JPWO2018159637A1 - Compound, liquid crystal composition and liquid crystal display device - Google Patents

Compound, liquid crystal composition and liquid crystal display device Download PDF

Info

Publication number
JPWO2018159637A1
JPWO2018159637A1 JP2019503033A JP2019503033A JPWO2018159637A1 JP WO2018159637 A1 JPWO2018159637 A1 JP WO2018159637A1 JP 2019503033 A JP2019503033 A JP 2019503033A JP 2019503033 A JP2019503033 A JP 2019503033A JP WO2018159637 A1 JPWO2018159637 A1 JP WO2018159637A1
Authority
JP
Japan
Prior art keywords
liquid crystal
carbon atoms
group
formula
alkyl group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019503033A
Other languages
Japanese (ja)
Other versions
JP7096533B2 (en
Inventor
保坂 和義
和義 保坂
浩 北
浩 北
徳俊 三木
徳俊 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Publication of JPWO2018159637A1 publication Critical patent/JPWO2018159637A1/en
Application granted granted Critical
Publication of JP7096533B2 publication Critical patent/JP7096533B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C271/00Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C271/06Esters of carbamic acids
    • C07C271/08Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms
    • C07C271/10Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C271/22Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of hydrocarbon radicals substituted by carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C271/00Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C271/06Esters of carbamic acids
    • C07C271/40Esters of carbamic acids having oxygen atoms of carbamate groups bound to carbon atoms of six-membered aromatic rings
    • C07C271/42Esters of carbamic acids having oxygen atoms of carbamate groups bound to carbon atoms of six-membered aromatic rings with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C271/54Esters of carbamic acids having oxygen atoms of carbamate groups bound to carbon atoms of six-membered aromatic rings with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of hydrocarbon radicals substituted by carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C271/00Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C271/06Esters of carbamic acids
    • C07C271/08Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms
    • C07C271/10Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C271/16Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C271/00Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C271/06Esters of carbamic acids
    • C07C271/32Esters of carbamic acids having oxygen atoms of carbamate groups bound to carbon atoms of rings other than six-membered aromatic rings
    • C07C271/34Esters of carbamic acids having oxygen atoms of carbamate groups bound to carbon atoms of rings other than six-membered aromatic rings with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C271/00Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C271/06Esters of carbamic acids
    • C07C271/40Esters of carbamic acids having oxygen atoms of carbamate groups bound to carbon atoms of six-membered aromatic rings
    • C07C271/42Esters of carbamic acids having oxygen atoms of carbamate groups bound to carbon atoms of six-membered aromatic rings with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C271/48Esters of carbamic acids having oxygen atoms of carbamate groups bound to carbon atoms of six-membered aromatic rings with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Abstract

下記式[1a]の化合物を、液晶表示素子の液晶組成物に用いることで、本発明の目的が達成される。[化1]式中の記号の定義は明細書記載の通りである。The object of the present invention is achieved by using the compound of the following formula [1a] in a liquid crystal composition of a liquid crystal display device. The definitions of the symbols in the formula are as described in the specification.

Description

本発明は、新規な化合物、該化合物を含む液晶組成物、及び該液晶組成物を用いて得られる透過散乱型の液晶表示素子に関する。   The present invention relates to a novel compound, a liquid crystal composition containing the compound, and a transmission-scattering type liquid crystal display device obtained using the liquid crystal composition.

TN(Twisted Nematic)モードの液晶配向素子が実用化されている。このモードでは、液晶の旋光特性を利用して光のスイッチングを行うために偏光板を用いる必要がある。偏光板を用いると光の利用効率が低くなる。偏光板を用いない液晶表示素子としては、液晶の透過状態(透明状態ともいう。)と散乱状態との間でスイッチングを行う、高分子分散型液晶(PDLC(Polymer Dispersed Liquid Crystal)ともいう。)や高分子ネットワーク型液晶(PNLC(Polymer Network Liquid Crystal)ともいう。)を用いたものが知られている。   TN (Twisted Nematic) mode liquid crystal alignment elements have been put to practical use. In this mode, it is necessary to use a polarizing plate in order to switch light using the optical rotation characteristics of the liquid crystal. When a polarizing plate is used, light use efficiency is reduced. As a liquid crystal display element not using a polarizing plate, a polymer dispersed liquid crystal (also referred to as PDLC (Polymer Dispersed Liquid Crystal)) that switches between a transmission state (also referred to as a transparent state) and a scattering state of the liquid crystal. And a polymer network type liquid crystal (also referred to as PNLC (Polymer Network Liquid Crystal)) are known.

これらの液晶表示素子では、電極を備えた一対の基板の間に、紫外線により重合する重合性化合物を含む液晶組成物を配置している。紫外線の照射により液晶組成物の硬化を行うことで、液晶と重合性化合物の硬化物(例えば、ポリマーネットワーク)との複合体を形成することができる。このような液晶表示素子では、電圧の印加により、液晶の透過状態と散乱状態とを制御することができる。   In these liquid crystal display devices, a liquid crystal composition containing a polymerizable compound polymerized by ultraviolet rays is disposed between a pair of substrates provided with electrodes. By curing the liquid crystal composition by irradiation with ultraviolet rays, a complex of liquid crystal and a cured product of a polymerizable compound (for example, a polymer network) can be formed. In such a liquid crystal display element, the transmission state and the scattering state of the liquid crystal can be controlled by applying a voltage.

PDLCやPNLCを用いた従来の液晶表示素子は、多くの場合、電圧無印加時に液晶分子がランダムな方向を向いているため、白濁(散乱)状態となり、電圧印加時には液晶が電界方向に配列し、光を透過して透過状態となる(このような液晶表示素子をノーマル型素子ともいう。)。しかし、ノーマル型素子では、透過状態を得るために常時電圧を印加しておく必要があるため、透明状態で使用される場合が多い用途、例えば、窓ガラスの用途に使用する場合、消費電力が大きくなる。一方、電圧無印加時に透過状態となり、電圧印加時には散乱状態になるPDLCを用いた液晶表示素子(リバース型素子ともいう。)が提案されている(特許文献1、2参照)。   Conventional liquid crystal display devices using PDLC or PNLC often become cloudy (scattering) because liquid crystal molecules are oriented in random directions when no voltage is applied, and liquid crystals are arranged in the direction of an electric field when voltage is applied. Then, light is transmitted to be in a transmission state (such a liquid crystal display element is also referred to as a normal type element). However, in the normal type element, it is necessary to always apply a voltage in order to obtain a transmission state. Therefore, when used in a transparent state in many cases, for example, in a window glass application, power consumption is low. growing. On the other hand, there has been proposed a liquid crystal display element (also referred to as a reverse type element) using a PDLC that becomes a transmission state when no voltage is applied and becomes a scattering state when a voltage is applied (see Patent Documents 1 and 2).

特許2885116号公報Japanese Patent No. 2885116 特許4132424号公報Japanese Patent No. 4132424

液晶組成物中の重合性化合物は、ポリマーネットワークを形成させ、所望とする光学特性を得る役割と、液晶層(前記の液晶と重合性化合物の硬化物との複合体)と液晶配向膜との密着性を高める役割と、がある。リバース型素子に用いる液晶配向膜は、液晶を垂直配向させるために疎水性が高い膜であることから、液晶層と液晶配向膜との密着性が低くなる問題がある。密着性を高めるには、ポリマーネットワークをより密にする必要があるため、リバース型素子の液晶組成物には、重合性化合物を多く導入する必要がある。しかし、ポリマーネットワークを密にすると、液晶の垂直配向性を阻害し、リバース型素子における、電圧無印加時の透明性と電圧印加時の散乱特性を悪化させてしまう。そのため、リバース型素子に用いる液晶組成物中の重合性化合物は、液晶層の形成時に液晶の垂直配向性を高めるものが必要となる。   The polymerizable compound in the liquid crystal composition forms a polymer network and obtains desired optical characteristics, and the role of the liquid crystal layer (composite of the liquid crystal and the cured product of the polymerizable compound) and the liquid crystal alignment film. There is a role to enhance the adhesion. The liquid crystal alignment film used for the reverse type element has a problem that the adhesion between the liquid crystal layer and the liquid crystal alignment film is low because the liquid crystal alignment film is highly hydrophobic in order to vertically align the liquid crystal. In order to increase the adhesion, it is necessary to make the polymer network denser. Therefore, it is necessary to introduce a large amount of a polymerizable compound into the liquid crystal composition of the reverse type device. However, when the polymer network is dense, the vertical alignment of the liquid crystal is hindered, and the transparency of the reverse type device when no voltage is applied and the scattering characteristics when the voltage is applied are deteriorated. Therefore, the polymerizable compound in the liquid crystal composition used for the reverse type element needs to be one that enhances the vertical alignment of the liquid crystal when forming the liquid crystal layer.

更に、リバース型素子は、自動車や建築建物の窓ガラスに貼って使用される場合があるため、長時間、高温高湿や光の照射に曝された過酷な環境でも、液晶の垂直配向性が低下せず、且つ、液晶層と液晶配向膜との密着性が高いことが必要となる。これまで、そのような条件を満たす液晶表示素子は見出されていなかった。   Furthermore, since the reverse type element is sometimes used by being attached to the window glass of an automobile or an architectural building, the vertical alignment of the liquid crystal is maintained even in a severe environment exposed to high temperature, high humidity and light for a long time. It is necessary that it does not decrease and that the adhesion between the liquid crystal layer and the liquid crystal alignment film is high. Heretofore, a liquid crystal display device satisfying such a condition has not been found.

本発明は、液晶の垂直配向性が高く、良好な光学特性、即ち、電圧無印加時の透明性と電圧印加時の散乱特性が良好であり、更に液晶層と液晶配向膜との密着性が高く、長時間、高温高湿や光の照射に曝される環境においても、これら特性を維持できる液晶表示素子を提供することを目的とする。   The present invention has a high liquid crystal vertical alignment property and good optical properties, that is, good transparency when no voltage is applied and good scattering properties when a voltage is applied, and furthermore, adhesion between the liquid crystal layer and the liquid crystal alignment film. It is an object of the present invention to provide a liquid crystal display element capable of maintaining these characteristics even in an environment that is exposed to high temperature, high humidity and light irradiation for a long time.

本発明者は、前記の目的を達成するため鋭意研究を進めた結果、以下の要旨を有する本発明を完成するに至った。
即ち、本発明は、液晶表示素子の液晶組成物に用いることができる、下記1.〜16にある。
The present inventor has made intensive studies to achieve the above object, and as a result, completed the present invention having the following gist.
That is, the present invention can be used for a liquid crystal composition of a liquid crystal display element. ~ 16.

1.下記式[1a]の化合物(以下、特定化合物ともいう。)。   1. A compound of the following formula [1a] (hereinafter, also referred to as a specific compound).

Figure 2018159637
Figure 2018159637

は下記式[2−1a]〜式[2−7a]から選ばれる構造を示す。Tは炭素数2〜18の直鎖又は分岐状のアルキレン基を示し、TとTと隣り合わない前記アルキレン基の任意の−CH−は、−O−、−CO−、−COO−、−OCO−、−CONH−、−NHCO−、−NH−、ベンゼン環又はシクロヘキサン環で置き換えられていてもよい。Tは下記式[1−1b]〜式[1−4b]から選ばれる構造を示す。Tは単結合又は炭素数1〜24のアルキレン基を示し、Tと隣り合わない前記アルキレン基の任意の−CH−は、−O−、−CO−、−COO−、−OCO−、−CONH−、−NHCO−、−NH−、−CON(CH)−、−S−又は−SO−で置き換えられてもよい。Tはベンゼン環、シクロヘキサン環及び複素環から選ばれる2価の環状基、又はステロイド骨格を有する炭素数17〜51の2価の有機基を示し、前記環状基上の任意の水素原子は、炭素数1〜3のアルキル基、炭素数1〜3のアルコキシ基、炭素数1〜3のフッ素含有アルキル基、炭素数1〜3のフッ素含有アルコキシ基又はフッ素原子で置換されていてもよい。Tは単結合、−O−、−OCH−、−CHO−、−COO−又は−OCO−を示す。Tはベンゼン環、シクロヘキサン環及び複素環から選ばれる環状基を示し、これらの環状基上の任意の水素原子が、炭素数1〜3のアルキル基、炭素数1〜3のアルコキシ基、炭素数1〜3のフッ素含有アルキル基、炭素数1〜3のフッ素含有アルコキシ基又はフッ素原子で置換されていてもよい。Tは炭素数1〜18のアルキル基、炭素数2〜18のアルケニル基、炭素数1〜18のフッ素含有アルキル基、炭素数1〜18のアルコキシ基又は炭素数1〜18のフッ素含有アルコキシ基を示す。mTは1〜4の整数を示す。nTは0〜4の整数を示す。T 1 represents a structure selected from the following formulas [2-1a] to [2-7a]. T 2 are a linear or branched alkylene group having 2 to 18 carbon atoms, T 1 and T 3 and not adjacent said alkylene group any -CH 2 in the - is, -O -, - CO -, - It may be replaced by COO—, —OCO—, —CONH—, —NHCO—, —NH—, a benzene ring or a cyclohexane ring. T 3 represents a structure selected from the following formulas [1-1b] to [1-4b]. T 4 represents a single bond or an alkylene group having 1 to 24 carbon atoms, T 3 and not adjacent said alkylene group any -CH 2 in the - is, -O -, - CO -, - COO -, - OCO- , -CONH -, - NHCO -, - NH -, - CON (CH 3) -, - S- or -SO 2 - may be replaced by. T 5 represents a divalent cyclic group selected from a benzene ring, a cyclohexane ring and a heterocyclic ring, or a divalent organic group having a steroid skeleton and having 17 to 51 carbon atoms, and an arbitrary hydrogen atom on the cyclic group is It may be substituted by an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxy group having 1 to 3 carbon atoms or a fluorine atom. T 6 represents a single bond, —O—, —OCH 2 —, —CH 2 O—, —COO—, or —OCO—. T 7 represents a cyclic group selected from a benzene ring, a cyclohexane ring, and a heterocyclic ring, and any hydrogen atom on the cyclic group is an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, It may be substituted with a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxy group having 1 to 3 carbon atoms, or a fluorine atom. T 8 is an alkyl group having 1 to 18 carbon atoms, an alkenyl group having 2 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxy group having 1 to 18 carbon atoms, or a fluorine-containing alkoxy group having 1 to 18 carbon atoms. Represents a group. mT shows the integer of 1-4. nT shows the integer of 0-4.

Figure 2018159637
Figure 2018159637

は水素原子又はベンゼン環を示す。W A is a hydrogen atom or a benzene ring.

Figure 2018159637
Figure 2018159637

は水素原子又は炭素数1〜3のアルキル基を示す。T B is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.

2.前記式[1a]の化合物が、下記式[1b]又は式[1c]である1.に記載の化合物。   2. The compound of the formula [1a] is represented by the following formula [1b] or [1c]. The compound according to the above.

Figure 2018159637
Figure 2018159637

、T11、T17及びT19はそれぞれ、前記式[2−1a]〜式[2−7a]から選ばれる構造を示す。T10及びT18は炭素数2〜12の直鎖状又は分岐状のアルキレン基を示す。T12及びT20は前記式[1−1b]〜式[1−4b]から選ばれる構造を示す。T13及びT21は単結合又は炭素数1〜8のアルキレン基を示す。T14及びT15はベンゼン環又はシクロヘキサン環を示す。T16は炭素数1〜12のアルキル基又はアルコキシ基を示す。T22はステロイド骨格を有する炭素数17〜51の2価の有機基を示す。pTは0〜4の整数を示す。T 9 , T 11 , T 17 and T 19 each represent a structure selected from the formulas [2-1a] to [2-7a]. T 10 and T 18 is a straight or branched alkylene group having 2 to 12 carbon atoms. T 12 and T 20 represents a structure selected from the formula [1-1b] ~ formula [1-4b]. T 13 and T 21 represents a single bond or an alkylene group having 1 to 8 carbon atoms. T 14 and T 15 represent a benzene ring or a cyclohexane ring. T 16 represents an alkyl group or an alkoxy group having 1 to 12 carbon atoms. T 22 represents a divalent organic group having 17 to 51 carbon atoms having a steroid skeleton. pT shows the integer of 0-4.

3.前記式[1a]、式[1b]及び式[1c]から選ばれる少なくとも1種の化合物を含有する液晶組成物。   3. A liquid crystal composition containing at least one compound selected from the formulas [1a], [1b] and [1c].

4.電極を備えた一対の基板の間に配置した液晶及び重合性化合物を含む液晶組成物に対し、紫外線を照射して硬化させた液晶層を有し、且つ、基板の少なくとも一方が液晶を垂直に配向させるような液晶配向膜を備える液晶表示素子であって、該液晶組成物が、前記式[1a]、式[1b]及び式[1c]から選ばれる少なくとも1種の化合物を含む液晶表示素子。   4. A liquid crystal composition including a liquid crystal and a polymerizable compound disposed between a pair of substrates having electrodes is provided with a liquid crystal layer cured by irradiating ultraviolet rays, and at least one of the substrates vertically aligns the liquid crystal. What is claimed is: 1. A liquid crystal display device comprising a liquid crystal alignment film for aligning, wherein the liquid crystal composition comprises at least one compound selected from the formulas [1a], [1b] and [1c]. .

5.前記液晶組成物が、下記式[2a]の化合物を含む4.に記載の液晶表示素子。   5. 3. the liquid crystal composition contains a compound of the following formula [2a]; 3. The liquid crystal display device according to item 1.

Figure 2018159637
Figure 2018159637

は下記式[2−1a]〜式[2−7a]から選ばれる構造を示す。Wは単結合、−O−、−COO−又は−OCO−を示す。Wは単結合又は炭素数1〜12のアルキレン基を示す。Wは単結合、−O−、−COO−又は−OCO−を示す。Wはベンゼン環、シクロヘキサン環又はステロイド骨格を有する炭素数17〜51の2価の有機基を示す。Wは単結合、−CH−、−CHO−、−OCH−、−O−、−COO−、−OCO−、−NHCO−又は−CONH−を示す。Wはベンゼン環又はシクロヘキサン環を示す。Wは炭素数1〜18のアルキル基、炭素数2〜18のアルケニル基、炭素数1〜18のフッ素含有アルキル基、炭素数1〜18のアルコキシ基又は炭素数1〜18のフッ素含有アルコキシ基を示す。mWは0〜4の整数を示す。W 1 represents a structure selected from the following formulas [2-1a] to [2-7a]. W 2 is a single bond, -O -, - COO- or an -OCO-. W 3 represents a single bond or an alkylene group having 1 to 12 carbon atoms. W 4 represents a single bond, —O—, —COO—, or —OCO—. W 5 represents a benzene ring, a cyclohexane ring or a divalent organic group having 17 to 51 carbon atoms having a steroid skeleton. W 6 being a single bond, -CH 2 -, - CH 2 O -, - OCH 2 -, - O -, - COO -, - OCO -, - NHCO- or an -CONH-. W 7 represents a benzene ring or a cyclohexane ring. W 8 is an alkyl group having 1 to 18 carbon atoms, an alkenyl group having 2 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxy group having 1 to 18 carbon atoms, or a fluorine-containing alkoxy group having 1 to 18 carbon atoms. Represents a group. mW represents an integer of 0 to 4.

Figure 2018159637
Figure 2018159637

は水素原子又はベンゼン環を示す。W A is a hydrogen atom or a benzene ring.

6.前記液晶配向膜が、下記式[4−1a]又は式[4−2a]の側鎖構造を有する重合体を含む液晶配向処理剤から得られる液晶配向膜である4.又は5.に記載の液晶表示素子。   6. 3. The liquid crystal alignment film is a liquid crystal alignment film obtained from a liquid crystal alignment agent containing a polymer having a side chain structure represented by the following formula [4-1a] or formula [4-2a]. Or 5. 3. The liquid crystal display device according to item 1.

Figure 2018159637
Figure 2018159637

及びXはそれぞれ、単結合、−(CH−(aは1〜15の整数である)、−O−、−CHO−、−COO−又は−OCO−を示す。Xは単結合又は−(CH−(bは1〜15の整数である)を示す。Xはベンゼン環、シクロヘキサン環及び複素環から選ばれる2価の環状基、又はステロイド骨格を有する炭素数17〜51の2価の有機基を示し、前記環状基上の任意の水素原子は、炭素数1〜3のアルキル基、炭素数1〜3のアルコキシ基、炭素数1〜3のフッ素含有アルキル基、炭素数1〜3のフッ素含有アルコキシ基又はフッ素原子で置換されていてもよい。Xはベンゼン環、シクロヘキサン環及び複素環から選ばれる少なくとも1種の環状基を示し、これらの環状基上の任意の水素原子は、炭素数1〜3のアルキル基、炭素数1〜3のアルコキシ基、炭素数1〜3のフッ素含有アルキル基、炭素数1〜3のフッ素含有アルコキシ基又はフッ素原子で置換されていてもよい。Xは炭素数1〜18のアルキル基、炭素数2〜18のアルケニル基、炭素数1〜18のフッ素含有アルキル基、炭素数1〜18のアルコキシ基又は炭素数1〜18のフッ素含有アルコキシ基を示す。nは0〜4の整数を示す。X 1 and X 3 is a single bond, - (CH 2) a - (a is an integer of 1~15), - O -, - CH 2 O -, - COO- or an -OCO-. X 2 represents a single bond or — (CH 2 ) b — (b is an integer of 1 to 15). X 4 represents a divalent cyclic group selected from a benzene ring, a cyclohexane ring and a heterocyclic ring, or a divalent organic group having a steroid skeleton and having 17 to 51 carbon atoms, and an arbitrary hydrogen atom on the cyclic group is It may be substituted by an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxy group having 1 to 3 carbon atoms or a fluorine atom. X 5 represents at least one cyclic group selected from a benzene ring, a cyclohexane ring and a heterocyclic ring, and any hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, It may be substituted by an alkoxy group, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxy group having 1 to 3 carbon atoms or a fluorine atom. X 6 is an alkyl group having 1 to 18 carbon atoms, an alkenyl group having 2 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxy group having 1 to 18 carbon atoms, or a fluorine-containing alkoxy group having 1 to 18 carbon atoms. Represents a group. n shows the integer of 0-4.

Figure 2018159637
Figure 2018159637

は単結合、−O−、−CHO−、−CONH−、−NHCO−、−CON(CH)−、−N(CH)CO−、−COO−又は−OCO−を示す。Xは炭素数8〜18のアルキル基又は炭素数6〜18のフッ素含有アルキル基を示す。X 7 is a single bond, -O -, - CH 2 O -, - CONH -, - NHCO -, - CON (CH 3) -, - N (CH 3) CO -, - shows a COO- or -OCO- . X 8 represents a fluorine-containing alkyl group having 6 to 18 carbon alkyl group or C of 8-18 carbon atoms.

7.前記液晶配向処理剤が、アクリルポリマー、メタクリルポリマー、ノボラック樹脂、ポリヒドロキシスチレン、ポリイミド前駆体、ポリイミド、ポリアミド、ポリエステル、セルロース及びポリシロキサンから選ばれる少なくとも1種を含む6.に記載の液晶表示素子。   7. 5. The liquid crystal alignment treatment agent contains at least one selected from an acrylic polymer, a methacrylic polymer, a novolak resin, a polyhydroxystyrene, a polyimide precursor, a polyimide, a polyamide, a polyester, a cellulose, and a polysiloxane. 3. The liquid crystal display device according to item 1.

8.前記液晶配向処理剤が、前記式[4−1a]又は式[4−2a]の側鎖構造を有するジアミンを含有するジアミン成分と、テトラカルボン酸成分との反応で得られるポリイミド前駆体又は該ポリイミド前駆体をイミド化したポリイミドを含む7.に記載の液晶表示素子。   8. A polyimide precursor obtained by reacting a diamine component containing a diamine having a side chain structure of the formula [4-1a] or [4-2a] with a tetracarboxylic acid component, 6. Including polyimide obtained by imidizing a polyimide precursor 3. The liquid crystal display device according to item 1.

9.前記式[4−1a]又は式[4−2a]の側鎖構造を有するジアミンが、下記式[4a]で示される8.に記載の液晶表示素子。   9. 7. The diamine having the side chain structure of the formula [4-1a] or [4-2a] is represented by the following formula [4a]. 3. The liquid crystal display device according to item 1.

Figure 2018159637
Figure 2018159637

Xは前記式[4−1a]又は式[4−2a]の構造を示す。mは1〜4の整数を示す。   X represents the structure of the formula [4-1a] or the formula [4-2a]. m shows the integer of 1-4.

10.前記テトラカルボン酸成分が、下記式[5]のテトラカルボン酸二無水物である8.又は9.に記載の液晶表示素子。   10. 7. The tetracarboxylic acid component is a tetracarboxylic dianhydride of the following formula [5]. Or 9. 3. The liquid crystal display device according to item 1.

Figure 2018159637
Figure 2018159637

Zは下記式[5a]〜式[5l]から選ばれる構造を示す。   Z represents a structure selected from the following formulas [5a] to [5l].

Figure 2018159637
Figure 2018159637

〜Zはそれぞれ、水素原子、メチル基、塩素原子又はベンゼン環を示す。Z及びZはそれぞれ、水素原子又はメチル基を示す。Z 1 to Z 4 each represent a hydrogen atom, a methyl group, a chlorine atom or a benzene ring. Z 5 and Z 6 each represent a hydrogen atom or a methyl group.

11.前記液晶配向処理剤が、下記式[A1]のアルコキシシランを重縮合させて得られるポリシロキサン、又は、該式[A1]のアルコキシシランと、下記式[A2]及び/又は式[A3]のアルコキシシランとを重縮合させて得られるポリシロキサンを含む7.に記載の液晶表示素子。   11. The liquid crystal alignment treatment agent is a polysiloxane obtained by polycondensation of an alkoxysilane of the following formula [A1], or an alkoxysilane of the formula [A1], and the following formulas [A2] and / or [A3] 6. Including polysiloxane obtained by polycondensation with alkoxysilane. 3. The liquid crystal display device according to item 1.

Figure 2018159637
Figure 2018159637

は前記式[4−1a]又は式[4−2a]の構造を示す。Aは水素原子又は炭素数1〜5のアルキル基を示す。Aは炭素数1〜5のアルキル基を示す。mは1又は2の整数を示す。nは0〜2の整数を示す。pは0〜3の整数を示す。ただし、m+n+pは4である。A 1 represents a structure of the formula [4-1a] or formula [4-2a]. A 2 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. A 3 represents an alkyl group having 1 to 5 carbon atoms. m represents an integer of 1 or 2. n shows the integer of 0-2. p shows the integer of 0-3. However, m + n + p is 4.

Figure 2018159637
Figure 2018159637

はビニル基、エポキシ基、アミノ基、メルカプト基、イソシアネート基、メタクリル基、アクリル基、ウレイド基及びシンナモイル基から選ばれる少なくとも1種を有する炭素数2〜12の有機基を示す。Bは水素原子又は炭素数1〜5のアルキル基を示す。Bは炭素数1〜5のアルキル基を示す。mは1又は2の整数を示す。nは0〜2の整数を示す。pは0〜3の整数を示す。ただし、m+n+pは4である。B 1 represents shows a vinyl group, an epoxy group, an amino group, a mercapto group, an isocyanate group, methacryl group, acryl group, an organic group having 2 to 12 carbon atoms and having at least one selected from a ureido group, and a cinnamoyl group. B 2 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. B 3 represents an alkyl group having 1 to 5 carbon atoms. m represents an integer of 1 or 2. n shows the integer of 0-2. p shows the integer of 0-3. However, m + n + p is 4.

Figure 2018159637
Figure 2018159637

は水素原子又は炭素数1〜5のアルキル基を示す。Dは炭素数1〜5のアルキル基を示す。nは0〜3の整数を示す。D 1 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. D 2 represents an alkyl group having 1 to 5 carbon atoms. n shows the integer of 0-3.

12.前記液晶配向処理剤が、下記式[b−1]〜式[b−11]から選ばれる少なくとも1種の構造を有する化合物を含有する6.〜11.のいずれか一つに記載の液晶表示素子。   12. 5. The liquid crystal alignment treatment agent contains a compound having at least one structure selected from the following formulas [b-1] to [b-11]. ~ 11. The liquid crystal display device according to any one of the above.

Figure 2018159637
Figure 2018159637

は水素原子又はベンゼン環を示す。B〜Bはそれぞれ、炭素数1〜5のアルキル基を示す。B A represents a hydrogen atom or a benzene ring. Each B B .about.B D represents an alkyl group having 1 to 5 carbon atoms.

13.前記液晶配向処理剤が、エポキシ基、イソシアネート基、オキセタン基、シクロカーボネート基、ヒドロキシル基、ヒドロキシアルキル基及び低級アルコキシアルキル基から選ばれる少なくとも1種を有する化合物を含有する6.〜12.のいずれか一つに記載の液晶表示素子。   13. 5. The liquid crystal alignment treatment agent contains a compound having at least one selected from an epoxy group, an isocyanate group, an oxetane group, a cyclocarbonate group, a hydroxyl group, a hydroxyalkyl group and a lower alkoxyalkyl group. ~ 12. The liquid crystal display device according to any one of the above.

14.前記液晶配向処理剤が、1−ヘキサノール、シクロヘキサノール、1,2−エタンジオール、1,2−プロパンジオール、プロピレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテル、ジプロピレングリコールジメチルエーテル、シクロヘキサノン、シクロペンタノン及び下記式[D1]〜式[D3]の溶媒から選ばれる少なくとも1種を含有する6.〜13.のいずれか一つに記載の液晶表示素子。   14. The liquid crystal alignment treatment agent is 1-hexanol, cyclohexanol, 1,2-ethanediol, 1,2-propanediol, propylene glycol monobutyl ether, ethylene glycol monobutyl ether, dipropylene glycol dimethyl ether, cyclohexanone, cyclopentanone and 5. It contains at least one member selected from solvents represented by the formulas [D1] to [D3]. ~ 13. The liquid crystal display device according to any one of the above.

Figure 2018159637
Figure 2018159637

及びDは炭素数1〜3のアルキル基を示す。Dは炭素数1〜4のアルキル基を示す。D 1 and D 2 represent an alkyl group having 1 to 3 carbon atoms. D 3 represents an alkyl group having 1 to 4 carbon atoms.

15.前記液晶配向処理剤が、N−メチル−2−ピロリドン、N−エチル−2−ピロリドン及びγ−ブチロラクトンから選ばれる少なくとも1種を含有する6.〜14.のいずれか一つに記載の液晶表示素子。   15. 5. The liquid crystal alignment treatment agent contains at least one selected from N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, and γ-butyrolactone. ~ 14. The liquid crystal display device according to any one of the above.

16.前記基板が、プラスチック基板である4.〜15.のいずれか一つに記載の液晶表示素子。   16. 3. the substrate is a plastic substrate; ~ 15. The liquid crystal display device according to any one of the above.

本発明によれば、良好な光学特性、即ち、電圧無印加時の透明性と電圧印加時の散乱特性が良好で、液晶層と液晶配向膜との密着性が高く、長時間、高温高湿や光の照射に曝される環境でも、これら特性を維持できる液晶表示素子が得られる。そのため、本発明の液晶表示素子は、リバース型素子として、表示を目的とする液晶ディスプレイや、光の透過と遮断を制御する調光窓や光シャッター素子などに用いることができる。   According to the present invention, good optical properties, that is, good transparency when no voltage is applied and good scattering properties when a voltage is applied, high adhesion between the liquid crystal layer and the liquid crystal alignment film, high temperature and high humidity for a long time And a liquid crystal display element capable of maintaining these characteristics even in an environment exposed to light irradiation. Therefore, the liquid crystal display element of the present invention can be used as a reverse type element in a liquid crystal display for display, a dimming window or an optical shutter element for controlling transmission and blocking of light, and the like.

