinylsilane, triethoxyvinylsilane, vinyltris (2-methoxyethoxy) silane, allyltrimethoxysilane, and allyltrimethoxysilane. Ethoxysilane, p-styryltrimethoxysilane, 3- (dimethoxymethylsilyl) propyl acrylate, 3- (trimethoxysilyl) propyl acrylate, 3- [dimethoxy (methyl) silyl] propyl methacrylate, 3- (trimethoxysilyl) propyl Methacrylate, 3- [dimethoxy (methyl) silyl] propyl methacrylate, 3- (triethoxysilyl) propyl methacrylate, 3- [tris (trimethylsilo) Shi) silyl] propyl methacrylate, and the like.

エポキシ系のシランカップリング剤としては、例えば、3−グリシジルオキシプロピル(ジメトキシ)メチルシラン、3−グリシジルオキシプロピルトリメトキシシラン、ジエトキシ(3−グリシジルオキシプロピル)メチルシラン、トリエトキシ(3−グリシジルオキシプロピル)シラン、2−(3、4−エポキシシクロヘキシル)エチルトリメトキシシラン等を挙げることができる。これらの内、3−グリシジルオキシプロピルトリメトキシシランが好ましい。   Examples of the epoxy-based silane coupling agent include 3-glycidyloxypropyl (dimethoxy) methylsilane, 3-glycidyloxypropyl trimethoxysilane, diethoxy (3-glycidyloxypropyl) methylsilane, and triethoxy (3-glycidyloxypropyl) silane. And 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane. Of these, 3-glycidyloxypropyltrimethoxysilane is preferred.

アミノ系のシランカップリング剤としては、例えば、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−エトキシシリル−N−(1,3−ジメチルブチリデン)プロピルアミン、N−フェニル−3−アミノプロピルトリメトキシシラン、N−(ビニルベンジル)−2−アミノエチル−3−アミノプロピルトリメトキシシラン等を挙げることができる。これらの内、3−アミノプロピルトリエトキシシランが好ましい。   Examples of the amino-based silane coupling agent include N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, and 3-aminopropyl Trimethoxysilane, 3-aminopropyltriethoxysilane, 3-ethoxysilyl-N- (1,3-dimethylbutylidene) propylamine, N-phenyl-3-aminopropyltrimethoxysilane, N- (vinylbenzyl)- Examples thereof include 2-aminoethyl-3-aminopropyltrimethoxysilane. Of these, 3-aminopropyltriethoxysilane is preferred.

アルキル系のシランカップリング剤としては、例えば、メチルトリメトキシシラン、ジメチルジメトキシシラン、トリメチルメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、n−プロピルトリメトキシシラン、イソブチルトリメトキシシラン、イソブチルトリエトキシシラン、n−ヘキシルトリメトキシシラン、n−ヘキシルトリエトキシシラン、シクロヘキシルメチルジメトキシシラン、n−オクチルトリエトキシシラン、n−デシルトリメトキシシラン等を挙げることができる。これらの内、メチルトリエトキシシランが好ましい。   Examples of the alkyl silane coupling agent include, for example, methyltrimethoxysilane, dimethyldimethoxysilane, trimethylmethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, n-propyltrimethoxysilane, isobutyltrimethoxysilane, isobutyltriethoxysilane Examples thereof include silane, n-hexyltrimethoxysilane, n-hexyltriethoxysilane, cyclohexylmethyldimethoxysilane, n-octyltriethoxysilane, and n-decyltrimethoxysilane. Of these, methyltriethoxysilane is preferred.

これらシランカップリング剤の中でも、ビス(3−トリエトキシシリルプロピル)テトラスルフィド、ビス(3−トリエトキシシリルプロピル)ジスルフィド、及び3−[エトキシビス(3,6,9,12,15−ペンタオキサオクタコサン−1−イルオキシ)シリル]−1−プロパンチオールを特に好ましく使用することができる。   Among these silane coupling agents, bis (3-triethoxysilylpropyl) tetrasulfide, bis (3-triethoxysilylpropyl) disulfide, and 3- [ethoxybis (3,6,9,12,15-pentaoxaocta) [Cosan-1-yloxy) silyl] -1-propanethiol can be particularly preferably used.

本発明においては、シランカップリング剤は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。   In the present invention, one type of silane coupling agent may be used alone, or two or more types may be used in combination.

本発明のゴム組成物のシランカップリング剤の配合量は、無機充填材100質量部に対して、0.1〜20質量部が好ましく、3〜15質量部であることが特に好ましい。0.1質量部以上であれば、ゴム組成物の低発熱性の効果をより好適に発現することができ、20質量部以下であれば、ゴム組成物のコストが低減し、経済性が向上するからである。   The compounding amount of the silane coupling agent in the rubber composition of the present invention is preferably 0.1 to 20 parts by mass, and particularly preferably 3 to 15 parts by mass with respect to 100 parts by mass of the inorganic filler. When the amount is 0.1 parts by mass or more, the effect of low heat build-up of the rubber composition can be more suitably exhibited, and when the amount is 20 parts by mass or less, the cost of the rubber composition is reduced and the economic efficiency is improved. Because you do.

また、制動特性を特に重視するケースにおいては、樹脂などを添加してもよい。具体的には、ロジン系樹脂、テルペン系樹脂などの天然樹脂、石油系樹脂、フェノール系樹脂、石炭系樹脂、キシレン系樹脂といった樹脂が挙げられる。ロジン系樹脂としては、ガムロジン、トール油ロジン、ウッドロジン、水素添加ロジン、不均化ロジン、重合ロジン、又は変性ロジンのグリセリン、ペンタエリスリトールエステル等が挙げられる。テルペン系樹脂としては、α−ピネン系、β−ピネン系、ジペンテン系等のテルペン樹脂、芳香族変性テルペン樹脂、テルペンフェノール樹脂、水素添加テルペン樹脂等が挙げられる。   In the case where the braking characteristic is particularly important, a resin or the like may be added. Specific examples include resins such as rosin-based resins, terpene-based resins, and other natural resins, petroleum-based resins, phenol-based resins, coal-based resins, and xylene-based resins. Examples of the rosin resin include gum rosin, tall oil rosin, wood rosin, hydrogenated rosin, disproportionated rosin, polymerized rosin, and modified rosin glycerin and pentaerythritol ester. Examples of the terpene-based resin include terpene resins such as α-pinene-based, β-pinene-based, and dipentene-based resins, aromatic modified terpene resins, terpene phenol resins, and hydrogenated terpene resins.

