JPWO2018168697A1 - ハンドドライヤ - Google Patents

ハンドドライヤ Download PDF

Info

Publication number
JPWO2018168697A1
JPWO2018168697A1 JP2019505969A JP2019505969A JPWO2018168697A1 JP WO2018168697 A1 JPWO2018168697 A1 JP WO2018168697A1 JP 2019505969 A JP2019505969 A JP 2019505969A JP 2019505969 A JP2019505969 A JP 2019505969A JP WO2018168697 A1 JPWO2018168697 A1 JP WO2018168697A1
Authority
JP
Japan
Prior art keywords
film
synthetic polymer
hand
polymer film
nitrogen element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019505969A
Other languages
English (en)
Inventor
美穂 山田
美穂 山田
箕浦 潔
潔 箕浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Publication of JPWO2018168697A1 publication Critical patent/JPWO2018168697A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47KSANITARY EQUIPMENT NOT OTHERWISE PROVIDED FOR; TOILET ACCESSORIES
    • A47K10/00Body-drying implements; Toilet paper; Holders therefor
    • A47K10/48Drying by means of hot air
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines

Abstract

ハンドドライヤ(200A)は、手挿入空間(62A)を画定する手挿入部(64A)を有する本体(60A)と、手挿入空間(62A)に挿入された手に向かって空気流を送る少なくとも1つのノズル部(66A)と、手挿入部(64A)の手挿入空間(62A)側の内面に設けられた合成高分子膜(72A)とを有する。合成高分子膜(72A)は、複数の凸部を有する表面を備え、合成高分子膜(72A)の法線方向から見たとき、複数の凸部の2次元的な大きさは20nm超500nm未満の範囲内にあり、表面が殺菌効果を有し、1gに含まれるエチレンオキサイド単位のモル数は0.0020超である。

