JPWO2018101134A1 - Non-aqueous electrolyte battery electrode binder composition, hydrogel using the same, slurry composition for non-aqueous electrolyte battery electrode using the same, non-aqueous electrolyte battery negative electrode, and non-aqueous electrolyte battery - Google Patents

Non-aqueous electrolyte battery electrode binder composition, hydrogel using the same, slurry composition for non-aqueous electrolyte battery electrode using the same, non-aqueous electrolyte battery negative electrode, and non-aqueous electrolyte battery Download PDF

Info

Publication number
JPWO2018101134A1
JPWO2018101134A1 JP2018553802A JP2018553802A JPWO2018101134A1 JP WO2018101134 A1 JPWO2018101134 A1 JP WO2018101134A1 JP 2018553802 A JP2018553802 A JP 2018553802A JP 2018553802 A JP2018553802 A JP 2018553802A JP WO2018101134 A1 JPWO2018101134 A1 JP WO2018101134A1
Authority
JP
Japan
Prior art keywords
electrolyte battery
electrode
hydrogel
binder composition
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018553802A
Other languages
Japanese (ja)
Inventor
有紀 太田
俊充 田中
良太 小宮
俊相 趙
秀治 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Publication of JPWO2018101134A1 publication Critical patent/JPWO2018101134A1/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Manufacturing & Machinery (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本発明は、α−オレフィン類とマレイン酸類とが共重合したα−オレフィン−マレイン酸類共重合体の中和塩および架橋剤を含有する非水電解質電池電極用バインダー組成物、並びにそれを用いた非水電解質電池電極用スラリー組成物、非水電解質電池負極、及び非水電解質電池等に関する。The present invention relates to a binder composition for a nonaqueous electrolyte battery electrode containing a neutralized salt of an α-olefin-maleic acid copolymer obtained by copolymerizing an α-olefin and maleic acid, and a crosslinking agent, and the same. The present invention relates to a slurry composition for a nonaqueous electrolyte battery electrode, a nonaqueous electrolyte battery negative electrode, a nonaqueous electrolyte battery, and the like.

Description

本発明は、非水電解質電池電極用バインダー組成物およびそれを原料とするハイドロゲル、並びにそれを用いた非水電解質電池電極用スラリー組成物、非水電解質電池負極、及び非水電解質電池に関する。   The present invention relates to a binder composition for a non-aqueous electrolyte battery electrode, a hydrogel using the same as a raw material, a slurry composition for a non-aqueous electrolyte battery electrode using the binder composition, a non-aqueous electrolyte battery negative electrode, and a non-aqueous electrolyte battery.

近年、携帯電話、ノート型パソコン、パッド型情報端末機器などの携帯端末の普及が著しい。これら携帯端末の電源に用いられている二次電池には、リチウムイオン二次電池が多用されている。携帯端末は、より快適な携帯性が求められるため、小型化、薄型化、軽量化、高性能化が急速に進み、様々な場で利用されるようになった。この動向は現在も続いており、携帯端末に使用される電池にも、小型化、薄型化、軽量化、高性能化がさらに要求されている。   In recent years, mobile terminals such as mobile phones, notebook computers, and pad-type information terminal devices have been widely used. Lithium ion secondary batteries are frequently used as secondary batteries used for the power sources of these portable terminals. Since portable terminals are required to have more comfortable portability, miniaturization, thinning, weight reduction, and high performance have rapidly progressed and have come to be used in various places. This trend continues today, and batteries used in portable terminals are further required to be smaller, thinner, lighter, and higher in performance.

リチウムイオン二次電池等の非水電解質電池は、正極と負極とをセパレーターを介して設置し、LiPF、LiBF LiTFSI(リチウム(ビストリフルオロメチルスルホニルイミド))、LiFSI(リチウム(ビスフルオロスルホニルイミド))のようなリチウム塩をエチレンカーボネート等の有機液体に溶解させた電解液と共に容器内に収納した構造を有する。A non-aqueous electrolyte battery such as a lithium ion secondary battery has a positive electrode and a negative electrode installed via a separator, and LiPF 6 , LiBF 4 LiTFSI (lithium (bistrifluoromethylsulfonylimide)), LiFSI (lithium (bisfluorosulfonylimide). )) And a lithium salt dissolved in an organic liquid such as ethylene carbonate in a container.

上記負極および正極は、通常、バインダーおよび増粘剤を水に溶解、または分散させ、これに活物質、必要に応じて導電助剤(導電付与剤)などを混合して得られる電極用スラリー(以下、単にスラリーということがある)を集電体に塗布して、水を乾燥することにより、混合層として結着させて形成される。より具体的には、例えば、負極は、活物質であるリチウムイオン吸蔵・放出可能な炭素質材料、および、必要に応じて導電助剤のアセチレンブラックなどを、銅などの集電体に二次電池電極用バインダーにより相互に結着させたものである。一方、正極は、活物質であるLiCoOなど、および、必要に応じて負極と同様の導電助剤を、アルミニウムなどの集電体に二次電池電極用バインダーを用いて相互に結着させたものである。The negative electrode and the positive electrode are usually obtained by dissolving or dispersing a binder and a thickener in water and mixing an active material, a conductive aid (conductivity imparting agent) and the like with this, Hereinafter, it may be simply formed as a mixed layer by coating the current collector on the current collector and drying the water. More specifically, for example, for the negative electrode, a carbonaceous material capable of occluding and releasing lithium ions, which is an active material, and, if necessary, acetylene black, a conductive auxiliary agent, are secondary to a current collector such as copper. They are bound together by a binder for battery electrodes. On the other hand, for the positive electrode, LiCoO 2 that is an active material and, if necessary, a conductive aid similar to that of the negative electrode are bound to a current collector such as aluminum using a secondary battery electrode binder. Is.

これまで、水媒体用のバインダーとして、スチレン−ブタジエンゴムなどのジエン系ゴムやポリアクリル酸などのアクリル系が使用されている(例えば、特許文献1および2)。増粘剤としては、メチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロポキシセルロース、カルボキシメチルセルロース・ナトリウム塩(CMC−Na)、ポリアクリル酸ソーダなどが挙げられるが、この中でCMC−Naがよく用いられている(例えば、特許文献3)。   Up to now, diene rubbers such as styrene-butadiene rubber and acrylics such as polyacrylic acid have been used as binders for aqueous media (for example, Patent Documents 1 and 2). Examples of the thickener include methylcellulose, ethylcellulose, hydroxyethylcellulose, hydroxypropoxycellulose, carboxymethylcellulose sodium salt (CMC-Na), sodium polyacrylate, etc. Among them, CMC-Na is often used. (For example, patent document 3).

しかしながら、スチレン−ブタジエンゴムなどのジエン系ゴムは、銅などの金属集電極との接着性が低く、集電極と電極材の密着性を高めるために使用量を下げることが出来ないという問題がある。また、充放電時に発生する熱に対して弱く、容量維持率が低いという問題もある。一方で、ポリアクリル酸ソーダでは、スチレン−ブタジエンゴム系よりも高い接着性を示すが、電気抵抗が高く、更に、電極が固くなり靱性に乏しくなるため、電極が容易に割れるという課題がある。最近では、携帯端末の使用時間の延長や充電時間の短縮などの要望が高まり、電池の高容量化(低抵抗化)、寿命(サイクル特性)、充電速度(レート特性)の向上が急務となっているなか、特に障害となっている。   However, diene rubbers such as styrene-butadiene rubber have low adhesion to metal collectors such as copper, and there is a problem that the amount used cannot be reduced in order to increase the adhesion between the collector and the electrode material. . In addition, there is a problem that the capacity maintenance rate is low due to weakness against heat generated during charging and discharging. On the other hand, polyacrylic acid soda exhibits higher adhesion than styrene-butadiene rubber, but has a problem that the electrode is easily cracked because the electric resistance is high and the electrode becomes harder and less tough. Recently, demands for extending the usage time of mobile devices and shortening charging time have increased, and there is an urgent need to improve battery capacity (low resistance), life (cycle characteristics), and charging speed (rate characteristics). In particular, it is an obstacle.

非水電解質電池において、電池容量は活物質の量に影響されるため、電池という限られた空間内で活物質を増加させるには、バインダーおよび増粘剤の量を抑えることが有効である。また、レート特性についても、電子の移動の容易さに影響されるため、非導電性で電子の移動を妨げるバインダーおよび増粘剤の量を抑えることが有効である。しかしながら、バインダーおよび増粘剤の量を少なくすると、集電極と電極材および電極内の活物質間の結着性が低下し、長時間の使用に対する耐久性(電池寿命)が著しく低下するだけでなく、電極として脆いものとなってしまう。このように、これまで、集電極と電極材の結着性を保持し、電極としての靱性を保持したまま電池容量などの電池特性の向上を図ることは困難であった。   In the nonaqueous electrolyte battery, since the battery capacity is affected by the amount of the active material, it is effective to suppress the amount of the binder and the thickener in order to increase the active material in a limited space of the battery. Moreover, since the rate characteristics are also affected by the ease of electron movement, it is effective to suppress the amount of binder and thickener that are non-conductive and prevent electron movement. However, if the amount of the binder and the thickener is reduced, the binding property between the collector electrode and the electrode material and the active material in the electrode is lowered, and the durability (battery life) for long-term use is significantly reduced. However, the electrode becomes brittle. Thus, it has been difficult to improve battery characteristics such as battery capacity while maintaining the binding property between the collector electrode and the electrode material and maintaining the toughness as an electrode.

本発明は上記課題事情に鑑みてなされたものであり、バインダーとしての機能、すなわち、電極としての靱性を損なうことなく、非水電解質電池における電池特性の向上を図ることを目的とする。   This invention is made | formed in view of the said subject situation, and aims at improving the battery characteristic in a nonaqueous electrolyte battery, without impairing the function as a binder, ie, the toughness as an electrode.

さらに、本発明は、活物質間および集電極との結着性を損なうことなく、非水電解質電池における電池特性の向上を図ることを別の目的とする。   Furthermore, another object of the present invention is to improve battery characteristics in a non-aqueous electrolyte battery without impairing the binding properties between the active materials and the collector electrode.

特開2000−67917号公報JP 2000-67917 A 特開2008−288214号公報JP 2008-288214 A 特開2014−13693号公報Japanese Patent Application Laid-Open No. 2014-13693

本発明者らは、上記課題を解決すべく鋭意研究した結果、下記構成の非水電解質電池電極用バインダー組成物を使用することで、上記目的を達することを見出し、この知見に基づいて更に検討を重ねることによって本発明を完成した。   As a result of diligent research to solve the above problems, the present inventors have found that the above object can be achieved by using a binder composition for a nonaqueous electrolyte battery electrode having the following constitution, and further investigation based on this finding Thus, the present invention was completed.

すなわち、本発明の一局面に係る非水電解質電池電極用バインダー組成物(以下、単にバインダー組成物とも称す)は、α−オレフィン類とマレイン酸類とが共重合したα−オレフィン−マレイン酸類共重合体の中和塩をポリアミン類で架橋した構造を含有する非水電解質電池電極用バインダー組成物であって、前記バインダー組成物を10重量%含有する水溶液の25℃且つずり速度40s−1における粘度が1800mPa・s〜15000mPa・sであることを特徴とする。That is, the binder composition for a non-aqueous electrolyte battery electrode according to one aspect of the present invention (hereinafter, also simply referred to as a binder composition) is an α-olefin-maleic acid copolymer obtained by copolymerizing an α-olefin and a maleic acid. Viscosity at 25 ° C. and shear rate of 40 s −1 of an aqueous solution containing 10% by weight of the binder composition, which is a binder composition for a non-aqueous electrolyte battery electrode containing a structure obtained by crosslinking a neutralized salt of a coal with a polyamine Is 1800 mPa · s to 15000 mPa · s.

以下、本発明の実施形態について詳細に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, although embodiment of this invention is described in detail, this invention is not limited to these.

本実施形態の非水電解質電池電極用バインダー組成物は、α−オレフィン類とマレイン酸類とが共重合したα−オレフィン−マレイン酸類共重合体の中和塩をポリアミン類で架橋した構造を含有する非水電解質電池電極用バインダー組成物であって、前記バインダー組成物を10重量%含有する水溶液の25℃且つずり速度40s−1における粘度が1800mPa・s〜15000mPa・sであることを特徴とする。The binder composition for a nonaqueous electrolyte battery electrode according to this embodiment has a structure in which a neutralized salt of an α-olefin-maleic acid copolymer obtained by copolymerizing an α-olefin and a maleic acid is crosslinked with a polyamine. A binder composition for a non-aqueous electrolyte battery electrode, wherein an aqueous solution containing 10% by weight of the binder composition has a viscosity of 1800 mPa · s to 15000 mPa · s at 25 ° C. and a shear rate of 40 s −1 . .

このような構成によれば、結着性と靱性を備えた非水電解質電池電極用バインダー組成物を得ることができ、さらにそれを用いて、非水電解質電池の電池特性の向上を実現することができる。   According to such a configuration, a binder composition for a non-aqueous electrolyte battery electrode having binding properties and toughness can be obtained, and further, improvement of battery characteristics of the non-aqueous electrolyte battery can be realized using the binder composition. Can do.

本実施形態において、α−オレフィン類とマレイン酸類とが共重合したα−オレフィン−マレイン酸類共重合体は、α−オレフィンに基づく単位(A)とマレイン酸類に基づく単位(B)とからなる。(A)および(B)の各成分は(A)/(B)(モル比)が1/1〜1/3を満足することが好ましい。また、平均分子量が10,000〜500,000である線状ランダム共重合体であることが好ましい。   In this embodiment, the α-olefin-maleic acid copolymer obtained by copolymerization of α-olefins and maleic acids is composed of units (A) based on α-olefins and units (B) based on maleic acids. The components (A) and (B) preferably satisfy (A) / (B) (molar ratio) of 1/1 to 1/3. Moreover, it is preferable that it is a linear random copolymer whose average molecular weight is 10,000-500,000.

本実施形態において、α−オレフィン類に基づく単位(A)とは一般式−CHCR−(式中、RおよびRは同じであっても互いに異なっていてもよく、水素、炭素数1〜10のアルキル基またはアルケニル基を表わす)で示される構成を意味する。また本実施形態で使用するα−オレフィンとは、α位に炭素−炭素不飽和二重結合を有する直鎖状または分岐状のオレフィンである。特に、炭素数2〜12とりわけ2〜8のオレフィンが好ましい。使用し得る代表的な例としては、エチレン、プロピレン、n−ブチレン、イソブチレン、n−ペンテン、イソプレン、2−メチル−1−ブテン、3−メチル−1−ブテン、n−ヘキセン、2−メチル−1−ペンテン、3−メチル−1−ペンテン、4−メチル−1−ペンテン、2−エチル−1−ブテン、1,3−ペンタジエン、1,3−ヘキサジエン、2,3−ジメチルブタジエン、2,5−ペンタジエン、1,4−ヘキサジエン、2,2,4−トリメチル−1−ペンテン、スチレン、α−メチルスチレン、パラメチルスチレン、メチルビニルエーテル、エチルビニルエーテル等が挙げられる。この中でも特に、入手性、重合成、生成物の安定性という観点から、イソブチレンが好ましい。ここでイソブチレンとは、イソブチレンを主成分として含む混合物、例えば、BB留分(C4留分)をも包含する。これ等のオレフィン類は単独で用いても2種以上組合せて用いても良い。In this embodiment, the unit (A) based on α-olefins is represented by the general formula —CH 2 CR 1 R 2 — (wherein R 1 and R 2 may be the same or different from each other, hydrogen Represents an alkyl or alkenyl group having 1 to 10 carbon atoms). The α-olefin used in the present embodiment is a linear or branched olefin having a carbon-carbon unsaturated double bond at the α-position. In particular, olefins having 2 to 12 carbon atoms, particularly 2 to 8 carbon atoms are preferred. Representative examples that may be used include ethylene, propylene, n-butylene, isobutylene, n-pentene, isoprene, 2-methyl-1-butene, 3-methyl-1-butene, n-hexene, 2-methyl- 1-pentene, 3-methyl-1-pentene, 4-methyl-1-pentene, 2-ethyl-1-butene, 1,3-pentadiene, 1,3-hexadiene, 2,3-dimethylbutadiene, 2,5 -Pentadiene, 1,4-hexadiene, 2,2,4-trimethyl-1-pentene, styrene, α-methylstyrene, paramethylstyrene, methyl vinyl ether, ethyl vinyl ether and the like. Among these, isobutylene is particularly preferable from the viewpoints of availability, polysynthesis, and product stability. Here, the isobutylene includes a mixture containing isobutylene as a main component, for example, a BB fraction (C4 fraction). These olefins may be used alone or in combination of two or more.

