JPWO2018105338A1 - Binder composition for power storage element, slurry composition for power storage element, electrode, electrode manufacturing method, secondary battery, and electric double layer capacitor - Google Patents

Binder composition for power storage element, slurry composition for power storage element, electrode, electrode manufacturing method, secondary battery, and electric double layer capacitor Download PDF

Info

Publication number
JPWO2018105338A1
JPWO2018105338A1 JP2017559885A JP2017559885A JPWO2018105338A1 JP WO2018105338 A1 JPWO2018105338 A1 JP WO2018105338A1 JP 2017559885 A JP2017559885 A JP 2017559885A JP 2017559885 A JP2017559885 A JP 2017559885A JP WO2018105338 A1 JPWO2018105338 A1 JP WO2018105338A1
Authority
JP
Japan
Prior art keywords
general formula
mol
group
binder composition
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017559885A
Other languages
Japanese (ja)
Inventor
奈津子 茶山
智之 弓場
祐真 杉崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JPWO2018105338A1 publication Critical patent/JPWO2018105338A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/06Ethers; Acetals; Ketals; Ortho-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

【課題】本発明は、電極の熱処理の低温化と高い容量維持率を両立する蓄電素子用バインダー組成物を提供することを目的とする。【解決手段】本発明は、含窒素芳香族樹脂、アルコキシメチル基および/またはメチロール基を有する熱架橋剤を含有する蓄電素子用バインダー組成物である。【選択図】なしAn object of the present invention is to provide a binder composition for an electricity storage device that achieves both a low temperature heat treatment of an electrode and a high capacity retention rate. The present invention is a binder composition for an electricity storage element containing a nitrogen-containing aromatic resin, a thermal crosslinking agent having an alkoxymethyl group and / or a methylol group. [Selection figure] None

Description

本発明は、蓄電素子用バインダー組成物に関する。さらに詳しくは、高容量・高出力蓄電素子に好ましく適用できる蓄電素子用バインダー組成物に関する。   The present invention relates to a binder composition for an electricity storage device. More specifically, the present invention relates to a binder composition for a storage element that can be preferably applied to a high-capacity, high-output storage element.

リチウムイオン電池は、充電可能な高容量電池として、電子機器の高機能化、長時間動作を可能にした。さらに自動車などに搭載され、ハイブリッド車、電気自動車の電池として有力視されている。現在広く使われているリチウムイオン電池は、コバルト酸リチウムなどの活物質とポリフッ化ビニリデン(PVDF)などのバインダーを含むペーストスラリーをアルミ箔上に塗布して形成される正極と、炭素系の活物質とPVDFやスチレン・ブタジエン・ゴム(SBR)などのバインダーを含むペーストスラリーを銅箔上に塗布して形成される負極を有する。   Lithium-ion batteries are rechargeable high-capacity batteries that enable electronic devices to function and operate for a long time. Furthermore, it is mounted on automobiles and is regarded as a promising battery for hybrid and electric vehicles. Currently, lithium ion batteries widely used include a positive electrode formed by applying a paste slurry containing an active material such as lithium cobaltate and a binder such as polyvinylidene fluoride (PVDF) on an aluminum foil, and a carbon-based active battery. It has a negative electrode formed by applying a paste slurry containing a substance and a binder such as PVDF or styrene-butadiene rubber (SBR) on a copper foil.

リチウムイオン電池の容量をさらに大きくするために、負極活物質としてケイ素、ゲルマニウムまたはスズのような高容量負極活物質を用いることが検討されている(例えば、特許文献1参照)。これらの高容量負極活物質は、リチウムイオンを大量に受け取ることができるために、十分に充電が行われた時と十分に放電が行われた時の体積の変化が大きく、PVDF、SBRなどのバインダーでは活物質の体積変化に追従できず、より機械特性の優れた含窒素芳香族樹脂であるポリイミド樹脂を負極のバインダーとしてする検討がなされている(例えば特許文献2参照)。ポリイミド樹脂は、溶剤可溶性が低いため、通常前駆体のポリアミド酸の状態でN−メチルピロリドンやN,N’−ジメチルアセトアミドなどの有機溶剤に溶解させたものを熱処理して用いている。しかし、バインダーがケイ素、ゲルマニウム、スズなどの活物質を使用した時でも十分な結着性を発揮するには、250℃以上の高温の熱処理を必要とするため、従来のPVDFやSBRバインダーを使用した既存設備では対応できないという問題があった。   In order to further increase the capacity of a lithium ion battery, it has been studied to use a high-capacity negative electrode active material such as silicon, germanium, or tin as the negative electrode active material (see, for example, Patent Document 1). Since these high-capacity negative electrode active materials can receive a large amount of lithium ions, the volume changes greatly when fully charged and fully discharged, such as PVDF and SBR. Binders cannot follow the volume change of the active material, and studies have been made to use a polyimide resin, which is a nitrogen-containing aromatic resin having more excellent mechanical properties, as a binder for the negative electrode (see, for example, Patent Document 2). Since the polyimide resin has low solvent solubility, it is usually used after being heat-treated in a precursor polyamic acid dissolved in an organic solvent such as N-methylpyrrolidone or N, N′-dimethylacetamide. However, even when an active material such as silicon, germanium, or tin is used as the binder, a high-temperature heat treatment of 250 ° C. or higher is required in order to exhibit sufficient binding properties, so conventional PVDF and SBR binders are used. However, there was a problem that the existing equipment could not cope.

このため、同じく含窒素芳香族樹脂であるポリアミドイミド樹脂やポリアミド樹脂をバインダーとして適用する検討がおこなわれている(例えば、特許文献3、4参照)。   For this reason, examination which applies the polyamide imide resin and polyamide resin which are nitrogen-containing aromatic resins similarly as a binder is performed (for example, refer patent document 3, 4).

特開2009−199761号公報JP 2009-199761 A 特開2012−109142号公報JP 2012-109142 A 特開2011−48969号公報JP 2011-48969 A 特開平10−302772号公報Japanese Patent Application Laid-Open No. 10-302772

しかし、ポリアミドイミド樹脂やポリアミド樹脂は溶剤可溶性を付与するために骨格に柔軟性の高い官能基や極性溶媒と溶媒和しやすい官能基を導入せざるを得ず、このために電解液での膨潤や溶解の程度が大きい。さらに電解液中に、エチレンカーボネートやプロピレンカーボネートといった環状カーボネートが高い比率で使用されている場合や、N−メチルピロリドン等の含窒素極性溶媒、ジメチルスルホキシド等の含硫黄極性溶媒、GBLなどのラクトンなどが含まれていたりする場合、バインダー樹脂は電解液中に溶出する。その結果、バインダー樹脂の結着力が低下し、電池の容量維持率が下がるという課題がある。   However, polyamideimide resin and polyamide resin have to introduce a functional group with high flexibility and a functional group that easily solvates with a polar solvent in order to impart solvent solubility. And the degree of dissolution is large. Furthermore, when a high proportion of cyclic carbonates such as ethylene carbonate and propylene carbonate are used in the electrolyte, nitrogen-containing polar solvents such as N-methylpyrrolidone, sulfur-containing polar solvents such as dimethyl sulfoxide, lactones such as GBL, etc. If it is contained, the binder resin is eluted in the electrolytic solution. As a result, there is a problem that the binding force of the binder resin is reduced and the capacity retention rate of the battery is reduced.

本発明は、上記課題に鑑み、溶剤に可溶な含窒素芳香族樹脂を用いた場合でも高い容量維持率を発揮する蓄電素子用バインダー組成物を提供することを目的とする。   An object of this invention is to provide the binder composition for electrical storage elements which exhibits a high capacity | capacitance maintenance factor, when a nitrogen-containing aromatic resin soluble in a solvent is used in view of the said subject.

本発明は、含窒素芳香族樹脂、アルコキシメチル基および/またはメチロール基を有する熱架橋剤を含有する蓄電素子用バインダー組成物である。   This invention is a binder composition for electrical storage elements containing the nitrogen-containing aromatic resin, the thermal crosslinking agent which has an alkoxymethyl group and / or a methylol group.

本発明は、本発明の蓄電素子用バインダー組成物およびリチウムイオンを吸蔵および放出可能な物質を含有する蓄電素子用スラリー組成物である。   This invention is the slurry composition for electrical storage elements containing the binder composition for electrical storage elements of this invention, and the substance which can occlude and discharge | release lithium ion.

本発明は、支持基板の少なくとも片面に、本発明の蓄電素子用スラリー組成物が製膜されてなる層またはその熱架橋反応物を有する電極である。   The present invention is an electrode having a layer in which the slurry composition for an electricity storage element of the present invention is formed on at least one surface of a support substrate or a thermal crosslinking reaction product thereof.

本発明は、支持基板の少なくとも片面に、本発明の蓄電素子用スラリー組成物を塗布して塗布膜を形成する工程および前記塗布膜を乾燥する工程を含む電極の製造方法である。   This invention is a manufacturing method of an electrode including the process of apply | coating the slurry composition for electrical storage elements of this invention to the at least single side | surface of a support substrate, forming a coating film, and the process of drying the said coating film.

本発明は、本発明の電極を有する二次電池である。   The present invention is a secondary battery having the electrode of the present invention.

本発明は、本発明の電極を有する電気二重層キャパシタである。   The present invention is an electric double layer capacitor having the electrode of the present invention.

本発明により、溶剤に可溶な含窒素芳香族樹脂を用いた場合でも高い容量維持率を発揮する蓄電素子用バインダー組成物を得ることができる。   According to the present invention, a binder composition for an electricity storage device that exhibits a high capacity retention rate even when a nitrogen-containing aromatic resin soluble in a solvent is used can be obtained.

本発明は、含窒素芳香族樹脂、アルコキシメチル基および/またはメチロール基を有する熱架橋剤を含有する蓄電素子用バインダー組成物である。   This invention is a binder composition for electrical storage elements containing the nitrogen-containing aromatic resin, the thermal crosslinking agent which has an alkoxymethyl group and / or a methylol group.

含窒素芳香族樹脂を熱架橋剤で架橋することにより、ポリマー鎖が三次元的な構造を取るため、電解液で適度に膨潤し、機械強度も向上するため、高い容量維持率を達成できる。   By crosslinking the nitrogen-containing aromatic resin with a thermal crosslinking agent, the polymer chain takes a three-dimensional structure, so that it is appropriately swollen with the electrolytic solution and the mechanical strength is also improved, so that a high capacity retention rate can be achieved.

含窒素芳香族樹脂としては、主鎖中に芳香環と窒素原子を含む樹脂として、含窒素芳香環である場合も含み、例えば、ポリイミド、ポリアミドイミド、ポリアミド、ベンゾオキサジン樹脂、ポリアゾメチン、ポリベンゾオキサゾール、ポリベンゾイミダゾール、ポリベンゾチアゾール、ポリウレア、メラミン樹脂、などが挙げられる。   The nitrogen-containing aromatic resin includes a resin containing an aromatic ring and a nitrogen atom in the main chain, and also includes a nitrogen-containing aromatic ring. For example, polyimide, polyamideimide, polyamide, benzoxazine resin, polyazomethine, polybenzo Examples thereof include oxazole, polybenzimidazole, polybenzothiazole, polyurea, and melamine resin.

中でも、下記一般式(1)で表される繰り返し単位および/または下記一般式(2)で表される繰り返し単位を有する含窒素芳香族樹脂が、樹脂単体での機械強度が高く、活物質の体積膨張を効率的に抑制できるため好ましい。特に、該含窒素芳香族樹脂中に占める一般式(1)で表される繰り返し単位および下記一般式(2)で表される繰り返し単位の合計の含有比率が50モル%以上であることが、容量維持率を一層高めることができるので、好ましい。   Among these, a nitrogen-containing aromatic resin having a repeating unit represented by the following general formula (1) and / or a repeating unit represented by the following general formula (2) has high mechanical strength as a single resin, This is preferable because volume expansion can be efficiently suppressed. In particular, the total content ratio of the repeating unit represented by the general formula (1) and the repeating unit represented by the following general formula (2) in the nitrogen-containing aromatic resin is 50 mol% or more. This is preferable because the capacity retention rate can be further increased.

Figure 2018105338
Figure 2018105338

(Rは炭素数2〜50の2価の有機基を示し、Rは炭素数6〜50の4価の芳香族有機基を示す。)(R 1 represents a divalent organic group having 2 to 50 carbon atoms, and R 2 represents a tetravalent aromatic organic group having 6 to 50 carbon atoms.)

Figure 2018105338
Figure 2018105338

(Rは炭素数2〜50の2価の有機基を示し、Rは炭素数6〜50の3価の芳香族有機基を示す。)
上記一般式(1)および上記一般式(2)で表される樹脂は、公知の重合法で製造することが可能であるが、例えば、種々のジアミンまたはイソシアネート単独あるいはそれらの複数種の混合物とテトラカルボン酸またはトリカルボン酸の誘導体を重縮合することにより得られる。
(R 3 represents a divalent organic group having 2 to 50 carbon atoms, and R 4 represents a trivalent aromatic organic group having 6 to 50 carbon atoms.)
The resin represented by the general formula (1) and the general formula (2) can be produced by a known polymerization method. For example, various diamines or isocyanates alone or a mixture of a plurality of them can be used. It can be obtained by polycondensation of a tetracarboxylic acid or tricarboxylic acid derivative.

前記一般式(1)におけるRおよび前記一般式(2)におけるRの何れかまたは両方がその構造中にフェノール性水酸基および/またはカルボキシル基を有するジアミンを用いると、架橋密度を上げることができ、電解液への膨潤や溶出を効果的に抑制できるため好ましい。フェノール性水酸基を有するジアミンとしては、2,2−ビス(4−アミノ−3−ヒドロキシフェニル)プロパン、2,2−ビス(3−アミノ−4−ヒドロキシフェニル)プロパン、2,2−ビス(4−アミノ−3−ヒドロキシフェニル)ヘキサフルオロプロパン、2,2−ビス(3−アミノ−4−ヒドロキシフェニル)ヘキサフルオロプロパン、3,3’−ジヒドロキシベンジジン、ビス(3−アミノ−4−ヒドロキシフェニル)スルホン、ビス(3−アミノ−4−ヒドロキシフェニル)エーテル、9,9−ビス(3−アミノ−4−ヒドロキシフェニル)フルオレン、1,5−ジアミノ−4,8−ジヒドロキシアントラキノンなどが挙げられるが、これらに限定されない。カルボキシル基を有するジアミンとしては、3,5−ジアミノ安息香酸、3,4−ジアミノ安息香酸、5,5’−メチレンビス(2−アミノ安息香酸)などが挙げられるが、これらに限定されない。これらはそれぞれ1種類を用いても、複数種を組み合わせて用いても構わない。When either or both of R 1 in the general formula (1) and R 3 in the general formula (2) use a diamine having a phenolic hydroxyl group and / or a carboxyl group in the structure, the crosslinking density may be increased. It is preferable because swelling and elution into the electrolyte can be effectively suppressed. Examples of the diamine having a phenolic hydroxyl group include 2,2-bis (4-amino-3-hydroxyphenyl) propane, 2,2-bis (3-amino-4-hydroxyphenyl) propane, and 2,2-bis (4 -Amino-3-hydroxyphenyl) hexafluoropropane, 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane, 3,3'-dihydroxybenzidine, bis (3-amino-4-hydroxyphenyl) Sulfone, bis (3-amino-4-hydroxyphenyl) ether, 9,9-bis (3-amino-4-hydroxyphenyl) fluorene, 1,5-diamino-4,8-dihydroxyanthraquinone, etc. It is not limited to these. Examples of the diamine having a carboxyl group include, but are not limited to, 3,5-diaminobenzoic acid, 3,4-diaminobenzoic acid, and 5,5′-methylenebis (2-aminobenzoic acid). Each of these may be used alone or in combination.

また、前記含窒素芳香族樹脂において、一般式(1)におけるRおよび一般式(2)におけるRの合計を100モル%としたとき、下記一般式(3)で表される構造が20モル%以上、好ましく50モル%以上、含まれていることで、樹脂単体としての強度をより高めることができる。In the nitrogen-containing aromatic resin, when the total of R 1 in the general formula (1) and R 3 in the general formula (2) is 100 mol%, the structure represented by the following general formula (3) is 20 By containing at least mol%, preferably at least 50 mol%, the strength of the resin alone can be further increased.

Figure 2018105338
Figure 2018105338

(Rはヒドロキシ基、メルカプト基または炭素数1〜6の有機基を示す。pは0〜4の整数を示す。Rはそれぞれ同一でも異なっていても良い。)
一般式(3)で表される構造を与えるジアミンまたはジイソシアネートとしては、例えば2,2−ビス(トリフルオロメチル)ベンジジン、3,3’−ジヒドロキシベンジジン、3,3’,5,5’−テトラメチルベンジジン、o−トリジン、m−トリジン、4,4’−ジイソシアナト−3,3’−ジメチルビフェニルなどが挙げられるが、これらに限定されない。これらは単独で、または複数種を用いることができる。
(R 5 represents a hydroxy group, a mercapto group, or an organic group having 1 to 6 carbon atoms. P represents an integer of 0 to 4. R 5 may be the same or different.)
Examples of the diamine or diisocyanate giving the structure represented by the general formula (3) include 2,2-bis (trifluoromethyl) benzidine, 3,3′-dihydroxybenzidine, 3,3 ′, 5,5′-tetra. Examples include, but are not limited to, methylbenzidine, o-tolidine, m-tolidine, 4,4′-diisocyanato-3,3′-dimethylbiphenyl, and the like. These may be used alone or in combination of two or more.