また、加工性を重視するケースにおいては、加工助剤として、ミネラルオイル、ペトロラタム、パラフィンワックス、石油樹脂、脂肪酸、脂肪酸エステル、脂肪アルコール、金属石けん、脂肪酸アミド、フェノール樹脂、ポリエチレン、ポリブテン、ペプタイザ、再生化剤、オルガノシロキサン等を添加することができる。   In the case of emphasizing processability, as a processing aid, mineral oil, petrolatum, paraffin wax, petroleum resin, fatty acid, fatty acid ester, fatty alcohol, metal soap, fatty acid amide, phenol resin, polyethylene, polybutene, peptizer, Regenerating agents, organosiloxanes and the like can be added.

ゴム組成物の用途
本発明のゴム組成物の用途としては、氷雪路向けタイヤ用トレッドである。
Use of rubber composition The use of the rubber composition of the present invention is a tread for tires for icy and snowy roads.

ゴム組成物の製造方法
本発明のゴム組成物の製造方法としては、特に制限されない。本発明のゴム組成物の製造方法は、例えば、ジエン系ゴム、テトラジン化合物(1)、並びに必要に応じて無機充填材及び/又はカーボンブラックを含む原料成分を混合する工程(I)、並びに工程(I)で得られる混合物、及び加硫剤を混合する工程(II)を含んでいる。本願明細書においては、「混合」に「混練」が含まれる。
Method for Producing Rubber Composition The method for producing the rubber composition of the present invention is not particularly limited. The method for producing a rubber composition of the present invention includes, for example, a step (I) of mixing a diene rubber, a tetrazine compound (1), and a raw material component containing an inorganic filler and / or carbon black as necessary, and a step Step (II) of mixing the mixture obtained in (I) and the vulcanizing agent is included. In the present specification, “mixing” includes “kneading”.

工程(I)
工程(I)は、ジエン系ゴム、テトラジン化合物(1)、並びに必要に応じて無機充填材及び/又はカーボンブラックを含む原料成分を混合する工程であり、加硫剤を配合する前の工程であることを意味している。この工程(I)において、テトラジン化合物(1)がジエン系ゴムの二重結合に反応する。
Step (I)
Step (I) is a step of mixing a diene rubber, a tetrazine compound (1), and raw material components containing an inorganic filler and / or carbon black as necessary, and is a step before compounding a vulcanizing agent. It means there is. In this step (I), the tetrazine compound (1) reacts with the double bond of the diene rubber.

工程(I)では、さらに必要に応じて、上記のその他の配合剤等を配合することができる。   In the step (I), the above-mentioned other compounding agents can be further compounded, if necessary.

工程(I)における混合方法としては、例えば、ジエン系ゴムと、テトラジン化合物(1)と、無機充填材及び/又はカーボンブラックとを含む組成物を混合する方法が挙げられる。この混合方法においては、各成分の全量を一度に混練してもよく、粘度調整等の目的に応じて、各成分を分割投入して混練してもよい。また、ジエン系ゴムと無機充填材及び/又はカーボンブラックとを混練した後、テトラジン化合物(1)を投入して混合するか、ジエン系ゴムとテトラジン化合物(1)とを混合した後、無機充填材及び/又はカーボンブラックを投入して混合してもよい。工程(I)は複数回にわたり繰り返し混合されてもよい。   Examples of the mixing method in the step (I) include a method of mixing a composition containing a diene rubber, a tetrazine compound (1), an inorganic filler and / or carbon black. In this mixing method, the entire amount of each component may be kneaded at a time, or each component may be dividedly charged and kneaded according to the purpose of viscosity adjustment or the like. Further, after kneading the diene rubber and the inorganic filler and / or carbon black, the tetrazine compound (1) is charged and mixed, or the diene rubber and the tetrazine compound (1) are mixed, and then the inorganic filler is mixed. Materials and / or carbon black may be added and mixed. Step (I) may be repeatedly mixed multiple times.

工程(I)におけるゴム組成物を混合する際の温度としては、テトラジン化合物(1)がジエン系ゴムと反応するための熱量が与えられればよく、例えば、ゴム組成物の温度の上限が120〜190℃であることが好ましく、130〜175℃であることがより好ましく、140〜170℃であることがさらに好ましい。   The temperature at which the rubber composition is mixed in the step (I) may be a temperature at which the tetrazine compound (1) reacts with the diene rubber. For example, the upper limit of the temperature of the rubber composition is 120 to The temperature is preferably 190 ° C, more preferably 130 to 175 ° C, and even more preferably 140 to 170 ° C.

工程(I)における混合時間としては、特に制限はなく、例えば、10秒間から20分間であることが好ましく、30秒間から10分間であることがより好ましく、2分間から7分間であることがさらに好ましい。   The mixing time in the step (I) is not particularly limited, and is, for example, preferably from 10 seconds to 20 minutes, more preferably from 30 seconds to 10 minutes, and further preferably from 2 minutes to 7 minutes. preferable.

工程(I)において、テトラジン化合物(1)の配合量としては、特に制限はなく、例えば、ジエン系ゴム100質量部に対して、0.1〜10質量部であり、好ましくは0.25〜5質量部であり、より好ましくは0.5〜2質量部である。   In the step (I), the blending amount of the tetrazine compound (1) is not particularly limited, and is, for example, 0.1 to 10 parts by mass, preferably 0.25 to 5 parts by mass, based on 100 parts by mass of the diene rubber. It is 5 parts by mass, more preferably 0.5 to 2 parts by mass.

工程(I)における無機充填材の配合量としては、ジエン系ゴム100質量部に対して、通常20〜150質量部であり、好ましくは30〜120質量部であり、より好ましくは40〜90質量部である。   The compounding amount of the inorganic filler in the step (I) is usually 20 to 150 parts by mass, preferably 30 to 120 parts by mass, and more preferably 40 to 90 parts by mass with respect to 100 parts by mass of the diene rubber. Department.