本実施形態において、マレイン酸類に基づく単位(B)としては、無水マレイン酸、マレイン酸、マレイン酸モノエステル(例えば、マレイン酸メチル、マレイン酸エチル、マレイン酸プロピル、マレイン酸フェニル等)、マレイン酸ジエステル(例えば、マレイン酸ジメチル、マレイン酸ジエチル、マレイン酸ジプロピル、マレイン酸ジフェニル等)等の無水マレイン酸誘導体、マレイン酸イミドまたはそのN−置換誘導体(例えば、マレイン酸イミド、N−メチルマレイミド、N−エチルマレイミド、N−プロピルマレイミド、N−n−ブチルマレイミド、N−t−ブチルマレイミド、N−シクロヘキシルマレイミド等のN−置換アルキルマレイミドN−フエニルマレイミド、N−メチルフエニルマレイミド、N−エチルフエニルマレイミド等のN−置換アルキルフエニルマレイミド、あるいはN−メトキシフエニルマレイミド、N−エトキシフエニルマレイミド等のN−置換アルコキシフエニルマレイミド)、更にはこれ等のハロゲン化物(例えばN−クロルフエニルマレイミド)、無水シトラコン酸、シトラコン酸、シトラコン酸モノエステル(例えば、シトラコン酸メチル、シトラコン酸エチル、シトラコン酸プロピル、シトラコン酸フェニル等)、シトラコン酸ジエステル(例えば、シトラコン酸ジメチル、シトラコン酸ジエチル、シトラコン酸ジプロピル、シトラコン酸ジフェニル等)等の無水シトラコン酸誘導体、シトラコン酸イミドまたはそのN−置換誘導体(例えば、シトラコン酸イミド、2−メチル−N−メチルマレイミド、2−メチル−N−エチルマレイミド、2−メチル−N−プロピルマレイミド、2−メチル−N−n−ブチルマレイミド、2−メチル−N−t−ブチルマレイミド、2−メチル−N−シクロヘキシルマレイミド等のN−置換アルキルマレイミド2−メチル−N−フエニルマレイミド、2−メチル−N−メチルフエニルマレイミド、2−メチル−N−エチルフエニルマレイミド等の2−メチル−N−置換アルキルフエニルマレイミド、あるいは2−メチル−N−メトキシフエニルマレイミド、2−メチル−N−エトキシフエニルマレイミド等の2−メチル−N−置換アルコキシフエニルマレイミド)、更にはこれ等のハロゲン化物(例えば2−メチル−N−クロルフエニルマレイミド)が好ましく挙げられる。これらの中では、入手性、重合速度、分子量調整の容易さという観点から、無水マレイン酸の使用が好ましい。また、これらのマレイン酸類は単独で使用しても、複数を混合して使用してもよい。マレイン酸類は、上述のように、アルカリ塩により中和され、生成したカルボン酸およびカルボン酸塩は、1,2−ジカルボン酸または塩の形を形成する。この形は、正極より溶出する重金属を補足する機能を有する。   In the present embodiment, maleic anhydride, maleic acid, maleic acid monoester (for example, methyl maleate, ethyl maleate, propyl maleate, phenyl maleate, etc.), maleic acid, as the unit (B) based on maleic acids Maleic anhydride derivatives such as diesters (eg, dimethyl maleate, diethyl maleate, dipropyl maleate, diphenyl maleate, etc.), maleic imides or N-substituted derivatives thereof (eg maleic imide, N-methylmaleimide, N N-substituted alkylmaleimide such as ethylmaleimide, N-propylmaleimide, Nn-butylmaleimide, Nt-butylmaleimide, N-cyclohexylmaleimide, N-methylphenylmaleimide, N-ethyl Phenyl male N-substituted alkylphenylmaleimide such as N-substituted alkoxyphenylmaleimide such as N-methoxyphenylmaleimide and N-ethoxyphenylmaleimide), and further halides thereof (for example, N-chlorophenyl) Maleimide), citraconic anhydride, citraconic acid, citraconic acid monoester (eg, methyl citraconic acid, ethyl citraconic acid, propyl citraconic acid, phenyl citraconic acid, etc.), citraconic acid diester (eg, dimethyl citraconic acid, diethyl citraconic acid, citraconic acid) Citraconic anhydride derivatives such as dipropyl acid, diphenyl citraconic acid, etc., citraconic acid imide or N-substituted derivatives thereof (for example, citraconic acid imide, 2-methyl-N-methylmaleimide, 2-methyl-N-ethylmaleic acid) N-substituted alkylmaleimides such as 2-methyl-N-propylmaleimide, 2-methyl-Nn-butylmaleimide, 2-methyl-Nt-butylmaleimide, 2-methyl-N-cyclohexylmaleimide 2-methyl-N-substituted alkylphenylmaleimide such as methyl-N-phenylmaleimide, 2-methyl-N-methylphenylmaleimide, 2-methyl-N-ethylphenylmaleimide, or 2-methyl-N- Methoxyphenylmaleimide, 2-methyl-N-substituted alkoxyphenylmaleimide such as 2-methyl-N-ethoxyphenylmaleimide), and further halides thereof (for example, 2-methyl-N-chlorophenylmaleimide) Is preferred. Among these, use of maleic anhydride is preferable from the viewpoint of availability, polymerization rate, and ease of molecular weight adjustment. These maleic acids may be used alone or in combination. Maleic acids are neutralized with alkali salts as described above, and the resulting carboxylic acid and carboxylic acid salt form a 1,2-dicarboxylic acid or salt form. This form has a function of capturing heavy metals eluted from the positive electrode.

本実施形態の共重合体における上記各構造単位の含有割合は、(A)/(B)がモル比で1/1〜1/3の範囲内にあるのが望ましい。水に溶解する高分子量体としての親水性、水溶性、金属やイオンへの親和性という利点が得られるからである。特に、(A)/(B)のモル比にあっては1/1またはそれに近い値であることが望ましく、その場合にはα−オレフィンに基づく単位、すなわち−CHCR−で示される単位と、マレイン酸類に基づく単位が交互に繰り返された構造を有する共重合体となる。As for the content rate of each said structural unit in the copolymer of this embodiment, it is desirable for (A) / (B) to exist in the range of 1 / 1-1 / 3 by molar ratio. This is because the advantages of hydrophilicity, water solubility, and affinity for metals and ions as a high molecular weight substance that dissolves in water can be obtained. In particular, the molar ratio of (A) / (B) is desirably 1/1 or a value close thereto, in which case the unit based on α-olefin, that is, —CH 2 CR 1 R 2 — A copolymer having a structure in which the units shown and units based on maleic acids are alternately repeated is obtained.

本実施形態の共重合体を得るための、α−オレフィン類及びマレイン酸類の仕込み混合比は目的とする共重合体の組成により変わるが、マレイン酸類モル数の1〜3倍モル数のα−オレフィンを用いるのがマレイン酸類の反応率を高めるために有効である。   The charge mixing ratio of α-olefins and maleic acids for obtaining the copolymer of the present embodiment varies depending on the composition of the target copolymer, but the α-olefin is 1 to 3 times the number of moles of maleic acids. Use of olefin is effective for increasing the reaction rate of maleic acids.

本実施形態の共重合体を製造する方法については、特に限定はなく、例えば、ラジカル重合により共重合体を得ることができる。その際、使用する重合触媒としてはアゾビスイソブチロニトリル、1,1−アゾビスシクロヘキサン−1−カルボニトリル等のアゾ触媒、ベンンゾイルパーオキサイド、ジクミルパ−オキサイド等の有機過酸化物触媒が好ましい。前記重合触媒の使用量は、マレイン酸類に対し0.1〜5モル%となる範囲を必要とするが、好ましくは0.5〜3モル%である。重合触媒およびモノマーの添加方法として重合初期にまとめて添加しても良いが、重合の進行にあわせて遂次添加する方法が望ましい。   The method for producing the copolymer of the present embodiment is not particularly limited, and for example, the copolymer can be obtained by radical polymerization. In this case, the polymerization catalyst used is an azo catalyst such as azobisisobutyronitrile, 1,1-azobiscyclohexane-1-carbonitrile, or an organic peroxide catalyst such as benzoyl peroxide or dicumyl peroxide. preferable. The amount of the polymerization catalyst used is required to be in the range of 0.1 to 5 mol% with respect to maleic acids, but is preferably 0.5 to 3 mol%. As a method for adding the polymerization catalyst and the monomer, they may be added all at the beginning of the polymerization, but it is desirable to add them sequentially as the polymerization proceeds.

本実施形態の共重合体の製造方法において、分子量の調節は主にモノマー濃度、触媒使用量、重合温度によって適宜行なうことができる。例えば、分子量を低下させる物質として周期律表第I、IIまたはIII族の金属の塩、水酸化物、第IV族の金属のハロゲン化物、一般式N≡、HN=、HN−もしくはHN−で示されるアミン類、酢酸アンモニウム、尿素等の窒素化合物、あるいはメルカプタン類等を、重合の初期または重合の進行中に添加することによって共重体の分子量を調節することも可能である。重合温度は40℃〜150℃であることが好ましく、特に60℃〜120℃の範囲であることがより好ましい。重合温度が高すぎると生成する共重合物がブロック状になり易く、また重合圧力が著しく高くなるおそれがある。重合時間は、通常1〜24時間程度であることが好ましく、より好ましくは2〜10時間である。重合溶媒の使用量は、得られる共重合物濃度が5〜40重量%あることが好ましく、より好ましくは10〜30重量%となる様に調節することが望ましい。In the method for producing a copolymer of this embodiment, the molecular weight can be appropriately adjusted mainly depending on the monomer concentration, the amount of catalyst used, and the polymerization temperature. For example, as a substance for reducing the molecular weight, a metal salt of Group I, II or III of the periodic table, a hydroxide, a halide of a Group IV metal, a general formula N≡, HN =, H 2 N— or H It is also possible to adjust the molecular weight of the copolymer by adding an amine represented by 4 N-, a nitrogen compound such as ammonium acetate or urea, or a mercaptan during the polymerization or during the polymerization. The polymerization temperature is preferably 40 ° C to 150 ° C, more preferably 60 ° C to 120 ° C. If the polymerization temperature is too high, the resulting copolymer tends to be in a block form, and the polymerization pressure may be significantly increased. The polymerization time is usually preferably about 1 to 24 hours, more preferably 2 to 10 hours. The amount of the polymerization solvent used is preferably adjusted so that the concentration of the obtained copolymer is 5 to 40% by weight, more preferably 10 to 30% by weight.

上述したように、本実施形態の共重合体は、通常、10,000〜500,000の平均分子量を有することが好ましい。より好ましい平均分子量は、15,000〜450,000である。本実施形態の共重合体の平均分子量が10,000未満となると、結晶性が高く、粒子間の接着強度が小さくなるおそれがある。一方、500,000を超えると、水や溶媒への溶解度が小さくなり、容易に析出する場合がある。   As described above, it is preferable that the copolymer of the present embodiment usually has an average molecular weight of 10,000 to 500,000. A more preferred average molecular weight is 15,000-450,000. When the average molecular weight of the copolymer of this embodiment is less than 10,000, the crystallinity is high and the adhesive strength between particles may be low. On the other hand, when it exceeds 500,000, the solubility in water or a solvent becomes small, and it may precipitate easily.

本実施形態の共重合体の平均分子量は、例えば、光散乱法や粘度法によって測定することができる。粘度法を用いて、ジメチルホルムアミド中の極限粘度(〔η〕)を測定した場合、本実施形態の共重合体は極限粘度が0.05〜1.5の範囲にあることが好ましい。なお、本実施形態の共重合体は通常16〜60メッシュ程度の粒のそろった粉末状で得られる。   The average molecular weight of the copolymer of this embodiment can be measured by, for example, a light scattering method or a viscosity method. When the intrinsic viscosity ([η]) in dimethylformamide is measured using a viscosity method, the copolymer of this embodiment preferably has an intrinsic viscosity in the range of 0.05 to 1.5. The copolymer of the present embodiment is usually obtained in the form of a powder having a grain size of about 16 to 60 mesh.

本実施形態において、共重合体の中和塩とは、マレイン酸類から生成するカルボニル酸の活性水素が、塩基性物質と反応し、塩を形成して中和物となっているものであることが好ましい。本実施形態で使用するα−オレフィン−マレイン酸類共重合体の中和物においては、バインダーとしての結着性の観点から前記塩基性物質として、一価の金属を含む塩基性物質及びアンモニアのいずれか又は両方を使用することが好ましい。すなわち本実施形態のα−オレフィン−マレイン酸類共重合体の中和塩は、α−オレフィン−マレイン酸類の一価の金属を含む塩基性物質との中和塩もしくはα−オレフィン−マレイン酸類のアンモニアとの中和塩またはこれらの混合物であることが好ましい。   In this embodiment, the neutralized salt of a copolymer is a neutralized product in which active hydrogen of carbonyl acid generated from maleic acids reacts with a basic substance to form a salt. Is preferred. In the neutralized product of α-olefin-maleic acid copolymer used in the present embodiment, any one of a basic substance containing a monovalent metal and ammonia is used as the basic substance from the viewpoint of binding properties as a binder. It is preferred to use either or both. That is, the neutralized salt of the α-olefin-maleic acid copolymer of the present embodiment is a neutralized salt with a basic substance containing a monovalent metal of α-olefin-maleic acid or ammonia of α-olefin-maleic acid. And a neutralized salt thereof or a mixture thereof.

中和度としては特に限定されるものではないが、バインダーとして使用する場合に、電解液との反応性を考慮して、通常、マレイン酸類から生成するカルボン酸1モルに対し、0.3〜1モルの範囲にあることが好ましく、より好ましくは、0.4〜1モルの範囲で、中和されたものを用いることが好ましい。このような中和度であれば、本実施形態のバインダー組成物のpHを所定の範囲に調整することが可能となり、さらに酸性度が低く電解液分解抑制という利点がある。   The degree of neutralization is not particularly limited, but when used as a binder, considering the reactivity with the electrolytic solution, it is usually 0.3 to 1 mol of carboxylic acid produced from maleic acids. It is preferably in the range of 1 mol, and more preferably, a neutralized one in the range of 0.4 to 1 mol is used. With such a neutralization degree, it is possible to adjust the pH of the binder composition of the present embodiment to a predetermined range, and further, there is an advantage that the acidity is low and the electrolytic solution decomposition is suppressed.

本実施形態において、中和度は、塩基による適定、赤外線スペクトル、NMRスペクトルなどの方法を用いることができるが、簡便且つ正確に中和点を測定するには、塩基による滴定を行うことが好ましい。具体的な滴定の方法としては、特に限定されるものではないが、イオン交換水等の不純物の少ない水に溶解して、水酸化リチウム、水酸化ナトリウム、水酸化カリウムなどの塩基性物質により、中和を行うことによって実施できる。中和点の指示薬としては、特に限定するものではないが、塩基によりpH指示するフェノールフタレインなどの指示薬を使用することが出来る。   In this embodiment, the degree of neutralization can be determined by a method such as titration with a base, an infrared spectrum, or an NMR spectrum. To measure the neutralization point simply and accurately, titration with a base can be performed. preferable. The specific titration method is not particularly limited, but it can be dissolved in water with little impurities such as ion-exchanged water, and a basic substance such as lithium hydroxide, sodium hydroxide, potassium hydroxide, It can be carried out by neutralization. The indicator for the neutralization point is not particularly limited, but an indicator such as phenolphthalein whose pH is indicated by a base can be used.

本実施形態において、前記塩基性物質の使用量は、特に制限されるものではなく、使用目的等により適宜選択されるが、通常、マレイン酸類共重合体中のマレイン酸単位1モル当り0.1〜2モルとなる量であることが好ましい。このような使用量であれば、本実施形態のバインダー組成物のpHを所定の範囲に調整することが可能となると考えられる。なお、一価の金属を含む塩基性物質の使用量を、好ましくは、マレイン酸共重合体中のマレイン酸単位1モル当り0.6〜2.0モル、より好ましくは0.7〜2.0モルとなる量とすると、アルカリ残留の少なく水溶性の共重合体塩を得ることができる。   In the present embodiment, the amount of the basic substance used is not particularly limited and is appropriately selected depending on the purpose of use and the like, but is usually 0.1 per mole of maleic acid units in the maleic acid copolymer. The amount is preferably ˜2 mol. If it is such usage-amount, it will be possible to adjust pH of the binder composition of this embodiment to the predetermined range. In addition, the usage-amount of the basic substance containing a monovalent metal becomes like this. Preferably, it is 0.6-2.0 mol per mol of maleic acid units in a maleic acid copolymer, More preferably, it is 0.7-2. When the amount is 0 mol, a water-soluble copolymer salt with little alkali residue can be obtained.

α−オレフィン−マレイン酸類共重合体と、塩基性物質との反応は、常法に従って実施できるが、水の存在下に実施し、α−オレフィン−マレイン酸類共重合体の中和物を水溶液として得る方法が簡便であり、好ましい。   The reaction between the α-olefin-maleic acid copolymer and the basic substance can be carried out according to a conventional method, but is carried out in the presence of water, and the neutralized product of the α-olefin-maleic acid copolymer is used as an aqueous solution. The method to obtain is simple and preferable.

本実施形態で使用可能な一価の金属を含む塩基性物質としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウムなどのアルカリ金属の水酸化物;炭酸ナトリウム、炭酸カリウムなどのアルカリ金属の炭酸塩;酢酸ナトリウム、酢酸カリウムなどのアルカリ金属の酢酸塩;リン酸三ナトリウムなどのアルカリ金属のリン酸塩等が挙げられる。   Examples of basic substances containing monovalent metals that can be used in the present embodiment include hydroxides of alkali metals such as sodium hydroxide, potassium hydroxide, and lithium hydroxide; alkali metals such as sodium carbonate and potassium carbonate. Carbonates of alkali metals such as sodium acetate and potassium acetate; phosphates of alkali metals such as trisodium phosphate, and the like.

アンモニア等のアミン類としては、アンモニア、メチルアミン、エチルアミン、ブチルアミン、オクチルアミンなどの1級アミン、ジメチルアミン、ジエチルアミン、ジブチルアミンなどの2級アミン、トリメチルアミン、トリエチルアミン、トリブチルアミンなどの3級アミン等が挙げられる。これらの中でもアンモニア、水酸化リチウム、水酸化ナトリウム、水酸化カリウムが前記塩基性物質として好ましい。特に、リチウムイオン二次電池用のバインダーとしては、アンモニア、水酸化リチウムの使用が好ましい。一価の金属を含む塩基性物質および/またはアンモニアは単独で使用してもよいし、2種以上を組み合わせて使用してもよい。また電池性能に悪影響を及ぼさない範囲内であれば、水酸化ナトリウムなどのアルカリ金属の水酸化物などを含有する塩基性物質を併用して、α−オレフィン−マレイン酸類共重合体の中和物を調製してもよい。   Examples of amines such as ammonia include primary amines such as ammonia, methylamine, ethylamine, butylamine and octylamine, secondary amines such as dimethylamine, diethylamine and dibutylamine, and tertiary amines such as trimethylamine, triethylamine and tributylamine. Is mentioned. Among these, ammonia, lithium hydroxide, sodium hydroxide, and potassium hydroxide are preferable as the basic substance. In particular, it is preferable to use ammonia or lithium hydroxide as a binder for a lithium ion secondary battery. The basic substance containing monovalent metal and / or ammonia may be used alone or in combination of two or more. Moreover, if it is in the range which does not have a bad influence on battery performance, the basic substance containing alkali metal hydroxides, such as sodium hydroxide, is used together, and the neutralized product of alpha-olefin-maleic acid copolymer May be prepared.