Description

本発明は、高速風式手指用乾燥機、いわゆるジェットタイプのハンドドライヤ(以下、単に、「ハンドドライヤ」という。)に関し、特に、手挿入部を有するハンドドライヤに関する。
ハンドドライヤは、ハンドタオルに比べて、清潔感に優れ、あるいは、維持コストが安い、環境負荷が小さい等の理由から、トイレ、食品関連施設、医療関係施設等で広く用いられている。ハンドドライヤには、空気流を手に向かって一方向から送るシングルタイプ(片面タイプ)と、手の両側から空気流を送るダブルタイプ(両面タイプ)がある。
ハンドドライヤは、手から吹き飛ばされた水滴が周囲に飛散するのを防止するために、手を差し入れる空間(「手挿入空間」ということにする。)を画定する手挿入部が設けられている。シングルタイプのハンドドライヤの手挿入部は、前面(利用者が相対する面)に開口を有し、開口の上部に設けられたノズルから、手挿入部の奥に向かって、空気流を噴出するように構成されている。ダブルタイプのハンドドライヤの手挿入部は、上部(および側面)に開口を有し、手装入空間を間に介して対面するように、開口の上部に設けられたノズルから、手挿入空間に差し込まれた手の両側(手のひら側と手の甲側)に、手挿入空間の下に向かって空気流を噴出するように構成されている。また、手挿入部の底部には、水を集めるトレイさらにはドレインが設けられているものもある。
特開平11−18999号公報 特開2015−223456号公報 特開2014−057759号公報 特許第5788128号公報 特許第4265729号公報 特開2009−166502号公報 国際公開第2011/125486号 国際公開第2013/183576号
食品営業施設におけるハンドドライヤー(高速風式手指用乾燥機)の実態調査、東京都福祉保健局、http://www.fukushihoken.metro.tokyo.jp/shokuhin/anzen_info/handdry/tyousa.html Ivanova, E. P. et al., "Bactericidal activity of black silicon", Nat. Commun. 4:2838 doi: 10.1038/ncomms3838(2013).
一方で、ハンドドライヤの手挿入部に付着した水や、トレイやドレインに溜まった水が、二次汚染の原因となることが懸念されている(非特許文献1)。
トレイやドレインに溜まった水に対しては、例えば、特許文献1には、トレイの底に高吸水性樹脂と抗菌剤を配置することによって、腐敗臭を抑制できると記載されている。特許文献2には、ノズルから吹き出され、ハンドドライヤの手挿入部の内壁(底を含む)に衝突した空気が開口から周囲に漏洩するのを抑えることができるハンドドライヤが開示されている。また、特許文献3には、手挿入部の内面に、シリコーン系もしくはフッ素系等の撥水性コーティングを施す、酸化チタン等の親水性を有するコーティングを施す、または、抗菌剤を含浸させることによって、内面に汚れが付着するのを軽減したり、細菌が繁殖するのを低減できると記載されている。
しかしながら、ハンドドライヤの手挿入部の内壁(底を含む)に付着していた水が、空気流によって飛散し、手に付着することによる二次汚染(感染)を十分に抑制・防止することができないことが懸念される。
本発明は、上記の課題を解決するためになされたものであり、その主な目的は、ハンドドライヤの手挿入部における水滴の飛散による二次汚染を従来よりも抑制することが可能なハンドドライヤを提供することにある。
本発明のある実施形態によるハンドドライヤは、手挿入空間を画定する手挿入部を有する本体と、前記手挿入空間に挿入された手に向かって空気流を送る少なくとも1つのノズル部と、前記手挿入部の前記手挿入空間側の内面に設けられた合成高分子膜であって、複数の凸部を備える表面を有し、前記合成高分子膜の法線方向から見たとき、前記複数の凸部の2次元的な大きさは20nm超500nm未満の範囲内にあり、前記表面が殺菌効果を有し、1gに含まれるエチレンオキサイド単位のモル数は0.0020超である合成高分子膜とを有する。
ある実施形態において、前記合成高分子膜において、第1級アミンを形成する窒素元素および第2級アミンを形成する窒素元素の合計の濃度は0.29at%以上である。
ある実施形態において、前記合成高分子膜1gに含まれるエチレンオキサイド単位のモル数は0.0070以上である。
ある実施形態において、前記合成高分子膜において、第1級アミンを形成する窒素元素および第2級アミンを形成する窒素元素の合計の濃度は、0.33at%以上である。
ある実施形態において、前記合成高分子膜は、ウレタンアクリレート構造を含む。
ある実施形態において、前記ウレタンアクリレート構造は、エチレンオキサイド単位の繰り返し構造を含む。前記繰り返し構造の繰り返し数をNとすると、Nは2以上である。
ある実施形態において、前記ウレタンアクリレート構造は、3官能以上のウレタンアクリレートモノマーの重合体を含む。
ある実施形態において、前記ウレタンアクリレートモノマーは、窒素元素を含む複素環を含む。
本発明の実施形態によると、ハンドドライヤの手挿入部における水滴の飛散による二次汚染を従来よりも抑制することが可能なハンドドライヤが提供される。
(a)および(b)は、それぞれ本発明の実施形態による合成高分子膜34Aおよび34Bの模式的な断面図である。 (a)〜(e)は、モスアイ用型100Aの製造方法およびモスアイ用型100Aの構造を説明するための図である。 (a)〜(c)は、モスアイ用型100Bの製造方法およびモスアイ用型100Bの構造を説明するための図である。 (a)はアルミニウム基材の表面のSEM像を示し、(b)はアルミニウム膜の表面のSEM像を示し、(c)はアルミニウム膜の断面のSEM像を示す。 (a)は型のポーラスアルミナ層の模式的な平面図であり、(b)は模式的な断面図であり、(c)は試作した型のSEM像を示す図である。 モスアイ用型100を用いた合成高分子膜の製造方法を説明するための図である。 (a)および(b)は、モスアイ構造を有する表面で死に至った緑膿菌をSEM(走査型電子顕微鏡)で観察したSEM像を示す図である。 殺菌性の評価結果を示すグラフである。 殺菌性の評価結果を示すグラフである。 殺菌性の評価結果を示すグラフである。 殺菌性の評価結果を示すグラフである。 殺菌性(黄色ブドウ球菌)の評価結果を示すグラフである。 殺菌性(大腸菌)の評価結果を示すグラフである。 (a)および(b)は、本発明の実施形態によるハンドドライヤ200Aおよび200Bの模式的な斜視図である。
以下、図面を参照して、本発明の実施形態による、表面が殺菌効果を有する合成高分子膜および合成高分子膜の表面を用いた殺菌方法、さらに、表面が殺菌効果を有する合成高分子膜を備えたハンドドライヤを説明する。
なお、本明細書においては、以下の用語を用いることにする。
「殺菌(sterilization(microbicidal))」は、物体や液体といった対象物や、限られた空間に含まれる、増殖可能な微生物(microorganism)の数を、有効数減少させることをいう。
「微生物」は、ウィルス、細菌(バクテリア)、真菌(カビ)を包含する。
「抗菌(antimicrobial)」は、微生物の繁殖を抑制・防止することを広く含み、微生物に起因する黒ずみやぬめりを抑制することを含む。
本出願人は、陽極酸化ポーラスアルミナ層を用いて、モスアイ構造を有する反射防止膜(反射防止表面)を製造する方法を開発した。陽極酸化ポーラスアルミナ層を用いることによって、反転されたモスアイ構造を有する型を高い量産性で製造することができる。
本発明者は、上記の技術を応用することによって、表面が殺菌効果を有する合成高分子膜を開発するに至った(例えば、特許公報1(特許第5788128号)や国際公開公報2(国際公開第2016/080245号)参照)。参考のために、上記特許公報1および国際公開公報2の開示内容の全てを本明細書に援用する。
図1(a)および(b)を参照して、本発明の実施形態による合成高分子膜の構造を説明する。
図1(a)および(b)は、本発明の実施形態による合成高分子膜34Aおよび34Bの模式的な断面図をそれぞれ示す。ここで例示する合成高分子膜34Aおよび34Bは、いずれもベースフィルム42Aおよび42B上にそれぞれ形成されているが、もちろんこれに限られない。合成高分子膜34Aおよび34Bは、任意の物体の表面に直接形成され得る。
図1(a)に示すフィルム50Aは、ベースフィルム42Aと、ベースフィルム42A上に形成された合成高分子膜34Aとを有している。合成高分子膜34Aは、表面に複数の凸部34Apを有しており、複数の凸部34Apは、モスアイ構造を構成している。合成高分子膜34Aの法線方向から見たとき、凸部34Apの2次元的な大きさDpは20nm超500nm未満の範囲内にある。ここで、凸部34Apの「2次元的な大きさ」とは、表面の法線方向から見たときの凸部34Apの面積円相当径を指す。例えば、凸部34Apが円錐形の場合、凸部34Apの2次元的な大きさは、円錐の底面の直径に相当する。また、凸部34Apの典型的な隣接間距離Dintは20nm超1000nm以下である。図1(a)に例示するように、凸部34Apが密に配列されており、隣接する凸部34Ap間に間隙が存在しない(例えば、円錐の底面が部分的に重なる)場合には、凸部34Apの2次元的な大きさDpは隣接間距離Dintと等しい。凸部34Apの典型的な高さDhは、50nm以上500nm未満である。後述するように、凸部34Apの高さDhが150nm以下であっても殺菌作用を発現する。合成高分子膜34Aの厚さtsに特に制限はなく、凸部34Apの高さDhより大きければよい。
図1(a)に示した合成高分子膜34Aは、特許文献5〜8に記載されている反射防止膜と同様のモスアイ構造を有している。反射防止機能を発現させるためには、表面に平坦な部分がなく、凸部34Apが密に配列されていることが好ましい。また、凸部34Apは、空気側からベースフィルム42A側に向かって、断面積(入射光線に直交する面に平行な断面、例えばベースフィルム42Aの面に平行な断面)が増加する形状、例えば、円錐形であることが好ましい。また、光の干渉を抑制するために、凸部34Apを規則性がないように、好ましくはランダムに、配列することが好ましい。しかしながら、合成高分子膜34Aの殺菌作用をもっぱら利用する場合には、これらの特徴は必要ではない。例えば、凸部34Apは密に配列される必要はなく、また、規則的に配列されてもよい。ただし、凸部34Apの形状や配置は、微生物に効果的に作用するように選択されることが好ましい。
図1(b)に示すフィルム50Bは、ベースフィルム42Bと、ベースフィルム42B上に形成された合成高分子膜34Bとを有している。合成高分子膜34Bは、表面に複数の凸部34Bpを有しており、複数の凸部34Bpは、モスアイ構造を構成している。フィルム50Bは、合成高分子膜34Bが有する凸部34Bpの構造が、フィルム50Aの合成高分子膜34Aが有する凸部34Apの構造と異なっている。フィルム50Aと共通の特徴については説明を省略することがある。
合成高分子膜34Bの法線方向から見たとき、凸部34Bpの2次元的な大きさDpは20nm超500nm未満の範囲内にある。また、凸部34Bpの典型的な隣接間距離Dintは20nm超1000nm以下であり、かつ、Dp<Dintである。すなわち、合成高分子膜34Bでは、隣接する凸部34Bpの間に平坦部が存在する。凸部34Bpは、空気側に円錐形の部分を有する円柱状であり、凸部34Bpの典型的な高さDhは、50nm以上500nm未満である。また、凸部34Bpは、規則的に配列されていてもよいし、不規則に配列されていてもよい。凸部34Bpが規則的に配列されている場合、Dintは配列の周期をも表すことになる。このことは、当然ながら、合成高分子膜34Aについても同じである。
なお、本明細書において、「モスアイ構造」は、図1(a)に示した合成高分子膜34Aの凸部34Apの様に、断面積(膜面に平行な断面)が増加する形状の凸部で構成される、優れた反射機能を有するナノ表面構造だけでなく、図1(b)に示した合成高分子膜34Bの凸部34Bpの様に、断面積(膜面に平行な断面)が一定の部分を有する凸部で構成されるナノ表面構造も包含する。なお、微生物の細胞壁および/または細胞膜を破壊するためには、円錐形の部分を有することが好ましい。ただし、円錐形の先端は、ナノ表面構造である必要は必ずしもなく、セミの羽が有するナノ表面構造を構成するナノピラー程度の丸み(約60nm)を有していてもよい。
図1(a)および(b)に例示したようなモスアイ構造を表面に形成するための型(以下、「モスアイ用型」という。)は、モスアイ構造を反転させた、反転されたモスアイ構造を有する。反転されたモスアイ構造を有する陽極酸化ポーラスアルミナ層をそのまま型として利用すると、モスアイ構造を安価に製造することができる。特に、円筒状のモスアイ用型を用いると、ロール・ツー・ロール方式によりモスアイ構造を効率良く製造することができる。このようなモスアイ用型は、特許文献6〜8に記載されている方法で製造することができる。
図2(a)〜(e)を参照して、合成高分子膜34Aを形成するための、モスアイ用型100Aの製造方法を説明する。
まず、図2(a)に示すように、型基材として、アルミニウム基材12と、アルミニウム基材12の表面に形成された無機材料層16と、無機材料層16の上に堆積されたアルミニウム膜18とを有する型基材10を用意する。
アルミニウム基材12としては、アルミニウムの純度が99.50mass%以上99.99mass%未満である比較的剛性の高いアルミニウム基材を用いる。アルミニウム基材12に含まれる不純物としては、鉄(Fe)、ケイ素(Si)、銅(Cu)、マンガン(Mn)、亜鉛(Zn)、ニッケル(Ni)、チタン(Ti)、鉛(Pb)、スズ(Sn)およびマグネシウム(Mg)からなる群から選択された少なくとも1つの元素を含むことが好ましく、特にMgが好ましい。エッチング工程におけるピット(窪み)が形成されるメカニズムは、局所的な電池反応であるので、理想的にはアルミニウムよりも貴な元素を全く含まず、卑な金属であるMg(標準電極電位が−2.36V)を不純物元素として含むアルミニウム基材12を用いることが好ましい。アルミニウムよりも貴な元素の含有率が10ppm以下であれば、電気化学的な観点からは、当該元素を実質的に含んでいないと言える。Mgの含有率は、全体の0.1mass%以上であることが好ましく、約3.0mass%以下の範囲であることがさらに好ましい。Mgの含有率が0.1mass%未満では十分な剛性が得られない。一方、含有率が大きくなると、Mgの偏析が起こり易くなる。モスアイ用型を形成する表面付近に偏析が生じても電気化学的には問題とならないが、Mgはアルミニウムとは異なる形態の陽極酸化膜を形成するので、不良の原因となる。不純物元素の含有率は、アルミニウム基材12の形状、厚さおよび大きさに応じて、必要とされる剛性に応じて適宜設定すればよい。例えば圧延加工によって板状のアルミニウム基材12を作製する場合には、Mgの含有率は約3.0mass%が適当であるし、押出加工によって円筒などの立体構造を有するアルミニウム基材12を作製する場合には、Mgの含有率は2.0mass%以下であることが好ましい。Mgの含有率が2.0mass%を超えると、一般に押出加工性が低下する。