工程(I)におけるカーボンブラックの配合量としては、ジエン系ゴム100質量部に対して、通常2〜150質量部であり、好ましくは4〜120質量部であり、より好ましくは6〜100質量部である。   The compounding amount of carbon black in the step (I) is usually 2 to 150 parts by mass, preferably 4 to 120 parts by mass, more preferably 6 to 100 parts by mass with respect to 100 parts by mass of the diene rubber. It is.

なお、工程(I)において、無機充填材及び/又はカーボンブラックは、両成分の合計量で、例えば、ジエン系ゴム100質量部に対して、通常30〜130質量部となるよう各成分の上記配合量の範囲内で適宜調整すればよい。   In the step (I), the amount of the inorganic filler and / or carbon black is usually 30 to 130 parts by mass based on 100 parts by mass of the diene rubber. What is necessary is just to adjust suitably within the range of a compounding quantity.

また、工程(I)における別の混合方法としては、ゴム成分とテトラジン化合物(1)とを混合する工程(I−1)、並びに工程(I−1)で得られた混合物と無機充填材及び/又はカーボンブラックとを混合する工程(I−2)を含む二段階の混合方法を挙げることができる。   Further, as another mixing method in the step (I), a step (I-1) of mixing the rubber component and the tetrazine compound (1), and the mixture obtained in the step (I-1) and an inorganic filler are used. And / or a two-stage mixing method including a step (I-2) of mixing with carbon black.

工程(I−1)において、ジエン系ゴムとテトラジン化合物(1)とを混合する方法としては、ジエン系ゴムが固体の場合は、該ジエン系ゴムとテトラジン化合物(1)とを混練する方法(固体混合方法);ジエン系ゴムが液状(液体)である場合は、該ジエン系ゴムの溶液又は乳液(懸濁液)と、テトラジン化合物(1)とを混合する方法(液状混合方法)等が挙げられる。   In the step (I-1), as a method of mixing the diene rubber and the tetrazine compound (1), when the diene rubber is solid, a method of kneading the diene rubber and the tetrazine compound (1) ( Solid mixing method); when the diene rubber is liquid (liquid), a method of mixing the diene rubber solution or emulsion (suspension) with the tetrazine compound (1) (liquid mixing method) and the like. No.

混合温度としては、テトラジン化合物(1)がジエン系ゴムと反応するための熱量が与えられればよく、例えば、上記固体混合方法の場合は、ゴム組成物の温度の上限が、80〜190℃であることが好ましく、90〜160℃であることがより好ましく、100〜150℃であることがさらに好ましい。液状混合方法の場合は、液状ゴム組成物の温度の上限が、80〜170℃であることが好ましく、90〜160℃であることがより好ましく、100〜150℃であることがさらに好ましい。   The mixing temperature may be any amount of heat required for the tetrazine compound (1) to react with the diene-based rubber. For example, in the case of the solid mixing method, the upper limit of the temperature of the rubber composition is 80 to 190 ° C. The temperature is preferably 90 to 160 ° C, more preferably 100 to 150 ° C. In the case of the liquid mixing method, the upper limit of the temperature of the liquid rubber composition is preferably from 80 to 170 ° C, more preferably from 90 to 160 ° C, and still more preferably from 100 to 150 ° C.

混合時間としては、例えば、固体混合方法の場合は、10秒間から20分間であることが好ましく、30秒間から10分間であることがより好ましく、60秒間から7分間であることがさらに好ましい。液状混合方法の場合は、10秒間から60分間であることが好ましく、30秒間から40分間であることがより好ましく、60秒間から30分間であることがさらに好ましい。液状混合方法による混合反応後は、例えば、減圧下において、混合物中の溶剤を飛ばし(取り除き)、固形のゴム組成物を回収することができる。   For example, in the case of the solid mixing method, the mixing time is preferably from 10 seconds to 20 minutes, more preferably from 30 seconds to 10 minutes, and even more preferably from 60 seconds to 7 minutes. In the case of the liquid mixing method, the time is preferably from 10 seconds to 60 minutes, more preferably from 30 seconds to 40 minutes, even more preferably from 60 seconds to 30 minutes. After the mixing reaction by the liquid mixing method, for example, the solvent in the mixture is removed (removed) under reduced pressure to recover a solid rubber composition.

工程(I−1)におけるテトラジン化合物(1)の配合量としては、特に制限はなく、例えば、ジエン系ゴム100質量部に対して、通常0.1〜10質量部であり、好ましくは0.25〜5質量部であり、より好ましくは0.5〜2質量部である。   The blending amount of the tetrazine compound (1) in the step (I-1) is not particularly limited, and is, for example, usually 0.1 to 10 parts by mass, preferably 0.1 to 10 parts by mass, based on 100 parts by mass of the diene rubber. It is 25 to 5 parts by mass, more preferably 0.5 to 2 parts by mass.

このジエン系ゴムとテトラジン化合物(1)とを混練する工程(I−1)により、ジエン系ゴムの二重結合とテトラジン化合物(1)とが反応して変性ポリマーを形成する。   In the step (I-1) of kneading the diene rubber and the tetrazine compound (1), the double bond of the diene rubber reacts with the tetrazine compound (1) to form a modified polymer.

工程(I−2)における、工程(I−1)で得られた混合物(変性ポリマー)と無機充填材及び/又はカーボンブラックとを混合する際の温度としては、特に制限はなく、例えば、混合物の温度の上限が120〜190℃であることが好ましく、130〜175℃であることがより好ましく、140〜170℃であることがさらに好ましい。   The temperature at which the mixture (modified polymer) obtained in step (I-1) and the inorganic filler and / or carbon black are mixed in step (I-2) is not particularly limited. The upper limit of the temperature is preferably from 120 to 190 ° C, more preferably from 130 to 175 ° C, and even more preferably from 140 to 170 ° C.

工程(I−2)における混合時間としては、特に制限はなく、例えば、10秒間から20分間であることが好ましく、30秒間から10分間であることがより好ましく、2分間から7分間であることがさらに好ましい。   The mixing time in the step (I-2) is not particularly limited, and is, for example, preferably 10 seconds to 20 minutes, more preferably 30 seconds to 10 minutes, and more preferably 2 minutes to 7 minutes. Is more preferred.

