JPWO2018124033A1 - 脂質粒子組成物および医薬組成物 - Google Patents

脂質粒子組成物および医薬組成物 Download PDF

Info

Publication number
JPWO2018124033A1
JPWO2018124033A1 JP2018559499A JP2018559499A JPWO2018124033A1 JP WO2018124033 A1 JPWO2018124033 A1 JP WO2018124033A1 JP 2018559499 A JP2018559499 A JP 2018559499A JP 2018559499 A JP2018559499 A JP 2018559499A JP WO2018124033 A1 JPWO2018124033 A1 JP WO2018124033A1
Authority
JP
Japan
Prior art keywords
lipid
lipid particle
panobinostat
particle composition
composition according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018559499A
Other languages
English (en)
Inventor
雄大 吉野
隼人 小椋
幹永 森
泰輔 遠藤
健太郎 沼尻
律子 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Publication of JPWO2018124033A1 publication Critical patent/JPWO2018124033A1/ja
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/403Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
    • A61K31/404Indoles, e.g. pindolol
    • A61K31/4045Indole-alkylamines; Amides thereof, e.g. serotonin, melatonin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/24Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing atoms other than carbon, hydrogen, oxygen, halogen, nitrogen or sulfur, e.g. cyclomethicone or phospholipids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/28Steroids, e.g. cholesterol, bile acids or glycyrrhetinic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Molecular Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Hematology (AREA)
  • Oncology (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本発明の課題は、パノビノスタットまたはその塩を含有し、骨髄への高いターゲッティング能を示す脂質粒子組成物、および上記脂質粒子組成物を含む医薬組成物を提供することである。本発明によれば、パノビノスタットまたはその塩を含有する脂質粒子組成物であって、脂質粒子がリン脂質およびコレステロール類を含む脂質粒子組成物が提供される。