<特定化合物・液晶組成物>
特定化合物は、前記式[1a]の化合物である。式中、T〜T、mT及びnTは、前記に定義した通りであるが、なかでも下記のものが好ましい。
<Specific compound / liquid crystal composition>
The specific compound is a compound of the formula [1a]. In the formula, T 1 to T 8 , mT and nT are as defined above, and among them, the following are preferable.

は、液晶表示素子の液晶層と液晶配向膜との密着性の点から、式[2−1a]〜式[2−4a]が好ましい。より好ましくは、式[2−1a]又は式[2−2a]である。Tは、炭素数2〜12の直鎖状又は分岐状のアルキレン基が好ましく、TとTと隣り合わない前記アルキレン基の任意の−CH−は、−O−、−CO−、−COO−、−OCO−、−CONH−、−NHCO−又は−NH−で置き換えられていてもよい。より好ましくは、炭素数2〜8の直鎖状又は分岐状のアルキレン基である。Tは、液晶表示素子の光学特性の点から、式[1−1b]、式[1−2b]又は式[1−4b]が好ましい。より好ましくは、式[1−1b]又は式[1−2b]である。T 1, from the viewpoint of adhesion between the liquid crystal layer and the liquid crystal alignment film of the liquid crystal display device, wherein [2-1a] ~ formula [2-4a] is preferred. More preferably, it is a formula [2-1a] or a formula [2-2a]. T 2 is preferably a linear or branched alkylene group having 2 to 12 carbon atoms, and any —CH 2 — of the alkylene group that is not adjacent to T 1 and T 3 is —O— or —CO—. , -COO-, -OCO-, -CONH-, -NHCO-, or -NH-. More preferably, it is a linear or branched alkylene group having 2 to 8 carbon atoms. T 3 is preferably the formula [1-1b], the formula [1-2b] or the formula [1-4b] from the viewpoint of the optical characteristics of the liquid crystal display element. More preferably, the formula [1-1b] or the formula [1-2b].

は、単結合又は炭素数1〜12のアルキレン基が好ましく、Tと隣り合わない前記アルキレン基の任意の−CH−は、−O−、−CO−、−COO−、−OCO−、−CONH−、−NHCO−、−NH−、−CON(CH)−、−S−又は−SO−で置き換えられてもよい。より好ましくは、単結合又は炭素数1〜8のアルキレン基である。Tは、液晶表示素子の光学特性の点から、ベンゼン環、シクロヘキサン環、又はステロイド骨格を有する炭素数17〜51の2価の有機基が好ましい。Tは、単結合、−O−、−COO−又は−OCO−が好ましい。より好ましくは単結合である。Tは、液晶表示素子の光学特性の点から、ベンゼン環又はシクロヘキサン環が好ましい。T 4 is preferably a single bond or an alkylene group having 1 to 12 carbon atoms, and any —CH 2 — of the alkylene group that is not adjacent to T 3 is —O—, —CO—, —COO—, or —OCO. -, - CONH -, - NHCO -, - NH -, - CON (CH 3) -, - S- or -SO 2 - may be replaced by. More preferably, it is a single bond or an alkylene group having 1 to 8 carbon atoms. T 5 is the optical characteristics of the liquid crystal display element point, benzene ring, cyclohexane ring, or a divalent organic group having 17 to 51 carbon atoms having a steroid skeleton is preferable. T 6 is preferably a single bond, —O—, —COO— or —OCO—. More preferably, it is a single bond. T 7 is the optical characteristics of the liquid crystal display element point, a benzene ring or a cyclohexane ring.

は、液晶表示素子の光学特性の点から、炭素数1〜18のアルキル基、炭素数2〜18のアルケニル基又は炭素数1〜18のアルコキシ基が好ましい。より好ましくは、炭素数1〜12のアルキル基又は炭素数1〜12のアルコキシ基である。mTは、液晶表示素子の液晶層と液晶配向膜との密着性の点から、2〜4が好ましい。より好ましくは、2である。nTは、0〜3が好ましい。より好ましくは、0〜2である。T 8 is preferably an alkyl group having 1 to 18 carbon atoms, an alkenyl group having 2 to 18 carbon atoms or an alkoxy group having 1 to 18 carbon atoms, from the viewpoint of the optical characteristics of the liquid crystal display element. More preferably, it is an alkyl group having 1 to 12 carbon atoms or an alkoxy group having 1 to 12 carbon atoms. mT is preferably 2 to 4 from the viewpoint of adhesion between the liquid crystal layer of the liquid crystal display element and the liquid crystal alignment film. More preferably, it is 2. nT is preferably from 0 to 3. More preferably, it is 0-2.

特定化合物の合成方法は特に限定されないが、例えば、下記式[TA]のイソシアネート化合物と、下記式[TA−1]〜式[TA−5]の化合物とを、塩基性触媒下で加熱することで合成できる。   The method for synthesizing the specific compound is not particularly limited, and for example, heating an isocyanate compound of the following formula [TA] and a compound of the following formulas [TA-1] to [TA-5] under a basic catalyst: Can be combined.

Figure 2018159637
Figure 2018159637

及びTは、式[1a]で定義したものと同じである。T 1 and T 2 are the same as defined in the formula [1a].

Figure 2018159637
Figure 2018159637

〜T及びnTは、式[1a]で定義したものと同じである。Tは炭素数1〜3のアルキル基を示す。T 4 to T 8 and nT are the same as those defined in the formula [1a]. T a represents an alkyl group having 1 to 3 carbon atoms.

特定化合物は、下記式[1b]又は式[1c]の化合物が好ましい。   The specific compound is preferably a compound represented by the following formula [1b] or [1c].

Figure 2018159637
Figure 2018159637

、T11、T17及びT19はそれぞれ、前記式[2−1a]〜式[2−7a]の構造を示す。なかでも、液晶表示素子の液晶層と液晶配向膜との密着性の点から、式[2−1a]〜式[2−4a]が好ましい。より好ましくは、式[2−1a]又は式[2−2a]である。T10及びT18は炭素数2〜12の直鎖状又は分岐状のアルキレン基を示す。なかでも、炭素数2〜8の直鎖状又は分岐状のアルキレン基が好ましい。T 9 , T 11 , T 17 and T 19 each represent the structures of the formulas [2-1a] to [2-7a]. Among them, formulas [2-1a] to [2-4a] are preferable from the viewpoint of adhesion between the liquid crystal layer of the liquid crystal display element and the liquid crystal alignment film. More preferably, it is a formula [2-1a] or a formula [2-2a]. T 10 and T 18 is a straight or branched alkylene group having 2 to 12 carbon atoms. Among them, a linear or branched alkylene group having 2 to 8 carbon atoms is preferable.

12及びT20は前記式[1−1b]〜式[1−4b]の構造を示す。なかでも、液晶表示素子の光学特性の点から、式[1−1b]、式[1−2b]又は式[1−4b]が好ましい。より好ましくは、式[1−1b]又は式[1−2b]である。T13及びT21は単結合又は炭素数1〜8のアルキレン基を示す。T14及びT15はそれぞれ、ベンゼン環又はシクロヘキサン環を示す。T 12 and T 20 shows the structure of the formula [1-1b] ~ formula [1-4b]. Above all, formula [1-1b], formula [1-2b] or formula [1-4b] is preferable from the viewpoint of the optical characteristics of the liquid crystal display element. More preferably, the formula [1-1b] or the formula [1-2b]. T 13 and T 21 represents a single bond or an alkylene group having 1 to 8 carbon atoms. T 14 and T 15 each represent a benzene ring or a cyclohexane ring.

16は炭素数1〜12のアルキル基又はアルコキシ基を示す。なかでも、液晶表示素子の光学特性の点から、炭素数1〜18のアルキル基、炭素数2〜18のアルケニル基又は炭素数1〜18のアルコキシ基が好ましい。より好ましくは、炭素数1〜12のアルキル基又は炭素数1〜12のアルコキシ基である。T22はステロイド骨格を有する炭素数17〜51の2価の有機基を示す。pTは0〜4の整数を示す。なかでも、0〜3が好ましい。より好ましくは、0〜2である。T 16 represents an alkyl group or an alkoxy group having 1 to 12 carbon atoms. Among them, an alkyl group having 1 to 18 carbon atoms, an alkenyl group having 2 to 18 carbon atoms or an alkoxy group having 1 to 18 carbon atoms is preferable from the viewpoint of optical characteristics of the liquid crystal display device. More preferably, it is an alkyl group having 1 to 12 carbon atoms or an alkoxy group having 1 to 12 carbon atoms. T 22 represents a divalent organic group having 17 to 51 carbon atoms having a steroid skeleton. pT shows the integer of 0-4. Especially, 0-3 are preferable. More preferably, it is 0-2.

式[1b]及び式[1c]の特定化合物の具体例は、下記式[1a−1]〜式[1a−16]が挙げられ、これらを用いることが好ましい。   Specific examples of the specific compounds of the formulas [1b] and [1c] include the following formulas [1a-1] to [1a-16], and it is preferable to use these.

Figure 2018159637
Figure 2018159637

Figure 2018159637
Figure 2018159637

Figure 2018159637
Figure 2018159637

Figure 2018159637
Figure 2018159637

は式[1−1b]〜式[1−4b]から選ばれる構造を示す。Tは単結合、−O−、−COO−又は−OCO−を示す。Tは炭素数1〜12のアルキル基又は炭素数1〜12のアルコキシ基を示す。p1及びp2は0〜7の整数を示し、p1+p2は1〜7の整数を示す。p3は0〜8の整数を示す。p4は0〜2の整数を示す。p5、p6及びp7はそれぞれ0〜6の整数を示し、p5+p6+p7は1〜6の整数を示す。T A denotes a structure selected from formula [1-1b] ~ formula [1-4b]. T B is a single bond, -O -, - COO- or an -OCO-. T C represents an alkyl group or an alkoxy group having 1 to 12 carbon atoms having 1 to 12 carbon atoms. p1 and p2 each represent an integer of 0 to 7, and p1 + p2 represents an integer of 1 to 7. p3 represents an integer of 0 to 8; p4 represents an integer of 0 to 2. p5, p6 and p7 each represent an integer of 0 to 6, and p5 + p6 + p7 represents an integer of 1 to 6.

Figure 2018159637
Figure 2018159637

Figure 2018159637
Figure 2018159637

は式[1−1b]〜式[1−4b]から選ばれる構造を示す。Tは単結合、−O−、−COO−又は−OCO−を示す。Tは単結合、−CH−、−O−、−COO−又は−OCO−を示す。Tは炭素数1〜12のアルキル基又は炭素数1〜12のアルコキシ基を示す。p8及びp9は0〜7の整数を示し、p8+p9は1〜7の整数を示す。p10は0〜8の整数を示す。p11、p12及びp13はそれぞれ0〜6の整数を示し、p11+p12+p13は1〜6の整数を示す。T D represents a structure selected from formula [1-1b] ~ formula [1-4b]. T E is a single bond, -O -, - COO- or an -OCO-. T F is a single bond, -CH 2 -, - O - , - COO- or an -OCO-. TG represents an alkyl group having 1 to 12 carbon atoms or an alkoxy group having 1 to 12 carbon atoms. p8 and p9 each represent an integer of 0 to 7, and p8 + p9 represents an integer of 1 to 7. p10 shows the integer of 0-8. p11, p12 and p13 each represent an integer of 0 to 6, and p11 + p12 + p13 represents an integer of 1 to 6.

Figure 2018159637
Figure 2018159637

Figure 2018159637
Figure 2018159637

は式[1−1b]〜式[1−4b]から選ばれる構造を示す。Tは単結合、−O−、−COO−又は−OCO−を示す。p14及びp15はそれぞれ0〜7の整数を示し、p14+p15は1〜7の整数を示す。p16は0〜8の整数を示す。p17、p18及びp19はそれぞれ0〜6の整数を示し、p17+p18+p19は1〜6の整数を示す。T H denotes a structure selected from formula [1-1b] ~ formula [1-4b]. T I is a single bond, -O -, - COO- or an -OCO-. p14 and p15 each represent an integer of 0 to 7, and p14 + p15 represents an integer of 1 to 7. p16 represents an integer of 0 to 8. p17, p18 and p19 each represent an integer of 0 to 6, and p17 + p18 + p19 represents an integer of 1 to 6.

式[1b]及び式[1c]の特定化合物の具体例は、より好ましくは、式[1a−5]、式[1a−7]、式[1a−11]、式[1a−15]である。特に好ましくは、液晶表示素子の光学特性の点から、式[1a−5]、式[1a−7]又は式[1a−15]である。   Specific examples of the specific compounds of the formulas [1b] and [1c] are more preferably the formulas [1a-5], [1a-7], [1a-11], and [1a-15]. . Particularly preferably, from the viewpoint of the optical characteristics of the liquid crystal display device, the formula [1a-5], the formula [1a-7] or the formula [1a-15] is used.

特定化合物の使用割合は、液晶表示素子の光学特性の点から、液晶組成物中の液晶100質量部に対して、1〜40質量部が好ましい。より好ましくは、1〜30質量部である。特に好ましくは、1〜15質量部である。また、特定化合物は、各特性に応じて、1種類又は2種類以上を混合して使用できる。本発明の特定化合物は、本発明の液晶表示素子の液晶組成物の成分としてだけではなく、それ以外の液晶表示素子の液晶組成物の成分として用いることもできる。   The use ratio of the specific compound is preferably 1 to 40 parts by mass with respect to 100 parts by mass of the liquid crystal in the liquid crystal composition from the viewpoint of the optical characteristics of the liquid crystal display device. More preferably, it is 1 to 30 parts by mass. Particularly preferably, it is 1 to 15 parts by mass. In addition, the specific compound can be used singly or as a mixture of two or more according to each property. The specific compound of the present invention can be used not only as a component of the liquid crystal composition of the liquid crystal display device of the present invention but also as a component of the liquid crystal composition of other liquid crystal display devices.

本発明の液晶表示素子に用いる液晶組成物は、液晶、重合性化合物及び前記式[1a]の特定化合物を含む。液晶には、ネマチック液晶、スメクチック液晶又はコレステリック液晶を用いることができる。なかでも、負の誘電異方性を有するものが好ましい。また、低電圧駆動及び散乱特性の点からは、誘電率の異方性が大きく、屈折率の異方性が大きいものが好ましい。また、液晶には、前記の相転移温度、誘電率異方性及び屈折率異方性の各物性値に応じて、2種類以上の液晶を用いることができる。   The liquid crystal composition used for the liquid crystal display device of the present invention contains a liquid crystal, a polymerizable compound and the specific compound of the formula [1a]. As the liquid crystal, a nematic liquid crystal, a smectic liquid crystal, or a cholesteric liquid crystal can be used. Among them, those having a negative dielectric anisotropy are preferable. Further, from the viewpoints of low-voltage driving and scattering characteristics, those having large anisotropy of dielectric constant and large anisotropy of refractive index are preferable. Further, as the liquid crystal, two or more types of liquid crystals can be used according to the above-described physical properties of the phase transition temperature, the dielectric anisotropy, and the refractive index anisotropy.

液晶表示素子をTFT(Thin Film Transistor)などの能動素子として駆動させるためには、液晶の電気抵抗が高くて電圧保持率(VHRともいう。)が高いことが求められる。そのため、液晶としては、電気抵抗が高く、紫外線などの活性エネルギー線によりVHRが低下しないフッ素系や塩素系の液晶が好ましい。   In order to drive a liquid crystal display element as an active element such as a TFT (Thin Film Transistor), it is required that the liquid crystal has a high electric resistance and a high voltage holding ratio (VHR). Therefore, the liquid crystal is preferably a fluorine-based or chlorine-based liquid crystal that has a high electric resistance and does not decrease VHR due to active energy rays such as ultraviolet rays.

液晶表示素子は、液晶組成物中に二色性染料を溶解させて、ゲストホスト型の素子とすることもできる。この場合には、電圧無印加時は透明で、電圧印加時に吸収(散乱)となる素子が得られる。また、この液晶表示素子では、液晶のダイレクターの方向(配向の方向)は、電圧印加の有無により90度変化する。そのため、この素子は、二色性染料の吸光特性の違いを利用することで、ランダム配向と垂直配向でスイッチングを行う従来のゲストホスト型の素子に比べて、高いコントラストが得られる。また、二色性染料を溶解させたゲストホスト型の素子では、液晶が水平方向に配向した場合に有色になり、散乱状態においてのみ不透明となる。そのため、電圧を印加するにつれ、電圧無印加時の無色透明から有色不透明、有色透明の状態に切り替わる素子を得ることもできる。   The liquid crystal display element can be a guest-host type element by dissolving a dichroic dye in a liquid crystal composition. In this case, an element that is transparent when no voltage is applied and absorbs (scatters) when a voltage is applied is obtained. In this liquid crystal display device, the direction of the director of the liquid crystal (the direction of alignment) changes by 90 degrees depending on whether or not a voltage is applied. Therefore, in this device, a higher contrast can be obtained by utilizing the difference in the light absorption characteristics of the dichroic dye, as compared with a conventional guest-host device in which switching is performed in random alignment and vertical alignment. In a guest-host type element in which a dichroic dye is dissolved, the liquid crystal becomes colored when the liquid crystal is oriented in the horizontal direction, and becomes opaque only in the scattering state. Therefore, it is also possible to obtain an element that switches from colorless and transparent when no voltage is applied to colored and opaque and colored and transparent when voltage is applied.

ポリマーネットワークを形成するには、液晶組成物中に重合性化合物を導入して、液晶表示素子作製時の紫外線の照射により、重合反応をさせてもよく、或いは、予め重合性化合物を重合反応させたポリマーを液晶組成物に導入してもよい。ただし、ポリマーとした場合でも、紫外線の照射により重合反応する部位を有する必要がある。より好ましくは、液晶組成物の取り扱い、即ち、液晶組成物の高粘度化の抑制や液晶への溶解性の点から、液晶組成物中に重合性化合物を導入して、素子作製時の紫外線の照射により、重合反応をさせてポリマーネットワークとすることが好ましい。   In order to form a polymer network, a polymerizable compound may be introduced into a liquid crystal composition, and a polymerization reaction may be performed by irradiation with ultraviolet rays during the production of a liquid crystal display device, or the polymerizable compound may be preliminarily polymerized. May be introduced into the liquid crystal composition. However, even when a polymer is used, it is necessary to have a site that undergoes a polymerization reaction upon irradiation with ultraviolet rays. More preferably, the handling of the liquid crystal composition, that is, from the viewpoint of suppressing the increase in viscosity of the liquid crystal composition and the solubility in the liquid crystal, by introducing a polymerizable compound into the liquid crystal composition, ultraviolet light during device production. It is preferable that a polymerization reaction be caused by irradiation to form a polymer network.

液晶組成物中の重合性化合物は、液晶に溶解すれば、特に限定されないが、重合性化合物を液晶に溶解した際に、液晶組成物の一部又は全体が液晶相を示す温度が存在することが必要となる。液晶組成物の一部が液晶相を示す場合であっても、液晶表示素子を肉眼で確認して、素子内全体が、ほぼ一様な透明性と散乱特性が得られていればよい。   The polymerizable compound in the liquid crystal composition is not particularly limited as long as the polymerizable compound is dissolved in the liquid crystal.When the polymerizable compound is dissolved in the liquid crystal, a temperature at which a part or the whole of the liquid crystal composition exhibits a liquid crystal phase exists. Is required. Even when a part of the liquid crystal composition shows a liquid crystal phase, the liquid crystal display element is visually confirmed, and it is sufficient that the entire element has substantially uniform transparency and scattering characteristics.

重合性化合物は、紫外線により重合する化合物であればよく、その際、どのような反応形式で重合が進み、ポリマーネットワークを形成させてもよい。具体的な反応形式としては、ラジカル重合、カチオン重合、アニオン重合又は重付加反応が挙げられる。なかでも、重合性化合物の反応形式は、液晶表示素子の光学特性の点から、ラジカル重合が好ましい。その際、重合性化合物としては、下記のラジカル型の重合性化合物、又はそのオリゴマーを用いることができる。また、前記の通り、これらの重合性化合物を重合反応させたポリマーを用いることもできる。   The polymerizable compound may be any compound that can be polymerized by ultraviolet rays. In that case, the polymerization may proceed in any reaction form to form a polymer network. Specific reaction types include radical polymerization, cationic polymerization, anionic polymerization and polyaddition reaction. Among them, the reaction type of the polymerizable compound is preferably radical polymerization from the viewpoint of the optical characteristics of the liquid crystal display device. At that time, as the polymerizable compound, the following radical type polymerizable compound or an oligomer thereof can be used. As described above, a polymer obtained by polymerizing these polymerizable compounds can also be used.

これらラジカル型の重合性化合物又はそのオリゴマーの具体例は、国際公開公報2015/146987(2015.10.1公開)の69頁〜71頁に記載されるラジカル型の重合性化合物が挙げられる。ラジカル型の重合性化合物又はそのオリゴマーの使用割合は、液晶表示素子の液晶層と液晶配向膜との密着性の点から、液晶組成物中の液晶100質量部に対して、70〜120質量部が好ましい。より好ましくは、80〜110質量部である。また、これらラジカル型の重合性化合物は、各特性に応じて、1種類又は2種類以上を混合して使用することもできる。   Specific examples of these radical-type polymerizable compounds or oligomers thereof include the radical-type polymerizable compounds described on pages 69 to 71 of International Publication WO 2015/146987 (published on 2015.10.1). The proportion of the radical-type polymerizable compound or the oligomer thereof is from 70 to 120 parts by mass with respect to 100 parts by mass of the liquid crystal in the liquid crystal composition from the viewpoint of the adhesion between the liquid crystal layer of the liquid crystal display element and the liquid crystal alignment film. Is preferred. More preferably, it is 80 to 110 parts by mass. In addition, one of these radical polymerizable compounds may be used alone, or two or more of them may be used in combination according to each property.

ポリマーネットワークの形成を促進させるため、液晶組成物中には、重合性化合物のラジカル重合を促進させる目的で、紫外線によりラジカルを発生する、ラジカル開始剤(重合開始剤ともいう。)を導入することが好ましい。具体的には、国際公開公報2015/146987(2015.10.1公開)の71頁〜72頁に記載されるラジカル開始剤が挙げられる。ラジカル開始剤の使用割合は、液晶表示素子の液晶層と液晶配向膜との密着性の点から、液晶組成物中の液晶100質量部に対して、0.01〜10質量部が好ましい。より好ましくは、0.05〜5質量部である。また、ラジカル開始剤は、各特性に応じて、1種類又は2種類以上を混合して使用できる。   In order to promote the formation of a polymer network, a radical initiator (also referred to as a polymerization initiator) that generates radicals by ultraviolet rays is introduced into the liquid crystal composition for the purpose of promoting radical polymerization of the polymerizable compound. Is preferred. Specific examples include the radical initiators described on pages 71 to 72 of International Publication WO 2015/146987 (published on 2015.10.1). The usage ratio of the radical initiator is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the liquid crystal in the liquid crystal composition, from the viewpoint of the adhesion between the liquid crystal layer of the liquid crystal display device and the liquid crystal alignment film. More preferably, it is 0.05 to 5 parts by mass. The radical initiator can be used singly or as a mixture of two or more, depending on each property.

本発明の液晶表示素子に用いる液晶組成物には、液晶表示素子の光学特性、特に透明性を高めるために、下記式[2a]の化合物(添加化合物ともいう)を導入することが好ましい。特に、特定化合物と共に用いることが好ましい。   It is preferable to introduce a compound represented by the following formula [2a] (also referred to as an additive compound) into the liquid crystal composition used in the liquid crystal display device of the present invention in order to enhance the optical properties, particularly transparency, of the liquid crystal display device. In particular, it is preferable to use with a specific compound.

Figure 2018159637
Figure 2018159637

は下記式[2−1a]〜式[2−7a]から選ばれる構造を示す。Wは単結合、−O−、−COO−又は−OCO−を示す。Wは単結合又は炭素数1〜12のアルキレン基を示す。Wは単結合、−O−、−COO−又は−OCO−を示す。Wはベンゼン環、シクロヘキサン環又はステロイド骨格を有する炭素数17〜51の2価の有機基を示す。Wは単結合、−CH−、−CHO−、−OCH−、−O−、−COO−、−OCO−、−NHCO−又は−CONH−を示す。Wはベンゼン環又はシクロヘキサン環を示す。Wは炭素数1〜18のアルキル基、炭素数2〜18のアルケニル基、炭素数1〜18のフッ素含有アルキル基、炭素数1〜18のアルコキシ基又は炭素数1〜18のフッ素含有アルコキシ基を示す。mWは0〜4の整数を示す。W 1 represents a structure selected from the following formulas [2-1a] to [2-7a]. W 2 is a single bond, -O -, - COO- or an -OCO-. W 3 represents a single bond or an alkylene group having 1 to 12 carbon atoms. W 4 represents a single bond, —O—, —COO—, or —OCO—. W 5 represents a benzene ring, a cyclohexane ring or a divalent organic group having 17 to 51 carbon atoms having a steroid skeleton. W 6 being a single bond, -CH 2 -, - CH 2 O -, - OCH 2 -, - O -, - COO -, - OCO -, - NHCO- or an -CONH-. W 7 represents a benzene ring or a cyclohexane ring. W 8 is an alkyl group having 1 to 18 carbon atoms, an alkenyl group having 2 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxy group having 1 to 18 carbon atoms, or a fluorine-containing alkoxy group having 1 to 18 carbon atoms. Represents a group. mW represents an integer of 0 to 4.

Figure 2018159637
Figure 2018159637

は水素原子又はベンゼン環を示す。W A is a hydrogen atom or a benzene ring.

前記式[2a]の化合物として、より具体的には、下記式[2a−1]〜式[2a−6]の化合物が挙げられ、液晶表示素子の光学特性の点から、これら化合物を用いることが好ましい。   More specifically, the compounds of the formula [2a] include the compounds of the following formulas [2a-1] to [2a-6]. These compounds are used in view of the optical characteristics of the liquid crystal display device. Is preferred.

Figure 2018159637
Figure 2018159637

は単結合、−O−、−COO−又は−OCO−を示す。Wは炭素数1〜12のアルキル基又は炭素数1〜12のアルコキシ基を示す。p1は1〜8の整数を示す。p2は0〜2の整数を示す。W A is a single bond, -O -, - COO- or an -OCO-. W B represents an alkyl group or an alkoxy group having 1 to 12 carbon atoms having 1 to 12 carbon atoms. p1 represents an integer of 1 to 8. p2 represents an integer of 0 to 2.

Figure 2018159637
Figure 2018159637

は単結合、−O−、−COO−又は−OCO−を示す。Wは単結合、−CH−、−O−、−COO−又は−OCO−を示す。Wは炭素数1〜12のアルキル基又は炭素数1〜12のアルコキシ基を示す。p3は1〜8の整数を示す。W C is a single bond, -O -, - COO- or an -OCO-. W D is a single bond, -CH 2 -, - O - , - COO- or an -OCO-. W E denotes an alkyl group or an alkoxy group having 1 to 12 carbon atoms having 1 to 12 carbon atoms. p3 represents an integer of 1 to 8.

Figure 2018159637
Figure 2018159637

は単結合、−O−、−COO−又は−OCO−を示す。p4は0〜8の整数を示す。W F is a single bond, -O -, - COO- or an -OCO-. p4 shows the integer of 0-8.

式[2a]の化合物としては、なかでも、液晶表示素子の光学特性の点から、式[2a−1]、式[2a−2]、式[2a−7]又は式[2a−8]が好ましい。より好ましくは、式[2a−1]又は式[2a−2]である。   Among the compounds of the formula [2a], the formula [2a-1], the formula [2a-2], the formula [2a-7] or the formula [2a-8] are particularly preferable from the viewpoint of the optical characteristics of the liquid crystal display device. preferable. More preferably, it is a formula [2a-1] or a formula [2a-2].

添加化合物の使用割合は、液晶表示素子の光学特性の点から、液晶組成物中の液晶100質量部に対して、1〜30質量部が好ましい。より好ましくは、1〜20質量部であり、最も好ましくは1〜15質量部である。また、添加化合物は、各特性に応じて、1種類又は2種類以上を混合して使用できる。   The use ratio of the additive compound is preferably 1 to 30 parts by mass with respect to 100 parts by mass of the liquid crystal in the liquid crystal composition from the viewpoint of the optical characteristics of the liquid crystal display device. More preferably, it is 1 to 20 parts by mass, most preferably 1 to 15 parts by mass. Further, the additive compounds can be used singly or as a mixture of two or more kinds according to each property.

<重合体>
本発明の液晶表示素子における液晶配向膜には、下記式[4−1a]又は式[4−2a]の特定側鎖構造を有する重合体を含む液晶配向処理剤から得られる液晶配向膜を用いることが好ましい。
<Polymer>
As the liquid crystal alignment film in the liquid crystal display element of the present invention, a liquid crystal alignment film obtained from a liquid crystal alignment agent containing a polymer having a specific side chain structure represented by the following formula [4-1a] or [4-2a] is used. Is preferred.

Figure 2018159637
Figure 2018159637

は単結合、−(CH−(aは1〜15の整数である)、−O−、−CHO−、−COO−又は−OCO−を示す。なかでも、原料の入手性や合成の容易さの点から、単結合、−(CH−(aは1〜15の整数である)、−O−、−CHO−又は−COO−が好ましい。より好ましくは、単結合、−(CH−(aは1〜10の整数である)、−O−、−CHO−又は−COO−である。Xは単結合又は−(CH−(bは1〜15の整数である)を示す。なかでも、単結合又は−(CH−(bは1〜10の整数である)が好ましい。X 1 is a single bond, - (CH 2) a - (a is an integer of 1~15), - O -, - CH 2 O -, - COO- or an -OCO-. From the standpoint of ease of the availability of raw materials and synthetic, single bond, - (CH 2) a - (a is an integer of 1~15), - O -, - CH 2 O- or -COO -Is preferred. More preferably, a single bond, - (CH 2) a - (a is an integer of 1 to 10), - O -, - CH 2 O- or -COO- in which. X 2 represents a single bond or — (CH 2 ) b — (b is an integer of 1 to 15). Among them, a single bond or — (CH 2 ) b — (b is an integer of 1 to 10) is preferable.

は単結合、−(CH−(aは1〜15の整数である)、−O−、−CHO−、−COO−又は−OCO−を示す。なかでも、合成の容易さの点から、単結合、−(CH−(aは1〜15の整数である)、−O−、−CHO−又は−COO−が好ましい。より好ましくは、単結合、−(CH−(aは1〜10の整数である)、−O−、−CHO−又は−COO−である。Xはベンゼン環、シクロヘキサン環及び複素環から選ばれる2価の環状基、又はステロイド骨格を有する炭素数17〜51の2価の有機基を示し、前記環状基上の任意の水素原子は、炭素数1〜3のアルキル基、炭素数1〜3のアルコキシ基、炭素数1〜3のフッ素含有アルキル基、炭素数1〜3のフッ素含有アルコキシ基又はフッ素原子で置換されていてもよい。なかでも、合成の容易さの点から、ベンゼン環、シクロへキサン環又はステロイド骨格を有する炭素数17〜51の有機基が好ましい。X 3 is a single bond, - (CH 2) a - (a is an integer of 1~15), - O -, - CH 2 O -, - COO- or an -OCO-. Among them, for ease of synthesis, a single bond, - (CH 2) a - (a is an integer of 1~15), - O -, - CH 2 O- or -COO- are preferred. More preferably, a single bond, - (CH 2) a - (a is an integer of 1 to 10), - O -, - CH 2 O- or -COO- in which. X 4 represents a divalent cyclic group selected from a benzene ring, a cyclohexane ring and a heterocyclic ring, or a divalent organic group having a steroid skeleton and having 17 to 51 carbon atoms, and an arbitrary hydrogen atom on the cyclic group is It may be substituted by an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxy group having 1 to 3 carbon atoms or a fluorine atom. Among them, an organic group having 17 to 51 carbon atoms having a benzene ring, a cyclohexane ring or a steroid skeleton is preferable from the viewpoint of ease of synthesis.