また、前記含窒素芳香族樹脂において、一般式(1)におけるRおよび一般式(2)におけるRの合計を100モル%としたとき、下記一般式(4)で表される構造が20モル%以上、好ましく50モル%以上、含まれることで、電極ペーストの基材への密着性を高めることができる。In the nitrogen-containing aromatic resin, when the total of R 1 in the general formula (1) and R 3 in the general formula (2) is 100 mol%, the structure represented by the following general formula (4) is 20 By including the mol% or more, preferably 50 mol% or more, the adhesion of the electrode paste to the substrate can be enhanced.

Figure 2018105338
Figure 2018105338

(Rはヒドロキシ基、メルカプト基または炭素数1〜6の有機基を示し、Xはカルボニル基、メチレン基、イソプロピル基、6フッ化イソプロピル基、エーテル結合のいずれかを示す。qは0〜4の整数を示す。Rはそれぞれ同一でも異なっていても良い。)
上記一般式(4)で表される構造を与えるジアミンまたはジイソシアネートとしては、例えば4,4’−ジアミノベンゾフェノン、3,3’−ジアミノベンゾフェノン、4,4’−ジアミノジフェニルメタン、3,3’−ジアミノジフェニルメタン、4,4’−ジアミノ−3,3’−ジメチルジフェニルメタン、3,3’−ジアミノ−4,4’−ジメチルジフェニルメタン、4,4’−メチレンビス(2−エチル−6−メチルアニリン)、4,4’−メチレンビス(2,6−ジメチルアニリン)、4,4’−メチレンビス(2,6−ジエチルアニリン)、2,2−ビス(4−アミノフェニル)プロパン、2,2−ビス(3−アミノ−4−ヒドロキシフェニル)プロパン、2,2−ビス(3−アミノ−4−メチルフェニル)プロパン、2,2−ビス(4−アミノフェニル)ヘキサフルオロプロパン、2,2−ビス(3−アミノ−4−ヒドロキシフェニル)ヘキサフルオロプロパン、2,2−ビス(3−アミノ−4−メチルフェニル)ヘキサフルオロプロパン、4,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルエーテル、ビス(4−イソシアナトフェニル)メタン、ビス(3−イソシアナトフェニル)メタンなどが挙げられるが、これらに限定されない。これらは一種を用いても、または複数種を用いても良い。
(R 6 represents a hydroxy group, a mercapto group, or an organic group having 1 to 6 carbon atoms, X represents any one of a carbonyl group, a methylene group, an isopropyl group, an isopropyl hexafluoride group, and an ether bond. Represents an integer of 4. R 6 may be the same or different.
Examples of the diamine or diisocyanate that gives the structure represented by the general formula (4) include 4,4′-diaminobenzophenone, 3,3′-diaminobenzophenone, 4,4′-diaminodiphenylmethane, and 3,3′-diamino. Diphenylmethane, 4,4′-diamino-3,3′-dimethyldiphenylmethane, 3,3′-diamino-4,4′-dimethyldiphenylmethane, 4,4′-methylenebis (2-ethyl-6-methylaniline), 4 , 4′-methylenebis (2,6-dimethylaniline), 4,4′-methylenebis (2,6-diethylaniline), 2,2-bis (4-aminophenyl) propane, 2,2-bis (3- Amino-4-hydroxyphenyl) propane, 2,2-bis (3-amino-4-methylphenyl) propane, 2,2-bis (4-amino) Phenyl) hexafluoropropane, 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane, 2,2-bis (3-amino-4-methylphenyl) hexafluoropropane, 4,4′-diamino Examples include, but are not limited to, diphenyl ether, 3,3′-diaminodiphenyl ether, bis (4-isocyanatophenyl) methane, bis (3-isocyanatophenyl) methane, and the like. One of these may be used, or a plurality of these may be used.

テトラカルボン酸の例としては、ピロメリット酸、3,3’,4,4’−ビフェニルテトラカルボン酸、2,3,3’,4’−ビフェニルテトラカルボン酸、2,2’,3,3’−ビフェニルテトラカルボン酸、3,3’,4,4’−ベンゾフェノンテトラカルボン酸、2,2’,3,3’−ベンゾフェノンテトラカルボン酸、2,2−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン、2,2−ビス(2,3−ジカルボキシフェニル)ヘキサフルオロプロパン、1,1−ビス(3,4−ジカルボキシフェニル)エタン、1,1−ビス(2,3−ジカルボキシフェニル)エタン、ビス(3,4−ジカルボキシフェニル)メタン、ビス(2,3−ジカルボキシフェニル)メタン、ビス(3,4−ジカルボキシフェニル)スルホン、ビス(3,4−ジカルボキシフェニル)エーテル、1,2,5,6−ナフタレンテトラカルボン酸、2,3,6,7−ナフタレンテトラカルボン酸、2,3,5,6−ピリジンテトラカルボン酸、3,4,9,10−ペリレンテトラカルボン酸などの芳香族テトラカルボン酸や、シクロブタンテトラカルボン酸、1,2,3,4−シクロペンタンテトラカルボン酸、シクロヘキサンテトラカルボン酸、ビシクロ[2.2.1.]ヘプタンテトラカルボン酸、ビシクロ[3.3.1.]テトラカルボン酸、ビシクロ[3.1.1.]ヘプト−2−エンテトラカルボン酸、ビシクロ[2.2.2.]オクタンテトラカルボン酸、アダマタンテトラカルボン酸などの脂肪族テトラカルボン酸などを挙げることができるが、これらに限定されない。   Examples of tetracarboxylic acids include pyromellitic acid, 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 2,3,3 ′, 4′-biphenyltetracarboxylic acid, 2,2 ′, 3,3 '-Biphenyltetracarboxylic acid, 3,3', 4,4'-benzophenonetetracarboxylic acid, 2,2 ', 3,3'-benzophenonetetracarboxylic acid, 2,2-bis (3,4-dicarboxyphenyl) ) Hexafluoropropane, 2,2-bis (2,3-dicarboxyphenyl) hexafluoropropane, 1,1-bis (3,4-dicarboxyphenyl) ethane, 1,1-bis (2,3-di Carboxyphenyl) ethane, bis (3,4-dicarboxyphenyl) methane, bis (2,3-dicarboxyphenyl) methane, bis (3,4-dicarboxyphenyl) sulfone Bis (3,4-dicarboxyphenyl) ether, 1,2,5,6-naphthalenetetracarboxylic acid, 2,3,6,7-naphthalenetetracarboxylic acid, 2,3,5,6-pyridinetetracarboxylic acid Aromatic tetracarboxylic acid such as 3,4,9,10-perylenetetracarboxylic acid, cyclobutanetetracarboxylic acid, 1,2,3,4-cyclopentanetetracarboxylic acid, cyclohexanetetracarboxylic acid, bicyclo [2. 2.1. ] Heptanetetracarboxylic acid, bicyclo [3.3.1. ] Tetracarboxylic acid, bicyclo [3.1.1. ] Hept-2-enetetracarboxylic acid, bicyclo [2.2.2. Examples thereof include aliphatic tetracarboxylic acids such as octanetetracarboxylic acid and adamantanetetracarboxylic acid, but are not limited thereto.

トリカルボン酸の例としては、トリメリット酸、3,3’,4−トリカルボキシビフェニル、3,4,4’−トリカルボキシビフェニル、3,3’,4−トリカルボキシビフェニルエーテル、3,4,4’−トリカルボキシビフェニルエーテルなどを挙げることができる。   Examples of tricarboxylic acids include trimellitic acid, 3,3 ′, 4-tricarboxybiphenyl, 3,4,4′-tricarboxybiphenyl, 3,3 ′, 4-tricarboxybiphenyl ether, 3,4,4 And '-tricarboxybiphenyl ether.

トリカルボン酸およびテトラカルボン酸は、それぞれ一種を用いても複数種を用いても良い。   Each of the tricarboxylic acid and tetracarboxylic acid may be used alone or in combination.

含窒素芳香族樹脂の合成をするとき、通常の重縮合反応と同様に、ジアミンとトリカルボン酸またはテトラカルボン酸の仕込み比率(モル比)が1:1に近いほど、生成する重合体の重合度は大きくなり、重量平均分子量が増加する。本発明においては、重量平均分子量10,000以上150,000以下であることが好ましい。重量平均分子量は、GPC(ゲルパーミエーションクロマトグラフィー)によるポリスチレン換算で10,000以上とすることにより、バインダーとして十分な結着性を持たせることができる。一方、重量平均分子量を150,000以下とすることにより、溶媒への高い溶解性を維持できる。上記の重量平均分子量を持つ重合体を得るには、ジアミンとジカルボン酸の仕込み比率(モル比)は、100:50〜150であることが好ましい。   When synthesizing a nitrogen-containing aromatic resin, the degree of polymerization of the polymer to be produced increases as the charge ratio (molar ratio) of diamine to tricarboxylic acid or tetracarboxylic acid is close to 1: 1, as in a normal polycondensation reaction. Increases and the weight average molecular weight increases. In the present invention, the weight average molecular weight is preferably 10,000 or more and 150,000 or less. By setting the weight average molecular weight to 10,000 or more in terms of polystyrene by GPC (gel permeation chromatography), sufficient binding properties as a binder can be provided. On the other hand, by setting the weight average molecular weight to 150,000 or less, high solubility in a solvent can be maintained. In order to obtain a polymer having the above weight average molecular weight, it is preferable that the charging ratio (molar ratio) of diamine and dicarboxylic acid is 100: 50 to 150.

上記重縮合反応に用いられる溶媒としては、生成した樹脂が溶解するものであれば特に限定されるものではないが、N−メチル−2−ピロリドン、N−メチルカプロラクタム、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、ジメチルスルホキシド、γ−ブチロラクトン、ジメチルイミダゾリン等の非プロトン性極性溶媒、フェノール、m−クレゾール、クロロフェノール、ニトロフェノールなどのフェノール系溶媒、ポリリン酸、リン酸に5酸化リンを加えたリン系溶媒などを好ましく用いることができる。   The solvent used in the polycondensation reaction is not particularly limited as long as the produced resin can be dissolved, but N-methyl-2-pyrrolidone, N-methylcaprolactam, N, N-dimethylacetamide, Aprotic polar solvents such as N, N-dimethylformamide, dimethyl sulfoxide, γ-butyrolactone, dimethylimidazoline, phenolic solvents such as phenol, m-cresol, chlorophenol, nitrophenol, polyphosphoric acid, phosphoric pentoxide A phosphorus solvent to which is added can be preferably used.

一般には、これらの溶媒中で無水トリカルボン酸の酸塩化物または活性エステル、テトラカルボン酸二無水物とジアミンと反応させることにより重合体を得る。閉環反応によってイミド構造を生成させるには、150〜220℃の温度で副生成物の水を留去しながら撹拌するか、または酸無水物などの脱水剤と触媒として3級アミンを加えて撹拌させる。脱水剤と触媒を用いた場合は、その後、水などに投入して樹脂を析出させ、乾燥させることで重合体を固体として得ることができる。   Generally, a polymer is obtained by reacting acid chloride or active ester of tricarboxylic anhydride, tetracarboxylic dianhydride and diamine in these solvents. In order to generate an imide structure by a ring-closing reaction, stirring is performed while distilling off by-product water at a temperature of 150 to 220 ° C., or stirring is performed by adding a tertiary amine as a dehydrating agent such as an acid anhydride and a catalyst. Let When a dehydrating agent and a catalyst are used, the polymer can be obtained as a solid by adding it to water or the like to precipitate a resin and drying it.

あるいは、ジイソシアネートと無水トリカルボン酸、ジイソシアネートとテトラカルボン酸二無水物を反応させることでも同様に重合体を得ることができる。   Alternatively, the polymer can be similarly obtained by reacting diisocyanate with tricarboxylic anhydride or diisocyanate with tetracarboxylic dianhydride.

本発明に用いる、アルコキシメチル基および/またはメチロール基を有する熱架橋剤は、一分子中にアルコキシメチル基とメチロール基の合計数として好ましく2個以上有している。含窒素芳香族樹脂との相溶性の観点から、アルコキシメチル基および/またはメチロール基を有する熱架橋剤は、重合体ではなく、低分子化合物が好ましい。本発明の蓄電素子用バインダー組成物は熱架橋剤を一種含有するものであっても2種以上を含有するものであっても良い。   The thermal crosslinking agent having an alkoxymethyl group and / or a methylol group used in the present invention preferably has two or more as the total number of alkoxymethyl groups and methylol groups in one molecule. From the viewpoint of compatibility with the nitrogen-containing aromatic resin, the thermal crosslinking agent having an alkoxymethyl group and / or a methylol group is preferably not a polymer but a low molecular compound. The binder composition for an electricity storage element of the present invention may contain one kind of thermal crosslinking agent or may contain two or more kinds.

具体例としては、例えば、DML−PC、DML−PEP、DML−OC、DML−OEP、DML−34X、DML−PTBP、DML−PCHP、DML−OCHP、DML−PFP、DML−PSBP、DML−POP、DML−MBOC、DML−MBPC、DML−MTrisPC、DML−BisOC−Z、DML−BisOCHP−Z、DML−BPC、DML−BisOC−P、DMOM−PC、DMOM−PTBP、DMOM−MBPC、TriML−P、TriML−35XL、TML−HQ、TML−BP、TML−pp−BPF、TML−BPE、TML−BPA、TML−BPAF、TML−BPAP、TMOM−BP、TMOM−BPE、TMOM−BPA、TMOM−BPAF、TMOM−BPAP、HML−TPPHBA、HML−TPHAP、HMOM−TPPHBA、HMOM−TPHAP(以上商品名、本州化学工業(株)製)、またはそれらのリチウム、ナトリウム、カリウムイオン化物。“NIKALAC”(登録商標)MX−290、NIKALAC MX−280、NIKALAC MX−270、NIKALAC MX−279、NIKALAC MW−100LM、NIKALAC MX−750LM(以上商品名、(株)三和ケミカル製)が挙げられる。これらを2種以上含有してもよい。   Specific examples include, for example, DML-PC, DML-PEP, DML-OC, DML-OEP, DML-34X, DML-PTBP, DML-PCHP, DML-OCHP, DML-PFP, DML-PSBP, DML-POP. , DML-MBOC, DML-MBPC, DML-MTrisPC, DML-BisOC-Z, DML-BisOCHP-Z, DML-BPC, DML-BisOC-P, DMOM-PC, DMOM-PTBP, DMOM-MBPC, TriML-P , TriML-35XL, TML-HQ, TML-BP, TML-pp-BPF, TML-BPE, TML-BPA, TML-BPAF, TML-BPAP, TMOM-BP, TMOM-BPE, TMOM-BPA, TMOM-BPAF , TMOM-BPAP, HML TPPHBA, HML-TPHAP, HMOM-TPPHBA, HMOM-TPHAP (trade name, manufactured by Honshu Chemical Industry Co., Ltd.), or their lithium, sodium, potassium ion compound. "NIKALAC" (registered trademark) MX-290, NIKACALAC MX-280, NIKACALAC MX-270, NIKACALAC MX-279, NIKACAL MW-100LM, NIKACALAC MX-750LM It is done. Two or more of these may be contained.

中でも、芳香環や脂肪族環などの環状構造を分子内に有する熱架橋剤を用いると架橋後の電極の強度が高くなり、機械強度も向上するため、高い容量維持率を達成できる。このような熱架橋剤の具体例としては、DML−PC、DML−PEP、DML−OC、DML−OEP、DML−34X、DML−PTBP、DML−PCHP、DML−OCHP、DML−PFP、DML−PSBP、DML−POP、DML−MBOC、DML−MBPC、DML−MTrisPC、DML−BisOC−Z、DML−BisOCHP−Z、DML−BPC、DML−BisOC−P、DMOM−PC、DMOM−PTBP、DMOM−MBPC、TriML−P、TriML−35XL、TML−HQ、TML−BP、TML−pp−BPF、TML−BPE、TML−BPA、TML−BPAF、TML−BPAP、TMOM−BP、TMOM−BPE、TMOM−BPA、TMOM−BPAF、TMOM−BPAP、HML−TPPHBA、HML−TPHAP、HMOM−TPPHBA、HMOM−TPHAP、またはそれらのリチウム、ナトリウム、カリウムイオン化物。“NIKALAC”(登録商標)MX−290、NIKALAC MX−280、NIKALAC MX−270、NIKALAC MX−279、NIKALAC MW−100LM、NIKALAC MX−750LMが挙げられる。これらは2種以上を用いてもよい。   Among them, when a thermal crosslinking agent having a cyclic structure such as an aromatic ring or an aliphatic ring in the molecule is used, the strength of the electrode after crosslinking is increased and the mechanical strength is improved, so that a high capacity retention rate can be achieved. Specific examples of such thermal crosslinking agents include DML-PC, DML-PEP, DML-OC, DML-OEP, DML-34X, DML-PTBP, DML-PCHP, DML-OCHP, DML-PFP, DML- PSBP, DML-POP, DML-MBOC, DML-MBPC, DML-MTrisPC, DML-BisOC-Z, DML-BisOCHP-Z, DML-BPC, DML-BisOC-P, DMOM-PC, DMOM-PTBP, DMOM- MBPC, TriML-P, TriML-35XL, TML-HQ, TML-BP, TML-pp-BPF, TML-BPE, TML-BPA, TML-BPAF, TML-BPAP, TMOM-BP, TMOM-BPE, TMOM- BPA, TMOM-BPAF, TMOM-BP P, HML-TPPHBA, HML-TPHAP, HMOM-TPPHBA, HMOM-TPHAP or their lithium, sodium, potassium ion compound. “NIKALAC” (registered trademark) MX-290, NIKACALAC MX-280, NIKACALAC MX-270, NIKACALAC MX-279, NIKACALAC MW-100LM, NIKACALAC MX-750LM, and the like. Two or more of these may be used.