アルミニウム基材12として、例えば、JIS A1050、Al−Mg系合金(例えばJIS A5052)、またはAl−Mg−Si系合金(例えばJIS A6063)で形成された円筒状のアルミニウム管を用いる。
アルミニウム基材12の表面は、バイト切削が施されていることが好ましい。アルミニウム基材12の表面に、例えば砥粒が残っていると、砥粒が存在する部分において、アルミニウム膜18とアルミニウム基材12との間で導通しやすくなる。砥粒以外にも、凹凸が存在するところでは、アルミニウム膜18とアルミニウム基材12との間で局所的に導通しやすくなる。アルミニウム膜18とアルミニウム基材12との間で局所的に導通すると、アルミニウム基材12内の不純物とアルミニウム膜18との間で局所的に電池反応が起こる可能性がある。
無機材料層16の材料としては、例えば酸化タンタル(Ta25)または二酸化シリコン(SiO2)を用いることができる。無機材料層16は、例えばスパッタ法により形成することができる。無機材料層16として、酸化タンタル層を用いる場合、酸化タンタル層の厚さは、例えば、200nmである。
無機材料層16の厚さは、100nm以上500nm未満であることが好ましい。無機材料層16の厚さが100nm未満であると、アルミニウム膜18に欠陥(主にボイド、すなわち結晶粒間の間隙)が生じることがある。また、無機材料層16の厚さが500nm以上であると、アルミニウム基材12の表面状態によって、アルミニウム基材12とアルミニウム膜18との間が絶縁されやすくなる。アルミニウム基材12側からアルミニウム膜18に電流を供給することによってアルミニウム膜18の陽極酸化を行うためには、アルミニウム基材12とアルミニウム膜18との間に電流が流れる必要がある。円筒状のアルミニウム基材12の内面から電流を供給する構成を採用すると、アルミニウム膜18に電極を設ける必要がないので、アルミニウム膜18を全面にわたって陽極酸化できるとともに、陽極酸化の進行に伴って電流が供給され難くなるという問題も起こらず、アルミニウム膜18を全面にわたって均一に陽極酸化することができる。
また、厚い無機材料層16を形成するためには、一般的には成膜時間を長くする必要がある。成膜時間が長くなると、アルミニウム基材12の表面温度が不必要に上昇し、その結果、アルミニウム膜18の膜質が悪化し、欠陥(主にボイド)が生じることがある。無機材料層16の厚さが500nm未満であれば、このような不具合の発生を抑制することもできる。
アルミニウム膜18は、例えば、特許文献7に記載されているように、純度が99.99mass%以上のアルミニウムで形成された膜(以下、「高純度アルミニウム膜」ということがある。」)である。アルミニウム膜18は、例えば、真空蒸着法またはスパッタ法を用いて形成される。アルミニウム膜18の厚さは、約500nm以上約1500nm以下の範囲にあることが好ましく、例えば、約1μmである。
また、アルミニウム膜18として、高純度アルミニウム膜に代えて、特許文献8に記載されている、アルミニウム合金膜を用いてもよい。特許文献8に記載のアルミニウム合金膜は、アルミニウムと、アルミニウム以外の金属元素と、窒素とを含む。本明細書において、「アルミニウム膜」は、高純度アルミニウム膜だけでなく、特許文献8に記載のアルミニウム合金膜を含むものとする。
上記アルミニウム合金膜を用いると、反射率が80%以上の鏡面を得ることができる。アルミニウム合金膜を構成する結晶粒の、アルミニウム合金膜の法線方向から見たときの平均粒径は、例えば、100nm以下であり、アルミニウム合金膜の最大表面粗さRmaxは60nm以下である。アルミニウム合金膜に含まれる窒素の含有率は、例えば、0.5mass%以上5.7mass%以下である。アルミニウム合金膜に含まれるアルミニウム以外の金属元素の標準電極電位とアルミニウムの標準電極電位との差の絶対値は0.64V以下であり、アルミニウム合金膜中の金属元素の含有率は、1.0mass%以上1.9mass%以下であることが好ましい。金属元素は、例えば、TiまたはNdである。但し、金属元素はこれに限られず、金属元素の標準電極電位とアルミニウムの標準電極電位との差の絶対値が0.64V以下である他の金属元素(例えば、Mn、Mg、Zr、VおよびPb)であってもよい。さらに、金属元素は、Mo、NbまたはHfであってもよい。アルミニウム合金膜は、これらの金属元素を2種類以上含んでもよい。アルミニウム合金膜は、例えば、DCマグネトロンスパッタ法で形成される。アルミニウム合金膜の厚さも約500nm以上約1500nm以下の範囲にあることが好ましく、例えば、約1μmである。
次に、図2(b)に示すように、アルミニウム膜18の表面18sを陽極酸化することによって、複数の凹部(細孔)14pを有するポーラスアルミナ層14を形成する。ポーラスアルミナ層14は、凹部14pを有するポーラス層と、バリア層(凹部(細孔)14pの底部)とを有している。隣接する凹部14pの間隔(中心間距離)は、バリア層の厚さのほぼ2倍に相当し、陽極酸化時の電圧にほぼ比例することが知られている。この関係は、図2(e)に示す最終的なポーラスアルミナ層14についても成立する。
ポーラスアルミナ層14は、例えば、酸性の電解液中で表面18sを陽極酸化することによって形成される。ポーラスアルミナ層14を形成する工程で用いられる電解液は、例えば、蓚酸、酒石酸、燐酸、硫酸、クロム酸、クエン酸、リンゴ酸からなる群から選択される酸を含む水溶液である。例えば、アルミニウム膜18の表面18sを、蓚酸水溶液(濃度0.3mass%、液温10℃)を用いて、印加電圧80Vで55秒間陽極酸化を行うことにより、ポーラスアルミナ層14を形成する。
次に、図2(c)に示すように、ポーラスアルミナ層14をアルミナのエッチャントに接触させることによって所定の量だけエッチングすることにより凹部14pの開口部を拡大する。エッチング液の種類・濃度、およびエッチング時間を調整することによって、エッチング量(すなわち、凹部14pの大きさおよび深さ)を制御することができる。エッチング液としては、例えば10mass%の燐酸や、蟻酸、酢酸、クエン酸などの有機酸や硫酸の水溶液やクロム酸燐酸混合水溶液を用いることができる。例えば、燐酸水溶液(10mass%、30℃)を用いて20分間エッチングを行う。
次に、図2(d)に示すように、再び、アルミニウム膜18を部分的に陽極酸化することにより、凹部14pを深さ方向に成長させるとともにポーラスアルミナ層14を厚くする。ここで凹部14pの成長は、既に形成されている凹部14pの底部から始まるので、凹部14pの側面は階段状になる。
さらにこの後、必要に応じて、ポーラスアルミナ層14をアルミナのエッチャントに接触させることによってさらにエッチングすることにより凹部14pの孔径をさらに拡大する。エッチング液としては、ここでも上述したエッチング液を用いることが好ましく、現実的には、同じエッチング浴を用いればよい。
このように、上述した陽極酸化工程およびエッチング工程を交互に複数回(例えば5回:陽極酸化を5回とエッチングを4回)繰り返すことによって、図2(e)に示すように、反転されたモスアイ構造を有するポーラスアルミナ層14を有するモスアイ用型100Aが得られる。陽極酸化工程で終わることによって、凹部14pの底部を点にできる。すなわち、先端が尖った凸部を形成することができる型が得られる。
図2(e)に示すポーラスアルミナ層14(厚さtp)は、ポーラス層(厚さは凹部14pの深さDdに相当)とバリア層(厚さtb)とを有する。ポーラスアルミナ層14は、合成高分子膜34Aが有するモスアイ構造を反転した構造を有するので、その大きさを特徴づける対応するパラメータに同じ記号を用いることがある。
ポーラスアルミナ層14が有する凹部14pは、例えば円錐形であり、階段状の側面を有してもよい。凹部14pの二次元的な大きさ(表面の法線方向から見たときの凹部の面積円相当径)Dpは20nm超500nm未満で、深さDdは50nm以上1000nm(1μm)未満程度であることが好ましい。また、凹部14pの底部は尖っている(最底部は点になっている)ことが好ましい。凹部14pは密に充填されている場合、ポーラスアルミナ層14の法線方向から見たときの凹部14pの形状を円と仮定すると、隣接する円は互いに重なり合い、隣接する凹部14pの間に鞍部が形成される。なお、略円錐形の凹部14pが鞍部を形成するように隣接しているときは、凹部14pの二次元的な大きさDpは隣接間距離Dintと等しい。ポーラスアルミナ層14の厚さtpは、例えば、約1μm以下である。
なお、図2(e)に示すポーラスアルミナ層14の下には、アルミニウム膜18のうち、陽極酸化されなかったアルミニウム残存層18rが存在している。必要に応じて、アルミニウム残存層18rが存在しないように、アルミニウム膜18を実質的に完全に陽極酸化してもよい。例えば、無機材料層16が薄い場合には、アルミニウム基材12側から容易に電流を供給することができる。
ここで例示したモスアイ用型の製造方法は、特許文献6〜8に記載の反射防止膜を作製するための型を製造することができる。高精細な表示パネルに用いられる反射防止膜には、高い均一性が要求されるので、上記のようにアルミニウム基材の材料の選択、アルミニウム基材の鏡面加工、アルミニウム膜の純度や成分の制御を行うことが好ましいが、殺菌作用に高い均一性は求められないので、上記の型の製造方法を簡略化することができる。例えば、アルミニウム基材の表面を直接、陽極酸化してもよい。また、このときアルミニウム基材に含まれる不純物の影響でピットが形成されても、最終的に得られる合成高分子膜34Aのモスアイ構造に局所的な構造の乱れが生じるだけで、殺菌作用に与える影響はほとんどないと考えられる。
また、上述の型の製造方法によると、反射防止膜の作製に好適な、凹部の配列の規則性が低い型を製造することができる。モスアイ構造の殺菌性を利用する場合には、凸部の配列の規則性は影響しないと考えられる。規則的に配列された凸部を有するモスアイ構造を形成するための型は、例えば、以下のようにして製造することができる。
例えば厚さが約10μmのポーラスアルミナ層を形成した後、生成されたポーラスアルミナ層をエッチングにより除去してから、上述のポーラスアルミナ層を生成する条件で陽極酸化を行えばよい。厚さが10μmのポーラスアルミナ層は、陽極酸化時間を長くすることによって形成される。このように比較的厚いポーラスアルミナ層を生成し、このポーラスアルミナ層を除去すると、アルミニウム膜またはアルミニウム基材の表面に存在するグレインによる凹凸や加工ひずみの影響を受けることなく、規則的に配列された凹部を有するポーラスアルミナ層を形成することができる。なお、ポーラスアルミナ層の除去には、クロム酸と燐酸との混合液を用いることが好ましい。長時間にわたるエッチングを行うとガルバニック腐食が発生することがあるが、クロム酸と燐酸との混合液はガルバニック腐食を抑制する効果がある。
図1(b)に示した合成高分子膜34Bを形成するためのモスアイ用型も、基本的に、上述した陽極酸化工程とエッチング工程とを組み合わせることによって製造することができる。図3(a)〜(c)を参照して、合成高分子膜34Bを形成するための、モスアイ用型100Bの製造方法を説明する。
まず、図2(a)および(b)を参照して説明したのと同様に、型基材10を用意し、アルミニウム膜18の表面18sを陽極酸化することによって、複数の凹部(細孔)14pを有するポーラスアルミナ層14を形成する。
次に、図3(a)に示すように、ポーラスアルミナ層14をアルミナのエッチャントに接触させることによって所定の量だけエッチングすることにより凹部14pの開口部を拡大する。このとき、図2(c)を参照して説明したエッチング工程よりも、エッチング量を少なくする。すなわち、凹部14pの開口部の大きさを小さくする。例えば、燐酸水溶液(10mass%、30℃)を用いて10分間エッチングを行う。
次に、図3(b)に示すように、再び、アルミニウム膜18を部分的に陽極酸化することにより、凹部14pを深さ方向に成長させるとともにポーラスアルミナ層14を厚くする。このとき、図2(d)を参照して説明した陽極酸化工程よりも、凹部14pを深く成長させる。例えば、蓚酸水溶液(濃度0.3mass%、液温10℃)を用いて、印加電圧80Vで165秒間陽極酸化を行う(図2(d)では55秒間)。
その後、図2(e)を参照して説明したのと同様に、エッチング工程および陽極酸化工程を交互に複数回くり返す。例えば、エッチング工程を3回、陽極酸化工程を3回、交互に繰り返すことによって、図3(c)に示すように、反転されたモスアイ構造を有するポーラスアルミナ層14を有するモスアイ用型100Bが得られる。このとき、凹部14pの二次元的な大きさDpは隣接間距離Dintより小さい(Dp<Dint)。
微生物の大きさはその種類によって異なる。例えば緑膿菌の大きさは約1μmであるが、細菌には、数100nm〜約5μmの大きさのものがあり、真菌は数μm以上である。例えば、2次元的な大きさが約200nmの凸部は、約0.5μm以上の大きさの微生物に対しては殺菌作用を有すると考えられるが、数100nmの大きさの細菌に対しては、凸部が大きすぎるために十分な殺菌作用を発現しない可能性がある。また、ウィルスの大きさは数10nm〜数100nmであり、100nm以下のものも多い。なお、ウィルスは細胞膜を有しないが、ウィルス核酸を取り囲むカプシドと呼ばれるタンパク質の殻を有している。ウィルスは、この殻の外側に膜状のエンベロープを有するウィルスと、エンベロープを有しないウィルスとに分けられる。エンベロープを有するウィルスにおいては、エンベロープは主として脂質からなるので、エンベロープに対して凸部が同様に作用すると考えられる。エンベロープを有するウィルスとして、例えば、インフルエンザウィルスやエボラウィルスが挙げられる。エンベロープを有しないウィルスにおいては、このカプシドと呼ばれるタンパク質の殻に対して凸部が同様に作用すると考えられる。凸部が窒素元素を有すると、アミノ酸から構成されるタンパク質との親和性が強くなり得る。
そこで、数100nm以下の微生物に対しても殺菌作用を発現し得る凸部を有する合成高分子膜の構造およびその製造方法を以下に説明する。
以下では、上記で例示した合成高分子膜が有する、2次元的な大きさが20nm超500nm未満の範囲にある凸部を第1の凸部という。また、第1の凸部に重畳して形成された凸部を第2の凸部といい、第2の凸部の2次元的な大きさは、第1の凸部の2次元的な大きさよりも小さく、かつ、100nmを超えない。なお、第1の凸部の2次元的な大きさが100nm未満、特に50nm未満の場合には、第2の凸部を設ける必要はない。また、第1の凸部に対応する型の凹部を第1の凹部といい、第2の凸部に対応する型の凹部を第2の凹部という。