はベンゼン環、シクロヘキサン環及び複素環から選ばれる環状基を示し、これらの環状基上の任意の水素原子は、炭素数1〜3のアルキル基、炭素数1〜3のアルコキシ基、炭素数1〜3のフッ素含有アルキル基、炭素数1〜3のフッ素含有アルコキシ基又はフッ素原子で置換されていてもよい。なかでも、ベンゼン環又はシクロへキサン環が好ましい。X 5 represents a cyclic group selected from a benzene ring, a cyclohexane ring and a heterocyclic ring, and any hydrogen atom on these cyclic groups may be an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, It may be substituted with a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxy group having 1 to 3 carbon atoms, or a fluorine atom. Among them, a benzene ring or a cyclohexane ring is preferred.

は炭素数1〜18のアルキル基、炭素数2〜18のアルケニル基、炭素数1〜18のフッ素含有アルキル基、炭素数1〜18のアルコキシ基又は炭素数1〜18のフッ素含有アルコキシ基を示す。なかでも、炭素数1〜18のアルキル基、炭素数1〜10のフッ素含有アルキル基、炭素数1〜18のアルコキシ基又は炭素数1〜10のフッ素含有アルコキシ基が好ましい。より好ましくは、炭素数1〜12のアルキル基又は炭素数1〜12のアルコキシ基である。特に好ましくは、炭素数1〜9のアルキル基又は炭素数1〜9のアルコキシ基である。nは0〜4の整数を示す。なかでも、原料の入手性や合成の容易さの点から、0〜3が好ましい。より好ましくは、0〜2である。X 6 is an alkyl group having 1 to 18 carbon atoms, an alkenyl group having 2 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxy group having 1 to 18 carbon atoms, or a fluorine-containing alkoxy group having 1 to 18 carbon atoms. Represents a group. Among them, an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 18 carbon atoms or a fluorine-containing alkoxy group having 1 to 10 carbon atoms is preferable. More preferably, it is an alkyl group having 1 to 12 carbon atoms or an alkoxy group having 1 to 12 carbon atoms. Especially preferably, it is a C1-C9 alkyl group or a C1-C9 alkoxy group. n shows the integer of 0-4. Among these, 0 to 3 are preferable from the viewpoint of availability of raw materials and ease of synthesis. More preferably, it is 0-2.

〜X及びnの好ましい組み合わせは、国際公開公報WO2011/132751(2011.10.27公開)の13頁〜34頁の表6〜表47に掲載される(2−1)〜(2−629)と同じ組み合わせが挙げられる。なお、国際公開公報の各表では、本発明におけるX〜Xが、Y1〜Y6として示されているが、Y1〜Y6は、X〜Xと読み替えるものとする。また、国際公開公報の各表に掲載される(2−605)〜(2−629)では、本発明におけるステロイド骨格を有する炭素数17〜51の有機基が、ステロイド骨格を有する炭素数12〜25の有機基と示されているが、ステロイド骨格を有する炭素数12〜25の有機基は、ステロイド骨格を有する炭素数17〜51の有機基と読み替えるものとする。Preferred combinations of X 1 to X 6 and n are described in Tables 6 to 47 on pages 13 to 34 of International Publication WO2011 / 132751 (published on 2011.10.27) (2-1) to (2). -629). In each table of International Publication, X 1 to X 6 in the present invention is shown as Y1 to Y6, Y1 to Y6, it shall read X 1 to X 6. In addition, in (2-605) to (2-629) described in each table of International Publication, the organic group having 17 to 51 carbon atoms having a steroid skeleton in the present invention is a compound having 12 to 12 carbon atoms having a steroid skeleton. Although shown as an organic group having 25, an organic group having 12 to 25 carbon atoms having a steroid skeleton is to be read as an organic group having 17 to 51 carbon atoms having a steroid skeleton.

なかでも、(2−25)〜(2−96)、(2−145)〜(2−168)、(2−217)〜(2−240)、(2−268)〜(2−315)、(2−364)〜(2−387)、(2−436)〜(2−483)又は(2−603)〜(2−615)の組み合わせが好ましい。より好ましくは、(2−49)〜(2−96)、(2−145)〜(2−168)、(2−217)〜(2−240)、(2−603)〜(2−606)、(2−607)〜(2−609)、(2−611)、(2−612)又は(2−624)の組み合わせが好ましい。   Among them, (2-25) to (2-96), (2-145) to (2-168), (2-217) to (2-240), (2-268) to (2-315) , (2-364) to (2-387), (2-436) to (2-483), or (2-603) to (2-615). More preferably, (2-49)-(2-96), (2-145)-(2-168), (2-217)-(2-240), (2-603)-(2-606) ), (2-607) to (2-609), (2-611), (2-612) or (2-624).

Figure 2018159637
Figure 2018159637

は単結合、−O−、−CHO−、−CONH−、−NHCO−、−CON(CH)−、−N(CH)CO−、−COO−又は−OCO−を示す。なかでも、単結合、−O−、−CHO−、−CONH−、−CON(CH)−又は−COO−が好ましい。より好ましくは、単結合、−O−、−CONH−又は−COO−である。Xは炭素数8〜18のアルキル基又は炭素数6〜18のフッ素含有アルキル基を示す。なかでも、炭素数8〜18のアルキル基が好ましい。X 7 is a single bond, -O -, - CH 2 O -, - CONH -, - NHCO -, - CON (CH 3) -, - N (CH 3) CO -, - shows a COO- or -OCO- . Among them, a single bond, -O -, - CH 2 O -, - CONH -, - CON (CH 3) - or -COO- are preferred. More preferably, it is a single bond, -O-, -CONH- or -COO-. X 8 represents a fluorine-containing alkyl group having 6 to 18 carbon alkyl group or C of 8-18 carbon atoms. Among them, an alkyl group having 8 to 18 carbon atoms is preferable.

本発明における特定側鎖構造は、上述の通り、高くて安定な液晶の垂直配向性を得ることができる点から、式[4−1a]が好ましい。   As described above, the specific side chain structure in the invention is preferably Formula [4-1a] from the viewpoint that a high and stable vertical alignment of liquid crystal can be obtained.

特定側鎖構造を有する特定重合体は、特に限定されないが、アクリルポリマー、メタクリルポリマー、ノボラック樹脂、ポリヒドロキシスチレン、ポリイミド前駆体、ポリイミド、ポリアミド、ポリエステル、セルロース及びポリシロキサンから選ばれる少なくとも1つの重合体が好ましい。より好ましくは、ポリイミド前駆体、ポリイミド又はポリシロキサンである。特定重合体にポリイミド前駆体又はポリイミド(総称してポリイミド系重合体ともいう。)を用いる場合、それらは、ジアミン成分とテトラカルボン酸成分とを反応させて得られるポリイミド前駆体又はポリイミドが好ましい。   The specific polymer having a specific side chain structure is not particularly limited, but may be at least one polymer selected from an acrylic polymer, a methacrylic polymer, a novolak resin, a polyhydroxystyrene, a polyimide precursor, a polyimide, a polyamide, a polyester, a cellulose, and a polysiloxane. Coalescence is preferred. More preferably, it is a polyimide precursor, polyimide or polysiloxane. When a polyimide precursor or a polyimide (also collectively referred to as a polyimide-based polymer) is used as the specific polymer, a polyimide precursor or a polyimide obtained by reacting a diamine component with a tetracarboxylic acid component is preferable.

ポリイミド前駆体は、下記式[A]の構造を有する。   The polyimide precursor has a structure represented by the following formula [A].

Figure 2018159637
Figure 2018159637

は4価の有機基を示す。Rは2価の有機基を示す。A及びAはそれぞれ独立して、水素原子又は炭素数1〜8のアルキル基を示す。A及びAはそれぞれ独立して、水素原子、炭素数1〜5のアルキル基又はアセチル基を示す。nは正の整数を示す。R 1 represents a tetravalent organic group. R 2 represents a divalent organic group. A 1 and A 2 each independently represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms. A 3 and A 4 each independently represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or an acetyl group. n shows a positive integer.

ジアミン成分としては、分子内に1級又は2級のアミノ基を2個有するジアミンであり、テトラカルボン酸成分としては、テトラカルボン酸化合物、テトラカルボン酸二無水物、テトラカルボン酸ジハライド化合物、テトラカルボン酸ジアルキルエステル化合物又はテトラカルボン酸ジアルキルエステルジハライド化合物が挙げられる。   The diamine component is a diamine having two primary or secondary amino groups in the molecule, and the tetracarboxylic acid component is a tetracarboxylic acid compound, a tetracarboxylic dianhydride, a tetracarboxylic dihalide compound, Examples thereof include carboxylic acid dialkyl ester compounds and tetracarboxylic acid dialkyl ester dihalide compounds.

ポリイミド系重合体は、下記式[B]のテトラカルボン酸二無水物と下記式[C]のジアミンとを原料とすることで、比較的簡便に得られるという理由から、下記式[D]の繰り返し単位の構造式から成るポリアミド酸又は該ポリアミド酸をイミド化させたポリイミドが好ましい。   The polyimide-based polymer can be obtained relatively easily by using a tetracarboxylic dianhydride of the following formula [B] and a diamine of the following formula [C] as raw materials. A polyamic acid having a structural formula of a repeating unit or a polyimide obtained by imidizing the polyamic acid is preferable.

Figure 2018159637
Figure 2018159637

及びRは、式[A]で定義したものと同じである。R 1 and R 2 are the same as defined in the formula [A].

Figure 2018159637
Figure 2018159637

及びRは、式[A]で定義したものと同じである。R 1 and R 2 are the same as defined in the formula [A].

また、通常の合成手法で、前記で得られた式[D]の重合体に、式[A]中のA及びAの炭素数1〜8のアルキル基、及び式[A]中のA及びAの炭素数1〜5のアルキル基又はアセチル基を導入することもできる。In addition, the polymer of the formula [D] obtained above is added to the polymer of the formula [D] obtained by an ordinary synthesis technique, and the alkyl group having 1 to 8 carbon atoms of A 1 and A 2 in the formula [A], and the polymer of the formula [A] It is also possible to introduce an alkyl group having 1 to 5 carbon atoms or an acetyl group of A 3 and A 4 .

<特定側鎖型ジアミン>
特定側鎖構造をポリイミド系重合体に導入する方法としては、特定側鎖構造を有するジアミンを原料の一部に用いることが好ましい。特に下記式[4a]のジアミン(特定側鎖型ジアミンともいう。)を用いることが好ましい。
<Specific side chain type diamine>
As a method for introducing the specific side chain structure into the polyimide polymer, it is preferable to use a diamine having the specific side chain structure as a part of the raw material. In particular, it is preferable to use a diamine of the following formula [4a] (also referred to as a specific side chain type diamine).

Figure 2018159637
Figure 2018159637

Xは前記式[4−1a]又は式[4−2a]の構造を示す。また、式[4−1a]におけるX、X、X、X、X、X及びnの詳細及び好ましい組み合わせは、前記式[4−1a]の通りであり、式[4−2a]におけるX及びXの詳細及び好ましい組み合わせは、前記式[4−2a]の通りである。mは1〜4の整数を示す。なかでも、1が好ましい。本発明においては、前記の通り、液晶の垂直配向性の点から、式[4−1a]の特定側鎖構造を有する特定側鎖型ジアミンを用いることが好ましい。X represents the structure of the formula [4-1a] or the formula [4-2a]. Further, details and preferred combinations of X 1 , X 2 , X 3 , X 4 , X 5 , X 6 and n in the formula [4-1a] are as in the formula [4-1a], and the formula [4a] -2a], details and preferred combinations of X 7 and X 8 are as described in the above formula [4-2a]. m shows the integer of 1-4. Above all, 1 is preferable. In the present invention, as described above, it is preferable to use the specific side chain type diamine having the specific side chain structure of the formula [4-1a] from the viewpoint of the vertical alignment of the liquid crystal.

式[4−1a]の特定側鎖構造を有する特定側鎖型ジアミンの具体例は、国際公開公報WO2013/125595(2013.8.29公開)の15頁〜19頁に記載される式[2−1]〜式[2−6]、式[2−9]〜式[2−36]のジアミン化合物が挙げられる。なお、国際公開公報WO2013/125595の記載において、式[2−1]〜式[2−3]中のR及び式[2−4]〜式[2−6]中のRは、炭素数1〜18のアルキル基、炭素数1〜18のフッ素含有アルキル基、炭素数1〜18のアルコキシ基又は炭素数1〜18のフッ素含有アルコキシ基を示す。また、式[2−13]中のAは、炭素数3〜18の直鎖状又は分岐状アルキル基を示す。加えて、式[2−4]〜式[2−6]中のRは、−O−、−CHO−、−COO−又は−OCO−を示す。Specific examples of the specific side chain type diamine having the specific side chain structure of the formula [4-1a] are described in the formula [2] described on pages 15 to 19 of International Publication WO2013 / 125595 (published on 2013.8.29). -1] to formula [2-6] and formula [2-9] to formula [2-36]. In the description of International Publication WO2013 / 125595, R 2 in the formulas [2-1] to [2-3] and R 4 in the formulas [2-4] to [2-6] are carbon atoms. It represents an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxy group having 1 to 18 carbon atoms, or a fluorine-containing alkoxy group having 1 to 18 carbon atoms. A 4 in Formula [2-13] represents a linear or branched alkyl group having 3 to 18 carbon atoms. In addition, R 3 in the formula [2-4] to the formula [2-6] is, -O -, - CH 2 O -, - COO- or an -OCO-.

なかでも、好ましいジアミンは、国際公開公報WO2013/125595に記載される式[2−1]〜式[2−6]、式[2−9]〜式[2−13]又は式[2−22]〜式[2−31]である。より好ましくは、液晶表示素子の光学特性の点から、下記式[4a−32]〜式[4a−41]のジアミンである。   Among them, preferred diamines are those represented by the formulas [2-1] to [2-6], [2-9] to [2-13] or [2-22] described in International Publication WO2013 / 125595. ] To Formula [2-31]. More preferably, diamines represented by the following formulas [4a-32] to [4a-41] are preferable from the viewpoint of the optical characteristics of the liquid crystal display device.

Figure 2018159637
Figure 2018159637

及びRは炭素数3〜12のアルキル基を示す。R 1 and R 2 represent an alkyl group having 3 to 12 carbon atoms.

Figure 2018159637
Figure 2018159637

及びRは炭素数3〜12のアルキル基を示し、1,4-シクロヘキシレンのシス−トランス異性は、トランス異性体である。R 3 and R 4 represent an alkyl group having 3 to 12 carbon atoms, and the cis-trans isomer of 1,4-cyclohexylene is a trans isomer.

特に好ましくは、液晶表示素子の光学特性の点から、式[4a−35]〜式[4a−37]、式[4a−40]又は式[4a−41]のジアミンである。   Particularly preferred are diamines represented by the formulas [4a-35] to [4a-37], [4a-40] or [4a-41] from the viewpoint of the optical characteristics of the liquid crystal display device.

式[4−2a]の特定側鎖構造を有する特定側鎖型ジアミンの具体例は、国際公開公報WO2013/125595(2013.8.29公開)の23頁に記載される式[DA1]〜式[DA11]のジアミン化合物が挙げられる。なお、国際公開公報WO2013/125595の記載において、式[DA1]〜式[DA5]中のAは、炭素数8〜22のアルキル基又は炭素数6〜18のフッ素含有アルキル基を示す。Specific examples of the specific side chain type diamine having a specific side chain structure represented by the formula [4-2a] include formulas [DA1] to formula [DA1] described on page 23 of International Publication WO2013 / 125595 (2013.8.29). [DA11]. In the description of International Publication WO2013 / 125595, A 1 in the formula [DA1] ~ formula [DA5] is an alkyl group or a fluorine-containing alkyl group having 6 to 18 carbon atoms having 8 to 22 carbon atoms.

特定側鎖型ジアミンの使用割合は、液晶表示素子の光学特性及び液晶層と液晶配向膜との密着性の点から、ジアミン成分全体に対し10〜80モル%が好ましい。より好ましくは、20〜70モル%である。また、特定側鎖型ジアミンは、各特性に応じて、1種類又は2種類以上を混合して使用できる。   The use ratio of the specific side chain type diamine is preferably from 10 to 80 mol% based on the entire diamine component from the viewpoint of the optical characteristics of the liquid crystal display element and the adhesion between the liquid crystal layer and the liquid crystal alignment film. More preferably, it is 20 to 70 mol%. Further, the specific side chain type diamine can be used singly or as a mixture of two or more types according to each property.

<第2のジアミン>
ポリイミド系重合体を作製するためのジアミン成分は、下記式[4b]のジアミン(第2のジアミンともいう。)を含むことが好ましい。
<Second diamine>
The diamine component for producing the polyimide polymer preferably contains a diamine represented by the following formula [4b] (also referred to as a second diamine).

Figure 2018159637
Figure 2018159637

は単結合、−O−、−NH−、−N(CH)−、−CHO−、−CONH−、−NHCO−、−CON(CH)−、−N(CH)CO−、−COO−又は−OCO−を示す。なかでも、単結合、−O−、−CHO−、−CONH−、−COO−又は−OCO−が好ましい。より好ましくは、原料の入手性や合成の容易さから、単結合、−O−、−CHO−又は−COO−である。Y 1 is a single bond, -O -, - NH -, - N (CH 3) -, - CH 2 O -, - CONH -, - NHCO -, - CON (CH 3) -, - N (CH 3) CO-, -COO- or -OCO- is shown. Among them, a single bond, -O -, - CH 2 O -, - CONH -, - COO- or -OCO- are preferred. More preferably, from easiness of the availability of raw materials and synthetic, single bond, -O -, - CH 2 O- or -COO- in which.

は単結合、炭素数1〜18のアルキレン基、又はベンゼン環、シクロヘキサン環及び複素環から選ばれる環状基を有する炭素数6〜24の有機基を示し、これら環状基上の任意の水素原子は、炭素数1〜3のアルキル基、炭素数1〜3のアルコキシル基、炭素数1〜3のフッ素含有アルキル基、炭素数1〜3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい。なかでも、単結合、炭素数1〜12のアルキレン基、ベンゼン環又はシクロヘキサン環が好ましい。より好ましくは、液晶層と液晶配向膜との密着性から、単結合又は炭素数1〜12のアルキレン基である。Y 2 represents a single bond, an alkylene group having 1 to 18 carbon atoms, or an organic group having 6 to 24 carbon atoms having a cyclic group selected from a benzene ring, a cyclohexane ring, and a heterocyclic ring; The atom is substituted with an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms or a fluorine atom. Is also good. Among them, a single bond, an alkylene group having 1 to 12 carbon atoms, a benzene ring or a cyclohexane ring is preferable. More preferably, it is a single bond or an alkylene group having 1 to 12 carbon atoms in view of adhesion between the liquid crystal layer and the liquid crystal alignment film.

は単結合、−O−、−NH−、−N(CH)−、−CHO−、−CONH−、−NHCO−、−CON(CH)−、−N(CH)CO−、−COO−又は−OCO−を示す。なかでも、単結合、−O−、−COO−又は−OCO−が好ましい。より好ましくは、単結合又は−OCO−である。Yは下記式[4b−a]〜式[4b−i]から選ばれる構造を示し、式[4b−a]〜式[4b−f]が好ましい。なかでも、式[4b−a]〜式[4b−e]が好ましい。より好ましくは、液晶層と液晶配向膜との密着性から、式[4b−a]、式[4b−b]、式[4b−d]又は式[4b−e]である。Y 3 represents a single bond, -O -, - NH -, - N (CH 3) -, - CH 2 O -, - CONH -, - NHCO -, - CON (CH 3) -, - N (CH 3) CO-, -COO- or -OCO- is shown. Among them, a single bond, -O-, -COO- or -OCO- is preferable. More preferably, it is a single bond or -OCO-. Y 4 represents a structure selected from the following formulas [4ba] to [4bi], and preferably formulas [4ba] to [4b-f]. Of these, formulas [4ba] to [4be] are preferable. More preferably, from the adhesion between the liquid crystal layer and the liquid crystal alignment film, the formula [4ba], the formula [4bb], the formula [4bd] or the formula [4be] is used.

Figure 2018159637
Figure 2018159637

は水素原子又はベンゼン環を示す。mは1〜4の整数を示す。なかでも、1又は2が好ましい。nは1〜4の整数を示す。なかでも、1が好ましい。Y A represents a hydrogen atom or a benzene ring. m shows the integer of 1-4. Especially, 1 or 2 is preferable. n shows the integer of 1-4. Above all, 1 is preferable.

第2のジアミンの具体例は、下記式[4b−1]〜式[4b−12]が挙げられ、これらを用いることが好ましい。   Specific examples of the second diamine include the following formulas [4b-1] to [4b-12], and it is preferable to use these.

Figure 2018159637
Figure 2018159637

n1は2〜12の整数を示す。   n1 represents an integer of 2 to 12.

Figure 2018159637
Figure 2018159637

n2は0〜12の整数を示す。n3は2〜12の整数を示す。   n2 shows the integer of 0-12. n3 represents an integer of 2 to 12.

第2のジアミンの具体例は、なかでも、式[4b−1]、式[4b−2]、式[4b−5]〜式[4b−7]、式[4b−11]又は式[4b−12]が好ましい。より好ましくは、式[4b−5]〜式[4b−7]、式[4b−11]又は式[4b−12]である。   Specific examples of the second diamine include, among others, Formula [4b-1], Formula [4b-2], Formula [4b-5] to Formula [4b-7], Formula [4b-11], or Formula [4b] -12] is preferred. More preferably, formulas [4b-5] to [4b-7], [4b-11] or [4b-12] are used.

第2のジアミンの使用割合は、液晶表示素子の光学特性及び液晶層と液晶配向膜との密着性の点から、ジアミン成分全体に対し10〜70モル%が好ましく、20〜60モル%がより好ましい。また、第2のジアミンは、各特性に応じて、1種類又は2種類以上を混合して使用できる。   The use ratio of the second diamine is preferably from 10 to 70 mol%, more preferably from 20 to 60 mol%, based on the entire diamine component, from the viewpoint of the optical characteristics of the liquid crystal display element and the adhesion between the liquid crystal layer and the liquid crystal alignment film. preferable. In addition, the second diamine can be used singly or as a mixture of two or more types according to each property.

<第3のジアミン>
ポリイミド系重合体を作製するためのジアミン成分は、下記式[4c]のジアミン(第3のジアミンともいう。)を含むことも好ましい。
<Third diamine>
The diamine component for producing the polyimide-based polymer preferably also contains a diamine of the following formula [4c] (also referred to as a third diamine).

Figure 2018159637
Figure 2018159637

Wは、下記式[4c−a]〜式[4c−d]から選ばれる構造を示す。mは1〜4の整数を示す。なかでも、1が好ましい。   W represents a structure selected from the following formulas [4c-a] to [4cd]. m shows the integer of 1-4. Above all, 1 is preferable.

Figure 2018159637
Figure 2018159637

aは0〜4の整数を示す。なかでも、原料の入手性や合成の容易さの点から、0又は1が好ましい。bは0〜4の整数を示す。なかでも、原料の入手性や合成の容易さの点から、0又は1が好ましい。W及びWはそれぞれ、炭素数1〜12のアルキル基を示す。Wは炭素数1〜5のアルキル基を示す。a shows the integer of 0-4. Among them, 0 or 1 is preferable from the viewpoint of availability of raw materials and ease of synthesis. b shows the integer of 0-4. Among them, 0 or 1 is preferable from the viewpoint of availability of raw materials and ease of synthesis. Each W A and W B, an alkyl group having 1 to 12 carbon atoms. W C represents an alkyl group having 1 to 5 carbon atoms.

第3のジアミンの具体例は、下記が挙げられる。例えば、2,4−ジメチル−m−フェニレンジアミン、2,6−ジアミノトルエン、2,4−ジアミノフェノール、3,5−ジアミノフェノール、3,5−ジアミノベンジルアルコール、2,4−ジアミノベンジルアルコール、4,6−ジアミノレゾルシノール、2,4−ジアミノ安息香酸、2,5−ジアミノ安息香酸、3,5−ジアミノ安息香酸である。この他に、下記式[4c−1]及び[4c−2]のジアミンを挙げることができる。   The following are specific examples of the third diamine. For example, 2,4-dimethyl-m-phenylenediamine, 2,6-diaminotoluene, 2,4-diaminophenol, 3,5-diaminophenol, 3,5-diaminobenzyl alcohol, 2,4-diaminobenzyl alcohol, 4,6-diaminoresorcinol, 2,4-diaminobenzoic acid, 2,5-diaminobenzoic acid, and 3,5-diaminobenzoic acid. In addition, diamines of the following formulas [4c-1] and [4c-2] can be given.

Figure 2018159637
Figure 2018159637

第3のジアミンの具体例は、なかでも、2,4−ジアミノフェノール、3,5−ジアミノフェノール、3,5−ジアミノベンジルアルコール、2,4−ジアミノベンジルアルコール、4,6−ジアミノレゾルシノール、2,4−ジアミノ安息香酸、2,5−ジアミノ安息香酸、3,5−ジアミノ安息香酸、式[4c−1]又は式[4c−2]のジアミンが好ましい。より好ましくは、ポリイミド系重合体の溶媒への溶解性や液晶表示素子における光学特性の点から、2,4−ジアミノフェノール、3,5−ジアミノフェノール、3,5−ジアミノベンジルアルコール、3,5−ジアミノ安息香酸又は式[2a−1]である。   Specific examples of the third diamine include, among others, 2,4-diaminophenol, 3,5-diaminophenol, 3,5-diaminobenzyl alcohol, 2,4-diaminobenzyl alcohol, 4,6-diaminoresorcinol, Preferred are 2,4-diaminobenzoic acid, 2,5-diaminobenzoic acid, 3,5-diaminobenzoic acid, and the diamine of the formula [4c-1] or [4c-2]. More preferably, 2,4-diaminophenol, 3,5-diaminophenol, 3,5-diaminobenzyl alcohol, 3,5-diaminobenzyl alcohol, and the like, from the viewpoint of solubility of the polyimide polymer in a solvent and optical characteristics of a liquid crystal display device. -Diaminobenzoic acid or a formula [2a-1].

ポリイミド系重合体を作製するためジアミン成分としては、前記のジアミン以外のジアミン(その他のジアミンともいう。)を用いることもできる。具体的には、国際公開公報WO2015/012368(2015.1.29公開)の27頁〜30頁に記載されるその他のジアミン化合物、及び同公報の30頁〜32頁に記載される式[DA1]〜式[DA14]のジアミン化合物が挙げられる。また、その他ジアミンは、各特性に応じて、1種類又は2種類以上を混合して使用できる。   Diamines other than the above-mentioned diamines (also referred to as other diamines) can be used as the diamine component for producing the polyimide-based polymer. More specifically, other diamine compounds described on pages 27 to 30 of International Publication WO2015 / 012368 (published on 2015.1.29), and the formula [DA1 To the formula [DA14]. In addition, other diamines can be used singly or in combination of two or more according to each property.

<テトラカルボン酸成分>
ポリイミド系重合体を作製するためのテトラカルボン酸成分としては、下記式[5]のテトラカルボン酸二無水物や、そのテトラカルボン酸誘導体であるテトラカルボン酸、テトラカルボン酸ジハライド化合物、テトラカルボン酸ジアルキルエステル化合物又はテトラカルボン酸ジアルキルエステルジハライド化合物(すべてを総称して特定テトラカルボン酸成分ともいう。)を用いることが好ましい。
<Tetracarboxylic acid component>
Examples of the tetracarboxylic acid component for producing the polyimide polymer include a tetracarboxylic dianhydride represented by the following formula [5], a tetracarboxylic acid derivative of tetracarboxylic acid, a tetracarboxylic dihalide compound, and tetracarboxylic acid. It is preferable to use a dialkyl ester compound or a tetracarboxylic acid dialkyl ester dihalide compound (all are collectively referred to as a specific tetracarboxylic acid component).

Figure 2018159637
Figure 2018159637

Zは下記式[5a]〜式[5l]から選ばれる構造を示す。   Z represents a structure selected from the following formulas [5a] to [5l].

Figure 2018159637
Figure 2018159637

〜Zはそれぞれ、水素原子、メチル基、塩素原子又はベンゼン環を示す。Z及びZはそれぞれ、水素原子又はメチル基を示す。Z 1 to Z 4 each represent a hydrogen atom, a methyl group, a chlorine atom or a benzene ring. Z 5 and Z 6 each represent a hydrogen atom or a methyl group.

なかでも、式[5]中のZは、合成の容易さやポリマーを製造する際の重合反応性のし易さの点から、式[5a]、式[5c]、式[5d]、式[5e]、式[5f]、式[5g]、式[5k]又は式[5l]が好ましい。より好ましくは、式[5a]、式[5e]、式[5f]、式[5g]、式[5k]又は式[5l]である。特に好ましくは、液晶表示素子における光学特性の点から、式[5a]、式[5e]、式[5f]、式[5g]又は式[5l]である。   Among them, Z in the formula [5] represents the formula [5a], the formula [5c], the formula [5d], the formula [5d] from the viewpoint of easiness of synthesis and easiness of polymerization reactivity when producing a polymer. 5e], formula [5f], formula [5g], formula [5k] or formula [51] are preferable. More preferably, formula [5a], formula [5e], formula [5f], formula [5g], formula [5k], or formula [51]. Particularly preferably, from the viewpoint of the optical characteristics of the liquid crystal display element, the formula [5a], the formula [5e], the formula [5f], the formula [5g] or the formula [5l] are used.

特定テトラカルボン酸成分の使用割合は、全テトラカルボン酸成分に対して1モル%以上が好ましい。より好ましくは、5モル%以上である。特に好ましくは、10モル%以上である。最も好ましくは、液晶表示素子の光学特性の点から、10〜90モル%である。   The use ratio of the specific tetracarboxylic acid component is preferably 1 mol% or more based on all the tetracarboxylic acid components. More preferably, it is at least 5 mol%. Particularly preferably, it is at least 10 mol%. Most preferably, it is 10 to 90 mol% from the viewpoint of the optical characteristics of the liquid crystal display device.

ポリイミド系重合体には、本発明の効果を損なわない限りにおいて、特定テトラカルボン酸成分以外のその他のテトラカルボン酸成分を用いることができる。その他のテトラカルボン酸成分としては、以下に示すテトラカルボン酸化合物、テトラカルボン酸二無水物、ジカルボン酸ジハライド化合物、ジカルボン酸ジアルキルエステル化合物又はジアルキルエステルジハライド化合物が挙げられる。   As the polyimide-based polymer, other tetracarboxylic acid components other than the specific tetracarboxylic acid component can be used as long as the effects of the present invention are not impaired. Other tetracarboxylic acid components include the following tetracarboxylic acid compounds, tetracarboxylic dianhydrides, dicarboxylic dihalide compounds, dicarboxylic dialkyl ester compounds or dialkyl ester dihalide compounds.

具体的には、国際公開公報WO2015/012368(2015.1.29公開)の34頁〜35頁に記載されるその他のテトラカルボン酸成分が挙げられる。特定テトラカルボン酸成分及びその他のテトラカルボン酸成分は、各特性に応じて、1種類又は2種類以上を混合して使用できる。ポリイミド系重合体を合成する方法は特に限定されない。通常、ジアミン成分とテトラカルボン酸成分とを反応させて得られる。具体的には、国際公開公報WO2015/012368(2015.1.29公開)の35頁〜36頁に記載される方法が挙げられる。   Specific examples thereof include other tetracarboxylic acid components described on pages 34 to 35 of International Publication WO2015 / 012368 (published on 2015.1.29). The specific tetracarboxylic acid component and other tetracarboxylic acid components can be used singly or as a mixture of two or more types according to each property. The method for synthesizing the polyimide polymer is not particularly limited. Usually, it is obtained by reacting a diamine component with a tetracarboxylic acid component. Specifically, the method described on pages 35 to 36 of International Publication WO2015 / 012368 (published on 2015.1.29) may be mentioned.