Description

本発明は、パノビノスタットまたはその塩を含有する脂質粒子組成物、および上記脂質粒子組成物を含む医薬組成物に関する。
パノビノスタットは、 多発性骨髄腫の治療に用いられるヒドロキサム酸誘導体であり、非選択的ヒストン脱アセチル化酵素阻害薬の一つである。パノビノスタットは、商品名ファリーダック(登録商標)としてカプセル型経口剤の形態で市販されている。
一方、リポソーム製剤によって、薬剤をがんに集積させ、長期間に渡って曝露させることが多く検討されている。リポソーム製剤とは、脂質膜からなるリポソーム中に薬物を内包した製剤である。
例えば、非特許文献1には、骨髄を標的としたリポソーム製剤が記載されている。非特許文献1には、1,2−ジパルミトイル−sn−グリセロ−3−ホスホコリン(DPPC)、コレステロール、L−グルタミン酸、N−(3−カルボキシル−1−オキソプロピル)−1,5−ジヘキサデシルエステル(SA脂質)、およびポリ(エチレングルコール)を含むリポソームが記載されており、SA脂質成分が骨髄食細胞による食作用を誘導する活性因子であることが記載されている。
非特許文献2には、シタラビンとダウノルビシンを内包するリポソーム(CPX−351)が、高い骨髄集積性を示すことが記載されている。非特許文献2には、CPX−351の骨髄における蓄積が、正常マウスにおいては空リポソームと比較して20%〜50%高く、白血病モデルマウスにおいては空リポソームと比較して75%高いことが記載されている。
Keitaro Sou et al., Expert Opin Drug Deliv. 2011 March ; 8(3): 317-328 Abstract 5534: Liposome accumulation within leukemia engrafted bone marrow is significantly enhanced when the formulation contains cytarabine plus daunorubicin,, Sharon A. Johnstone, Sherwin Xie, Troy Harasym, Lawrence Mayer and Paul G. Tardi, DOI: 10.1158/1538-7445.AM10-5534 Published 15 April 2010, Proceedings: AACR 101st Annual Meeting 2010, Apr 17‐21, 2010; Washington, DC
上記の通り、高い骨髄集積性を示すリポソームについての数例の報告はあるが、パノビノスタットまたはその塩を含有し、骨髄への高いターゲッティング能を示すリポソーム組成物についての知見はない。本発明は、パノビノスタットまたはその塩を含有し、骨髄への高いターゲッティング能を示す脂質粒子組成物、および上記脂質粒子組成物を含む医薬組成物を提供することを課題とする。
本発明者らは、上記課題を解決するために鋭意検討した結果、パノビノスタットまたはその塩を含有する脂質粒子組成物であって、脂質粒子がリン脂質およびコレステロール類を含む脂質粒子組成物が、骨髄への高いターゲッティング能を示すことを見出し、本発明を完成するに至った。
すなわち、本発明は、下記を提供する。
[1] パノビノスタットまたはその塩を含有する脂質粒子組成物であって、脂質粒子がリン脂質およびコレステロール類を含む脂質粒子組成物。
[2] パノビノスタットまたはその塩を含有する脂質粒子組成物であって、パノビノスタット量として4mg/kgの脂質粒子組成物をマウスの尾静脈に単回投与した後から無限時間までの、下記式1で表される面積比が5以上である脂質粒子組成物。
式1: (骨髄中濃度−時間曲線下面積)/(消化管中濃度−時間曲線下面積)
[3] 脂質粒子の平均粒子径が50nm〜500nmである、[1]または[2]に記載の脂質粒子組成物。
[4] リモートローディング法によりパノビノスタットまたはその塩が脂質粒子に内包されている、[1]から[3]に記載の脂質粒子組成物。
[5] パノビノスタットまたはその塩の固化物が脂質粒子の表面および内部の少なくとも一部に存在している、[1]から[4]の何れか一項に記載の脂質粒子組成物。
[6] 脂質粒子がリン脂質およびコレステロール類を含む、[2]から[5]の何れか一項に記載の脂質粒子組成物。
[7] リン脂質として、グリセロール骨格を有するリン脂質を含む、[1]から[6]の何れか一項に記載の脂質粒子組成物。
[8] グリセロール骨格を有するリン脂質が、ホスファチジルコリンである、[7]に記載の脂質粒子組成物。
[9] リン脂質として、スフィンゴリン脂質を含む、[1]から[6]の何れか一項に記載の脂質粒子組成物。
[10] スフィンゴリン脂質が、スフィンゴミエリンである、[9]に記載の脂質粒子組成物。
[11] リン脂質が、炭素数20以上の脂肪酸残基を含む、[1]から[10]の何れか一項に記載の脂質粒子組成物。
[12] 脂質粒子が、ポリエチレングリコール脂質をさらに含む、[1]から[11]の何れか一項に記載の脂質粒子組成物。
[13] 脂質粒子を構成する全脂質におけるポリエチレングリコール脂質の比率が5モル%以下である、[12]に記載の脂質粒子組成物。
[14] 脂質粒子が、ポリエチレングリコール脂質を実質的に含まない、[1]から[11]の何れか一項に記載の脂質粒子組成物。
[15] 脂質粒子が、アニオン性脂質を含む、[1]から[14]のいずれか一項に記載の脂質粒子組成物。
[16] [1]から[15]の何れか一項に記載の脂質粒子組成物を含む、医薬組成物。
[17] 抗がん剤である、[16]に記載の医薬組成物。
[18] [1]から[17]の何れか一に記載の脂質粒子組成物を対象に投与することを含む、対象の処置方法。
[19] がんの治療において使用するための、[1]から[17]の何れか一に記載の脂質粒子組成物。
[20] 医薬組成物の製造のための、[1]から[17]の何れか一に記載の脂質粒子組成物の使用。
[21] 抗がん剤の製造のための、[1]から[17]の何れか一に記載の脂質粒子組成物の使用。
本発明の脂質粒子組成物および医薬組成物は、骨髄への高いターゲッティング能を示す。本発明の脂質粒子組成物および医薬組成物によれば、治療指数を向上した医薬組成物を提供することが可能になる。
図1は、パノビノスタット含有脂質粒子の透過型電子顕微鏡(Transmission Electron Microscope; TEM)による画像を示す。 図2は、パノビノスタット含有脂質粒子またはパノビノスタット溶液の投与後の血漿中のパノビノスタット濃度の測定の結果を示す。 図3は、パノビノスタット含有脂質粒子またはパノビノスタット溶液の投与後の組織中のパノビノスタット濃度の測定の結果を示す。 図4は、Molm−13同所モデルマウスにおける白血病細胞への増殖阻害活性を測定した結果を示す。 図5は、骨髄中マクロファージ数および細胞中脂質粒子量を解析した結果を示す。 図6は、骨髄中のサイトカインの発現を解析した結果を示す。
本明細書において「〜」を用いて示された数値範囲は、「〜」の前後に記載される数値をそれぞれ最小値および最大値として含む範囲を示す。
本明細書において組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
「空リポソーム」とは、薬物を含有していないリポソームを意味する。
「放出」とは、脂質粒子(リポソームなど)に含有された薬物が、脂質粒子(リポソームなど)を構成する脂質膜を通過して、脂質粒子(リポソームなど)の外部へ出ることを意味する。
「血中滞留性」とは、脂質粒子(リポソームなど)組成物を投与した対象において、脂質粒子(リポソームなど)に封入された状態の薬物が血液中に存在する性質を意味する。
「脂質粒子(リポソームなど)の平均粒子径」とは、脂質粒子(リポソームなど)組成物中に存在する脂質粒子(リポソームなど)の体積平均粒子径を意味する。本発明の脂質粒子組成物中に含まれる脂質粒子の平均粒子径は動的光散乱法を用いて測定する。動的光散乱を用いた市販の測定装置としては、濃厚系粒子アナライザーFPAR−1000(大塚電子社製)、ナノトラックUPA(日機装社製)およびナノサイザー(マルバーン社製)等が挙げられる。
「対象」とは、疾病等の予防若しくは治療を必要とするヒト、マウス、サル、家畜等の哺乳動物であり、好ましくは、疾病等の予防若しくは治療を必要とするヒトである。
以下、本発明を詳細に説明する。
本発明の脂質粒子組成物は、パノビノスタットまたはその塩を含有する脂質粒子組成物であって、脂質粒子がリン脂質およびコレステロール類を含む脂質粒子組成物である。
(脂質粒子)
脂質粒子とは、脂質から構成される粒子を意味し、特に限定されない。本発明の脂質粒子には、脂質二分子膜より構成される閉鎖小胞体であるラメラ構造を持つリポソームが含まれる。リポソームとは、脂質を用いた脂質二重膜で形成される閉鎖小胞体であり、その閉鎖小胞の空間内に水相(内水相)を有する。内水相には、水等が含まれる。リポソームは通常、閉鎖小胞外の水溶液(外水相)に分散した状態で存在する。リポソームはシングルラメラ(単層ラメラまたはユニラメラとも呼ばれ、二重層膜が一重の構造である。)であっても、多層ラメラ(マルチラメラとも呼ばれ、タマネギ状の形状の多数の二重層膜の構造である。個々の層は水様の層で仕切られている。)であってもよいが、本発明では、医薬用途での安全性および安定性の観点から、シングルラメラのリポソームであることが好ましい。
本発明の脂質粒子には、前述のリポソームのような脂質二分子膜構造(ラメラ構造)を持たない、粒子内部も構成成分が詰まった構造を持つ粒子も含まれる。
脂質形成の形態は、電子顕微鏡観察またはエックス線を用いた構造解析などにより確認できる。例えば、Cryo透過型電子顕微鏡観察(CryoTEM法)を用いた方法により、リポソームのように脂質粒子が脂質二分子膜構造(ラメラ構造)および内水層を持つ構造、またはリポソームのように脂質粒子が脂質二分子膜構造(ラメラ構造)および内水層を持たず粒子内部に電子密度が高いコアを持っていることから、脂質をはじめとする構成成分が詰まった構造を有していることを確認できる。エックス線小角散乱(SAXS)測定によっても、脂質粒子が脂質二分子膜構造(ラメラ構造)の有無を確認できる。
脂質粒子は、薬物を内包することのできる脂質粒子であれば、その形態は特に限定されない。「内包」とは、脂質粒子に対して薬物が内水相および/または膜自体に含まれる形態をとることを意味する。例えば、膜で形成された閉鎖空間内に薬物を封入する形態、膜自体に内包する形態等が挙げられ、これらの組合せでもよい。
脂質粒子の平均粒子径は、一般的には10nm〜1000nmであり、50nm〜500nmが好ましく、100nm〜500nmがより好ましく、100nm〜300nmがさらに好ましい。
脂質粒子は球状またはそれに近い形態をとることが好ましい。
本発明にかかる脂質粒子のゼータ電位は、とく印限定されないが、好ましくは−10mV以下であり、より好ましくは−15mV以下であり、さらに好ましくは−20mV以下であり、−25mV以下とすることも好ましく、−30mV以下とすることもより好ましい。
脂質粒子の脂質二重層を構成する成分は、脂質から選ばれる。脂質として、水溶性有機溶媒およびエステル系有機溶媒の混合溶媒に溶解するものを任意に使用することができる。脂質としては、例えば、リン脂質、リン脂質以外の脂質、コレステロール類、リゾリン脂質およびそれらの誘導体等が挙げられる。これらの成分は、単一種または複数種の成分から構成されてよい。本発明における脂質粒子は、少なくとも、リン脂質およびコレステロール類を含む。
リン脂質としては、例えば、ホスファチジルコリン(レシチン)、ホスファジルグリセロール、ホスファチジン酸、ホスファチジルエタノールアミン、ホスファチジルセリン、ホスファチジルイノシトール、スフィンゴミエリン、ジヒドロスフィンゴミエリン、カルジオリピン等の天然もしくは合成のリン脂質、またはこれらに水素添加したもの(例えば、水素添加大豆ホスファチジルコリン(HSPC))等が挙げられる。なお、本発明において、「リン脂質」とはリン脂質に修飾を加えたリン脂質誘導体も包含する。