上述の陽極酸化工程とエッチング工程とを交互に行うことによって、所定の大きさおよび形状の第1の凹部を形成する方法をそのまま適用しても、第2の凹部を形成することができない。
図4(a)にアルミニウム基材(図2中の参照符号12)の表面のSEM像を示し、図4(b)にアルミニウム膜(図2中の参照符号18)の表面のSEM像を示し、図4(c)にアルミニウム膜(図2中の参照符号18)の断面のSEM像を示す。これらのSEM像からわかるように、アルミニウム基材の表面およびアルミニウム膜の表面に、グレイン(結晶粒)が存在している。アルミニウム膜のグレインは、アルミニウム膜の表面に凹凸を形成している。この表面の凹凸は、陽極酸化時の凹部の形成に影響を与えるので、DpまたはDintが100nmよりも小さい第2の凹部の形成を妨げる。
そこで、本発明の実施形態による型の製造方法は、(a)アルミニウム基材または支持体の上に堆積されたアルミニウム膜を用意する工程と、(b)アルミニウム基材またはアルミニウム膜の表面を電解液に接触させた状態で、第1のレベルの電圧を印加することによって、第1の凹部を有するポーラスアルミナ層を形成する陽極酸化工程と、(c)工程(b)の後に、ポーラスアルミナ層をエッチング液に接触させることによって、第1の凹部を拡大させるエッチング工程と、(d)工程(c)の後に、ポーラスアルミナ層を電解液に接触させた状態で、第1のレベルよりも低い第2のレベルの電圧を印加することによって、第1の凹部内に、第2の凹部を形成する工程とを包含する。例えば、第1のレベルは、40V超であり、第2のレベルは、20V以下である。
すなわち、第1のレベルの電圧での陽極酸化工程で、アルミニウム基材またはアルミニウム膜のグレインの影響を受けない大きさを有する第1の凹部を形成し、その後、エッチングによってバリア層の厚さを小さくしてから、第1のレベルよりも低い第2のレベルの電圧での陽極酸化工程で、第1の凹部内に第2の凹部を形成する。このような方法で、第2の凹部を形成すると、グレインによる影響が排除される。
図5を参照して、第1の凹部14paと、第1の凹部14pa内に形成された第2の凹部14pbとを有する型を説明する。図5(a)は型のポーラスアルミナ層の模式的な平面図であり、図5(b)は模式的な断面図であり、図5(c)は試作した型のSEM像を示す。
図5(a)および(b)に示すように、本実施形態による型の表面は、2次元的な大きさは20nm超500nm未満の範囲内にある複数の第1の凹部14paと、複数の第1の凹部14paに重畳して形成された複数の第2の凹部14pbをさらに有している。複数の第2の凹部14pbの2次元的な大きさは、複数の第1の凹部14paの2次元的な大きさよりも小さく、かつ、100nmを超えない。第2の凹部14pbの高さは、例えば、20nm超100nm以下である。第2の凹部14pbも、第1の凹部14paと同様に、略円錐形の部分を含むことが好ましい。
図5(c)に示すポーラスアルミナ層は、以下の様にして製造した。
アルミニウム膜として、Tiを1mass%含むアルミニウム膜を用いた。陽極酸化液には蓚酸水溶液(濃度0.3mass%、温度10℃)を使用して、エッチング液には、燐酸水溶液(濃度10mass%、温度30℃)を使用した。電圧80Vにおける陽極酸化を52秒間行った後、エッチングを25分間、続いて、電圧80Vにおける陽極酸化を52秒間、エッチング25分間を行った。この後、20Vにおける陽極酸化を52秒間、エッチングを5分間、さらに、20Vにおける陽極酸化を52秒間行った。
図5(c)からわかるように、Dpが約200nmの第1の凹部の中に、Dpが約50nmの第2の凹部が形成されている。上記の製造方法において、第1のレベルの電圧を80Vから45Vに変更して、ポーラスアルミナ層を形成したところ、Dpが約100nmの第1の凹部の中に、Dpが約50nmの第2の凹部が形成された。
このような型を用いて合成高分子膜を作製すると、図5(a)および(b)に示した第1の凹部14paおよび第2の凹部14pbの構造を反転した凸部を有する合成高分子膜が得られる。すなわち、複数の第1の凸部に重畳して形成された複数の第2の凸部をさらに有する合成高分子膜が得られる。
このように第1の凸部と、第1の凸部に重畳して形成された第2の凸部を有する合成高分子膜は、100nm程度の比較的小さな微生物から、5μm以上の比較的大きな微生物に対して殺菌作用を有し得る。
もちろん、対象とする微生物の大きさに応じて、2次元的な大きさが20nm超100nm未満の範囲内にある凹部だけを形成してもよい。このような凸部を形成するための型は、例えば、以下の様にして作製することができる。
酒石酸アンモニウム水溶液などの中性塩水溶液(ホウ酸アンモニウム、クエン酸アンモニウムなど)や、イオン解離度の小さい有機酸(マレイン酸、マロン酸、フタル酸、クエン酸、酒石酸など)を用いて陽極酸化を行い、バリア型陽極酸化膜を形成し、バリア型陽極酸化膜をエッチングによって除去した後、所定の電圧(上記の第2のレベルの電圧)で陽極酸化することによって、2次元的な大きさが20nm超100nm未満の範囲内にある凹部を形成することができる。
例えば、アルミニウム膜として、Tiを1mass%含むアルミニウム膜を用い、酒石酸水溶液(濃度0.1mol/l、温度23℃)を用いて、100Vにおいて2分間、陽極酸化を行うことによってバリア型陽極酸化膜を形成する。この後、燐酸水溶液(濃度10mass%、温度30℃)を用いて25分間、エッチングすることによって、バリア型陽極酸化膜を除去する。その後、上記と同様に、陽極酸化液には蓚酸水溶液(濃度0.3mass%、温度10℃)を使用し、20Vにおける陽極酸化を52秒間、上記エッチング液を用いたエッチングを5分間、交互に、陽極酸化を5回、エッチングを4回繰り返すことによって、2次元的な大きさが約50nmの凹部を均一に形成することができる。
上述のようにして、種々のモスアイ構造を形成することができるモスアイ用型を製造することができる。
次に、図6を参照して、モスアイ用型100を用いた合成高分子膜の製造方法を説明する。図6は、ロール・ツー・ロール方式により合成高分子膜を製造する方法を説明するための模式的な断面図である。以下では、上記のロール型を用い、被加工物としてのベースフィルムの表面に合成高分子膜を製造する方法を説明するが、本発明の実施形態による合成高分子膜を製造する方法は、これに限られず、他の形状の形を用いて種々の被加工物の表面上に合成高分子膜を製造することができる。
まず、円筒状のモスアイ用型100を用意する。なお、円筒状のモスアイ用型100は、例えば図2を参照して説明した製造方法で製造される。
図6に示すように、紫外線硬化樹脂34'が表面に付与されたベースフィルム42を、モスアイ用型100に押し付けた状態で、紫外線硬化樹脂34'に紫外線(UV)を照射することによって紫外線硬化樹脂34'を硬化する。紫外線硬化樹脂34'としては、例えばアクリル系樹脂を用いることができる。ベースフィルム42は、例えば、PET(ポリエチレンテレフタレート)フィルムまたはTAC(トリアセチルセルロース)フィルムである。ベースフィルム42は、図示しない巻き出しローラから巻き出され、その後、表面に、例えばスリットコータ等により紫外線硬化樹脂34'が付与される。ベースフィルム42は、図6に示すように、支持ローラ46および48によって支持されている。支持ローラ46および48は、回転機構を有し、ベースフィルム42を搬送する。また、円筒状のモスアイ用型100は、ベースフィルム42の搬送速度に対応する回転速度で、図6に矢印で示す方向に回転される。
その後、ベースフィルム42からモスアイ用型100を分離することによって、モスアイ用型100の反転されたモスアイ構造が転写された合成高分子膜34がベースフィルム42の表面に形成される。表面に合成高分子膜34が形成されたベースフィルム42は、図示しない巻き取りローラにより巻き取られる。
合成高分子膜34の表面は、モスアイ用型100のナノ表面構造を反転したモスアイ構造を有する。用いるモスアイ用型100のナノ表面構造に応じて、図1(a)および(b)に示した合成高分子膜34Aおよび34Bを作製することができる。合成高分子膜34を形成する材料は、紫外線硬化性樹脂に限られず、可視光で硬化可能な光硬化性樹脂を用いることもできるし、熱硬化性樹脂を用いることもできる。
表面にモスアイ構造を有する合成高分子膜の殺菌性は、合成高分子膜の物理的構造のみならず、合成高分子膜の化学的性質とも相関関係を有する。例えば、本願出願人は、化学的な性質として、合成高分子膜の表面の接触角(特許公報1:特許第5788128号)や表面に含まれる窒素元素の濃度(国際公開公報2:国際公開第2016/080245号)との相関関係を見出した。国際公開公報2に記載されているように、表面における窒素元素の濃度は0.7at%以上であることが好ましい。
図7に上記国際公開公報2(図8)に示されているSEM像を示す。図7(a)および(b)は、図1(a)に示したモスアイ構造を有する表面で死に至った緑膿菌をSEM(走査型電子顕微鏡)で観察したSEM像を示す図である。
これらのSEM像を見ると、凸部の先端部分が緑膿菌の細胞壁(外膜)内に侵入している様子が見て取れる。また、図7(a)および図7(b)を見ると、凸部が細胞壁を突き破ったように見えず、凸部が細胞壁に取り込まれたかのように見える。これは、非特許文献2のSupplemental Informationにおいて示唆されているメカニズムで説明されるかもしれない。すなわち、グラム陰性菌の外膜(脂質二重膜)が凸部と近接して変形することによって、脂質二重膜が局所的に1次の相転移に似た転移(自発的な再配向)を起こし、凸部に近接する部分に開口が形成され、この開口に凸部が侵入したのかもしれない。あるいは、細胞が有する、極性を有する物質(栄養源を含む)を取り込む機構(エンドサイトーシス)によって、凸部が取り込まれたのかもしれない。
本発明による実施形態では、合成高分子膜34Aを形成する樹脂の組成を変えて、抗菌性・殺菌性との関係を調べた。以下でも、合成高分子膜34Aを形成する材料としてアクリル樹脂(紫外線硬化性を有する)を用いた。
ここでは、ウレタンアクリレートと、エチレンオキサイド基またはエチレンオキサイド単位(エチレンオキサイドが開環した構造単位を言う。以下、「EO単位」ということがある。)の含有率が異なるアクリル樹脂とを混合し、アクリル樹脂全体に含まれるEO単位(CH2CH2O)の割合を調整した。EO単位が多いと、合成高分子膜34Aは可撓性および親水性に富む膜になる。なお、EO単位の繰り返し構造をポリエチレングリコール鎖(PEG鎖)ということがある。このとき、EO単位の繰り返し数をPEG鎖の鎖長ということがある。
[合成高分子膜]
図1(a)に示したフィルム50Aと同様の構造を有する試料フィルムを用意した。モスアイ構造を表面に有する合成高分子膜34Aを作製するアクリル樹脂(アクリレートモノマーまたはアクリレートオリゴマー)として、下記の表1に示す樹脂A1〜A5、B、C1〜C2、DおよびEの10種類を用いた。以下、試料フィルムの名称にも樹脂と同じA1〜A5、B、C1〜C2、DおよびEを付して特定することにする。表1に各樹脂の組成を示す(表1中の%は質量%)。アクリル樹脂I〜Vの化学構造式を[化1]〜[化5]にそれぞれ示す。表1には、アクリル樹脂I〜Vのそれぞれの分子量(MW)と1分子中に含まれるEO単位の数を示すとともに、樹脂A1〜A5、B、C1〜C2、DおよびEのそれぞれ1gに含まれるEO単位のモル数を示す。表1は、EO単位のモル数が少ないものから順に記載している。また、表1には、樹脂A1〜A5、B、C1〜C2、DおよびEのそれぞれについて、組成と化学式に基づいて算出した窒素元素at%を示している。表1には、第1級アミンを形成する窒素元素および第2級アミンを形成する窒素元素の合計の窒素元素濃度と、窒素元素全てを含めて(すなわち、第3級アミンを形成する窒素元素も含めて)計算した窒素元素濃度とを併記している。
各樹脂A1〜Eは、MEK(丸善石油化学株式会社製)に溶解し、固形分70質量%の溶液とし、ベースフィルム42A上に付与し、MEKを加熱除去することによって、厚さが約25μm〜50μmの膜を得た(試料フィルムC2だけ厚さ3μm)。なお、ベースフィルム42Aとしては、厚さが50μmのPETフィルム(東洋紡株式会社製A4300)を用いた。その後、図6を参照して説明したのと同様の方法で、モスアイ用型100Aを用いて、表面にモスアイ構造を有する合成高分子膜34Aを作製した。露光量は約200mJ/cm2とした。各試料フィルムにおけるDpは約200nm、Dintは約200nm、Dhは約150nmであった。
Figure 2018168697
Figure 2018168697
Figure 2018168697
Figure 2018168697
Figure 2018168697
Figure 2018168697
アクリル樹脂Iは、ウレタンアクリレート(新中村化学株式会社製:商品名UA−7100)であり、窒素元素を含む。[化1]に示した化学式は推定による。アクリル樹脂Iは、EO単位の繰り返し構造(繰り返し数は9)を含む。アクリル樹脂Iは、3官能ウレタンアクリレートである。アクリル樹脂Iは、窒素元素を含む複素環(ヘテロ環)であるシアヌル環を含む。
アクリル樹脂IIは、ε-カプロラクトン変性トリス-(2-アクリロキシエチル)イソシアヌレート(新中村化学株式会社製:商品名A93001CL)で、窒素元素を含む。アクリル樹脂IIは、EO単位を含むが、EO単位の繰り返し構造(PEG鎖)を含まない。アクリル樹脂IIは、3官能アクリレートである。アクリル樹脂IIは、窒素元素を含む複素環であるシアヌル環を含む。
アクリル樹脂III〜Vは窒素元素を含まない。アクリル樹脂IIIは、エトキシ化ペンタエリスリトールテトラアクリレート(新中村化学株式会社製:商品名ATM-35E)、アクリル樹脂IVは4-ヒドロキシブチルアクリレート(新中村化学株式会社製:略称4-HBA)、アクリル樹脂Vは、ペンタエリスリトールトリアクリレート(トリエステル57%)(新中村化学株式会社製:A-TMM-3LM-N)である。
アクリル樹脂IIIは、EO単位の繰り返し構造(繰り返し数は35以下、PEG鎖の鎖長が35以下)を含む。アクリル樹脂IIIは、4官能アクリレートである。アクリル樹脂IVおよびVは、EO単位を有しない。アクリル樹脂IVは、1官能アクリレートである。アクリル樹脂IVは、1官能アクリレートである。アクリル樹脂Vは、3官能アクリレートである。アクリル樹脂III〜Vは、環状構造を含まない。
アクリル樹脂I〜Vのそれぞれを用いて合成高分子膜34Aを作製する際には、重合開始剤として、BASF社製のIRGACURE819(ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、分子量418.5)を用いた。
各試料フィルムA〜Eについて、以下の様に評価した。
[殺菌性の評価]