<ポリイミド系重合体及びその製造>
ジアミン成分とテトラカルボン酸成分との反応は、通常、ジアミン成分とテトラカルボン酸成分とを含む溶媒中で行う。その際に用いる溶媒としては、生成したポリイミド前駆体が溶解するものであれば特に限定されない。具体的には、N−メチル−2−ピロリドン、N−エチル−2−ピロリドン、γ−ブチロラクトン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド又は1,3−ジメチル−イミダゾリジノンなどが挙げられる。また、ポリイミド前駆体の溶媒溶解性が高い場合は、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4−ヒドロキシ−4−メチル−2−ペンタノン又は下記式[D1]〜式[D3]の溶媒を用いることができる。
<Polyimide polymer and its production>
The reaction between the diamine component and the tetracarboxylic acid component is usually performed in a solvent containing the diamine component and the tetracarboxylic acid component. The solvent used at this time is not particularly limited as long as the produced polyimide precursor is dissolved. Specifically, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, γ-butyrolactone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethylsulfoxide, or 1,3-dimethyl-imidazolide And non. In addition, when the solvent solubility of the polyimide precursor is high, methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, or a solvent represented by the following formulas [D1] to [D3] may be used. it can.

Figure 2018159637
Figure 2018159637

及びDは炭素数1〜3のアルキル基を示す。Dは炭素数1〜4のアルキル基を示す。また、これらは単独で使用しても、混合して使用してもよい。更に、ポリイミド前駆体を溶解させない溶媒であっても、生成したポリイミド前駆体が析出しない範囲で、前記の溶媒に混合して使用してもよい。また、有機溶媒中の水分は重合反応を阻害し、更には生成したポリイミド前駆体を加水分解させる原因となるので、有機溶媒は脱水乾燥させたものを用いることが好ましい。D 1 and D 2 represent an alkyl group having 1 to 3 carbon atoms. D 3 represents an alkyl group having 1 to 4 carbon atoms. These may be used alone or as a mixture. Furthermore, even if the solvent does not dissolve the polyimide precursor, it may be mixed with the above-mentioned solvent and used as long as the generated polyimide precursor does not precipitate. Further, since water in the organic solvent inhibits the polymerization reaction and further causes hydrolysis of the produced polyimide precursor, it is preferable to use a dehydrated organic solvent as the organic solvent.

ポリイミドはポリイミド前駆体を閉環させて得られるポリイミドであり、このポリイミドにおいては、アミド酸基の閉環率(イミド化率ともいう。)は必ずしも100%である必要はなく、用途や目的に応じて任意に調製できる。なかでも、ポリイミド系重合体の溶媒への溶解性の点から、30〜80%が好ましい。より好ましくは、40〜70%である。   Polyimide is a polyimide obtained by ring-closing a polyimide precursor. In this polyimide, the ring-closure rate of amic acid groups (also referred to as imidation rate) does not necessarily need to be 100%, and depends on the application and purpose. It can be prepared arbitrarily. Above all, from the viewpoint of solubility of the polyimide polymer in the solvent, 30 to 80% is preferable. More preferably, it is 40 to 70%.

ポリイミド系重合体の分子量は、そこから得られる液晶配向膜の強度、液晶配向膜形成時の作業性及び塗膜性を考慮した場合、GPC(Gel Permeation Chromatography)法で測定したMw(重量平均分子量)で5,000〜1,000,000とするのが好ましく、より好ましくは10,000〜150,000である。   The molecular weight of the polyimide-based polymer is determined by the GPC (Gel Permeation Chromatography) method when considering the strength of the liquid crystal alignment film obtained therefrom, workability in forming the liquid crystal alignment film, and coating properties. ) Is preferably 5,000 to 1,000,000, and more preferably 10,000 to 150,000.

<シロキサン系重合体の製造>
特定重合体にポリシロキサンを用いる場合、下記式[A1]のアルコキシシランを重縮合させて得られるポリシロキサン、又は、該式[A1]のアルコキシシランと、下記式[A2]及び/又は式[A3]のアルコキシシランとを重縮合させて得られるポリシロキサン(総称してポリシロキサン系重合体ともいう。)を用いることが好ましい。
<Production of siloxane polymer>
When a polysiloxane is used for the specific polymer, a polysiloxane obtained by polycondensing an alkoxysilane of the following formula [A1], or an alkoxysilane of the formula [A1], and the following formula [A2] and / or the formula [A1] It is preferable to use a polysiloxane (collectively referred to as a polysiloxane polymer) obtained by polycondensing the alkoxysilane of A3].

式[A1]のアルコキシシラン:   An alkoxysilane of the formula [A1]:

Figure 2018159637
Figure 2018159637

は前記式[4−1a]又は式[4−2a]の構造を示す。また、式[4−1a]におけるX、X、X、X、X、X及びnの詳細及び好ましい組み合わせは、前記式[4−1a]の通りであり、式[4−2a]におけるX及びXの詳細及び好ましい組み合わせは、前記式[4−2a]の通りである。なかでも、高くて安定な液晶の垂直配向性を得ることができる点から、式[4−1a]の構造が好ましい。Aは水素原子又は炭素数1〜5のアルキル基を示す。なかでも、水素原子又は炭素数1〜3のアルキル基が好ましい。Aは炭素数1〜5のアルキル基を示す。なかでも、重縮合の反応性の点から、炭素数1〜3のアルキル基が好ましい。A 1 represents a structure of the formula [4-1a] or formula [4-2a]. Further, details and preferred combinations of X 1 , X 2 , X 3 , X 4 , X 5 , X 6 and n in the formula [4-1a] are as in the formula [4-1a], and the formula [4a] -2a], details and preferred combinations of X 7 and X 8 are as described in the above formula [4-2a]. Above all, the structure represented by the formula [4-1a] is preferable because a high and stable vertical alignment of the liquid crystal can be obtained. A 2 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. Among them, a hydrogen atom or an alkyl group having 1 to 3 carbon atoms is preferable. A 3 represents an alkyl group having 1 to 5 carbon atoms. Among them, an alkyl group having 1 to 3 carbon atoms is preferable from the viewpoint of polycondensation reactivity.

mは1又は2の整数を示す。なかでも、合成の容易さの点から、1が好ましい。nは0〜2の整数を示す。pは0〜3の整数を示す。なかでも、重縮合の反応性の点から、1〜3が好ましい。より好ましくは、2又は3である。m+n+pは4である。   m represents an integer of 1 or 2. Among them, 1 is preferable from the viewpoint of ease of synthesis. n shows the integer of 0-2. p shows the integer of 0-3. Among them, 1 to 3 are preferable from the viewpoint of the reactivity of polycondensation. More preferably, it is 2 or 3. m + n + p is 4.

式[A1]のアルコキシシランの具体例は、国際公開公報WO2015/008846(2015.1.22公開)の17頁〜21頁に記載される式[2a−1]〜式[2a−32]のアルコキシシランが挙げられる。なかでも、同公報内の式[2a−9]〜式[2a−21]、式[2a−25]〜式[2a−28]又は式[2a−32]のアルコキシシランが好ましい。式[A1]のアルコキシシランは、各特性に応じて、1種類又は2種類以上を混合して使用できる。   Specific examples of the alkoxysilane of the formula [A1] include those of the formulas [2a-1] to [2a-32] described on pages 17 to 21 of WO2015 / 008846 (published on 2015.1.22). Alkoxysilane is mentioned. Among them, alkoxysilanes of the formulas [2a-9] to [2a-21], [2a-25] to [2a-28] or [2a-32] in the same publication are preferable. The alkoxysilane of the formula [A1] can be used singly or in combination of two or more, depending on each property.

式[A2]のアルコキシシラン:   An alkoxysilane of the formula [A2]:

Figure 2018159637
Figure 2018159637

はビニル基、エポキシ基、アミノ基、メルカプト基、イソシアネート基、メタクリル基、アクリル基、ウレイド基及びシンナモイル基から選ばれる少なくとも1種を有する炭素数2〜12の有機基を示す。なかでも、入手の容易さの点から、ビニル基、エポキシ基、アミノ基、メタクリル基、アクリル基又はウレイド基を有する有機基が好ましい。より好ましくは、メタクリル基、アクリル基又はウレイド基を有する有機基である。Bは水素原子又は炭素数1〜5のアルキル基を示す。なかでも、水素原子又は炭素数1〜3のアルキル基が好ましい。Bは炭素数1〜5のアルキル基を示す。なかでも、重縮合の反応性の点から、炭素数1〜3のアルキル基が好ましい。B 1 represents shows a vinyl group, an epoxy group, an amino group, a mercapto group, an isocyanate group, methacryl group, acryl group, an organic group having 2 to 12 carbon atoms and having at least one selected from a ureido group, and a cinnamoyl group. Among them, an organic group having a vinyl group, an epoxy group, an amino group, a methacryl group, an acryl group, or a ureide group is preferable from the viewpoint of availability. More preferably, it is an organic group having a methacryl group, an acrylic group or a ureide group. B 2 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. Among them, a hydrogen atom or an alkyl group having 1 to 3 carbon atoms is preferable. B 3 represents an alkyl group having 1 to 5 carbon atoms. Among them, an alkyl group having 1 to 3 carbon atoms is preferable from the viewpoint of polycondensation reactivity.

mは1又は2の整数を示す。なかでも、合成の容易さの点から、1が好ましい。nは0〜2の整数を示す。pは0〜3の整数を示す。なかでも、重縮合の反応性の点から、1〜3が好ましい。より好ましくは、2又は3である。m+n+pは4である。   m represents an integer of 1 or 2. Among them, 1 is preferable from the viewpoint of ease of synthesis. n shows the integer of 0-2. p shows the integer of 0-3. Among them, 1 to 3 are preferable from the viewpoint of the reactivity of polycondensation. More preferably, it is 2 or 3. m + n + p is 4.

式[A2]のアルコキシシランの具体例は、国際公開公報WO2015/008846(2015.1.22公開)の21頁〜24頁に記載される式[2b]のアルコキシシランの具体例が挙げられる。なかでも、アリルトリエトキシシラン、アリルトリメトキシシラン、ジエトキシメチルビニルシラン、ジメトキシメチルビニルシラン、トリエトキシビニルシラン、ビニルトリメトキシシラン、ビニルトリス(2−メトキシエトキシ)シラン、3−(トリエトキシシリル)プロピルメタクリレート、3−(トリメトキシシリル)プロピルアクリレート、3−(トリメトキシシリル)プロピルメタクリレート、3−グリシジルオキシプロピル(ジメトキシ)メチルシラン、3−グリシジルオキシプロピル(ジエトキシ)メチルシラン、3−グリシジルオキシプロピルトリメトキシシラン又は2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシランが好ましい。式[A2]のアルコキシシランは、各特性に応じて、1種類又は2種類以上を混合して使用できる。   Specific examples of the alkoxysilane of the formula [A2] include specific examples of the alkoxysilane of the formula [2b] described on pages 21 to 24 of International Publication WO2015 / 008846 (published on 2015.1.22). Among them, allyltriethoxysilane, allyltrimethoxysilane, diethoxymethylvinylsilane, dimethoxymethylvinylsilane, triethoxyvinylsilane, vinyltrimethoxysilane, vinyltris (2-methoxyethoxy) silane, 3- (triethoxysilyl) propyl methacrylate, 3- (trimethoxysilyl) propyl acrylate, 3- (trimethoxysilyl) propyl methacrylate, 3-glycidyloxypropyl (dimethoxy) methylsilane, 3-glycidyloxypropyl (diethoxy) methylsilane, 3-glycidyloxypropyltrimethoxysilane or 2 -(3,4-Epoxycyclohexyl) ethyltrimethoxysilane is preferred. The alkoxysilane of the formula [A2] can be used singly or in combination of two or more, depending on each property.

式[A3]のアルコキシシラン:   The alkoxysilane of the formula [A3]:

Figure 2018159637
Figure 2018159637

は水素原子又は炭素数1〜5のアルキル基を示す。なかでも、水素原子又は炭素数1〜3のアルキル基が好ましい。Dは炭素数1〜5のアルキル基を示す。なかでも、重縮合の反応性の点から、炭素数1〜3のアルキル基が好ましい。nは0〜3の整数を示す。D 1 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. Among them, a hydrogen atom or an alkyl group having 1 to 3 carbon atoms is preferable. D 2 represents an alkyl group having 1 to 5 carbon atoms. Among them, an alkyl group having 1 to 3 carbon atoms is preferable from the viewpoint of polycondensation reactivity. n shows the integer of 0-3.

式[A3]のアルコキシシランの具体例は、国際公開公報WO2015/008846(2015.1.22公開)の24頁〜25頁に記載される式[2c]のアルコキシシランの具体例が挙げられる。   Specific examples of the alkoxysilane of the formula [A3] include the specific examples of the alkoxysilane of the formula [2c] described on pages 24 to 25 of WO2015 / 008846 (published on 2015.1.22).

また、式[A3]中、nが0であるアルコキシシランとしては、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン又はテトラブトキシシランが挙げられ、式[A3]のアルコキシシランとしては、これらのアルコキシシランを用いることが好ましい。式[A3]のアルコキシシランは、各特性に応じて、1種類又は2種類以上を混合して使用できる。   In the formula [A3], examples of the alkoxysilane in which n is 0 include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, and tetrabutoxysilane, and the alkoxysilane of the formula [A3] includes these alkoxysilanes. Preferably, silane is used. The alkoxysilane of the formula [A3] can be used singly or as a mixture of two or more, depending on each property.

ポリシロキサン系重合体は、式[A1]のアルコキシシランを重縮合させて得られるポリシロキサン、又は式[A1]のアルコキシシランと、式[A2]及び/又は式[A3]のアルコキシシランとを重縮合させて得られるポリシロキサンである。即ち、ポリシロキサン系重合体は、式[A1]のアルコキシシランのみを重縮合させて得られるポリシロキサン、式[A1]と式[A2]の2種類のアルコキシシランを重縮合させて得られるポリシロキサン、式[A1]と式[A3]の2種類のアルコキシシランを重縮合させて得られるポリシロキサン、並びに式[A1]、式[A2]及び式[A3]の3種類のアルコキシシランを重縮合させて得られるポリシロキサンのうちのいずれか1種類である。   The polysiloxane-based polymer is obtained by polycondensing an alkoxysilane of the formula [A1] or an alkoxysilane of the formula [A1] and an alkoxysilane of the formula [A2] and / or the formula [A3]. It is a polysiloxane obtained by polycondensation. That is, the polysiloxane polymer is a polysiloxane obtained by polycondensation of only the alkoxysilane of the formula [A1], and a polysiloxane obtained by polycondensation of two types of alkoxysilanes of the formula [A1] and the formula [A2]. A siloxane, a polysiloxane obtained by polycondensing two types of alkoxysilanes of the formulas [A1] and [A3], and three types of alkoxysilanes of the formulas [A1], [A2] and [A3] Any one of polysiloxanes obtained by condensation.

なかでも、重縮合の反応性やポリシロキサン系重合体の溶媒への溶解性の点から、複数種類のアルコキシシランを重縮合させて得られるポリシロキサンが好ましい。即ち、式[A1]と式[A2]の2種類のアルコキシシランを重縮合させて得られるポリシロキサン、式[A1]と式[A3]の2種類のアルコキシシランを重縮合させて得られるポリシロキサン、並びに式[A1]、式[A2]及び式[A3]の3種類のアルコキシシランを重縮合させて得られるポリシロキサンのうちのいずれか1種類を用いることが好ましい。   Among them, polysiloxanes obtained by polycondensing a plurality of types of alkoxysilanes are preferable from the viewpoint of polycondensation reactivity and solubility of the polysiloxane polymer in a solvent. That is, a polysiloxane obtained by polycondensing two types of alkoxysilanes of the formulas [A1] and [A2], and a polysiloxane obtained by polycondensing two types of alkoxysilanes of the formulas [A1] and [A3]. It is preferable to use any one of siloxane and polysiloxane obtained by polycondensing three types of alkoxysilanes of the formulas [A1], [A2] and [A3].

ポリシロキサン系重合体を作製する際に複数種類のアルコキシランを用いる場合、式[A1]のアルコキシシランの使用割合は、全てのアルコキシシラン中、1〜40モル%が好ましく、1〜30モル%がより好ましい。また、式[A2]のアルコキシシランの使用割合は、全てのアルコキシシラン中、1〜70モル%が好ましく、1〜60モル%がより好ましい。更に、式[A3]のアルコキシシランの使用割合は、全てのアルコキシシラン中、1〜99モル%が好ましく、1〜80モル%がより好ましい。   When a plurality of types of alkoxysilanes are used when producing a polysiloxane-based polymer, the usage ratio of the alkoxysilane of the formula [A1] is preferably 1 to 40 mol%, and more preferably 1 to 30 mol% in all the alkoxysilanes. Is more preferred. Further, the usage ratio of the alkoxysilane of the formula [A2] is preferably from 1 to 70 mol%, more preferably from 1 to 60 mol% in all the alkoxysilanes. Further, the usage ratio of the alkoxysilane of the formula [A3] is preferably from 1 to 99 mol%, more preferably from 1 to 80 mol%, in all the alkoxysilanes.

ポリシロキサン系重合体を重縮合する方法は特に限定されない。具体的には、国際公開公報WO2015/008846(2015.1.22公開)の26頁〜29頁に記載される方法が挙げられる。   The method for polycondensing the polysiloxane polymer is not particularly limited. Specifically, the method described on pages 26 to 29 of International Publication WO2015 / 008846 (published on 2015.1.22) may be mentioned.

ポリシロキサン系重合体を作製する重縮合反応において、式[A1]、式[A2]又は式[A3]のアルコキシシランを複数種類用いる場合は、複数種類のアルコキシシランを、予め混合した混合物を用いて反応しても、複数種類のアルコキシシランを順次添加しながら反応してもよい。   In the case of using a plurality of types of alkoxysilanes of the formula [A1], [A2] or [A3] in the polycondensation reaction for producing a polysiloxane polymer, use a mixture in which a plurality of types of alkoxysilanes are mixed in advance. The reaction may be performed while sequentially adding a plurality of types of alkoxysilanes.

本発明においては、前記方法で得られたポリシロキサン系重合体の溶液をそのまま特定重合体として用いてもよいし、必要に応じて、前記の方法で得られたポリシロキサン系重合体の溶液を濃縮したり、溶媒を加えて希釈したり、他の溶媒に置換して、特定重合体として用いてもよい。   In the present invention, the solution of the polysiloxane polymer obtained by the above method may be used as the specific polymer as it is, or, if necessary, the solution of the polysiloxane polymer obtained by the above method may be used. It may be used as a specific polymer after concentration, dilution by adding a solvent, or substitution with another solvent.

希釈する際に用いる溶媒(添加溶媒ともいう。)は、重縮合反応に用いる溶媒やその他の溶媒であってもよい。添加溶媒は、ポリシロキサン系重合体が均一に溶解している限りにおいては特に限定されず、1種類又は2種類以上を任意に選択できる。添加溶媒としては、前記の重縮合反応に用いる溶媒に加え、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン系溶媒、酢酸メチル、酢酸エチル、乳酸エチルなどのエステル系溶媒などが挙げられる。   The solvent used for dilution (also referred to as an additional solvent) may be the solvent used for the polycondensation reaction or another solvent. The additive solvent is not particularly limited as long as the polysiloxane-based polymer is uniformly dissolved, and one or more kinds can be arbitrarily selected. Examples of the additive solvent include, in addition to the solvent used in the above-mentioned polycondensation reaction, ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone, and ester solvents such as methyl acetate, ethyl acetate and ethyl lactate.

更に、特定重合体にポリシロキサン系重合体とそれ以外の重合体を用いる場合、ポリシロキサン系重合体にそれ以外の重合体を混合する前に、ポリシロキサン系重合体の重縮合反応の際に発生するアルコールを常圧又は減圧で留去しておくことが好ましい。   Furthermore, when a polysiloxane-based polymer and another polymer are used as the specific polymer, before mixing the other polymer with the polysiloxane-based polymer, the polysiloxane-based polymer is subjected to a polycondensation reaction. It is preferred that the generated alcohol be distilled off at normal pressure or reduced pressure.

<液晶配向処理剤>
本発明の液晶配向処理剤は、液晶配向膜を形成するための溶液であり、前記式[4−1a]又は式[4−2a]の特定側鎖構造を有する特定重合体及び溶媒を含有する溶液が好ましい。液晶配向処理剤における全ての重合体成分は、全てが特定重合体であってもよく、それ以外の重合体が混合されていてもよい。その際、それ以外の重合体の含有量は、特定重合体100質量部に対して、0.5〜15質量部、好ましくは、1〜10質量部である。それ以外の重合体としては、式[4−1a]又は式[4−2a]の特定側鎖構造を持たない前記の重合体が挙げられる。
<Liquid crystal aligning agent>
The liquid crystal alignment treating agent of the present invention is a solution for forming a liquid crystal alignment film, and contains a specific polymer having a specific side chain structure of the formula [4-1a] or the formula [4-2a] and a solvent. Solutions are preferred. All the polymer components in the liquid crystal alignment treatment agent may be all specific polymers, or may be mixed with other polymers. At that time, the content of the other polymer is 0.5 to 15 parts by mass, preferably 1 to 10 parts by mass with respect to 100 parts by mass of the specific polymer. As other polymers, the above-mentioned polymers having no specific side chain structure of the formula [4-1a] or the formula [4-2a] can be mentioned.

液晶配向処理剤中の溶媒の含有量は、液晶配向処理剤の塗布方法や目的とする膜厚を得るという観点から、適宜選択できる。なかでも、塗布により均一な垂直液晶配向膜を形成するという観点から、液晶配向処理剤中の溶媒の含有量は50〜99.9質量%が好ましい。より好ましくは、60〜99質量%である。特に好ましくは、65〜99質量%である。   The content of the solvent in the liquid crystal alignment treatment agent can be appropriately selected from the viewpoint of a method of applying the liquid crystal alignment treatment agent and obtaining a desired film thickness. Among them, from the viewpoint of forming a uniform vertical liquid crystal alignment film by coating, the content of the solvent in the liquid crystal alignment agent is preferably 50 to 99.9% by mass. More preferably, it is 60 to 99% by mass. Particularly preferably, it is 65 to 99% by mass.

<溶媒>
液晶配向処理剤に用いる溶媒は、特定重合体を溶解させる溶媒であれば特に限定されない。なかでも、特定重合体がポリイミド前駆体、ポリイミド、ポリアミド又はポリエステルの場合、あるいは、アクリルポリマー、メタクリルポリマー、ノボラック樹脂、ポリヒドロキシスチレン、セルロース又はポリシロキサンの溶媒への溶解性が低い場合は、下記に示すような溶媒(溶媒A類ともいう。)を用いることが好ましい。
<Solvent>
The solvent used for the liquid crystal alignment treatment agent is not particularly limited as long as the solvent dissolves the specific polymer. Among them, when the specific polymer is a polyimide precursor, polyimide, polyamide or polyester, or, when the solubility of the acrylic polymer, methacrylic polymer, novolak resin, polyhydroxystyrene, cellulose or polysiloxane in the solvent is low, the following: It is preferable to use a solvent (also referred to as a solvent A) as shown in the following.

例えば、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、N−エチル−2−ピロリドン、ジメチルスルホキシド、γ−ブチロラクトン、1,3−ジメチル−イミダゾリジノン、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4−ヒドロキシ−4−メチル−2−ペンタノンなどである。なかでも、N−メチル−2−ピロリドン、N−エチル−2−ピロリドン又はγ−ブチロラクトンを用いることが好ましい。また、これらは単独で使用しても、混合して使用してもよい。   For example, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, dimethyl sulfoxide, γ-butyrolactone, 1,3-dimethyl-imidazolidinone, methyl ethyl ketone , Cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone and the like. Among them, it is preferable to use N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or γ-butyrolactone. These may be used alone or as a mixture.

特定重合体が、アクリルポリマー、メタクリルポリマー、ノボラック樹脂、ポリヒドロキシスチレン、セルロース又はポリシロキサンである場合、更には、特定重合体がポリイミド前駆体、ポリイミド、ポリアミド又はポリエステルであり、これら特定重合体の溶媒への溶解性が高い場合は、下記に示すような溶媒(溶媒B類ともいう。)を用いることができる。   When the specific polymer is an acrylic polymer, a methacrylic polymer, a novolak resin, polyhydroxystyrene, cellulose or polysiloxane, further, the specific polymer is a polyimide precursor, a polyimide, a polyamide or a polyester, and the specific polymer When the solubility in a solvent is high, a solvent as shown below (also referred to as a solvent B) can be used.

溶媒B類の具体例は、国際公開公報WO2014/171493(2014.10.23公開)の58頁〜60頁に記載される溶媒B類が挙げられる。なかでも、1−ヘキサノール、シクロヘキサノール、1,2−エタンジオール、1,2−プロパンジオール、プロピレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテル、ジプロピレングリコールジメチルエーテル、シクロヘキサノン、シクロペンタノン又は式[D1]〜式[D3]の溶媒を用いることが好ましい。   Specific examples of the solvent B include the solvent B described on pages 58 to 60 of International Publication WO2014 / 171493 (published by 2014.10.23). Among them, 1-hexanol, cyclohexanol, 1,2-ethanediol, 1,2-propanediol, propylene glycol monobutyl ether, ethylene glycol monobutyl ether, dipropylene glycol dimethyl ether, cyclohexanone, cyclopentanone or formula [D1] to It is preferable to use a solvent of the formula [D3].

また、これら溶媒B類を用いる際、液晶配向処理剤の塗布性を改善する目的に、溶媒A類のN−メチル−2−ピロリドン、N−エチル−2−ピロリドン又はγ−ブチロラクトンを併用して用いることが好ましい。より好ましくは、γ−ブチロラクトンを併用して用いることである。   When these solvents B are used, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or γ-butyrolactone of the solvents A is used in combination for the purpose of improving the coating property of the liquid crystal alignment treatment agent. Preferably, it is used. More preferably, γ-butyrolactone is used in combination.

これら溶媒B類は、液晶配向処理剤を塗布する際の液晶配向膜の塗膜性や表面平滑性を高めることができるため、特定重合体にポリイミド前駆体、ポリイミド、ポリアミド又はポリエステルを用いた場合、前記溶媒A類と併用して用いることが好ましい。その際、溶媒B類は、液晶配向処理剤に含まれる溶媒全体の1〜99質量%が好ましい。なかでも、10〜99質量%が好ましい。より好ましくは、20〜95質量%である。   Since these solvents B can enhance the coating property and surface smoothness of the liquid crystal alignment film when applying the liquid crystal alignment treatment agent, when a polyimide precursor, polyimide, polyamide or polyester is used for the specific polymer. It is preferable to use it in combination with the solvent A. At that time, the solvent B is preferably contained in an amount of 1 to 99% by mass of the entire solvent contained in the liquid crystal alignment treatment agent. Especially, 10-99 mass% is preferable. More preferably, it is 20 to 95% by mass.

<特定化合物A>
液晶配向処理剤には、液晶表示素子の光学特性の点から、下記式[b−1]〜式[b−11]から選ばれる少なくとも1種の構造を有する化合物(特定化合物Aともいう。)を導入することが好ましい。
<Specific compound A>
The compound having at least one structure selected from the following formulas [b-1] to [b-11] (also referred to as a specific compound A) is included in the liquid crystal alignment treatment agent from the viewpoint of the optical characteristics of the liquid crystal display element. Is preferably introduced.

Figure 2018159637
Figure 2018159637

は水素原子又はベンゼン環を示す。B〜Bは炭素数1〜5のアルキル基を示す。B A represents a hydrogen atom or a benzene ring. B B .about.B D represents an alkyl group having 1 to 5 carbon atoms.

特定化合物Aの具体例には、下記式[b−1a]〜式[b−24a]が挙げられ、これらの使用が好ましい。   Specific examples of the specific compound A include the following formulas [b-1a] to [b-24a], and their use is preferable.

Figure 2018159637
Figure 2018159637

k1は1〜12の整数を示す。なかでも、液晶表示素子の光学特性の点から、1〜8が好ましい。k2は0〜4の整数を示す。なかでも、液晶表示素子の光学特性の点から、1又は2が好ましい。Kは、単結合、−O−、−CHO−、−CONH−、−NHCO−、−CON(CH)−、−N(CH)CO−、−COO−又は−OCO−を示す。なかでも、原料の入手性や合成の容易さの点から、−O−又は−COO−が好ましい。k1 represents an integer of 1 to 12. Among them, 1 to 8 are preferable from the viewpoint of the optical characteristics of the liquid crystal display element. k2 represents an integer of 0 to 4. Above all, 1 or 2 is preferable from the viewpoint of the optical characteristics of the liquid crystal display element. K a is a single bond, -O -, - CH 2 O -, - CONH -, - NHCO -, - CON (CH 3) -, - N (CH 3) CO -, - COO- or -OCO- the Show. Among them, -O- or -COO- is preferable from the viewpoint of availability of raw materials and ease of synthesis.

は炭素数1〜18のアルキル基、炭素数1〜18のフッ素含有アルキル基、炭素数1〜18のアルコキシル基又は炭素数1〜18のフッ素含有アルコキシル基を示す。なかでも、炭素数1〜12のアルキル基又は炭素数1〜12のアルコキシル基が好ましい。より好ましくは、炭素数1〜8のアルキル基又は炭素数1〜8のアルコキシル基である。 Kb represents a C1-C18 alkyl group, a C1-C18 fluorine-containing alkyl group, a C1-C18 alkoxyl group or a C1-C18 fluorine-containing alkoxyl group. Among them, an alkyl group having 1 to 12 carbon atoms or an alkoxyl group having 1 to 12 carbon atoms is preferable. More preferably, it is an alkyl group having 1 to 8 carbon atoms or an alkoxyl group having 1 to 8 carbon atoms.

Figure 2018159637
Figure 2018159637

k3は1〜12の整数を示す。なかでも、液晶表示素子の光学特性の点から、1〜8が好ましい。Kは単結合、−(CH−(cは1〜15の整数である)、−O−、−CHO−、−COO−又は−OCO−を示す。なかでも、原料の入手性や合成の容易さの点から、−COO−又は−OCO−が好ましい。Kは、単結合、−O−、−CHO−、−CONH−、−NHCO−、−CON(CH)−、−N(CH)CO−、−COO−又は−OCO−を示す。なかでも、原料の入手性や合成の容易さの点から、−O−又は−COO−が好ましい。k3 represents an integer of 1 to 12. Among them, 1 to 8 are preferable from the viewpoint of the optical characteristics of the liquid crystal display element. K c is a single bond, - (CH 2) c - (c is an integer of 1~15), - O -, - CH 2 O -, - COO- or an -OCO-. Among them, -COO- or -OCO- is preferable from the viewpoint of availability of raw materials and ease of synthesis. The K d, a single bond, -O -, - CH 2 O -, - CONH -, - NHCO -, - CON (CH 3) -, - N (CH 3) CO -, - COO- or -OCO- the Show. Among them, -O- or -COO- is preferable from the viewpoint of availability of raw materials and ease of synthesis.

は炭素数1〜18のアルキル基、炭素数1〜18のフッ素含有アルキル基、炭素数1〜18のアルコキシル基又は炭素数1〜18のフッ素含有アルコキシル基を示す。なかでも、炭素数1〜12のアルキル基又は炭素数1〜12のアルコキシル基が好ましい。より好ましくは、炭素数1〜8のアルキル基又は炭素数1〜8のアルコキシル基である。K e is an alkyl group, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms having 1 to 18 carbon atoms having 1 to 18 carbon atoms. Among them, an alkyl group having 1 to 12 carbon atoms or an alkoxyl group having 1 to 12 carbon atoms is preferable. More preferably, it is an alkyl group having 1 to 8 carbon atoms or an alkoxyl group having 1 to 8 carbon atoms.