本発明においては、リン脂質としては、グリセロール骨格を有するリン脂質を含むことが好ましい。グリセロール骨格を有するリン脂質としては、ホスファチジルコリンが特に好ましい。ホスファチジルコリンとしては、1,2−diarachidonoyl−sn−glycero−3−phosphocholine等を使用することができる。また、本発明においては、リン脂質として、スフィンゴリン脂質を含むことも好ましい。スフィンゴリン脂質としては、スフィンゴミエリンなどを使用することができる。
本発明におけるリン脂質は、炭素数20以上の脂肪酸残基を含むことが、パノビノスタットまたはその塩の放出を低減し、血中滞留性を向上させるという観点から、好ましい。
リン脂質以外の脂質としては、リン酸を含まない脂質が挙げられ、例えば、リン酸部分をその分子内に有しないグリセロ脂質、リン酸部分をその分子内に有しないスフィンゴ脂質等が挙げられる。なお、本発明において、「リン脂質以外の脂質」とはリン脂質以外の脂質に修飾を加えたリン脂質以外の脂質の誘導体も包含する。
コレステロール類としては、シクロペンタヒドロフェナントレンを基本骨格とし、その一部あるいはすべての炭素が水素化されているコレステロールおよびその誘導体を挙げることができる。例えば、コレステロールが挙げられる。脂質粒子の平均粒子径を100nm以下に微細化していくと脂質膜の曲率が高くなる。脂質粒子において配列した膜のひずみも大きくなる。脂質による膜のひずみを埋める(膜安定化効果)ために、コレステロール等を添加することが有効である。
脂質粒子において、コレステロールの添加は、脂質粒子の膜のすきまを埋めること等により、脂質粒子の膜の流動性を下げることが期待される。
本発明に係る脂質粒子を構成する脂質の合計量に対するコレステロール類の含有率は10mol%〜50mol%が好ましく、20mol%〜45mol%がより好ましく、30mol%〜45mol%がさらに好ましく、35mol%〜45mol%がとくに好ましい。
本発明における脂質粒子は、親水性高分子で修飾した脂質を含んでいてもよい。
親水性高分子としては、例えば、ポリエチレングリコール類、ポリグリセリン類、ポリプロピレングリコール類、ポリビニルアルコール、スチレン−無水マレイン酸交互共重合体、ポリビニルピロリドン、合成ポリアミノ酸等が挙げられる。上記の親水性高分子は、それぞれ単独でまたは2種以上を組み合わせて使用することができる。
これらの中でも、組成物の血中滞留性の観点から、ポリエチレングリコール類、ポリグリセリン類およびポリプロピレングリコール類が好ましく、ポリエチレングリコール(PEG)、ポリグリセリン(PG)およびポリプロピレングリコール(PPG)がより好ましい。汎用性および血中滞留性の観点から、ポリエチレングリコール(PEG)がさらに好ましい。
ポリエチレングリコールの重量平均分子量は、特に限定されないが、500〜10,000ダルトンであり、好ましくは1,000〜7,000ダルトンであり、より好ましくは2,000〜5,000ダルトンである。
本発明における脂質粒子の第一の態様としては、脂質粒子に含まれる主たる脂質とともに、PEGによって修飾された脂質(ポリエチレングリコール脂質)を用いることが好ましい。ポリエチレングリコール脂質としては、例えば、1、2−ジステアロイル−3−ホスファチジルエタノールアミン−PEG2000(日本油脂社製)、1,2−ジステアロイル−3−ホスファチジルエタノールアミン−PEG5000(日本油脂社製)およびジステアロイルグリセロール−PEG2000(日本油脂社製)等の1,2−ジステアロイル−3−ホスファチジルエタノールアミン−ポリエチレングリコールが挙げられる。
脂質粒子を構成する全脂質におけるポリエチレングリコール脂質の比率は、一般的には0.01〜10モル%であり、好ましくは0.05〜8モル%であり、より好ましくは0.1〜7モル%であり、5モル%以下とすることも好ましく、1モル%以下とすることもより好ましい。
本発明における脂質粒子の第二の形態としては、脂質粒子が実質的にポリエチレングリコール脂質を含まないことが好ましい。
本発明における脂質粒子は、脂質粒子に含まれる主たる脂質とともにアニオン性の脂質を含むことも好ましい。アニオン性の脂質としては、例えば、1,2−Dipalmitoyl−sn−glycero−3−phosphoglycerol, sodium salt(COATSOME MG−6060LS、日油製)などのホスファチジルグリセロールを有する脂質、1,2−Dimyristoyl−sn−glycero−3−phosphatidic acid, sodium salt(COATSOME MA−6060LS、日油製)などのホスファチジン酸を有する脂質、1,2−Dipalmitoyl−sn−glycero−3−phospho−L−serine, sodium salt(COATSOME MS−6060LS、日油製)などのホスファチジルセリンを有する脂質、1−Stearoyl−2−lyso−sn−glycero−3− phosphocholine(COTSOME MC−80H、日油製)などのリゾリン脂質、Cholesteryl hemisuccinate(CHEMS,Avanti Polar Lipids社製)などのアニオン性基を有するステロイド誘導体、ステアリン酸などの脂肪酸などが挙げられる。
脂質粒子を構成する全脂質におけるアニオン性脂質の比率は、とくに限定されないが、0.01〜50モル%であり、好ましくは0.05〜30モル%であり、より好ましくは0.1〜10モル%である。アニオン性脂質はPEG脂質と組み合わせて使用してもよく、PEG脂質は用いずいに単独で用いてもよい。また、上記の親水性高分子は、それぞれ単独でまたは2種以上を組み合わせて使用することができる。
脂質粒子には、上記の成分の他に、血中滞留性の改善のために親水性高分子等、膜構造の安定剤として脂肪酸またはジアセチルホスフェート等、抗酸化剤としてα−トコフェロール等を加えてもよい。本発明では、医薬用途において静脈注射用途での使用が認められていない分散助剤等の添加剤、例えば、界面活性剤等を用いないことが好ましい。
(パノビノスタット)
本発明の脂質粒子組成物は、薬物としてパノビノスタットまたはその塩を含有する。
パノビノスタット(Panobinostat)は、多発性骨髄腫の治療に用いられるヒドロキサム酸誘導体であり、非選択的ヒストン脱アセチル化酵素阻害薬の一つである。パノビノスタットの化学構造を以下に示す。
パノビノスタットの塩としては、通常知られているアミノ基などの塩基性基における塩を挙げることができる。
塩基性基における塩としては、例えば、塩酸、臭化水素酸、リン酸、ホウ酸、硝酸および硫酸などの鉱酸との塩;ギ酸、酢酸、乳酸、クエン酸、シュウ酸、フマル酸、マレイン酸、コハク酸、リンゴ酸、酒石酸、アスパラギン酸、トリクロロ酢酸およびトリフルオロ酢酸などの有機カルボン酸との塩;ならびにメタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、メシチレンスルホン酸およびナフタレンスルホン酸などのスルホン酸との塩が挙げられる。パノビノスタットの塩の一例としては、パノビノスタットの乳酸塩を挙げることができ、その構造を以下に示す。
(脂質粒子組成物に含有されるパノビノスタットまたはその塩)
本発明の脂質粒子組成物においては、脂質粒子内におけるパノビノスタットまたはその塩の存在状態は特に限定しないが、後述のように空リポソームとの骨髄への集積性の違いから、パノビノスタットまたはその塩の少なくとも一部は脂質粒子を認識する血液中のたんぱく質またはマクロファージ等の細胞による認識に影響を与える形態で存在しているものと推定される。すなわち、パノビノスタットまたはその塩の一部が脂質粒子の膜表面に存在しているか、膜表面に存在する脂質分子の運動性に影響を与える状態で存在していると推定される。
本発明の脂質粒子組成物において、内包されるパノビノスタットまたはその塩が高濃度である場合、パノビノスタットまたはその塩の存在状態としては、図1のTEM画像から読み取れるように、パノビノスタットまたはその塩のうちの一部が、固化物として、脂質粒子の表面および内部の少なくとも一部に存在している場合がある。このような場合においても、パノビノスタットまたはその塩の残部は、脂質粒子の内水相に溶解状態で存在していてもよい。ここで、溶解状態とは、脂質粒子の体積に対して充填した薬物の量が、その内水相の組成液での薬物の飽和溶解度以下の場合、溶解状態で内包されたものとみなす。また、飽和溶解度以上においても、Cryo−TEM[凍結試料の透過型電子顕微鏡(TEM)による観察]で薬物結晶が観察されない、またはXRD測定で結晶格子に起因する回折パターンが観察されない場合、脂質粒子に内包された薬物の大部分が溶解し、溶解状態で存在するものとみなせる。
本発明において、固化物とは、透過型電子顕微鏡(TEM)により観察できる固体を意味する。
(パノビノスタットまたはその塩/脂質比)
本発明における脂質粒子におけるパノビノスタットまたはその塩/脂質比は10〜500mg/mmolであり、20〜400mg/mmolが好ましく、30〜300mg/mmolがより好ましい。パノビノスタットの塩を含む場合、パノビノスタットまたはその塩/脂質比においてはパノビノスタットとして換算した量で計算する。なお、パノビノスタットまたはその塩/脂質比における脂質とは、脂質粒子を構成する脂質すべてを意味し、脂質にはコレステロールやリゾリン脂質も含まれる。
(脂質粒子組成物)
本発明の脂質粒子組成物においては、パノビノスタット量として4mg/kgの脂質粒子組成物をマウスの尾静脈に単回投与した後から無限時間までの、下記式1で表される面積比が1より大きいことが好ましく、2以上がより好ましく、3以上がより一層好ましく、5以上がさらに好ましく、10以上がさらに一層好ましく、12以上が特に好ましい。
式1: (骨髄中濃度−時間曲線下面積)/(消化管中濃度−時間曲線下面積)
本発明の脂質粒子組成物においては、下記の式2で示される骨髄集積率(%ID/g)が、好ましくは10%ID/g以上であり、より好ましくは15%ID/g以上であり、より好ましくは20%ID/g以上であり、さらに好ましくは30%ID/g以上であり、特に好ましくは40%ID/g以上である。本発明の実施例に示す骨髄集積率は、DiI(1,1’−dioctadecyl−3,3,3’,3’−tetramethylindocarbocyanine Perchlorate)で標識したパノビノスタット含有脂質粒子組成物(パノビノスタット量として6mg/kgまたは4mg/kg)をマウスの尾静脈に投与した後72時間後における、大腿骨骨髄1g当たりの投与した脂質粒子のうち骨髄に集積した割合(% injected dose/g)として求めたものであり、下記式2で示される。
式2:骨髄集積率(%ID/g)=骨髄中DiI濃度(ng/g)/(投与液中DiI濃度(ng/mL)×投与容量(mL))×100
上記の骨髄集積率(%ID/g)を求めるためには、本発明で使用したDiIとは異なる標識を使用してもよいし、標識を用いず、脂質粒子を構成する脂質をトレースすることにより骨髄集積率を求めてもよい。また、本発明の実施例に示すように脂質粒子組成物をあらかじめ標識しておく方法のほかにも、実施例25に示すように脂質粒子組成物をあとから標識する方法を用いて骨髄集積率を求めることもできる。
本発明の脂質粒子組成物は、パノビノスタットまたはその塩を含有する脂質粒子と、上記脂質粒子を分散する水性溶媒とを含むことができる。
本発明の脂質粒子組成物は、投与経路に関連して、医薬的に許容される等張化剤、安定化剤、酸化防止剤、およびpH調整剤の少なくとも一種を含んでもよい。
等張化剤としては、特に限定されないが、例えば、塩化ナトリウム、塩化カリウム、リン酸水素ナトリウム、リン酸二水素ナトリウム、リン酸二水素カリウムのような無機塩類、グリセロール、マンニトール、ソルビトールのようなポリオール類、グルコース、フルクトース、ラクトース、またはスクロースのような糖類が挙げられる。
安定化剤としては、特に限定されないが、例えば、グリセロール、マンニトール、ソルビトール、ラクトース、またはスロースのような糖類が挙げられる。
酸化防止剤としては、特に限定されないが、例えば、アスコルビン酸、尿酸、トコフェロール同族体(例えば、ビタミンE、トコフェロールα、β、γ、δの4つの異性体)、システイン、EDTA(エチレンジアミン四酢酸)、没食子酸プロピル、BHT(ジブチルヒドロキシトルエン)、BHA(ブチルヒドロキシアニソール)、ピロ亜硫酸ナトリウム等が挙げられる。安定化剤および酸化防止剤は、それぞれ単独でまたは2種以上組み合わせて使用することができる。