上述したようなα−オレフィン類とマレイン酸類とが共重合したα−オレフィン−マレイン酸類共重合体の中和塩を含むことにより、本実施形態のバインダー組成物を用いた非水電解質電池は電気特性に非常に優れている。   By including a neutralized salt of an α-olefin-maleic acid copolymer obtained by copolymerizing an α-olefin and maleic acid as described above, the non-aqueous electrolyte battery using the binder composition of the present embodiment is electrically Excellent properties.

次に、本実施形態のバインダー組成物は、さらに架橋剤を含有する。架橋剤を含むことにより、バインダー組成物に接着性及び靱性を付与することができる。そして、本実施形態のバインダー組成物は、架橋剤としてポリアミン類を含む。すなわち、本実施形態のバインダー組成物は、上述したようなα−オレフィン−マレイン酸類共重合体の中和塩をポリアミン類で架橋した構造を有している。   Next, the binder composition of this embodiment further contains a crosslinking agent. By including a crosslinking agent, adhesiveness and toughness can be imparted to the binder composition. And the binder composition of this embodiment contains polyamines as a crosslinking agent. That is, the binder composition of this embodiment has a structure in which a neutralized salt of an α-olefin-maleic acid copolymer as described above is crosslinked with a polyamine.

本実施形態で使用される架橋剤としてのポリアミン類としては、電気化学的に安定であれば限定なくどのようなポリアミン類でも使用できるが、例えば、分子量500以上のポリアミン類高分子量体が挙げられる。   Any polyamine can be used as the cross-linking agent used in the present embodiment without limitation as long as it is electrochemically stable, and examples thereof include polyamines having a molecular weight of 500 or more. .

ポリアミン類高分子量体の具体例としてはアミノ基含有ポリマーが挙げられ、その好ましい具体例として、例えば、ポリエチレンイミン、ポリテトラメチレンイミン、ポリビニルアミン、ポリアリルアミン、ポリジアリルアミン、ポリジメチルアリルアミン、ジシアンジアミド−ホルマリン縮合物、ジシアンジアミド−アルキレン(ポリアミン)縮合物等が挙げられる。これらは単独で使用しても、複数を使用しても構わない。入手性、経済性を考慮して、ポリエチレンイミン(PEI)、ポリアリルアミン、ポリジアリルアミンの使用が好ましい。   Specific examples of the high molecular weight polyamines include amino group-containing polymers, and preferred specific examples thereof include polyethyleneimine, polytetramethyleneimine, polyvinylamine, polyallylamine, polydiallylamine, polydimethylallylamine, dicyandiamide-formalin. Examples include condensates and dicyandiamide-alkylene (polyamine) condensates. These may be used alone or in combination. In view of availability and economy, it is preferable to use polyethyleneimine (PEI), polyallylamine, or polydiallylamine.

これらのポリアミン類の分子量は特に限定されるものではなく、平均分子量として500〜50000の範囲、より好ましくは、1000〜30000の範囲、最も好ましくは1500〜25000の範囲である。ポリアミン類の添加量としては、特に限定されるものではないが、通常、α−オレフィン−マレイン酸類共重合体(固形分)100重量部に対して、0.05重量部から30重量部、より好ましくは、0.3重量部〜10重量部の範囲、最も好ましくは0.6〜5重量部の範囲である。ポリアミン類の添加量が0.05重量部から30重量部の範囲であれば、得られるバインダー組成物の粘度を所望の範囲に調整しやすいと考えられる。また、多すぎる添加量は、抵抗成分が増加するため好ましくなく、少なすぎる添加量は、接着性及び靱性を付与できないため好ましくない。   The molecular weight of these polyamines is not particularly limited, and the average molecular weight is in the range of 500 to 50000, more preferably in the range of 1000 to 30000, and most preferably in the range of 1500 to 25000. The addition amount of the polyamines is not particularly limited, but is usually 0.05 to 30 parts by weight with respect to 100 parts by weight of the α-olefin-maleic acid copolymer (solid content). Preferably, it is in the range of 0.3 to 10 parts by weight, most preferably in the range of 0.6 to 5 parts by weight. If the amount of polyamine added is in the range of 0.05 to 30 parts by weight, it is considered that the viscosity of the resulting binder composition can be easily adjusted to a desired range. Moreover, an excessively large addition amount is not preferable because the resistance component increases, and an excessively small addition amount is not preferable because adhesion and toughness cannot be imparted.

本実施形態において、ポリアミン類は、α−オレフィン−マレイン酸類共重合体と一価の金属を含む塩基性物質を反応させると同時に添加することもできるし、α−オレフィン−マレイン酸類共重合体と一価の金属を含む塩基性物質を反応させた後に添加することもできる。   In the present embodiment, the polyamines can be added simultaneously with the reaction of the α-olefin-maleic acid copolymer and a basic substance containing a monovalent metal, or the α-olefin-maleic acid copolymer and It can also be added after reacting a basic substance containing a monovalent metal.

次に、本実施形態において、共重合体の開環率とは、マレイン酸類として無水マレイン酸を用いた場合の、α−オレフィン類と重合する無水マレイン酸類部位の加水分解率を表す。本実施形態の共重合体において、好ましい開環率は、60〜100%であり、より好ましくは、70%〜100%、更に好ましくは、80〜100%である。開環率が低すぎると、共重合体の構造的自由度が小さくなり、伸縮性に乏しくなるため、接着する極材粒子を接着する力が小さくなるおそれがあり、好ましくない。さらに、水に対する親和性が低く、溶解性が乏しいという問題点を生じるおそれがある。開環率は、例えば、無水マレイン酸のα位に位置する水素を基準として、開環したマレイン酸のα位の水素を1H−NMRで測定して比率を求めることも出来るし、マレイン酸のカルボニル基と開環した無水マレイン酸に由来するカルボニル基をIR測定によって比率を決定することも出来る。   Next, in this embodiment, the ring-opening rate of the copolymer represents the hydrolysis rate of the maleic anhydride sites that polymerize with α-olefins when maleic anhydride is used as the maleic acid. In the copolymer of the present embodiment, a preferable ring opening rate is 60 to 100%, more preferably 70% to 100%, and still more preferably 80 to 100%. If the ring-opening rate is too low, the structural freedom of the copolymer becomes small and the stretchability becomes poor, so that the force for adhering the electrode material particles to be bonded may be small, which is not preferable. Furthermore, there is a possibility that problems such as low affinity for water and poor solubility may occur. The ring-opening rate can be determined, for example, by measuring the hydrogen at the α-position of maleic acid opened by 1H-NMR with reference to the hydrogen at the α-position of maleic anhydride. The ratio of the carbonyl group derived from the carbonyl group and the ring-opened maleic anhydride can also be determined by IR measurement.

また、本実施形態において、マレイン酸類が無水マレイン酸である場合、共重合体の中和塩とは、無水マレイン酸の開環で生成したカルボニル酸の活性水素が、上述したような塩基性物質と反応し、塩を形成して中和物となっているものである。この場合の中和度としては、特に限定されるものではないが、バインダーとして使用する場合に、電解液との反応性を考慮して、開環により生成するカルボニル基1モルに対し、0.2〜0.8モルの範囲であることが好ましく、より好ましくは、0.4〜0.7モルの範囲で、中和されたものを用いることが好ましい。このような中和度であれば、酸性度が低く電解液分解抑制という利点がある。なお、無水マレイン酸を用いた場合の共重合体の中和度は、上述した方法と同様の方法により測定することができる。   In this embodiment, when the maleic acid is maleic anhydride, the neutralized salt of the copolymer means that the active hydrogen of the carbonyl acid generated by the ring opening of maleic anhydride is a basic substance as described above. It forms a salt by forming a salt. In this case, the degree of neutralization is not particularly limited. However, when used as a binder, considering the reactivity with the electrolytic solution, the degree of neutralization is 0. The range is preferably 2 to 0.8 mol, and more preferably neutralized within the range of 0.4 to 0.7 mol. Such a neutralization degree has the advantage of low acidity and suppression of electrolyte decomposition. The degree of neutralization of the copolymer when maleic anhydride is used can be measured by the same method as described above.

また、上述したように、本実施形態において、前記バインダー組成物の、前記中和塩を10重量%含有する水溶液は、Brookfield型粘度計による測定で、25℃及びずり速度40s−1における粘度が1800mPa・s〜15000mPa・sである。さらには、前記粘度は2000mPa・s〜12000mPa・sの範囲であることがより好ましい。このような範囲の粘度とすることによって、バインダーの結着性及び靱性を損なうことなく、電池特性の向上を図ることができると考えられる。一方、粘度が1800mPa未満であると後述のスラリーを作製したときの塗布性が悪く、必要な厚みに塗工できない、さらに柔軟性が付与できない可能性がある。また、粘度が12000mPa・sより高いと製造上取扱いが困難になり、さらに活物質や導電助剤と混合する際、均一に混合できない可能性がある。   Further, as described above, in this embodiment, the aqueous solution containing 10% by weight of the neutralized salt of the binder composition has a viscosity at 25 ° C. and a shear rate of 40 s-1 as measured by a Brookfield viscometer. 1800 mPa · s to 15000 mPa · s. Furthermore, the viscosity is more preferably in the range of 2000 mPa · s to 12000 mPa · s. By setting the viscosity in such a range, it is considered that the battery characteristics can be improved without impairing the binding property and toughness of the binder. On the other hand, when the viscosity is less than 1800 mPa, applicability when a slurry described below is produced is poor, and it may not be possible to apply the required thickness, and flexibility may not be imparted. On the other hand, if the viscosity is higher than 12000 mPa · s, handling in production becomes difficult, and further, there is a possibility that uniform mixing cannot be performed when mixing with an active material or a conductive additive.

本実施形態において、前記バインダー組成物水溶液の粘度は、例えば、前記共重合体の分子量や中和度、ポリアミン類の添加量や分子量を調整すること、あるいは、中和(pH)を低く調整してカルボン酸量を増加させたり、増粘剤の添加などによって、前記範囲に調整することが可能であるが、それらに限定はされない。   In this embodiment, the viscosity of the aqueous binder composition solution is adjusted, for example, by adjusting the molecular weight or neutralization degree of the copolymer, the addition amount or molecular weight of polyamines, or by adjusting the neutralization (pH) to be low. The amount can be adjusted to the above range by increasing the amount of carboxylic acid or by adding a thickener, but is not limited thereto.

本実施形態における粘度は、例えば、回転粘度計法によって測定することができる。   The viscosity in this embodiment can be measured by, for example, a rotational viscometer method.

さらに、本実施形態のバインダー組成物はハイドロゲルであることが好ましい。
現在、一般に知られているハイドロゲルを形成するものとしては、例えば、澱粉、カラギーナン、繊維素誘導体、ゼラチン、カゼイン、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリル酸、ポリオキシエチレンオキサイド等の水溶性重合体がある。これらの水溶性重合体を用いるハイドロゲルは保香材、防火材、保温材、保冷材等の用途に広く利用されている。
Furthermore, it is preferable that the binder composition of this embodiment is a hydrogel.
Examples of the currently known hydrogels that are commonly used include water-soluble polymers such as starch, carrageenan, fiber derivatives, gelatin, casein, polyvinyl alcohol, polyvinylpyrrolidone, polyacrylic acid, and polyoxyethylene oxide. There is. Hydrogels using these water-soluble polymers are widely used in applications such as a fragrance material, a fireproof material, a heat insulation material, and a cold insulation material.

しかしながら、これらの水溶性重合体を用いるハイドロゲルは、その製造方法が一般に複雑である。例えば、段階的な温度調節などが必要であったり(特開2013−234280号公報等)、高温下でのゲル化反応を必要であったり、0℃以下の低温でないと安定したハイドロゲルが形成できなかったり、あるいは水溶液のpHを厳密に調整することによりゲル化反応を促進させる必要がある(特開2009−536940号公報等)といった製造方法が主流で、容易にゲル化できるハイドロゲルの製造方法は少ない。また、ハイドロゲルの含水量が多い場合にはゲル化反応が遅いものが多く、短時間で十分に網目構造を形成できず、所望の性能を発現できないこともある。   However, hydrogels using these water-soluble polymers are generally complicated in their production methods. For example, stepwise temperature adjustment is necessary (Japanese Patent Laid-Open No. 2013-234280, etc.), gelation reaction under high temperature is required, or a stable hydrogel is formed when the temperature is not lower than 0 ° C. Production of hydrogel that can be easily gelled is a mainstream production method in which gelation reaction is not possible or it is necessary to promote gelation reaction by strictly adjusting pH of aqueous solution (JP 2009-536940 A, etc.) There are few ways. In addition, when the water content of the hydrogel is high, the gelation reaction is often slow, and the network structure cannot be sufficiently formed in a short time, and the desired performance may not be exhibited.

さらに、本実施形態には、上述したバインダー組成物を原料として、当該バインダー組成物から得られるハイドロゲルも、好ましい態様として含まれる。本実施形態によれば、製造方法が比較的簡易で、二次電池特性の向上を図ることができるハイドロゲルを提供することができる。   Furthermore, the present embodiment includes a hydrogel obtained from the binder composition using the binder composition described above as a raw material. According to this embodiment, it is possible to provide a hydrogel that has a relatively simple manufacturing method and can improve secondary battery characteristics.

本実施形態のハイドロゲルは、上述したようなα−オレフィン類とマレイン酸類とが共重合したα−オレフィン−マレイン酸類共重合体の中和塩をポリアミン類等の架橋剤で架橋した構造を有し、10重量%水溶液の可視光領域(400〜800nm)における透過率が40〜85%の範囲である、ハイドロゲルである。このとき、10重量%水溶液とは、水を含まない固形分としての、ハイドロゲルを形成するバインダー組成物の固形分が10重量%含有されるということを意味する。   The hydrogel of this embodiment has a structure in which a neutralized salt of an α-olefin-maleic acid copolymer obtained by copolymerizing an α-olefin and maleic acid as described above is crosslinked with a crosslinking agent such as polyamines. And it is a hydrogel whose transmittance | permeability in visible light region (400-800 nm) of 10 weight% aqueous solution is the range of 40-85%. At this time, the 10 wt% aqueous solution means that the solid content of the binder composition forming the hydrogel is 10 wt% as a solid content not containing water.

本実施形態において、ハイドロゲルとは、水を主成分とする溶媒を、高分子が架橋して形成された網目構造に取り込んで保持している構造体をさす。本実施形態のハイドロゲルに含まれる溶媒の量は、前記透過率が上述の範囲となる限り、特に限定されない。また、網目構造に取り込まれる溶媒は、本発明の効果に影響が出ない程度に、水に溶解する溶媒や水と混和する溶媒を含んでもいてもよい。なお、網目構造とは、α−オレフィン類とマレイン酸類とが共重合したα−オレフィン−マレイン酸類共重合体を架橋することにより、三次元に張り巡らされた網の目のような構造を意味する。これによりハイドロゲルに柔軟性を与えることができる。   In the present embodiment, the hydrogel refers to a structure in which a solvent containing water as a main component is taken in and held in a network structure formed by crosslinking a polymer. The amount of the solvent contained in the hydrogel of the present embodiment is not particularly limited as long as the transmittance is in the above range. The solvent taken into the network structure may contain a solvent that dissolves in water or a solvent that is miscible with water to the extent that the effects of the present invention are not affected. The network structure means a structure like a network stretched in three dimensions by crosslinking an α-olefin-maleic acid copolymer obtained by copolymerizing α-olefins and maleic acids. To do. Thereby, flexibility can be given to the hydrogel.

また、本実施形態のハイドロゲルは10重量%水溶液の可視光領域(400〜800nm)における透過率が40〜85%の範囲であることが好ましいが、より好ましくは50〜75%の範囲であり、さらに好ましくは45〜70%の範囲である。   The hydrogel of this embodiment preferably has a 10% by weight aqueous solution transmittance in the visible light region (400 to 800 nm) in the range of 40 to 85%, more preferably in the range of 50 to 75%. More preferably, it is in the range of 45 to 70%.

本実施形態において、透過率とは、具体的には例えば、紫外・可視分光光度計を用いて10mmセルにて測定した時の400〜800nmの可視光領域の透過率のことを指す。前記透過率が85%より高いと、網目構造が十分に形成されておらず、ハイドロゲルを形成できない。また、透過率が85%より高い場合、架橋度が低く網目構造が発達していないため電極面内にポリマー鎖が広がらず、混合層中の粒子同士を空間的に決着することができず、結果として電極の柔軟性が低下してしまう。一方、前記透過率が40%より低いと、架橋が進行しすぎて粘度が上昇し、非常に生産性が悪化するため好ましくない。また、透過率が低すぎると、網目構造が発達しすぎてしまい、スラリー作製時の固形分との解砕が十分にできなくなり、バインダー(バインダーとしてのハイドロゲル)が分散しないことによる、接着性・柔軟性の低下が起こり、電池特性の低下の原因となる。   In the present embodiment, the transmittance specifically refers to the transmittance in the visible light region of 400 to 800 nm when measured with a 10 mm cell using an ultraviolet / visible spectrophotometer, for example. If the transmittance is higher than 85%, the network structure is not sufficiently formed and a hydrogel cannot be formed. Further, when the transmittance is higher than 85%, the degree of crosslinking is low and the network structure is not developed, so the polymer chain does not spread in the electrode surface, and the particles in the mixed layer cannot be spatially determined. As a result, the flexibility of the electrode is reduced. On the other hand, if the transmittance is lower than 40%, the crosslinking proceeds excessively, the viscosity increases, and the productivity is extremely deteriorated. Also, if the transmittance is too low, the network structure will develop too much, and it will not be able to be sufficiently disintegrated with the solid content at the time of slurry production, and the binder (hydrogel as binder) will not disperse.・ Deterioration of flexibility occurs, causing deterioration of battery characteristics.