Figure 2018159637
Figure 2018159637

k4は0〜4の整数を示す。なかでも、液晶表示素子の光学特性の点から、1又は2が好ましい。Kは炭素数1〜18のアルキル基、炭素数1〜18のフッ素含有アルキル基、炭素数1〜18のアルコキシル基又は炭素数1〜18のフッ素含有アルコキシル基を示す。なかでも、炭素数1〜12のアルキル基又は炭素数1〜12のアルコキシル基が好ましい。より好ましくは、炭素数1〜8のアルキル基又は炭素数1〜8のアルコキシル基である。k4 represents an integer of 0 to 4. Above all, 1 or 2 is preferable from the viewpoint of the optical characteristics of the liquid crystal display element. K f is an alkyl group, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms having 1 to 18 carbon atoms having 1 to 18 carbon atoms. Among them, an alkyl group having 1 to 12 carbon atoms or an alkoxyl group having 1 to 12 carbon atoms is preferable. More preferably, it is an alkyl group having 1 to 8 carbon atoms or an alkoxyl group having 1 to 8 carbon atoms.

Figure 2018159637
Figure 2018159637

k5は1〜12の整数を示す。なかでも、液晶表示素子の光学特性の点から、1〜8が好ましい。k6は0〜4の整数を示す。なかでも、液晶表示素子の光学特性の点から、1又は2が好ましい。Kは炭素数1〜18のアルキル基、炭素数1〜18のフッ素含有アルキル基、炭素数1〜18のアルコキシル基又は炭素数1〜18のフッ素含有アルコキシル基を示す。なかでも、炭素数1〜12のアルキル基又は炭素数1〜12のアルコキシル基が好ましい。より好ましくは、炭素数1〜8のアルキル基又は炭素数1〜8のアルコキシル基である。k5 represents an integer of 1 to 12. Among them, 1 to 8 are preferable from the viewpoint of the optical characteristics of the liquid crystal display element. k6 represents an integer of 0 to 4. Above all, 1 or 2 is preferable from the viewpoint of the optical characteristics of the liquid crystal display element. K g represents an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms. Among them, an alkyl group having 1 to 12 carbon atoms or an alkoxyl group having 1 to 12 carbon atoms is preferable. More preferably, it is an alkyl group having 1 to 8 carbon atoms or an alkoxyl group having 1 to 8 carbon atoms.

Figure 2018159637
Figure 2018159637

は単結合、−(CH−(cは1〜15の整数である)、−O−、−CHO−、−COO−又は−OCO−を示す。なかでも、原料の入手性や合成の容易さの点から、−COO−又は−OCO−が好ましい。Kは炭素数1〜18のアルキル基、炭素数1〜18のフッ素含有アルキル基、炭素数1〜18のアルコキシル基又は炭素数1〜18のフッ素含有アルコキシル基を示す。なかでも、炭素数1〜12のアルキル基又は炭素数1〜12のアルコキシル基が好ましい。より好ましくは、炭素数1〜8のアルキル基又は炭素数1〜8のアルコキシル基である。K h is a single bond, - (CH 2) c - (c is an integer of 1~15), - O -, - CH 2 O -, - COO- or an -OCO-. Among them, -COO- or -OCO- is preferable from the viewpoint of availability of raw materials and ease of synthesis. K i denotes an alkyl group, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms having 1 to 18 carbon atoms having 1 to 18 carbon atoms. Among them, an alkyl group having 1 to 12 carbon atoms or an alkoxyl group having 1 to 12 carbon atoms is preferable. More preferably, it is an alkyl group having 1 to 8 carbon atoms or an alkoxyl group having 1 to 8 carbon atoms.

Figure 2018159637
Figure 2018159637

k7は1〜12の整数を示す。なかでも、液晶表示素子の光学特性の点から、1〜8が好ましい。Kは単結合、−(CH−(cは1〜15の整数である)、−O−、−CHO−、−COO−又は−OCO−を示す。なかでも、原料の入手性や合成の容易さの点から、−COO−又は−OCO−が好ましい。k7 represents an integer of 1 to 12. Among them, 1 to 8 are preferable from the viewpoint of the optical characteristics of the liquid crystal display element. K j is a single bond, - (CH 2) c - (c is an integer of 1~15), - O -, - CH 2 O -, - COO- or an -OCO-. Among them, -COO- or -OCO- is preferable from the viewpoint of availability of raw materials and ease of synthesis.

は炭素数1〜18のアルキル基、炭素数1〜18のフッ素含有アルキル基、炭素数1〜18のアルコキシル基又は炭素数1〜18のフッ素含有アルコキシル基を示す。なかでも、炭素数1〜12のアルキル基又は炭素数1〜12のアルコキシル基が好ましい。より好ましくは、炭素数1〜8のアルキル基又は炭素数1〜8のアルコキシル基である。K k represents an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms. Among them, an alkyl group having 1 to 12 carbon atoms or an alkoxyl group having 1 to 12 carbon atoms is preferable. More preferably, it is an alkyl group having 1 to 8 carbon atoms or an alkoxyl group having 1 to 8 carbon atoms.

特定化合物Aの具体例は、なかでも、式[b−1a]、式[b−2a]、式[b−7a]、式[b−8a]、式[b−10a]、式[b−11a]、式[b−13a]、式[b−14a]、式[b−16a]又は式[b−17a]が好ましい。   Specific examples of the specific compound A include, among others, formula [b-1a], formula [b-2a], formula [b-7a], formula [b-8a], formula [b-10a], and formula [b- 11a], formula [b-13a], formula [b-14a], formula [b-16a] or formula [b-17a].

液晶配向処理剤における特定化合物Aの使用割合は、液晶表示素子の光学特性の点から、特定重合体100質量部に対して、0.1〜30質量部が好ましい。より好ましくは、0.5〜20質量部である。特に好ましくは、1〜10質量部である。また、特定化合物Aは、各特性に応じて、1種類又は2種類以上を混合して使用することもできる。   The proportion of the specific compound A in the liquid crystal alignment treatment agent is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the specific polymer from the viewpoint of the optical characteristics of the liquid crystal display device. More preferably, it is 0.5 to 20 parts by mass. Particularly preferably, it is 1 to 10 parts by mass. In addition, the specific compound A can be used singly or as a mixture of two or more according to each property.

<特定架橋性化合物>
液晶配向処理剤には、樹脂膜の膜強度を高めるために、エポキシ基、イソシアネート基、オキセタン基、シクロカーボネート基、ヒドロキシ基、ヒドロキシアルキル基及び低級アルコキシアルキル基から選ばれる少なくとも1種を有する化合物(総称して特定架橋性化合物ともいう。)を導入することが好ましい。その際、これらの基は、化合物中に2個以上有する必要がある。
<Specific crosslinkable compound>
The liquid crystal alignment agent has a compound having at least one selected from an epoxy group, an isocyanate group, an oxetane group, a cyclocarbonate group, a hydroxy group, a hydroxyalkyl group and a lower alkoxyalkyl group in order to increase the film strength of the resin film. It is preferable to introduce (generically referred to as a specific crosslinking compound). At that time, these compounds need to have two or more in the compound.

エポキシ基又はイソシアネート基を有する架橋性化合物の具体例は、国際公開公報WO2014/171493(2014.10.23公開)の63頁〜64頁に記載されるエポキシ基又はイソシアネート基を有する架橋性化合物が挙げられる。   Specific examples of the crosslinkable compound having an epoxy group or an isocyanate group include a crosslinkable compound having an epoxy group or an isocyanate group described on pages 63 to 64 of International Publication WO2014 / 171493 (published on 2014.10.23). No.

オキセタン基を有する架橋性化合物の具体例は、国際公開公報WO2011/132751(2011.10.27公開)の58頁〜59頁に掲載される式[4a]〜式[4k]の架橋性化合物が挙げられる。   Specific examples of the crosslinkable compound having an oxetane group include the crosslinkable compounds represented by the formulas [4a] to [4k] described on pages 58 to 59 of WO2011 / 132751 (2011.10.27). No.

シクロカーボネート基を有する架橋性化合物の具体例は、国際公開公報WO2012/014898(2012.2.2公開)の76頁〜82頁に掲載される式[5−1]〜式[5−42]の架橋性化合物が挙げられる。   Specific examples of the crosslinkable compound having a cyclocarbonate group include the formulas [5-1] to [5-42] described on pages 76 to 82 of WO2012 / 014898 (2012.2.2 publication). Crosslinkable compounds.

ヒドロキシル基、ヒドロキシアルキル基及び低級アルコキシアルキル基を有する架橋性化合物の具体例は、国際公開公報2014/171493(2014.10.23公開)の65頁〜66頁に記載されるメラミン誘導体又はベンゾグアナミン誘導体、及び国際公開公報WO2011/132751(2011.10.27公開)の62頁〜66頁に掲載される、式[6−1]〜式[6−48]の架橋性化合物が挙げられる。   Specific examples of the crosslinkable compound having a hydroxyl group, a hydroxyalkyl group and a lower alkoxyalkyl group include melamine derivatives or benzoguanamine derivatives described on pages 65 to 66 of International Publication WO 2014/171493 (2014.10.23). And the crosslinkable compounds of formulas [6-1] to [6-48] described on pages 62 to 66 of WO2011 / 132751 (published on 2011.10.27).

液晶配向処理剤における特定架橋性化合物の含有量は、全ての重合体成分100質量部に対して、0.1〜100質量部が好ましい。より好ましくは、架橋反応が進行して目的の効果を発現させるため、全ての重合体成分100質量部に対して0.1〜50質量部である。特に好ましくは、1〜30質量部である。   The content of the specific crosslinking compound in the liquid crystal alignment treatment agent is preferably from 0.1 to 100 parts by mass based on 100 parts by mass of all the polymer components. More preferably, the amount is 0.1 to 50 parts by mass with respect to 100 parts by mass of all the polymer components, in order for the cross-linking reaction to proceed and express the desired effect. Particularly preferably, it is 1 to 30 parts by mass.

<特定発生剤>
液晶配向処理剤には、光ラジカル発生剤、光酸発生剤及び光塩基発生剤から選ばれる少なくとも1種の発生剤(特定発生剤ともいう。)の導入が好ましい。特定発生剤の具体例は、国際公開公報2014/171493(2014.10.23公開)の54頁〜56頁に記載される特定発生剤が挙げられる。なかでも、特定発生剤には、液晶表示素子の液晶層と液晶配向膜との密着性の点から、光ラジカル発生剤を用いることが好ましい。
<Specific generator>
It is preferable to introduce at least one type of generator (also referred to as a specific generator) selected from a photoradical generator, a photoacid generator and a photobase generator into the liquid crystal alignment treatment agent. Specific examples of the specific generator include the specific generators described on pages 54 to 56 of International Publication WO 2014/171493 (published on 2014.10.23). Above all, it is preferable to use a photo-radical generator as the specific generator from the viewpoint of adhesion between the liquid crystal layer of the liquid crystal display element and the liquid crystal alignment film.

<特定密着性化合物>
液晶配向処理剤には、液晶表示素子の液晶層と垂直液晶配向膜との密着性を高める目的で、下記式[e−1]〜式[e−8]から選ばれる少なくとも1種の構造を有する化合物(特定密着性化合物ともいう。)の導入が好ましい。
<Specific adhesive compound>
The liquid crystal alignment treatment agent has at least one structure selected from the following formulas [e-1] to [e-8] for the purpose of enhancing the adhesion between the liquid crystal layer of the liquid crystal display element and the vertical liquid crystal alignment film. It is preferable to introduce a compound (also referred to as a specific adhesive compound).

Figure 2018159637
Figure 2018159637

は水素原子又はベンゼン環を示す。Eはベンゼン環、シクロへキサン環及び複素環から選ばれる少なくとも1種の環状基を示す。Eは炭素数1〜18のアルキル基、炭素数1〜18のフッ素含有アルキル基、炭素数1〜18のアルコキシ基又は炭素数1〜18のフッ素含有アルコキシ基を示す。E A is a hydrogen atom or a benzene ring. E B represents at least one cyclic group selected from hexane ring and heterocyclic benzene ring, cyclohexane. E C denotes an alkyl group, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxy group or a fluorine-containing alkoxy group having 1 to 18 carbon atoms having 1 to 18 carbon atoms having 1 to 18 carbon atoms.

特定密着性化合物の具体例は、国際公開公報WO2015/012368(2015.1.29公開)の43頁〜46頁に記載される式[6]の化合物が挙げられる。更に、国際公開公報WO2014/171493(2014.10.23公開)の61頁〜63頁に記載される密着性化合物を用いることもできる。   Specific examples of the specific adhesive compound include a compound of the formula [6] described on pages 43 to 46 of International Publication WO2015 / 012368 (published on 2015.1.29). Further, adhesive compounds described on pages 61 to 63 of International Publication WO2014 / 171493 (published on 2014.10.23) can also be used.

液晶配向処理剤における特定密着性化合物の含有量は、全ての重合体成分100質量部に対して、0.1〜150質量部が好ましい。より好ましくは、架橋反応が進行して目的の効果を発現させるため、全ての重合体成分100質量部に対して0.1〜100質量部である。特に好ましくは、1〜50質量部である。   The content of the specific adhesive compound in the liquid crystal alignment agent is preferably 0.1 to 150 parts by mass with respect to 100 parts by mass of all polymer components. More preferably, the amount is 0.1 to 100 parts by mass with respect to 100 parts by mass of all the polymer components so that the crosslinking reaction proceeds and the desired effect is exhibited. Particularly preferably, it is 1 to 50 parts by mass.

液晶配向処理剤には、液晶配向膜中の電荷移動を促進し、素子の電荷抜けを促進させるため、国際公開公報WO2011/132751(2011.10.27公開)の69頁〜73頁に掲載される、式[M1]〜式[M156]の窒素含有複素環アミン化合物を添加することもできる。このアミン化合物は、液晶配向処理剤に直接添加しても構わないが、適当な溶媒で濃度0.1〜10質量%、好ましくは1〜7質量%の溶液にしてから添加することが好ましい。この溶媒としては、特定重合体を溶解させる有機溶媒であれば特に限定されない。   The liquid crystal alignment treatment agent is described on pages 69 to 73 of International Publication WO2011 / 132751 (2011.10.27 publication) in order to promote charge transfer in the liquid crystal alignment film and promote charge removal of the device. Alternatively, a nitrogen-containing heterocyclic amine compound of the formulas [M1] to [M156] can be added. This amine compound may be added directly to the liquid crystal alignment treatment agent, but is preferably added after a solution having a concentration of 0.1 to 10% by mass, preferably 1 to 7% by mass in a suitable solvent. The solvent is not particularly limited as long as it is an organic solvent that dissolves the specific polymer.

<液晶配向膜の膜厚の均一性や表面平滑性を向上させる化合物>
液晶配向処理剤には、本発明の効果を損なわない限り、液晶配向処理剤を塗布した際の液晶配向膜の膜厚の均一性や表面平滑性を向上させる化合物を用いることができる。更に、液晶配向膜と基板との密着性を向上させる化合物などを用いることもできる。
<Compound that improves uniformity of film thickness and surface smoothness of liquid crystal alignment film>
As the liquid crystal alignment treatment agent, a compound that improves the uniformity of the film thickness and the surface smoothness of the liquid crystal alignment film when the liquid crystal alignment treatment agent is applied can be used as long as the effects of the present invention are not impaired. Further, a compound or the like for improving the adhesion between the liquid crystal alignment film and the substrate can be used.

液晶配向膜の膜厚の均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤、又はノ二オン系界面活性剤などが挙げられる。具体的には、国際公開公報WO2014/171493(2014.10.23公開)の67頁に記載される界面活性剤が挙げられる。また、その使用割合は、液晶配向処理剤に含有される全ての重合体成分100質量部に対して、0.01〜2質量部が好ましく、より好ましくは、0.01〜1質量部である。   Examples of the compound that improves the uniformity of the film thickness and the surface smoothness of the liquid crystal alignment film include a fluorine-based surfactant, a silicone-based surfactant, and a nonion-based surfactant. Specific examples include surfactants described on page 67 of International Publication WO2014 / 171493 (published on 2014.10.23). Further, the use ratio thereof is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass, based on 100 parts by mass of all the polymer components contained in the liquid crystal alignment treatment agent. .

液晶配向膜と基板との密着性を向上させる化合物の具体例には、国際公開公報WO2014/171493(2014.10.23公開)の67頁〜69頁に記載される化合物が挙げられる。また、その使用割合は、液晶配向処理剤に含有される全ての重合体成分100質量部に対して、0.1〜30質量部が好ましく、より好ましくは、1〜20質量部である。液晶配向処理剤には、前記以外の化合物の他に、液晶配向膜の誘電率や導電性などの電気特性を変化させる目的の誘電体や導電物質を添加してもよい。   Specific examples of the compound for improving the adhesion between the liquid crystal alignment film and the substrate include compounds described on pages 67 to 69 of International Publication WO2014 / 171493 (published on 2014.10.23). Further, the usage ratio is preferably 0.1 to 30 parts by mass, more preferably 1 to 20 parts by mass, based on 100 parts by mass of all the polymer components contained in the liquid crystal alignment treatment agent. In addition to the compounds other than those described above, a dielectric substance or a conductive substance for changing electric properties such as a dielectric constant and conductivity of the liquid crystal alignment film may be added to the liquid crystal alignment treatment agent.

<液晶配向膜及び液晶表示素子の作製方法>
液晶表示素子に用いる基板は、透明性の高い基板であれば特に限定されず、ガラス基板の他、アクリル基板、ポリカーボネート基板、PET(ポリエチレンテレフタレート)基板などのプラスチック基板、更には、それらのフィルムを用いることができる。素子をリバース型素子として、調光窓などに用いる場合には、プラスチック基板やフィルムが好ましい。また、プロセスの簡素化の観点からは、液晶駆動のためのITO(Indium Tin Oxide)電極、IZO(Indium Zinc Oxide)電極、IGZO(Indium Gallium Zinc Oxide)電極、有機導電膜などが形成された基板を用いることが好ましい。また、反射型のリバース型素子とする場合には、片側の基板のみにならば、シリコンウエハやアルミニウムなどの金属や誘電体多層膜が形成された基板を使用できる。
<Method for producing liquid crystal alignment film and liquid crystal display element>
The substrate used for the liquid crystal display element is not particularly limited as long as it is a substrate having high transparency. In addition to a glass substrate, a plastic substrate such as an acrylic substrate, a polycarbonate substrate, a PET (polyethylene terephthalate) substrate, and a film made of such a film are used. Can be used. When the element is used as a reverse type element for a light control window or the like, a plastic substrate or a film is preferable. Further, from the viewpoint of simplification of the process, a substrate on which an ITO (Indium Tin Oxide) electrode, an IZO (Indium Zinc Oxide) electrode, an IGZO (Indium Gallium Zinc Oxide) electrode, an organic conductive film, etc. are formed for driving a liquid crystal. It is preferable to use In the case of a reflection type reverse type element, a silicon wafer or a substrate on which a metal such as aluminum or a dielectric multilayer film is formed can be used as long as only one substrate is used.

液晶表示素子は、基板の少なくとも一方が、液晶分子を垂直に配向させるような液晶配向膜を有する。この液晶配向膜は、液晶配向処理剤を基板上に塗布し、焼成した後、ラビング処理や光照射などで配向処理をして得ることができる。ただし、本発明における液晶配向膜の場合は、これら配向処理無しで用いることもできる。液晶配向処理剤の塗布方法は、特に限定されないが、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷、インクジェット法、ディップ法、ロールコータ法、スリットコータ法、スピンナー法、スプレー法などがあり、基板の種類や目的とする液晶配向膜の膜厚に応じて、適宜選択できる。   In the liquid crystal display device, at least one of the substrates has a liquid crystal alignment film for vertically aligning liquid crystal molecules. This liquid crystal alignment film can be obtained by applying a liquid crystal alignment treatment agent on a substrate, baking it, and performing an alignment treatment by rubbing treatment or light irradiation. However, in the case of the liquid crystal alignment film in the present invention, it can be used without these alignment treatments. The method of applying the liquid crystal alignment treatment agent is not particularly limited, but industrially, there are screen printing, offset printing, flexographic printing, an inkjet method, a dip method, a roll coater method, a slit coater method, a spinner method, a spray method, and the like. It can be appropriately selected according to the type of the substrate and the intended thickness of the liquid crystal alignment film.

液晶配向処理剤を基板上に塗布した後は、ホットプレート、熱循環型オーブン、IR(赤外線)型オーブンなどの加熱手段により、基板の種類や液晶配向処理剤に用いる溶媒に応じて、30〜300℃、好ましくは30〜250℃の温度で溶媒を蒸発させて液晶配向膜とすることができる。特に、基板にプラスチック基板を用いる場合には、30〜150℃の温度で処理することが好ましい。   After the liquid crystal aligning agent is applied on the substrate, it is heated by a heating means such as a hot plate, a heat circulating oven, or an IR (infrared) oven depending on the type of the substrate and the solvent used for the liquid crystal aligning agent. The solvent can be evaporated at a temperature of 300 ° C., preferably 30 to 250 ° C. to form a liquid crystal alignment film. In particular, when a plastic substrate is used as the substrate, the treatment is preferably performed at a temperature of 30 to 150 ° C.

焼成後の液晶配向膜の厚みは、厚すぎると液晶表示素子の消費電力の面で不利となり、薄すぎると素子の信頼性が低下する場合があるので、好ましくは5〜500nmである。より好ましくは10〜300nmであり、特に好ましくは、10〜250nmである。液晶表示素子に用いる液晶組成物は、前記の通りの液晶組成物であるが、そのなかに、液晶表示素子の電極間隙(ギャップともいう。)を制御するためのスペーサーを導入することもできる。   If the thickness of the liquid crystal alignment film after firing is too large, it is disadvantageous in terms of power consumption of the liquid crystal display element, and if too thin, the reliability of the element may be reduced. It is more preferably from 10 to 300 nm, particularly preferably from 10 to 250 nm. The liquid crystal composition used for the liquid crystal display element is the liquid crystal composition as described above, and a spacer for controlling an electrode gap (also referred to as a gap) of the liquid crystal display element can be introduced therein.

液晶組成物の注入方法は、特に限定されないが、例えば、次の方法が挙げられる。即ち、基板にガラス基板を用いる場合、液晶配向膜が形成された一対の基板を用意し、片側の基板の4片を、一部分を除いてシール剤を塗布し、その後、液晶配向膜の面が内側になるようにして、もう片側の基板を貼り合わせた空セルを作製する。そして、シール剤が塗布されていない場所から、液晶組成物を減圧注入して、液晶組成物注入セルを得る方法が挙げられる。更に、基板にプラスチック基板やフィルムを用いる場合には、液晶配向膜が形成された一対の基板を用意し、片側の基板の上にODF(One Drop Filling)法やインクジェット法などで、液晶組成物を滴下し、その後、もう片側の基板を貼り合わせて、液晶組成物注入セルを得る方法が挙げられる。本発明の液晶表示素子では、液晶層と液晶配向膜との密着性が高いため、基板の4片にシール剤を塗布しなくてもよい。   The method for injecting the liquid crystal composition is not particularly limited, and examples thereof include the following method. That is, when a glass substrate is used as a substrate, a pair of substrates on which a liquid crystal alignment film is formed is prepared, and a sealant is applied to four pieces of one side of the substrate except for a part thereof. An empty cell in which the substrate on the other side is bonded to the inside is produced. Then, there is a method in which a liquid crystal composition is injected under reduced pressure from a place where the sealant is not applied to obtain a liquid crystal composition injection cell. When a plastic substrate or a film is used as the substrate, a pair of substrates having a liquid crystal alignment film formed thereon is prepared, and a liquid crystal composition is formed on one of the substrates by an ODF (One Drop Filling) method, an inkjet method, or the like. Is dropped, and then the other substrate is attached to obtain a liquid crystal composition injection cell. In the liquid crystal display element of the present invention, since the adhesion between the liquid crystal layer and the liquid crystal alignment film is high, it is not necessary to apply a sealant to four pieces of the substrate.

液晶表示素子のギャップは、前記のスペーサーなどで制御できる。その方法は、前記の通りに、液晶組成物中に目的とする大きさのスペーサーを導入する方法や、目的とする大きさのカラムスペーサーを有する基板を用いる方法などが挙げられる。また、基板にプラスチックやフィルム基板を用いて、基板の貼り合わせをラミネートで行う場合は、スペーサーを導入せずに、ギャップを制御できる。   The gap of the liquid crystal display element can be controlled by the spacer or the like. Examples of the method include a method of introducing a spacer having a target size into a liquid crystal composition and a method of using a substrate having a column spacer having a target size, as described above. In the case where a plastic or film substrate is used as a substrate and the substrates are laminated by lamination, the gap can be controlled without introducing a spacer.

液晶表示素子のギャップは、1〜100μmが好ましく、より好ましくは、1〜50μmである。特に好ましくは、2〜30μmである。ギャップが小さすぎると、素子のコントラストが低下し、大きすぎると、素子の駆動電圧が高くなる。   The gap of the liquid crystal display device is preferably from 1 to 100 μm, more preferably from 1 to 50 μm. Particularly preferably, it is 2 to 30 μm. If the gap is too small, the contrast of the device decreases, and if it is too large, the driving voltage of the device increases.

本発明の液晶表示素子は、液晶組成物の一部又は全体が液晶性を示す状態で、液晶組成物の硬化を行い、液晶と重合性化合物の硬化物複合体(液晶層)を形成させて得られる。この液晶組成物の硬化は、前記の液晶組成物注入セルに、紫外線を照射して行う。その際に用いる紫外線照射装置の光源としては、例えば、メタルハライドランプ又は高圧水銀ランプが挙げられる。また、紫外線の波長は、250〜400nmが好ましい。なかでも、310〜370nmが好ましい。また、紫外線を照射した後に、加熱処理を行ってもよい。その際の温度は、40〜120℃、好ましくは40〜80℃である。   In the liquid crystal display element of the present invention, the liquid crystal composition is cured in a state where a part or the whole of the liquid crystal composition exhibits liquid crystallinity, thereby forming a cured product composite (liquid crystal layer) of liquid crystal and a polymerizable compound. can get. The curing of the liquid crystal composition is performed by irradiating the liquid crystal composition injection cell with ultraviolet rays. As a light source of the ultraviolet irradiation device used at that time, for example, a metal halide lamp or a high-pressure mercury lamp is used. The wavelength of the ultraviolet light is preferably from 250 to 400 nm. Especially, 310-370 nm is preferable. In addition, heat treatment may be performed after irradiation with ultraviolet light. The temperature at that time is 40 to 120 ° C, preferably 40 to 80 ° C.

以下に実施例を挙げ、本発明を更に詳しく説明するが、これらに限定されるものではない。以下で用いる略語は下記の通りである。   Hereinafter, the present invention will be described in more detail with reference to Examples, but it should not be construed that the invention is limited thereto. Abbreviations used below are as follows.

「液晶組成物に用いる化合物類」
<特定化合物>
"Compounds used in liquid crystal compositions"
<Specific compound>

Figure 2018159637
Figure 2018159637

<添加化合物>   <Additive compound>

Figure 2018159637
Figure 2018159637

<液晶>
L1:MLC−6608(メルク社製)
<Liquid crystal>
L1: MLC-6608 (Merck)

<重合性化合物>   <Polymerizable compound>

Figure 2018159637
Figure 2018159637

R3:ブレンマーTA−604AU(日油社製)   R3: Blemmer TA-604AU (manufactured by NOF CORPORATION)

<ラジカル開始剤>   <Radical initiator>

Figure 2018159637
Figure 2018159637

「液晶配向処理剤に用いる化合物類」
<特定側鎖型ジアミン>
"Compounds used for liquid crystal alignment treatment agent"
<Specific side chain type diamine>

Figure 2018159637
Figure 2018159637

<第2のジアミン>   <Second diamine>

Figure 2018159637
Figure 2018159637

<第3のジアミン>   <Third diamine>

Figure 2018159637
Figure 2018159637

<その他のジアミン>   <Other diamines>

Figure 2018159637
Figure 2018159637

<特定テトラカルボン酸成分>   <Specific tetracarboxylic acid component>

Figure 2018159637
Figure 2018159637

<ポリシロキサン系重合体を作製するためのモノマー>   <Monomer for producing polysiloxane polymer>

Figure 2018159637
Figure 2018159637

E2:オクタデシルトリエトキシシラン
E3:3−メタクリロキシプロピルトリメトキシシラン
E4:3−ウレイドプロピルトリエトキシシラン
E5:テトラエトキシシラン
E2: octadecyltriethoxysilane E3: 3-methacryloxypropyltrimethoxysilane E4: 3-ureidopropyltriethoxysilane E5: tetraethoxysilane

<特定化合物A>   <Specific compound A>

Figure 2018159637
Figure 2018159637

<特定架橋性化合物>   <Specific crosslinkable compound>

Figure 2018159637
Figure 2018159637

<特定発生剤>   <Specific generator>

Figure 2018159637
Figure 2018159637

<溶媒>
NMP:N−メチル−2−ピロリドン
γ−BL:γ−ブチロラクトン
BCS:エチレングリコールモノブチルエーテル
PB:プロピレングリコールモノブチルエーテル
PGME:プロピレングリコールモノメチルエーテル
ECS:エチレングリコールモノエチルエーテル
EC:ジエチレングリコールモノエチルエーテル
<Solvent>
NMP: N-methyl-2-pyrrolidone γ-BL: γ-butyrolactone BCS: ethylene glycol monobutyl ether PB: propylene glycol monobutyl ether PGME: propylene glycol monomethyl ether ECS: ethylene glycol monoethyl ether EC: diethylene glycol monoethyl ether

「ポリイミド系重合体の分子量測定」
常温ゲル浸透クロマトグラフィー(GPC)装置(GPC−101)(昭和電工社製)、カラム(KD−803,KD−805)(Shodex社製)を用いて、以下のようにして測定した。
・カラム温度:50℃
・溶離液:N,N’−ジメチルホルムアミド(添加剤として、臭化リチウム−水和物(LiBr・HO)が30mmol/L(リットル)、リン酸・無水結晶(o−リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
・流速:1.0ml/分
・検量線作成用標準サンプル:TSK 標準ポリエチレンオキサイド(分子量;約900,000、150,000、100,000及び30,000)(東ソー社製)及びポリエチレングリコール(分子量;約12,000、4,000及び1,000)(ポリマーラボラトリー社製)。
"Measurement of molecular weight of polyimide polymer"
Using a room temperature gel permeation chromatography (GPC) apparatus (GPC-101) (manufactured by Showa Denko KK) and a column (KD-803, KD-805) (manufactured by Shodex), the measurement was performed as follows.
-Column temperature: 50 ° C
・ Eluent: N, N′-dimethylformamide (as an additive, lithium bromide hydrate (LiBr · H 2 O) 30 mmol / L (liter), phosphoric acid / anhydrous crystal (o-phosphoric acid) 30 mmol / L, tetrahydrofuran (THF) 10 ml / L)
-Flow rate: 1.0 ml / min-Standard sample for preparing calibration curve: TSK standard polyethylene oxide (molecular weight; about 900,000, 150,000, 100,000 and 30,000) (manufactured by Tosoh Corporation) and polyethylene glycol (molecular weight) About 12,000, 4,000 and 1,000) (manufactured by Polymer Laboratory).