pH調整剤としては、水酸化ナトリウム、クエン酸、酢酸、トリエタノールアミン、リン酸水素ナトリウム、リン酸二水素ナトリウム、リン酸二水素カリウム等が挙げられる。
本発明の脂質粒子組成物は、医薬的に許容される有機溶媒、コラーゲン、ポリビニルアルコール、ポリビニルピロリドン、カルボキシビニルポリマー、カルボキシメチルセルロースナトリウム、ポリアクリル酸ナトリウム、アルギン酸ナトリウム、水溶性デキストラン、カルボキシメチルスターチナトリウム、ペクチン、メチルセルロース、エチルセルロース、キサンタンガム、アラビアゴム、カゼイン、ゼラチン、寒天、ジグリセリン、プロピレングリコール、ポリエチレングリコール、ワセリン、パラフィン、ステアリルアルコール、ステアリン酸、ヒト血清アルブミン(HSA)、マンニトール、ソルビトール、ラクトース、リン酸緩衝生理食塩水(PBS)、塩化ナトリウム、糖類、生体内分解性ポリマー、無血清培地、医薬添加物として許容される添加物を含有してもよい。
本発明の脂質粒子組成物を充填する容器は、特に限定されないが、酸素透過性が低い材質であることが好ましい。例えば、プラスチック容器、ガラス容器、アルミニウム箔、アルミ蒸着フィルム、酸化アルミ蒸着フィルム、酸化珪素蒸着フィルム、ポリビニルアルコール、エチレンビニルアルコール共重合体、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリ塩化ビニリデン、等をガスバリア層として有するラミネートフィルムによるバック等が挙げられ、必要に応じて、着色ガラス、アルミニウム箔やアルミ蒸着フィルム等を使用したバック等を採用することで遮光することもできる。
脂質粒子組成物を充填する容器において、容器内の空間部に存在する酸素による酸化を防ぐために、容器空間部および薬液中のガスを窒素等の不活性ガスで置換することが好ましい。例えば、注射液を窒素バブリングし、容器への充填を窒素雰囲気下で行うことが挙げられる。
脂質粒子組成物中の脂質や原薬の分解を防ぐために、凍結乾燥を行うことも好ましい。例えば、スクロースを含む水相に脂質粒子を分散させ、凍結乾燥を行うことが上げられる。
(脂質粒子組成物の製造方法)
本発明の脂質粒子組成物の製造方法は、特に限定されないが、一例としては、
(a)油相の調製;
(b)水相の調製;
(c)乳化による脂質粒子形成;
(d)エクストルーダーによる整粒;
(e)透析による脂質粒子外水相液の置換;
(f)リモートローディングによるパノビノスタットの脂質粒子への内包;および
(g)透析による外水相パノビノスタットの除去:
という工程により製造することができる。
<(a)油相の調製>
(a)油相の調製においては、脂質粒子を構成する各成分(リン脂質、コレステロール類など)と有機溶媒とを混合し、混合物を加温して上記成分を溶解することにより油相を製造することができる。
油相において使用する有機溶媒は特に限定されないが、例えば、水と任意に混じりあう水溶性有機溶媒を用いることが出来る。
水溶性有機溶媒としては、例えば、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、イソブタノールおよびt−ブタノール等のアルコール類、グリセリン、エチレングリコールおよびプロピレングリコール等のグリコール類、ポリエチレングリコール等のポリアルキレングリコール類等が挙げられる。これらのなかでも、アルコール類が好ましい。アルコール類としては、エタノール、メタノール、2−プロパノールおよびt−ブタノールから選ばれる少なくとも1種であることが好ましく、エタノール、2−プロパノールおよびt−ブタノールから選ばれる少なくとも1種であることがより好ましく、エタノールであることがさらに好ましい。
脂質の濃度は、特に限定されず、適宜調整することが可能である。
<(b)水相の調製>
水相としては、水(蒸留水、注射用水等)、生理食塩水、各種緩衝液または糖類の水溶液およびこれらの混合物(水性溶媒)を使用することができる。本発明において、後述するリモートローディングによってパノビノスタットを脂質粒子へ内包させる場合には、水相としてアンモニウム塩を含む水溶液を使用することが好ましい。
緩衝液としては、有機系、無機系に限定されることはないが、体液に近い水素イオン濃度付近に緩衝作用を有する緩衝液が好適に用いられ、リン酸緩衝液、トリス緩衝液、クエン酸緩衝液、酢酸緩衝液およびグッドバッファー等が挙げられる。脂質粒子の内水相は、脂質粒子を製造する際に、脂質粒子を分散する水溶液であってもよいし、新たに添加される、水、生理食塩水、各種緩衝液または糖類の水溶液およびこれらの混合物であってもよい。外水相または内水相として用いる水は、不純物(埃、化学物質等)を含まないことが好ましい。
生理食塩水とは、人体と等張になるように調整された無機塩溶液を意味し、さらに緩衝機能を持っていてもよい。生理食塩水としては、塩化ナトリウムを0.9w/v%(質量/体積パーセント)含有する食塩水、PBSおよびトリス緩衝生理食塩水等が挙げられる。
本発明において、水相とは、外水相および内水相の両方を包含する。
本発明における外水相とは、脂質粒子を分散する水溶液を意味する。例えば注射剤の場合においては、バイアル瓶またはプレフィルドシリンジ包装されて保管された脂質粒子の分散液の脂質粒子の外側を占める溶液が外水相となる。また、添付された分散用液またはその他溶解液により投与時に用時分散した液についても同様に、脂質粒子の分散液の脂質粒子の外側を占める溶液が外水相となる。
本発明における内水相とは、脂質粒子の脂質二重膜を隔てた閉鎖小胞内の水相を意味する。
<(c)乳化による脂質粒子形成>
乳化工程では、少なくとも1種の脂質が有機溶媒に溶解している油相と水相とを混合して脂質を含む水溶液を攪拌して乳化することができる。脂質が有機溶媒に溶解している油相および水相を混合し撹拌し、乳化することで、油相および水相がO/W型(水中油型)に乳化した乳化液が調製される。混合後、油相由来の有機溶媒の一部または全部を蒸発によって除去することにより、脂質粒子が形成される。または、油相中の有機溶媒の一部または全部が撹拌・乳化の過程で蒸発して、脂質粒子が形成される。
撹拌する方法としては、粒子微細化のために、超音波または機械的せん断力が用いられる。また、粒子径の均一化のためには、一定の孔径のフィルターを通すエクストルーダー処理またはマイクロフルイダイザー処理を行うことができる。エクストルーダー等を用いれば、副次的に形成された多胞脂質粒子をばらして単胞脂質粒子にすることができる。
乳化工程は、乳化する工程であれば限定されることはないが、好ましくは高せん断をかけ、有機溶媒を含む乳化工程で微粒子化する工程である。必要に応じて、乳化工程で用いた有機溶媒を蒸発させる(脱溶媒する)ことで脂質粒子を形成することができる。
脂質粒子を製造する際の乳化工程の液温は、適宜調整することが可能であるが、油相と水相との混合時の液温を使用する脂質の相転移温度以上とすることが好ましく、例えば、相転移温度が35〜40℃の脂質を使用する場合、35℃〜70℃とすることが好ましい。
乳化工程においては、脂質粒子を含む水溶液から有機溶媒と水を蒸発させてもよい。ここで言う蒸発とは、油相由来の有機溶媒と水相由来の水の一部または全部を蒸発工程として強制的に除去してもよいし、油相由来の有機溶媒と水相由来の水の一部または全部が撹拌・乳化の過程で自然に蒸発するものでもよい。
蒸発の方法は、特に限定されないが、例えば、有機溶媒と水を加熱することにより蒸発させる工程、乳化後に静置または緩やかな撹拌を継続する工程、および真空脱気を行う工程の少なくとも一つを行えばよい。
<(d)エクストルーダーによる整粒>
得られた脂質粒子は、透析法、ろ過法またはエクストルージョン処理等を用いて粒径を均一にすることができる。
エクストルージョン処理とは、細孔を有するフィルターに脂質粒子を通過させることで、物理的なせん断力を施し、微粒化する工程を意味する。脂質粒子を通過させる際、脂質粒子分散液およびフィルターを、脂質粒子を構成する膜の相転移温度以上の温度に保温することで、速やかに微粒化することができる。
なお、エクストルーダーによる整粒は行ってもよいし、行わなくてもよい。
<(e)透析による脂質粒子外水相液の置換>
本発明において、リモートローディングによってパノビノスタットを脂質粒子へ内包させる場合には、透析により脂質粒子外水相液を置換してもよい。透析液として、0.1〜5質量%のNaCl水溶液を使用することができるが、特に限定されない。上記した透析液を用いて、脂質粒子液を透析することにより、外水相に存在するアンモニウム塩を除去し、透析液で外水相を置換した脂質粒子を得ることができる。
<(f)リモートローディング法によるパノビノスタットの脂質粒子への内包>
本発明においては、リモートローディング法によってパノビノスタットを脂質粒子へ内包させることが好ましい。
本発明においてリモートローディング法とは、薬物が内封されていない空リポソームを製造し、リポソーム外液に薬物を加えることによりリポソームに薬物を導入する方法を意味する。リモートローディングの方法については特に限定されないが、クエン酸緩衝液や硫酸アンモニウムを用いた方法が例示される。
リモートローディング法では、外液に加えられた薬物が、能動的に脂質粒子へと移行し、脂質粒子へと取り込まれる。このドライビングフォースとしては、溶解度勾配、イオン勾配、pH勾配等が用いられている。例えば、脂質粒子膜を隔てて形成されるイオン勾配を用いて薬物を脂質粒子内部に導入する方法がある。例えば、Na+/K+濃度勾配を利用してリモートローディング法により予め形成されている脂質粒子中に薬物を添加する技術がある。
イオン勾配の中でもプロトン濃度勾配が一般的に用いられ、例えばクエン酸を用いて、脂質粒子膜の内側(内水相)pHが、外側(外水相)pHよりも低いpH勾配をもつ態様が挙げられる。pH勾配は、具体的に、アンモニウムイオン勾配および/またはプロトン化しうるアミノ基を有する有機化合物の濃度勾配等により形成することができる。
アンモニウムイオン元は、特に限定されることはないが、水溶性のアンモニウム塩が好適に用いられ、硫酸アンモニウム、塩化アンモニウム、ぎ酸アンモニウム、コハク酸アンモニウム、酢酸アンモニウム等が挙げられる。
<(g)透析による外水相パノビノスタットの除去>
パノビノスタットを内包した脂質粒子液は、脂質粒子に含まれなかったパノビノスタットを除去するために、透析を行ってもよい。例えば、所定濃度のスクロース/ヒスチジンバッファーを透析液として用いて、パノビノスタットを内包した脂質粒子液に対して、透析を行うことにより、外水相に存在するパノビノスタットを除去し、透析液で外水相を置換した脂質粒子組成物を得ることができる。
<無菌ろ過>
上記で得られた脂質粒子組成物は、無菌ろ過を行うことが好ましい。ろ過の方法としては、中空糸膜、逆浸透膜またはメンブレンフィルター等を用いて、脂質粒子を含む水溶液から不要な物を除去することができる。本発明では、滅菌できる孔径をもつフィルター(好ましくは0.2μmのろ過滅菌フィルター)によってろ過することが好ましい。
脂質粒子の変形による平均粒子径への影響を防ぐために、無菌ろ過工程および後述する無菌充填工程は、脂質粒子を構成する脂質の相転移温度以下で行うことが好ましい。例えば、脂質の相転移温度が50℃付近である場合、0〜40℃程度が好ましく、より具体的には5〜30℃程度で製造されることが好ましい。
<無菌充填>
無菌ろ過の後に得られた脂質粒子組成物は、医療用途として無菌充填することが好ましい。無菌充填の方法は公知のものが適用できる。容器に無菌的に充填することで医療用として好適な脂質粒子組成物が調製できる。
(医薬組成物)
本発明の脂質粒子組成物は、医薬組成物として使用することができる。即ち、本発明によれば、本発明の脂質粒子組成物を含む、医薬組成物が提供される。
本発明の医薬組成物の投与経路としては、非経口的投与が好ましい。例えば、点滴等の静脈内注射(静注)、筋肉内注射、腹腔内注射、皮下注射、眼内注射および髄腔内注射を挙げることができる。投与方法としては、シリンジまたは点滴による投与が挙げられる。