すなわち、本実施形態のハイドロゲルにおいて、10重量%水溶液の可視光領域(400〜800nm)における透過率が40〜85%の範囲であるということは、α−オレフィン−マレイン酸類共重合体の中和塩が適度に架橋されることにより適度な網目構造を有しているということである。このような適度な網目構造を有することにより、通常は必要とされている架橋剤を多量に使用する必要がなくなるという利点がある。一般的に、架橋剤が多く入ると、網目構造による膨潤性増加や架橋剤による抵抗増加といった問題が発生する可能性があるが、本実施形態ではこれらのデメリットは生じないと考えられる。   That is, in the hydrogel of this embodiment, the transmittance in the visible light region (400 to 800 nm) of a 10% by weight aqueous solution is in the range of 40 to 85%. It means that the Japanese salt has an appropriate network structure by being appropriately crosslinked. By having such an appropriate network structure, there is an advantage that it is not necessary to use a large amount of a crosslinking agent which is usually required. In general, when a large amount of a crosslinking agent is added, problems such as an increase in swellability due to the network structure and an increase in resistance due to the crosslinking agent may occur, but it is considered that these disadvantages do not occur in this embodiment.

なお、本実施形態において、ハイドロゲルの透過率は、後述する架橋剤(例えば、ポリアミン類)の種類、分子量、添加量、α−オレフィン−マレイン酸類共重合体の中和塩の中和度の調整といった手段によって調整することができる。   In the present embodiment, the permeability of the hydrogel is determined based on the type of cross-linking agent (for example, polyamines), the molecular weight, the amount added, and the neutralization degree of the neutralized salt of the α-olefin-maleic acid copolymer. It can be adjusted by means such as adjustment.

また、本実施形態のハイドロゲルを得る方法については特に限定はないが、例えば、上述したようなα−オレフィン−マレイン酸類共重合体の中和塩と上述したような架橋剤とを混合し、滴下した後に、60〜90℃程度で1〜8時間加熱撹拌することによって製造することができる。すなわち、本実施形態のバインダー組成物を原料とし、例えばこれを上述のように加熱攪拌することにより得られる。   Further, the method for obtaining the hydrogel of the present embodiment is not particularly limited. For example, a neutralized salt of an α-olefin-maleic acid copolymer as described above and a crosslinking agent as described above are mixed, After dripping, it can manufacture by heat-stirring at about 60-90 degreeC for 1 to 8 hours. That is, it can be obtained by using the binder composition of the present embodiment as a raw material and, for example, heating and stirring it as described above.

本実施形態のハイドロゲルは、固形分として10重量%水溶液とした場合(すなわち水の量が90重量%である場合)の透過率を規定するが、本実施形態における該ハイドロゲル中に含まれる水の量は、本願発明の効果を発揮する限りにおいて、90重量%に限定されるものではない。ハイドロゲル中に含まれる水の量は、好ましくは、3重量%〜20重量%であり、より好ましくは5重量%〜15重量%である。   The hydrogel of the present embodiment defines the transmittance when the solid content is 10% by weight aqueous solution (that is, when the amount of water is 90% by weight), but is included in the hydrogel of the present embodiment. The amount of water is not limited to 90% by weight as long as the effect of the present invention is exhibited. The amount of water contained in the hydrogel is preferably 3% by weight to 20% by weight, more preferably 5% by weight to 15% by weight.

本実施形態のハイドロゲルの原料となるバインダー組成物は、ハイドロゲルを作製するための加熱前の粘度として、上述した本実施形態のバインダー組成物と同様の範囲粘度を有することが好ましく、さらに上記加熱前における10重量%水溶液の25℃且つずり速度40s−1における粘度が2300mPa・s〜15000mPa・sであることが望ましい。前記粘度が低すぎると、網目構造が十分に形成されず、ハイドロゲルを形成できない。前記粘度が高すぎるとスラリーの混練が十分にできず、不安定なスラリーとなるだけでなく電極形成が困難になり、電気抵抗を増加させる原因となる。本実施形態における粘度は、例えば、回転粘度計法によって測定することができる。   The binder composition that is the raw material of the hydrogel of the present embodiment preferably has the same range viscosity as the above-described binder composition of the present embodiment as the viscosity before heating for producing the hydrogel, and further It is desirable that the viscosity at 25 ° C. and the shear rate of 40 s−1 of the 10 wt% aqueous solution before heating is 2300 mPa · s to 15000 mPa · s. When the viscosity is too low, the network structure is not sufficiently formed and a hydrogel cannot be formed. If the viscosity is too high, the slurry cannot be sufficiently kneaded, resulting in an unstable slurry as well as difficult electrode formation, leading to an increase in electrical resistance. The viscosity in this embodiment can be measured by, for example, a rotational viscometer method.

前記非水電解質電池電極用バインダー組成物は多くの場合、水を含有させた状態で続くスラリー組成物の製造に用いられる。この際、前記非水電解質電池電極用バインダー組成物において、粘度調整および製造上の観点から水で希釈してもよいし、ハイドロゲルを解砕してもよい。また、本実施形態のハイドロゲルは続くスラリー組成物の製造に際し、さらに水などの溶媒で希釈して用いられてもよいし、粘度調整のためにハイドロゲル自体を解砕してもよい。   In many cases, the binder composition for a nonaqueous electrolyte battery electrode is used in the production of a slurry composition that continues in a state of containing water. Under the present circumstances, in the said binder composition for nonaqueous electrolyte battery electrodes, you may dilute with water from a viewpoint on viscosity adjustment and manufacture, and you may crush hydrogel. In addition, the hydrogel of this embodiment may be used by further diluting with a solvent such as water in the subsequent production of the slurry composition, or the hydrogel itself may be crushed for viscosity adjustment.

また、本実施形態において架橋したバインダー組成物あるいはハイドロゲルを希釈または解砕する方法としては、均一バインダー組成物水溶液が得ることができれば、特に限定はない。例えば、自転公転型ミキサー、プラネタリーミキサー、遊星ボールミル、ビーズミル等を用いた方法が挙げられる。   In addition, the method for diluting or crushing the crosslinked binder composition or hydrogel in the present embodiment is not particularly limited as long as a uniform binder composition aqueous solution can be obtained. Examples thereof include a method using a rotation / revolution mixer, a planetary mixer, a planetary ball mill, a bead mill, and the like.

本実施形態の非水電解質電池電極用バインダー組成物は、通常、上述のバインダー組成物に加えて、さらに活物質と水とを含有する、非水電解質電池電極用スラリー組成物(以下、単にスラリー組成物とも称する)として使用されることが好ましい。また、本実施形態のハイドロゲルはさらに活物質を含有する非水電解質電池電極用スラリー組成物として使用されることが好ましい。前記ハイドロゲルを含有するスラリー組成物は、作製される際にさらに水を追加で添加されるものであってもよい。   The binder composition for a nonaqueous electrolyte battery electrode of the present embodiment is usually a slurry composition for a nonaqueous electrolyte battery electrode (hereinafter simply referred to as a slurry) which further contains an active material and water in addition to the binder composition described above. It is preferably used as a composition). Moreover, it is preferable that the hydrogel of this embodiment is used as a slurry composition for non-aqueous electrolyte battery electrodes further containing an active material. The slurry composition containing the hydrogel may be additionally added with water when it is produced.

また、本実施形態において非水電解質電池負極は、集電体に、少なくとも本実施形態のバインダー組成物(またはハイドロゲル)および活物質を含む混合層を結着させてなることを特徴とする。この負極は、上述のスラリー組成物を集電体に塗布してから溶媒を乾燥などの方法で除去することにより形成することができる。前記混合層には、必要に応じてさらに増粘剤、導電助剤などを加えることができる。   In the present embodiment, the nonaqueous electrolyte battery negative electrode is characterized in that a current collector is bound with a mixed layer containing at least the binder composition (or hydrogel) of the present embodiment and an active material. This negative electrode can be formed by applying the slurry composition described above to a current collector and then removing the solvent by a method such as drying. If necessary, a thickener, a conductive aid and the like can be added to the mixed layer.

前記非水電解質電池電極用スラリー組成物において、活物質100重量部に対する、α−オレフィン−マレイン酸類共重合体の中和塩の使用量は、通常、0.4〜15重量部であることが好ましく、より好ましくは0.6〜10重量部、さらに好ましくは1〜8重量部である。共重合体の量が過度に少ないとスラリーの粘度が低すぎて混合層の厚みが薄くなるおそれがあり、逆に、共重合体が過度に多いと放電容量が低下する可能性がある。   In the slurry composition for nonaqueous electrolyte battery electrodes, the amount of the neutralized salt of the α-olefin-maleic acid copolymer used relative to 100 parts by weight of the active material is usually 0.4 to 15 parts by weight. More preferably, it is 0.6-10 weight part, More preferably, it is 1-8 weight part. If the amount of the copolymer is too small, the viscosity of the slurry may be too low and the thickness of the mixed layer may be reduced. Conversely, if the amount of the copolymer is excessive, the discharge capacity may be reduced.

一方、上記スラリー組成物における水の量は、活物質100重量部に対し、通常、40〜150重量部であることが好ましく、より好ましくは70〜130重量部である。   On the other hand, the amount of water in the slurry composition is usually preferably 40 to 150 parts by weight, more preferably 70 to 130 parts by weight with respect to 100 parts by weight of the active material.

本実施形態の負極用スラリー組成物における溶媒としては、上記水以外に、例えば、メタノール、エタノール、プロパノール、2−プロパノールなどのアルコール類、テトラヒドロフラン、1,4−ジオキサンなどの環状エーテル類、N,N−ジメチルホルミアミド、N,N−ジメチルアセトアミドなどのアミド類、N−メチルピロリドン、N−エチルピロリドンなどの環状アミド類、ジメチルスルホキシドなどのスルホキシド類などを使用することもできる。これらの中では、安全性という観点から、水の使用が好ましい。   As the solvent in the negative electrode slurry composition of the present embodiment, in addition to the above water, for example, alcohols such as methanol, ethanol, propanol and 2-propanol, cyclic ethers such as tetrahydrofuran and 1,4-dioxane, N, Amides such as N-dimethylformamide and N, N-dimethylacetamide, cyclic amides such as N-methylpyrrolidone and N-ethylpyrrolidone, and sulfoxides such as dimethylsulfoxide can also be used. In these, use of water is preferable from a viewpoint of safety.

また、本実施形態の負極用スラリー組成物の溶媒として水以外にも、次に記す有機溶媒を、溶媒全体の好ましくは20重量%以下となる範囲で併用しても良い。そのような有機溶媒としては、常圧における沸点が100℃以上300℃以下のものが好ましく、例えば、n−ドデカンなどの炭化水素類;2−エチル−1−ヘキサノール、1−ノナノールなどのアルコール類;γ−ブチロラクトン、乳酸メチルなどのエステル類;N−メチルピロリドン、N,N−ジメチルアセトアミド、ジメチルホルムアミドなどのアミド類;ジメチルスルホキシド、スルホランなどのスルホキシド・スルホン類などの有機分散媒が挙げられる。   In addition to water as a solvent for the negative electrode slurry composition of the present embodiment, the following organic solvent may be used in combination within a range of preferably 20% by weight or less of the total solvent. As such an organic solvent, those having a boiling point of 100 ° C. or more and 300 ° C. or less at normal pressure are preferable, for example, hydrocarbons such as n-dodecane; alcohols such as 2-ethyl-1-hexanol and 1-nonanol. Esters such as γ-butyrolactone and methyl lactate; amides such as N-methylpyrrolidone, N, N-dimethylacetamide and dimethylformamide; organic dispersion media such as sulfoxides and sulfones such as dimethyl sulfoxide and sulfolane.

本実施形態のスラリー組成物を負極用に用いる場合、該負極用スラリー組成物に添加される活物質(負極活物質)としては、例えば、アモルファスカーボン、グラファイト、天然黒鉛、メソカーボンマイクロビーズ(MCMB)、ピッチ系炭素繊維などの炭素質材料;ポリアセン等の導電性高分子;SiOx,SnOx,LiTiOxで表される複合金属酸化物やその他の金属酸化物やリチウム金属、リチウム合金などのリチウム系金属;TiS、LiTiSなどの金属化合物などが例示される。When the slurry composition of this embodiment is used for a negative electrode, examples of the active material (negative electrode active material) added to the negative electrode slurry composition include amorphous carbon, graphite, natural graphite, and mesocarbon microbeads (MCMB). ), Carbonaceous materials such as pitch-based carbon fibers; conductive polymers such as polyacene; lithium-based metals such as composite metal oxides represented by SiOx, SnOx, LiTiOx, other metal oxides, lithium metals, and lithium alloys A metal compound such as TiS 2 and LiTiS 2 is exemplified.

本実施形態では、前記スラリー組成物に、必要に応じて、さらに増粘剤を添加することができる。添加できる増粘剤としては、特に限定されるものではなく、種々のアルコール類、特に、ポリビニルアルコールおよびその変性物、セルロース類、でんぷんなどの多糖類を使用することができる。   In this embodiment, a thickener can be further added to the slurry composition as necessary. The thickener that can be added is not particularly limited, and various alcohols, in particular, polyvinyl alcohol and modified products thereof, celluloses, starches, and other polysaccharides can be used.

また、スラリー組成物に必要に応じて配合される導電助剤としては、例えば、金属粉、導電性ポリマー、アセチレンブラックなどが挙げられる。導電助剤の使用量は、負極活物質100重量部に対し、通常、0.1〜10重量部であることが好ましく、より好ましくは0.8〜7重量部である。   Moreover, as a conductive support agent mix | blended with a slurry composition as needed, metal powder, a conductive polymer, acetylene black etc. are mentioned, for example. The amount of the conductive aid used is usually preferably 0.1 to 10 parts by weight, more preferably 0.8 to 7 parts by weight with respect to 100 parts by weight of the negative electrode active material.

本実施形態の非水電解質電池負極に使用される集電体は、導電性材料からなるものであれば特に制限されないが、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などの金属材料を使用することができる。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。   The current collector used for the nonaqueous electrolyte battery negative electrode of the present embodiment is not particularly limited as long as it is made of a conductive material. For example, iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold Metal materials such as platinum can be used. One of these may be used alone, or two or more of these may be used in combination at any ratio.

特に、負極として銅を用いた場合に、本発明の非水電解質電池負極用スラリーの効果が最もよく現れる。集電体の形状は特に制限されないが、通常、厚さ0.001〜0.5mm程度のシート状であることが好ましい。   In particular, when copper is used as the negative electrode, the effect of the slurry for a nonaqueous electrolyte battery negative electrode of the present invention is most apparent. The shape of the current collector is not particularly limited, but usually a sheet shape having a thickness of about 0.001 to 0.5 mm is preferable.

スラリーを集電体へ塗布する方法は、特に制限されない。例えば、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、浸漬法、ハケ塗り法などの方法が挙げられる。塗布する量も特に制限されないが、溶媒または分散媒を乾燥などの方法によって除去した後に形成される活物質、導電助剤、バインダーおよび増粘剤を含む混合層の厚みが好ましくは0.005〜5mm、より好ましくは0.01〜2mmとなる量が一般的である。   The method for applying the slurry to the current collector is not particularly limited. Examples thereof include a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, a dipping method, and a brush coating method. The amount to be applied is not particularly limited, but the thickness of the mixed layer containing the active material, conductive additive, binder and thickener formed after removing the solvent or dispersion medium by a method such as drying is preferably 0.005 to 0.005. An amount of 5 mm, more preferably 0.01 to 2 mm is common.

スラリー組成物に含まれる水などの溶媒の乾燥方法は特に制限されず、例えば温風、熱風、低湿風による通気乾燥;真空乾燥;赤外線、遠赤外線、電子線などの照射線乾燥などが挙げられる。乾燥条件は、応力集中によって活物質層に亀裂が入ったり、活物質層が集電体から剥離しない程度の速度範囲となる中で、できるだけ早く溶媒が除去できるように調整するとよい。更に、電極の活物質の密度を高めるために、乾燥後の集電体をプレスすることは有効である。プレス方法としては、金型プレスやロールプレスなどの方法が挙げられる。   The method for drying a solvent such as water contained in the slurry composition is not particularly limited, and examples thereof include aeration drying with hot air, hot air, and low-humidity air; vacuum drying; drying with infrared rays, far infrared rays, electron beams, and the like. . The drying conditions are preferably adjusted so that the solvent can be removed as soon as possible while the active material layer is cracked by stress concentration or the active material layer does not peel from the current collector. Furthermore, in order to increase the density of the active material of the electrode, it is effective to press the current collector after drying. Examples of the pressing method include a die press and a roll press.

さらに、本発明には、上記負極を有する非水電解質電池も包含される。非水電解質電池には、通常、上記負極と、正極と、電解液が含まれる。   Furthermore, the present invention also includes a nonaqueous electrolyte battery having the negative electrode. The nonaqueous electrolyte battery usually includes the negative electrode, the positive electrode, and an electrolytic solution.

本実施形態では、正極は、リチウムイオン二次電池等の非水電解質電池に通常使用される正極が特に制限なく使用される。例えば、正極活物質としては、TiS、TiS、非晶質MoS、Cu、非晶質VO−P、MoO、V、V13などの遷移金属酸化物やLiCoO、LiNiO、LiMnO、LiMnなどのリチウム含有複合金属酸化物などが使用される。また、正極活物質を、上記負極と同様の導電助剤と、SBR、NBR、アクリルゴム、ヒドロキシエチルセルロース、カルボキシメチルセルロース、ポリフッ化ビニリデンなどのバインダーとを、水や上記の常圧における沸点が100℃以上300℃以下の溶媒などに混合して調製した正極用スラリーを、例えば、アルミニウム等の正極集電体に塗布して溶媒を乾燥させて正極とすることができる。In this embodiment, the positive electrode normally used for nonaqueous electrolyte batteries, such as a lithium ion secondary battery, is especially used for a positive electrode without a restriction | limiting. For example, as the positive electrode active material, TiS 2 , TiS 3 , amorphous MoS 3 , Cu 2 V 2 O 3 , amorphous V 2 O—P 2 O 5 , MoO 3 , V 2 O 5 , V 6 O Transition metal oxides such as 13 and lithium-containing composite metal oxides such as LiCoO 2 , LiNiO 2 , LiMnO 2 , and LiMn 2 O 4 are used. Further, the positive electrode active material is made of a conductive additive similar to that of the negative electrode, and a binder such as SBR, NBR, acrylic rubber, hydroxyethyl cellulose, carboxymethyl cellulose, polyvinylidene fluoride, and the boiling point at 100 ° C. in water or the above normal pressure. The positive electrode slurry prepared by mixing in a solvent of 300 ° C. or lower can be applied to a positive electrode current collector such as aluminum and the solvent can be dried to obtain a positive electrode.