「ポリイミド系重合体のイミド化率の測定」
ポリイミド粉末20mgをNMR(核磁気共鳴)サンプル管(NMRサンプリングチューブスタンダード,φ5(草野科学社製))に入れ、重水素化ジメチルスルホキシド(DMSO−d6,0.05質量%TMS(テトラメチルシラン)混合品)(0.53ml)を添加し、超音波をかけて完全に溶解させた。この溶液をNMR測定機(JNW−ECA500)(日本電子データム社製)にて500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5ppm〜10.0ppm付近に現れるアミド酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。
イミド化率(%)=(1−α・x/y)×100
(xはアミド酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミド酸(イミド化率が0%)の場合におけるアミド酸のNH基プロトン1個に対する基準プロトンの個数割合である。)
"Measurement of imidation rate of polyimide polymer"
20 mg of the polyimide powder is placed in an NMR (nuclear magnetic resonance) sample tube (NMR sampling tube standard, φ5 (manufactured by Kusano Science)), and deuterated dimethyl sulfoxide (DMSO-d6, 0.05% by mass TMS (tetramethylsilane)) (Mixture) (0.53 ml) was added, and the mixture was completely dissolved by sonication. The solution was measured for proton NMR at 500 MHz using an NMR measuring device (JNW-ECA500) (manufactured by JEOL Datum). The imidation ratio is determined based on a proton derived from a structure that does not change before and after imidation as a reference proton, and a peak integrated value of this proton and a proton peak derived from the NH group of the amic acid appearing around 9.5 ppm to 10.0 ppm. It was determined by the following equation using the integrated value.
Imidation ratio (%) = (1−α · x / y) × 100
(X is the integrated value of the proton peak derived from the NH group of the amic acid, y is the integrated value of the peak of the reference proton, α is the reference proton for one NH group proton of the amic acid in the case of polyamic acid (imidation ratio is 0%) Is the number ratio.)

「ポリイミド系重合体の合成」
<合成例1>
D2(2.13g,8.50mmol)、A1(4.91g,12.9mmol)、C1(0.98g,6.46mmol)及びD1(0.23g,2.15mmol)をNMP(28.7g)中で混合し、80℃で4時間反応させた後、D1(2.50g,12.8mmol)とNMP(14.3g)を加え、40℃で6時間反応させ、樹脂固形分濃度が20質量%のポリアミド酸溶液(1)を得た。このポリアミド酸の数平均分子量(Mnともいう。)は17,300、重量平均分子量(Mwともいう。)は56,200であった。
"Synthesis of polyimide-based polymer"
<Synthesis example 1>
D2 (2.13 g, 8.50 mmol), A1 (4.91 g, 12.9 mmol), C1 (0.98 g, 6.46 mmol) and D1 (0.23 g, 2.15 mmol) were converted to NMP (28.7 g). After mixing at 80 ° C. for 4 hours, D1 (2.50 g, 12.8 mmol) and NMP (14.3 g) were added, and the mixture was reacted at 40 ° C. for 6 hours. % Polyamic acid solution (1) was obtained. The number average molecular weight (also referred to as Mn) of this polyamic acid was 17,300, and the weight average molecular weight (also referred to as Mw) was 56,200.

<合成例2>
合成例1の手法で得られたポリアミド酸溶液(1)(30.0g)に、NMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(3.70g)及びピリジン(2.30g)を加え、60℃で2.5時間反応させた。この反応溶液をメタノール(450ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(2)を得た。このポリイミドのイミド化率は52%であり、Mnは15,400、Mwは41,500であった。
<Synthesis Example 2>
NMP was added to the polyamic acid solution (1) (30.0 g) obtained by the method of Synthesis Example 1 to dilute to 6% by mass, and then acetic anhydride (3.70 g) and pyridine (2.30 g) were used as imidation catalysts. ) Was added and reacted at 60 ° C. for 2.5 hours. This reaction solution was poured into methanol (450 ml), and the obtained precipitate was separated by filtration. This precipitate was washed with methanol and dried under reduced pressure at 100 ° C. to obtain a polyimide powder (2). The imidation ratio of this polyimide was 52%, Mn was 15,400, and Mw was 41,500.

<合成例3>
D4(1.52g,7.65mmol)、A2(2.55g,6.46mmol)及びC1(0.98g,6.46mmol)をγ−BL(16.1g)中で混合し、60℃で4時間反応させた後、D1(1.00g,5.10mmol)とγ−BL(8.06g)を加え、40℃で6時間反応させ、樹脂固形分濃度が20質量%のポリアミド酸溶液(3)を得た。このポリアミド酸のMnは12,500、Mwは41,300であった。
<Synthesis example 3>
D4 (1.52 g, 7.65 mmol), A2 (2.55 g, 6.46 mmol) and C1 (0.98 g, 6.46 mmol) were mixed in γ-BL (16.1 g), After reacting for 1 hour, D1 (1.00 g, 5.10 mmol) and γ-BL (8.06 g) were added, and the mixture was reacted at 40 ° C. for 6 hours. ) Got. Mn of this polyamic acid was 12,500 and Mw was 41,300.

<合成例4>
D4(1.52g,7.65mmol)、A2(2.55g,6.46mmol)及びB1(1.71g,6.46mmol)をγ−BL(18.1g)中で混合し、60℃で4時間反応させた後、D1(1.00g,5.10mmol)とγ−BL(9.03g)を加え、40℃で6時間反応させ、樹脂固形分濃度が20質量%のポリアミド酸溶液(4)を得た。このポリアミド酸のMnは11,100、Mwは37,600であった。
<Synthesis example 4>
D4 (1.52 g, 7.65 mmol), A2 (2.55 g, 6.46 mmol) and B1 (1.71 g, 6.46 mmol) were mixed in γ-BL (18.1 g), After reacting for 1 hour, D1 (1.00 g, 5.10 mmol) and γ-BL (9.03 g) were added, and the mixture was reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution (4%) having a resin solid content concentration of 20% by mass. ) Got. Mn of this polyamic acid was 11,100 and Mw was 37,600.

<合成例5>
D4(1.31g,6.63mmol)、A3(2.03g,4.70mmol)、B2(1.09g,5.37mmol)及びC1(0.51g,3.36mmol)をγ−BL(16.7g)中で混合し、60℃で4時間反応させた後、D1(1.30g,6.63mmol)とγ−BL(8.33g)を加え、40℃で6時間反応させ、樹脂固形分濃度が20質量%のポリアミド酸溶液(5)を得た。このポリアミド酸のMnは11,300、Mwは39,100であった。
<Synthesis example 5>
D4 (1.31 g, 6.63 mmol), A3 (2.03 g, 4.70 mmol), B2 (1.09 g, 5.37 mmol) and C1 (0.51 g, 3.36 mmol) were converted to γ-BL (16. 7g) and reacted at 60 ° C. for 4 hours. Then, D1 (1.30 g, 6.63 mmol) and γ-BL (8.33 g) were added, and the mixture was reacted at 40 ° C. for 6 hours. A polyamic acid solution (5) having a concentration of 20% by mass was obtained. Mn of this polyamic acid was 11,300 and Mw was 39,100.

<合成例6>
D4(1.01g,5.10mmol)、A4(1.91g,3.87mmol)、B1(0.68g,2.58mmol)、B2(0.53g,2.58mmol)及びC1(0.59g,3.87mmol)をγ−BL(16.6g)中で混合し、60℃で4時間反応させた後、D1(1.50g,7.65mmol)とγ−BL(8.29g)を加え、40℃で6時間反応させ、樹脂固形分濃度が20質量%のポリアミド酸溶液(6)を得た。このポリアミド酸のMnは10,900、Mwは36,900であった。
<Synthesis example 6>
D4 (1.01 g, 5.10 mmol), A4 (1.91 g, 3.87 mmol), B1 (0.68 g, 2.58 mmol), B2 (0.53 g, 2.58 mmol) and C1 (0.59 g, 3.87 mmol) was mixed in γ-BL (16.6 g) and reacted at 60 ° C. for 4 hours. Then, D1 (1.50 g, 7.65 mmol) and γ-BL (8.29 g) were added. The reaction was carried out at 40 ° C. for 6 hours to obtain a polyamic acid solution (6) having a resin solid content of 20% by mass. Mn of this polyamic acid was 10,900 and Mw was 36,900.

<合成例7>
D3(1.71g,7.65mmol)、A4(2.23g,4.52mmol)、B1(1.54g,5.81mmol)及びC1(0.39g,2.58mmol)をγ−BL(18.3g)中で混合し、60℃で4時間反応させた後、D1(1.00g,5.10mmol)とγ−BL(9.16g)を加え、40℃で6時間反応させ、樹脂固形分濃度が20質量%のポリアミド酸溶液(7)を得た。このポリアミド酸のMnは10,500、Mwは36,200であった。
<Synthesis Example 7>
D3 (1.71 g, 7.65 mmol), A4 (2.23 g, 4.52 mmol), B1 (1.54 g, 5.81 mmol) and C1 (0.39 g, 2.58 mmol) were converted to γ-BL (18. 3g), and reacted at 60 ° C. for 4 hours. Then, D1 (1.00 g, 5.10 mmol) and γ-BL (9.16 g) were added, and the mixture was reacted at 40 ° C. for 6 hours. A polyamic acid solution (7) having a concentration of 20% by mass was obtained. Mn of this polyamic acid was 10,500 and Mw was 36,200.

<合成例8>
D3(4.00g,17.8mmol)、A2(4.28g,10.9mmol)及びB1(1.91g,7.23mmol)をNMP(40.8g)中で混合し、40℃で12時間反応させ、樹脂固形分濃度が20質量%のポリアミド酸溶液(8)を得た。このポリアミド酸のMnは18,200、Mwは58,800であった。
<Synthesis Example 8>
D3 (4.00 g, 17.8 mmol), A2 (4.28 g, 10.9 mmol) and B1 (1.91 g, 7.23 mmol) were mixed in NMP (40.8 g) and reacted at 40 ° C. for 12 hours. Thus, a polyamic acid solution (8) having a resin solid content of 20% by mass was obtained. Mn of this polyamic acid was 18,200 and Mw was 58,800.

<合成例9>
合成例8の手法で得られたポリアミド酸溶液(8)(30.0g)に、NMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(3.70g)及びピリジン(2.30g)を加え、60℃で3時間反応させた。この反応溶液をメタノール(450ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(9)を得た。このポリイミドのイミド化率は52%であり、Mnは16,500、Mwは45,800であった。
<Synthesis example 9>
NMP was added to the polyamic acid solution (8) (30.0 g) obtained by the method of Synthesis Example 8 to dilute to 6% by mass, and then acetic anhydride (3.70 g) and pyridine (2.30 g) were used as imidation catalysts. ) And reacted at 60 ° C. for 3 hours. This reaction solution was poured into methanol (450 ml), and the obtained precipitate was separated by filtration. This precipitate was washed with methanol and dried under reduced pressure at 100 ° C. to obtain a polyimide powder (9). The imidation ratio of this polyimide was 52%, Mn was 16,500, and Mw was 45,800.

<合成例10>
D4(1.52g,7.65mmol)、A5(2.43g,6.46mmol)及びC1(0.98g,6.46mmol)をγ−BL(15.8g)中で混合し、60℃で4時間反応させた後、D1(1.00g,5.10mmol)とγ−BL(7.91g)を加え、40℃で6時間反応させ、樹脂固形分濃度が20質量%のポリアミド酸溶液(10)を得た。このポリアミド酸のMnは10,900、Mwは37.800であった。
<Synthesis example 10>
D4 (1.52 g, 7.65 mmol), A5 (2.43 g, 6.46 mmol) and C1 (0.98 g, 6.46 mmol) were mixed in γ-BL (15.8 g), After reacting for 1 hour, D1 (1.00 g, 5.10 mmol) and γ-BL (7.91 g) were added, and the mixture was reacted at 40 ° C. for 6 hours. ) Got. Mn of this polyamic acid was 10,900 and Mw was 37.800.

合成例で得られたポリイミド系重合体を表1に示す。なお、表1中において、*1はポリアミド酸を表す。   Table 1 shows the polyimide polymers obtained in the synthesis examples. In Table 1, * 1 represents polyamic acid.

Figure 2018159637
Figure 2018159637

「ポリシロキサン系重合体の合成」
<合成例11>
温度計及び還流管を備え付けた200mlの四つ口反応フラスコ中で、ECS(28.3g)、E1(4.10g)、E3(7.45g)及びE5(32.5g)を混合して、アルコキシシランモノマーの溶液を調整した。この溶液に、予めECS(14.2g)、水(10.8g)、及び触媒としてシュウ酸(0.70g)を混合して調整しておいた溶液を、25℃にて30分かけて滴下し、更に、25℃にて30分間撹拌した。その後、オイルバスを用いて加熱して30分間還流させた後、予め調整しておいたE4(1.10g)の含有量が92質量%のメタノール溶液(1.20g)とECS(0.90g)の混合溶液を加えた。更に、30分間還流させた後、放冷してSiO換算濃度が12質量%のポリシロキサン溶液(1)を得た。
"Synthesis of polysiloxane polymer"
<Synthesis Example 11>
ECS (28.3 g), E1 (4.10 g), E3 (7.45 g) and E5 (32.5 g) were mixed in a 200 ml four-neck reaction flask equipped with a thermometer and a reflux tube. A solution of the alkoxysilane monomer was prepared. To this solution, a solution previously prepared by mixing ECS (14.2 g), water (10.8 g), and oxalic acid (0.70 g) as a catalyst was added dropwise at 25 ° C. over 30 minutes. Then, the mixture was further stirred at 25 ° C. for 30 minutes. Thereafter, the mixture was heated and refluxed for 30 minutes using an oil bath, and a previously prepared methanol solution (1.20 g) containing 92% by mass of E4 (1.10 g) and ECS (0.90 g) were prepared. ) Was added. After further reflux for 30 minutes, the mixture was allowed to cool to obtain a polysiloxane solution (1) having a concentration of 12% by mass in terms of SiO 2 .

<合成例12>
温度計及び還流管を備え付けた200mlの四つ口反応フラスコ中で、EC(29.2g)、E1(4.10g)及びE5(38.8g)を混合して、アルコキシシランモノマーの溶液を調製した。この溶液に、予めEC(14.6g)、水(10.8g)、及び触媒としてシュウ酸(0.50g)を混合して調整しておいた溶液を、25℃にて30分かけて滴下し、更に、25℃にて30分間撹拌した。その後、オイルバスを用いて加熱して30分間還流させた後、予め調整しておいたE4(1.10g)の含有量92質量%のメタノール溶液(1.20g)とEC(0.90g)の混合溶液を加えた。更に、30分間還流させた後、放冷してSiO換算濃度が12質量%のポリシロキサン溶液(2)を得た。
<Synthesis Example 12>
EC (29.2 g), E1 (4.10 g) and E5 (38.8 g) were mixed in a 200 ml four-necked reaction flask equipped with a thermometer and a reflux tube to prepare a solution of alkoxysilane monomer. did. A solution previously prepared by mixing EC (14.6 g), water (10.8 g), and oxalic acid (0.50 g) as a catalyst was dropped into this solution at 25 ° C. over 30 minutes. Then, the mixture was further stirred at 25 ° C. for 30 minutes. Thereafter, the mixture was heated and refluxed for 30 minutes using an oil bath, and a previously prepared methanol solution (1.20 g) containing 92% by mass of E4 (1.10 g) and EC (0.90 g) were prepared. Was added. After further refluxing for 30 minutes, the mixture was allowed to cool to obtain a polysiloxane solution (2) having a concentration in terms of SiO 2 of 12% by mass.

<合成例13>
温度計及び還流管を備え付けた200mlの四つ口反応フラスコ中で、ECS(28.3g)、E2(4.07g)、E3(7.45g)及びE5(32.5g)を混合して、アルコキシシランモノマーの溶液を調整した。この溶液に、予めECS(14.2g)、水(10.8g)、及び触媒としてシュウ酸(0.70g)を混合して調整しておいた溶液を、25℃にて30分かけて滴下し、更に、25℃にて30分間撹拌した。その後、オイルバスを用いて加熱して30分間還流させた後、予め調整しておいたE4(1.10g)の含有量が92質量%のメタノール溶液(1.20g)とECS(0.90g)の混合溶液を加えた。更に、30分間還流させた後、放冷してSiO換算濃度が12質量%のポリシロキサン溶液(3)を得た。
<Synthesis Example 13>
ECS (28.3 g), E2 (4.07 g), E3 (7.45 g) and E5 (32.5 g) were mixed in a 200 ml four-necked reaction flask equipped with a thermometer and a reflux tube. A solution of the alkoxysilane monomer was prepared. To this solution, a solution previously prepared by mixing ECS (14.2 g), water (10.8 g), and oxalic acid (0.70 g) as a catalyst was added dropwise at 25 ° C. over 30 minutes. Then, the mixture was further stirred at 25 ° C. for 30 minutes. Thereafter, the mixture was heated and refluxed for 30 minutes using an oil bath, and a previously prepared methanol solution (1.20 g) containing 92% by mass of E4 (1.10 g) and ECS (0.90 g) were prepared. ) Was added. After further refluxing for 30 minutes, the mixture was allowed to cool to obtain a polysiloxane solution (3) having a concentration in terms of SiO 2 of 12% by mass.

合成例で得られたポリシロキサン系重合体を表2に示す。   Table 2 shows the polysiloxane polymers obtained in the synthesis examples.

Figure 2018159637
Figure 2018159637

「液晶配向処理剤の製造」
<合成例14>
合成例1の手法で得られたポリアミド酸溶液(1)(5.50g)に、NMP(10.8g)を加え、25℃で1時間撹拌した。その後、BCS(6.07g)及びPB(9.10g)を加え、25℃で4時間撹拌して、液晶配向処理剤(1)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であった。
"Manufacture of liquid crystal alignment agent"
<Synthesis Example 14>
NMP (10.8 g) was added to the polyamic acid solution (1) (5.50 g) obtained by the method of Synthesis Example 1, and the mixture was stirred at 25 ° C. for 1 hour. Thereafter, BCS (6.07 g) and PB (9.10 g) were added, and the mixture was stirred at 25 ° C. for 4 hours to obtain a liquid crystal alignment agent (1). No abnormality such as turbidity or precipitation was observed in this liquid crystal alignment treatment agent, and the solution was a uniform solution.

<合成例15>
合成例2の手法で得られたポリイミド粉末(2)(1.10g)に、NMP(15.2g)を加え、70℃で24時間撹拌して溶解させた。その後、BCS(4.55g)、PB(10.6g)、Q1(0.055g)及びK1(0.077g)を加え、25℃で4時間撹拌して、液晶配向処理剤(2)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であった。
<Synthesis Example 15>
NMP (15.2 g) was added to the polyimide powder (2) (1.10 g) obtained by the method of Synthesis Example 2 and dissolved by stirring at 70 ° C. for 24 hours. Thereafter, BCS (4.55 g), PB (10.6 g), Q1 (0.055 g) and K1 (0.077 g) were added, and the mixture was stirred at 25 ° C. for 4 hours to obtain a liquid crystal alignment agent (2). Was. No abnormality such as turbidity or precipitation was observed in this liquid crystal alignment treatment agent, and the solution was a uniform solution.

<合成例16>
合成例3の手法で得られたポリアミド酸溶液(3)(3.80g)に、γ−BL(1.80g)及びPGME(27.4g)を加え、25℃で6時間撹拌して、液晶配向処理剤(3)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であった。
<Synthesis Example 16>
Γ-BL (1.80 g) and PGME (27.4 g) were added to the polyamic acid solution (3) (3.80 g) obtained by the method of Synthesis Example 3, and the mixture was stirred at 25 ° C. for 6 hours. An alignment agent (3) was obtained. No abnormality such as turbidity or precipitation was observed in this liquid crystal alignment treatment agent, and the solution was a uniform solution.

<合成例17>
合成例3の手法で得られたポリアミド酸溶液(3)(3.80g)に、γ−BL(1.80g)、PGME(27.4g)及びQ1(0.053g)を加え、25℃で6時間撹拌して、液晶配向処理剤(4)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であった。
<Synthesis Example 17>
To the polyamic acid solution (3) (3.80 g) obtained by the method of Synthesis Example 3, γ-BL (1.80 g), PGME (27.4 g) and Q1 (0.053 g) were added, and the mixture was added at 25 ° C. The mixture was stirred for 6 hours to obtain a liquid crystal alignment agent (4). No abnormality such as turbidity or precipitation was observed in this liquid crystal alignment treatment agent, and the solution was a uniform solution.

<合成例18>
合成例3の手法で得られたポリアミド酸溶液(3)(3.80g)に、γ−BL(1.80g)、PGME(27.4g)、Q1(0.053g)及びK2(0.053g)を加え、25℃で6時間撹拌して、液晶配向処理剤(5)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であった。
<Synthesis Example 18>
To the polyamic acid solution (3) (3.80 g) obtained by the method of Synthesis Example 3, γ-BL (1.80 g), PGME (27.4 g), Q1 (0.053 g) and K2 (0.053 g) ) And stirred at 25 ° C. for 6 hours to obtain a liquid crystal alignment treatment agent (5). No abnormality such as turbidity or precipitation was observed in this liquid crystal alignment treatment agent, and the solution was a uniform solution.

<合成例19>
合成例4の手法で得られたポリアミド酸溶液(4)(3.80g)に、γ−BL(1.80g)及びPGME(27.4g)を加え、25℃で6時間撹拌して、液晶配向処理剤(6)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であった。
<Synthesis Example 19>
To the polyamic acid solution (4) (3.80 g) obtained by the method of Synthesis Example 4, γ-BL (1.80 g) and PGME (27.4 g) were added, and the mixture was stirred at 25 ° C. for 6 hours. An alignment agent (6) was obtained. No abnormality such as turbidity or precipitation was observed in this liquid crystal alignment treatment agent, and the solution was a uniform solution.

<合成例20>
合成例4の手法で得られたポリアミド酸溶液(4)(3.80g)に、γ−BL(0.19g)、PGME(29.1g)、Q1(0.038g)、K2(0.053g)及びN1(0.023g)を加え、25℃で6時間撹拌して、液晶配向処理剤(7)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であった。
<Synthesis Example 20>
To the polyamic acid solution (4) (3.80 g) obtained by the method of Synthesis Example 4, γ-BL (0.19 g), PGME (29.1 g), Q1 (0.038 g), K2 (0.053 g) ) And N1 (0.023 g) were added, and the mixture was stirred at 25 ° C. for 6 hours to obtain a liquid crystal aligning agent (7). No abnormality such as turbidity or precipitation was observed in this liquid crystal alignment treatment agent, and the solution was a uniform solution.

<合成例21>
合成例5の手法で得られたポリアミド酸溶液(5)(3.80g)に、γ−BL(3.42g)、PGME(22.6g)、PB(3.23g)、Q2(0.023g)及びK1(0.053g)を加え、25℃で6時間撹拌して、液晶配向処理剤(8)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であった。
<Synthesis Example 21>
To the polyamic acid solution (5) (3.80 g) obtained by the method of Synthesis Example 5, γ-BL (3.42 g), PGME (22.6 g), PB (3.23 g), and Q2 (0.023 g) ) And K1 (0.053 g) were added and stirred at 25 ° C. for 6 hours to obtain a liquid crystal alignment agent (8). No abnormality such as turbidity or precipitation was observed in this liquid crystal alignment treatment agent, and the solution was a uniform solution.

<合成例22>
合成例6の手法で得られたポリアミド酸溶液(6)(3.80g)に、γ−BL(5.03g)、PGME(24.2g)、Q1(0.076g)、K2(0.076g)及びN1(0.015g)を加え、25℃で6時間撹拌して、液晶配向処理剤(9)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であった。
<Synthesis Example 22>
To the polyamic acid solution (6) (3.80 g) obtained by the method of Synthesis Example 6, γ-BL (5.03 g), PGME (24.2 g), Q1 (0.076 g), K2 (0.076 g) ) And N1 (0.015 g) were added, and the mixture was stirred at 25 ° C. for 6 hours to obtain a liquid crystal aligning agent (9). No abnormality such as turbidity or precipitation was observed in this liquid crystal alignment treatment agent, and the solution was a uniform solution.

<合成例23>
合成例7の手法で得られたポリアミド酸溶液(7)(3.80g)に、γ−BL(6.65g)、PGME(19.4g)、PB(3.23g)、Q2(0.038g)及びK2(0.076g)を加え、25℃で6時間撹拌して、液晶配向処理剤(10)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であった。
<Synthesis Example 23>
To the polyamic acid solution (7) (3.80 g) obtained by the method of Synthesis Example 7, γ-BL (6.65 g), PGME (19.4 g), PB (3.23 g), and Q2 (0.038 g) ) And K2 (0.076 g) were added, and the mixture was stirred at 25 ° C for 6 hours to obtain a liquid crystal aligning agent (10). No abnormality such as turbidity or precipitation was observed in this liquid crystal alignment treatment agent, and the solution was a uniform solution.

<合成例24>
合成例8の手法で得られたポリアミド酸溶液(8)(5.50g)に、NMP(12.3g)を加え、25℃で1時間撹拌した。その後、PB(13.7g)、Q1(0.033g)及びK1(0.055g)を加え、25℃で4時間撹拌して、液晶配向処理剤(11)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であった。
<Synthesis Example 24>
NMP (12.3 g) was added to the polyamic acid solution (8) (5.50 g) obtained by the method of Synthesis Example 8, and the mixture was stirred at 25 ° C. for 1 hour. Thereafter, PB (13.7 g), Q1 (0.033 g) and K1 (0.055 g) were added, and the mixture was stirred at 25 ° C. for 4 hours to obtain a liquid crystal alignment agent (11). No abnormality such as turbidity or precipitation was observed in this liquid crystal alignment treatment agent, and the solution was a uniform solution.

<合成例25>
合成例9の手法で得られたポリイミド粉末(9)(1.10g)に、NMP(15.2g)を加え、70℃で24時間撹拌して溶解させた。その後、BCS(3.03g)、PB(12.1g)、Q1(0.055g)、K2(0.077g)及びN1(0.033g)を加え、25℃で4時間撹拌して、液晶配向処理剤(12)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であった。
<Synthesis Example 25>
NMP (15.2 g) was added to the polyimide powder (9) (1.10 g) obtained by the method of Synthesis Example 9 and dissolved by stirring at 70 ° C. for 24 hours. Thereafter, BCS (3.03 g), PB (12.1 g), Q1 (0.055 g), K2 (0.077 g) and N1 (0.033 g) were added, and the mixture was stirred at 25 ° C. for 4 hours to align the liquid crystal. A treating agent (12) was obtained. No abnormality such as turbidity or precipitation was observed in this liquid crystal alignment treatment agent, and the solution was a uniform solution.

<合成例26>
合成例10の手法で得られたポリアミド酸溶液(10)(3.80g)に、γ−BL(1.80g)及びPGME(27.4g)を加え、25℃で6時間撹拌して、液晶配向処理剤(13)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であった。
<Synthesis Example 26>
To the polyamic acid solution (10) (3.80 g) obtained by the method of Synthesis Example 10, γ-BL (1.80 g) and PGME (27.4 g) were added, and the mixture was stirred at 25 ° C. for 6 hours. An alignment agent (13) was obtained. No abnormality such as turbidity or precipitation was observed in this liquid crystal alignment treatment agent, and the solution was a uniform solution.

<合成例27>
合成例11の手法で得られたポリシロキサン溶液(1)(7.50g)に、ECS(5.04g)、PGME(14.6g)及びPB(2.91g)を加え、25℃で6時間撹拌して、液晶配向処理剤(14)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であった。
<Synthesis Example 27>
ECS (5.04 g), PGME (14.6 g) and PB (2.91 g) were added to the polysiloxane solution (1) (7.50 g) obtained by the method of Synthesis Example 11, and the mixture was heated at 25 ° C. for 6 hours. The mixture was stirred to obtain a liquid crystal alignment agent (14). No abnormality such as turbidity or precipitation was observed in this liquid crystal alignment treatment agent, and the solution was a uniform solution.

<合成例28>
合成例12の手法で得られたポリシロキサン溶液(2)(7.50g)に、EC(2.13g)、BCS(17.5g)、PB(2.91g)、Q2(0.045g)、K1(0.018g)及びN1(0.027g)を加え、25℃で6時間撹拌して、液晶配向処理剤(15)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であった。
<Synthesis example 28>
In the polysiloxane solution (2) (7.50 g) obtained by the method of Synthesis Example 12, EC (2.13 g), BCS (17.5 g), PB (2.91 g), Q2 (0.045 g), K1 (0.018 g) and N1 (0.027 g) were added, and the mixture was stirred at 25 ° C. for 6 hours to obtain a liquid crystal alignment treatment agent (15). No abnormality such as turbidity or precipitation was observed in this liquid crystal alignment treatment agent, and the solution was a uniform solution.

<合成例29>
合成例13の手法で得られたポリシロキサン溶液(3)(7.50g)に、ECS(5.04g)、PGME(14.6g)及びPB(2.91g)を加え、25℃で6時間撹拌して、液晶配向処理剤(16)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であった。
<Synthesis example 29>
ECS (5.04 g), PGME (14.6 g) and PB (2.91 g) were added to the polysiloxane solution (3) (7.50 g) obtained by the method of Synthesis Example 13, and the mixture was added at 25 ° C. for 6 hours. The mixture was stirred to obtain a liquid crystal alignment agent (16). No abnormality such as turbidity or precipitation was observed in this liquid crystal alignment treatment agent, and the solution was a uniform solution.

合成例で得られた液晶配向処理剤を表3及び表4に示す。なお、表3及び表4中において、液晶配向処理剤に添加される、特定化合物A、特定架橋性化合物及び特定発生剤についての括弧内の数値は、それぞれの特定重合体100質量部に対する含有量を示す。   Tables 3 and 4 show the liquid crystal aligning agents obtained in the synthesis examples. In Tables 3 and 4, the values in parentheses for the specific compound A, the specific crosslinking compound, and the specific generator added to the liquid crystal alignment treatment agent are the contents with respect to 100 parts by mass of each specific polymer. Is shown.

Figure 2018159637
Figure 2018159637

Figure 2018159637
Figure 2018159637

「本発明の特定化合物及び液晶組成物の製造」
下記する実施例1〜実施例4では、所定の方法により製造した特定化合物の例を記載する。また、実施例5〜実施例12では、これら特定化合物を用いた液晶組成物の例を記載する。得られた液晶組成物は、下記する液晶表示素子の作製及びその評価のためにも使用される。
"Production of specific compound and liquid crystal composition of the present invention"
In Examples 1 to 4 below, examples of specific compounds produced by a predetermined method are described. In Examples 5 to 12, examples of liquid crystal compositions using these specific compounds will be described. The obtained liquid crystal composition is also used for production of a liquid crystal display element described below and its evaluation.