脂質粒子組成物に含まれる薬物としてのパノビノスタットまたはその塩の投与量および投与回数は、パノビノスタットまたはその塩の質量として、1日あたり、一般的には0.01mg/kg〜100mg/kgの範囲で設定することができるが、本発明の脂質粒子組成物はこれらの投与量に限定されるものではない。
本発明の医薬組成物は、好ましくは抗がん剤として使用することができる。
本発明の医薬組成物の適用対象であるがんの種類は、特に限定されないが、例えば、多発性骨髄腫、急性骨髄性白血病、慢性骨髄性白血病、急性リンパ性白血病、成人T細胞白血病、骨髄転移がん、骨肉腫、慢性骨髄単球性白血病、ホジキンリンパ腫、皮膚T細胞リンパ腫、乳がん、前立腺がん、子宮体がん、卵巣がん、肺がん、胃(胃腺)がん、非小細胞肺がん、膵臓がん、頚部扁平上皮がん、食道がん、膀胱がん、メラノーマ、大腸がん、腎細胞がん、非ホジキンリンパ腫および尿路上皮がん等が挙げられる。
以下、本発明を実施例にて詳細に説明する。しかし、本発明は実施例に限定されるものではない。
[脂質粒子組成物の作製]
<実施例1>
(a)油相の調製
1,2−diarachidonoyl−sn−glycero−3−phosphocholine(日本精化製、以下、C20PCとする)、PEGリン脂質(SUNBRIGHT DSPE−020CN、日油製、以下、DSPE−PEGとする)、コレステロールをそれぞれ0.495g、0.153g、0.153g秤量した。脂質粒子をDiI(1,1’−dioctadecyl−3,3,3’,3’−tetramethylindocarbocyanine Perchlorate)で標識するため、全脂質に対して0.2mol%となる分量のDiIを秤量し、エタノールに溶解させた。このDiIエタノール溶液にエタノールを加え、全量で11.25mLとし、さらに酢酸エチル3.75mLを加えた。秤量した脂質とこの有機溶媒を混合し、60℃に加温して脂質を溶解し油相とした。
(b)水相の調製
硫酸アンモニウム0.9gを水40gに溶解し、水相を調製した。
(c)乳化による脂質粒子形成
(b)で調製した水相を70℃に加温し、(a)で調製した油相全量を添加した後(容積比:水相/油相=8/3)、乳化機(エクセルオートホモジナイザーED−3、日本精機製作所製)にて、3000rpm(rotation per minute:1/60s-1)にて30分間混合した。つづいて、65℃で加温しながら300rpmで攪拌を続けることで有機溶媒と水を蒸発させ、液が15gまで濃縮された時点で加温と攪拌を止め、蒸発を停止した。
(d)エクストルーダーによる整粒
実施例1では整粒を実施してはいないが、下記表に記載の実施例のうち、「整粒」の欄にフィルターサイズの記載があるものは以下の要領で整粒を実施した。70℃の加温下でエクストルーダー(Mini Extruder、Avanti Polar Lipids社製)を用い、(c)で得た液をフィルターに順次通過させることで整粒した。フィルターのサイズは各表の「整粒」欄に記載のものを使用した。複数のフィルターサイズの記載のある実施例では、孔径の大きいフィルターで整粒した後、引き続き孔径の小さいフィルターで整粒した。
(e)透析による脂質粒子外水相液の置換
透析液として2.43質量%のNaCl水溶液を用いた。この透析液を用いて、(c)または(d)で得た液に対して、室温にて透析を行い、外水相に存在する硫酸アンモニウムを除去し、透析液で外水相を置換した脂質粒子を得た。
(f)リモートローディングによるパノビノスタットの脂質粒子への内包
パノビノスタット(APAC PHARMACEUTICAL, LLC製)に注射用水を加え、10mg/mLとした。さらに、液をよく攪拌しながら8mol/LのHCl溶液を添加し、pHを約3に調整してパノビノスタットを溶解させた。このパノビノスタット溶液に脂質粒子を1/1の容積比で加えた後、60℃で120分間加温した。
(g)透析による外水相パノビノスタットの除去
透析液として9.4質量%スクロース、10mmol/Lヒスチジンからなるスクロース/ヒスチジンバッファーを調製した。この透析液を用いて、(f)で得た液に対して、室温にて透析を行い、外水相に存在するパノビノスタットを除去し、透析液で外水相を置換したパノビノスタット含有脂質粒子を得た。
<実施例2>
DSPE−PEGの使用量を0.0153gとしたこと以外は実施例1と同様にして、パノビノスタット含有脂質粒子を得た。
<実施例3〜13>
下記表に記載した脂質組成とすること以外は、実施例1と同様にして、パノビノスタット含有脂質粒子を得た。下記表において、SMはSphingomyelin(COATSOME NM−10、日油製)を示し、DHSMは、Dihydrosphingomyelin(COATSOME NM−10(日油製)に対し水素添加した合成品)を示す。
<実施例14>
(a)油相の調製
Sphingomyelin(COATSOME NM−10、日油製、以下、SMとする)、PEGリン脂質(SUNBRIGHT DSPE−020CN、日油製、以下、DSPE−PEGとする)、コレステロールをそれぞれ0.420g、0.014g、0.155g秤量した。脂質粒子をDiI(1,1’−dioctadecyl−3,3,3’,3’−tetramethylindocarbocyanine Perchlorate)で標識するため、全脂質に対して0.2mol%となる分量のDiIを秤量し、エタノールに溶解させた。このDiIエタノール溶液にエタノールを加え、全量で11.25mLとし、さらに酢酸エチル3.75mLを加えた。秤量した脂質とこの有機溶媒を混合し、70℃に加温して脂質を溶解し油相とした。
(b)水相の調製
硫酸アンモニウム0.9gを水40gに溶解し、水相を調製した。
(c)乳化による脂質粒子形成
(b)で調製した水相を70℃に加温しマグネチックスターラーで攪拌し、そこに(a)で調製した油相全量を添加し30秒間攪拌した(容積比:水相/油相=8/3)。つづいて、65℃で加温しながら300rpmで攪拌を続けることで有機溶媒と水を蒸発させ、液が15gまで濃縮された時点で加温と攪拌を止め、蒸発を停止した。
(d)エクストルーダーによる整粒
70℃の加温下でエクストルーダー(Mini Extruder、Avanti Polar Lipids社製)を用い、(c)で得た液をフィルターに順次通過させることで整粒した。フィルターのサイズは各表の「整粒」欄に記載のものを使用した。複数のフィルターサイズの記載のある実施例では、孔径の大きいフィルターで整粒した後、引き続き孔径の小さいフィルターで整粒した。
(e)透析による脂質粒子外水相液の置換
透析液として720mMのNaCl水溶液を用いた。この透析液を用いて、(d)で得た液に対して、室温にて透析を行い、外水相に存在する硫酸アンモニウムを除去し、透析液で外水相を置換した脂質粒子を得た。
(f)リモートローディングによるパノビノスタットの脂質粒子への内包
パノビノスタット(APAC PHARMACEUTICAL, LLC製)に注射用水を加え、4mg/mLとした。さらに、液をよく攪拌しながら8mol/LのHCl溶液を添加し、pHを約4に調整してパノビノスタットを溶解させた。このパノビノスタット溶液と720mMのNaCl水溶液と脂質粒子を5/3/2、の容積比で混合した後、60℃で120分間加温した。
(g)透析による外水相パノビノスタットの除去
透析液として9.4質量%スクロース、10mmol/Lヒスチジンからなるスクロース/ヒスチジンバッファーを調製した。この透析液を用いて、(f)で得た液に対して、室温にて透析を行い、外水相に存在するパノビノスタットを除去し、透析液で外水相を置換したパノビノスタット含有脂質粒子を得た。
<実施例15〜25>
表2〜4に記載した脂質組成にて、実施例14と同様にしてパノビノスタット含有脂質粒子を得た。実施例25ではDiIは添加せずに脂質粒子を作製した。表2〜4において、C20PCは1,2−diarachidonoyl−sn−glycero−3−phosphocholine(日本精化製)を、HSPCは水素添加大豆ホスファチジルコリン(COATSOME NC−21、日油製)を、DPPGは1,2−Dipalmitoyl−sn−glycero−3−phosphoglycerol, sodium salt(COATSOME MG−6060LS、日油製)を、DPPAは1,2−Dimyristoyl−sn−glycero−3−phosphatidic acid, sodium salt(COATSOME MA−6060LS、日油製)を、DPPSは1,2−Dipalmitoyl−sn−glycero−3−phospho−L−serine, sodium salt(COATSOME MS−6060LS、日油製)を示す。(f)リモートローディングによるパノビノスタットの脂質粒子への内包工程において、実施例17〜25ではパノビノスタット溶液を3.6mg/mLとした。また、パノビノスタット溶液と720mMのNaCl水溶液と脂質粒子の混合比率は、実施例16では8/5/5、実施例17〜25では2/1/1とした。
実施例22のみ平均粒子径が331nmと他より大きい。これは、DLSによる粒径測定において1μm付近に凝集物のピークが観察されたことで、平均粒子径が大きく算出されたものである。実施例22はゼータ電位の絶対値が小さく粒子同士の静電相反発が小さい。また、立体反発により粒子同士の合一を妨げるDSPE−PEGのような素材も添加されていない。骨髄集積率は高いが、粒子の安定性の観点から他の実施例の方が好ましい態様であると言える。
<実施例25>
実施例25では(a)油相の調製時にはDiIを添加せず、(g)にてスクロース/ヒスチジンバッファーで透析まで行った脂質粒子に対してDiIでの染色を行った。脂質粒子液500μLに、3mg/mLのDiI/エタノール溶液5μLを混合して十分に攪拌したのち、ゲルろ過法で(PD MiniTrap G−25、GEヘルスケア製)外水相を9.4質量%スクロース、10mmol/Lヒスチジンからなるスクロース/ヒスチジンバッファーで置換し、余剰なDiIを除去した。
<比較例1>
パノビノスタットをポリオキシル35ヒマシ油(Kolliphore EL、SIGMA社製)とポリエチレングリコール400(和光純薬工業社製)の体積比1:4混合液に超音波を照射しながら溶解した。得られた溶液と生理食塩水とを体積比1:7で混合することにより、0.5mg/mLのパノビノスタット溶液を得た。
<比較例2>
実施例1における(a)〜(e)と同様の工程により脂質粒子を調製し、さらに実施例1における(g)と同様にして外水相を実施例1と同様の溶液に置換することにより、パノビノスタットを含有しない脂質粒子を得た。
<比較例3>
HSPC、コレステロールおよびDSPE−PEGをそれぞれ16.63g、2.04g、4.15gを秤量し、全脂質に対して0.2mol%となる分量のDiIとともに、エタノール303.75mL、酢酸エチル101.25mLに溶解させ油相とした。100mmol/Lリン酸二水素ナトリウム5.6g、100mmol/Lリン酸水素二ナトリウム37.6g、注射用水1037gを混合し水相とした。上記油相を水相に混合し、乳化法を用いてDiIで標識した空リポソームを作製した。0.09質量%の塩化ナトリウム水溶液を用いてTFFにて外水相を置換し、続いてパッシブローディング法にてペメトレキセドを封入した。9.4質量%スクロース、0.155質量%ヒスチジンからなるスクロース/ヒスチジンバッファーで透析を行い、ペメトレキセドを含有する脂質粒子を得た。
<比較例4>
HSPC、コレステロールおよびDSPE−PEGをそれぞれ12.42g、4.14g、4.14gを秤量し、全脂質に対して0.2mol%となる分量のDiIとともに、エタノール303.4mL、酢酸エチル101.25mLに溶解させ油相とした。硫酸アンモニウム26.73gをMilliQ水1080gに溶解し水相とした。乳化法を用いて硫酸アンモニウムを含有するDiIで標識した空リポソームを作製した。417mMの塩化ナトリウム水溶液を用いてTFFにて外水相を置換し、続いてリモートローディング法でドキソルビシン塩酸塩を封入した。9.4質量%スクロース、0.155質量%ヒスチジンからなるスクロース/ヒスチジンバッファーで透析を行い、ドキソルビシン塩酸塩を含有する脂質粒子を得た。脂質粒子の組成はドキシル注20mgの添付文書に記載の組成を参考にした(ドキソルビシン塩酸塩2mg/mL、HSPC9.58mg/mL、DSPE−PEG3.19mg/mL、コレステロール3.19mg/mL)。定量の結果、ドキソルビシン塩酸塩2.24mg/mL、HSPC11.5mg/mL、DSPE−PEG4.1mg/mL、コレステロール4.2mg/mLであった。