また、アルコキシメチル基および/またはメチロール基を有する熱架橋剤が有するアルコキシメチル基の数およびメチロール基の数の合計が1分子あたり4個以上である熱架橋剤は架橋密度が高く、電解液へ適度に膨潤する電極を作製できるため好ましい。このような熱架橋剤の具体例としては、HMOM−TPHAP、MX−270、MW−100LMが挙げられる。   A thermal crosslinking agent having a total of 4 or more alkoxymethyl groups and methylol groups in the thermal crosslinking agent having an alkoxymethyl group and / or a methylol group has a high crosslinking density, and thus has a high crosslinking density. It is preferable because an electrode that swells moderately can be produced. Specific examples of such a thermal crosslinking agent include HMOM-TPHAP, MX-270, and MW-100LM.

本発明の蓄電素子用バインダー組成物に含まれる熱架橋剤の含有量については、架橋密度を上げる上では、該組成物に含まれる含窒素芳香族樹脂100質量部に対して好ましくは0.5質量部以上、より好ましくは3質量部以上である。また、電極の柔軟性を向上させる観点から50質量部以下が好ましく、30質量部以下がより好ましい。   About content of the thermal crosslinking agent contained in the binder composition for electrical storage elements of this invention, when raising a crosslinking density, Preferably it is 0.5 with respect to 100 mass parts of nitrogen-containing aromatic resin contained in this composition. It is 3 parts by mass or more, more preferably 3 parts by mass or more. Moreover, 50 mass parts or less are preferable from a viewpoint of improving the softness | flexibility of an electrode, and 30 mass parts or less are more preferable.

さらに、上記したアルコキシメチル基および/またはメチロール基を有する熱架橋剤の架橋を促進するために光酸発生剤または熱酸発生剤を添加してもよい。   Furthermore, a photoacid generator or a thermal acid generator may be added in order to promote crosslinking of the thermal crosslinking agent having an alkoxymethyl group and / or a methylol group.

本発明の蓄電素子用バインダー組成物に好ましく含有できる熱酸発生剤としては、熱分解開始温度が50℃〜270℃であることが好ましく、50℃〜150℃であることがより好ましい。   The thermal acid generator that can be preferably contained in the binder composition for an electricity storage device of the present invention preferably has a thermal decomposition starting temperature of 50 ° C to 270 ° C, more preferably 50 ° C to 150 ° C.

さらに、必要に応じ、本発明の蓄電素子用バインダー組成物は界面活性剤やアミノプロピルトリメトキシシラン、トリメトキシビニルシラン、トリメトキシグリシドトキシシランなどのシランカップリング剤、トリアジン系化合物、フェナントロリン系化合物、トリアゾール系化合物などを、樹脂の総量100質量部に対して0.1〜10質量部含有してもよい。これらを含有することにより、活物質や金属箔との接着性をさらに高めることができる。   Furthermore, as required, the binder composition for an electricity storage device of the present invention is a surfactant, a silane coupling agent such as aminopropyltrimethoxysilane, trimethoxyvinylsilane, or trimethoxyglycidoxysilane, a triazine compound, a phenanthroline compound. The triazole compound may be contained in an amount of 0.1 to 10 parts by mass with respect to 100 parts by mass of the total resin. By containing these, adhesiveness with an active material and metal foil can further be improved.

上記の含窒素芳香族樹脂および熱架橋剤は任意の溶媒に溶解または分散させることで蓄電素子用バインダー組成物として使用することができる。   The nitrogen-containing aromatic resin and the thermal crosslinking agent can be used as a binder composition for an electricity storage element by dissolving or dispersing in an arbitrary solvent.

本発明の蓄電素子用バインダー組成物の溶媒に溶解または分散させた際の濃度と粘度の範囲は、濃度1〜50質量%で粘度1mPa・秒〜1000Pa・秒の範囲が好ましく、より好ましくは濃度5〜30質量%で粘度100mPa・秒〜100Pa・秒である。   The range of the concentration and the viscosity when dissolved or dispersed in the solvent of the binder composition for an electricity storage device of the present invention is preferably a concentration of 1 to 50% by mass and a viscosity of 1 mPa · second to 1000 Pa · second, more preferably a concentration. The viscosity is 5 to 30% by mass and the viscosity is 100 mPa · second to 100 Pa · second.

本発明の蓄電素子用バインダー組成物に好適に用いられる溶剤としては、具体的にはエチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエール、プロピレングリコールモノエチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールメチルエチルエーテルなどのエーテル類、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピルアセテート、ブチルアセテート、イソブチルアセテート、3−メトキシブチルアセテート、3−メチル−3−メトキシブチルアセテート、乳酸メチル、乳酸エチル、乳酸ブチルなどのアセテート類、アセチルアセトン、メチルプロピルケトン、メチルブチルケトン、メチルイソブチルケトン、シクロペンタノン、2−ヘプタノンなどのケトン類、ブチルアルコール、イソブチルアルコール、ペンタノ−ル、4−メチル−2−ペンタノール、3−メチル−2−ブタノール、3−メチル−3−メトキシブタノール、ジアセトンアルコールなどのアルコール類、トルエン、キシレンなどの芳香族炭化水素類、N−メチル−2−ピロリドン、N−シクロヘキシル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、γ−ブチロラクトン、水などが挙げられる。これらは単独あるいは混合して用いることができる。   Specific examples of the solvent suitably used in the binder composition for an electricity storage device of the present invention include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ale, propylene glycol monoethyl ether, ethylene glycol dimethyl ether, and ethylene glycol. Ethers such as diethyl ether, ethylene glycol dibutyl ether, diethylene glycol diethyl ether, diethylene glycol dimethyl ether, diethylene glycol methyl ethyl ether, ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, propyl acetate, butyl acetate, isobutyl acetate, 3-methoxybutyl Acetate, 3-me Acetates such as ru-3-methoxybutyl acetate, methyl lactate, ethyl lactate, butyl lactate, ketones such as acetylacetone, methylpropylketone, methylbutylketone, methylisobutylketone, cyclopentanone, 2-heptanone, butyl alcohol, Isobutyl alcohol, pentaanol, 4-methyl-2-pentanol, 3-methyl-2-butanol, 3-methyl-3-methoxybutanol, alcohols such as diacetone alcohol, aromatic hydrocarbons such as toluene and xylene N-methyl-2-pyrrolidone, N-cyclohexyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, γ-butyrolactone, water and the like. These can be used alone or in combination.

本発明の蓄電素子用バインダー組成物は、さらに機能性の有機物または無機物を含有せしめた蓄電素子用スラリー組成物とすることができる。特に、リチウムイオンを吸蔵および放出可能な物質を含有することで、これらの化合物が活物質としての役割を果たす。   The binder composition for an electricity storage device of the present invention can be made into a slurry composition for an electricity storage device further containing a functional organic or inorganic material. In particular, these compounds play a role as active materials by containing substances capable of inserting and extracting lithium ions.

リチウムイオンを吸蔵および放出する物質とは、物質の結晶構造中にリチウムイオンが挿入および脱離できる物質、物質の結晶構造中のリチウムをリチウムイオンとして脱離および再挿入できる物質、およびリチウムイオンと合金化および脱合金化できる物質を示す。このような物質としては、炭素、ケイ素、スズ、ゲルマニウム、チタン、鉄、コバルト、ニッケル、マンガン、銅、銀、亜鉛、インジウム、ビスマス、アンチモンまたはクロムなどの原子を含む物質が挙げられる。具体的には、リン酸鉄リチウム、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、活性炭、カーボンナノチューブ、黒鉛、チタン酸リチウム、ハードカーボン、ソフトカーボン、活性炭、シリコン、酸化シリコン、シリコンカーバイド等が挙げられる。これらの中から2種類以上を混合および/または複合化した物質を用いても良い。さらに、物質の粒子の表面をコーティングやシランカップリング剤などの表面改質剤などで処理しても良い。特に、用いる物質の導電性が低い場合、カーボンコート、すなわち炭素でその物質の表面を覆う、をすることで、電極の電気抵抗を下げることができる。   A substance that occludes and releases lithium ions is a substance that can insert and desorb lithium ions in the crystal structure of the substance, a substance that can desorb and reinsert lithium in the crystal structure of the substance as lithium ions, and lithium ions Indicates a material that can be alloyed and dealloyed. Examples of such a substance include substances containing atoms such as carbon, silicon, tin, germanium, titanium, iron, cobalt, nickel, manganese, copper, silver, zinc, indium, bismuth, antimony, or chromium. Specifically, lithium iron phosphate, lithium cobaltate, lithium nickelate, lithium manganate, activated carbon, carbon nanotube, graphite, lithium titanate, hard carbon, soft carbon, activated carbon, silicon, silicon oxide, silicon carbide, etc. Can be mentioned. You may use the substance which mixed and / or compounded 2 or more types from these. Furthermore, the surface of the particles of the substance may be treated with a surface modifier such as a coating or a silane coupling agent. In particular, when the conductivity of a substance to be used is low, the electrical resistance of the electrode can be lowered by performing carbon coating, that is, covering the surface of the substance with carbon.

特に、以下の(a1)〜(a7)のうち少なくとも1種類を含むことで、容量および/またはレート特性に優れた蓄電素子を得ることができる。   In particular, by including at least one of the following (a1) to (a7), it is possible to obtain a power storage element having excellent capacity and / or rate characteristics.

(a1)シリコン(但し、(a4)に該当する場合を除く)
(a2)チタン酸リチウム
(a3)シリコンオキシカーバイド
(a4)シリコンと酸化シリコンが混合または複合化された物質
(a5)(a1)〜(a4)のうち2つ以上が混合または複合化された物質(但し、(a1)と(a4)が混合された場合を除く)
(a6)(a1)〜(a4)のうち1つ以上と炭素が混合または複合化された物質
(a7)その表面がカーボンコートされた(a1)〜(a5)の物質
シリコンは単位体積および単位質量あたりのリチウムイオンを吸蔵できる量が多いため、蓄電素子用スラリー組成物として用いると、高い容量の電池を得ることができる。その一方で、リチウムイオン吸蔵時の体積膨張が大きいため、容量維持率が低下しやすい。本発明の蓄電素子用バインダー樹脂組成物を用いることで、高容量かつ容量維持率の高い電極を得ることができる。
(A1) Silicon (excluding cases corresponding to (a4))
(A2) Lithium titanate (a3) Silicon oxycarbide (a4) Substance in which silicon and silicon oxide are mixed or combined (a5) Substance in which two or more of (a1) to (a4) are mixed or combined (However, except when (a1) and (a4) are mixed)
(A6) A substance in which one or more of (a1) to (a4) and carbon are mixed or combined (a7) A substance of (a1) to (a5) whose surface is carbon-coated Silicon is unit volume and unit Since there is much quantity which can occlude the lithium ion per mass, when it uses as a slurry composition for electrical storage elements, a high capacity | capacitance battery can be obtained. On the other hand, since the volume expansion at the time of occlusion of lithium ions is large, the capacity retention rate is likely to decrease. By using the binder resin composition for an electricity storage device of the present invention, an electrode having a high capacity and a high capacity retention rate can be obtained.

チタン酸リチウムはレート特性に優れるが、高出力で駆動した電池は発熱量も大きいため、高温時の結着性の高い本発明の蓄電素子用バインダー樹脂組成物に好ましく用いることができる。   Although lithium titanate is excellent in rate characteristics, a battery driven at a high output has a large calorific value, and therefore can be preferably used for the binder resin composition for an electricity storage device of the present invention having high binding properties at high temperatures.

シリコンオキシカーバイドは、ケイ素と酸素と炭素が均一に物質内に分布した構造になっているため、シリコンの体積膨張が適度に抑制され、高容量と高い容量維持率を両立することが可能である。   Since silicon oxycarbide has a structure in which silicon, oxygen, and carbon are uniformly distributed in the substance, the volume expansion of silicon is moderately suppressed, and it is possible to achieve both high capacity and high capacity retention. .

シリコンと酸化シリコンが複合化された物質は、物質粒子中でシリコンと酸化シリコンが微細に混じりあった構造を取っている。特に、酸化シリコン中にシリコンが分散した構造の場合には、シリコンの体積膨張が適度に抑制され、高容量と高い容量維持率を両立することが可能である。このような物質は、シリコンと酸化シリコンを、ボールミル、振動ミル、遊星ボールミル等でミリングすることにより得ることができる。また、別の場合として一酸化珪素(SiO)として、市販されているものを用いても良い。   A substance in which silicon and silicon oxide are combined has a structure in which silicon and silicon oxide are finely mixed in substance particles. In particular, in the case of a structure in which silicon is dispersed in silicon oxide, the volume expansion of silicon is moderately suppressed, and both a high capacity and a high capacity retention ratio can be achieved. Such a substance can be obtained by milling silicon and silicon oxide with a ball mill, a vibration mill, a planetary ball mill or the like. In another case, commercially available silicon monoxide (SiO) may be used.

上記(a1)〜(a4)の物質は、2つ以上を混合または複合化して用いることで、それぞれの材料が持つ利点を併せ持つ電極を得ることができる。混合および複合化を行う方法は特に限定されないが、例えば、2つ以上の材料をボールミル、振動ミル、遊星ボールミル等でミリングすることにより作製が可能である。また、シリコンオキシカーバイドやチタン酸リチウムの前駆体溶液を他の材料と混合し、焼成したものを粉砕、分級することでも得ることができる。   By using two or more of the substances (a1) to (a4) in a mixed or complexed manner, an electrode having the advantages of the respective materials can be obtained. The method for mixing and compounding is not particularly limited, but for example, it can be produced by milling two or more materials using a ball mill, a vibration mill, a planetary ball mill, or the like. It can also be obtained by mixing a precursor solution of silicon oxycarbide or lithium titanate with other materials, pulverizing and classifying the fired product.

また、(a1)〜(a4)のうち1つ以上を、黒鉛、ハードカーボン、ソフトカーボンといった炭素材料と混合または複合化して用いることで、電気抵抗の低い電極を得ることができる。混合および複合化を行う方法は特に限定されないが、例えば、(a1)〜(a4)のうち1つ以上と炭素材料をボールミル、振動ミル、遊星ボールミル等でミリングすることにより得ることができる。炭素材料が黒鉛質の場合は、各種樹脂、ポリイミド前駆体、タールまたはピッチなどの少量の炭素前駆体と混合し、焼成したものを粉砕、分級することで得ることができる。   Further, by using one or more of (a1) to (a4) with a carbon material such as graphite, hard carbon, or soft carbon and using them in combination, an electrode with low electric resistance can be obtained. Although the method of mixing and compounding is not particularly limited, for example, it can be obtained by milling one or more of (a1) to (a4) and a carbon material with a ball mill, a vibration mill, a planetary ball mill, or the like. When the carbon material is graphite, it can be obtained by mixing with a small amount of carbon precursor such as various resins, polyimide precursors, tar or pitch, and firing and pulverizing.

(a1)〜(a5)の表面をカーボンコートすることでも、電極の電気抵抗を下げることができる。カーボンコートの方法は、特に限定されないが、真空蒸着、イオンプレーティング、スパッタリング、化学気相蒸着(CVD)などを用いることができる。   The electrical resistance of the electrode can also be lowered by carbon coating the surfaces of (a1) to (a5). The carbon coating method is not particularly limited, and vacuum deposition, ion plating, sputtering, chemical vapor deposition (CVD), and the like can be used.

得られる電池の容量と容量維持率の高さを両立する観点から、シリコンと炭素が混合または複合化された物質、シリコンと酸化シリコンが混合または複合化された物質、およびシリコンと酸化シリコンと炭素が混合または複合化された物質を用いることが特に好ましい。   From the standpoint of achieving both high battery capacity and a high capacity retention ratio, a substance in which silicon and carbon are mixed or combined, a substance in which silicon and silicon oxide are mixed or combined, and silicon, silicon oxide and carbon It is particularly preferable to use a substance in which is mixed or complexed.

さらに、高容量と容量維持率の高さを両立する観点から、リチウムイオン吸蔵および放出可能な物質全体の質量を100質量%としたとき、該リチウムイオンを吸蔵および放出可能な物質に含まれるケイ素の含有量が5〜70質量%であることが好ましく、10〜50質量%であると更に好ましい。   Furthermore, from the viewpoint of achieving both a high capacity and a high capacity retention rate, silicon contained in a substance capable of occluding and releasing lithium ions when the mass of the whole substance capable of occluding and releasing lithium ions is 100% by mass. The content of is preferably 5 to 70% by mass, and more preferably 10 to 50% by mass.