工程(I−2)における無機充填材の配合量としては、工程(I−1)で得られた混合物(変性ポリマー)100質量部に対して、通常20〜150質量部であり、好ましくは30〜120質量部であり、より好ましくは40〜90質量部である。   The compounding amount of the inorganic filler in the step (I-2) is usually 20 to 150 parts by mass, preferably 30 to 100 parts by mass of the mixture (modified polymer) obtained in the step (I-1). To 120 parts by mass, more preferably 40 to 90 parts by mass.

工程(I−2)におけるカーボンブラックの配合量としては、工程(I−1)で得られた混合物(変性ポリマー)100質量部に対して、通常2〜150質量部であり、好ましくは4〜120質量部であり、より好ましくは6〜100質量部である。   The amount of the carbon black in the step (I-2) is usually 2 to 150 parts by weight, preferably 4 to 100 parts by weight, based on 100 parts by weight of the mixture (modified polymer) obtained in the step (I-1). It is 120 parts by mass, more preferably 6 to 100 parts by mass.

なお、工程(I−2)において、無機充填材及び/又はカーボンブラックは、両成分の合計量で、例えば、工程(I−1)で得られた混合物(変性ポリマー)100質量部に対して、通常20〜150質量部となるよう各成分の上記配合量の範囲内で適宜調整すればよい。   In the step (I-2), the inorganic filler and / or carbon black may be used in a total amount of both components, for example, based on 100 parts by mass of the mixture (modified polymer) obtained in the step (I-1). The amount of each component may be appropriately adjusted within the above-mentioned range of the compounding amount so as to be usually 20 to 150 parts by mass.

工程(II)
工程(II)は、工程(I)で得られる混合物、及び加硫剤を混合する工程であり、混合の最終段階を意味している。
Step (II)
Step (II) is a step of mixing the mixture obtained in step (I) and the vulcanizing agent, and represents the final stage of mixing.

工程(II)では、さらに必要に応じて、加硫促進剤等を配合することができる。   In the step (II), if necessary, a vulcanization accelerator or the like can be further compounded.

工程(II)の混合温度としては、特に制限はなく、例えば、60〜140℃であることが好ましく、80〜120℃であることがより好ましく、90〜120℃であることがさらに好ましい。   The mixing temperature in the step (II) is not particularly limited, and is, for example, preferably from 60 to 140 ° C, more preferably from 80 to 120 ° C, and still more preferably from 90 to 120 ° C.

混合時間としては、特に制限はなく、例えば、10秒間から20分間であることが好ましく、30秒間から10分間であることがより好ましく、60秒間から5分間であることがさらに好ましい。   The mixing time is not particularly limited, and is, for example, preferably from 10 seconds to 20 minutes, more preferably from 30 seconds to 10 minutes, and still more preferably from 60 seconds to 5 minutes.

工程(I)から工程(II)に進む際には、前段階の工程終了後の温度より、30℃以上低下させてから次の工程(II)へ進むことが好ましい。   When proceeding from step (I) to step (II), it is preferable to lower the temperature after completion of the previous step by 30 ° C. or more before proceeding to the next step (II).

本発明のゴム組成物の製造方法において、通常、ゴム組成物に配合されるステアリン酸、亜鉛華、加硫促進剤、老化防止剤等の各種配合剤を、必要に応じて、工程(I)又は工程(II)において添加することができる。   In the method for producing a rubber composition of the present invention, various compounding agents such as stearic acid, zinc white, a vulcanization accelerator, an antioxidant and the like which are usually compounded in the rubber composition are optionally added to the step (I). Alternatively, it can be added in step (II).

上記の工程(I)及び工程(II)により、ジエン系ゴムにテトラジン化合物(1)を処理して得られた変性ポリマー、並びに無機充填材及び/又はカーボンブラックを含有するゴム組成物を製造することができる。   Through the above steps (I) and (II), a rubber composition containing a modified polymer obtained by treating the diene rubber with the tetrazine compound (1), and an inorganic filler and / or carbon black is produced. be able to.

工程(I)又は(I−1)において形成される変性ポリマーは、次の反応式−1〜4に示すような反応が進行することにより製造される。   The modified polymer formed in the step (I) or (I-1) is produced by a reaction as shown in the following reaction formulas -1 to 4.

Figure 2018169064
Figure 2018169064

[式中、X及びXは前記に同じ。]Wherein X 1 and X 2 are the same as above. ]

反応式−1においては、式(A−1)で表されるジエン系ゴムの二重結合部位とテトラジン化合物(1)との逆電子要請型Aza−Diels−Alder反応によって、式(B−1)で表されるビシクロ環構造を形成する。このビシクロ環構造中の−N=N−部は、脱窒素化が容易に進行し、式(C−1)、(C−2)又は(C−3)で表される六員環構造を形成するが、更に空気中の酸素によって酸化され、式(2−1)で表される六員環構造を有する、変性ポリマーが製造される。   In the reaction formula 1, the reverse bond-requesting Aza-Diels-Alder reaction between the double bond site of the diene rubber represented by the formula (A-1) and the tetrazine compound (1) gives the formula (B-1). ) To form a bicyclo ring structure. The -N = N- part in the bicyclo ring structure has a six-membered ring structure represented by the formula (C-1), (C-2) or (C-3) in which denitrification easily proceeds. The modified polymer is formed but is further oxidized by oxygen in the air to produce a modified polymer having a six-membered ring structure represented by the formula (2-1).

Figure 2018169064
Figure 2018169064

[式中、X及びXは前記に同じ。]Wherein X 1 and X 2 are the same as above. ]

反応式−2においては、反応式−1と同様に、式(A−2)で表されるジエン系ゴムの二重結合部位とテトラジン化合物(1)とから、式(B−2)又は(B−2’)で表されるビシクロ環構造、次いで式(C−4)乃至(C−9)で表される六員環構造を形成した後、式(2−2)又は(2−3)で表される六員環構造を有する、変性ポリマーが製造される。   In Reaction Formula-2, as in Reaction Formula-1, from the double bond site of the diene rubber represented by Formula (A-2) and the tetrazine compound (1), Formula (B-2) or ( After forming a bicyclo ring structure represented by B-2 ′) and then a six-membered ring structure represented by formulas (C-4) to (C-9), the compound represented by formula (2-2) or (2-3) ), A modified polymer having a six-membered ring structure is produced.