また、本実施形態の非水電解質電池には、電解質を溶媒に溶解させた電解液を使用することができる。電解液は、通常のリチウムイオン二次電池等の非水電解質電池に用いられるものであれば、液状でもゲル状でもよく、負極活物質、正極活物質の種類に応じて電池としての機能を発揮するものを適宜選択すればよい。具体的な電解質としては、例えば、従来より公知のリチウム塩がいずれも使用でき、LiClO、LiBF、LiPF、LiCFSO、LiCFCO、LiAsF、LiSbF、LiB10Cl10、LiAlCl4、LiCl、LiBr、LiB(C、CFSOLi、CHSOLi、LiCFSO、LiCSO、Li(CFSON、低級脂肪族カルボン酸リチウムなどが挙げられる。In the nonaqueous electrolyte battery of this embodiment, an electrolytic solution in which an electrolyte is dissolved in a solvent can be used. The electrolyte solution may be liquid or gel as long as it is used for a non-aqueous electrolyte battery such as a normal lithium ion secondary battery, and functions as a battery depending on the type of the negative electrode active material and the positive electrode active material. What is necessary is just to select suitably. Specific electrolytes, for example, also known lithium salt is any conventionally available, LiClO 4, LiBF 6, LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiB 10 Cl 10 , LiAlC l4, LiCl, LiBr, LiB (C 2 H 5) 4, CF 3 SO 3 Li, CH 3 SO 3 Li, LiCF 3 SO 3, LiC 4 F 9 SO 3, Li (CF 3 SO 2) 2 N And lower aliphatic lithium carboxylates.

このような電解質を溶解させる溶媒(電解液溶媒)は特に限定されるものではない。具体例としてはプロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネートなどのカーボネート類;γ−ブチルラクトンなどのラクトン類;トリメトキシメタン、1,2−ジメトキシエタン、ジエチルエーテル、2−エトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフランなどのエーテル類;ジメチルスルホキシドなどのスルホキシド類;1,3−ジオキソラン、4―メチル−1,3―ジオキソランなどのオキソラン類;アセトニトリルやニトロメタンなどの含窒素化合物類;ギ酸メチル、酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチルなどの有機酸エステル類;リン酸トリエチル、炭酸ジメチル、炭酸ジエチルなどの無機酸エステル類;ジグライム類;トリグライム類;スルホラン類;3−メチル−2−オキサゾリジノンなどのオキサゾリジノン類;1,3−プロパンスルトン、1,4−ブタンスルトン、ナフタスルトンなどのスルトン類などが挙げられ、これらは単独もしくは二種以上混合して使用できる。ゲル状の電解液を用いるときは、ゲル化剤としてニトリル系重合体、アクリル系重合体、フッ素系重合体、アルキレンオキサイド系重合体などを加えることができる。   A solvent (electrolyte solvent) for dissolving such an electrolyte is not particularly limited. Specific examples include carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, and diethyl carbonate; lactones such as γ-butyllactone; trimethoxymethane, 1,2-dimethoxyethane, diethyl ether, and 2-ethoxyethane. Ethers such as tetrahydrofuran, 2-methyltetrahydrofuran; sulfoxides such as dimethyl sulfoxide; oxolanes such as 1,3-dioxolane, 4-methyl-1,3-dioxolane; nitrogen-containing compounds such as acetonitrile and nitromethane; formic acid Organic acid esters such as methyl, methyl acetate, ethyl acetate, butyl acetate, methyl propionate and ethyl propionate; inorganic acid esters such as triethyl phosphate, dimethyl carbonate and diethyl carbonate Terigres; diglymes; triglymes; sulfolanes; oxazolidinones such as 3-methyl-2-oxazolidinone; sultones such as 1,3-propane sultone, 1,4-butane sultone, naphtha sultone, and the like. Alternatively, two or more kinds can be mixed and used. When a gel electrolyte is used, a nitrile polymer, an acrylic polymer, a fluorine polymer, an alkylene oxide polymer, or the like can be added as a gelling agent.

本実施形態の非水電解質電池を製造する方法としては、特に限定はないが、例えば、次の製造方法が例示される。すなわち、負極と正極とを、ポリプロピレン多孔膜などのセパレーターを介して重ね合わせ、電池形状に応じて巻く、折るなどして、電池容器に入れ、電解液を注入して封口する。電池の形状は、公知のコイン型、ボタン型、シート型、円筒型、角型、扁平型など何れであってもよい。   Although there is no limitation in particular as a method of manufacturing the nonaqueous electrolyte battery of this embodiment, For example, the following manufacturing method is illustrated. That is, the negative electrode and the positive electrode are overlapped with each other via a separator such as a polypropylene porous membrane, wound or folded according to the shape of the battery, put into a battery container, injected with an electrolyte, and sealed. The shape of the battery may be any known coin type, button type, sheet type, cylindrical type, square type, flat type, and the like.

本実施形態の非水電解質電池は、接着性と電池特性の向上を両立させた電池であり、様々な用途に有用である。例えば、小型化(軽量化、薄型化など)、高性能化(高出力化、高容量化、低抵抗化、長寿命化など)の要求される携帯端末に使用される電池としても非常に有用である。   The nonaqueous electrolyte battery of this embodiment is a battery that achieves both improved adhesion and improved battery characteristics, and is useful for various applications. For example, it is very useful as a battery for portable terminals that require miniaturization (light weight, thinning, etc.) and high performance (high output, high capacity, low resistance, long life, etc.). It is.

本明細書は、上述したように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。   As described above, the present specification discloses various modes of technology, of which the main technologies are summarized below.

すなわち、本発明の一局面に係る非水電解質電池電極用バインダー組成物(以下、単にバインダー組成物とも称す)は、α−オレフィン類とマレイン酸類とが共重合したα−オレフィン−マレイン酸類共重合体の中和塩をポリアミン類で架橋した構造を含有する非水電解質電池電極用バインダー組成物であって、前記バインダー組成物を10重量%含有する水溶液の25℃且つずり速度40s−1における粘度が1800mPa・s〜15000mPa・sであることを特徴とする。That is, the binder composition for a non-aqueous electrolyte battery electrode according to one aspect of the present invention (hereinafter, also simply referred to as a binder composition) is an α-olefin-maleic acid copolymer obtained by copolymerizing an α-olefin and a maleic acid. Viscosity at 25 ° C. and shear rate of 40 s −1 of an aqueous solution containing 10% by weight of the binder composition, which is a binder composition for a non-aqueous electrolyte battery electrode containing a structure obtained by crosslinking a neutralized salt of a coal with a polyamine Is 1800 mPa · s to 15000 mPa · s.

このような構成により、活物質間および集電極との結着性と電極としての靱性を損なうことなく、電池特性の向上を図ることができると考えられる。   With such a configuration, it is considered that the battery characteristics can be improved without impairing the binding property between the active materials and the collector electrode and the toughness as the electrode.

また、前記バインダー組成物から得られる、10重量%水溶液の可視光領域(400〜800nm)における透過率が40〜85%の範囲であるハイドロゲルであることが好ましい。   Moreover, it is preferable that it is a hydrogel whose transmittance | permeability in the visible region (400-800 nm) of 10 weight% aqueous solution obtained from the said binder composition is the range of 40-85%.

本実施形態では、上述したような構成により、三次元的な網目構造が発達し、且つ透明なハイドロゲルを提供することができ、これを用いることにより電池特性(低抵抗性)及び機能性(柔軟性)に優れるハイドロゲルをも提供することができる。また、本発明のハイドロゲルは比較的簡易な製造方法によって得ることができるという利点も有する。   In the present embodiment, a three-dimensional network structure is developed with the configuration as described above, and a transparent hydrogel can be provided. By using this, battery characteristics (low resistance) and functionality ( A hydrogel excellent in flexibility) can also be provided. Further, the hydrogel of the present invention has an advantage that it can be obtained by a relatively simple production method.

また、本発明のさらに他の局面に係る非水電解質電池電極用スラリー組成物は、上記バインダー組成物と活物質を含有することを特徴とする。   Moreover, the slurry composition for nonaqueous electrolyte battery electrodes which concerns on the further another situation of this invention contains the said binder composition and an active material, It is characterized by the above-mentioned.

本発明のさらに他の局面に係る非水電解質電池電極用スラリー組成物は、上記ヒドロゲルと活物質とを含有することを特徴とする。   A slurry composition for a nonaqueous electrolyte battery electrode according to still another aspect of the present invention is characterized by containing the hydrogel and an active material.

本発明のさらに他の局面に係る非水電解質電池負極は、集電体に、上記非水電解質電池電極用バインダー組成物と、活物質とを少なくとも含有する混合層を結着してなることを特徴とする。   A non-aqueous electrolyte battery negative electrode according to still another aspect of the present invention is formed by binding a current collector to a mixed layer containing at least the binder composition for a non-aqueous electrolyte battery electrode and an active material. Features.

本発明のさらに他の局面に係る非水電解質電池負極は、集電体に、上記ヒドロゲルと、活物質とを少なくとも含有する混合層を結着してなることを特徴とする。   A nonaqueous electrolyte battery negative electrode according to still another aspect of the present invention is characterized in that a mixed layer containing at least the hydrogel and an active material is bound to a current collector.

また、本発明のさらに他の局面に係る非水電解質電池は、上記非水電解質電池負極を有することを特徴とする。   A nonaqueous electrolyte battery according to still another aspect of the present invention includes the nonaqueous electrolyte battery negative electrode.

以下、本発明の実施例について説明するが、本発明はこれらに限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited thereto.

<試験例1>
(実施例1)
<バインダー組成物の調製>
水溶性のリチウム変性イソブテン−無水マレイン酸共重合樹脂(平均分子量325,000、中和度0.5、開環率96%)を用い、10重量%水溶液を調製して以下の試験で用いた。pHの調整は、共重合樹脂の中和度を調整することで行い、具体的には、水酸化リチウムをマレイン酸類共重合体中のマレイン酸単位に対し1当量(0.16mol)添加することによって行った。
<Test Example 1>
Example 1
<Preparation of binder composition>
Using a water-soluble lithium-modified isobutene-maleic anhydride copolymer resin (average molecular weight 325,000, neutralization degree 0.5, ring-opening rate 96%), a 10% by weight aqueous solution was prepared and used in the following tests. . The pH is adjusted by adjusting the degree of neutralization of the copolymer resin. Specifically, 1 equivalent (0.16 mol) of lithium hydroxide is added to the maleic acid unit in the maleic acid copolymer. Went by.

上記樹脂10重量%水溶液500gに架橋剤としてポリエチレンイミン(PEI、平均分子量10,000、日本触媒製)の10重量%水溶液5gを、0.5ml/minで滴下し、60℃、7時間加熱撹拌した。その後、室温まで冷却しバインダー組成物を含有するバインダー水溶液として用いた。   5 g of a 10% by weight aqueous solution of polyethyleneimine (PEI, average molecular weight 10,000, manufactured by Nippon Shokubai Co., Ltd.) as a crosslinking agent was added dropwise to 500 g of the 10% by weight aqueous solution of the resin at 0.5 ml / min, and the mixture was heated and stirred at 60 ° C. for 7 hours. did. Then, it cooled to room temperature and used as binder aqueous solution containing a binder composition.

<負極用バインダー組成物の粘度の測定>
Brookfield型粘度計(DV−I PRIMEブルックフィールド社製)を用いて25℃で、上記で得られたバインダー組成物10重量%水溶液(バインダー水溶液)の粘度の測定を行った。ずり速度40s−1の時の粘度結果を下記表1に示す。
<Measurement of viscosity of binder composition for negative electrode>
Using a Brookfield viscometer (DV-I PRIME manufactured by Brookfield), the viscosity of the 10% by weight aqueous solution (binder aqueous solution) of the binder composition obtained above was measured at 25 ° C. The viscosity results at a shear rate of 40 s −1 are shown in Table 1 below.

<バインダー液の希釈>
上記で作製した10重量%のバインダー液(バインダー水溶液)に当量の水を加え、遊星攪拌器(ARE−250、シンキー製)を用いて希釈を行い、5重量%のバインダー組成物を得た。
<Dilution of binder liquid>
An equivalent amount of water was added to the 10% by weight binder solution (binder aqueous solution) prepared above, and diluted with a planetary stirrer (ARE-250, manufactured by Shinky Corp.) to obtain a 5% by weight binder composition.

<負極用スラリーの作製>
電極用スラリー作製は負極用活物質として天然黒鉛(DMGS、BYD製)100重量部に対して、負極用バインダー組成物の5重量%水溶液を固形分として6.452重量部、および導電助剤(導電付与剤)としてSuper−P(ティムカル社製)を固形分として1.075重量部を専用容器に投入し、遊星攪拌器(ARE−250、シンキー製)を用いて混練し、電極塗工用スラリーを作製した。スラリー中の活物質とバインダーの組成比は固形分として、黒鉛粉末:導電助剤:バインダー組成物=100:1.075:6.452である。
<Preparation of slurry for negative electrode>
The slurry for the electrode was prepared by using 6.452 parts by weight of a 5% by weight aqueous solution of the binder composition for the negative electrode as a solid content with respect to 100 parts by weight of natural graphite (DMGS, manufactured by BYD) as the negative electrode active material, and a conductive auxiliary agent ( Super-P (manufactured by Timcal Co., Ltd.) as a conductivity imparting agent) 1.075 parts by weight as a solid content is put into a dedicated container, kneaded using a planetary stirrer (ARE-250, manufactured by Sinky), and used for electrode coating A slurry was prepared. The composition ratio of the active material and the binder in the slurry is, as a solid content, graphite powder: conducting aid: binder composition = 100: 1.075: 6.452.

<電池用負極の作製>
得られたスラリーを、バーコーター(T101、松尾産業製)を用いて集電体の銅箔(CST8G、福田金属箔粉工業製)上に塗工し、室温(24.5℃)で一次乾燥後、ロールプレス(宝泉製)を用いて圧延処理を行なった。その後、電池用電極(φ14mm)として打ち抜き後、140℃で3時間減圧条件の二次乾燥によってコイン電池用電極(電池用負極)を作製した。
<Preparation of negative electrode for battery>
The obtained slurry was coated on a current collector copper foil (CST8G, manufactured by Fukuda Metal Foil Co., Ltd.) using a bar coater (T101, manufactured by Matsuo Sangyo), and then primary dried at room temperature (24.5 ° C). Then, the rolling process was performed using the roll press (made by Hosen). Then, after punching out as a battery electrode (φ14 mm), a coin battery electrode (battery negative electrode) was produced by secondary drying under reduced pressure conditions at 140 ° C. for 3 hours.

<剥離強度、靱性試験用電極の作製>
得られたスラリーを、バーコーター(T101、松尾産業製)を用いて集電体の銅箔(CST8G、福田金属箔粉工業製)上に塗工し、室温(24.5℃)で一次乾燥後、ロールプレス(宝泉製)を用いて圧延処理を行なった電極(膜厚約50μm)を用いて試験を行った。
<Preparation of peel strength and toughness test electrode>
The obtained slurry was coated on a current collector copper foil (CST8G, manufactured by Fukuda Metal Foil Co., Ltd.) using a bar coater (T101, manufactured by Matsuo Sangyo), and then primary dried at room temperature (24.5 ° C). Then, it tested using the electrode (film thickness of about 50 micrometers) which performed the rolling process using the roll press (made by Hosen).

<電極の靱性試験>
電極の靭性の評価はJIS K5600−5−1(塗料一般試験方法−第5部:塗膜の機械的性質−第1節:耐屈曲性(円筒形マンドレル法))のタイプ1の試験装置を用いて行った。電極割れの確認を目視で行ったところ、本試験での最小径2mmでも割れが生じなかった。そこで、1.5mm、1.0mm、0.8mm、0.5mmのSUS棒(SUS304Wire ニラコ製)を用意し、電極巻き付け試験を行った。割れが生じなかった最小のSUS径の結果を下記表1に示す。
<Electrode toughness test>
Evaluation of electrode toughness is based on JIS K5600-5-1 (General coating test method-Part 5: Mechanical properties of coating film-Section 1: Bending resistance (cylindrical mandrel method)) of type 1 test equipment. Used. When the electrode crack was visually confirmed, no crack was observed even at the minimum diameter of 2 mm in this test. Therefore, 1.5 mm, 1.0 mm, 0.8 mm, and 0.5 mm SUS bars (manufactured by SUS304Wire Nilaco) were prepared, and an electrode winding test was performed. Table 1 below shows the results of the minimum SUS diameter in which no cracks occurred.

<電極の剥離強度測定>
集電極である銅箔から電極を剥離したときの強度を測定した。当該剥離強度は、50Nのロードセル(株式会社イマダ製)を用いて180°剥離強度を測定した。上記で得られた電池用塗工電極のスラリー塗布面とステンレス板とを両面テープ(ニチバン製両面テープ)を用いて貼り合わせ、180°剥離強度(剥離幅10mm、剥離速度100mm/min)を測定した。上記結果を下記表1に示す。
<Measurement of peel strength of electrode>
The strength when the electrode was peeled off from the copper foil as the collecting electrode was measured. The peel strength was measured at 180 ° peel strength using a 50N load cell (manufactured by Imada Co., Ltd.). The slurry-coated surface of the battery-coated electrode obtained above and a stainless steel plate were bonded together using a double-sided tape (double-faced tape made by Nichiban), and the 180 ° peel strength (peel width 10 mm, peel rate 100 mm / min) was measured. did. The results are shown in Table 1 below.

<電池の作製>
上記で得られた電池用塗工電極(電池用負極)をアルゴンガス雰囲気下のグローブボックス(美和製作所製)に移送した。正極には金属リチウム箔(厚さ0.2mm、φ16mm)を用いた。また、セパレーターとしてポリプロピレン系(セルガード#2400、ポリポア製)を使用して、電解液は六フッ化リン酸リチウム(LiPF)のエチレンカーボネート(EC)とエチルメチルカーボネート(EMC)にビニレンカーボネート(VC)を添加した混合溶媒系(1M−LiPF、EC/EMC=3/7vol%、VC2重量%)を用いて注入し、コイン電池(2032タイプ)を作製した。
<Production of battery>
The battery coated electrode (battery negative electrode) obtained above was transferred to a glove box (manufactured by Miwa Seisakusho) under an argon gas atmosphere. A metal lithium foil (thickness 0.2 mm, φ16 mm) was used for the positive electrode. In addition, a polypropylene system (Celgard # 2400, manufactured by Polypore) is used as a separator, and the electrolyte is vinyl carbonate (VC) in ethylene carbonate (EC) and ethyl methyl carbonate (EMC) of lithium hexafluorophosphate (LiPF 6 ). ) Was added using a mixed solvent system (1M-LiPF 6 , EC / EMC = 3/7 vol%, VC 2 wt%) to prepare a coin battery (2032 type).