本発明の蓄電素子用スラリー組成物において、溶媒を除く蓄電素子用バインダー組成物の含有量の合計は、リチウムイオンを吸蔵および放出可能な物質100質量部に対して固形分換算で1質量部以上が好ましく、係る下限値以上とすることで接着性をより向上させることができる。3質量部以上がより好ましく、5質量部以上がより好ましく、また、電気抵抗を低減し、容量と出力を維持する上では20質量部以下が好ましく、15質量部以下がより好ましく、12質量部以下がさらに好ましい。   In the slurry composition for an electricity storage device of the present invention, the total content of the binder composition for an electricity storage device excluding the solvent is 1 part by mass or more in terms of solid content with respect to 100 parts by mass of the substance capable of occluding and releasing lithium ions. It is preferable, and adhesiveness can be improved more by setting it as more than the lower limit which concerns. 3 parts by mass or more is more preferable, 5 parts by mass or more is more preferable, and 20 parts by mass or less is preferable, and 15 parts by mass or less is more preferable in terms of reducing electric resistance and maintaining capacity and output. More preferred are:

2次電池用電極やキャパシタ用電極の電気抵抗を低下させるために、本発明の蓄電素子用スラリー組成物に、グラファイト、ケッチェンブラック、カーボンナノチューブ、アセチレンブラック、銀や銅などの金属などの導電性物質を含有することが好ましい。導電性物質の含有量は、リチウムイオンを吸蔵および放出可能な物質100質量部に対して0.1質量部以上20質量部以下が好ましい。   In order to reduce the electrical resistance of the secondary battery electrode and capacitor electrode, the slurry composition for an electricity storage device of the present invention is made of a conductive material such as graphite, ketjen black, carbon nanotube, acetylene black, metal such as silver or copper. It is preferable to contain a sex substance. The content of the conductive substance is preferably 0.1 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the substance capable of inserting and extracting lithium ions.

本発明の蓄電素子用バインダー組成物、蓄電素子用スラリー組成物は、含窒素芳香族樹脂、アルコキシメチル基および/またはメチロール基を有する熱架橋剤、必要に応じてリチウムイオンを吸蔵および放出可能な物質、導電性物質粒子、および溶媒やその他添加剤を、混合・混練することにより得ることができる。混合の場合はガラス製のフラスコやステンレス製の容器等に入れて、メカニカルスターラーなどによって撹拌溶解させる方法、超音波で溶解させる方法、遊星式撹拌脱泡装置で撹拌溶解させる方法などが挙げられ、混練の場合はプラネタリーミキサー、三本ロール、ボールミル、ホモジナイザーなどを用いた方法が挙げられる。混合・混練の条件については特に限定されない。   The binder composition for an electricity storage device and the slurry composition for an electricity storage device of the present invention are capable of inserting and extracting a nitrogen-containing aromatic resin, a thermal cross-linking agent having an alkoxymethyl group and / or a methylol group, and, if necessary, lithium ions. It can be obtained by mixing and kneading the substance, conductive substance particles, solvent and other additives. In the case of mixing, put in a glass flask or stainless steel container, etc., a method of stirring and dissolving with a mechanical stirrer, etc., a method of dissolving with ultrasonic waves, a method of stirring and dissolving with a planetary stirring deaerator, etc. In the case of kneading, a method using a planetary mixer, three rolls, a ball mill, a homogenizer and the like can be mentioned. The mixing / kneading conditions are not particularly limited.

また、異物を除去するために混合・混練後の蓄電素子用バインダー組成物および蓄電素子用スラリー組成物は、0.01μm〜100μmのポアサイズのフィルターで濾過してもよい。濾過フィルターの材質には、ポリプロピレン(PP)、ポリエチレン(PE)、ナイロン(NY)、ポリテトラフルオロエチエレン(PTFE)などがあるが、ポリエチレンやナイロンが好ましい。また、リチウムイオンを吸蔵および放出可能な物質や導電性物質を含有する場合、これらを添加する前に濾過を行うか、これらの粒子径より大きな孔径の濾過フィルターを用いることが好ましい。   Moreover, in order to remove foreign substances, the binder composition for power storage elements and the slurry composition for power storage elements after mixing and kneading may be filtered through a filter having a pore size of 0.01 μm to 100 μm. Examples of the material for the filter include polypropylene (PP), polyethylene (PE), nylon (NY), polytetrafluoroethylene (PTFE), and polyethylene and nylon are preferable. Moreover, when it contains the substance which can occlude and discharge | release lithium ion, and an electroconductive substance, it is preferable to filter before adding these, or to use the filter with a larger pore diameter than these particle diameters.

上記のリチウムイオンを吸蔵および放出可能な物質を含む蓄電素子用バインダー組成物を基材の片面または両面に塗布し、乾燥させることで蓄電素子用電極を作ることができる。   An electrode for an electricity storage device can be produced by applying the binder composition for an electricity storage device containing a substance capable of occluding and releasing lithium ions to one side or both sides of a base material and drying it.

基材には導電性基材または導電性の配線を有する絶縁基材が用いられる。   As the base material, a conductive base material or an insulating base material having conductive wiring is used.

導電性基材として好ましいのは銅、アルミニウム、ステンレス、ニッケル、金、銀やそれらの合金、カーボンなどであるがこれらに限定されない。特に銅、アルミニウム、ステンレス、ニッケルとそれらを含んだ合金がより好ましい。   Preferred examples of the conductive substrate include, but are not limited to, copper, aluminum, stainless steel, nickel, gold, silver, alloys thereof, and carbon. In particular, copper, aluminum, stainless steel, nickel and alloys containing them are more preferable.

導電性の配線を有する絶縁基材としては、前記導電性基材に用いられる金属またはそれらを含んだ合金を用いた配線が、ポリイミド、ポリアミドイミド、ポリアミド、ポリエステル、アクリル樹脂、エポキシ樹脂、フェノール樹脂、シリコーン樹脂基材上に形成されたものが挙げられるがこれらに限定されない。   As an insulating base material having conductive wiring, wiring using the metal used for the conductive base material or an alloy containing them is polyimide, polyamideimide, polyamide, polyester, acrylic resin, epoxy resin, phenol resin. Examples thereof include, but are not limited to, those formed on a silicone resin substrate.

次に、本発明の電極の製造方法について例を挙げて説明する。   Next, an example is given and demonstrated about the manufacturing method of the electrode of this invention.

まず本発明の蓄電素子用スラリー組成物を基材上に1〜500μmの厚みで塗布する。基材としては、リチウムイオン電池負極(以下、「負極」と省略する場合がある)に用いる場合は銅箔が一般的に用いられ、リチウムイオン電池正極(以下、「正極」と省略する場合がある) や電気2重層キャパシタ正負極に用いる場合はアルミ箔、ニッケル箔、チタン箔、銅箔などが挙げられ、アルミ箔が一般的に用いられる。塗布には、スクリーン印刷、ロールコート、スリットコートなどの方法を用いることができる。   First, the slurry composition for an electricity storage device of the present invention is applied on a substrate with a thickness of 1 to 500 μm. As a base material, a copper foil is generally used when used for a lithium ion battery negative electrode (hereinafter may be abbreviated as “negative electrode”), and a lithium ion battery positive electrode (hereinafter abbreviated as “positive electrode”). In addition, when used for positive and negative electrodes of an electric double layer capacitor, aluminum foil, nickel foil, titanium foil, copper foil and the like can be mentioned, and aluminum foil is generally used. For the application, methods such as screen printing, roll coating, and slit coating can be used.

塗布後、溶媒を除去し、バインダー樹脂組成物の架橋反応を行うために、100℃〜250℃で10分間〜24時間熱処理する。水分の混入を抑えるために、窒素ガスなどの不活性ガスの中、または真空中で加熱することが好ましい。   After coating, the solvent is removed and heat treatment is performed at 100 ° C. to 250 ° C. for 10 minutes to 24 hours in order to perform a crosslinking reaction of the binder resin composition. In order to suppress the mixing of moisture, it is preferable to heat in an inert gas such as nitrogen gas or in a vacuum.

次に、本発明の電極を用いたリチウムイオン電池、電気2重層キャパシタについて説明する。   Next, a lithium ion battery and an electric double layer capacitor using the electrode of the present invention will be described.

本発明の電極について、セパレーターを介して複数積層させたものを、電解液と共に金属ケースなどの外装材に入れ、密封することで、2次電池や電気2重層キャパシタを得ることができる。   About the electrode of this invention, what was laminated | stacked via the separator is put in exterior materials, such as a metal case, with electrolyte solution, A secondary battery and an electric double layer capacitor can be obtained.

セパレーターの例としては、ポリエチレン、ポリプロピレンなどのポリオレフィンや、セルロース、ポリフェニレンスルフィド、アラミド、ポリイミドなどの微多孔フィルムや不織布などが挙げられる。   Examples of the separator include polyolefins such as polyethylene and polypropylene, microporous films such as cellulose, polyphenylene sulfide, aramid, and polyimide, and nonwoven fabrics.

耐熱性を上げるために、セパレーターの表面にコーティングをしてもよい。コーティングの塗工液は、無機フィラーとバインダーを含むものが好ましい。   In order to increase the heat resistance, the surface of the separator may be coated. The coating liquid containing an inorganic filler and a binder is preferable.

無機フィラーの例としては、アルミナ、ベーマイト,炭酸カルシウム、リン酸カルシウム、非晶性シリカ、結晶性ガラスフィラー、カオリン、タルク,二酸化チタン、シリカ−アルミナ複合酸化物粒子、フッ化カルシウム、フッ化リチウム、ゼオライト、硫化モリブデン、マイカ等が挙げられる。これらを2種以上含んでも良い。バインダーとしては、アクリル樹脂、フェノール樹脂、カルボキシメチルセルロース等が挙げられる。本発明の蓄電素子用バインダー組成物を用いても良い。   Examples of inorganic fillers include alumina, boehmite, calcium carbonate, calcium phosphate, amorphous silica, crystalline glass filler, kaolin, talc, titanium dioxide, silica-alumina composite oxide particles, calcium fluoride, lithium fluoride, zeolite , Molybdenum sulfide, mica and the like. Two or more of these may be included. Examples of the binder include an acrylic resin, a phenol resin, and carboxymethyl cellulose. You may use the binder composition for electrical storage elements of this invention.

電解液に用いる溶媒は、電池の電気化学的反応に関与するイオンが移動することができる媒質の役割を果たす。好ましい溶媒としては、カーボネート系、ラクトン系、エーテル系、非プロトン性溶媒を挙げることができる。前記カーボネート系溶媒としては、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートなどの鎖状カーボネート、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートなどの環状カーボネートを挙げることができる。前記ラクトン系溶媒としては、γ−ブチロラクトン、バレロラクトンなどを挙げることができる。前記エーテル系溶媒としては、1,3−ジオキソラン、1,4−ジオキサン、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジエチルエーテル、1,2−ジメトキシエタン、エトキシメトキシエタン、1,2−ジエトキシエタンなどを挙げることができる。前記非プロトン性溶媒としては、N−メチルピロリドン、1,3−ジメチルイミダゾリジノンなどの含窒素極性溶媒、ジメチルスルホキシド、スルホランなどの含硫黄極性溶媒などを挙げることができる。   The solvent used for the electrolytic solution serves as a medium through which ions involved in the electrochemical reaction of the battery can move. Preferred solvents include carbonate-based, lactone-based, ether-based and aprotic solvents. Examples of the carbonate solvent include chain carbonates such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate, and cyclic carbonates such as ethylene carbonate, propylene carbonate, and butylene carbonate. Examples of the lactone solvent include γ-butyrolactone and valerolactone. Examples of the ether solvent include 1,3-dioxolane, 1,4-dioxane, tetrahydrofuran, 2-methyltetrahydrofuran, diethyl ether, 1,2-dimethoxyethane, ethoxymethoxyethane, 1,2-diethoxyethane, and the like. be able to. Examples of the aprotic solvent include nitrogen-containing polar solvents such as N-methylpyrrolidone and 1,3-dimethylimidazolidinone, and sulfur-containing polar solvents such as dimethyl sulfoxide and sulfolane.

これらの溶媒は2種以上用いてもよく、その含有量比は目的とする電池の性能に応じて適宜選択できる。例えば、前記カーボネート系溶媒の場合、環状カーボネートと鎖状カーボネートを1:1〜1:9の体積比で組み合わせて使用することが好ましく、電解液の性能を向上させることができる。   Two or more of these solvents may be used, and the content ratio can be appropriately selected according to the performance of the intended battery. For example, in the case of the carbonate-based solvent, it is preferable to use a combination of a cyclic carbonate and a chain carbonate in a volume ratio of 1: 1 to 1: 9, and the performance of the electrolytic solution can be improved.

さらに、ラクトン、含窒素極性溶媒および/または含硫黄極性溶媒を混合することで、電解質の溶解度や電解液としての沸点を上昇させ、高温でも使用可能な電池を得ることができる。これらの溶媒の混合比は、その合計量として溶解度や沸点の観点から全電解液質量の0.05質量%以上とすることが好ましい。1%以上がより好ましく、5%以上がさらに好ましい。   Furthermore, by mixing a lactone, a nitrogen-containing polar solvent and / or a sulfur-containing polar solvent, the solubility of the electrolyte and the boiling point as the electrolytic solution are increased, and a battery that can be used even at high temperatures can be obtained. The mixing ratio of these solvents is preferably 0.05% by mass or more of the total electrolyte mass from the viewpoint of solubility and boiling point as the total amount. 1% or more is more preferable, and 5% or more is more preferable.

電解液に用いる電解質の例としては、ヘキサフルオロリン酸リチウム、ホウフッ化リチウム、過塩素酸リチウムなどのリチウム塩、テトラエチルアンモニウムテトラフルオロボレート、トリエチルメチルアンモニウムテトラフルオロボレートなどのアンモニウム塩などが挙げられる。   Examples of the electrolyte used for the electrolyte include lithium salts such as lithium hexafluorophosphate, lithium borofluoride, and lithium perchlorate, and ammonium salts such as tetraethylammonium tetrafluoroborate and triethylmethylammonium tetrafluoroborate.

本発明をさらに詳細に説明するために実施例を挙げて以下に説明するが、本発明はこれらの実施例によって限定して解釈されるものではない。なお、実施例中の蓄電素子用バインダー組成物などの評価は以下の方法により行った。   In order to describe the present invention in more detail, examples will be described below, but the present invention should not be construed as being limited to these examples. In addition, evaluation of the binder composition for electrical storage elements in an Example was performed with the following method.

(1)電解液溶出耐性評価(膜厚減少量)
蓄電素子用バインダー組成物を4インチのシリコンウエハ上にスピナー(ミカサ(株)製)を用いて塗布し、120℃に設定したホットプレートで3分間乾燥させて、厚さ8〜10μmの薄膜付きウエハを作製した。薄膜の厚みは膜厚測定機(大日本スクリーン製造(株)製、ラムダエースST−M602J)で測定した。得られた薄膜付きウエハをイナートオーブン(光洋サーモシステム製、INH−9)で酸素濃度20ppm以下になるように窒素を流しながら、50℃で30分加熱後、毎分3.5℃の速度で150℃まで昇温し、150℃で1時間熱処理した。得られた薄膜付きウエハを、エチレンカーボネートとジメチルカーボネートを体積比で1:1に混合した溶媒に浸漬し、80℃の恒温槽(エスペック(株)製、SU−222)中に24時間静置した。浸漬後の薄膜付きウエハの表面についた溶媒をエアブローで除去した後、膜厚を再度測定し、以下の式に従って膜厚の減少量を算出した。
膜厚減少量(%)=(浸漬後の膜厚/浸漬前の膜厚)×100。
(1) Electrolytic solution elution resistance evaluation (thickness reduction)
A binder composition for a storage element is applied onto a 4-inch silicon wafer using a spinner (Mikasa Co., Ltd.) and dried on a hot plate set at 120 ° C. for 3 minutes to provide a thin film having a thickness of 8 to 10 μm. A wafer was produced. The thickness of the thin film was measured with a film thickness measuring device (Lambda Ace ST-M602J, manufactured by Dainippon Screen Mfg. Co., Ltd.). The wafer with thin film obtained was heated at 50 ° C. for 30 minutes while flowing nitrogen at an inert oven (INH-9, manufactured by Koyo Thermo System Co., Ltd.) so that the oxygen concentration was 20 ppm or less, and then at a rate of 3.5 ° C. per minute. The temperature was raised to 150 ° C. and heat treatment was performed at 150 ° C. for 1 hour. The obtained wafer with a thin film was immersed in a solvent in which ethylene carbonate and dimethyl carbonate were mixed at a volume ratio of 1: 1, and left in a constant temperature bath (manufactured by Espec Corp., SU-222) for 24 hours. did. After removing the solvent on the surface of the wafer with the thin film after immersion by air blowing, the film thickness was measured again, and the amount of decrease in the film thickness was calculated according to the following formula.
Film thickness reduction (%) = (film thickness after immersion / film thickness before immersion) × 100.