Figure 2018169064
Figure 2018169064

[式中、X及びXは前記に同じ。Rはアルキル基又はハロゲン原子を示す。]Wherein X 1 and X 2 are the same as above. R represents an alkyl group or a halogen atom. ]

反応式−3においては、式(A−3)で表されるジエン系ゴムの二重結合部位とテトラジン化合物(1)との逆電子要請型Aza−Diels−Alder反応により、式(B−3)又は(B−3’)で表されるビシクロ環構造を形成した後、脱窒素化により式(2−4)乃至(2−7)で表される六員環構造を有する、変性ポリマーが製造される。なお、式(A−3)で表されるジエン系ゴムの二重結合部位上Rがハロゲン原子である場合は、そのハロゲン原子の脱離が生じることがあり、その場合は、酸化反応により式(2−1)で表される六員環構造を有する、変性ポリマーが製造される。   In the reaction formula-3, the double bond site of the diene rubber represented by the formula (A-3) and the tetrazine compound (1) are subjected to a reverse electron-requesting Aza-Diels-Alder reaction to obtain the compound of the formula (B-3). ) Or a modified polymer having a six-membered ring structure represented by formulas (2-4) to (2-7) by denitrification after forming a bicyclo ring structure represented by (B-3 ′). Manufactured. When R is a halogen atom on the double bond site of the diene rubber represented by the formula (A-3), elimination of the halogen atom may occur. A modified polymer having a six-membered ring structure represented by (2-1) is produced.

Figure 2018169064
Figure 2018169064

[式中、X、X及びRは前記に同じ。]Wherein X 1 , X 2 and R are the same as above. ]

反応式−4においては、反応式−3の反応と同様に、式(A−4)で表されるジエン系ゴムの二重結合部位とテトラジン化合物(1)との反応により、式(B−4)又は、(B−4’)で表されるビシクロ環構造を形成した後、式(2−8)乃至(2−11)で表される六員環構造を有する、変性ポリマーが製造される。   In the reaction formula-4, similarly to the reaction of the reaction formula-3, the reaction between the double bond site of the diene rubber represented by the formula (A-4) and the tetrazine compound (1) causes the reaction of the formula (B- 4) Alternatively, after forming a bicyclo ring structure represented by (B-4 ′), a modified polymer having a six-membered ring structure represented by Formulas (2-8) to (2-11) is produced. You.

以上のように、製造された変性ポリマーは、窒素原子等のヘテロ原子を有しており、このヘテロ原子が無機充填材(特にシリカ)及びカーボンブラックと強く相互作用をすることから、ゴム組成物中の分散性を高め、高い低発熱性を付与することができる。   As described above, the produced modified polymer has a hetero atom such as a nitrogen atom, and the hetero atom strongly interacts with the inorganic filler (particularly silica) and carbon black. The dispersibility in the inside can be enhanced, and high low heat generation can be imparted.

なお、本発明のゴム組成物は、ジエン系ゴムの二重結合とテトラジン化合物(1)とが反応して製造される変性ポリマー、好ましくは、下記式(2−1)〜(2−11)で表される化合物構造から選ばれる少なくとも1つを有する変性ポリマーを含有するゴム組成物を包含する。   The rubber composition of the present invention is a modified polymer produced by reacting a double bond of a diene rubber with a tetrazine compound (1), preferably the following formulas (2-1) to (2-11) And a rubber composition containing a modified polymer having at least one selected from the compound structures represented by

Figure 2018169064
Figure 2018169064

[式中、X及びX及びRは前記に同じ。][Wherein, X 1, X 2 and R are the same as above. ]

2.スタッドレスタイヤ
本発明のタイヤは、上記本発明のゴム組成物を用いて作製されたタイヤである。
2. Studless tire The tire of the present invention is a tire produced using the rubber composition of the present invention.

本発明のタイヤとしては、例えば、空気入りタイヤ(ラジアルタイヤ、バイアスタイヤ等)、ソリッドタイヤ等のタイヤが挙げられる。   Examples of the tire of the present invention include tires such as pneumatic tires (radial tires, bias tires, etc.) and solid tires.

タイヤの用途としては、特に制限はなく、例えば、乗用車用タイヤ、高荷重用タイヤ、モーターサイクル(自動二輪車)用タイヤ、スタッドレスタイヤ等が挙げられ、中でも、スタッドレスタイヤに好適に使用できる。   The application of the tire is not particularly limited, and examples thereof include a tire for a passenger car, a tire for a high load, a tire for a motorcycle (motorcycle), a studless tire, and the like. Among them, the tire can be suitably used for a studless tire.

本発明のタイヤの形状、構造、大きさ及び材質としては、特に制限はなく、目的に応じて適宜選択することができる。   The shape, structure, size, and material of the tire of the present invention are not particularly limited, and can be appropriately selected depending on the purpose.

本発明のタイヤにおいて、上記ゴム組成物は、特にトレッド部に用いられる。   In the tire of the present invention, the rubber composition is used particularly for a tread portion.

中でも、空気入りスタッドレスタイヤのタイヤトレッド部を当該ゴム組成物で形成するのが好ましい態様の1つとして挙げられる。   Above all, one of the preferable embodiments is to form the tire tread portion of the pneumatic studless tire with the rubber composition.

タイヤトレッド部とは、トレッドパターンを有し、路面と直接接する部分で、カーカスを保護するとともに摩耗及び外傷を防ぐタイヤの外皮部分であり、タイヤの接地部を構成するキャップトレッド及び/又はキャップトレッドの内側に配設されるベーストレッドをいう。   The tire tread portion has a tread pattern, is a portion directly in contact with a road surface, is a skin portion of the tire that protects a carcass and prevents abrasion and damage, and is a cap tread and / or a cap tread that constitutes a ground contact portion of the tire. Refers to the base tread that is arranged inside.

本発明のタイヤは、タイヤの分野において、これまでに知られている方法に従って製造することができる。   The tire of the present invention can be manufactured according to a method known hitherto in the field of tires.

また、タイヤに充填する気体としては、通常の又は酸素分圧を調整した空気;窒素、アルゴン、ヘリウム等の不活性ガスを用いることができる。   As the gas to be charged into the tire, there can be used normal air or air whose oxygen partial pressure is adjusted; an inert gas such as nitrogen, argon, or helium.