<評価方法:充放電特性試験>
作製したコイン電池は、市販充放電試験機(TOSCAT3100、東洋システム製)を用いて充放電試験を実施した。コイン電池を25℃の恒温槽に置き、充電はリチウム電位に対して0Vになるまで活物質量に対して0.1C(約0.5mA/cm)の定電流充電を行い、更にリチウム電位に対して0.02mAの電流まで0Vの定電圧充電を実施した。このときの容量を充電容量(mAh/g)とした。次いで、リチウム電位に対して0.1C(約0.5mA/cm)の定電流放電を1.5Vまで行い、このときの容量を放電容量(mAh/g)とした。初期放電容量と充電容量差を不可逆容量、放電容量/充電容量の百分率を充放電効率とした。コイン電池の直流抵抗は、1回の充電を行った後(満充電状態)の抵抗値を採用した。上記結果を下記表1に示す。
<Evaluation method: charge / discharge characteristic test>
The produced coin battery was subjected to a charge / discharge test using a commercially available charge / discharge tester (TOSCAT3100, manufactured by Toyo System). The coin battery is placed in a constant temperature bath at 25 ° C., and charging is performed with a constant current of 0.1 C (about 0.5 mA / cm 2 ) with respect to the amount of active material until the voltage reaches 0 V with respect to the lithium potential. On the other hand, the constant voltage charge of 0V was implemented to the electric current of 0.02 mA. The capacity at this time was defined as a charging capacity (mAh / g). Next, a constant current discharge of 0.1 C (about 0.5 mA / cm 2 ) was performed up to 1.5 V with respect to the lithium potential, and the capacity at this time was defined as a discharge capacity (mAh / g). The difference between the initial discharge capacity and the charge capacity was taken as the irreversible capacity, and the percentage of the discharge capacity / charge capacity was taken as the charge / discharge efficiency. As the direct current resistance of the coin battery, a resistance value after being charged once (fully charged state) was adopted. The results are shown in Table 1 below.

(実施例2)
実施例1で用いた樹脂と架橋剤(PEI)を用いて、樹脂の10重量%水溶液:PEIの10重量%水溶液=99.7:0.3となるように、実施例1と同様の方法によってバインダー組成物の調製を行った。ずり速度40s−1の時の粘度結果を下記表1に示す。
(Example 2)
Using the resin and the crosslinking agent (PEI) used in Example 1, the same method as in Example 1 so that 10% by weight aqueous solution of resin: 10% by weight aqueous solution of PEI = 99.7: 0.3 The binder composition was prepared by The viscosity results at a shear rate of 40 s −1 are shown in Table 1 below.

電極用スラリー作製は負極用活物質として天然黒鉛(DMGS、BYD製)100重量部に対して、負極用バインダー組成物の10重量%水溶液を固形分として6.452重量部、および導電助剤(導電付与剤)としてSuper−P(ティムカル社製)を固形分として1.075重量部を専用容器に投入し、遊星攪拌器(ARE−250、シンキー製)を用いて混練し、電極塗工用スラリー(負極用スラリー)を作製した。スラリー中の活物質とバインダーの組成比は固形分として、黒鉛粉末:導電助剤:バインダー組成物=100:1.075:6.452である。   The electrode slurry preparation is 6.452 parts by weight of a 10% by weight aqueous solution of the binder composition for the negative electrode as a solid content with respect to 100 parts by weight of natural graphite (DMGS, manufactured by BYD) as the negative electrode active material, and a conductive additive ( Super-P (manufactured by Timcal Co., Ltd.) as a conductivity imparting agent) 1.075 parts by weight as a solid content is put into a dedicated container, kneaded using a planetary stirrer (ARE-250, manufactured by Sinky), and used for electrode coating A slurry (slurry for negative electrode) was prepared. The composition ratio of the active material and the binder in the slurry is, as a solid content, graphite powder: conducting aid: binder composition = 100: 1.075: 6.452.

上記実施例1と同様の方法によって塗工負極(電池用負極)を作製し、コイン電池を得て、充放電特性試験を行った。また塗工電極(剥離強度、靱性試験用電極)を用いて、靱性試験及び剥離強度測定を行った。結果を下記表1に示す。   A coated negative electrode (battery negative electrode) was prepared in the same manner as in Example 1 to obtain a coin battery, and a charge / discharge characteristic test was performed. In addition, a toughness test and a peel strength measurement were performed using a coated electrode (peel strength, electrode for toughness test). The results are shown in Table 1 below.

(実施例3)
実施例1で用いた樹脂とPEIを用いて、樹脂の10重量%水溶液:PEIの10重量%水溶液=98:2となるように、実施例1と同様の方法によってバインダー組成物の調製を行った。ずり速度40s−1の時の粘度結果を下記表1に示す。その後、実施例1と同様の方法によってバインダー組成物を希釈し、5重量%のバインダー組成物を得た。次に、非水電解質電池電極用スラリー(負極用スラリー)を上記実施例1と同様の方法によって作製した。さらに、上記実施例1と同様の方法によって塗工負極を作製し、コイン電池を得て、充放電特性試験を行った。また塗工電極を用いて、靱性試験及び剥離強度測定を行った。結果を下記表1に示す。
(Example 3)
Using the resin and PEI used in Example 1, a binder composition was prepared in the same manner as in Example 1 so that the resin was 10% by weight aqueous solution: PEI 10% by weight aqueous solution = 98: 2. It was. The viscosity results at a shear rate of 40 s −1 are shown in Table 1 below. Thereafter, the binder composition was diluted by the same method as in Example 1 to obtain a 5% by weight binder composition. Next, a nonaqueous electrolyte battery electrode slurry (negative electrode slurry) was prepared in the same manner as in Example 1 above. Further, a coated negative electrode was prepared by the same method as in Example 1 to obtain a coin battery, and a charge / discharge characteristic test was performed. Moreover, the toughness test and peel strength measurement were performed using the coated electrode. The results are shown in Table 1 below.

(実施例4)
水溶性のリチウム変性イソブテン−無水マレイン酸共重合樹脂(平均分子量325,000、中和度0.7、開環率97%)の10重量%水溶液を調製し、水酸化リチウムをマレイン酸類共重合体中のマレイン酸単位に対し1.4当量添加することによってpHの調整を行った。
Example 4
A 10% by weight aqueous solution of a water-soluble lithium-modified isobutene-maleic anhydride copolymer resin (average molecular weight 325,000, neutralization degree 0.7, ring opening rate 97%) was prepared, and lithium hydroxide was co-polymerized with maleic acids. The pH was adjusted by adding 1.4 equivalents to the maleic acid unit in the coalescence.

上記樹脂と実施例1で用いたPEIを用いて、樹脂の10重量%水溶液:PEIの10重量%水溶液=99:1となるように、実施例1と同様の方法によってバインダー組成物の調製を行った。ずり速度40s−1の時の粘度結果を下記表1に示す。非水電解質電池電極用スラリーを上記実施例2と同様の方法によって作製した。さらに、上記実施例1と同様の方法によって塗工負極を作製し、コイン電池を得て、充放電特性試験を行った。また塗工電極を用いて、靱性試験及び剥離強度測定を行った。結果を下記表1に示す。Using the above resin and the PEI used in Example 1, the binder composition was prepared in the same manner as in Example 1 so that the resin 10 wt% aqueous solution: PEI 10 wt% aqueous solution = 99: 1. went. The viscosity results at a shear rate of 40 s −1 are shown in Table 1 below. A slurry for a nonaqueous electrolyte battery electrode was produced in the same manner as in Example 2 above. Further, a coated negative electrode was prepared by the same method as in Example 1 to obtain a coin battery, and a charge / discharge characteristic test was performed. Moreover, the toughness test and peel strength measurement were performed using the coated electrode. The results are shown in Table 1 below.

(実施例5)
水溶性のリチウム変性イソブテン−無水マレイン酸共重合樹脂(平均分子量325,000、中和度0.4、開環率92%)の10重量%水溶液を調製し、水酸化リチウムをマレイン酸類共重合体中のマレイン酸単位に対し0.8当量添加することによってpHの調整を行った。
(Example 5)
A 10% by weight aqueous solution of a water-soluble lithium-modified isobutene-maleic anhydride copolymer resin (average molecular weight 325,000, neutralization degree 0.4, ring opening rate 92%) was prepared, and lithium hydroxide was co-polymerized with maleic acids. The pH was adjusted by adding 0.8 equivalent to the maleic acid unit in the coalescence.

上記樹脂と実施例1で用いたPEIを用いて、樹脂の10重量%水溶液:PEIの10重量%水溶液=99:1となるように、実施例1と同様の方法によってバインダー組成物の調製を行った。ずり速度40s−1の時の粘度結果を下記表1に示す。その後、実施例1と同様の方法によってバインダー組成物を希釈し、5重量%のバインダー組成物を得た。次に、非水電解質電池電極用スラリーを上記実施例1と同様の方法によって作製した。さらに、上記実施例1と同様の方法によって塗工負極を作製し、コイン電池を得て、充放電特性試験を行った。また塗工電極を用いて、靱性試験及び剥離強度測定を行った。結果を下記表1に示す。Using the above resin and the PEI used in Example 1, the binder composition was prepared in the same manner as in Example 1 so that the resin 10 wt% aqueous solution: PEI 10 wt% aqueous solution = 99: 1. went. The viscosity results at a shear rate of 40 s −1 are shown in Table 1 below. Thereafter, the binder composition was diluted by the same method as in Example 1 to obtain a 5% by weight binder composition. Next, a slurry for a nonaqueous electrolyte battery electrode was produced by the same method as in Example 1 above. Further, a coated negative electrode was prepared by the same method as in Example 1 to obtain a coin battery, and a charge / discharge characteristic test was performed. Moreover, the toughness test and peel strength measurement were performed using the coated electrode. The results are shown in Table 1 below.

(比較例1)
実施例1で用いた樹脂の10重量%水溶液を調製し、PEIを加えることなく、そのまま負極用バインダー組成物として用いた。ずり速度40s−1の時の粘度結果を下記表1に示す。非水電解質電池電極用スラリーを上記実施例2と同様の方法によって作製した。さらに、上記実施例1と同様の方法によって塗工負極を作製し、コイン電池を得て、充放電特性試験を行った。また塗工電極を用いて、靱性試験及び剥離強度測定を行った。結果を下記表1に示す。
(Comparative Example 1)
A 10% by weight aqueous solution of the resin used in Example 1 was prepared and used as a negative electrode binder composition without adding PEI. The viscosity results at a shear rate of 40 s −1 are shown in Table 1 below. A slurry for a nonaqueous electrolyte battery electrode was produced in the same manner as in Example 2 above. Further, a coated negative electrode was prepared by the same method as in Example 1 to obtain a coin battery, and a charge / discharge characteristic test was performed. Moreover, the toughness test and peel strength measurement were performed using the coated electrode. The results are shown in Table 1 below.

(比較例2)
実施例1で用いた樹脂と架橋剤(PEI)を用いて、樹脂の10重量%水溶液:PEIの10重量%水溶液=99.97:0.03となるように、実施例1と同様の方法によってバインダー組成物の調製を行った。ずり速度40s−1の時の粘度結果を下記表1に示す。その後非水電解質電池電極用スラリーを上記実施例2と同様の方法によって作製した。さらに、上記実施例1と同様の方法によって塗工負極を作製し、コイン電池を得て、充放電特性試験を行った。また塗工電極を用いて、靱性試験及び剥離強度測定を行った。結果を下記表1に示す。
(Comparative Example 2)
Using the resin and crosslinking agent (PEI) used in Example 1, the same method as in Example 1 so that the 10% by weight aqueous resin solution: 10% by weight aqueous PEI solution = 99.97: 0.03 The binder composition was prepared by The viscosity results at a shear rate of 40 s −1 are shown in Table 1 below. Thereafter, a slurry for a nonaqueous electrolyte battery electrode was produced in the same manner as in Example 2 above. Further, a coated negative electrode was prepared by the same method as in Example 1 to obtain a coin battery, and a charge / discharge characteristic test was performed. Moreover, the toughness test and peel strength measurement were performed using the coated electrode. The results are shown in Table 1 below.

(比較例3)
実施例1で用いた樹脂とPEIを用いて、樹脂の10重量%水溶液:PEIの10重量%水溶液=90:10となるように、実施例1と同様の方法によってバインダー組成物の調製を行った。ずり速度40s−1の時の粘度結果を下記表1に示す。その後、実施例1と同様の方法によってバインダー組成物を希釈し、5重量%のバインダー組成物を得た。次に、非水電解質電池電極用スラリーを上記実施例1と同様の方法によって作製した。さらに、上記実施例1と同様の方法によって塗工負極を作製し、コイン電池を得て、充放電特性試験を行った。また塗工電極を用いて、靱性試験及び剥離強度測定を行った。結果を下記表1に示す。
(Comparative Example 3)
Using the resin and PEI used in Example 1, a binder composition was prepared in the same manner as in Example 1 so that the resin was 10 wt% aqueous solution: PEI 10 wt% aqueous solution = 90: 10. It was. The viscosity results at a shear rate of 40 s −1 are shown in Table 1 below. Thereafter, the binder composition was diluted by the same method as in Example 1 to obtain a 5% by weight binder composition. Next, a slurry for a nonaqueous electrolyte battery electrode was produced by the same method as in Example 1 above. Further, a coated negative electrode was prepared by the same method as in Example 1 to obtain a coin battery, and a charge / discharge characteristic test was performed. Moreover, the toughness test and peel strength measurement were performed using the coated electrode. The results are shown in Table 1 below.

(比較例4)
実施例1で用いた樹脂とポリアリルアミン(分子量3000)を用いて、樹脂の10重量%水溶液:PEIの10重量%水溶液=99:1となるように、実施例1と同様の方法によってバインダー組成物の調製を行った。ずり速度40s−1の時の粘度結果を下記表1に示す。その後、実施例1と同様の方法によってバインダー組成物を希釈し、5重量%のバインダー組成物を得た。次に、非水電解質電池電極用スラリーを上記実施例1と同様の方法によって作製した。さらに、上記実施例1と同様の方法によって塗工負極を作製し、コイン電池を得て、充放電特性試験を行った。また塗工電極を用いて、靱性試験及び剥離強度測定を行った。結果を下記表1に示す。
(Comparative Example 4)
Using the resin and polyallylamine (molecular weight 3000) used in Example 1, a binder composition was prepared in the same manner as in Example 1 so that the resin 10 wt% aqueous solution: PEI 10 wt% aqueous solution = 99: 1. The product was prepared. The viscosity results at a shear rate of 40 s −1 are shown in Table 1 below. Thereafter, the binder composition was diluted by the same method as in Example 1 to obtain a 5% by weight binder composition. Next, a slurry for a nonaqueous electrolyte battery electrode was produced by the same method as in Example 1 above. Further, a coated negative electrode was prepared by the same method as in Example 1 to obtain a coin battery, and a charge / discharge characteristic test was performed. Moreover, the toughness test and peel strength measurement were performed using the coated electrode. The results are shown in Table 1 below.

Figure 2018101134
Figure 2018101134

(考察)
負極用バインダー組成物に架橋剤(ポリアミン類)が含まれ、10重量%含有する水溶液の25℃且つずり速度40s−1における粘度が1800mPa・s〜12000mPa・sにある実施例1〜5では、酸と塩を形成したことによる架橋効果で靭性、接着性の向上が見られた。また、架橋剤を添加することで増粘するため、増粘剤を用いることなくスラリー作製が可能となった。そして、表1から明らかなように、架橋剤を添加しても電池特性には大きく影響を与えず、低抵抗化が実現することが示された。これに対し、ポリアミン類が含有していない比較例1およびポリアミン類を添加しても粘度が本発明の範囲外となる比較例2〜4では、靭性、接着性が共に低いという結果となった。
(Discussion)
In Examples 1 to 5, the crosslinking agent (polyamines) is contained in the negative electrode binder composition, and the viscosity at 25 ° C. and the shear rate of 40 s −1 of the aqueous solution containing 10% by weight is 1800 mPa · s to 12000 mPa · s. Improvement of toughness and adhesiveness was observed due to the crosslinking effect caused by the formation of acid and salt. In addition, since the viscosity is increased by adding a crosslinking agent, it is possible to prepare a slurry without using a thickener. As is apparent from Table 1, it was shown that the addition of a cross-linking agent does not significantly affect the battery characteristics and realizes low resistance. In contrast, Comparative Example 1 not containing polyamines and Comparative Examples 2 to 4 in which the viscosity is outside the scope of the present invention even when polyamines are added resulted in low toughness and adhesion. .

<試験例2>
(実施例6)
<ハイドロゲルの製造>
水溶性のリチウム変性イソブテン−無水マレイン酸共重合樹脂(平均分子量325,000、中和度0.5、開環率96%)を用い、10重量%水溶液を調整して以下の試験で用いた。
<Test Example 2>
(Example 6)
<Manufacture of hydrogel>
Using a water-soluble lithium-modified isobutene-maleic anhydride copolymer resin (average molecular weight 325,000, neutralization degree 0.5, ring-opening rate 96%), a 10% by weight aqueous solution was prepared and used in the following tests. .

上記樹脂10重量%水溶液に架橋剤としてポリエチレンイミン(PEI、平均分子量10,000、日本触媒製)の10重量%水溶液を、樹脂10重量%水溶液:PEI10重量%水溶液=99.34:0.66となるようにして、ハンドミキサー(WARING STAND MIXER,WARING社製)にて撹拌しながら、2.0ml/hで滴下した。その後、90℃、2時間加熱撹拌しハイドロゲルを得た。   A 10% by weight aqueous solution of polyethyleneimine (PEI, average molecular weight 10,000, manufactured by Nippon Shokubai Co., Ltd.) as a cross-linking agent was added to the 10% by weight aqueous resin solution, and a 10% by weight aqueous resin: 10% by weight aqueous PEI solution = 99.34: 0.66. Then, the mixture was added dropwise at 2.0 ml / h while stirring with a hand mixer (WARING STAND MIXER, manufactured by WARING). Thereafter, the mixture was heated and stirred at 90 ° C. for 2 hours to obtain a hydrogel.