(2)機械強度の評価(破断点応力)
蓄電素子用バインダー組成物を6インチのシリコンウエハ上にスピナー(ミカサ(株)製)を用いて塗布し、120℃に設定したホットプレートで3分間乾燥させて、厚さ10μmの薄膜付きウエハを作製した。薄膜の厚みは膜厚測定機(大日本スクリーン製造(株)製、ラムダエースST−M602J)で測定した。得られた薄膜付きウエハをイナートオーブン(光洋サーモシステム製、INH−9)で酸素濃度20ppm以下になるように窒素を流しながら、50℃で30分加熱後、毎分3.5℃の速度で150℃まで昇温し、150℃で1時間熱処理した。熱処理後の薄膜に片刃で切り込みを入れ、フッ化水素酸水溶液に浸漬してウエハから剥離し、50℃の通風オーブンで24時間乾燥させ、蓄電素子用バインダー組成物のフィルムを得た。単離した膜を幅1cm、長さ7〜10cmの短冊状に裁断し、テンシロン万能試験機((株)オリエンテック製、RTM−100)を用いて、試験速度55mm/分で引っ張り試験を行い、フィルムの破断点応力(Mpa)を測定した。
(2) Evaluation of mechanical strength (stress at break)
The binder composition for an electricity storage element was applied onto a 6-inch silicon wafer using a spinner (Mikasa Co., Ltd.) and dried on a hot plate set at 120 ° C. for 3 minutes to form a 10 μm-thick wafer with a thin film. Produced. The thickness of the thin film was measured with a film thickness measuring device (Lambda Ace ST-M602J, manufactured by Dainippon Screen Mfg. Co., Ltd.). The obtained wafer with a thin film was heated at 50 ° C. for 30 minutes while flowing nitrogen at an inert oven (INH-9, manufactured by Koyo Thermo Systems Co., Ltd.) so that the oxygen concentration was 20 ppm or less, and then at a rate of 3.5 ° C. per minute. The temperature was raised to 150 ° C. and heat treatment was performed at 150 ° C. for 1 hour. The heat-treated thin film was cut with a single blade, immersed in an aqueous hydrofluoric acid solution, peeled off from the wafer, and dried in a ventilated oven at 50 ° C. for 24 hours to obtain a film of a binder composition for a storage element. The isolated membrane is cut into a strip shape with a width of 1 cm and a length of 7 to 10 cm, and a tensile test is performed at a test speed of 55 mm / min using a Tensilon universal tester (Orientec Co., Ltd., RTM-100). The breaking point stress (Mpa) of the film was measured.

(3)密着性(はがれ個数)評価
シリコンウエハ上にスパッタリング法によって200nmの厚みで銅の層が形成された金属材料層を表面に有する基板(銅スパッタ基板)を用意した。この基板上に蓄電素子用バインダー組成物をスピナー(ミカサ(株)製)を用いて塗布し、120℃に設定したホットプレートで3分間乾燥させて、厚さ10μmの薄膜付きウエハを作製した。薄膜の厚みは膜厚測定機(大日本スクリーン製造(株)製、ラムダエースST−M602J)で測定した。得られた薄膜付きウエハをイナートオーブン(光洋サーモシステム製、INH−9)で酸素濃度20ppm以下になるように窒素を流しながら、50℃で30分加熱後、毎分3.5℃の速度で150℃まで昇温し、150℃で1時間熱処理した。キュア後の膜に片刃を使用して2mm間隔で10行10列の碁盤目状の切り込みをいれた。このうち一方のサンプル基板を用い、セロテープ(登録商標)による引き剥がしによって100マスのうち何マス剥がれたかを計数し、金属材料/蓄電素子用バインダー硬化膜間の密着性の評価を行なった。
(3) Evaluation of adhesion (peeling number) A substrate (copper sputter substrate) having a metal material layer on the surface of which a copper layer was formed with a thickness of 200 nm on a silicon wafer by sputtering was prepared. A binder composition for an electricity storage element was applied onto this substrate using a spinner (manufactured by Mikasa Co., Ltd.) and dried on a hot plate set at 120 ° C. for 3 minutes to prepare a wafer with a thin film having a thickness of 10 μm. The thickness of the thin film was measured with a film thickness measuring device (Lambda Ace ST-M602J, manufactured by Dainippon Screen Mfg. Co., Ltd.). The obtained wafer with a thin film was heated at 50 ° C. for 30 minutes while flowing nitrogen at an inert oven (INH-9, manufactured by Koyo Thermo Systems Co., Ltd.) so that the oxygen concentration was 20 ppm or less, and then at a rate of 3.5 ° C. per minute. The temperature was raised to 150 ° C. and heat treatment was performed at 150 ° C. for 1 hour. A single-edged blade was used for the film after curing, and 10 rows and 10 columns of grid-like cuts were made at intervals of 2 mm. Of these, one sample substrate was used to count how many of the 100 cells were peeled by peeling with cello tape (registered trademark), and the adhesion between the metal material and the cured binder film for the electricity storage element was evaluated.

(4)カーボンコートSiO(CコートSiO)活物質の合成
SiO粒子(シリコンと酸化シリコンが複合化された物質で構成された粒子である。シグマアルドリッチ合同会社製)を、メタン:窒素=1:1を原料ガスとして、処理温度1000℃の条件で、粒子の表面を熱分解炭素で被覆した。このようにして得られた活物質粒子をSEMで観察し、得られた画像から、画像解析式粒度分布測定ソフトウェア(株式会社マウンテック製、Mac−VIEW)を用いて、平均粒子径を算出した。また、透過型電子顕微鏡により、SiO粒子の表面に形成された被覆層の厚みを測定した。結果として、平均粒径が25μmのSiO粒子の表面が5nmの炭素からなる被覆層で被覆された粒子が得られた。
(4) Synthesis of carbon-coated SiO (C-coated SiO) active material SiO particles (particles composed of a composite material of silicon and silicon oxide, manufactured by Sigma-Aldrich LLC), methane: nitrogen = 1: The surface of the particles was coated with pyrolytic carbon under the conditions of a processing temperature of 1000 ° C. using 1 as a source gas. The active material particles thus obtained were observed with an SEM, and the average particle size was calculated from the obtained image using image analysis type particle size distribution measurement software (manufactured by Mountec Co., Ltd., Mac-VIEW). Moreover, the thickness of the coating layer formed on the surface of the SiO particles was measured with a transmission electron microscope. As a result, particles in which the surface of SiO particles having an average particle diameter of 25 μm was coated with a coating layer made of carbon having a thickness of 5 nm were obtained.

(5)チタン酸リチウム/シリコン複合粒子(LTO/Si複合粒子)の合成
チタン酸リチウム(シグマアルドリッチ合同会社製、商品名「Lithium titanate,spinel」)4.591g(0.01mol)をエタノール10mLに溶かし、シリコン粒子(シグマアルドリッチ合同会社製、商品名「Silicon nanopowder」、以下、Siと表記することがある)4.591gを添加し、1時間超音波照射した。得られた分散液を風量0.7dm/分、スプレー圧0.1MPa、出口温度155℃、入口温度約80℃にてスプレードライを行った。その後、窒素雰囲気下、750℃で焼成し、粉砕処理後に分級し、平均粒子径5μmの負極材料を得た。
(5) Synthesis of lithium titanate / silicon composite particles (LTO / Si composite particles) 4.591 g (0.01 mol) of lithium titanate (manufactured by Sigma-Aldrich GK, trade name “Lithium titanate, spinel”) in 10 mL of ethanol After melting, 4.591 g of silicon particles (manufactured by Sigma Aldrich GK, trade name “Silicon nanopowder”, hereinafter sometimes referred to as Si) was added, and ultrasonic irradiation was performed for 1 hour. The obtained dispersion was spray-dried at an air volume of 0.7 dm 3 / min, a spray pressure of 0.1 MPa, an outlet temperature of 155 ° C., and an inlet temperature of about 80 ° C. Then, it baked at 750 degreeC in nitrogen atmosphere, and classified after the grinding | pulverization process, and obtained negative electrode material with an average particle diameter of 5 micrometers.

(6)負極の作製
蓄電素子用スラリー組成物を電解銅箔(福田金属箔粉工業(株)製)上にドクターブレードを用いて塗布し、イナートオーブン(光洋サーモシステム製、INH−9)で酸素濃度が20ppm以下になるように窒素を流しながら、50℃で30分加熱後、毎分3.5℃の速度で150℃まで昇温し、150℃で1時間熱処理した。その後オーブン内の温度が80℃以下になったところで取り出した。得られたペースト付き銅箔の塗布部を直径15.9mmの円形に打ち抜き、150℃、24時間の真空乾燥を行い、負極を作製した。
(6) Production of negative electrode The slurry composition for an electricity storage element was applied onto an electrolytic copper foil (Fukuda Metal Foil Powder Industry Co., Ltd.) using a doctor blade, and an inert oven (manufactured by Koyo Thermo System, INH-9) was used. The mixture was heated at 50 ° C. for 30 minutes while flowing nitrogen so that the oxygen concentration was 20 ppm or less, then heated to 150 ° C. at a rate of 3.5 ° C. per minute, and heat treated at 150 ° C. for 1 hour. Thereafter, the oven was taken out when the temperature in the oven became 80 ° C. or lower. The coated part of the obtained copper foil with paste was punched out into a circle having a diameter of 15.9 mm and vacuum-dried at 150 ° C. for 24 hours to produce a negative electrode.

(7)電極特性評価(1C放電容量、5C/1C放電容量比率、50サイクル後容量維持率)
上記(6)負極の作製に記載の方法に従って作製した電極の容量を以下の方法で評価した。
(7) Electrode characteristic evaluation (1C discharge capacity, 5C / 1C discharge capacity ratio, capacity maintenance rate after 50 cycles)
The capacity of the electrode prepared according to the method described in (6) Preparation of negative electrode was evaluated by the following method.

充放電特性を測定する上で、HSセル(宝泉(株)製)を用い、リチウムイオン電池の組み立ては窒素雰囲気下でおこなった。セル内に作製した負極を直径16.1mmの円形に打ち抜いたもの、セパレーターとなる多孔質フィルム(東レ(株)製)を直径24mmに打ち抜いたもの、正極は、厚さ0.2mmのリチウム箔(本城金属(株)製)を直径15.9mmの円形に打ち抜いたものを順に重ね、電解液としてLBG−00022(キシダ化学(株)製)1mLを注入した上で封入して、リチウムイオン電池を得た。   In measuring the charge / discharge characteristics, an HS cell (manufactured by Hosen Co., Ltd.) was used, and the lithium ion battery was assembled in a nitrogen atmosphere. The negative electrode produced in the cell was punched into a circular shape with a diameter of 16.1 mm, the separator porous film (made by Toray Industries, Inc.) was punched into a diameter of 24 mm, and the positive electrode was a 0.2 mm thick lithium foil Punched in a circular shape with a diameter of 15.9 mm (made by Honjo Metal Co., Ltd.) are stacked one after another, filled with 1 mL of LBG-00022 (manufactured by Kishida Chemical Co., Ltd.) as an electrolytic solution, sealed, A battery was obtained.

上記のようにして作製したリチウムイオン電池を、上限電圧4.2V、下限電圧2.7V、充放電レート(Cレート)は、1サイクル目を0.1C、2サイクル目および3サイクル目を0.2C、4サイクル目を0.5C、5サイクル目を1C、6サイクル目を5Cとして計6回充放電し充電容量および放電容量を測定した。このときの5サイクル目と6サイクル目の放電容量をそれぞれ1C放電容量、5C放電容量とし、以下の式に従って、5C/1C放電容量比率を算出した。   The lithium ion battery produced as described above had an upper limit voltage of 4.2 V, a lower limit voltage of 2.7 V, and a charge / discharge rate (C rate) of 0.1 C in the first cycle, and 0 in the second and third cycles. .2C, 4th cycle was 0.5C, 5th cycle was 1C, 6th cycle was 5C, and the charge capacity and discharge capacity were measured 6 times in total. The discharge capacities at the 5th and 6th cycles at this time were 1C discharge capacity and 5C discharge capacity, respectively, and the 5C / 1C discharge capacity ratio was calculated according to the following equation.

5C/1C放電容量比率(%)=(6サイクル目の5C放電容量/5サイクル目の1C放電容量)×100。   5C / 1C discharge capacity ratio (%) = (5C discharge capacity at 6th cycle / 1C discharge capacity at 5th cycle) × 100.

さらに、このあと44回1Cで充放電を繰り返し、計50サイクルについて各サイクルの充電容量および放電容量を測定した。   Furthermore, after this, charging and discharging were repeated 44 times at 1 C, and the charge capacity and discharge capacity of each cycle were measured for a total of 50 cycles.

以下の式に従って、容量維持率を算出した。
容量維持率(%)=(50サイクル目の放電容量/5サイクル目の放電容量)×100。
The capacity retention rate was calculated according to the following formula.
Capacity retention rate (%) = (discharge capacity at 50th cycle / discharge capacity at 5th cycle) × 100.

合成例1:樹脂Aの合成
乾燥窒素気流下、NMP238.10gに3,3’−ジヒドロキシベンジジン(和歌山精化工業(株)製、商品名「HAB」、以下、HAB)10.81g(0.05mol)、2,2−ビス(3−アミノ−4−ヒドロキシフェニル)ヘキサフルオロプロパン(AZエレクトロニックマテリアルズ(株)製、商品名「AZ 6F−AP」、以下、6FAP)18.31g(0.05mol)、4,4’−オキシジフタル酸無水物(東京化成工業(株)製、以下、ODPA)30.40g(0.098mol)を溶解させ、40℃の油浴に浸けて2時間撹拌した。その後、油浴を200℃に昇温して4時間撹拌し、適量のNMPで希釈することで、前記一般式(1)の構造で表される繰り返し単位を100モル%有し、Rがフェノール性水酸基を有し、Rの50モル%が前記一般式(3)で表され、50モル%が前記一般式(4)で表される樹脂Aの20%NMP溶液を得た。
Synthesis Example 1: Synthesis of Resin A Under a nitrogen stream, NMP 238.10 g, 3,3′-dihydroxybenzidine (manufactured by Wakayama Seika Kogyo Co., Ltd., trade name “HAB”, hereinafter HAB) 10.81 g (0. 05 mol), 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane (manufactured by AZ Electronic Materials Co., Ltd., trade name “AZ 6F-AP”, hereinafter, 6FAP) 18.31 g (0. 05 mol), 4,4′-oxydiphthalic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd., hereinafter referred to as ODPA) 30.40 g (0.098 mol) was dissolved, immersed in an oil bath at 40 ° C. and stirred for 2 hours. Thereafter, the oil bath is heated to 200 ° C., stirred for 4 hours, and diluted with an appropriate amount of NMP, thereby having 100 mol% of the repeating unit represented by the structure of the general formula (1), and R 1 is A 20% NMP solution of resin A having a phenolic hydroxyl group, 50 mol% of R 1 represented by the general formula (3) and 50 mol% represented by the general formula (4) was obtained.

合成例2:樹脂Bの合成
乾燥窒素気流下、NMP226.10gにHAB15.14g(0.07mol)、6FAP10.99g(0.03mol)、ODPA30.40g(0.098mol)を溶解させ、40℃の油浴に浸けて2時間撹拌した。その後、油浴を200℃に昇温して4時間撹拌し、適量のNMPで希釈することで、前記一般式(1)の構造で表される繰り返し単位を100モル%有し、Rがフェノール性水酸基を有し、Rの70モル%が前記一般式(3)で表され、30モル%が前記一般式(4)で表される樹脂Bの20%NMP溶液を得た。
Synthesis Example 2: Synthesis of Resin B In a dry nitrogen stream, HAB 15.14 g (0.07 mol), 6FAP 10.99 g (0.03 mol), and ODPA 30.40 g (0.098 mol) were dissolved in NMP 226.10 g. It was immersed in an oil bath and stirred for 2 hours. Thereafter, the oil bath is heated to 200 ° C., stirred for 4 hours, and diluted with an appropriate amount of NMP, thereby having 100 mol% of the repeating unit represented by the structure of the general formula (1), and R 1 is A 20% NMP solution of resin B having a phenolic hydroxyl group, 70 mol% of R 1 represented by the general formula (3) and 30 mol% represented by the general formula (4) was obtained.

合成例3:樹脂Cの合成
乾燥窒素気流下、NMP250.10gにHAB6.49g(0.03mol)、6FAP25.64g(0.07mol)、ODPA30.40g(0.098mol)を溶解させ、40℃の油浴に浸けて2時間撹拌した。その後、油浴を200℃に昇温して4時間撹拌し、適量のNMPで希釈することで、前記一般式(1)の構造で表される繰り返し単位を100モル%有し、Rがフェノール性水酸基を有し、Rの30モル%が前記一般式(3)で表され、70モル%が前記一般式(4)で表される樹脂Cの20%NMP溶液を得た。
Synthesis Example 3: Synthesis of Resin C Under a dry nitrogen stream, 6.49 g (0.03 mol) of HAB, 25.64 g (0.07 mol) of 6FAP, and 30.40 g (0.098 mol) of ODPA were dissolved in 250.10 g of NMP, and 40 ° C. It was immersed in an oil bath and stirred for 2 hours. Thereafter, the oil bath is heated to 200 ° C., stirred for 4 hours, and diluted with an appropriate amount of NMP, thereby having 100 mol% of the repeating unit represented by the structure of the general formula (1), and R 1 is A 20% NMP solution of Resin C having a phenolic hydroxyl group, 30 mol% of R 1 represented by the general formula (3) and 70 mol% represented by the general formula (4) was obtained.