以下、製造例及び実施例を示して、本発明について具体的に説明する。ただし、実施例はあくまで一例であって、本発明は、実施例に限定されない。   Hereinafter, the present invention will be specifically described with reference to Production Examples and Examples. However, the embodiment is merely an example, and the present invention is not limited to the embodiment.

製造例1:3,6−ビス(3−ピリジル)−1,2,4,5−テトラジン(a)の製造
200mL四つ口フラスコに、3−シアノピリジン24g(0.23モル)、水加ヒドラジン15g(1.3当量)、及びメタノール48mLを加え、室温で撹拌した。次いで、この混合物に、硫黄3.6g(15重量%)を加え、還流管を装着して外温70℃にて一晩加熱撹拌した。この反応液を氷冷し、結晶を濾過して少量の冷メタノールで洗浄した。粗結晶を減圧下乾燥し、橙色のジヒドロテトラジン粗結晶19gを得た。
Production Example 1: Production of 3,6-bis (3-pyridyl) -1,2,4,5-tetrazine (a) In a 200 mL four-neck flask, 24 g (0.23 mol) of 3-cyanopyridine and water were added. 15 g (1.3 equivalents) of hydrazine and 48 mL of methanol were added, and the mixture was stirred at room temperature. Next, 3.6 g (15% by weight) of sulfur was added to the mixture, and the mixture was heated and stirred at an external temperature of 70 ° C. overnight with a reflux tube attached. The reaction was cooled on ice and the crystals were filtered and washed with a small amount of cold methanol. The crude crystals were dried under reduced pressure to obtain 19 g of orange dihydrotetrazine crude crystals.

得られた粗結晶17.8gを、酢酸178g(40当量)に溶解し、硫黄を濾去した。1L四つ口ナスフラスコに、ジヒドロテトラジン酢酸溶液、及び蒸留水178mLを加え、氷冷下撹拌した。亜硝酸ナトリウム15.5g(3当量)を蒸留水35mLに溶解し、反応液に1時間程度かけて滴下し、室温で一晩撹拌した。析出した結晶を濾過し、結晶を10%重層水で中和し粗結晶とした。該粗結晶をシリカゲルカラム(酢酸エチル)にて精製し、表題のテトラジン化合物(a)8.4g(赤紫色、針状結晶)を得た。
融点:200℃、
H−NMR(300MHz,CDCl,δppm):
7.59(ddd,J =0.9,5.1,7.8 Hz,2H),8.89−8.96(m,4H),9.88(dd,J =0.9,2.4Hz,2H)
17.8 g of the obtained crude crystals were dissolved in 178 g (40 equivalents) of acetic acid, and sulfur was removed by filtration. The dihydrotetrazine acetic acid solution and 178 mL of distilled water were added to a 1 L four-necked eggplant flask, and the mixture was stirred under ice cooling. 15.5 g (3 equivalents) of sodium nitrite was dissolved in 35 mL of distilled water, added dropwise to the reaction solution over about 1 hour, and stirred at room temperature overnight. The precipitated crystals were filtered, and the crystals were neutralized with 10% aqueous layer water to obtain crude crystals. The crude crystals were purified by a silica gel column (ethyl acetate) to obtain 8.4 g (magenta, needle-like crystals) of the title tetrazine compound (a).
Melting point: 200 ° C,
1 H-NMR (300 MHz, CDCl 3 , δ ppm):
7.59 (ddd, J = 0.9, 5.1, 7.8 Hz, 2H), 8.89-8.96 (m, 4H), 9.88 (dd, J = 0.9, 2 .4Hz, 2H)

実施例1〜6
下記表1の工程(I)に記載の各成分をその割合(質量部)で混合し、バンバリーミキサーで混合物の最高温度が160℃になるように回転数を調整しながら5分間混練した。混合物の温度が80℃以下になるまで養生させた後、表1の工程(II)に記載の各成分をその割合(質量部)で投入し、混合物の最高温度が110℃以下になるよう調整しながら混練して、各ゴム組成物を製造した。
Examples 1 to 6
The components described in the step (I) in Table 1 below were mixed in the proportions (parts by mass) and kneaded for 5 minutes with a Banbury mixer while adjusting the rotation speed so that the maximum temperature of the mixture was 160 ° C. After curing the mixture until the temperature of the mixture becomes 80 ° C. or lower, each component described in the step (II) in Table 1 is added in the ratio (parts by mass), and the mixture is adjusted so that the maximum temperature of the mixture is 110 ° C. or lower. While kneading, each rubber composition was produced.

低発熱性(tanδ指数)試験
実施例1〜6で作製したゴム組成物(試験組成物)について、粘弾性測定装置(Metravib社製)を使用し、温度40℃、動歪5%、周波数15Hzでtanδを測定した。
Low heat build-up (tan δ index) Test For the rubber compositions (test compositions) produced in Examples 1 to 6, using a viscoelasticity measuring device (manufactured by Metravib), temperature 40 ° C., dynamic strain 5%, frequency 15 Hz Was measured for tan δ.

なお、テトラジン化合物(1)を添加しない以外は、各実施例と同じ配合内容及び同じ製法でゴム組成物(リファレンス)をそれぞれ作製し、下記式に基づいて、低発熱性指数を算出した。   Except that the tetrazine compound (1) was not added, a rubber composition (reference) was produced by the same blending content and the same production method as in each example, and a low heat build-up index was calculated based on the following formula.

なお、低発熱性指数の値が大きい程、低発熱性であり、ヒステリシスロスが小さいことを示す。また、それぞれのリファレンスの加硫ゴム組成物の低発熱性は100とする。   The larger the value of the low heat buildup index, the lower the heat buildup, and the smaller the hysteresis loss. The low heat build-up of the vulcanized rubber composition of each reference is set to 100.

結果を表1に示した。   The results are shown in Table 1.