試料フィルムの殺菌性は緑膿菌について以下の様にして評価した。
試験菌としては、緑膿菌(NBRC12689)を用いた。
(1)緑膿菌を37℃のNB培地で24時間培養する。
(2)上澄み液を捨て、希釈菌液A、Bを調整した。栄養として1/500となるようNB培地を入れた。
菌液A:3.5E+05CFU/mLオーダー
菌希釈液B:菌希釈液A1mL+滅菌水8.98mL+NB培地20μL
(3)菌希釈液B(この時の菌希釈液B中の菌数を「初期菌数」ということがある)を各試料フィルム上に400μLを滴下し、菌希釈液B上にカバー(例えばカバーガラス)を配置し、単位面積当たりの菌希釈液Bの量を調整
ここでは、初期菌数を3.5E+05CFU/mLとした。
(4)一定時間37℃、相対湿度100%の環境で放置する(放置時間:4時間、24時間)
(5)菌希釈液Bが付いた試料フィルム全体と滅菌水9.6mLとを濾過袋に入れ、濾過袋の上から手で揉んで、試料フィルムの菌を十分に洗い流す。濾過袋の中の洗い出し液は、菌希釈液Bが25倍に希釈されたものである。この洗い出し液を菌希釈液B2ということがある。菌希釈液B2は、菌希釈液B中の菌数の増減がない場合は、菌数1E+04CFU/mLのオーダーとなる。
(6)菌希釈液B2を10倍希釈して菌希釈液Cを調製する。具体的には、洗い出し液(菌希釈液B2)120μLを滅菌水1.08mLに入れて調製する。菌希釈液Cは、菌希釈液B中の菌数の増減がない場合は、菌数1E+03CFU/mLのオーダーとなる。
(7)菌希釈液Cの調製と同じ方法で、菌希釈液Cを10倍希釈して菌希釈液Dを調製する。菌希釈液Dは、菌希釈液B中の菌数の増減がない場合は、菌数1E+02CFU/mLのオーダーとなる。さらに、菌希釈液Dを10倍希釈して菌希釈液Eを調製する。菌希釈液Eは、菌希釈液B中の菌数の増減がない場合は、菌数1E+01CFU/mLのオーダーとなる 。
(8)菌希釈液B2および菌希釈液C〜Eをペトリフィルム(登録商標)培地(3M社製、製品名:生菌数測定用ACプレート)に1mLを滴下して、37℃、相対湿度100%で培養して48時間後に菌希釈液B2中の菌数をカウントする。
なお、JISZ2801の5.6h)では、希釈液を調製する際にリン酸緩衝生理食塩水を用いるが、ここでは滅菌水を用いた。滅菌水を用いても、試料フィルムの表面の物理的構造および化学的性質による殺菌効果を調べられることを確認している。
[抗菌性の評価]
JIS Z 2801にならい、24時間培養後の菌数から求めた抗菌活性値が2.0以上(99%以上の死滅率)で、緑膿菌に対する抗菌効果があるとした。参照フィルムとしては、ベースフィルム(PETフィルム)を用いた。抗菌活性値は、PETフィルムの24時間培養後菌数を各試料フィルムの24時間培養後菌数で除した数の対数値である。
図8は殺菌性の評価結果を示すグラフである。図8において、横軸は放置時間(時間)であり、縦軸は菌希釈液B2中の菌数(CFU/mL)を示す。なお、図8では、見やすさのために、菌数が0(N.D.)の場合は0.1としてプロットしている。また、下記の表2に培養後の菌数と抗菌活性値とを示す。なお、試料フィルムC1の抗菌活性値の算出には、PET2のデータを用い、それ以外の試料フィルムにはPET1のデータを用いた。
図8および表2からわかるように、試料フィルムC1以外は2.0以上の抗菌活性値を有しており、抗菌性を有している。試料フィルムC2、Bの抗菌活性値はそれぞれ2.6と3.2である。試料フィルムA1、A2およびA3の抗菌活性値は6.2であり、殺菌性を有していると言える。ここでは、抗菌活性値が6.0以上のとき、殺菌性を有するということにする。このようにして抗菌性および殺菌性を評価した結果を表1に○/×で示している。○は抗菌性または殺菌性あり、×は抗菌性または殺菌性なしをそれぞれ示す。
Figure 2018168697
抗菌性および殺菌性については、樹脂C1を用いたフィルム以外は、少なくとも抗菌性を有している。抗菌性の観点からは、EO単位を0.0020超含むことが好ましいと考えられる。なお、樹脂A4、A5、DおよびEについては、今回評価を行っていないが、これまでの同様のまたは類似した組成の樹脂の評価結果から、これらの樹脂はいずれも抗菌性および殺菌性を有していると考えられる。
表1には、第1級アミンを形成する窒素元素および第2級アミンを形成する窒素元素の合計の窒素元素濃度と、窒素元素全てを含めて(すなわち、第3級アミンを形成する窒素元素も含めて)計算した窒素元素濃度とを併記している。抗菌性および殺菌性についての評価結果は、第3級アミンを形成する窒素元素を含めた窒素元素濃度に比べて、第1級アミンまたは第2級アミンを形成する窒素元素の窒素元素濃度と相関関係を有するように見える。この理由は、以下のように考えられる。第3級アミンを形成する窒素元素は、塩基性が低いので、合成高分子膜の殺菌性への寄与は低いと考えられる。また、窒素元素を含むアクリル樹脂IおよびIIにおいて、第3級アミンを形成する窒素元素は、環を形成している。環を形成する窒素元素は、合成高分子膜の表面から比較的遠い位置に存在し、微生物との距離が大きいので、合成高分子膜の殺菌性への寄与は低いと考えられる。
なお、上記国際公開公報2では、殺菌性の観点からは、表面における窒素元素の濃度は0.7at%以上であることが好ましいとしたが、今回、これよりも窒素元素濃度が低い樹脂を用いても殺菌性が得られることがわかった。少なくとも、第1級アミンを形成する窒素元素および第2級アミンを形成する窒素元素の合計の窒素元素濃度が0.293at%以上であれば(樹脂C2)、抗菌性を有し得ると言える。小数点以下3桁目を四捨五入すると、第1級アミンを形成する窒素元素および第2級アミンを形成する窒素元素の合計の窒素元素濃度が0.29at%以上であれば、抗菌性を有し得ると言える。殺菌性を有するためには、第1級アミンを形成する窒素元素および第2級アミンを形成する窒素元素の合計の窒素元素濃度は0.327at%以上であることが好ましい(樹脂A1)。小数点以下3桁目を四捨五入すると、殺菌性を有するためには、第1級アミンを形成する窒素元素および第2級アミンを形成する窒素元素の合計の窒素元素濃度が0.33at%以上であることが好ましい。このとき、樹脂1gに含まれるEO単位のモル数は0.0040以上であることが好ましいと考えられる。
適度な割合でEO単位を含んでいる樹脂は、親水性を有しているので、水ぶきで汚れをふき取ることができる。また、柔軟性を備えているので、優れた耐擦傷性を有する。
また、図7のSEM像からわかるように、緑膿菌が付着していない凸部は、合成高分子膜の法線方向にほぼ平行であるのに対し、緑膿菌が付着している凸部には、緑膿菌の方向へ傾いて(しなって)いるものもある。凸部が傾く(しなる)ことによって、より多くの凸部が微生物に接することができる。微生物の方向へ傾く(しなる)ことができる凸部を表面に有する合成高分子膜は、より優れた殺菌効果を有し得ると考えられる。EO単位を適度に含む樹脂は、このしなりによって、殺菌効果を発現している可能性も考えられる。
次に、図1(a)に示したフィルム50Aと同様の構造を有する試料フィルムF、G、Hを用意した。モスアイ構造を表面に有する合成高分子膜34Aを作製するアクリル樹脂(アクリレートモノマーまたはアクリレートオリゴマー)として、下記の表3に示す樹脂F、GおよびGの3種類を用いた。以下、試料フィルムの名称にも樹脂と同じF、GおよびHを付して特定する。表3に各樹脂の組成を示す(表3中の%は質量%)。
アクリル樹脂I'の化学構造式を[化6]に示す。[化6]に示した化学式は推定による。アクリル樹脂I'は、EO単位の繰り返し構造(繰り返し数は4または5)を含む。アクリル樹脂I'は、EO単位の数がアクリル樹脂Iのおよそ半分程度である点において、アクリル樹脂Iと異なる。アクリル樹脂I'は、ウレタンアクリレート(新中村化学株式会社製)であり、窒素元素を含む。アクリル樹脂I'は、3官能ウレタンアクリレートである。アクリル樹脂I'は、窒素元素を含む複素環(ヘテロ環)であるシアヌル環を含む。
Figure 2018168697
Figure 2018168697
表3には、表1と同様に、アクリル樹脂のそれぞれの分子量(MW)と1分子中に含まれるEO単位の数を示す。アクリル樹脂I'の分子量(MW)と1分子中に含まれるEO単位の数については、EO単位の繰り返し構造の繰り返し数が全て4(化学構造式中、l=m=n=4)とした場合(上段)と、EO単位の繰り返し構造の繰り返し数が全て5(化学構造式中、l=m=n=5)とした場合(下段)とを併記している。また、表3には、樹脂F、GおよびHのそれぞれについて、組成と化学式に基づいて算出したそれぞれの樹脂1gに含まれるEO単位のモル数を示す。アクリル樹脂I'を含む樹脂Gの1gに含まれるEO単位のモル数は、l=m=n=4の場合(上段)と、l=m=n=5の場合(下段)とを併記している。表3に示すように、アクリル樹脂I'を含む樹脂Gの1gに含まれるEO単位のモル数は、0.0095以上0.0108以下であると考えられる。
表3には、樹脂F、GおよびHのそれぞれについて、組成と化学式に基づいて算出した窒素元素at%を示している。表3には、第1級アミンを形成する窒素元素および第2級アミンを形成する窒素元素の合計の窒素元素濃度と、窒素元素全てを含めて(すなわち、第3級アミンを形成する窒素元素およびアミンを形成しない窒素元素も含めて)計算した窒素元素濃度とを併記している。表3に示すように、アクリル樹脂I'を含む樹脂Gの第1級アミンまたは第2級アミンを形成する窒素元素の濃度(すなわち、第1級アミンを形成する窒素元素および第2級アミンを形成する窒素元素の合計の窒素元素濃度)は1.461at%以上1.629at%以下であると考えられる。小数点以下3桁目を四捨五入すると、アクリル樹脂I'を含む樹脂Gの第1級アミンまたは第2級アミンを形成する窒素元素の濃度は1.46at%以上1.63at%以下であると考えられる。
各樹脂F、GおよびHは、MEK(丸善石油化学株式会社製)に溶解し、固形分70質量%の溶液とし、ベースフィルム42A上に付与し、MEKを加熱除去することによって、厚さが約25μm〜50μmの膜を得た。なお、ベースフィルム42Aとしては、厚さが50μmのPETフィルム(東洋紡株式会社製A4300)を用いた。その後、図6を参照して説明したのと同様の方法で、モスアイ用型100Aを用いて、表面にモスアイ構造を有する合成高分子膜34Aを作製した。露光量は約1500mJ/cm2とした。紫外線照射には、UVランプ(Fusion UV Systems社製:Light Hammer6 J6P3、最大出力200W/cm)を用い、出力レベル45%(50mW/cm2)で30秒間照射した。重合開始剤として、BASF社製のIRGACURE OXE 01(1,2-オクタンジオン,1-[4-(フェニルチオ)-,2-(O-ベンゾイルオキシム)]、分子量445.6)を用いた。各試料フィルムにおけるDpは約200nm、Dintは約200nm、Dhは約150nmであった。各試料フィルムのサイズは、各辺の長さが5.1cmである正方形(5.1cm角)とした。
このようにして得られた各試料フィルムF、GおよびHについて、試料フィルムA〜Eについて行ったのと同様の方法で、殺菌性および抗菌性を評価した。ただし、試料フィルムF、GおよびHの殺菌性の評価方法は、以下の点において、試料フィルムA〜Eの殺菌性の評価方法と異なる。
試料フィルムF、GおよびHの殺菌性の評価方法においては、菌希釈液B上のカバーとして、4cm角のPETフィルムを用いた。また、試料フィルムF、GおよびHの菌は、SCDLP培地10mLを用いて洗い出した。従って、濾過袋中の洗い出し液は菌希釈液Bが26倍に希釈されたものである。この洗い出し液を菌希釈液B3ということがある。SCDLP培地は、以下のように調製した。
・SCDLP寒天培地「ダイゴ」(日本製薬株式会社製)38gを精製水1Lに加え、よく振りまぜた後、90℃以上で加熱溶解。
・容器に分注後、121℃、15分間オートクレーブ滅菌。
・滅菌後、直ちによく振り混ぜ、ポリソルベート層を均一化。
洗い出し液(菌希釈液B3)を希釈する工程においては、リン酸緩衝生理食塩水(PBS)を用いた。例えば、洗い出し液(菌希釈液B3)1mLをリン酸緩衝生理食塩水(PBS)9mLに入れることによって、洗い出し液(菌希釈液B3)を10倍に希釈した。
試料フィルムF、GおよびHの緑膿菌に対する抗菌性の評価のために、抗菌活性値に準じて、「準抗菌活性値(6h)」を定義する。既に説明したように、抗菌活性値は、PETフィルムの24時間培養後菌数を各試料フィルムの24時間培養後菌数で除した数の対数値である。これに準じて、PETフィルムの6時間培養後菌数を各試料フィルムの6時間培養後菌数で除した数の対数値を「準抗菌活性値(6h)」として定義する。
図9〜図11は、殺菌性の評価結果を示すグラフである。図9〜図11において、横軸は放置時間(時間)であり、縦軸は菌希釈液B3中の菌数(CFU/mL)を示す。なお、図9〜図11では、見やすさのために、菌数が0(N.D.)の場合は0.1としてプロットしている。また、下記の表4に培養後の菌数と抗菌活性値と準抗菌活性値(6h)とを示す。なお、試料フィルムFおよびGの抗菌活性値および準抗菌活性値(6h)の算出には、PET3のデータを用い、試料フィルムHの抗菌活性値および準抗菌活性値(6h)の算出には、PET4のデータを用いた。
Figure 2018168697
上述したように、本発明の実施形態による合成高分子膜の表面に液体を接触させることによって、液体を殺菌することができる。同様に、合成高分子膜の表面に気体を接触させることによって、気体を殺菌することもできる。微生物は一般に栄養源である有機物と接触する確率を増やすために、物体の表面に付着しやすい表面構造を有している。したがって、本発明の実施形態による合成高分子膜の殺菌性を有する表面に、微生物を含む気体や液体を接触させると、微生物は合成高分子膜の表面に付着しようとするので、その際に、殺菌作用を受けることになる。
ここでは、グラム陰性菌である緑膿菌について、本発明の実施形態による合成高分子膜の殺菌作用を説明したが、グラム陰性菌に限られず、グラム陽性菌や他の微生物に対しても殺菌作用を有すると考えられる。グラム陰性菌は、外膜を含む細胞壁を有する点に1つの特徴を有するが、グラム陽性菌や他の微生物(細胞壁を有しないものを含む)も細胞膜を有し、細胞膜もグラム陰性菌の外膜と同様に脂質二重膜で構成されている。したがって、本発明の実施形態による合成高分子膜の表面の凸部と細胞膜との相互作用は、基本的には、外膜との相互作用と同様であると考えられる。
次に、合成高分子膜の製造方法として、溶剤を用いない製造方法を検討した。溶剤を用いると、溶剤を除去するために設備および時間を要するので、量産性に劣る。溶剤の代わりに、反応性モノマー(単官能アクリレート)を用いる製造方法を検討した。