[物性測定および評価]
<平均粒子径>
本発明において、粒子径とは、動的光散乱法により測定されるキュムラント平均粒子径を意味する。各表に記載の実施例および比較例の平均粒子径は、オートサンプラー付き濃厚系粒径アナライザーFPAR−1000AS(大塚電子社製)により動的光散乱法で測定したキュムラント平均粒子径である。測定結果を各表に示す。
<ゼータ電位>
本発明において、ゼータ電位とは、レーザードップラー法により測定された値を意味する。各表に記載の実施例のゼータ電位は、外水相と同じ9.4質量%スクロース、10mmol/Lヒスチジンからなるスクロース/ヒスチジンバッファーで脂質粒子液を20倍に希釈し、ゼータ電位・粒径測定システム ELSZ−2(大塚電子社製)により測定した値である。測定結果を各表に示す。
<API濃度>
本発明において、各表に記載のAPI濃度とは、脂質粒子に含まれるパノビノスタット(フリー体)の量を、HPLC(高速液体クロマトグラフィー)にて測定した値である。パノビノスタットの検出には279nmの紫外光(UV)を用いた。
<脂質濃度>
本発明において、各表に記載の脂質濃度とは、脂質粒子に含まれる各脂質をHPLC(高速液体クロマトグラフィー)にて定量した各脂質の濃度の総和である。脂質の検出にはコロナ荷電化粒子検出器(Corona CAD(charged aerosol detector))を用いた。
<透過型電子顕微鏡(TEM)による観察>
実施例1の脂質粒子組成物を急速凍結し、汎用TEMを用いクライオ条件下で観察し、TEM画像を得た。得られたTEM画像を図1に示す。図1のTEM画像から、パノビノスタットの固化物が脂質粒子の表面および内部の少なくとも一部に存在していることが分かる。
<骨髄中の脂質粒子の集積率の測定>
試験にはICRマウス(雄、7週齢、なおICRはInstitute of Cancer Researchの頭文字)を用いた。蛍光色素(DiI)で標識した実施例1および3〜7で調製したパノビノスタット含有脂質粒子(薬物量として6mg/kg)を尾静脈より投与した。また、蛍光色素(DiI)で標識した実施例2および8〜13で調製したパノビノスタット含有脂質粒子(薬物量として4mg/kg)を尾静脈より投与した。また、蛍光色素(DiI)で標識した比較例2で調製したパノビノスタットを含有しない脂質粒子(脂質量として実施例1と同量)を尾静脈より投与した。また、蛍光色素(DiI)で標識した比較例3で調整したペメトレキセドを含有する脂質粒子(薬物量として1.5mg/kg)を尾静脈より投与した。また、蛍光色素(DiI)で標識した比較例4で調整したドキソルビシン塩酸塩を含有する脂質粒子(薬物量として16.7mg/kg)を尾静脈より投与した。
投与後72時間に解剖し、大腿骨骨髄を採取した。採取した骨髄について、HPLC(高速液体クロマトグラフィー)蛍光検出器を用いて投与液および組織中DiI濃度を定量し、骨髄集積率を下記式2により算出した。なお、骨髄集積率、骨髄1gあたりの、投与した脂質粒子のうち骨髄に集積した割合(% injected dose/g)(%ID/gとも表記する)で示した。測定結果を各表に示す。
式2:骨髄集積率(%ID/g)=骨髄中DiI濃度(ng/g)/(投与液中DiI濃度(ng/mL)×投与容量(mL))×100
比較例2〜4の脂質粒子組成物と比較して、本発明の実施例1〜25の脂質粒子組成物は、高い骨髄集積性を示した。
実施例3〜5および22〜24より、添加するDSPE−PEGは少ない方が骨髄への集積性が良好であった。また、実施例10〜13より、粒子径が大きいほど骨髄への集積能が良好であるが、一方で、100nm程度の小さな脂質粒子であっても、パノビノスタットを内包しない脂質粒子(空リポソーム)に比べて高い骨髄集積性が得られた。実施例14〜17からは、アニオン性脂質の添加により骨髄集積性が向上した。
パノビノスタットを内包する脂質粒子は、以降の解析に示すとおりマクロファージに認識されることで骨髄への高い集積が得られているものと推測される。上記の因子はいずれもマクロファージからの認識されやすさに影響を与えることで間接的に骨髄集積能を高めるのに寄与するものと考えられる。例えば、アニオン性脂質の添加によりゼータ電位が低下すると、マクロファージのスカベンジャーレセプターに認識されやすくなるなどの効果があり、これが骨髄集積性の向上に繋がっているものと考えられる。
<組織中のパノビノスタット濃度の測定>
ICRマウス(雄、7週齢)に実施例1、2、14および19で調製したパノビノスタット含有脂質粒子(薬物量として4mg/kg)を尾静脈より投与した。また、ICRマウス(雄、7週齢)に、比較例1で調製したパノビノスタット溶液(5mg/kg)を腹腔内に投与した。薬効試験での用量を想定し、実施例1、2、14および19で調製したパノビノスタット含有脂質粒子の投与量は単回投与での最大耐量を設定し、比較例1で調製したパノビノスタット溶液の投与量は8日間連日投与での最大耐量を設定した。
実施例1、2、14および19で調製したパノビノスタット含有脂質粒子を投与したマウスについては、投与後3、6、24、72、168時間で解剖した。比較例1で調製したパノビノスタット溶液を投与したマウスについては、投与後1、3、6、24、72時間で解剖し、血液、大腿骨骨髄および消化管(回腸下部)を採取した。血液は800×g、10分間遠心し、血漿を回収した。消化管は凍結破砕によりホモジナイズ処理を行った。採取した血漿、骨髄および消化管について、液体クロマトグラフィー/質量分析/質量分析(LC/MS/MS)を用いて、組織中パノビノスタット濃度の定量を行った。得られた組織中パノビノスタット濃度推移より薬物動態解析ソフトWinNonlin(登録商標)(Certara)を用いて単回投与後の無限時間までの組織中濃度−時間曲線下面積(AUC)を算出した。さらに組織中AUCの骨髄/消化管比を次の式1より算出した。結果を、図2および図3、並びに表5に示す。
式1:骨髄/消化管比=骨髄中パノビノスタットAUC/消化管中パノビノスタットAUC=(骨髄中濃度−時間曲線下面積)/(消化管中濃度−時間曲線下面積)
<組織中のペメトレキセド濃度の測定>
ICRマウス(雄、7週齢)に比較例3で調製したペメトレキセド含有脂質粒子(薬物量として1.5mg/kg)を尾静脈より投与した。
比較例3で調製したペメトレキセド含有脂質粒子を投与したマウスについては、投与後24、72、120、168時間で解剖し、血液、大腿骨骨髄および消化管(回腸下部)を採取した。パノビノスタットと同様に組織中ペメトレキセド濃度を定量し、AUCおよび組織中AUCの骨髄/消化管比を算出した。結果を表5に示す。
上記の結果から、比較例1で調製したパノビノスタット溶液および比較例3で調製したペメトレキセド含有脂質粒子と比較して、実施例1、2、14および19で調製したパノビノスタット含有脂質粒子は、組織中のパノビノスタットAUCについて、骨髄/消化管の比が高く、骨髄集積性が良好であることが示された。
<Molm−13同所モデルマウスを用いた薬効試験>
NOD/SCIDマウス(雄、8週齢)にシクロホスファミド(125mg/kg、腹腔内投与、2日間連日投与)およびウサギ抗アシアロGM1抗体(和光純薬工業)(0.4mg、腹腔内投与、単回投与)による免疫抑制を施した。ヒト白血病細胞株であるMolm−13細胞 3×106個を静脈内に移植し、骨髄に生着させた。移植後8日目から実施例1で調製したパノビノスタット含有脂質粒子(薬剤量として8mg/kg、尾静脈内投与、単回投与)、比較例1で調製したパノビノスタット溶液(5mg/kg、腹腔内投与、8日間連日投与)、および陰性対照として比較例2で調製したパノビノスタットを含まない脂質粒子(実施例1で調製したパノビノスタット含有脂質粒子の8mg/kgに相当する脂質量、尾静脈内投与、単回投与)を投与開始した。また、非移植群として免疫抑制および移植を実施しない群を設定した。移植後16日後(投与開始8日後)のマウスを解剖し、大腿骨骨髄を採取した。得られた骨髄を溶血バッファーで処理して赤血球を除去した後、PerCP標識抗ヒトCD45抗体、およびDAPI(4,6−diamidino−2−phenylindole)で染色した。なお、PerCPは、ペリジニンクロロフィル(Peridininchrorophyll)を示す。フローサイトメトリーを用いて、骨髄生細胞中の白血病細胞(ヒトCD45陽性、DAPI陰性細胞)の割合を測定し、Molm−13同所モデルマウスにおける白血病細胞への増殖阻害活性を比較した。測定結果を図4に示す。
図4の結果から、比較例1で調製したパノビノスタット溶液および比較例2で調製したパノビノスタットを含まない脂質粒子と比較して、実施例1で調製したパノビノスタット含有脂質粒子は、高い白血病細胞の増殖阻害活性を示し、その効果は用量に依存していることが分かった。
<骨髄中マクロファージ数および細胞中脂質粒子量の解析>
ICRマウス(雄、7週齢)にDiI標識した実施例2で調製したパノビノスタット含有脂質粒子を、薬物量として6mg/kg尾静脈より投与した。非投与、投与6時間後、投与96時間後のマウスを解剖し、大腿骨骨髄を採取した。得られた骨髄を溶血バッファーで処理して赤血球を除去した後、Alexa fluor(登録商標)647標識抗マウスF4/80抗体、FITC標識抗マウスCD11b抗体、およびDAPIで染色した。FITCは、フルオレセインイソチオシアネート (fluorescein isothiocyanate)を示す。フローサイトメトリーを用いて、骨髄生細胞中のマクロファージ(マウスF4/80陽性、マウスCD11陽性、DAPI陰性細胞)の割合を測定した。さらに、投与後96時間の試料について、細胞内のDiIの蛍光強度を指標として細胞に取り込まれた脂質粒子量を解析した。解析結果を図5に示す。図5において、Mφは、マクロファージを示す。
図5の結果から、実施例2で調製したパノビノスタット含有脂質粒子の投与後の時間の経過に伴って、骨髄中マクロファージ数は増加し、増加したマクロファージにパノビノスタット含有脂質粒子が取り込まれていることが分かった。
<骨髄中サイトカイン発現解析>
ICRマウス(雄、7週齢)に実施例2で調製したパノビノスタット含有脂質粒子(薬剤量として4mg/kg、尾静脈内投与、単回投与)および比較例1で調製したパノビノスタット溶液(5mg/kg、腹腔内投与、単回投与)を投与し、投与72時間後のマウスを解剖して大腿骨骨髄を採取した。また、陰性対照として非投与のマウスについても大腿骨骨髄を得た。骨髄重量の3倍量のPBSを添加後に300×g、5分間遠心し、上清を回収した。得られた骨髄上清についてBCA法(Bicinchoninic Acid法)によるタンパク質濃度測定を行い、各試料を8mg/mLのタンパク質濃度に希釈した。Bio−PlexマウスサイトカインGI23−PlexパネルおよびBio−Plex200システム(Bio−Rad)を用いて各試料中のサイトカイン濃度を定量した。非投与におけるサイトカイン発現量の平均値を1とした時の相対発現量変化を示した。解析結果を図6に示す。
図6において、ILはインターロイキン、G−CSFは顆粒球コロニー刺激因子を示し、GM−CSFは顆粒球単球コロニー刺激因子を示し、IFNはインターフェロンを示し、KCはケラチノサイトケモアトラクタントを示し、MCPは、Monocyte Chemotactic Proteinを示し、MIPは、Macrophage inflammatory proteinを示し、PANTESは、regulated on activetion normal T expressed and secretedを示し、TNFは腫瘍壊死因子を示す。
図6の結果から、非投与の場合と比較して、実施例2で調製したパノビノスタット含有脂質粒子または比較例1で調製したパノビノスタット溶液を投与した場合には、サイトカインの発現が増加する傾向が認められ、実施例2で調製したパノビノスタット含有脂質粒子ではサイトカイン発現がさらに増強された。骨髄にマクロファージが集積する要因としてサイトカイン発現の増加が考えられる。