合成例4:樹脂Dの合成
乾燥窒素気流下、NMP222.10gにHAB10.81g(0.05mol)、5,5’−メチレンビス(2−アミノ安息香酸)(和歌山精化工業(株)製、以下、MBAA)14.31g(0.05mol)、ODPA30.40g(0.098mol)を溶解させ、40℃の油浴に浸けて2時間撹拌した。その後、油浴を200℃に昇温して4時間撹拌し、適量のNMPで希釈することで、前記一般式(1)の構造で表される繰り返し単位を100モル%有し、Rがカルボキシル基を有し、Rの50モル%が前記一般式(3)で表され、50モル%が前記一般式(4)で表される樹脂Dの20%NMP溶液を得た。
Synthesis Example 4: Synthesis of Resin D Under dry nitrogen stream, HAB 10.81 g (0.05 mol), 5,5′-methylenebis (2-aminobenzoic acid) (manufactured by Wakayama Seika Kogyo Co., Ltd.) , MBAA) 14.31 g (0.05 mol) and ODPA 30.40 g (0.098 mol) were dissolved, immersed in an oil bath at 40 ° C. and stirred for 2 hours. Thereafter, the oil bath is heated to 200 ° C., stirred for 4 hours, and diluted with an appropriate amount of NMP, thereby having 100 mol% of the repeating unit represented by the structure of the general formula (1), and R 1 is A 20% NMP solution of Resin D having a carboxyl group, 50 mol% of R 1 represented by the general formula (3) and 50 mol% represented by the general formula (4) was obtained.

合成例5:樹脂Eの合成
乾燥窒素気流下、NMP258.90gに2,2’−ビス(トリフルオロメチル)ベンジジン(東京化成工業(株)製、以下、TFMB)16.01g(0.05mol)、6FAP18.31g(0.05mol)、ODPA30.40g(0.098mol)を溶解させ、40℃の油浴に浸けて2時間撹拌した。その後、油浴を200℃に昇温して4時間撹拌し、適量のNMPで希釈することで、前記一般式(1)の構造で表される繰り返し単位を100モル%有し、Rがフェノール性水酸基を有し、Rの50モル%が前記一般式(3)で表され、50モル%が前記一般式(4)で表される樹脂Eの20%NMP溶液を得た。
Synthesis Example 5: Synthesis of Resin E 16.21 g (0.05 mol) of 2,2′-bis (trifluoromethyl) benzidine (manufactured by Tokyo Chemical Industry Co., Ltd., hereinafter referred to as TFMB) to 258.90 g of NMP under a dry nitrogen stream. Then, 18.31 g (0.05 mol) of 6FAP and 30.40 g (0.098 mol) of ODPA were dissolved, immersed in an oil bath at 40 ° C. and stirred for 2 hours. Thereafter, the oil bath is heated to 200 ° C., stirred for 4 hours, and diluted with an appropriate amount of NMP, thereby having 100 mol% of the repeating unit represented by the structure of the general formula (1), and R 1 is A 20% NMP solution of resin E having a phenolic hydroxyl group, 50 mol% of R 1 represented by the general formula (3) and 50 mol% represented by the general formula (4) was obtained.

合成例6:樹脂Fの合成
乾燥窒素気流下、NMP237.31gにm−トリジン(東京化成工業(株)製、以下、m−TB)10.61g(0.05mol)、6FAP18.31g(0.05mol)、ODPA30.40g(0.098mol)を溶解させ、40℃の油浴に浸けて2時間撹拌した。その後、油浴を200℃に昇温して4時間撹拌し、適量のNMPで希釈することで、前記一般式(1)の構造で表される繰り返し単位を100モル%有し、Rがフェノール性水酸基を有し、Rの50モル%が前記一般式(3)で表され、50モル%が前記一般式(4)で表される樹脂Fの20%NMP溶液を得た。
Synthesis Example 6: Synthesis of Resin F Under a nitrogen stream, m-tolidine (manufactured by Tokyo Chemical Industry Co., Ltd., hereinafter referred to as m-TB) 10.63 g (0.05 mol), 6FAP 18.31 g (0.3. 05 mol) and 30.40 g (0.098 mol) of ODPA were dissolved, immersed in an oil bath at 40 ° C. and stirred for 2 hours. Thereafter, the oil bath is heated to 200 ° C., stirred for 4 hours, and diluted with an appropriate amount of NMP, thereby having 100 mol% of the repeating unit represented by the structure of the general formula (1), and R 1 is A 20% NMP solution of resin F having a phenolic hydroxyl group, 50 mol% of R 1 represented by the general formula (3) and 50 mol% represented by the general formula (4) was obtained.

合成例7:樹脂Gの合成
乾燥窒素気流下、NMP179.04gにHAB10.81g(0.05mol)、6FAP18.31g(0.05mol)を溶解させた。その後、フラスコを氷冷し、NMP20.00gに溶解させた無水トリメリット酸クロリド(東京化成工業(株)製、以下、TMAC)20.64g(0.098mol)を溶液の温度を溶液の温度を30℃以下に保ちながら滴下した。全量を仕込んだ後30℃で4時間反応させた。その後、この溶液を水2Lに投入し、得られた沈殿を濾別し、水1Lで3回洗浄した。洗浄後の固体を通風オーブンで3日間乾燥させ、前記一般式(2)の構造で表される繰り返し単位を100モル%有し、Rがフェノール性水酸基を有し、Rの50モル%が前記一般式(3)で表され、50モル%が前記一般式(4)で表される樹脂Gの固体を得た。
Synthesis Example 7 Synthesis of Resin G Under a dry nitrogen stream, HAB 10.81 g (0.05 mol) and 6FAP 18.31 g (0.05 mol) were dissolved in 179.04 g of NMP. Thereafter, the flask was cooled with ice, and trimellitic anhydride chloride (manufactured by Tokyo Chemical Industry Co., Ltd., hereinafter referred to as TMAC) dissolved in 20.00 g of NMP was added to the temperature of the solution. The solution was added dropwise while maintaining the temperature at 30 ° C. or lower. After charging the whole amount, the mixture was reacted at 30 ° C. for 4 hours. Thereafter, this solution was poured into 2 L of water, and the resulting precipitate was filtered off and washed three times with 1 L of water. The washed solid is dried in a ventilated oven for 3 days, has 100 mol% of the repeating unit represented by the structure of the general formula (2), R 3 has a phenolic hydroxyl group, and 50 mol% of R 3 Is represented by the general formula (3), and 50 mol% of the resin G solid represented by the general formula (4) was obtained.

合成例8:樹脂Hの合成
乾燥窒素気流下、NMP202.00gにHAB10.81g(0.05mol)、6FAP18.31g(0.05mol)、ピロメリット酸無水物(東京化成工業(株)製、以下、PMDA)21.38g(0.098mol)を溶解させ、40℃の油浴に浸けて2時間撹拌した。その後、油浴を200℃に昇温して4時間撹拌し、適量のNMPで希釈することで、前記一般式(1)の構造で表される繰り返し単位を100モル%有し、Rがフェノール性水酸基を有し、Rの50モル%が前記一般式(3)で表され、50モル%が前記一般式(4)で表される樹脂Hの20%NMP溶液を得た。
Synthesis Example 8: Synthesis of Resin H Under a dry nitrogen stream, HAB 10.81 g (0.05 mol), 6FAP 18.31 g (0.05 mol), pyromellitic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd., below) , PMDA) 21.38 g (0.098 mol) was dissolved, immersed in an oil bath at 40 ° C. and stirred for 2 hours. Thereafter, the oil bath is heated to 200 ° C., stirred for 4 hours, and diluted with an appropriate amount of NMP, thereby having 100 mol% of the repeating unit represented by the structure of the general formula (1), and R 1 is A 20% NMP solution of resin H having a phenolic hydroxyl group, 50 mol% of R 1 represented by the general formula (3) and 50 mol% represented by the general formula (4) was obtained.

合成例9:樹脂Iの合成
乾燥窒素気流下、NMP242.81gにHAB10.81g(0.05mol)、6FAP18.31g(0.05mol)、3,3’,4,4’−ベンゾフェノンテトラカルボン酸(東京化成工業(株)製、以下、BTDA)31.58g(0.098mol)を溶解させ、40℃の油浴に浸けて2時間撹拌した。その後、油浴を200℃に昇温して4時間撹拌し、適量のNMPで希釈することで、前記一般式(1)の構造で表される繰り返し単位を100モル%有し、Rがフェノール性水酸基を有し、Rの50モル%が前記一般式(3)で表され、50モル%が前記一般式(4)で表される樹脂Iの20%NMP溶液を得た。
Synthesis Example 9: Synthesis of Resin I Under a dry nitrogen stream, HAB 10.81 g (0.05 mol), 6FAP 18.31 g (0.05 mol), 3,3 ′, 4,4′-benzophenone tetracarboxylic acid (NMP 242.81 g) 31.58 g (0.098 mol) manufactured by Tokyo Chemical Industry Co., Ltd. (hereinafter, BTDA) was dissolved, immersed in an oil bath at 40 ° C. and stirred for 2 hours. Thereafter, the oil bath is heated to 200 ° C., stirred for 4 hours, and diluted with an appropriate amount of NMP, thereby having 100 mol% of the repeating unit represented by the structure of the general formula (1), and R 1 is A 20% NMP solution of Resin I having a phenolic hydroxyl group, 50 mol% of R 1 represented by the general formula (3) and 50 mol% represented by the general formula (4) was obtained.

合成例10:樹脂Jの合成
乾燥窒素気流下、NMP217.10gにHAB18.38g(0.085mol)、6FAP5.49g(0.015mol)、ODPA30.40g(0.098mol)を溶解させ、40℃の油浴に浸けて2時間撹拌した。その後、油浴を200℃に昇温して4時間撹拌し、適量のNMPで希釈することで、前記一般式(1)の構造で表される繰り返し単位を100モル%有し、Rがフェノール性水酸基を有し、Rの85モル%が前記一般式(3)で表され、15モル%が前記一般式(4)で表される樹脂Jの20%NMP溶液を得た。
Synthesis Example 10: Synthesis of Resin J Under a dry nitrogen stream, HAB 18.38 g (0.085 mol), 6FAP 5.49 g (0.015 mol), and ODPA 30.40 g (0.098 mol) were dissolved in 217.10 g of NMP. It was immersed in an oil bath and stirred for 2 hours. Thereafter, the oil bath is heated to 200 ° C., stirred for 4 hours, and diluted with an appropriate amount of NMP, thereby having 100 mol% of the repeating unit represented by the structure of the general formula (1), and R 1 is A 20% NMP solution of Resin J having a phenolic hydroxyl group, 85 mol% of R 1 represented by the general formula (3) and 15 mol% represented by the general formula (4) was obtained.

合成例11:樹脂Kの合成
乾燥窒素気流下、NMP259.10gにHAB3.24g(0.015mol)、6FAP31.13g(0.085mol)、ODPA30.40g(0.098mol)を溶解させ、40℃の油浴に浸けて2時間撹拌した。その後、油浴を200℃に昇温して4時間撹拌し、適量のNMPで希釈することで、前記一般式(1)の構造で表される繰り返し単位を100モル%有し、Rがフェノール性水酸基を有し、Rの15モル%が前記一般式(3)で表され、85モル%が前記一般式(4)で表される樹脂Jの20%NMP溶液を得た。
Synthesis Example 11: Synthesis of Resin K Under a dry nitrogen stream, HAB 3.24 g (0.015 mol), 6FAP 31.13 g (0.085 mol), and ODPA 30.40 g (0.098 mol) were dissolved in 259.10 g of NMP. It was immersed in an oil bath and stirred for 2 hours. Thereafter, the oil bath is heated to 200 ° C., stirred for 4 hours, and diluted with an appropriate amount of NMP, thereby having 100 mol% of the repeating unit represented by the structure of the general formula (1), and R 1 is A 20% NMP solution of Resin J having a phenolic hydroxyl group, 15 mol% of R 1 represented by the general formula (3) and 85 mol% represented by the general formula (4) was obtained.

合成例12:樹脂Lの合成
乾燥窒素気流下、NMP216.48gにHAB18.31g(0.05mol)、m−フェニレンジアミン(東京化成工業(株)製、以下、m−PDA)5.41g(0.05mol)、ODPA30.40g(0.098mol)を溶解させ、40℃の油浴に浸けて2時間撹拌した。その後、油浴を200℃に昇温して4時間撹拌し、適量のNMPで希釈することで、前記一般式(1)の構造で表される繰り返し単位を100モル%有し、Rにフェノール性水酸基およびカルボキシル基を含まず、Rの50モル%が前記一般式(3)で表される樹脂Lの20%NMP溶液を得た。
Synthesis Example 12 Synthesis of Resin L Under a dry nitrogen stream, HAP 18.31 g (0.05 mol) and m-phenylenediamine (manufactured by Tokyo Chemical Industry Co., Ltd., hereinafter referred to as “m-PDA”) were added to NMP 216.48 g. 0.05 mol) and 30.40 g (0.098 mol) of ODPA were dissolved, immersed in an oil bath at 40 ° C. and stirred for 2 hours. Thereafter, the oil bath is heated to 200 ° C., stirred for 4 hours, and diluted with an appropriate amount of NMP, thereby having 100 mol% of the repeating unit represented by the structure of the general formula (1), and R 1 A 20% NMP solution of Resin L in which 50 mol% of R 1 is represented by the above general formula (3) without containing a phenolic hydroxyl group and a carboxyl group was obtained.

合成例13:樹脂Mの合成
乾燥窒素気流下、NMP247.46gにm−PDA2.16g(0.02mol)、6FAP29.30g(0.08mol)、ODPA30.40g(0.098mol)を溶解させ、40℃の油浴に浸けて2時間撹拌した。その後、油浴を200℃に昇温して4時間撹拌し、適量のNMPで希釈することで、前記一般式(1)の構造で表される繰り返し単位を100モル%有し、Rにフェノール性水酸基を有し、Rの80モル%が前記一般式(4)で表される樹脂Mの20%NMP溶液を得た。
Synthesis Example 13 Synthesis of Resin M Under a dry nitrogen stream, m-PDA 2.16 g (0.02 mol), 6FAP 29.30 g (0.08 mol), and ODPA 30.40 g (0.098 mol) were dissolved in 247.46 g of NMP. It was immersed in an oil bath at 0 ° C. and stirred for 2 hours. Thereafter, the oil bath is heated to 200 ° C., stirred for 4 hours, and diluted with an appropriate amount of NMP, thereby having 100 mol% of the repeating unit represented by the structure of the general formula (1), and R 1 A 20% NMP solution of Resin M having a phenolic hydroxyl group and having 80 mol% of R 1 represented by the general formula (4) was obtained.

合成例14:樹脂Nの合成
乾燥窒素気流下、NMP167.06gにm−PDA10.27g(0.095mol)、3−アミノフェノール(東京化成工業(株)製、以下、MAP)1.09g(0.01mol)、ODPA30.40g(0.098mol)を溶解させ、40℃の油浴に浸けて2時間撹拌した。その後、油浴を200℃に昇温して4時間撹拌し、適量のNMPで希釈することで、前記一般式(1)の構造で表される繰り返し単位を100モル%有し、Rにフェノール性水酸基を有する樹脂Nの20%NMP溶液を得た。
Synthesis example 14: Synthesis | combination of resin N Under dry nitrogen stream, m-PDA 10.27g (0.095 mol) and N-aminophenol (Tokyo Chemical Industry Co., Ltd., MAP) 1.09g (0) to NMP167.06g 0.01 mol) and 30.40 g (0.098 mol) of ODPA were dissolved, immersed in an oil bath at 40 ° C. and stirred for 2 hours. Thereafter, the oil bath is heated to 200 ° C., stirred for 4 hours, and diluted with an appropriate amount of NMP, thereby having 100 mol% of the repeating unit represented by the structure of the general formula (1), and R 1 A 20% NMP solution of resin N having a phenolic hydroxyl group was obtained.