式:低発熱性指数={(リファレンスのtanδ)/(試験組成物のtanδ)}×100 Formula: Low exothermic index = {(tan δ of reference) / (tan δ of test composition)} × 100

氷雪性能試験
実施例1〜6で作製したゴム組成物(試験組成物)及びリファレンスについて、粘弾性測定装置(Metravib社製)を使用し、温度−20℃、動歪1%、周波数10Hzで貯蔵弾性率を測定した。
Ice and snow performance test The rubber compositions (test compositions) and references prepared in Examples 1 to 6 were stored at a temperature of −20 ° C., a dynamic strain of 1%, and a frequency of 10 Hz using a viscoelasticity measuring device (manufactured by Metravib). The elastic modulus was measured.

式:氷雪性能指数={(リファレンスの貯蔵弾性率)/(試験組成物の貯蔵弾性率)}×100 Formula: Ice snow performance index = {(storage elastic modulus of reference) / (storage elastic modulus of test composition)} x 100

Figure 2018169064
Figure 2018169064

[表中の記号の説明 ]
表1において使用する原料を以下に示す。
※1: 旭化成株式会社製、商品名「タフデン2000R」
※2: 宇部興産株式会社製、商品名「BR150B」
※3: 中化国際社製、商品名「RSS♯3」
※4: 東ソー・シリカ株式会社製、商品名「Nipsil(銘柄AQ)」
※5: Evonik Industries AG製、商品名「Si69」
※6: 東海カーボン株式会社製、商品名「シースト3」
※7: Rhein Chemie Rheinau GmbH製、商品名「Antilux 111」
※8: 川口化学工業株式会社製、商品名「Antage 6C」
※9: 堺化学工業株式会社製、酸化亜鉛 銘柄「1種」
※10: Sichuan Tianyu Grease Chemical Co., Ltd. 製
※11: JX日鉱日石エネルギー株式会社製、商品名「X−140(アロマオイル)」
※12: 3,6−ビス(3−ピリジル)−1,2,4,5−テトラジン(製造例1で製造した化合物)
※13: 3,6−ビス(2−ピリジル)−1,2,4,5−テトラジン、東京化成工業株式会社製
※14: 3,6−ビス(4−ピリジル)−1,2,4,5−テトラジン、東京化成工業株式会社製
※15: 細井化学工業株式会社製、商品名「HK200−5」
※16: 大内新興化学工業株式会社製、商品名「ノクセラーD」
※17: 大内新興化学工業株式会社製、商品名「ノクセラーCZ−G」
[Explanation of symbols in table]
The raw materials used in Table 1 are shown below.
* 1: "Tuffden 2000R" manufactured by Asahi Kasei Corporation
* 2: Product name "BR150B" manufactured by Ube Industries, Ltd.
* 3: Made by Chuka International Co., Ltd., product name "RSS $ 3"
* 4: Product name “Nipsil (brand AQ)” manufactured by Tosoh Silica Corporation
* 5: Product name “Si69” manufactured by Evonik Industries AG
* 6: Tokai Carbon Co., Ltd., product name "Seast 3"
* 7: Product name “Antilux 111” manufactured by Rhein Chemie Rheinau GmbH
* 8: Product name “Antage 6C” manufactured by Kawaguchi Chemical Industry Co., Ltd.
* 9: Zinc oxide brand “1” made by Sakai Chemical Industry Co., Ltd.
* 10: Made by Sichuan Tianyu Grease Chemical Co., Ltd. * 11: Made by JX Nippon Oil & Energy Corporation, trade name "X-140 (Aroma Oil)"
* 12: 3,6-bis (3-pyridyl) -1,2,4,5-tetrazine (compound produced in Production Example 1)
* 13: 3,6-bis (2-pyridyl) -1,2,4,5-tetrazine, manufactured by Tokyo Chemical Industry Co., Ltd. * 14: 3,6-bis (4-pyridyl) -1,2,4 5-Tetrazine, manufactured by Tokyo Chemical Industry Co., Ltd. * 15: "HK200-5" manufactured by Hosoi Chemical Industry Co., Ltd.
* 16: Made by Ouchi Shinko Chemical Co., Ltd., trade name "Noxeller D"
* 17: Made by Ouchi Shinko Chemical Co., Ltd., trade name “Noxeller CZ-G”

本発明の氷雪路向きタイヤ用ゴム組成物はスノー性能が維持されるとともに、低発熱性に一段と優れているので、該ゴム組成物を用いれば、スタッドレスタイヤのトレッド部(タイヤトレッド)を製造することができる。   Since the rubber composition for tires on ice and snow roads of the present invention maintains snow performance and is much more excellent in low heat build-up, the use of the rubber composition produces a tread portion (tire tread) of a studless tire. be able to.

Claims (7)

ジエン系ゴム、及び下記一般式(1):
Figure 2018169064
[式中、X及びXは、置換基を有していてもよい複素環基を示す。]
で表されるテトラジン化合物又はその塩を含有する氷雪路向けタイヤ用ゴム組成物であって、
ジエン系ゴム100質量部に対して、前記テトラジン化合物又はその塩を0.1〜10質量部含む、ゴム組成物。
Diene rubber and the following general formula (1):
Figure 2018169064
[In the formula, X 1 and X 2 represent a heterocyclic group which may have a substituent. ]
A rubber composition for a tire for ice and snow roads containing a tetrazine compound or a salt thereof represented by
A rubber composition comprising 0.1 to 10 parts by mass of the tetrazine compound or a salt thereof with respect to 100 parts by mass of a diene rubber.
さらに無機充填材及び/又はカーボンブラックを含む請求項1に記載のゴム組成物。 The rubber composition according to claim 1, further comprising an inorganic filler and / or carbon black. ジエン系ゴム100質量部に対して、無機充填材及び/又はカーボンブラックを合計量で30〜130質量部含む請求項2に記載のゴム組成物。 The rubber composition according to claim 2, comprising 30 to 130 parts by mass of the inorganic filler and / or carbon black in a total amount based on 100 parts by mass of the diene rubber. 無機充填材がシリカである、請求項2又は3に記載のゴム組成物。 The rubber composition according to claim 2 or 3, wherein the inorganic filler is silica. トレッド部に用いられる請求項1〜4のいずれか一項に記載のゴム組成物。 The rubber composition according to any one of claims 1 to 4, which is used for a tread portion. 請求項1〜4のいずれか一項に記載のゴム組成物を用いて作製された氷雪路向けタイヤ用トレッド。 A tread for a tire for icy and snowy roads, produced using the rubber composition according to any one of claims 1 to 4. 請求項6に記載の氷雪路向けタイヤ用トレッドを用いて作製されたスタッドレスタイヤ。 A studless tire manufactured using the tread for an ice-snow road according to claim 6.
JP2019506309A 2017-03-17 2018-03-16 Rubber composition for tires for ice and snow roads and studless tires Active JP6708783B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017052355 2017-03-17
JP2017052355 2017-03-17
PCT/JP2018/010521 WO2018169064A1 (en) 2017-03-17 2018-03-16 Rubber composition for tire for icy and snowy roads, and studless tire