Claims (17)

  1. パノビノスタットまたはその塩を含有する脂質粒子組成物であって、脂質粒子がリン脂質およびコレステロール類を含む脂質粒子組成物。
  2. パノビノスタットまたはその塩を含有する脂質粒子組成物であって、パノビノスタット量として4mg/kgの脂質粒子組成物をマウスの尾静脈に単回投与した後から無限時間までの、下記式1で表される面積比が5以上である脂質粒子組成物。
    式1: (骨髄中濃度−時間曲線下面積)/(消化管中濃度−時間曲線下面積)
  3. 脂質粒子の平均粒子径が50nm〜500nmである、請求項1または2に記載の脂質粒子組成物。
  4. リモートローディング法によりパノビノスタットまたはその塩が脂質粒子に内包されている、請求項1から3の何れか一項に記載の脂質粒子組成物。
  5. パノビノスタットまたはその塩の固化物が脂質粒子の表面および内部の少なくとも一部に存在している、請求項1から4の何れか一項に記載の脂質粒子組成物。
  6. 脂質粒子がリン脂質およびコレステロール類を含む、請求項2から5の何れか一項に記載の脂質粒子組成物。
  7. リン脂質として、グリセロール骨格を有するリン脂質を含む、請求項1から6の何れか一項に記載の脂質粒子組成物。
  8. グリセロール骨格を有するリン脂質が、ホスファチジルコリンである、請求項7に記載の脂質粒子組成物。
  9. リン脂質として、スフィンゴリン脂質を含む、請求項1から6の何れか一項に記載の脂質粒子組成物。
  10. スフィンゴリン脂質が、スフィンゴミエリンである、請求項9に記載の脂質粒子組成物。
  11. リン脂質が、炭素数20以上の脂肪酸残基を含む、請求項1から10の何れか一項に記載の脂質粒子組成物。
  12. 脂質粒子が、ポリエチレングリコール脂質をさらに含む、請求項1から11の何れか一項に記載の脂質粒子組成物。
  13. 脂質粒子を構成する全脂質におけるポリエチレングリコール脂質の比率が5モル%以下である、請求項12に記載の脂質粒子組成物。
  14. 脂質粒子が、ポリエチレングリコール脂質を実質的に含まない、請求項1から11の何れか一項に記載の脂質粒子組成物。
  15. 脂質粒子が、アニオン性脂質を含む、請求項1から14のいずれか一項に記載の脂質粒子組成物。
  16. 請求項1から15の何れか一項に記載の脂質粒子組成物を含む、医薬組成物。
  17. 抗がん剤である、請求項16に記載の医薬組成物。
JP2018559499A 2016-12-26 2017-12-26 脂質粒子組成物および医薬組成物 Pending JPWO2018124033A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016250826 2016-12-26
JP2016250826 2016-12-26
PCT/JP2017/046564 WO2018124033A1 (ja) 2016-12-26 2017-12-26 脂質粒子組成物および医薬組成物