合成例15:樹脂Oの合成
乾燥窒素気流下、NMP179.90gに4,4’−ジイソシアナト−3,3’−ジメチルビフェニル(日本曹達(株)製、商品名「TODI」、以下、TODI)21.14g(0.08mol)、4,4−ジフェニルメタンジイソシアン酸(東京化成工業(株)製、以下、MDI)5.01g(0.02mol)、トリメリット酸無水物(東京化成工業(株)製、以下、TMA)18.83g(0.098mol)を溶解させ、室温で2時間撹拌した。その後、フラスコを120℃に昇温して4時間撹拌し、さらに140℃に昇温して2時間撹拌し、適量のNMPで希釈することで、前記一般式(2)の構造で表される繰り返し単位を100モル%有し、Rにフェノール性水酸基およびカルボキシル基を含まず、Rの80モル%が前記一般式(3)で表され、20モル%が前記一般式(4)で表される樹脂Oの20%NMP溶液を得た。
Synthesis Example 15: Synthesis of Resin O Under a dry nitrogen stream, 179.90 g of NMP was subjected to 4,4′-diisocyanato-3,3′-dimethylbiphenyl (Nippon Soda Co., Ltd., trade name “TODI”, hereinafter, TODI) 21 .14 g (0.08 mol), 4,4-diphenylmethane diisocyanic acid (Tokyo Chemical Industry Co., Ltd., hereinafter referred to as MDI) 5.01 g (0.02 mol), trimellitic anhydride (Tokyo Chemical Industry Co., Ltd.) (Hereinafter, TMA) (18.83 g, 0.098 mol) was dissolved and stirred at room temperature for 2 hours. Thereafter, the flask is heated to 120 ° C. and stirred for 4 hours, further heated to 140 ° C. and stirred for 2 hours, and diluted with an appropriate amount of NMP to be expressed by the structure of the general formula (2). 100 mol% of repeating units, R 1 does not contain a phenolic hydroxyl group and a carboxyl group, 80 mol% of R 1 is represented by the general formula (3), and 20 mol% is represented by the general formula (4). A 20% NMP solution of the represented resin O was obtained.

合成例16:樹脂Pの合成
乾燥窒素気流下、NMP181.03gにTODI26.43g(0.1mol)、TMA18.83g(0.098mol)を溶解させ、室温で2時間撹拌した。その後、フラスコを120℃に昇温して4時間撹拌し、さらに140℃に昇温して2時間撹拌し、適量のNMPで希釈することで前記一般式(2)の構造で表される繰り返し単位を100モル%有し、Rにフェノール性水酸基およびカルボキシル基を含まず、Rの100モル%が前記一般式(3)で表される樹脂Pの20%NMP溶液を得た。
Synthesis Example 16: Synthesis of Resin P Under a dry nitrogen stream, 26.43 g (0.1 mol) of TODI and 18.83 g (0.098 mol) of TMA were dissolved in 181.03 g of NMP and stirred at room temperature for 2 hours. Thereafter, the flask is heated to 120 ° C. and stirred for 4 hours, further heated to 140 ° C. and stirred for 2 hours, and diluted with an appropriate amount of NMP to repeat the structure represented by the structure of the general formula (2). A 20% NMP solution of Resin P having 100 mol% of units, R 1 containing no phenolic hydroxyl group and carboxyl group and 100 mol% of R 1 represented by the general formula (3) was obtained.

合成例17:樹脂Qの合成
乾燥窒素気流下、NMP175.41gにMDI25.03g(0.1mol)、TMA18.83g(0.098mol)を溶解させ、室温で2時間撹拌した。その後、フラスコを120℃に昇温して4時間撹拌し、さらに140℃に昇温して2時間撹拌し、適量のNMPで希釈することで、前記一般式(2)の構造で表される繰り返し単位を100モル%有し、Rにフェノール性水酸基およびカルボキシル基を含まず、Rの100モル%が前記一般式(4)で表される樹脂Qの20%NMP溶液を得た。
Synthesis Example 17: Synthesis of Resin Q Under a dry nitrogen stream, 25.03 g (0.1 mol) of MDI and 18.83 g (0.098 mol) of TMA were dissolved in 175.41 g of NMP, and the mixture was stirred at room temperature for 2 hours. Thereafter, the flask is heated to 120 ° C. and stirred for 4 hours, further heated to 140 ° C. and stirred for 2 hours, and diluted with an appropriate amount of NMP to be expressed by the structure of the general formula (2). A 20% NMP solution of Resin Q having 100 mol% of repeating units, R 1 containing no phenolic hydroxyl group and carboxyl group and 100 mol% of R 1 represented by the general formula (4) was obtained.

合成例18:樹脂Rの合成
乾燥窒素気流下、NMP144.98gにトリレン−2,4−ジイソシアネート(東京化成工業(株)製、以下、TDI)17.42g(0.1mol)、TMA18.83g(0.098mol)を溶解させ、室温で2時間撹拌した。その後、フラスコを120℃に昇温して4時間撹拌し、さらに140℃に昇温して2時間撹拌し、適量のNMPで希釈することで、前記一般式(2)の構造で表される繰り返し単位を100モル%有し、Rにフェノール性水酸基およびカルボキシル基を含まない樹脂Rの20%NMP溶液を得た。
Synthesis example 18: Synthesis | combination of resin R Under dry nitrogen stream, NMP144.98g to Tolylene-2,4-diisocyanate (Tokyo Chemical Industry Co., Ltd., TDI) 17.42g (0.1mol), TMA 18.83g ( 0.098 mol) was dissolved and stirred at room temperature for 2 hours. Thereafter, the flask is heated to 120 ° C. and stirred for 4 hours, further heated to 140 ° C. and stirred for 2 hours, and diluted with an appropriate amount of NMP to be expressed by the structure of the general formula (2). A 20% NMP solution of Resin R having 100 mol% of repeating units and containing no phenolic hydroxyl group and no carboxyl group in R 1 was obtained.

合成例19:樹脂Sの合成
乾燥窒素気流下、NMP177.26gにHAB10.81g(0.05mol)、6FAP18.31g(0.05mol)を溶解させた。その後、フラスコを氷冷し、NMP20.00gに溶解させたイソフタロイルクロリド(東京化成工業(株)製、以下、IPC)11.98g(0.059mol)と無水トリメリット酸クロリド(東京化成工業((株))製、以下、TMAC)8.21g(0.039mol)を溶液の温度を溶液の温度を30℃以下に保ちながら滴下した。全量を仕込んだ後30℃で4時間反応させた。その後、油浴を200℃に昇温して4時間撹拌し、この溶液を水2Lに投入し、得られた沈殿を濾別し、水1Lで3回洗浄した。洗浄後の固体を通風オーブンで3日間乾燥させ、前記一般式(1)および(2)で表される繰り返し単位を40モル%有する樹脂Sの固体を得た。
Synthesis Example 19 Synthesis of Resin S Under a dry nitrogen stream, HAB 10.81 g (0.05 mol) and 6FAP 18.31 g (0.05 mol) were dissolved in 177.26 g of NMP. Thereafter, the flask was ice-cooled and 11.98 g (0.059 mol) of isophthaloyl chloride (manufactured by Tokyo Chemical Industry Co., Ltd., hereinafter IPC) dissolved in 20.00 g of NMP and trimellitic anhydride chloride (Tokyo Chemical Industry). (Hereinafter, TMAC) 8.21 g (0.039 mol) was added dropwise while keeping the temperature of the solution at 30 ° C. or less. After charging the whole amount, the mixture was reacted at 30 ° C. for 4 hours. Thereafter, the temperature of the oil bath was raised to 200 ° C., and the mixture was stirred for 4 hours. This solution was poured into 2 L of water, and the resulting precipitate was filtered off and washed with 1 L of water three times. The washed solid was dried in a ventilated oven for 3 days to obtain a solid of resin S having 40 mol% of repeating units represented by the general formulas (1) and (2).

合成例20:樹脂Tの合成
乾燥窒素気流下、NMP102.84gにm−PDA10.81g(0.1mol)を溶解させた。その後、フラスコを氷冷し、NMP20.00gに溶解させたIPC19.90g(0.098mol)を溶液の温度を30℃以下に保ちながら滴下した。全量を仕込んだ後30℃で4時間反応させた。この溶液を水2Lに投入し、得られた沈殿を濾別し、水1Lで3回洗浄した。洗浄後の固体を通風オーブンで3日間乾燥させ、含窒素芳香族樹脂である樹脂Tの固体を得た。
Synthesis Example 20: Synthesis of Resin T Under a dry nitrogen stream, 10.81 g (0.1 mol) of m-PDA was dissolved in 102.84 g of NMP. Thereafter, the flask was cooled with ice, and 19.90 g (0.098 mol) of IPC dissolved in 20.00 g of NMP was added dropwise while keeping the temperature of the solution at 30 ° C. or lower. After charging the whole amount, the mixture was reacted at 30 ° C. for 4 hours. This solution was poured into 2 L of water, and the resulting precipitate was filtered off and washed 3 times with 1 L of water. The washed solid was dried in a ventilated oven for 3 days to obtain a solid of resin T, which is a nitrogen-containing aromatic resin.

合成例21:樹脂Uの合成
乾燥窒素気流下、プロピレングリコールモノメチルエーテルアセテート18.2gを導入し100℃に昇温した。その後、アクリル酸7.2g、アゾビスイソブチロニトリル0.36g、プロピレングリコールモノメチルエーテルアセテート13.60gを混合した溶液を滴下ロートから2時間かけてフラスコに滴下し、100℃でさらに10時間撹拌を続けた。この溶液をヘキサン500mLに投入し、得られた沈殿を濾別し、ヘキサン250mLで3回洗浄した。洗浄後の固体を通風オーブンで3日間乾燥させ、含窒素芳香族樹脂でない樹脂Uの固体を得た。
Synthesis Example 21: Synthesis of Resin U In a dry nitrogen stream, 18.2 g of propylene glycol monomethyl ether acetate was introduced and the temperature was raised to 100 ° C. Thereafter, a solution prepared by mixing 7.2 g of acrylic acid, 0.36 g of azobisisobutyronitrile and 13.60 g of propylene glycol monomethyl ether acetate was dropped into the flask from the dropping funnel over 2 hours, and the mixture was further stirred at 100 ° C. for 10 hours. Continued. This solution was poured into 500 mL of hexane, and the resulting precipitate was filtered off and washed 3 times with 250 mL of hexane. The washed solid was dried in a ventilated oven for 3 days to obtain a solid of resin U that was not a nitrogen-containing aromatic resin.

[実施例1]
樹脂Aの20%NMP溶液5g(樹脂量1g)に熱架橋剤としてMW−100LM((株)三和ケミカル製、環状構造を有し、架橋性官能基としてメトキシメチル基を1分子中に6個有する)0.05g(熱架橋剤量0.05g)とNMP0.2gを添加し、自転・公転ミキサー((株)シンキー製、AR−310)で均一な溶液になるまで混合し、蓄電素子用バインダー組成物を得た。
[Example 1]
MW-100LM (manufactured by Sanwa Chemical Co., Ltd., having a cyclic structure) as a thermal crosslinking agent in 5 g of a 20% NMP solution of resin A (resin amount 1 g), 6 methoxymethyl groups as a crosslinkable functional group in one molecule 0.05 g (the amount of thermal cross-linking agent is 0.05 g) and NMP 0.2 g are added and mixed with a rotation / revolution mixer (Sinky Corp., AR-310) until a uniform solution is obtained. A binder composition was obtained.

[実施例2]
熱架橋剤をHMOM−TPHAP(本州化学工業(株)製、環状構造を有し、架橋性官能基としてメトキシメチル基を1分子中に6個有する)に変更した以外は、実施例1と同様にして蓄電素子用バインダー組成物を得た。
[Example 2]
Example 1 except that the thermal crosslinking agent was changed to HMOM-TPHAP (Honshu Chemical Industry Co., Ltd., having a cyclic structure and having 6 methoxymethyl groups in one molecule as a crosslinkable functional group) Thus, a binder composition for an electricity storage device was obtained.

[実施例3]
熱架橋剤をMX−270((株)三和ケミカル製、環状構造を有し、架橋性官能基としてメトキシメチル基を1分子中に4個有する)に変更した以外は、実施例1と同様にして蓄電素子用バインダー組成物を得た。
[Example 3]
Except for changing the thermal crosslinking agent to MX-270 (manufactured by Sanwa Chemical Co., Ltd., having a cyclic structure and having four methoxymethyl groups in one molecule as a crosslinkable functional group), the same as in Example 1 Thus, a binder composition for an electricity storage device was obtained.

[実施例4]
熱架橋剤をDMOM−PTBP(本州化学工業(株)製、環状構造を有し、架橋性官能基としてメトキシメチル基を1分子中に2個有する)に変更した以外は、実施例1と同様にして蓄電素子用バインダー組成物を得た。
[Example 4]
Except for changing the thermal crosslinking agent to DMOM-PTBP (manufactured by Honshu Chemical Industry Co., Ltd., having a cyclic structure and having two methoxymethyl groups in one molecule as a crosslinkable functional group), the same as in Example 1 Thus, a binder composition for an electricity storage device was obtained.

[実施例5]
熱架橋剤をMX−290((株)三和ケミカル製、環状構造を持たず、架橋性官能基としてメトキシメチル基を1分子中に2個有する)に変更した以外は、実施例1と同様にして蓄電素子用バインダー組成物を得た。
[Example 5]
Except for changing the thermal crosslinking agent to MX-290 (manufactured by Sanwa Chemical Co., Ltd., having no cyclic structure and having two methoxymethyl groups in one molecule as a crosslinkable functional group), the same as in Example 1 Thus, a binder composition for an electricity storage device was obtained.

[実施例6]
樹脂Aを樹脂Bに変更した以外は、実施例1と同様にして蓄電素子用バインダー組成物を得た。
[Example 6]
A binder composition for an electricity storage element was obtained in the same manner as in Example 1 except that the resin A was changed to the resin B.

[比較例1]
熱架橋剤とNMPを添加せず、樹脂Aの溶液を蓄電素子用バインダー組成物として用いた。
[Comparative Example 1]
A solution of Resin A was used as a binder composition for a storage element without adding a thermal crosslinking agent and NMP.

[実施例7〜24、比較例2]
樹脂、樹脂量、熱架橋剤、熱架橋剤量、NMP量が表1のとおりになるよう変更した以外は実施例1と同様にして蓄電素子用バインダー組成物を得た。
[Examples 7 to 24, Comparative Example 2]
A binder composition for an electricity storage device was obtained in the same manner as in Example 1 except that the resin, the resin amount, the thermal crosslinking agent, the thermal crosslinking agent amount, and the NMP amount were changed as shown in Table 1.

実施例1〜24、比較例1、2の蓄電素子用バインダー組成物の膜厚減少量、破断点応力およびはがれ個数の評価結果を表2に示す。   Table 2 shows the evaluation results of the film thickness reduction amount, the stress at break, and the number of peeling of the binder compositions for electricity storage devices of Examples 1 to 24 and Comparative Examples 1 and 2.

[実施例25]
リチウムイオンを吸蔵および放出可能な物質(以下、活物質)として、SiO粒子(シリコンと酸化シリコンが複合化された物質で構成された粒子である。シグマアルドリッチ合同会社製)4gと球状黒鉛(伊藤黒鉛工業(株)製、商品名「SG−BH8」、以下、黒鉛)4g、バインダーとして、実施例1で作製した蓄電素子用バインダー組成物(固形分濃度20%)1.5gと、導電性物質としてアセチレンブラック(デンカ株式会社製)0.5gを、適量のNMPに分散させ、蓄電素子用スラリー組成物を得た。このスラリー組成物を用いて、上記(6)負極の作製に記載の方法に従って負極を作製し、上記(7)電極特性評価に記載の方法に従って評価した。
[Example 25]
As a material capable of occluding and releasing lithium ions (hereinafter referred to as an active material), 4 g of SiO particles (particles composed of a composite material of silicon and silicon oxide; manufactured by Sigma-Aldrich LLC) and spherical graphite (Ito) Graphite Industry Co., Ltd., trade name “SG-BH8”, hereinafter, graphite) 4 g, binder composition for power storage device (solid content concentration 20%) prepared in Example 1 as binder, 1.5 g, and conductivity As a substance, 0.5 g of acetylene black (manufactured by Denka Co., Ltd.) was dispersed in an appropriate amount of NMP to obtain a slurry composition for a storage element. Using this slurry composition, a negative electrode was prepared according to the method described in (6) Preparation of negative electrode, and evaluated according to the method described in (7) Electrode characteristic evaluation.

[実施例26]
活物質のSiO粒子4gを上記(4)で得たCコートSiO粒子4gに変更した以外は、実施例25と同様にして、蓄電素子用スラリー組成物を得た。このスラリー組成物を用いて、上記(6)負極の作製に記載の方法に従って負極を作製し、上記(7)電極特性評価に記載の方法に従って評価した。
[Example 26]
A slurry composition for an electricity storage device was obtained in the same manner as in Example 25 except that 4 g of the SiO particles of the active material was changed to 4 g of the C-coated SiO particles obtained in (4) above. Using this slurry composition, a negative electrode was prepared according to the method described in (6) Preparation of negative electrode, and evaluated according to the method described in (7) Electrode characteristic evaluation.

[実施例27]
活物質を上記(5)で得られたLTO/Si複合粒子8gに変更した以外は、実施例25と同様にして、蓄電素子用スラリー組成物を得た。このスラリー組成物を用いて、上記(6)負極の作製に記載の方法に従って負極を作製し、上記(7)電極特性評価に記載の方法に従って評価した。
[Example 27]
A slurry composition for an electricity storage element was obtained in the same manner as in Example 25 except that the active material was changed to 8 g of the LTO / Si composite particles obtained in (5) above. Using this slurry composition, a negative electrode was prepared according to the method described in (6) Preparation of negative electrode, and evaluated according to the method described in (7) Electrode characteristic evaluation.