<透過率の測定>
得られたハイドロゲルの透過率測定は10mmセルを用いて紫外・可視分光光度計(UV−2600シリーズ、島津製作所)にて測定した。可視光領域400nmから800nmの間での最も低い透過率の値を結果として表2に示す。
<Measurement of transmittance>
The transmittance of the obtained hydrogel was measured with an ultraviolet / visible spectrophotometer (UV-2600 series, Shimadzu Corporation) using a 10 mm cell. Table 2 shows the results of the lowest transmittance values in the visible light region between 400 nm and 800 nm.

<ハイドロゲルの粘度の測定>
Brookfield型粘度計(DV−I PRIMEブルックフィールド社製)を用いて25℃で、ポリエチレンイミン添加後(加熱前)のハイドロゲルの10重量%水溶液の粘度の測定を行った。ずり速度40s−1の時の粘度結果を下記表2に示す。
<Measurement of viscosity of hydrogel>
Using a Brookfield viscometer (DV-I PRIME manufactured by Brookfield), the viscosity of a 10% by weight aqueous solution of hydrogel after addition of polyethyleneimine (before heating) was measured at 25 ° C. The viscosity results at a shear rate of 40 s −1 are shown in Table 2 below.

<ハイドロゲルの希釈>
上記で作製した10重量%のハイドロゲルに当量の水を加え、ハンドミキサー(WARING STAND MIXER,WARING社製)を用いて、5重量%の負極用バインダー液を得た。
<Dilution of hydrogel>
An equivalent amount of water was added to 10% by weight of the hydrogel prepared above, and 5% by weight of a negative electrode binder liquid was obtained using a hand mixer (WARING STAND MIXER, manufactured by WARING).

<負極用スラリーの作製>
負極用バインダー組成物の5重量%水溶液の代わりに、ハイドロゲルの5重量%水溶液を用いた以外は試験例1(実施例1)と同様にして、電極塗工用スラリーを作製した。スラリー中の活物質とハイドロゲルの組成比は固形分として、黒鉛粉末:導電助剤:ハイドロゲル(水分を除いたバインダー組成物としての重量)=100:1.075:6.452である。
<Preparation of slurry for negative electrode>
A slurry for electrode coating was prepared in the same manner as in Test Example 1 (Example 1) except that a 5 wt% aqueous solution of hydrogel was used instead of the 5 wt% aqueous solution of the negative electrode binder composition. The composition ratio of the active material and the hydrogel in the slurry is, as a solid content, graphite powder: conductive auxiliary agent: hydrogel (weight as a binder composition excluding moisture) = 100: 1.075: 6.452.

<電池用負極の作製>
試験例1(実施例1)と同様にして、コイン電池用電極(電池用負極)を作製した。
<Preparation of negative electrode for battery>
A coin battery electrode (battery negative electrode) was prepared in the same manner as in Test Example 1 (Example 1).

<柔軟性(靭性)試験用電極の作製>
試験例1(実施例1)の<剥離強度、靭性試験用電極の作製>と同様にして作製した電極を用いて試験を行った。
<Production of electrode for flexibility (toughness) test>
A test was performed using an electrode produced in the same manner as in <Preparation of peel strength and toughness test electrode> in Test Example 1 (Example 1).

<電極の柔軟性(靭性)試験>
電極の柔軟性(靭性)の評価は、試験例1(実施例1)の電極の靭性試験と同様にして行った。結果を下記表2に示す。
<Electrode flexibility (toughness) test>
The flexibility (toughness) of the electrode was evaluated in the same manner as the electrode toughness test of Test Example 1 (Example 1). The results are shown in Table 2 below.

<電池の作製>
試験例1(実施例1)の電極の靭性試験と同様にして、コイン電池(2032タイプ)を作製した。
<Production of battery>
A coin battery (2032 type) was produced in the same manner as the electrode toughness test of Test Example 1 (Example 1).

<評価方法:充放電特性試験>
作製したコイン電池で、試験例1と同様の充放電試験を実施した。結果を下記表2に示す。
<Evaluation method: charge / discharge characteristic test>
With the produced coin battery, the same charge / discharge test as in Test Example 1 was performed. The results are shown in Table 2 below.

(実施例7)
実施例6で用いた樹脂と架橋剤(PEI)を用いて、樹脂10重量%水溶液:PEI10重量%水溶液=99:1となるように、実施例6と同様の方法によってハイドロゲルを作製し、透過率及び粘度を測定した。結果を下記表2に示す。その後、実施例6と同様の方法によってハイドロゲルの希釈及び非水電解質電池用スラリー(負極用スラリー)を作製した。さらに、上記実施例6と同様の方法によって塗工負極(電池用負極)を作製し、コイン電池を得て、充放電特性試験を行った。また塗工電極(剥離強度、靱性試験用電極)を用いて、柔軟性試験を行った。結果を下記表2に示す。
(Example 7)
Using the resin and the crosslinking agent (PEI) used in Example 6, a hydrogel was prepared by the same method as in Example 6 so that the resin 10 wt% aqueous solution: PEI 10 wt% aqueous solution = 99: 1, Transmittance and viscosity were measured. The results are shown in Table 2 below. Then, the hydrogel dilution and the slurry for nonaqueous electrolyte batteries (slurry for negative electrodes) were produced by the same method as Example 6. Further, a coated negative electrode (battery negative electrode) was prepared by the same method as in Example 6 to obtain a coin battery, and a charge / discharge characteristic test was performed. In addition, a flexibility test was performed using a coated electrode (peel strength, toughness test electrode). The results are shown in Table 2 below.

(実施例8)
水溶性のリチウム変性イソブテン−無水マレイン酸共重合樹脂(平均分子量325,000、中和度0.7、開環率97%)の10重量%水溶液を調製した。
(Example 8)
A 10% by weight aqueous solution of a water-soluble lithium-modified isobutene-maleic anhydride copolymer resin (average molecular weight 325,000, neutralization degree 0.7, ring opening rate 97%) was prepared.

上記樹脂水溶液と実施例6で用いたPEIを用いて、樹脂10重量%水溶液:PEI10重量%水溶液=99:1となるようにし、実施例6と同様の方法によってハイドロゲルを作製し、透過率及び粘度を測定した。結果を下記表2に示す。その後、実施例6と同様の方法によってハイドロゲルの希釈及び非水電解質電池用スラリーを作製した。さらに、上記実施例6と同様の方法によって塗工負極を作製し、コイン電池を得て、充放電特性試験を行った。また塗工電極を用いて、柔軟性試験及を行った。結果を下記表2に示す。   Using the above resin aqueous solution and the PEI used in Example 6, a 10% by weight aqueous resin: 10% by weight aqueous PEI solution = 99: 1 was prepared, and a hydrogel was prepared by the same method as in Example 6, and the transmittance And the viscosity was measured. The results are shown in Table 2 below. Thereafter, a hydrogel dilution and a nonaqueous electrolyte battery slurry were prepared in the same manner as in Example 6. Further, a coated negative electrode was prepared by the same method as in Example 6 to obtain a coin battery, and a charge / discharge characteristic test was performed. Moreover, the flexibility test was done using the coating electrode. The results are shown in Table 2 below.

(実施例9)
水溶性のリチウム変性イソブテン−無水マレイン酸共重合樹脂(平均分子量325,000、中和度0.4、開環率92%)の10重量%水溶液を調製した。
Example 9
A 10% by weight aqueous solution of a water-soluble lithium-modified isobutene-maleic anhydride copolymer resin (average molecular weight 325,000, neutralization degree 0.4, ring opening rate 92%) was prepared.

上記樹脂水溶液と実施例6で用いたPEIを用いて、樹脂10重量%水溶液:PEI10重量%水溶液=99:1となるように実施例6と同様の方法によってハイドロゲルを作製し、透過率及び粘度を測定した。結果を下記表2に示す。その後、実施例6と同様の方法によってハイドロゲルの希釈及び非水電解質電池用スラリーを作製した。さらに、上記実施例6と同様の方法によって塗工負極を作製し、コイン電池を得て、充放電特性試験を行った。また塗工電極を用いて、柔軟性試験及を行った。結果を下記表2に示す。   Using the resin aqueous solution and PEI used in Example 6, a hydrogel was prepared by the same method as in Example 6 so that the resin 10% by weight aqueous solution: PEI 10% by weight aqueous solution = 99: 1. The viscosity was measured. The results are shown in Table 2 below. Thereafter, a hydrogel dilution and a nonaqueous electrolyte battery slurry were prepared in the same manner as in Example 6. Further, a coated negative electrode was prepared by the same method as in Example 6 to obtain a coin battery, and a charge / discharge characteristic test was performed. Moreover, the flexibility test was done using the coating electrode. The results are shown in Table 2 below.

(実施例10)
実施例8で用いた樹脂と架橋剤(ポリアリルアミン、分子量3,000)を用いて、樹脂10重量%水溶液:PEI10重量%水溶液=99.34:0.66となるように、実施例6と同様の方法によってハイドロゲルを作製し、透過率及び粘度を測定した。結果を下記表2に示す。その後、実施例6と同様の方法によってハイドロゲルの希釈及び非水電解質電池用スラリーを作製した。さらに、上記実施例6と同様の方法によって塗工負極を作製し、コイン電池を得て、充放電特性試験を行った。また塗工電極を用いて、柔軟性試験及を行った。結果を下記表2に示す。
(Example 10)
Using the resin and the cross-linking agent (polyallylamine, molecular weight 3,000) used in Example 8, the resin 10% by weight aqueous solution: PEI 10% by weight aqueous solution = 99.34: 0.66 A hydrogel was prepared by the same method, and the transmittance and viscosity were measured. The results are shown in Table 2 below. Thereafter, a hydrogel dilution and a nonaqueous electrolyte battery slurry were prepared in the same manner as in Example 6. Further, a coated negative electrode was prepared by the same method as in Example 6 to obtain a coin battery, and a charge / discharge characteristic test was performed. Moreover, the flexibility test was done using the coating electrode. The results are shown in Table 2 below.

(実施例11)
負極用バインダー組成物として水溶性のリチウム変性メチルビニルエーテル−無水マレイン酸共重合樹脂(平均分子量630,000、中和度0.5、開環率96%)の10重量%水溶液を調整した。
(Example 11)
A 10% by weight aqueous solution of a water-soluble lithium-modified methyl vinyl ether-maleic anhydride copolymer resin (average molecular weight 630,000, neutralization degree 0.5, ring opening rate 96%) was prepared as a binder composition for a negative electrode.

上記樹脂と実施例6で用いたPEIを用いて、樹脂10重量%水溶液:PEI10重量%水溶液=95:5となるように、実施例6と同様の方法によってハイドロゲルを作製し、透過率及び粘度を測定した。結果を下記表2に示す。その後、実施例6と同様の方法によってハイドロゲルの希釈及び非水電解質電池用スラリーを作製した。さらに、上記実施例6と同様の方法によって塗工負極を作製し、コイン電池を得て、充放電特性試験を行った。また塗工電極を用いて、柔軟性試験を行った。結果を下記表2に示す。   Using the resin and PEI used in Example 6, a hydrogel was prepared by the same method as in Example 6 so that the resin 10 wt% aqueous solution: PEI 10 wt% aqueous solution = 95: 5, and the transmittance and The viscosity was measured. The results are shown in Table 2 below. Thereafter, a hydrogel dilution and a nonaqueous electrolyte battery slurry were prepared in the same manner as in Example 6. Further, a coated negative electrode was prepared by the same method as in Example 6 to obtain a coin battery, and a charge / discharge characteristic test was performed. Moreover, the flexibility test was done using the coated electrode. The results are shown in Table 2 below.

(実施例12)
水溶性のリチウム変性エチレン−無水マレイン酸共重合樹脂(平均分子量350,000、中和度0.5、開環率96%)の10重量%水溶液を調整した。
Example 12
A 10% by weight aqueous solution of a water-soluble lithium-modified ethylene-maleic anhydride copolymer resin (average molecular weight 350,000, neutralization degree 0.5, ring opening rate 96%) was prepared.

上記樹脂水溶液と実施例6で用いたPEIを用いて、樹脂10重量%水溶液:PEI10重量%水溶液=95:5となるように、実施例6と同様の方法によってハイドロゲルを作製し、透過率及び粘度を測定した。結果を下記表2に示す。その後、実施例6と同様の方法によってハイドロゲルの希釈及び非水電解質電池用スラリーを作製した。さらに、上記実施例6と同様の方法によって塗工負極を作製し、コイン電池を得て、充放電特性試験を行った。また塗工電極を用いて、柔軟性試験を行った。結果を下記表2に示す。   Using the above resin aqueous solution and the PEI used in Example 6, a hydrogel was prepared by the same method as in Example 6 so that the resin 10% by weight aqueous solution: PEI 10% by weight aqueous solution = 95: 5, and the transmittance And the viscosity was measured. The results are shown in Table 2 below. Thereafter, a hydrogel dilution and a nonaqueous electrolyte battery slurry were prepared in the same manner as in Example 6. Further, a coated negative electrode was prepared by the same method as in Example 6 to obtain a coin battery, and a charge / discharge characteristic test was performed. Moreover, the flexibility test was done using the coated electrode. The results are shown in Table 2 below.

(比較例5)
実施例6で用いた樹脂と架橋剤(PEI)を用いて、樹脂10重量%水溶液:PEI10重量%水溶液=90:10となるように、実施例6と同様の方法によってハイドロゲルを作製し、透過率及び粘度を測定した。結果を下記表2に示す。その後、実施例6と同様の方法によってハイドロゲルの希釈及び非水電解質電池用スラリーを作製した。さらに、上記実施例6と同様の方法によって塗工負極を作製し、コイン電池を得て、充放電特性試験を行った。また塗工電極を用いて、柔軟性試験を行った。結果を下記表2に示す。
(Comparative Example 5)
Using the resin and the crosslinking agent (PEI) used in Example 6, a hydrogel was prepared by the same method as in Example 6 so that the resin was 10 wt% aqueous solution: PEI 10 wt% aqueous solution = 90: 10, Transmittance and viscosity were measured. The results are shown in Table 2 below. Thereafter, a hydrogel dilution and a nonaqueous electrolyte battery slurry were prepared in the same manner as in Example 6. Further, a coated negative electrode was prepared by the same method as in Example 6 to obtain a coin battery, and a charge / discharge characteristic test was performed. Moreover, the flexibility test was done using the coated electrode. The results are shown in Table 2 below.

(比較例6)
実施例7で用いた樹脂と架橋剤(PEI、分子量600)を用いて、実施例7と同様の方法によってハイドロゲルを作製し、透過率及び粘度を測定した。結果を下記表2に示す。その後、実施例6と同様の方法によってハイドロゲルの希釈及び非水電解質電池用スラリーを作製した。さらに、上記実施例6と同様の方法によって塗工負極を作製し、コイン電池を得て、充放電特性試験を行った。また塗工電極を用いて、柔軟性試験を行った。結果を下記表2に示す。
(Comparative Example 6)
Using the resin and crosslinking agent (PEI, molecular weight 600) used in Example 7, a hydrogel was prepared by the same method as in Example 7, and the transmittance and viscosity were measured. The results are shown in Table 2 below. Thereafter, a hydrogel dilution and a nonaqueous electrolyte battery slurry were prepared in the same manner as in Example 6. Further, a coated negative electrode was prepared by the same method as in Example 6 to obtain a coin battery, and a charge / discharge characteristic test was performed. Moreover, the flexibility test was done using the coated electrode. The results are shown in Table 2 below.

(比較例7)
実施例6で用いた樹脂の10重量%水溶液(添加剤なし)の透過率及び粘度を測定した結果を下記表2に示す。その後、上記10重量%水溶液をバインダー溶液として用い、上記実施例6と同様の方法によって非水電解質電池用スラリーを作製した。さらに、上記実施例6と同様の方法によって塗工負極を作製し、コイン電池を得て、充放電特性試験を行った。また塗工電極を用いて、柔軟性試験を行った。結果を下記表2に示す。
(Comparative Example 7)
The results of measuring the transmittance and viscosity of a 10% by weight aqueous resin solution (no additive) used in Example 6 are shown in Table 2 below. Thereafter, a slurry for a non-aqueous electrolyte battery was produced in the same manner as in Example 6 using the 10 wt% aqueous solution as a binder solution. Further, a coated negative electrode was prepared by the same method as in Example 6 to obtain a coin battery, and a charge / discharge characteristic test was performed. Moreover, the flexibility test was done using the coated electrode. The results are shown in Table 2 below.

(比較例8)
実施例10で用いた樹脂の10重量%水溶液(添加剤なし)の透過率及び粘度を測定した結果を下記表2に示す。その後、上記比較例7と同様の方法によって非水電解質電池用スラリーを作製した。次いで、上記実施例6と同様の方法によって塗工負極を作製し、コイン電池を得て、充放電特性試験を行った。また塗工電極を用いて、柔軟性試験を行った。結果を下記表2に示す。
(Comparative Example 8)
Table 2 below shows the results of measuring the transmittance and viscosity of a 10% by weight aqueous solution (without additives) of the resin used in Example 10. Then, the slurry for nonaqueous electrolyte batteries was produced by the method similar to the said comparative example 7. Subsequently, the coating negative electrode was produced by the method similar to the said Example 6, the coin battery was obtained, and the charge / discharge characteristic test was done. Moreover, the flexibility test was done using the coated electrode. The results are shown in Table 2 below.