Publications (2)

Publication Number Publication Date
JPWO2018169064A1 true JPWO2018169064A1 (en) 2019-12-26
JP6708783B2 JP6708783B2 (en) 2020-06-10

Family

ID=63523672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019506309A Active JP6708783B2 (en) 2017-03-17 2018-03-16 Rubber composition for tires for ice and snow roads and studless tires

Country Status (2)

Country Link
JP (1) JP6708783B2 (en)
WO (1) WO2018169064A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3597696B1 (en) * 2017-04-14 2023-05-17 Sumitomo Rubber Industries, Ltd. Rubber composition for tires and pneumatic tire
JP7120151B2 (en) * 2019-05-15 2022-08-17 横浜ゴム株式会社 Rubber composition for studless tire and studless tire using the same

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4947439A (en) * 1972-08-25 1974-05-08
JP2015093928A (en) * 2013-11-12 2015-05-18 東洋ゴム工業株式会社 Inner liner rubber composition and pneumatic tire
WO2017057758A1 (en) * 2015-09-30 2017-04-06 大塚化学株式会社 Additive for imparting low heat build-up to rubber component
JP2018087318A (en) * 2016-11-24 2018-06-07 大塚化学株式会社 Additive to impart abrasion resistance and braking properties to rubber constituent, rubber composition, and tire
WO2018164248A1 (en) * 2017-03-10 2018-09-13 大塚化学株式会社 Reaction product and rubber composition
WO2018164245A1 (en) * 2017-03-10 2018-09-13 大塚化学株式会社 Rubber composition and tire
WO2018164249A1 (en) * 2017-03-10 2018-09-13 大塚化学株式会社 Rubber composition and tire
WO2018164247A1 (en) * 2017-03-10 2018-09-13 大塚化学株式会社 Rubber composition and tire
WO2018164246A1 (en) * 2017-03-10 2018-09-13 大塚化学株式会社 Rubber composition and tire
JP2018150439A (en) * 2017-03-10 2018-09-27 大塚化学株式会社 Rubber composition excellent in tear strength
JP2018150438A (en) * 2017-03-10 2018-09-27 大塚化学株式会社 Rubber composition and tire
JP2018150436A (en) * 2017-03-10 2018-09-27 大塚化学株式会社 Rubber composition and tire
JP2018150437A (en) * 2017-03-10 2018-09-27 大塚化学株式会社 Method of producing rubber composition
JP2018154743A (en) * 2017-03-17 2018-10-04 大塚化学株式会社 Viscosity-reducing agent, rubber having viscosity reduced, and production method thereof

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4947439A (en) * 1972-08-25 1974-05-08
JP2015093928A (en) * 2013-11-12 2015-05-18 東洋ゴム工業株式会社 Inner liner rubber composition and pneumatic tire
WO2017057758A1 (en) * 2015-09-30 2017-04-06 大塚化学株式会社 Additive for imparting low heat build-up to rubber component
JP2018087318A (en) * 2016-11-24 2018-06-07 大塚化学株式会社 Additive to impart abrasion resistance and braking properties to rubber constituent, rubber composition, and tire
WO2018164248A1 (en) * 2017-03-10 2018-09-13 大塚化学株式会社 Reaction product and rubber composition
WO2018164245A1 (en) * 2017-03-10 2018-09-13 大塚化学株式会社 Rubber composition and tire
WO2018164249A1 (en) * 2017-03-10 2018-09-13 大塚化学株式会社 Rubber composition and tire
WO2018164247A1 (en) * 2017-03-10 2018-09-13 大塚化学株式会社 Rubber composition and tire
WO2018164246A1 (en) * 2017-03-10 2018-09-13 大塚化学株式会社 Rubber composition and tire
JP2018150439A (en) * 2017-03-10 2018-09-27 大塚化学株式会社 Rubber composition excellent in tear strength
JP2018150438A (en) * 2017-03-10 2018-09-27 大塚化学株式会社 Rubber composition and tire
JP2018150436A (en) * 2017-03-10 2018-09-27 大塚化学株式会社 Rubber composition and tire
JP2018150437A (en) * 2017-03-10 2018-09-27 大塚化学株式会社 Method of producing rubber composition
JP2018154743A (en) * 2017-03-17 2018-10-04 大塚化学株式会社 Viscosity-reducing agent, rubber having viscosity reduced, and production method thereof

Also Published As

Publication number Publication date
JP6708783B2 (en) 2020-06-10
WO2018169064A1 (en) 2018-09-20

Similar Documents

Publication Publication Date Title
KR102592174B1 (en) Additives to provide low heat generation properties to rubber components
JP6701435B2 (en) Rubber composition and tire
JP6701433B2 (en) Rubber composition and tire
JP6420021B1 (en) Reaction product and rubber composition
JP6808546B2 (en) Method for manufacturing rubber composition
JP6896574B2 (en) Additives, rubber compositions, and tires for imparting wear resistance and braking properties to rubber components
JP6808545B2 (en) Rubber composition and tires
JP6812289B2 (en) Rubber composition and tires
JP6701434B2 (en) Rubber composition and tire
JP6840578B2 (en) Rubber composition and tires
JP6708783B2 (en) Rubber composition for tires for ice and snow roads and studless tires
JP6701432B2 (en) Rubber composition and tire
JP6921596B2 (en) Additives for rubber, rubber compositions, and tires using them
JP6812292B2 (en) Hypothermalizers, modified polymers, rubber compositions, and tires
JPWO2018174118A1 (en) Rubber composition for vibration-proof rubber and vibration-proof rubber
JP6873743B2 (en) Additives for rubber, rubber compositions, and tires using them

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191029

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20191029

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20191113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200521

R150 Certificate of patent or registration of utility model

Ref document number: 6708783

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250