[実施例28]
導電性物質を添加しなかった点以外は、実施例25と同様にして、蓄電素子用スラリー組成物を得た。このスラリー組成物を用いて、上記(6)負極の作製に記載の方法に従って負極を作製し、上記(7)電極特性評価に記載の方法に従って評価した。
[Example 28]
A slurry composition for an electricity storage element was obtained in the same manner as in Example 25 except that the conductive material was not added. Using this slurry composition, a negative electrode was prepared according to the method described in (6) Preparation of negative electrode, and evaluated according to the method described in (7) Electrode characteristic evaluation.

[実施例29]
バインダーを、実施例2で得られたバインダー組成物(固形分濃度20%)1.5gに変更した以外は実施例25と同様にして、蓄電素子用スラリー組成物を得た。このスラリー組成物を用いて、上記(6)負極の作製に記載の方法に従って負極を作製し、上記(7)電極特性評価に記載の方法に従って評価した。
[Example 29]
A slurry composition for an electricity storage device was obtained in the same manner as in Example 25 except that the binder was changed to 1.5 g of the binder composition (solid content concentration 20%) obtained in Example 2. Using this slurry composition, a negative electrode was prepared according to the method described in (6) Preparation of negative electrode, and evaluated according to the method described in (7) Electrode characteristic evaluation.

[実施例30〜59、比較例3〜12]
使用する材料と量を、表3のように変更した以外は実施例25と同様にして、蓄電素子用スラリー組成物を得た。このスラリー組成物を用いて、上記(6)負極の作製に記載の方法に従って負極を作製し、上記(7)電極特性評価に記載の方法に従って評価した。なお、表中LTOは市販のチタン酸リチウム(シグマアルドリッチ合同会社製、商品名「Lithium titanate,spinel」)を用いた。
[Examples 30 to 59, Comparative Examples 3 to 12]
A slurry composition for an electricity storage device was obtained in the same manner as in Example 25 except that the materials and amounts used were changed as shown in Table 3. Using this slurry composition, a negative electrode was prepared according to the method described in (6) Preparation of negative electrode, and evaluated according to the method described in (7) Electrode characteristic evaluation. In the table, LTO used was commercially available lithium titanate (manufactured by Sigma-Aldrich LLC, trade name “Lithium titanate, spinel”).

表3に、実施例25〜59と比較例3〜12の評価結果を示す。   In Table 3, the evaluation result of Examples 25-59 and Comparative Examples 3-12 is shown.

Figure 2018105338
Figure 2018105338

Figure 2018105338
Figure 2018105338

Figure 2018105338
Figure 2018105338

本発明の蓄電素子用バインダー組成物はリチウムイオン電池の電極を構成する材料として好適に使用できるものであり、容量の維持率に優れている。   The binder composition for an electricity storage device of the present invention can be suitably used as a material constituting an electrode of a lithium ion battery, and has an excellent capacity retention rate.

Claims (18)

含窒素芳香族樹脂およびアルコキシメチル基および/またはメチロール基を有する熱架橋剤を含有する蓄電素子用バインダー組成物。 The binder composition for electrical storage elements containing the nitrogen-containing aromatic resin and the thermal crosslinking agent which has an alkoxymethyl group and / or a methylol group. 前記熱架橋剤が環状構造を有する請求項1に記載の蓄電素子用バインダー組成物。 The binder composition for an electricity storage element according to claim 1, wherein the thermal crosslinking agent has a cyclic structure. 前記の熱架橋剤が有するアルコキシメチル基の数およびメチロール基の数の合計が1分子あたり4個以上である請求項1または2に記載の蓄電素子用バインダー組成物。 The binder composition for an electricity storage element according to claim 1 or 2, wherein the total number of alkoxymethyl groups and methylol groups in the thermal crosslinking agent is 4 or more per molecule. 前記含窒素芳香族樹脂が、下記一般式(1)で表される繰り返し単位および/または下記一般式(2)で表される繰り返し単位を有する請求項1〜3の何れかに記載の蓄電素子用バインダー組成物。
Figure 2018105338
(一般式(1)中、Rは炭素数2〜50の2価の有機基を示し、Rは炭素数6〜50の4価の芳香族有機基を示す。)
Figure 2018105338
(一般式(2)中、Rは炭素数2〜50の2価の有機基を示し、Rは炭素数6〜50の3価の芳香族有機基を示す。)
The said nitrogen-containing aromatic resin has a repeating unit represented by the following general formula (1) and / or a repeating unit represented by the following general formula (2), The electrical storage element in any one of Claims 1-3 Binder composition.
Figure 2018105338
(In General Formula (1), R 1 represents a divalent organic group having 2 to 50 carbon atoms, and R 2 represents a tetravalent aromatic organic group having 6 to 50 carbon atoms.)
Figure 2018105338
(In the general formula (2), R 3 represents a divalent organic group having 2 to 50 carbon atoms, and R 4 represents a trivalent aromatic organic group having 6 to 50 carbon atoms.)
前記の含窒素芳香族樹脂中に占める一般式(1)で表される繰り返し単位および一般式(2)で表される繰り返し単位の合計の含有比率が50モル%以上である請求項4に記載の蓄電素子用バインダー組成物。 The total content ratio of the repeating unit represented by the general formula (1) and the repeating unit represented by the general formula (2) in the nitrogen-containing aromatic resin is 50 mol% or more. Binder composition for electricity storage device. 前記一般式(1)におけるRおよび前記一般式(2)におけるRの何れかまたは両方がフェノール性水酸基および/またはカルボキシル基を有する基である請求項4または5に記載の蓄電素子用バインダー組成物。The binder for an electricity storage device according to claim 4 or 5, wherein either or both of R 1 in the general formula (1) and R 3 in the general formula (2) are groups having a phenolic hydroxyl group and / or a carboxyl group. Composition. 前記含窒素芳香族樹脂において、前記一般式(1)におけるRおよび前記一般式(2)におけるRの合計を100モル%としたとき、下記一般式(3)で表される構造が20モル%以上含まれていることを特徴とする請求項4〜6の何れかに記載の蓄電素子用バインダー組成物。
Figure 2018105338
(一般式(3)中、Rはヒドロキシ基、メルカプト基または炭素数1〜6の有機基を示す。pは0〜4の整数を示す。Rはそれぞれ同一でも異なっていても良い。)
In the nitrogen-containing aromatic resin, when the total of R 1 in the general formula (1) and R 3 in the general formula (2) is 100 mol%, the structure represented by the following general formula (3) is 20 The binder composition for an electricity storage device according to any one of claims 4 to 6, wherein the binder composition is contained in an amount of not less than mol%.
Figure 2018105338
(In General Formula (3), R 5 represents a hydroxy group, a mercapto group, or an organic group having 1 to 6 carbon atoms. P represents an integer of 0 to 4. R 5 may be the same or different. )
前記含窒素芳香族樹脂において、前記一般式(1)におけるRおよび前記一般式(2)におけるRの合計を100モル%としたとき、下記一般式(4)で表される構造が20モル%以上含まれていることを特徴とする請求項4〜7の何れかに記載の蓄電素子用バインダー組成物。
Figure 2018105338
(一般式(4)中、Rはヒドロキシ基、メルカプト基または炭素数1〜6の有機基を示し、Xはカルボニル基、メチレン基、イソプロピル基、6フッ化イソプロピル基、エーテル結合のいずれかを示す。qは0〜4の整数を示す。Rはそれぞれ同一でも異なっていても良い。)
In the nitrogen-containing aromatic resin, when the total of R 1 in the general formula (1) and R 3 in the general formula (2) is 100 mol%, the structure represented by the following general formula (4) is 20 The binder composition for an electricity storage element according to any one of claims 4 to 7, wherein the binder composition is contained in an amount of not less than mol%.
Figure 2018105338
(In the general formula (4), R 6 represents a hydroxy group, a mercapto group or an organic group having 1 to 6 carbon atoms, and X represents any of a carbonyl group, a methylene group, an isopropyl group, an isopropyl hexafluoride group, and an ether bond. Q represents an integer of 0 to 4. R 6 may be the same or different.
請求項1〜8のいずれかに記載の蓄電素子用バインダー組成物およびリチウムイオンを吸蔵および放出可能な物質を含有する蓄電素子用スラリー組成物。 The slurry composition for electrical storage elements containing the binder composition for electrical storage elements in any one of Claims 1-8, and the substance which can occlude and discharge | release lithium ion. 前記リチウムイオンを吸蔵および放出可能な物質が,以下の(a1)〜(a7)のうち少なくとも1種類を含む、請求項9に記載の蓄電素子用スラリー組成物。
(a1)シリコン(但し、(a4)に該当する場合を除く)
(a2)チタン酸リチウム
(a3)シリコンオキシカーバイド
(a4)シリコンと酸化シリコンが混合または複合化された物質
(a5)(a1)〜(a4)のうち2つ以上が混合または複合化された物質(但し、(a1)と(a4)が混合された場合を除く)
(a6)(a1)〜(a4)のうち1つ以上と炭素が混合または複合化された物質
(a7)その表面がカーボンコートされた(a1)〜(a5)の物質
The slurry composition for a storage element according to claim 9, wherein the substance capable of inserting and extracting lithium ions includes at least one of the following (a1) to (a7).
(A1) Silicon (excluding cases corresponding to (a4))
(A2) lithium titanate (a3) silicon oxycarbide (a4) substance in which silicon and silicon oxide are mixed or combined (a5) substance in which two or more of (a1) to (a4) are mixed or combined (However, except when (a1) and (a4) are mixed)
(A6) Substance in which one or more of (a1) to (a4) and carbon are mixed or complexed (a7) Substance whose surface is carbon coated (a1) to (a5)
前記リチウムイオンを吸蔵および放出可能な物質全体の質量を100質量%としたとき、該リチウムイオンを吸蔵および放出可能な物質に含まれるケイ素の含有量が5〜70質量%である請求項10に記載の蓄電素子用スラリー組成物。 The content of silicon contained in the substance capable of occluding and releasing lithium ions is 5 to 70% by mass, when the mass of the whole substance capable of occluding and releasing lithium ions is 100% by mass. The slurry composition for electrical storage elements as described. さらに導電性物質を含む、請求項9〜11のいずれかに記載の蓄電素子用スラリー組成物。 Furthermore, the slurry composition for electrical storage elements in any one of Claims 9-11 containing an electroconductive substance. 支持基板の少なくとも片面に、請求項9〜12のいずれかに記載の蓄電素子用スラリー組成物が製膜されてなる層またはその熱架橋反応物を有する電極。 The electrode which has the layer by which the slurry composition for electrical storage elements in any one of Claims 9-12 is formed into a film, or its thermal crosslinking reaction material on the at least single side | surface of a support substrate. 支持基板の少なくとも片面に、請求項9〜12のいずれかに記載の蓄電素子用スラリー組成物を塗布して塗布膜を形成する工程および前記塗布膜を乾燥する工程を含む電極の製造方法。 The manufacturing method of an electrode including the process of apply | coating the slurry composition for electrical storage elements in any one of Claims 9-12 to the at least single side | surface of a support substrate, and forming the coating film, and the process of drying the said coating film. 請求項13に記載の電極を有する二次電池。 A secondary battery comprising the electrode according to claim 13. 請求項13に記載の電極を有する電気二重層キャパシタ。 An electric double layer capacitor comprising the electrode according to claim 13. 含窒素極性溶媒、含硫黄極性溶媒および/またはラクトンをその合計量として全電解液質量の0.05質量%以上含む請求項15に記載の二次電池。 The secondary battery according to claim 15, comprising a nitrogen-containing polar solvent, a sulfur-containing polar solvent, and / or a lactone in a total amount of 0.05% by mass or more of the total electrolyte solution mass. 含窒素極性溶媒、含硫黄極性溶媒および/またはラクトンをその合計量として全電解液質量の0.05%以上含む請求項16に記載の電気二重層キャパシタ。 The electric double layer capacitor according to claim 16, comprising a nitrogen-containing polar solvent, a sulfur-containing polar solvent and / or a lactone as a total amount of 0.05% or more of the total electrolyte mass.
JP2017559885A 2016-12-08 2017-11-15 Binder composition for power storage element, slurry composition for power storage element, electrode, electrode manufacturing method, secondary battery, and electric double layer capacitor Pending JPWO2018105338A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016238325 2016-12-08
JP2016238325 2016-12-08
PCT/JP2017/041040 WO2018105338A1 (en) 2016-12-08 2017-11-15 Binder composition for electricity storage elements, slurry composition for electricity storage elements, electrode, method for producing electrode, secondary battery and electric double layer capacitor

Publications (1)

Publication Number Publication Date
JPWO2018105338A1 true JPWO2018105338A1 (en) 2019-10-24

Family

ID=62490859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017559885A Pending JPWO2018105338A1 (en) 2016-12-08 2017-11-15 Binder composition for power storage element, slurry composition for power storage element, electrode, electrode manufacturing method, secondary battery, and electric double layer capacitor

Country Status (3)

Country Link
JP (1) JPWO2018105338A1 (en)
TW (1) TW201826594A (en)
WO (1) WO2018105338A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021053800A1 (en) * 2019-09-19 2021-03-25 ウィンゴーテクノロジー株式会社 Solvent-soluble polyimide compound, lithium-ion secondary battery negative electrode producing resin composition including said solvent-soluble polyimide compound, lithium-ion secondary battery negative electrode configured using said lithium-ion secondary battery negative electrode producing resin composition, and lithium-ion secondary battery provided with said lithium-ion secondary battery negative electrode
JP7150799B2 (en) * 2020-11-19 2022-10-11 プライムプラネットエナジー&ソリューションズ株式会社 Non-aqueous electrolyte secondary battery
WO2024053691A1 (en) * 2022-09-09 2024-03-14 東レ株式会社 Porous film and composite film

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3371839B2 (en) * 1998-02-05 2003-01-27 株式会社デンソー Method for producing lithium secondary battery and electrode for lithium secondary battery
JP4716149B2 (en) * 2008-12-25 2011-07-06 Dic株式会社 Polyimide resin, curable polyimide resin composition and cured product
JP2012003918A (en) * 2010-06-16 2012-01-05 Sanyo Electric Co Ltd Negative electrode for lithium secondary battery and lithium secondary battery
CN102383222B (en) * 2010-09-01 2013-05-01 江西先材纳米纤维科技有限公司 Blended polyimide nanofiber and application thereof to battery diaphragm
US9178198B2 (en) * 2012-06-01 2015-11-03 Samsung Sdi Co., Ltd. Separator for rechargeable lithium battery and rechargeable lithium battery including the same
JP2015065163A (en) * 2013-08-30 2015-04-09 Tdk株式会社 Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP6096701B2 (en) * 2014-03-28 2017-03-15 富士フイルム株式会社 All-solid secondary battery, solid electrolyte composition and battery electrode sheet used therefor, method for producing battery electrode sheet, and method for producing all-solid secondary battery

Also Published As

Publication number Publication date
TW201826594A (en) 2018-07-16
WO2018105338A1 (en) 2018-06-14

Similar Documents

Publication Publication Date Title
KR101620675B1 (en) Polyimide precursor solution, polyimide precursor, polyimide resin, mixture slurry, electrode, mixture slurry production method, and electrode formation method
JP5130273B2 (en) Non-aqueous secondary battery negative electrode and method for producing the same
JP5684620B2 (en) Nonaqueous secondary battery binder resin composition, nonaqueous secondary battery negative electrode, and nonaqueous secondary battery
KR101355288B1 (en) Binder composition for electrically storage device electrode
WO2016125718A1 (en) Binder resin for lithium secondary battery electrode, electrode for lithium secondary battery, and lithium secondary battery
JP6442607B2 (en) Solid electrolyte composition, electrode sheet for all-solid-state secondary battery, all-solid-state secondary battery, electrode sheet for all-solid-state secondary battery, and method for producing all-solid-state secondary battery
TWI721071B (en) Resin composition, binder composition, slurry, filler-containing resin film, electrode for secondary battery, electrode for capacitor, method of producing filler-containing resin film, method of producing electrode for secondary battery, method of producing electrode for capacitor, secondary battery and capacitor
JPWO2018105338A1 (en) Binder composition for power storage element, slurry composition for power storage element, electrode, electrode manufacturing method, secondary battery, and electric double layer capacitor
CN110809607B (en) Resin composition, laminate, method for producing same, electrode, secondary battery, and electric double layer capacitor
JP6520496B2 (en) Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
KR20210059436A (en) Aqueous polyamic acid composition
JP7246182B2 (en) Secondary battery and porous separator for secondary battery
TWI409839B (en) An electrochemical capacitor electrode, a composition for the electrode, and a method for manufacturing the same, and an electrochemical capacitor using the same
JP2011142068A (en) Resin precursor for binder, resin precursor solution, and binder composition
JP6520497B2 (en) Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2019096401A (en) Binder for lithium ion secondary battery production, and lithium ion secondary battery using the same
TW202130700A (en) Resin composition, laminate and method for producing the same, electrode, and power storage device
WO2011071106A1 (en) Negative electrode for secondary battery and secondary battery equipped with same, and resin precursor for binder, resin precursor solution and binder composition for use in production of secondary battery
WO2021090656A1 (en) Active material having surface coat layer, electrode comprising same, and electricity storage device
JP2022151684A (en) Slurry composition, electrode, and secondary battery and electric double layer capacitor including the electrode