(比較例9)
実施例11で用いた樹脂の10重量%水溶液(添加剤なし)の粘度及び透過率を測定した結果を下記表2に示す。その後、上記比較例7と同様の方法によって非水電解質電池用スラリーを作製した。さらに、上記実施例6と同様の方法によって塗工負極を作製し、コイン電池を得て、充放電特性試験を行った。また塗工電極を用いて、柔軟性試験を行った。結果を下記表2に示す。
(Comparative Example 9)
The results of measuring the viscosity and transmittance of a 10% by weight aqueous solution of the resin used in Example 11 (without additives) are shown in Table 2 below. Then, the slurry for nonaqueous electrolyte batteries was produced by the method similar to the said comparative example 7. Further, a coated negative electrode was prepared by the same method as in Example 6 to obtain a coin battery, and a charge / discharge characteristic test was performed. Moreover, the flexibility test was done using the coated electrode. The results are shown in Table 2 below.

(比較例10)
従来の水系負極バインダー組成物であるSBR系エマルジョン水溶液(TRD2001、48.3重量%)と増粘剤としてCMC−Na(セロゲンBSH−6、10重量%)を用いて上記比較例7と同様の方法によって非水電解質電池用スラリーを作製した。スラリー中の活物質とバインダーの組成比は固形分として、黒鉛粉末:導電助剤:SBR:CMC−Na=100:1.053:3.158:1.053であった。さらに、上記実施例6と同様の方法によって塗工負極を作製し、コイン電池を得て、充放電特性試験を行った。また塗工電極を用いて、柔軟性試験を行った。結果を下記表2に示す。
(Comparative Example 10)
SBR emulsion aqueous solution (TRD2001, 48.3% by weight), which is a conventional aqueous negative electrode binder composition, and CMC-Na (cellogen BSH-6, 10% by weight) as a thickener are the same as in Comparative Example 7 above. A slurry for a nonaqueous electrolyte battery was prepared by the method. The composition ratio between the active material and the binder in the slurry was, as a solid content, graphite powder: conducting aid: SBR: CMC-Na = 100: 1.053: 3.158: 1.053. Further, a coated negative electrode was prepared by the same method as in Example 6 to obtain a coin battery, and a charge / discharge characteristic test was performed. Moreover, the flexibility test was done using the coated electrode. The results are shown in Table 2 below.

Figure 2018101134
Figure 2018101134

(考察)
本発明の所定の透過率を有するハイドロゲルを使用することによって、より柔軟性(靭性)が高い電極を作製できることが示された。また、本発明によれば、ハイドロゲル化するための架橋剤を添加しても、比較例7〜9に示す未添加品と同等の低抵抗性を示し、比較例10に示した従来のバインダーであるSBR−CMC系よりも低く、電池特性向上に寄与することが分かった。これに対し、透過率が高い比較例6〜9のハイドロゲルでは、十分に柔軟性を付与することができなかった。また、架橋剤の添加量が高く、透過率が低かった比較例5ではあまりにも粘度が高く、スラリー作製時の解砕が十分にできなかったため抵抗の高い電池となった。さらにポリアミン類の分子量が低い比較例6では架橋度が十分でなかったために粘度が低く、十分に柔軟性を付与することができなかった。
(Discussion)
It was shown that an electrode with higher flexibility (toughness) can be produced by using a hydrogel having a predetermined transmittance according to the present invention. In addition, according to the present invention, even when a crosslinking agent for hydrogelation is added, the conventional binder shown in Comparative Example 10 exhibits low resistance equivalent to the unadded product shown in Comparative Examples 7 to 9. It was found to be lower than the SBR-CMC system, which contributes to improving battery characteristics. On the other hand, in the hydrogels of Comparative Examples 6 to 9 having a high transmittance, it was not possible to sufficiently impart flexibility. Further, in Comparative Example 5 in which the addition amount of the cross-linking agent was high and the transmittance was low, the viscosity was too high, and crushing at the time of slurry preparation could not be sufficiently performed, resulting in a battery having high resistance. Furthermore, in Comparative Example 6 in which the molecular weight of the polyamines was low, the degree of crosslinking was not sufficient, so the viscosity was low, and sufficient flexibility could not be imparted.

この出願は、2016年11月29日に出願された日本国特許出願特願2016−231352及び2016年12月15日に出願された日本国特許出願特願2016−242847を基礎とするものであり、その内容は、本願に含まれるものである。   This application is based on Japanese Patent Application Japanese Patent Application No. 2006-231352 filed on November 29, 2016 and Japanese Patent Application Japanese Patent Application No. 2006-242847 filed on December 15, 2016. The contents thereof are included in the present application.

本発明を表現するために、前述において具体例等を参照しながら実施形態を通して本発明を適切かつ十分に説明したが、当業者であれば前述の実施形態を変更及び/又は改良することは容易になし得ることであると認識すべきである。したがって、当業者が実施する変更形態又は改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態又は当該改良形態は、当該請求項の権利範囲に包括されると解釈される。   In order to express the present invention, the present invention has been described appropriately and sufficiently through the embodiments with reference to specific examples and the like. However, those skilled in the art can easily change and / or improve the above-described embodiments. It should be recognized that this is possible. Therefore, unless the modifications or improvements implemented by those skilled in the art are at a level that departs from the scope of the claims recited in the claims, the modifications or improvements are not limited to the scope of the claims. To be construed as inclusive.

本発明は、リチウムイオン二次電池等の非水電解質電池に関する技術分野において、広範な産業上の利用可能性を有する。   The present invention has wide industrial applicability in the technical field related to non-aqueous electrolyte batteries such as lithium ion secondary batteries.

Claims (7)

α−オレフィン類とマレイン酸類とが共重合したα−オレフィン−マレイン酸類共重合体の中和塩をポリアミン類で架橋した構造を含有する非水電解質電池電極用バインダー組成物であって、前記バインダー組成物を10重量%含有する水溶液の25℃且つずり速度40s−1における粘度が1800mPa・s〜15000mPa・sであることを特徴とする、バインダー組成物。A binder composition for a non-aqueous electrolyte battery electrode, comprising a structure in which a neutralized salt of an α-olefin-maleic acid copolymer obtained by copolymerizing an α-olefin and a maleic acid is crosslinked with a polyamine. A binder composition characterized in that an aqueous solution containing 10% by weight of the composition has a viscosity of 1800 mPa · s to 15000 mPa · s at 25 ° C. and a shear rate of 40 s −1 . 請求項1に記載のバインダー組成物から得られる、10重量%水溶液の可視光領域(400〜800nm)における透過率が40〜85%の範囲であるハイドロゲル。   A hydrogel having a transmittance of 40 to 85% in a visible light region (400 to 800 nm) of a 10 wt% aqueous solution obtained from the binder composition according to claim 1. 請求項1に記載のバインダー組成物と活物質とを含有する、非水電解質電池電極用スラリー組成物。   A slurry composition for a nonaqueous electrolyte battery electrode, comprising the binder composition according to claim 1 and an active material. 請求項2に記載のハイドロゲルと活物質とを含有する、非水電解質電池電極用スラリー組成物。   A slurry composition for a non-aqueous electrolyte battery electrode, comprising the hydrogel according to claim 2 and an active material. 請求項1に記載のバインダー組成物と活物質とを含有する混合層を集電体に結着してなる、非水電解質電池用負極。   A negative electrode for a non-aqueous electrolyte battery, wherein a mixed layer containing the binder composition according to claim 1 and an active material is bound to a current collector. 請求項2に記載のハイドロゲルと活物質とを含有する混合層を集電体に結着してなる、非水電解質電池用負極。   A negative electrode for a non-aqueous electrolyte battery, wherein a mixed layer containing the hydrogel according to claim 2 and an active material is bound to a current collector. 請求項5または6に記載の非水電解質電池用負極を有する、非水電解質電池。
A nonaqueous electrolyte battery comprising the negative electrode for a nonaqueous electrolyte battery according to claim 5.
JP2018553802A 2016-11-29 2017-11-21 Non-aqueous electrolyte battery electrode binder composition, hydrogel using the same, slurry composition for non-aqueous electrolyte battery electrode using the same, non-aqueous electrolyte battery negative electrode, and non-aqueous electrolyte battery Pending JPWO2018101134A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2016231352 2016-11-29
JP2016231352 2016-11-29
JP2016242847 2016-12-15
JP2016242847 2016-12-15
PCT/JP2017/041909 WO2018101134A1 (en) 2016-11-29 2017-11-21 Binder composition for nonaqueous electrolyte battery electrode, hydrogel using binder composition as raw material, slurry composition for nonaqueous electrolyte battery electrode using same, nonaqueous electrolyte battery negative electrode, and nonaqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JPWO2018101134A1 true JPWO2018101134A1 (en) 2019-10-24

Family

ID=62241415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018553802A Pending JPWO2018101134A1 (en) 2016-11-29 2017-11-21 Non-aqueous electrolyte battery electrode binder composition, hydrogel using the same, slurry composition for non-aqueous electrolyte battery electrode using the same, non-aqueous electrolyte battery negative electrode, and non-aqueous electrolyte battery

Country Status (5)

Country Link
JP (1) JPWO2018101134A1 (en)
KR (1) KR20190082977A (en)
CN (1) CN110024191A (en)
TW (1) TW201830757A (en)
WO (1) WO2018101134A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112840481A (en) * 2018-09-28 2021-05-25 松本油脂制药株式会社 Slurry composition for secondary battery negative electrode, dispersant composition for secondary battery negative electrode slurry, secondary battery negative electrode, and secondary battery
CN117039075B (en) * 2023-06-16 2024-06-07 江苏微道能源科技有限公司 Alkaline gel electrolyte membrane with high tensile strength and strong water retention, and preparation method and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012238488A (en) * 2011-05-12 2012-12-06 Sumitomo Chemical Co Ltd Electrode binder, electrode, and lithium ion secondary battery including the electrode
JP2014201599A (en) * 2013-04-01 2014-10-27 日立マクセル株式会社 Polymer and secondary battery
JP2015151402A (en) * 2014-02-10 2015-08-24 ユニチカ株式会社 Acid modified polyolefin resin aqueous dispersoid, secondary battery electrode using the same and secondary battery
WO2016067843A1 (en) * 2014-10-31 2016-05-06 株式会社クラレ Binder composition for lithium ion secondary battery negative electrode, and slurry composition for lithium ion secondary battery negative electrode, lithium ion secondary battery negative electrode, and lithium ion secondary battery using same
JP2016189253A (en) * 2015-03-30 2016-11-04 株式会社クラレ Binder composition for lithium ion secondary battery electrode, and slurry composition for lithium ion secondary battery electrode, lithium ion secondary battery negative electrode and lithium ion secondary battery using the same
JP2016189255A (en) * 2015-03-30 2016-11-04 株式会社クラレ Slurry composition for lithium ion secondary battery electrode, lithium ion secondary battery negative electrode, and lithium ion secondary battery

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6056724B2 (en) * 1980-10-22 1985-12-11 株式会社クラレ Manufacturing method of water absorbent resin
EP0516026A1 (en) * 1991-05-28 1992-12-02 Takeda Chemical Industries, Ltd. Hydrogel and method of producing same
JP2000067917A (en) 1998-08-24 2000-03-03 Hitachi Maxell Ltd Polymer lithium ion secondary battery
JP4941423B2 (en) 2003-06-11 2012-05-30 ソニー株式会社 Lithium ion secondary battery
JP4824302B2 (en) * 2004-12-17 2011-11-30 パナソニック株式会社 Aqueous dispersion containing electrode binder, hydrogen storage alloy electrode and method for producing the same, alkaline storage battery, and lithium ion secondary battery
JP5031606B2 (en) * 2008-01-30 2012-09-19 ソニー株式会社 Battery pack and manufacturing method thereof
JP5390131B2 (en) * 2008-06-26 2014-01-15 株式会社デンソー Non-aqueous electrolyte secondary battery electrode binder, non-aqueous electrolyte secondary battery electrode and non-aqueous electrolyte secondary battery using the binder
CN105375070A (en) * 2011-08-23 2016-03-02 株式会社日本触媒 Gel electrolyte and cell using same
WO2013106613A1 (en) * 2012-01-13 2013-07-18 Georgia-Pacific Chemicals Llc Binder compositions and methods for making and using same
JP2014013693A (en) 2012-07-04 2014-01-23 Mitsubishi Electric Corp Lithium ion secondary battery and manufacturing method therefor
JP6456741B2 (en) * 2015-03-25 2019-01-23 株式会社クレハ Separator / interlayer laminate, non-aqueous electrolyte secondary battery structure, and aqueous latex
CN107925085B (en) * 2015-08-10 2021-07-06 株式会社可乐丽 Binder composition for nonaqueous electrolyte battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012238488A (en) * 2011-05-12 2012-12-06 Sumitomo Chemical Co Ltd Electrode binder, electrode, and lithium ion secondary battery including the electrode
JP2014201599A (en) * 2013-04-01 2014-10-27 日立マクセル株式会社 Polymer and secondary battery
JP2015151402A (en) * 2014-02-10 2015-08-24 ユニチカ株式会社 Acid modified polyolefin resin aqueous dispersoid, secondary battery electrode using the same and secondary battery
WO2016067843A1 (en) * 2014-10-31 2016-05-06 株式会社クラレ Binder composition for lithium ion secondary battery negative electrode, and slurry composition for lithium ion secondary battery negative electrode, lithium ion secondary battery negative electrode, and lithium ion secondary battery using same
JP2016189253A (en) * 2015-03-30 2016-11-04 株式会社クラレ Binder composition for lithium ion secondary battery electrode, and slurry composition for lithium ion secondary battery electrode, lithium ion secondary battery negative electrode and lithium ion secondary battery using the same
JP2016189255A (en) * 2015-03-30 2016-11-04 株式会社クラレ Slurry composition for lithium ion secondary battery electrode, lithium ion secondary battery negative electrode, and lithium ion secondary battery

Also Published As

Publication number Publication date
CN110024191A (en) 2019-07-16
KR20190082977A (en) 2019-07-10
TW201830757A (en) 2018-08-16
WO2018101134A1 (en) 2018-06-07

Similar Documents

Publication Publication Date Title
JP6138383B1 (en) Binder composition for non-aqueous electrolyte battery, slurry composition for non-aqueous electrolyte battery using the same, non-aqueous electrolyte battery negative electrode, and non-aqueous electrolyte battery
JPWO2016067843A1 (en) Lithium ion secondary battery negative electrode binder composition, and lithium ion secondary battery negative electrode slurry composition using the same, lithium ion secondary battery negative electrode and lithium ion secondary battery
JP6543007B2 (en) Thickening stabilizer for non-aqueous electrolyte battery electrode, and binder composition containing the same, slurry composition for non-aqueous electrolyte battery electrode, non-aqueous electrolyte battery electrode, and non-aqueous electrolyte battery
JPWO2018101134A1 (en) Non-aqueous electrolyte battery electrode binder composition, hydrogel using the same, slurry composition for non-aqueous electrolyte battery electrode using the same, non-aqueous electrolyte battery negative electrode, and non-aqueous electrolyte battery
WO2017022844A1 (en) Slurry composition for non aqueous electrolyte battery electrode, and non aqueous electrolyte battery positive electrode and non aqueous electrolyte battery using same
JP2016189253A (en) Binder composition for lithium ion secondary battery electrode, and slurry composition for lithium ion secondary battery electrode, lithium ion secondary battery negative electrode and lithium ion secondary battery using the same
JP2019071233A (en) Binder composition for nonaqueous electrolyte battery, binder aqueous solution for nonaqueous electrolyte battery using the same, slurry composition for nonaqueous electrolyte battery, nonaqueous electrolyte battery negative electrode, and nonaqueous electrolyte battery
JP2018063799A (en) Nonaqueous electrolyte battery electrode binder composition, nonaqueous electrolyte battery electrode slurry composition arranged by use thereof, nonaqueous electrolyte battery negative electrode, and nonaqueous electrolyte battery
JP2017069162A (en) Binder composition for nonaqueous electrolyte secondary battery, slurry composition for nonaqueous electrolyte secondary battery arranged by use thereof, nonaqueous electrolyte secondary battery negative electrode, and nonaqueous electrolyte secondary battery
JP6138382B1 (en) Binder composition for non-aqueous electrolyte battery, slurry composition for non-aqueous electrolyte battery using the same, non-aqueous electrolyte battery negative electrode, and non-aqueous electrolyte battery
JP6856972B2 (en) Lithium-ion secondary battery electrode slurry composition, lithium-ion secondary battery negative electrode and lithium-ion secondary battery
JP2016189255A (en) Slurry composition for lithium ion secondary battery electrode, lithium ion secondary battery negative electrode, and lithium ion secondary battery
JP2016189252A (en) Binder composition for lithium ion secondary battery electrode, and slurry composition for lithium ion secondary battery electrode, lithium ion secondary battery negative electrode and lithium ion secondary battery using the same
WO2016158637A1 (en) Binder composition for nonaqueous electrolyte battery electrodes, slurry composition for nonaqueous electrolyte battery electrodes using same, negative electrode of nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP2016189251A (en) Binder composition for lithium ion secondary battery electrode, and slurry composition for lithium ion secondary battery electrode, lithium ion secondary battery negative electrode and lithium ion secondary battery using the same
TWI614936B (en) Slurry composition for negative electrode of nonaqueous electrolyte battery, and nonaqueous electrolyte battery negative electrode and nonaqueous electrolyte battery using same
JP6731723B2 (en) Composition for aqueous binder solution for non-aqueous electrolyte battery, aqueous binder solution for non-aqueous electrolyte battery, slurry composition for non-aqueous electrolyte battery, non-aqueous electrolyte battery negative electrode and non-aqueous electrolyte battery
JP2018125094A (en) Binder composition for nonaqueous electrolyte battery electrode, slurry composition for nonaqueous electrolyte battery electrode arranged by use thereof, nonaqueous electrolyte battery electrode, and nonaqueous electrolyte battery
WO2017022842A1 (en) Slurry composition for non aqueous electrolyte battery electrode, and non aqueous electrolyte battery negative electrode and non aqueous electrolyte battery using same
JP2017033904A (en) Slurry composition for nonaqueous electrolyte battery electrode, and nonaqueous electrolyte battery negative electrode and nonaqueous electrolyte battery using the same
JP2016189254A (en) Binder composition for lithium ion secondary battery electrode, and slurry composition for lithium ion secondary battery electrode, lithium ion secondary battery negative electrode and lithium ion secondary battery using the same
JP2016189256A (en) Binder composition for lithium ion secondary battery electrode, and slurry composition for lithium ion secondary battery electrode, lithium ion secondary battery negative electrode and lithium ion secondary battery using the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191029

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210706