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021018160A Division JP2021073301A (ja) 2016-12-26 2021-02-08 脂質粒子組成物および医薬組成物

Publications (1)

Publication Number Publication Date
JPWO2018124033A1 true JPWO2018124033A1 (ja) 2019-11-14

Family

ID=62709478

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2018559499A Pending JPWO2018124033A1 (ja) 2016-12-26 2017-12-26 脂質粒子組成物および医薬組成物
JP2021018160A Pending JP2021073301A (ja) 2016-12-26 2021-02-08 脂質粒子組成物および医薬組成物
JP2022051129A Active JP7343643B2 (ja) 2016-12-26 2022-03-28 脂質粒子組成物および医薬組成物
JP2023121194A Pending JP2023139213A (ja) 2016-12-26 2023-07-26 脂質粒子組成物および医薬組成物

Family Applications After (3)

Application Number Title Priority Date Filing Date
JP2021018160A Pending JP2021073301A (ja) 2016-12-26 2021-02-08 脂質粒子組成物および医薬組成物
JP2022051129A Active JP7343643B2 (ja) 2016-12-26 2022-03-28 脂質粒子組成物および医薬組成物
JP2023121194A Pending JP2023139213A (ja) 2016-12-26 2023-07-26 脂質粒子組成物および医薬組成物

Country Status (6)

Country Link
US (1) US11154534B2 (ja)
EP (1) EP3560492B1 (ja)
JP (4) JPWO2018124033A1 (ja)
CN (1) CN110114068A (ja)
ES (1) ES2968358T3 (ja)
WO (1) WO2018124033A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014121211A2 (en) * 2013-02-01 2014-08-07 Zoneone Pharma, Inc. Remote loading of sparingly water-soluble drugs into liposomes
JP2019513139A (ja) * 2016-03-31 2019-05-23 ミダテク リミテッド シクロデキストリン−パノビノスタット付加物

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2383259A1 (en) * 2002-04-23 2003-10-23 Celator Technologies Inc. Synergistic compositions
WO2013155487A1 (en) * 2012-04-12 2013-10-17 Yale University Vehicles for controlled delivery of different pharmaceutical agents
WO2014015027A1 (en) * 2012-07-18 2014-01-23 Onyx Therapeutics, Inc. Liposomal compositions of epoxyketone-based proteasome inhibitors
EP3177269A4 (en) * 2014-08-04 2018-02-28 Zoneone Pharma, Inc. Remote loading of sparingly water-soluble drugs into lipid vesicles
US10493030B2 (en) * 2015-05-22 2019-12-03 Aphios Corporation Combination HIV therapeutic
CN105457038A (zh) * 2015-11-09 2016-04-06 东南大学 一种速释型药物磷脂化合物及其药物组合物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014121211A2 (en) * 2013-02-01 2014-08-07 Zoneone Pharma, Inc. Remote loading of sparingly water-soluble drugs into liposomes
US20160324780A1 (en) * 2013-02-01 2016-11-10 Zoneone Pharma, Inc. Remote loading of sparingly water-soluble drugs into liposomes
JP2019513139A (ja) * 2016-03-31 2019-05-23 ミダテク リミテッド シクロデキストリン−パノビノスタット付加物

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BIOMATERIALS, vol. 28, JPN6020042515, 2007, pages 2655 - 2666, ISSN: 0004383763 *
EXPERT OPIN DRUG DELIV, vol. 8, no. 3, JPN6020042517, 2011, pages 317 - 328, ISSN: 0004383764 *
KALUSHKOVA, A, ET AL.: "Polycomb target genes are silenced in multiple myeloma", PLOS ONE, vol. [検索日 2018.01.30], Vol. 5, No. 7, JPN6018003884, 2010, pages 1 - 12, ISSN: 0004255921 *
深谷菜月 ほか: "ヒストン脱アセチル化酵素阻害剤封入リポソームの開発とがん治療への応用", 日本薬学会第136年会要旨集4, JPN6018003878, 5 March 2016 (2016-03-05), pages 68 - 28, ISSN: 0004383762 *
添付文書「ファリーダック(R)カプセル」, vol. 第1版, JPN6018003882, 2015, pages 1 - 8, ISSN: 0004255920 *

Also Published As

Publication number Publication date
EP3560492A4 (en) 2020-06-17
JP7343643B2 (ja) 2023-09-12
CN110114068A (zh) 2019-08-09
US11154534B2 (en) 2021-10-26
US20190314335A1 (en) 2019-10-17
JP2022088508A (ja) 2022-06-14
EP3560492A1 (en) 2019-10-30
EP3560492B1 (en) 2023-11-29
JP2021073301A (ja) 2021-05-13
JP2023139213A (ja) 2023-10-03
WO2018124033A1 (ja) 2018-07-05
EP3560492C0 (en) 2023-11-29
ES2968358T3 (es) 2024-05-09

Similar Documents

Publication Publication Date Title
RU2734900C1 (ru) Липосомальная композиция и фармацевтическая композиция
WO2017078008A1 (ja) ゲムシタビンリポソーム組成物を含む腫瘍治療剤およびキット
US11684575B2 (en) Liposome composition and method for producing same
JP6263609B2 (ja) リポソーム組成物及びその製造方法
JP6276847B2 (ja) リポソーム組成物及びその製造方法
JP6705933B2 (ja) リポソーム組成物およびその製造方法
JP7343643B2 (ja) 脂質粒子組成物および医薬組成物
JP2020079303A (ja) リポソーム及びリポソーム組成物

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200624

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201110