また、殺菌性・抗菌性の評価には、グラム陽性菌である黄色ブドウ球菌を用いた。黄色ブドウ球菌は、接触によって感染するので、本発明の実施形態による合成高分子膜が、接触感染を抑制する効果を有するか否かを評価するために、スタンプ法を採用した。スタンプ法は、合成高分子膜の表面上で一定時間菌液を培養した後、菌を培地(ここでは、ぺたんチェック)に写し取り、一定条件で培養した後の菌数で評価する。
試料フィルムとしては、参照用試料として、樹脂Gと同様の組成を有する樹脂Iと、反応性希釈剤を用いた樹脂Jと、樹脂Kとを用意し、図1(a)に示したフィルム50Aと同様の試料フィルムを作製した。先と同様に、試料フィルムの名称にも樹脂と同じI〜Kを付して特定することにする。
樹脂I、樹脂Jおよび樹脂Kの組成を下記の表5に示す。なお、反応性希釈剤としては、下記[化7]に示すアクリロイルモルフォリン(KJケミカルズ株式会社製、ACMO(登録商標))を用いた。樹脂Kには、上記のアクリル樹脂Vと、下記の[化8]に示す1,9‐ノナンジオールジアクリラート(第一工業製薬株式会社製、ND−DA、「アクリル樹脂VI」という。)とを用いた。アクリル樹脂VIは低粘度の2官能アクリレートモノマーであり、樹脂Kは、樹脂Jと同様に、溶剤(MEK)を用いずに試料フィルムを作製した。
Figure 2018168697
Figure 2018168697
Figure 2018168697
試料フィルムIは、試料フィルムA〜Hと同様に、MEKに溶解し、固形分70質量%の溶液とした後、ベースフィルム42A上に付与し、MEKを加熱除去することによって、厚さが約25μm〜50μmの膜を得た。試料フィルムJおよびKについては、樹脂Jおよび樹脂Kそのものをベースフィルム42A上に付与し、厚さが約25μm〜50μmの膜を得た。樹脂Jおよび樹脂Kは、溶剤(MEK)を含まないので、樹脂A〜Hの製造方法における、MEKを加熱除去する工程が不要である。その後、図6を参照して説明したのと同様の方法で、モスアイ用型100Aを用いて、表面にモスアイ構造を有する合成高分子膜34Aを作製した。
露光量は約1200mJ/cm2(200mW×6sec)とした。紫外線照射には、UVランプ(Fusion UV Systems社製:Light Hammer6 J6P3、最大出力200W/cm)を用い、出力レベル45%(50mW/cm2)で30秒間照射した。各試料フィルムにおけるDpは約200nm、Dintは約200nm、Dhは約150nmであった。各試料フィルムのサイズは、各辺の長さが5.1cmである正方形(5.1cm角)とした。
殺菌性・抗菌性の評価は、以下の手順で行った。
1.初期菌数が1E+04CFU/mLオーダーとなるように菌液を調製し、菌液をピペットにて各試料フィルムに1μLの1cm間隔で3×3の9点滴下する。菌液は、リン酸緩衝生理食塩水(Phosphate buffered saline, 略称:PBS)に溶解させた。試料フィルムIおよびKについて、初期菌数は4.3E+04CFU/mLで、試料フィルムJについては、初期菌数は6.3E+03CFU/mLであった。
2.菌液を滴下した試料フィルムを相対湿度100%に保った密閉容器に入れて、室温で24h放置する。
3.ぺたんチェック(栄研化学株式会社製、登録商標、製品名:PT1025)でスタンプすることによって、試料フィルム表面の菌を標準寒天培地に付着させる。
4.標準寒天培地に付着した菌を、37℃で24時間培養した後、コロニーの有無を確認
上述の評価の結果、試料フィルムIおよび試料フィルムJでは、コロニーは観察されなかった。一方、試料フィルムKでは、コロニー数は21であった。大腸菌に対しても同様な実験を行い、同様な結果を得た。このことから、本発明の実施形態による合成高分子膜は、グラム陰性菌だけでなく、グラム陽性菌に対しても、殺菌性・抗菌性を有することがわかる。一方、エチレンオキサイド単位および窒素元素を有しない試料フィルムKは、殺菌性・抗菌性を有しない。したがって、上述したように、第1級アミンを形成する窒素元素および第2級アミンを形成する窒素元素の合計の濃度が0.29at%以上であり、1gに含まれるエチレンオキサイド単位のモル数が0.0020超であれば、反応性希釈剤を用いて作製しても、殺菌性・抗菌性を有する合成高分子膜が得られると考えられる。1gに含まれるエチレンオキサイド単位のモル数は0.0070以上であることが好ましいかもしれない。
試料フィルムJの様に、本発明の実施形態によると、反応性希釈剤を用いことによって、溶剤を用いることなく、表面が殺菌効果を有する合成高分子膜を製造することができるので、溶剤を除去するために設備および時間を省略することができるので、量産性を向上させることができる。
また、本発明の実施形態による合成高分子膜は、接触感染を防止する効果を有する。したがって、例えば、ドアノブ、手摺、吊革等、多くの人が手で触れる部品の表面を本発明の実施形態による合成高分子膜で被覆することによって、接触感染を防止・抑制することができる。
次に、ハンドドライヤの手挿入部における水滴の飛散による二次汚染を抑制する効果が得られるか否かを評価した。
上記の殺菌性・抗菌性の評価では、菌液を滴下した試料フィルムを相対湿度100%に保った密閉容器に入れて、室温で放置した際の殺菌性・抗菌性を評価した。すなわち、菌液が乾燥しない条件での殺菌性・抗菌性を評価した。それに対し、以下では、試料フィルム上に飛散した菌液がどれくらいの速さ(時間)で殺菌されるかを評価した。菌液を付与した試料フィルムを室温・大気中に放置した際の殺菌性・抗菌性を評価したので、乾燥による影響が加わっている。具体的な評価方法は以下の通りである。
なお、試料フィルムLは、樹脂Jを用いて上記の試料フィルムJと同じ方法で作製した。試料フィルムMは、試料フィルムLと同じ樹脂Jを用い、モスアイ構造を形成しなかった。すなわち、試料フィルムLは、樹脂Jで形成された、表面にモスアイ構造を有するフィルムであり、試料フィルムMは、同じ樹脂Jで形成された、平坦な表面を有するフィルムである。試料フィルムNは、市販品のAgイオン含有フィルムである。また、参照用の試料フィルムとして、PETフィルムを用いた。各試料フィルムについて、N=3で実験を行った。ここでは、黄色ブドウ球菌および大腸菌に対する殺菌性・抗菌性を評価した。非特許文献1によると、ハンドドライヤの手挿入部の拭き取り検査で、黄色ブドウ球菌や大腸菌が検出されている。
(1)初期菌数が1E+06CFU/mLとなるように、黄色ブドウ球菌を含む菌液を1/500NB培地を用いて調製した。
(2)各試料フィルム(5cm角)の上に、上記菌液10μLを滴下した。
(3)室温(約25℃)、大気中に、5分、10分、15分間、放置した後、SCDLP培地を試料フィルムにかけ流し、菌を洗い出した(洗い出し液)。
(4)洗い出し液を適宜PBSで希釈を行い、標準寒天培地等で培養し、菌数をカウントした。
図12に黄色ブドウ球菌について得られた結果を示す。図12から明らかなように、試料フィルムLおよびMは、市販のAgイオン含有フィルム(試料フィルムN)に比べて、優れた殺菌性を有している。特に、表面にモスアイ構造を有する試料フィルムLは、5分以内にほぼ完全に殺菌しており、短時間での殺菌性に優れていることがわかる。
図13に大腸菌について得られた結果を示す。図13から明らかなように、試料フィルムLおよびMは、市販のAgイオン含有フィルム(試料フィルムN)に比べて、優れた殺菌性を有している。特に、表面にモスアイ構造を有する試料フィルムLは、20分以内にほぼ完全に殺菌しており、短時間での殺菌性に優れていることがわかる。
試料フィルムLが試料フィルムMよりも短時間での殺菌性に優れている理由は、試料フィルムが表面にモスアイ構造を有していることによる殺菌性の向上に加えて、速乾性に優れていることが相乗的に作用していることによると考えられる。樹脂Jは、親水性に富む樹脂であり、試料フィルムLおよび試料フィルムMの表面も親水性を有している。試料フィルムLは表面にモスアイ構造を有するので、超親水性表面となっており、滴下した菌液が一瞬でモスアイ構造を有する表面上を拡がり、短時間で乾燥する。
例えば、試料フィルムM上に滴下した10μLの菌液が乾燥するのに約40分かかるのに対して、試料フィルムL上では、20分以内に乾燥する。また、試料フィルムM上に滴下した菌液(10μL)は直径が約5.2mmの円形の領域にしか拡がらないのに対して、試料フィルムL上に菌液(10μL)を滴下すると、吸い込まれるかのように一瞬で、直径が約8.9mm円形の領域に拡がる。このように、試料フィルムL上では菌液が濡れ拡がり易く、早く濡れ拡がるので、その結果、菌液が速く乾燥すると考えられる。
すなわち、1gに含まれるEO単位のモル数が0.0020超の親水性を有し、表面にモスアイ構造を有する合成高分子膜は、付着した水滴を短時間で殺菌するとともに乾燥させることができる。したがって、ハンドドライヤの手挿入部の内壁に設けることによって、内壁に付着した水が、空気流によって飛散することに起因する、二次汚染を従来よりも効果的に抑制できる。
図14(a)および(b)に本発明の実施形態によるハンドドライヤ200Aおよび200Bを模式的に示す。
図14(a)に示す片面タイプ部のハンドドライヤ200Aは、手挿入空間62Aを画定する手挿入部64Aを有する本体60Aと、手挿入空間62Aに挿入された手に向かって空気流を送る1つのノズル部66Aと、手挿入部64Aの手挿入空間62A側の内面に設けられた合成高分子膜72Aとを有する。複数のノズル部66Aを設けてもよいし、各ノズル部66Aに複数のノズルを設けてもよい。
図14(b)に示す両面タイプ部のハンドドライヤ200Bは、手挿入空間62Bを画定する手挿入部64Bを有する本体60Bと、手挿入空間62Bに挿入された手に向かって空気流を送る2つのノズル部66Bと、手挿入部64Bの手挿入空間62B側の内面に設けられた合成高分子膜72Bとを有する。ハンドドライヤ200Bは、手挿入空間62Bに手が挿入されたことを感知するセンサー68Bを両面に有している。同様のセンサーはハンドドライヤ200Aも有してよい。ノズル部66Bは、複数のノズルを有している。
合成高分子膜72Aおよび72Bは、図1(a)および(b)に示したフィルム50Aまたは50Bのように、ベースフィルム上に形成されてもよい。合成高分子膜72Aおよび72Bは、それぞれ手挿入部64Aおよび64Bの内面に、例えば、粘着剤または粘着テープを用いて貼り付けられる。合成高分子膜72Aおよび72Bは、それぞれ手挿入部64Aおよび64Bの内面の全面に設けられることが好ましいが、水の飛散が起こりにくい箇所、例えば手挿入空間62Aおよび62Bの上方(手挿入部64Aおよび64Bの天井)を省略してもよい。
また、トレイやドレインを有する場合、トレイの内面、ドレインの内面に合成高分子膜を設けてもよい。さらに、トレイまたはドレインに至る配管等、水が触れる内面に合成高分子膜を設けてもよい。さらに、ハンドドライヤ200Aおよび200Bの本体の外面の一部または全部に合成高分子膜を設けてもよい。
合成高分子膜72Aおよび72Bとしては、上記の実施形態で説明した合成高分子膜を好適に用いることができる。殺菌性および速乾性の効果を得るためには、上述したように、1gに含まれるEO単位のモル数が0.0020超の親水性の合成高分子膜が好ましい。殺菌性の観点からは、第1級アミンを形成する窒素元素および第2級アミンを形成する窒素元素の合計の濃度は0.29at%以上であることがさらに好ましい。
以下、実際に手についた水に含まれる菌に対する殺菌・抗菌効果を検証する実験を行った結果を説明する。
試料フィルムLおよびMと、参照用の試料フィルムとして、上記と同様にPETフィルムを用いた。
培地としては、標準寒天(PCA)、卵黄加マンニット食塩寒天培地(MSEY)およびESコリマーク寒天培地(ESCM)を用いた。PCAは、選択性が広く、幅広い菌種が発育する培地である。PCAで観察されたコロニーを「一般細菌」とし、集計を行った。MSEYは、高濃度の食塩が含まれており、ほとんどの真菌、細菌の発育を阻害して、ブドウ球菌などの一部の細菌を選択的に増殖させる培地である。このうち、マンニット反応が見られた黄色いコロニーを「黄色ブドウ球菌」とし、それ以外の点状の白いコロニーを「ブドウ球菌など」として、集計を行った。ESCMは、ラリウル硫酸ナトリウムを含んでおり、グラム陰性菌が選択的に発育する培地である。ESCMで発育したコロニーのうち、青いコロニーを「大腸菌」、赤いコロニーを「大腸菌群」、白いコロニーを「その他グラム陰性菌」として集計を行った。
以下の手順で、試験を行った。
(1)超純水10リットル程度を容器にため、その中で手を洗い、各試料フィルム上へはじくように水滴を概ね均一に飛散させた。
(2)室温(約25℃)、大気中で、15分間、60分間放置したあと、スタンプ培地を各試料フィルムに押し付け、フィルム上の菌を採取した。
(3)スタンプ培地を37℃の恒温槽で48h培養し、コロニー数をカウントした。
結果を表6に示す。
Figure 2018168697
MSEYにおける黄色いコロニー、ESCMにおける青色および赤色のコロニーはすべての時間において、確認されなかった。したがって、それ以外の菌について述べる。
PCAにおいて、15分後、60分後共に、試料フィルムLが最も採取された菌が少なく、次いで試料フィルムM、PET5の順となった。特に、15分後は、試料サンプルLとMそれぞれから採取された菌数は、50倍モスアイの方が少なかった。このことから、モスアイ構造により短い時間で多くの菌を死滅させることが可能であることが実証された。また、MSEYとESCMの結果からブドウ球菌などや、グラム陰性菌などの幅広い菌種に対し殺菌効果があることが確認された。
Agイオン含有フィルムなどの従来の抗菌加工は、菌の増殖を抑制するので、長期的には感染を抑制する効果があるものの、上記の結果から理解されるように、短時間で起こる感染を抑制する効果はあまり期待できない。ハンドドライヤは多くの人が利用するので、菌保有者が利用した後、ハンドドライヤの手挿入部内壁(底を含む)に付着した水(菌を含む)が、次の人が利用している際に、空気流によって飛散し、手に付着することにより感染を引き起こす可能性がある。したがって、できるだけ短時間で菌を死滅させる、および、手挿入部内壁に付着した水をできるだけ短時間で乾燥させることが望ましい。上記の実験結果から理解されるように、モスアイ構造を有する親水性の膜は、従来よりも短時間で殺菌することおよび乾燥させることが可能であり、かつ、多くの菌種に対して有効であるので、不特定多数の人が使用する場所に設置されるハンドドライヤに好適に用いられる。
本発明の実施形態によるハンドドライヤは、手挿入部に付着した水の飛散による二次汚染が懸念される用途に特に好適に用いられる。
34A、34B 合成高分子膜
34Ap、34Bp 凸部
42A、42B ベースフィルム
50A、50B フィルム
60A、60B ハンドドライヤ本体
62A、62B 手挿入空間
64A、64B 手挿入部
66A、66B ノズル部
72A、72B 合成高分子膜
100、100A、100B モスアイ用型
200A、200B ハンドドライヤ