「特定化合物の合成」
<実施例1>
特定化合物:T1の合成
"Synthesis of specific compounds"
<Example 1>
Specific compound: Synthesis of T1

Figure 2018159637
Figure 2018159637

化合物(1)(20.0g,67.9mmol)、ジブチルヒドロキシトルエン(0.72g,3.27mmol)、ピリジン(53.8g)及びトルエン(150g)の混合物に、25℃にて、化合物(2)(カレンズBEI:昭和電工社製)(19.5g,81.5mmol)を加え、120℃で24時間撹拌した。反応終了後、反応溶液の溶媒を減圧留去した。残留物にトルエン(200g)を加え、溶媒を減圧留去した(本操作を2回繰り返した)。この残留物に、メタノール(300g)を加え、氷冷下(0℃)で撹拌し、析出した固体を濾過により取出した。得られた固体をメタノール(50g)で洗浄し、乾燥させたところ、白色結晶(T1)(得量:31.5g,得率:86.7%)を得た。
1H−NMR(CDCl,σppm): 6.40−6.47(m,2H),6.09−6.18(m,2H),5.86−5.91(m,2H),5.00(broad,1H),4.37(d,2H),4.30(d,2H),3.84(d,2H),1.65−1.80(m,8H),1.43(s,3H),1.19−1.34(m,10H),1.08−1.18(m,3H),0.76−1.06(m,14H)
Compound (1) (20.0 g, 67.9 mmol), dibutylhydroxytoluene (0.72 g, 3.27 mmol), pyridine (53.8 g) and toluene (150 g) were added to a mixture of compound (2) at 25 ° C. ) (Karenz BEI: manufactured by Showa Denko KK) (19.5 g, 81.5 mmol) and stirred at 120 ° C for 24 hours. After completion of the reaction, the solvent of the reaction solution was distilled off under reduced pressure. Toluene (200 g) was added to the residue, and the solvent was distilled off under reduced pressure (this operation was repeated twice). Methanol (300 g) was added to the residue, and the mixture was stirred under ice cooling (0 ° C.), and the precipitated solid was collected by filtration. The obtained solid was washed with methanol (50 g) and dried to obtain a white crystal (T1) (amount: 31.5 g, yield: 86.7%).
1H-NMR (CDCl 3 , σ ppm): 6.40-6.47 (m, 2H), 6.09-6.18 (m, 2H), 5.86-5.91 (m, 2H), 5 .00 (broad, 1H), 4.37 (d, 2H), 4.30 (d, 2H), 3.84 (d, 2H), 1.65-1.80 (m, 8H), 1. 43 (s, 3H), 1.19-1.34 (m, 10H), 1.08-1.18 (m, 3H), 0.76-1.06 (m, 14H)

<実施例2>
特定化合物:T2の合成
<Example 2>
Specific compound: Synthesis of T2

Figure 2018159637
Figure 2018159637

化合物(3)(5.01g,17.9mmol)、ジブチルヒドロキシトルエン(0.010g,0.046mmol)、ジアザビシクロウンデセン(0.27g,1.79mmol)及びトルエン(50g)の混合物に、25℃にて、化合物(2)(前記と同様)(4.69g,19.6mmol)を加え、110℃で48時間撹拌した。反応終了後、希塩酸水溶液を加え、クロロホルムで抽出分液を行った。クロロホルム層を希塩酸水溶液で3回、水で2回洗浄し後、無水硫酸マグネシウムを加えて乾燥させた。その後、クロロホルム層の溶媒を減圧留去し、得られた残留物にメタノール(30g)を加えた。析出した固体を濾過により取出し、乾燥させたところ、薄黄白色結晶(T2)(得量:4.69g,得率:50.5%)を得た。
1H−NMR(CDCl,σppm): 6.39−6.47(m,2H),6.09−6.18(m,2H),5.85−5.91(m,2H),4.96(broad,1H),4.43−4.54(m,1H),4.38(d,2H),4.29(d,2H),1.95−2.04(m,2H),1.64−1.81(m,6H),1.42(s,3H),0.76−1.34(m,26H)
To a mixture of compound (3) (5.01 g, 17.9 mmol), dibutylhydroxytoluene (0.010 g, 0.046 mmol), diazabicycloundecene (0.27 g, 1.79 mmol) and toluene (50 g), At 25 ° C, compound (2) (same as above) (4.69 g, 19.6 mmol) was added, and the mixture was stirred at 110 ° C for 48 hours. After the completion of the reaction, a diluted hydrochloric acid aqueous solution was added, and the mixture was extracted and separated with chloroform. The chloroform layer was washed three times with a dilute hydrochloric acid aqueous solution and twice with water, and dried by adding anhydrous magnesium sulfate. Thereafter, the solvent of the chloroform layer was distilled off under reduced pressure, and methanol (30 g) was added to the obtained residue. The precipitated solid was collected by filtration and dried to obtain pale yellowish white crystals (T2) (amount: 4.69 g, yield: 50.5%).
1H-NMR (CDCl 3 , σ ppm): 6.39-6.47 (m, 2H), 6.09-6.18 (m, 2H), 5.85-5.91 (m, 2H), 4 .96 (broad, 1H), 4.43-4.54 (m, 1H), 4.38 (d, 2H), 4.29 (d, 2H), 1.95-2.04 (m, 2H) ), 1.64-1.81 (m, 6H), 1.42 (s, 3H), 0.76-1.34 (m, 26H).

<実施例3>
特定化合物:T3の合成
<Example 3>
Specific compound: Synthesis of T3

Figure 2018159637
Figure 2018159637

化合物(4)(10.0g,30.4mmol)、ジブチルヒドロキシトルエン(0.02g,0.091mmol)、ジアザビシクロウンデセン(0.46g,3.04mmol)及びトルエン(100g)の混合物に、25℃にて、化合物(2)(前記と同様)(9.47g,39.6mmol)を加え、110℃で72時間撹拌した。反応終了後、希塩酸水溶液を加え、クロロホルムで抽出分液を行った。クロロホルム層を希塩酸水溶液で3回、水で2回洗浄し後、無水硫酸マグネシウムを加えて乾燥させた。その後、クロロホルム層の溶媒を減圧留去し、得られた残留物にイソプロピルアルコール(150g)を加えた。その後、40℃に加熱して濾過を行った。得られた濾液を減圧留去し、残留物にメタノール(150g)を加え、析出した固体を濾過により取り出した。得られた固体をシリカゲルカラムクロマトグラフィー(溶離液:クロロホルム)にて処理したところ、白色結晶(T3)(得量:2.26g,得率:13.0%)を得た。
1H−NMR(CDCl,σppm): 7.15−7.20(m,2H),6.98−7.04(m,2H),6.43−6.50(m,2H),6.12−6.21(m,2H),5.88−5.93(m,2H),5.42(broad,1H)、4.43(d,2H),4.36(d,2H),2.32−2.48(m,1H),1.69−1.92(m,8H),1.50(s,3H),0.93−1.46(m,19H),0.88(t,3H)
To a mixture of compound (4) (10.0 g, 30.4 mmol), dibutylhydroxytoluene (0.02 g, 0.091 mmol), diazabicycloundecene (0.46 g, 3.04 mmol) and toluene (100 g), At 25 ° C, compound (2) (same as above) (9.47 g, 39.6 mmol) was added, and the mixture was stirred at 110 ° C for 72 hours. After the completion of the reaction, a diluted hydrochloric acid aqueous solution was added, and the mixture was extracted and separated with chloroform. The chloroform layer was washed three times with a dilute hydrochloric acid aqueous solution and twice with water, and dried by adding anhydrous magnesium sulfate. Thereafter, the solvent of the chloroform layer was distilled off under reduced pressure, and isopropyl alcohol (150 g) was added to the obtained residue. Then, it heated at 40 degreeC and performed filtration. The obtained filtrate was distilled off under reduced pressure, methanol (150 g) was added to the residue, and the precipitated solid was taken out by filtration. The obtained solid was subjected to silica gel column chromatography (eluent: chloroform) to give a white crystal (T3) (amount: 2.26 g, yield: 13.0%).
1H-NMR (CDCl 3 , σ ppm): 7.15-7.20 (m, 2H), 6.98-7.04 (m, 2H), 6.43-6.50 (m, 2H), 6 .12-6.21 (m, 2H), 5.88-5.93 (m, 2H), 5.42 (broad, 1H), 4.43 (d, 2H), 4.36 (d, 2H) ), 2.32-2.48 (m, 1H), 1.69-1.92 (m, 8H), 1.50 (s, 3H), 0.93-1.46 (m, 19H), 0.88 (t, 3H)

<実施例4>
特定化合物:T4の合成
<Example 4>
Specific compound: Synthesis of T4

Figure 2018159637
Figure 2018159637

化合物(5)(コレステロール)(10.0g,25.9mmol)、ジブチルヒドロキシトルエン(0.014g,0.064mmol)、ジアザビシクロウンデセン(0.39g,2.59mmol)及びトルエン(100g)の混合物に、25℃にて、化合物(2)(前記と同様)(7.42g,31.0mmol)を加え、110℃で10時間撹拌した。反応終了後、溶媒を減圧留去し、得られた残留物をシリカゲルカラムクロマトグラフィー(溶離液:クロロホルム)にて処理した。処理により得られた固体にメタノール(300g)を加え、氷冷下(0℃)で撹拌し、析出した固体を濾過したところ、白色結晶(T4)(得量:5.23g,得率:35.4%)を得た。
1H−NMR(CDCl,σppm): 6.40−6.48(m,2H),6.10−6.19(m,2H),5.86−5.91(m,2H),5.35−5.40(m,1H),4.94(broad,1H),4.41−4.52(m,1H),4.38(d,2H),4.30(d,2H),2.22−2.39(m,2H),1.77−2.05(m,5H),0.88−1.68(m,15H),1.43(s,3H),1.00(s,3H),0.91(d,3H),0.87(d,3H),0.86(d,3H),0.67(s,3H)
Compound (5) (cholesterol) (10.0 g, 25.9 mmol), dibutylhydroxytoluene (0.014 g, 0.064 mmol), diazabicycloundecene (0.39 g, 2.59 mmol) and toluene (100 g) Compound (2) (same as above) (7.42 g, 31.0 mmol) was added to the mixture at 25 ° C, and the mixture was stirred at 110 ° C for 10 hours. After completion of the reaction, the solvent was distilled off under reduced pressure, and the obtained residue was subjected to silica gel column chromatography (eluent: chloroform). Methanol (300 g) was added to the solid obtained by the treatment, the mixture was stirred under ice cooling (0 ° C.), and the precipitated solid was filtered. As a result, white crystals (T4) (yield: 5.23 g, yield: 35) .4%).
1H-NMR (CDCl 3 , σ ppm): 6.40-6.48 (m, 2H), 6.10-6.19 (m, 2H), 5.86-5.91 (m, 2H), 5 .35-5.40 (m, 1H), 4.94 (broad, 1H), 4.41-4.52 (m, 1H), 4.38 (d, 2H), 4.30 (d, 2H) ), 2.22-2.39 (m, 2H), 1.77-2.05 (m, 5H), 0.88-1.68 (m, 15H), 1.43 (s, 3H), 1.00 (s, 3H), 0.91 (d, 3H), 0.87 (d, 3H), 0.86 (d, 3H), 0.67 (s, 3H)

「液晶組成物の作製」
<実施例5>
L1(5.50g)、T1(0.50g)、R1(1.00g)、R2(1.20g)、R3(1.50g)及びP1(0.30g)を混合し、25℃で6時間撹拌して、液晶組成物(1)を得た。
"Preparation of liquid crystal composition"
<Example 5>
Mix L1 (5.50 g), T1 (0.50 g), R1 (1.00 g), R2 (1.20 g), R3 (1.50 g) and P1 (0.30 g), and at 25 ° C. for 6 hours The mixture was stirred to obtain a liquid crystal composition (1).

<実施例6>
L1(5.50g)、T1(1.00g)、R1(0.50g)、R2(1.20g)、R3(1.50g)及びP1(0.30g)を混合し、25℃で6時間撹拌して、液晶組成物(2)を得た。
<Example 6>
Mix L1 (5.50 g), T1 (1.00 g), R1 (0.50 g), R2 (1.20 g), R3 (1.50 g) and P1 (0.30 g), and at 25 ° C. for 6 hours The mixture was stirred to obtain a liquid crystal composition (2).

<実施例7>
L1(5.50g)、T1(0.50g)、W1(0.30g)、R1(0.70g)、R2(1.20g)、R3(1.50g)及びP1(0.30g)を混合し、25℃で6時間撹拌して、液晶組成物(3)を得た。
<Example 7>
Mix L1 (5.50 g), T1 (0.50 g), W1 (0.30 g), R1 (0.70 g), R2 (1.20 g), R3 (1.50 g) and P1 (0.30 g) Then, the mixture was stirred at 25 ° C. for 6 hours to obtain a liquid crystal composition (3).

<実施例8>
L1(5.50g)、T2(0.70g)、R1(0.80g)、R2(1.20g)、R3(1.50g)及びP1(0.30g)を混合し、25℃で6時間撹拌して、液晶組成物(4)を得た。
Example 8
Mix L1 (5.50 g), T2 (0.70 g), R1 (0.80 g), R2 (1.20 g), R3 (1.50 g) and P1 (0.30 g), and at 25 ° C. for 6 hours The mixture was stirred to obtain a liquid crystal composition (4).

<実施例9>
L1(5.50g)、T3(0.30g)、R1(1.20g)、R2(1.20g)、R3(1.50g)及びP1(0.30g)を混合し、25℃で6時間撹拌して、液晶組成物(5)を得た。
<Example 9>
Mix L1 (5.50 g), T3 (0.30 g), R1 (1.20 g), R2 (1.20 g), R3 (1.50 g) and P1 (0.30 g), and at 25 ° C. for 6 hours The mixture was stirred to obtain a liquid crystal composition (5).

<実施例10>
L1(5.50g)、T4(0.30g)、R1(1.20g)、R2(1.20g)、R3(1.50g)及びP1(0.30g)を混合し、25℃で6時間撹拌して、液晶組成物(6)を得た。
<Example 10>
Mix L1 (5.50 g), T4 (0.30 g), R1 (1.20 g), R2 (1.20 g), R3 (1.50 g) and P1 (0.30 g) and at 25 ° C. for 6 hours The mixture was stirred to obtain a liquid crystal composition (6).

<実施例11>
L1(5.50g)、T1(0.30g)、T4(0.20g)、R1(1.00g)、R2(1.20g)、R3(1.50g)及びP1(0.30g)を混合し、25℃で6時間撹拌して、液晶組成物(7)を得た。
<Example 11>
Mix L1 (5.50 g), T1 (0.30 g), T4 (0.20 g), R1 (1.00 g), R2 (1.20 g), R3 (1.50 g) and P1 (0.30 g) Then, the mixture was stirred at 25 ° C. for 6 hours to obtain a liquid crystal composition (7).

<実施例12>
L1(5.50g)、T1(0.30g)、T3(0.20g)、W1(0.20g)、R1(0.80g)、R2(1.20g)、R3(1.50g)及びP1(0.30g)を混合し、25℃で6時間撹拌して、液晶組成物(8)を得た。
<Example 12>
L1 (5.50 g), T1 (0.30 g), T3 (0.20 g), W1 (0.20 g), R1 (0.80 g), R2 (1.20 g), R3 (1.50 g) and P1 (0.30 g) and stirred at 25 ° C. for 6 hours to obtain a liquid crystal composition (8).

<比較例30>
L1(5.50g)、R1(1.50g)、R2(1.20g)、R3(1.50g)及びP1(0.30g)を混合し、25℃で6時間撹拌して、液晶組成物(9)を得た。
<Comparative Example 30>
A mixture of L1 (5.50 g), R1 (1.50 g), R2 (1.20 g), R3 (1.50 g) and P1 (0.30 g) was stirred at 25 ° C. for 6 hours to obtain a liquid crystal composition. (9) was obtained.

「液晶表示素子の作製(ガラス基板)」
前記の合成例の手法で得られた液晶配向処理剤を、細孔径1μmのメンブランフィルタで加圧濾過した。得られた溶液を純水及びIPA(イソプロピルアルコール)で洗浄した100×100mmのITO電極付きガラス基板(縦:100mm、横:100mm、厚さ:0.7mm)のITO面上にスピンコートし、ホットプレート上にて100℃で5分間、熱循環型クリーンオーブンにて210℃で30分間加熱処理をして、膜厚が100nmの液晶配向膜付きのITO基板を得た。
"Production of liquid crystal display element (glass substrate)"
The liquid crystal aligning agent obtained by the method of the above synthesis example was subjected to pressure filtration with a membrane filter having a pore diameter of 1 μm. The obtained solution was spin-coated on an ITO surface of a 100 × 100 mm glass substrate with an ITO electrode (length: 100 mm, width: 100 mm, thickness: 0.7 mm) washed with pure water and IPA (isopropyl alcohol), A heat treatment was performed on a hot plate at 100 ° C. for 5 minutes and in a thermal circulating clean oven at 210 ° C. for 30 minutes to obtain an ITO substrate with a liquid crystal alignment film having a thickness of 100 nm.

得られた液晶配向膜付きのITO基板を2枚用意し、その一方の基板の液晶配向膜面に、8μmのスペーサーを塗布した。その後、その基板のスペーサーを塗布した液晶配向膜面に、ODF(One Drop Filling)法にて、前記の実施例の手法で得られた液晶組成物を滴下し、次いで、他方の基板の液晶配向膜界面が向き合うように貼り合わせを行い、処理前の液晶表示素子を得た。   Two ITO substrates with the obtained liquid crystal alignment film were prepared, and an 8 μm spacer was applied to the liquid crystal alignment film surface of one of the substrates. Thereafter, the liquid crystal composition obtained by the method of the above-described embodiment is dropped on the surface of the liquid crystal alignment film on which the spacer is applied by the ODF (One Drop Filling) method, and then the liquid crystal alignment of the other substrate is performed. Lamination was performed so that the film interfaces faced each other, and a liquid crystal display element before processing was obtained.

この処理前の液晶表示素子に、照度20mW/cmのメタルハライドランプを用いて、350nm以下の波長をカットし、照射時間45秒で紫外線照射を行った。その際、液晶セルに紫外線を照射している際の照射装置内の温度は25℃に制御した。これにより、液晶表示素子(ガラス基板)を得た。The liquid crystal display element before this treatment was irradiated with ultraviolet rays for 45 seconds using a metal halide lamp with an illuminance of 20 mW / cm 2 while cutting the wavelength of 350 nm or less. At that time, the temperature in the irradiation device when the liquid crystal cell was irradiated with ultraviolet rays was controlled at 25 ° C. Thus, a liquid crystal display device (glass substrate) was obtained.

「液晶表示素子の作製(プラスチック基板)」
前記の合成例で得られた液晶配向処理剤を、細孔径1μmのメンブランフィルタで加圧濾過した。得られた溶液を純水で洗浄した150×150mmのITO電極付きPET(ポリエチレンテレフタレート)基板(縦:150mm、横:150mm、厚さ:0.2mm)のITO面上にバーコーターにて塗布し、熱循環型クリーンオーブンにて120℃で2分間加熱処理をして、膜厚が100nmの液晶配向膜付きのITO基板を得た。
"Production of liquid crystal display element (plastic substrate)"
The liquid crystal aligning agent obtained in the above synthesis example was subjected to pressure filtration with a membrane filter having a pore diameter of 1 μm. The obtained solution was applied with a bar coater on the ITO surface of a 150 × 150 mm PET (polyethylene terephthalate) substrate with ITO electrodes (length: 150 mm, width: 150 mm, thickness: 0.2 mm) washed with pure water. Then, a heat treatment was performed at 120 ° C. for 2 minutes in a heat circulation type clean oven to obtain an ITO substrate having a liquid crystal alignment film having a thickness of 100 nm.

得られた液晶配向膜付きのITO基板を2枚用意し、その一方の基板の液晶配向膜面に、8μmのスペーサーを塗布した。その後、その基板のスペーサーを塗布した液晶配向膜面に、ODF法にて、前記の実施例の手法で得られた液晶組成物を滴下し、次いで、他方の基板の液晶配向膜界面が向き合うように貼り合わせを行い、処理前の液晶表示素子を得た。この処理前の液晶表示素子に、前記の「液晶表示素子の作製(ガラス基板)」と同様の手法で紫外線を照射し、液晶表示素子(プラスチック基板)を得た。   Two ITO substrates with the obtained liquid crystal alignment film were prepared, and an 8 μm spacer was applied to the liquid crystal alignment film surface of one of the substrates. Thereafter, the liquid crystal composition obtained by the method of the above embodiment is dropped on the surface of the liquid crystal alignment film coated with the spacer of the substrate by the ODF method, and then the liquid crystal alignment film interface of the other substrate is opposed. To obtain a liquid crystal display element before processing. The liquid crystal display element before this treatment was irradiated with ultraviolet rays in the same manner as in “Preparation of liquid crystal display element (glass substrate)” to obtain a liquid crystal display element (plastic substrate).

「液晶表示素子の作製(実施例との対応関係)」
下記の表5〜7又は表8〜10に示すように、前記の液晶配向処理剤(1)〜(16)のいずれかと、前記の液晶組成物(1)〜(9)のいずれかと、を用いて、実施例1A〜20A及び比較例1A〜4Aの液晶表示素子を作製した。実施例1A〜2A、14A〜15A及び19A並びに比較例1A及び4Aは、ガラス基板を用いて作製した液晶表示素子であり、実施例3A〜13A、16A〜18A及び20A並びに比較例2A及び3Aは、プラスチック基板を用いて作製した液晶表示素子である
"Production of liquid crystal display element (correspondence relationship with example)"
As shown in Tables 5 to 7 or 8 to 10 below, any one of the liquid crystal alignment treatment agents (1) to (16) and any one of the liquid crystal compositions (1) to (9) were used. The liquid crystal display elements of Examples 1A to 20A and Comparative Examples 1A to 4A were produced using the same. Examples 1A to 2A, 14A to 15A and 19A and Comparative Examples 1A and 4A are liquid crystal display devices manufactured using a glass substrate, and Examples 3A to 13A, 16A to 18A and 20A and Comparative Examples 2A and 3A Is a liquid crystal display element manufactured using a plastic substrate.

「光学特性(透明性と散乱特性)の評価」
電圧無印加時の透明性の評価は、電圧無印加状態での液晶表示素子(ガラス基板及びプラスチック基板)の透過率を測定した。具体的には、測定装置にUV−3600(島津製作所社製)を用い、温度25℃、スキャン波長を300〜800nmの条件で測定した。その際、液晶表示素子(ガラス基板)の場合は、リファレンス(参照例)に前記のITO電極付きガラス基板を、液晶表示素子(プラスチック基板)の場合は、前記のITO電極付きPET基板を用いて行った。評価は、550nmの波長の透過率を基準として、透過率が高いものほど、透明性に優れるとした。
"Evaluation of optical properties (transparency and scattering properties)"
For evaluation of the transparency when no voltage was applied, the transmittance of a liquid crystal display element (glass substrate and plastic substrate) in a state where no voltage was applied was measured. Specifically, the measurement was performed using UV-3600 (manufactured by Shimadzu Corporation) as a measuring device under the conditions of a temperature of 25 ° C. and a scan wavelength of 300 to 800 nm. At this time, in the case of a liquid crystal display device (glass substrate), the glass substrate with the ITO electrode is used as a reference (reference example), and in the case of a liquid crystal display device (plastic substrate), the above PET substrate with the ITO electrode is used. went. The evaluation was based on the transmittance at a wavelength of 550 nm, and the higher the transmittance, the better the transparency.

また、液晶表示素子の高温高湿環境下の安定性試験として、温度80℃、湿度90%RHの恒温恒湿槽内に36時間保管した後の測定も行った。具体的には、液晶表示素子作製直後の透過率(初期値)に対して、恒温恒湿槽に保管後の透過率の低下割合が低いものほど、本評価に優れるとした。   In addition, as a stability test of the liquid crystal display element in a high-temperature and high-humidity environment, measurement was performed after storing the liquid crystal display element in a constant temperature and humidity chamber at a temperature of 80 ° C. and a humidity of 90% RH for 36 hours. Specifically, the lower the rate of decrease in transmittance after storage in a thermo-hygrostat relative to the transmittance (initial value) immediately after production of the liquid crystal display element, the better the evaluation.

更に、液晶表示素子の光の照射に対する安定性試験として、卓上型UV硬化装置(HCT3B28HEX−1)(センライト社製)を用いて、365nm換算で5J/cmの紫外線を照射した後の測定も行った。具体的には、液晶表示素子作製直後の透過率(初期値)に対して、紫外線照射後の透過率の低下割合が低いものほど、本評価に優れるとした。Further, as a stability test for light irradiation of the liquid crystal display element, measurement after irradiation with ultraviolet rays of 5 J / cm 2 in terms of 365 nm using a desktop UV curing device (HCT3B28HEX-1) (manufactured by Senlight) was also performed. went. Specifically, the lower the rate of decrease in transmittance after ultraviolet irradiation with respect to the transmittance (initial value) immediately after production of the liquid crystal display element, the better the evaluation.

電圧印加時の散乱特性の評価は、液晶表示素子(ガラス基板及びプラスチック基板)に、交流駆動で30Vを印加し、液晶の配向状態を目視観察した。具体的には、液晶表示素子が白濁したもの、即ち、散乱特性が得られたものを、本評価に優れるとした(表中の良好表示)。   For the evaluation of the scattering characteristics at the time of applying a voltage, 30 V was applied to a liquid crystal display element (glass substrate and plastic substrate) by AC driving, and the alignment state of the liquid crystal was visually observed. Specifically, a liquid crystal display element which became cloudy, that is, a liquid crystal display element having a scattering property was determined to be excellent in this evaluation (good display in the table).

また、液晶表示素子の高温高湿環境下の安定性試験として、温度80℃、湿度90%RHの恒温恒湿槽内に36時間保管した後の観察も行った。具体的には、液晶表示素子が白濁したもの、即ち、散乱特性が得られたものを、本評価に優れるとした(表中の良好表示)。   In addition, as a stability test of the liquid crystal display element in a high-temperature and high-humidity environment, observation was performed after the liquid crystal display element was stored in a thermo-hygrostat at a temperature of 80 ° C. and a humidity of 90% RH for 36 hours. Specifically, a liquid crystal display element which became cloudy, that is, a liquid crystal display element having a scattering property was determined to be excellent in this evaluation (good display in the table).

更に、液晶表示素子の光の照射に対する安定性試験として、卓上型UV硬化装置(HCT3B28HEX−1)(センライト社製)を用いて、365nm換算で5J/cmの紫外線を照射した後の観察も行った。具体的には、液晶表示素子が白濁したもの、即ち、散乱特性が得られたものを、本評価に優れるとした(表中の良好表示)。Further, as a stability test of the liquid crystal display element against light irradiation, observation after irradiating ultraviolet rays of 5 J / cm 2 in terms of 365 nm using a tabletop UV curing device (HCT3B28HEX-1) (manufactured by Senlight) was also conducted. went. Specifically, a liquid crystal display element which became cloudy, that is, a liquid crystal display element having a scattering property was determined to be excellent in this evaluation (good display in the table).

液晶表示素子作製直後(初期)、恒温恒湿槽保管後(恒温恒湿)及び紫外線照射後(紫外線)の透過率(%)、及び散乱特性の評価結果を、表5〜7に示す。   Tables 5 to 7 show the evaluation results of the transmittance (%) immediately after production of the liquid crystal display element (initial stage), after storage in a thermo-hygrostat (constant thermo-humidity) and after irradiation with ultraviolet light (ultraviolet light), and scattering characteristics.

「液晶層と液晶配向膜との密着性の評価」
液晶層と液晶配向膜との密着性の評価は、液晶表示素子(ガラス基板及びプラスチック基板)を、温度80℃、湿度90%RHの恒温恒湿槽内に36時間保管し、液晶表示素子内の気泡の有無及び素子の剥離を確認した(液晶表示素子の高温高湿環境下の安定性試験として)。具体的には、素子内に気泡が見られず、且つ、素子の剥離(液晶層と液晶配向膜とが剥がれている状態)が起こっていないものを、本評価に優れるとした(表中の良好表示)。
"Evaluation of adhesion between liquid crystal layer and liquid crystal alignment film"
To evaluate the adhesion between the liquid crystal layer and the liquid crystal alignment film, the liquid crystal display device (glass substrate and plastic substrate) was stored in a constant temperature and humidity chamber at a temperature of 80 ° C. and a humidity of 90% RH for 36 hours. The presence or absence of air bubbles and peeling of the element were confirmed (as a stability test of the liquid crystal display element in a high temperature and high humidity environment). Specifically, a sample in which no air bubbles were observed in the element and no separation of the element (a state in which the liquid crystal layer and the liquid crystal alignment film were separated) occurred was judged to be excellent in this evaluation (in the table). Good display).

また、液晶表示素子に、卓上型UV硬化装置(HCT3B28HEX−1)(センライト社製)を用いて、365nm換算で5J/cmの紫外線を照射した後の確認も行った(液晶表示素子の光の照射に対する安定性試験として)。具体的には、素子内に気泡が見られず、且つ、素子の剥離が起こっていないものを、本評価に優れるとした(表中の良好表示)。In addition, the liquid crystal display device was checked using a table-top UV curing device (HCT3B28HEX-1) (manufactured by Senlight Co., Ltd.) after irradiating it with ultraviolet rays of 5 J / cm 2 in 365 nm conversion (light of the liquid crystal display device). As a test for stability against irradiation). Specifically, a sample in which no air bubbles were observed in the element and the element did not peel was evaluated as excellent in this evaluation (good display in the table).

恒温恒湿槽保管後(恒温恒湿)及び紫外線照射後(紫外線)の液晶層と液晶配向膜との密着性の結果(密着性)を、表8〜10に示す。   Tables 8 to 10 show the results of adhesion (adhesion) between the liquid crystal layer and the liquid crystal alignment film after storage in a thermo-hygrostat (constant temperature and humidity) and after irradiation with ultraviolet light (ultraviolet light).

<実施例1A〜20A及び比較例1A〜4A>
下記の表5〜10に示されるように、光学特性(透明性と散乱特性)の評価、及び液晶層と液晶配向膜との密着性の評価を行った。これら評価の結果を、表5〜10に示した。
<Examples 1A to 20A and Comparative Examples 1A to 4A>
As shown in Tables 5 to 10 below, evaluation of optical characteristics (transparency and scattering characteristics) and evaluation of adhesion between a liquid crystal layer and a liquid crystal alignment film were performed. The results of these evaluations are shown in Tables 5 to 10.

また、実施例3A〜10A、実施例16A、実施例18A及び実施例20Aにおける光学特性(散乱特性と透明性)の評価及び液晶層と液晶配向膜との密着性の評価では、前記の標準試験とともに、強調試験として、温度80℃、湿度90%RHの恒温恒湿槽内に72時間保管した際の評価も行った(その他の条件は、前記の条件と同様)。   In addition, in the evaluation of the optical characteristics (scattering characteristics and transparency) and the evaluation of the adhesion between the liquid crystal layer and the liquid crystal alignment film in Examples 3A to 10A, Example 16A, Example 18A and Example 20A, the standard test described above was used. In addition, as an emphasis test, evaluation was also performed when stored in a thermo-hygrostat at a temperature of 80 ° C. and a humidity of 90% RH for 72 hours (other conditions are the same as those described above).

Figure 2018159637
Figure 2018159637

Figure 2018159637
Figure 2018159637

Figure 2018159637
Figure 2018159637

Figure 2018159637
Figure 2018159637

Figure 2018159637
Figure 2018159637

Figure 2018159637
*1:素子内に極少量の気泡が見られた。
*2:素子内に少量の気泡が見られた(*1よりも多い)。
*3:素子内に気泡が見られた(*2よりも多い)。
Figure 2018159637
* 1: A very small amount of bubbles was observed in the device.
* 2: A small amount of air bubbles were observed in the device (more than * 1).
* 3: Bubbles were observed in the device (more than * 2).

前記からわかるように、実施例の液晶表示素子は、比較例に比べて、良好な光学特性、即ち、恒温恒湿槽保管後及び紫外線照射後の透明性が良好な液晶表示素子となった。更には、液晶層と液晶配向膜との密着性も高い液晶表示素子となり、これら過酷な環境に曝された後でも、液晶表示素子に剥がれは見られず、また、極少量の気泡しか見られなかった。特に、液晶表示素子の基板に、プラスチック基板を用いても、これら特性が良好であった。具体的には、同一の条件での比較において、実施例1Aと比較例1Aとの比較、実施例3Aと比較例2Aとの比較、実施例17Aと比較例3Aとの比較、及び実施例20Aと比較例4Aとの比較である。   As can be seen from the above, the liquid crystal display device of the example was a liquid crystal display device having better optical characteristics, that is, better transparency after storage in a thermo-hygrostat and irradiation with ultraviolet light, as compared with the comparative example. Furthermore, the liquid crystal display element has a high adhesion between the liquid crystal layer and the liquid crystal alignment film. Even after being exposed to the harsh environment, the liquid crystal display element does not peel off, and only a very small amount of air bubbles can be seen. Did not. In particular, these characteristics were good even when a plastic substrate was used as the substrate of the liquid crystal display element. Specifically, in the comparison under the same conditions, the comparison between Example 1A and Comparative Example 1A, the comparison between Example 3A and Comparative Example 2A, the comparison between Example 17A and Comparative Example 3A, and the example 20A And Comparative Example 4A.

液晶組成物中に加える特定化合物の量を多くした場合、液晶表示素子の透過率が高くなった。具体的には、同一の条件での比較において、実施例8Aと実施例9Aとの比較である。また、液晶組成物中に、特定化合物に加えて、添加化合物も加えた場合、素子の透過率が高くなった。具体的には、同一条件での比較において、実施例6Aと実施例7Aとの比較である。   When the amount of the specific compound added to the liquid crystal composition was increased, the transmittance of the liquid crystal display device was increased. Specifically, in the comparison under the same conditions, Example 8A and Example 9A are compared. Further, when an additive compound was added to the liquid crystal composition in addition to the specific compound, the transmittance of the device was increased. Specifically, in the comparison under the same conditions, the comparison between Example 6A and Example 7A is made.