Claims (9)

  1. 手挿入空間を画定する手挿入部を有する本体と、
    前記手挿入空間に挿入された手に向かって空気流を送る少なくとも1つのノズル部と、
    前記手挿入部の前記手挿入空間側の内面に設けられた合成高分子膜であって、複数の凸部を備える表面を有し、前記合成高分子膜の法線方向から見たとき、前記複数の凸部の2次元的な大きさは20nm超500nm未満の範囲内にあり、前記表面が殺菌効果を有し、1gに含まれるエチレンオキサイド単位のモル数は0.0020超である合成高分子膜と
    を有する、ハンドドライヤ。
  2. 前記合成高分子膜において、第1級アミンを形成する窒素元素および第2級アミンを形成する窒素元素の合計の濃度は0.29at%以上である、請求項1に記載のハンドドライヤ。
  3. 前記合成高分子膜1gに含まれるエチレンオキサイド単位のモル数は0.0070以上である、請求項1または2に記載のハンドドライヤ。
  4. 前記合成高分子膜において、第1級アミンを形成する窒素元素および第2級アミンを形成する窒素元素の合計の濃度は、0.33at%以上である、請求項1から3のいずれかに記載のハンドドライヤ。
  5. 前記合成高分子膜は、ウレタンアクリレート構造を含む、請求項1から4のいずれかに記載のハンドドライヤ。
  6. 前記ウレタンアクリレート構造は、エチレンオキサイド単位の繰り返し構造を含む、請求項5に記載のハンドドライヤ。
  7. 前記ウレタンアクリレート構造は、3官能以上のウレタンアクリレートモノマーの重合体を含む、請求項5または6に記載のハンドドライヤ。
  8. 前記ウレタンアクリレートモノマーは、窒素元素を含む複素環を含む、請求項7に記載のハンドドライヤ。
  9. 前記複素環は、シアヌル環である、請求項8に記載のハンドドライヤ。
JP2019505969A 2017-03-15 2018-03-09 ハンドドライヤ Pending JPWO2018168697A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017050442 2017-03-15
JP2017050442 2017-03-15
PCT/JP2018/009245 WO2018168697A1 (ja) 2017-03-15 2018-03-09 ハンドドライヤ

Publications (1)

Publication Number Publication Date
JPWO2018168697A1 true JPWO2018168697A1 (ja) 2020-05-21

Family

ID=63522177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019505969A Pending JPWO2018168697A1 (ja) 2017-03-15 2018-03-09 ハンドドライヤ

Country Status (2)

Country Link
JP (1) JPWO2018168697A1 (ja)
WO (1) WO2018168697A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1118999A (ja) * 1997-07-09 1999-01-26 Duskin Co Ltd ジェットタイプのハンドドライヤー
JP2002078638A (ja) * 2000-09-08 2002-03-19 Funayama Kk ハンドドライヤー
JP2015137313A (ja) * 2014-01-22 2015-07-30 シャープ株式会社 微細凹凸構造を表面に有する膜体、該膜体を表面に有する構造体および前記膜体を形成する重合性組成物
WO2016208540A1 (ja) * 2015-06-23 2016-12-29 シャープ株式会社 殺菌作用を備えた表面を有する合成高分子膜

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1118999A (ja) * 1997-07-09 1999-01-26 Duskin Co Ltd ジェットタイプのハンドドライヤー
JP2002078638A (ja) * 2000-09-08 2002-03-19 Funayama Kk ハンドドライヤー
JP2015137313A (ja) * 2014-01-22 2015-07-30 シャープ株式会社 微細凹凸構造を表面に有する膜体、該膜体を表面に有する構造体および前記膜体を形成する重合性組成物
WO2016208540A1 (ja) * 2015-06-23 2016-12-29 シャープ株式会社 殺菌作用を備えた表面を有する合成高分子膜

Also Published As

Publication number Publication date
WO2018168697A1 (ja) 2018-09-20

Similar Documents

Publication Publication Date Title
JP6470410B2 (ja) 殺菌作用を備えた表面を有する合成高分子膜
JP6516662B2 (ja) 殺菌作用を有するフィルターを用いた殺菌方法
US11364673B2 (en) Synthetic polymer film and production method of synthetic polymer film
JP6581296B2 (ja) 殺菌作用を備えた表面を有する合成高分子膜
TWI714883B (zh) 具有具備殺菌作用之表面之合成高分子膜、光硬化性樹脂組合物、合成高分子膜之製造方法、及使用合成高分子膜之表面之殺菌方法
US11883999B2 (en) Synthetic polymer film provided with surface having sterilizing effect, method for manufacturing synthetic polymer film and sterilization method using surface of synthetic polymer film
JPWO2018168697A1 (ja) ハンドドライヤ
JP6674554B2 (ja) 殺菌作用を備えた表面を有する合成高分子膜の製造方法
US10968292B2 (en) Synthetic polymer film whose surface has microbicidal activity, photocurable resin composition, manufacturing method of synthetic polymer film, and sterilization method with use of surface of synthetic polymer film
US20200189249A1 (en) Plastic product which includes synthetic polymer film whose surface has microbicidal activity
JP7042278B2 (ja) 殺菌作用を備えた表面を有する合成高分子膜および合成高分子膜の表面を用いた殺菌方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200915

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210309