液晶配向剤の特定重合体における特定側鎖構造のなかで、前記式[4−1a]の特定側鎖構造を有するジアミンを用いた場合、式[4−2a]を有するジアミンを用いた場合に比べて、液晶表示素子の透過率が高くなった。更に、長時間、恒温恒湿槽に保管した後においても、透明性が高い結果となった。また、液晶層と液晶配向膜との密着性の評価においても、式[4−1a]のジアミンを用いた場合は長時間、恒温恒湿槽に保管した後においても、密着性が高い結果となった。具体的には、同一の条件での比較において、実施例3Aと実施例16Aとの比較、及び実施例18Aと実施例20Aとの比較である。   When the diamine having the specific side chain structure of the formula [4-1a] is used in the specific side chain structure in the specific polymer of the liquid crystal aligning agent, the diamine having the formula [4-2a] is used. In comparison, the transmittance of the liquid crystal display element was increased. Furthermore, even after storing in a thermo-hygrostat for a long time, high transparency was obtained. Also, in the evaluation of the adhesion between the liquid crystal layer and the liquid crystal alignment film, when the diamine of the formula [4-1a] is used, the result shows that the adhesion is high even after being stored in a thermo-hygrostat for a long time. became. Specifically, in the comparison under the same conditions, a comparison between Example 3A and Example 16A, and a comparison between Example 18A and Example 20A.

また、特定重合体に、第2のジアミンを用いた場合、長時間、恒温恒湿槽に保管した後においても、液晶層と液晶配向膜との密着性が高い結果となった。具体的には、同一の条件での比較において、実施例3Aと実施例6Aとの比較である。   In addition, when the second diamine was used as the specific polymer, the result was that the adhesion between the liquid crystal layer and the liquid crystal alignment film was high even after being stored in a thermo-hygrostat for a long time. Specifically, in the comparison under the same conditions, Example 3A and Example 6A are compared.

更に、液晶配向処理剤中に、特定化合物Aを添加した場合、液晶表示素子の透過率が高くなった。具体的には、実施例3Aと実施例4Aとの比較である。また、特定架橋性化合物を添加した場合、液晶層と液晶配向膜との密着性が高くなった。更には、特定化合物A、特定架橋性化合物及び特定発生剤を加えた場合、液晶表示素子の透過率、及び液晶層と液晶配向膜の密着性が高くなった。具体的には、実施例7Aと実施例10Aとの比較である。   Furthermore, when the specific compound A was added to the liquid crystal alignment treatment agent, the transmittance of the liquid crystal display element was increased. Specifically, this is a comparison between Example 3A and Example 4A. In addition, when the specific crosslinking compound was added, the adhesion between the liquid crystal layer and the liquid crystal alignment film was increased. Further, when the specific compound A, the specific crosslinking compound and the specific generator were added, the transmittance of the liquid crystal display element and the adhesion between the liquid crystal layer and the liquid crystal alignment film were increased. Specifically, it is a comparison between Example 7A and Example 10A.

特定構造を有する化合物を含む液晶組成物を用いることで、良好な光学特性、即ち、電圧無印加時の透明性と電圧印加時の散乱特性が良好であり、更に液晶層と液晶配向膜との密着性が高く、長時間、高温高湿や光の照射に曝される過酷な環境においても、これら特性を維持できる液晶表示素子が得られる。   By using a liquid crystal composition containing a compound having a specific structure, good optical properties, that is, transparency when no voltage is applied and good scattering properties when a voltage is applied, and furthermore, the liquid crystal layer and the liquid crystal alignment film A liquid crystal display element having high adhesion and capable of maintaining these characteristics even in a harsh environment exposed to high temperature, high humidity, or light irradiation for a long time can be obtained.

また、本発明の液晶表示素子は、電圧無印加時に透明状態となり、電圧印加時には散乱状態になるノーマル型素子に、好適に用いることができる。そして、本素子は、表示を目的とする液晶ディスプレイ、更には、光の遮断と透過とを制御する調光窓や光シャッター素子などに用いることができ、このノーマル型素子の基板には、プラスチック基板を用いることができる。   Further, the liquid crystal display device of the present invention can be suitably used for a normal type device which becomes a transparent state when no voltage is applied and becomes a scattering state when a voltage is applied. This element can be used for a liquid crystal display for display purposes, furthermore, for a light control window or an optical shutter element for controlling the blocking and transmission of light. A substrate can be used.

更に、本発明の特定化合物は、本発明の液晶表示素子の液晶組成物の成分として用いるだけではなく、それ以外の液晶表示素子の液晶組成物の成分として用いることもできる。   Further, the specific compound of the present invention can be used not only as a component of the liquid crystal composition of the liquid crystal display device of the present invention, but also as a component of the liquid crystal composition of other liquid crystal display devices.

Claims (16)

下記式[1a]の化合物。
Figure 2018159637
は下記式[2−1a]〜式[2−7a]から選ばれる構造を示す。Tは炭素数2〜18の直鎖又は分岐状のアルキレン基を示し、TとTと隣り合わない前記アルキレン基の任意の−CH−は、−O−、−CO−、−COO−、−OCO−、−CONH−、−NHCO−、−NH−、ベンゼン環又はシクロヘキサン環で置き換えられていてもよい。Tは下記式[1−1b]〜式[1−4b]から選ばれる構造を示す。Tは単結合又は炭素数1〜24のアルキレン基を示し、Tと隣り合わない前記アルキレン基の任意の−CH−は、−O−、−CO−、−COO−、−OCO−、−CONH−、−NHCO−、−NH−、−CON(CH)−、−S−又は−SO−で置き換えられてもよい。Tはベンゼン環、シクロヘキサン環及び複素環から選ばれる2価の環状基、又はステロイド骨格を有する炭素数17〜51の2価の有機基を示し、前記環状基上の任意の水素原子は、炭素数1〜3のアルキル基、炭素数1〜3のアルコキシ基、炭素数1〜3のフッ素含有アルキル基、炭素数1〜3のフッ素含有アルコキシ基又はフッ素原子で置換されていてもよい。Tは単結合、−O−、−OCH−、−CHO−、−COO−又は−OCO−を示す。Tはベンゼン環、シクロヘキサン環及び複素環から選ばれる環状基を示し、これらの環状基上の任意の水素原子が、炭素数1〜3のアルキル基、炭素数1〜3のアルコキシ基、炭素数1〜3のフッ素含有アルキル基、炭素数1〜3のフッ素含有アルコキシ基又はフッ素原子で置換されていてもよい。Tは炭素数1〜18のアルキル基、炭素数2〜18のアルケニル基、炭素数1〜18のフッ素含有アルキル基、炭素数1〜18のアルコキシ基又は炭素数1〜18のフッ素含有アルコキシ基を示す。mTは1〜4の整数を示す。nTは0〜4の整数を示す。
Figure 2018159637
は水素原子又はベンゼン環を示す。
Figure 2018159637
は水素原子又は炭素数1〜3のアルキル基を示す。
A compound of the following formula [1a]:
Figure 2018159637
T 1 represents a structure selected from the following formulas [2-1a] to [2-7a]. T 2 are a linear or branched alkylene group having 2 to 18 carbon atoms, T 1 and T 3 and not adjacent said alkylene group any -CH 2 in the - is, -O -, - CO -, - It may be replaced by COO—, —OCO—, —CONH—, —NHCO—, —NH—, a benzene ring or a cyclohexane ring. T 3 represents a structure selected from the following formulas [1-1b] to [1-4b]. T 4 represents a single bond or an alkylene group having 1 to 24 carbon atoms, T 3 and not adjacent said alkylene group any -CH 2 in the - is, -O -, - CO -, - COO -, - OCO- , -CONH -, - NHCO -, - NH -, - CON (CH 3) -, - S- or -SO 2 - may be replaced by. T 5 represents a divalent cyclic group selected from a benzene ring, a cyclohexane ring and a heterocyclic ring, or a divalent organic group having a steroid skeleton and having 17 to 51 carbon atoms, and an arbitrary hydrogen atom on the cyclic group is It may be substituted by an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxy group having 1 to 3 carbon atoms or a fluorine atom. T 6 represents a single bond, —O—, —OCH 2 —, —CH 2 O—, —COO—, or —OCO—. T 7 represents a cyclic group selected from a benzene ring, a cyclohexane ring, and a heterocyclic ring, and any hydrogen atom on the cyclic group is an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, It may be substituted with a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxy group having 1 to 3 carbon atoms, or a fluorine atom. T 8 is an alkyl group having 1 to 18 carbon atoms, an alkenyl group having 2 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxy group having 1 to 18 carbon atoms, or a fluorine-containing alkoxy group having 1 to 18 carbon atoms. Represents a group. mT shows the integer of 1-4. nT shows the integer of 0-4.
Figure 2018159637
W A is a hydrogen atom or a benzene ring.
Figure 2018159637
T B is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
前記式[1a]の化合物が、下記式[1b]又は式[1c]である請求項1に記載の化合物。
Figure 2018159637
、T11、T17及びT19はそれぞれ、前記式[2−1a]〜式[2−7a]から選ばれる構造を示す。T10及びT18は炭素数2〜12の直鎖状又は分岐状のアルキレン基を示す。T12及びT20は前記式[1−1b]〜式[1−4b]から選ばれる構造を示す。T13及びT21は単結合又は炭素数1〜8のアルキレン基を示す。T14及びT15はベンゼン環又はシクロヘキサン環を示す。T16は炭素数1〜12のアルキル基又はアルコキシ基を示す。T22はステロイド骨格を有する炭素数17〜51の2価の有機基を示す。pTは0〜4の整数を示す。
The compound according to claim 1, wherein the compound of the formula [1a] is the following formula [1b] or [1c].
Figure 2018159637
T 9 , T 11 , T 17 and T 19 each represent a structure selected from the formulas [2-1a] to [2-7a]. T 10 and T 18 is a straight or branched alkylene group having 2 to 12 carbon atoms. T 12 and T 20 represents a structure selected from the formula [1-1b] ~ formula [1-4b]. T 13 and T 21 represents a single bond or an alkylene group having 1 to 8 carbon atoms. T 14 and T 15 represent a benzene ring or a cyclohexane ring. T 16 represents an alkyl group or an alkoxy group having 1 to 12 carbon atoms. T 22 represents a divalent organic group having 17 to 51 carbon atoms having a steroid skeleton. pT shows the integer of 0-4.
前記式[1a]、式[1b]及び式[1c]から選ばれる少なくとも1種の化合物を含有する液晶組成物。   A liquid crystal composition containing at least one compound selected from the formulas [1a], [1b] and [1c]. 電極を備えた一対の基板の間に配置した液晶及び重合性化合物を含む液晶組成物に対し、紫外線を照射して硬化させた液晶層を有し、且つ、基板の少なくとも一方が液晶を垂直に配向させるような液晶配向膜を備える液晶表示素子であって、
該液晶組成物が、前記式[1a]、式[1b]及び式[1c]から選ばれる少なくとも1種の化合物を含む液晶表示素子。
A liquid crystal composition including a liquid crystal and a polymerizable compound disposed between a pair of substrates having electrodes is provided with a liquid crystal layer cured by irradiating ultraviolet rays, and at least one of the substrates vertically aligns the liquid crystal. A liquid crystal display device comprising a liquid crystal alignment film for aligning,
A liquid crystal display device wherein the liquid crystal composition contains at least one compound selected from the formulas [1a], [1b] and [1c].
前記液晶組成物が、下記式[2a]の化合物を含む請求項4に記載の液晶表示素子。
Figure 2018159637
は下記式[2−1a]〜式[2−7a]から選ばれる構造を示す。Wは単結合、−O−、−COO−又は−OCO−を示す。Wは単結合又は炭素数1〜12のアルキレン基を示す。Wは単結合、−O−、−COO−又は−OCO−を示す。Wはベンゼン環、シクロヘキサン環又はステロイド骨格を有する炭素数17〜51の2価の有機基を示す。Wは単結合、−CH−、−CHO−、−OCH−、−O−、−COO−、−OCO−、−NHCO−又は−CONH−を示す。Wはベンゼン環又はシクロヘキサン環を示す。Wは炭素数1〜18のアルキル基、炭素数2〜18のアルケニル基、炭素数1〜18のフッ素含有アルキル基、炭素数1〜18のアルコキシ基又は炭素数1〜18のフッ素含有アルコキシ基を示す。mWは0〜4の整数を示す。
Figure 2018159637
は水素原子又はベンゼン環を示す。
The liquid crystal display device according to claim 4, wherein the liquid crystal composition includes a compound represented by the following formula [2a].
Figure 2018159637
W 1 represents a structure selected from the following formulas [2-1a] to [2-7a]. W 2 is a single bond, -O -, - COO- or an -OCO-. W 3 represents a single bond or an alkylene group having 1 to 12 carbon atoms. W 4 represents a single bond, —O—, —COO—, or —OCO—. W 5 represents a benzene ring, a cyclohexane ring or a divalent organic group having 17 to 51 carbon atoms having a steroid skeleton. W 6 being a single bond, -CH 2 -, - CH 2 O -, - OCH 2 -, - O -, - COO -, - OCO -, - NHCO- or an -CONH-. W 7 represents a benzene ring or a cyclohexane ring. W 8 is an alkyl group having 1 to 18 carbon atoms, an alkenyl group having 2 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxy group having 1 to 18 carbon atoms, or a fluorine-containing alkoxy group having 1 to 18 carbon atoms. Represents a group. mW represents an integer of 0 to 4.
Figure 2018159637
W A is a hydrogen atom or a benzene ring.
前記液晶配向膜が、下記式[4−1a]又は式[4−2a]の側鎖構造を有する重合体を含む液晶配向処理剤から得られる液晶配向膜である請求項4又は請求項5に記載の液晶表示素子。
Figure 2018159637
及びXはそれぞれ、単結合、−(CH−(aは1〜15の整数である)、−O−、−CHO−、−COO−又は−OCO−を示す。Xは単結合又は−(CH−(bは1〜15の整数である)を示す。Xはベンゼン環、シクロヘキサン環及び複素環から選ばれる2価の環状基、又はステロイド骨格を有する炭素数17〜51の2価の有機基を示し、前記環状基上の任意の水素原子は、炭素数1〜3のアルキル基、炭素数1〜3のアルコキシ基、炭素数1〜3のフッ素含有アルキル基、炭素数1〜3のフッ素含有アルコキシ基又はフッ素原子で置換されていてもよい。Xはベンゼン環、シクロヘキサン環及び複素環から選ばれる少なくとも1種の環状基を示し、これらの環状基上の任意の水素原子は、炭素数1〜3のアルキル基、炭素数1〜3のアルコキシ基、炭素数1〜3のフッ素含有アルキル基、炭素数1〜3のフッ素含有アルコキシ基又はフッ素原子で置換されていてもよい。Xは炭素数1〜18のアルキル基、炭素数2〜18のアルケニル基、炭素数1〜18のフッ素含有アルキル基、炭素数1〜18のアルコキシ基又は炭素数1〜18のフッ素含有アルコキシ基を示す。nは0〜4の整数を示す。
Figure 2018159637
は単結合、−O−、−CHO−、−CONH−、−NHCO−、−CON(CH)−、−N(CH)CO−、−COO−又は−OCO−を示す。Xは炭素数8〜18のアルキル基又は炭素数6〜18のフッ素含有アルキル基を示す。
The liquid crystal alignment film according to claim 4 or 5, wherein the liquid crystal alignment film is a liquid crystal alignment film obtained from a liquid crystal alignment agent containing a polymer having a side chain structure represented by the following formula [4-1a] or formula [4-2a]. The liquid crystal display element as described in the above.
Figure 2018159637
X 1 and X 3 is a single bond, - (CH 2) a - (a is an integer of 1~15), - O -, - CH 2 O -, - COO- or an -OCO-. X 2 represents a single bond or — (CH 2 ) b — (b is an integer of 1 to 15). X 4 represents a divalent cyclic group selected from a benzene ring, a cyclohexane ring and a heterocyclic ring, or a divalent organic group having a steroid skeleton and having 17 to 51 carbon atoms, and an arbitrary hydrogen atom on the cyclic group is It may be substituted by an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxy group having 1 to 3 carbon atoms or a fluorine atom. X 5 represents at least one cyclic group selected from a benzene ring, a cyclohexane ring and a heterocyclic ring, and any hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, It may be substituted by an alkoxy group, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxy group having 1 to 3 carbon atoms or a fluorine atom. X 6 is an alkyl group having 1 to 18 carbon atoms, an alkenyl group having 2 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxy group having 1 to 18 carbon atoms, or a fluorine-containing alkoxy group having 1 to 18 carbon atoms. Represents a group. n shows the integer of 0-4.
Figure 2018159637
X 7 is a single bond, -O -, - CH 2 O -, - CONH -, - NHCO -, - CON (CH 3) -, - N (CH 3) CO -, - shows a COO- or -OCO- . X 8 represents a fluorine-containing alkyl group having 6 to 18 carbon alkyl group or C of 8-18 carbon atoms.
前記液晶配向処理剤が、アクリルポリマー、メタクリルポリマー、ノボラック樹脂、ポリヒドロキシスチレン、ポリイミド前駆体、ポリイミド、ポリアミド、ポリエステル、セルロース及びポリシロキサンから選ばれる少なくとも1種を含む請求項6に記載の液晶表示素子。   The liquid crystal display according to claim 6, wherein the liquid crystal alignment treatment agent contains at least one selected from an acrylic polymer, a methacrylic polymer, a novolak resin, a polyhydroxystyrene, a polyimide precursor, a polyimide, a polyamide, a polyester, a cellulose, and a polysiloxane. element. 前記液晶配向処理剤が、前記式[4−1a]又は式[4−2a]の側鎖構造を有するジアミンを含有するジアミン成分と、テトラカルボン酸成分との反応で得られるポリイミド前駆体又は該ポリイミド前駆体をイミド化したポリイミドを含む請求項7に記載の液晶表示素子。   A polyimide precursor obtained by reacting a diamine component containing a diamine having a side chain structure of the formula [4-1a] or [4-2a] with a tetracarboxylic acid component, The liquid crystal display device according to claim 7, comprising a polyimide obtained by imidizing a polyimide precursor. 前記式[4−1a]又は式[4−2a]の側鎖構造を有するジアミンが、下記式[4a]で示される請求項8に記載の液晶表示素子。
Figure 2018159637
Xは前記式[4−1a]又は式[4−2a]の構造を示す。mは1〜4の整数を示す。
The liquid crystal display device according to claim 8, wherein the diamine having a side chain structure represented by the formula [4-1a] or the formula [4-2a] is represented by the following formula [4a].
Figure 2018159637
X represents the structure of the formula [4-1a] or the formula [4-2a]. m shows the integer of 1-4.
前記テトラカルボン酸成分が、下記式[5]のテトラカルボン酸二無水物である請求項8又は請求項9に記載の液晶表示素子。
Figure 2018159637
Zは下記式[5a]〜式[5l]から選ばれる構造を示す。
Figure 2018159637
〜Zはそれぞれ、水素原子、メチル基、塩素原子又はベンゼン環を示す。Z及びZはそれぞれ、水素原子又はメチル基を示す。
The liquid crystal display device according to claim 8, wherein the tetracarboxylic acid component is a tetracarboxylic dianhydride of the following formula [5].
Figure 2018159637
Z represents a structure selected from the following formulas [5a] to [5l].
Figure 2018159637
Z 1 to Z 4 each represent a hydrogen atom, a methyl group, a chlorine atom or a benzene ring. Z 5 and Z 6 each represent a hydrogen atom or a methyl group.
前記液晶配向処理剤が、下記式[A1]のアルコキシシランを重縮合させて得られるポリシロキサン、又は、該式[A1]のアルコキシシランと、下記式[A2]及び/又は式[A3]のアルコキシシランとを重縮合させて得られるポリシロキサンを含む請求項7に記載の液晶表示素子。
Figure 2018159637
は前記式[4−1a]又は式[4−2a]の構造を示す。Aは水素原子又は炭素数1〜5のアルキル基を示す。Aは炭素数1〜5のアルキル基を示す。mは1又は2の整数を示す。nは0〜2の整数を示す。pは0〜3の整数を示す。ただし、m+n+pは4である。
Figure 2018159637
はビニル基、エポキシ基、アミノ基、メルカプト基、イソシアネート基、メタクリル基、アクリル基、ウレイド基及びシンナモイル基から選ばれる少なくとも1種を有する炭素数2〜12の有機基を示す。Bは水素原子又は炭素数1〜5のアルキル基を示す。Bは炭素数1〜5のアルキル基を示す。mは1又は2の整数を示す。nは0〜2の整数を示す。pは0〜3の整数を示す。ただし、m+n+pは4である。
Figure 2018159637
は水素原子又は炭素数1〜5のアルキル基を示す。Dは炭素数1〜5のアルキル基を示す。nは0〜3の整数を示す。
The liquid crystal alignment treatment agent is a polysiloxane obtained by polycondensation of an alkoxysilane of the following formula [A1], or an alkoxysilane of the formula [A1], and the following formulas [A2] and / or [A3] The liquid crystal display device according to claim 7, comprising a polysiloxane obtained by polycondensing an alkoxysilane.
Figure 2018159637
A 1 represents a structure of the formula [4-1a] or formula [4-2a]. A 2 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. A 3 represents an alkyl group having 1 to 5 carbon atoms. m represents an integer of 1 or 2. n shows the integer of 0-2. p shows the integer of 0-3. However, m + n + p is 4.
Figure 2018159637
B 1 represents shows a vinyl group, an epoxy group, an amino group, a mercapto group, an isocyanate group, methacryl group, acryl group, an organic group having 2 to 12 carbon atoms and having at least one selected from a ureido group, and a cinnamoyl group. B 2 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. B 3 represents an alkyl group having 1 to 5 carbon atoms. m represents an integer of 1 or 2. n shows the integer of 0-2. p shows the integer of 0-3. However, m + n + p is 4.
Figure 2018159637
D 1 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. D 2 represents an alkyl group having 1 to 5 carbon atoms. n shows the integer of 0-3.
前記液晶配向処理剤が、下記式[b−1]〜式[b−11]から選ばれる少なくとも1種の構造を有する化合物を含有する請求項6〜請求項11のいずれか一項に記載の液晶表示素子。
Figure 2018159637
は水素原子又はベンゼン環を示す。B〜Bはそれぞれ、炭素数1〜5のアルキル基を示す。
The liquid crystal alignment treatment agent according to any one of claims 6 to 11, wherein the liquid crystal alignment treatment agent comprises a compound having at least one structure selected from the following formulas [b-1] to [b-11]. Liquid crystal display element.
Figure 2018159637
B A represents a hydrogen atom or a benzene ring. Each B B .about.B D represents an alkyl group having 1 to 5 carbon atoms.
前記液晶配向処理剤が、エポキシ基、イソシアネート基、オキセタン基、シクロカーボネート基、ヒドロキシル基、ヒドロキシアルキル基及び低級アルコキシアルキル基から選ばれる少なくとも1種を有する化合物を含有する請求項6〜請求項12のいずれか一項に記載の液晶表示素子。
The liquid crystal aligning agent contains a compound having at least one selected from an epoxy group, an isocyanate group, an oxetane group, a cyclocarbonate group, a hydroxyl group, a hydroxyalkyl group and a lower alkoxyalkyl group. The liquid crystal display element according to any one of the above.
前記液晶配向処理剤が、1−ヘキサノール、シクロヘキサノール、1,2−エタンジオール、1,2−プロパンジオール、プロピレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテル、ジプロピレングリコールジメチルエーテル、シクロヘキサノン、シクロペンタノン及び下記式[D1]〜式[D3]の溶媒から選ばれる少なくとも1種を含有する請求項6〜請求項13のいずれか一項に記載の液晶表示素子。
Figure 2018159637
及びDは炭素数1〜3のアルキル基を示す。Dは炭素数1〜4のアルキル基を示す。
The liquid crystal alignment treatment agent is 1-hexanol, cyclohexanol, 1,2-ethanediol, 1,2-propanediol, propylene glycol monobutyl ether, ethylene glycol monobutyl ether, dipropylene glycol dimethyl ether, cyclohexanone, cyclopentanone and The liquid crystal display device according to any one of claims 6 to 13, comprising at least one selected from solvents represented by the formulas [D1] to [D3].
Figure 2018159637
D 1 and D 2 represent an alkyl group having 1 to 3 carbon atoms. D 3 represents an alkyl group having 1 to 4 carbon atoms.
前記液晶配向処理剤が、N−メチル−2−ピロリドン、N−エチル−2−ピロリドン及びγ−ブチロラクトンから選ばれる少なくとも1種を含有する請求項6〜請求項14のいずれか一項に記載の液晶表示素子。
The liquid crystal alignment treatment agent according to any one of claims 6 to 14, wherein the agent comprises at least one selected from N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, and γ-butyrolactone. Liquid crystal display element.
前記基板が、プラスチック基板である請求項4〜請求項15のいずれか一項に記載の液晶表示素子。   The liquid crystal display device according to any one of claims 4 to 15, wherein the substrate is a plastic substrate.
JP2019503033A 2017-02-28 2018-02-27 Compounds, liquid crystal compositions and liquid crystal display elements Active JP7096533B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017037357 2017-02-28
JP2017037357 2017-02-28
PCT/JP2018/007341 WO2018159637A1 (en) 2017-02-28 2018-02-27 Compound, liquid crystal composition and liquid crystal display element

Publications (2)

Publication Number Publication Date
JPWO2018159637A1 true JPWO2018159637A1 (en) 2019-12-26
JP7096533B2 JP7096533B2 (en) 2022-07-06

Family

ID=63369950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019503033A Active JP7096533B2 (en) 2017-02-28 2018-02-27 Compounds, liquid crystal compositions and liquid crystal display elements

Country Status (5)

Country Link
JP (1) JP7096533B2 (en)
KR (1) KR102596591B1 (en)
CN (1) CN110546176B (en)
TW (1) TWI771380B (en)
WO (1) WO2018159637A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11760934B2 (en) 2017-11-17 2023-09-19 Dic Corporation Polymerizable compound, and liquid crystal composition and liquid crystal display element in which the compound is used
WO2019098115A1 (en) * 2017-11-17 2019-05-23 Dic株式会社 Polymerizable compound, liquid crystal composition using same, and liquid crystal display element
JP6729815B2 (en) 2018-03-01 2020-07-22 Dic株式会社 Polymerizable compound, liquid crystal composition using the same, and liquid crystal display device
TW202104317A (en) * 2019-03-08 2021-02-01 日商日產化學股份有限公司 Resin composition, resin film and liquid crystal display element
WO2024071380A1 (en) * 2022-09-30 2024-04-04 富士フイルム株式会社 Resin composition, cured object, layered product, method for producing cured object, method for producing layered product, method for producing semiconductor device, and semiconductor device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012014898A1 (en) * 2010-07-26 2012-02-02 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2014034782A1 (en) * 2012-08-31 2014-03-06 三菱マテリアル株式会社 Copper wire rod and winding
WO2015146987A1 (en) * 2014-03-27 2015-10-01 日産化学工業株式会社 Liquid crystal display element, liquid crystal alignment film, and liquid crystal alignment treatment agent
WO2015199148A1 (en) * 2014-06-25 2015-12-30 日産化学工業株式会社 Liquid crystal display element
WO2016047770A1 (en) * 2014-09-25 2016-03-31 日産化学工業株式会社 Lcd element
WO2016072498A1 (en) * 2014-11-07 2016-05-12 日産化学工業株式会社 Liquid crystal display element
WO2016140278A1 (en) * 2015-03-02 2016-09-09 日産化学工業株式会社 Liquid crystal display element

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009063610A (en) * 2007-09-04 2009-03-26 Konica Minolta Medical & Graphic Inc Photosensitive lithographic printing plate material and plate making method of lithographic printing plate
JP2009167354A (en) * 2008-01-18 2009-07-30 Daikin Ind Ltd Curable composition containing multi-functional acrylate
JP5549054B2 (en) * 2008-01-18 2014-07-16 ダイキン工業株式会社 Multifunctional acrylate
JP5914070B2 (en) * 2012-03-15 2016-05-11 株式会社Adeka Novel compound and colored photosensitive composition
CN104737069B (en) * 2012-08-30 2018-08-10 日产化学工业株式会社 Aligning agent for liquid crystal and the liquid crystal display element for using the aligning agent for liquid crystal
JP6414053B2 (en) * 2013-04-16 2018-10-31 日産化学株式会社 Liquid crystal display element, liquid crystal alignment film, and liquid crystal alignment treatment agent
JP6409774B2 (en) * 2013-07-25 2018-10-24 日産化学株式会社 Liquid crystal display element, liquid crystal alignment treatment agent, and liquid crystal alignment film
JP2016117832A (en) * 2014-12-22 2016-06-30 昭和電工株式会社 Photocurable composition and use thereof
KR102438830B1 (en) * 2016-08-03 2022-08-31 닛산 가가쿠 가부시키가이샤 Liquid crystal display element having a liquid crystal panel having a curved shape, and liquid crystal aligning agent therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012014898A1 (en) * 2010-07-26 2012-02-02 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2014034782A1 (en) * 2012-08-31 2014-03-06 三菱マテリアル株式会社 Copper wire rod and winding
WO2015146987A1 (en) * 2014-03-27 2015-10-01 日産化学工業株式会社 Liquid crystal display element, liquid crystal alignment film, and liquid crystal alignment treatment agent
WO2015199148A1 (en) * 2014-06-25 2015-12-30 日産化学工業株式会社 Liquid crystal display element
WO2016047770A1 (en) * 2014-09-25 2016-03-31 日産化学工業株式会社 Lcd element
WO2016072498A1 (en) * 2014-11-07 2016-05-12 日産化学工業株式会社 Liquid crystal display element
WO2016140278A1 (en) * 2015-03-02 2016-09-09 日産化学工業株式会社 Liquid crystal display element

Also Published As

Publication number Publication date
CN110546176A (en) 2019-12-06
CN110546176B (en) 2022-03-18
KR102596591B1 (en) 2023-10-31
JP7096533B2 (en) 2022-07-06
WO2018159637A1 (en) 2018-09-07
TWI771380B (en) 2022-07-21
KR20190125360A (en) 2019-11-06
TW201843134A (en) 2018-12-16

Similar Documents

Publication Publication Date Title
JP7096533B2 (en) Compounds, liquid crystal compositions and liquid crystal display elements
JP6418317B2 (en) Liquid crystal display element
WO2020184420A1 (en) Resin composition, resin film and liquid crystal display element
JP6409149B2 (en) Liquid crystal display element
KR102558626B1 (en) Resin composition, resin film and liquid crystal display element
JP7424364B2 (en) Liquid crystal alignment treatment agent, liquid crystal alignment film and liquid crystal display element
JP6459393B2 (en) Liquid crystal aligning agent, liquid crystal display element manufacturing method, liquid crystal alignment film, and liquid crystal display element
JP6264053B2 (en) Liquid crystal aligning agent for PSA mode liquid crystal display element, liquid crystal aligning film for PSA mode liquid crystal display element, PSA mode liquid crystal display element and manufacturing method thereof
JP6406472B2 (en) Liquid crystal display element
JP7226429B2 (en) liquid crystal display element
TW201839111A (en) Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal element, and polyorganosiloxane
JP7424366B2 (en) Liquid crystal alignment treatment agent, liquid crystal alignment film and liquid crystal display element
JP2015180916A (en) Liquid crystal display device manufacturing method
JPWO2020175518A1 (en) Liquid crystal display element and its manufacturing method
JPWO2020175560A1 (en) Resin composition, resin film and liquid crystal display element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220607

R151 Written notification of patent or utility model registration

Ref document number: 7096533

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151