JPWO2018070324A1 - Nanoparticle evaluation method and nanoparticle observation device - Google Patents

Nanoparticle evaluation method and nanoparticle observation device Download PDF

Info

Publication number
JPWO2018070324A1
JPWO2018070324A1 JP2018544975A JP2018544975A JPWO2018070324A1 JP WO2018070324 A1 JPWO2018070324 A1 JP WO2018070324A1 JP 2018544975 A JP2018544975 A JP 2018544975A JP 2018544975 A JP2018544975 A JP 2018544975A JP WO2018070324 A1 JPWO2018070324 A1 JP WO2018070324A1
Authority
JP
Japan
Prior art keywords
sample
nanoparticles
light
nanoparticle
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018544975A
Other languages
Japanese (ja)
Other versions
JP6659062B2 (en
Inventor
時崎 高志
高志 時崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Publication of JPWO2018070324A1 publication Critical patent/JPWO2018070324A1/en
Application granted granted Critical
Publication of JP6659062B2 publication Critical patent/JP6659062B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q30/00Auxiliary means serving to assist or improve the scanning probe techniques or apparatus, e.g. display or data processing devices
    • G01Q30/02Non-SPM analysing devices, e.g. SEM [Scanning Electron Microscope], spectrometer or optical microscope
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the object or the material; Means for adjusting diaphragms or lenses associated with the support

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

電子顕微鏡(TEM、SEM)や原子間力顕微鏡(AFM)等でナノ粒子を定量的に精密観察すべき試料の部分を、光学顕微鏡等を用いた簡便な手法によって選定する。ナノ粒子観察装置10は、ステージ12と、白色LED14と、カラーデジタルカメラ28と、コンピュータ30と、AFM40を備えている。白色LED14は、ステージ12上の試料Sのナノ粒子に対して斜め方向から、白色光を照射するように設けられている。カラーデジタルカメラ28は、白色LED14から照射された光のナノ粒子による散乱光の波長と強度をデジタルデータとして記録する。コンピュータ30は、カラーデジタルカメラ28が記録したデジタルデータに基づいて、青色の光の強度である青色光強度と、三原色の光の強度の総和である全散乱光強度とを算出する。そして、全散乱光強度と青色光強度/全散乱光強度が大きい試料Sの部分を、AFM40で精密観察する。The portion of the sample to be subjected to quantitative observation of nanoparticles quantitatively with an electron microscope (TEM, SEM), atomic force microscope (AFM) or the like is selected by a simple method using an optical microscope or the like. The nanoparticle observation device 10 includes a stage 12, a white LED 14, a color digital camera 28, a computer 30, and an AFM 40. The white LED 14 is provided to irradiate white light to the nanoparticles of the sample S on the stage 12 from an oblique direction. The color digital camera 28 records, as digital data, the wavelength and intensity of the scattered light by the nanoparticles of the light emitted from the white LED 14. The computer 30 calculates, based on the digital data recorded by the color digital camera 28, the blue light intensity which is the blue light intensity and the total scattered light intensity which is the sum of the light intensities of the three primary colors. Then, the portion of the sample S where the total scattered light intensity and the blue light intensity / the total scattered light intensity are large is precisely observed with the AFM 40.

Description

本発明は、ナノ粒子の分散状態を評価する方法と、ナノ粒子の形状等を観察する装置に関する。   The present invention relates to a method of evaluating the dispersion state of nanoparticles, and an apparatus for observing the shape and the like of nanoparticles.

ナノ材料の性能向上や安全性評価に向けて、ナノ粒子の形状評価の精密化が求められている。電子顕微鏡(TEM、SEM)や原子間力顕微鏡(AFM)を用いれば、ナノメートルオーダーの個々の粒子が観察できる。このため、ナノ粒子の形状等の観察は、TEM等を用いて行われている。しかしながら、TEM等は、空間分解能が高い分、視野が狭い。不均一に分散されたナノ粒子を有する試料は、粒子が凝集して積み重なっている部分もあれば、粒子が存在しない部分もある。したがって、不均一に分散されたナノ粒子を有する試料では、TEM等でどの部分を観察すべきかが容易にわからない。従来は、観察者の勘を頼りに試料のいろいろな部分を見て、ナノ粒子が均一に分散された最適な観察部分を選定していた。   In order to improve the performance of nanomaterials and evaluate their safety, it is required to refine the shape evaluation of nanoparticles. When using an electron microscope (TEM, SEM) or an atomic force microscope (AFM), individual particles of nanometer order can be observed. For this reason, the observation of the shape and the like of the nanoparticles is performed using a TEM or the like. However, the field of view of the TEM or the like is narrow due to the high spatial resolution. In the sample having the non-uniformly dispersed nanoparticles, there are portions where particles are aggregated and stacked, and some portions where particles are not present. Therefore, in the sample having the non-uniformly dispersed nanoparticles, it is not easy to know which part to observe with a TEM or the like. Heretofore, various parts of the sample have been viewed by relying on the observer's intuition, and an optimum observation part in which the nanoparticles are uniformly dispersed has been selected.

一方、光学顕微鏡は視野が広いので、ナノ粒子が重なってしまっている部分など、明らかに観察に適さない部分を特定することが可能である。しかし、光の回折限界のため、直径が1μm以下の粒子の分散状態を直接観察することは困難である。光学顕微鏡を用いた一度の観察によって、試料の数百μm角の広い領域から、TEM等で観察すべき部分を短時間で選定できれば望ましい。TEM等を用いた精密測定の視野は数μm角であるため、TEM等を用いたナノ粒子の精密測定の前段階で、試料の数μm角の部分でナノ粒子の分散状態が光学顕微鏡を用いて評価できれば、効率的にナノ粒子の精密測定ができる。   On the other hand, since the optical microscope has a wide field of view, it is possible to identify a portion which is obviously unsuitable for observation, such as a portion where the nanoparticles overlap. However, due to the diffraction limit of light, it is difficult to directly observe the dispersion state of particles having a diameter of 1 μm or less. It is desirable that a part to be observed by TEM or the like can be selected in a short time from a wide region of several hundred μm square of a sample by one observation using an optical microscope. Since the field of view of accurate measurement using TEM etc. is several μm square, the dispersion state of nanoparticles in the area of several μm square of sample is made using an optical microscope at the stage prior to precise measurement of nanoparticles using TEM etc. If it can be evaluated, accurate measurement of nanoparticles can be performed efficiently.

本発明は上記事情に鑑みてなされたものであり、TEMやAFM等でナノ粒子を定量的に精密観察すべき試料の部分を、光学顕微鏡等を用いた簡便な手法によって選定することを目的とする。   The present invention has been made in view of the above circumstances, and it is an object of the present invention to select a portion of a sample on which nanoparticles should be precisely and quantitatively observed by TEM, AFM or the like by a simple method using an optical microscope or the like. Do.

本発明のナノ粒子評価方法は、分散しているナノ粒子を含む試料のナノ粒子に、三原色を含む光を照射する照射工程と、ナノ粒子による光の散乱光の波長と強度を測定する測定工程と、測定工程で測定された散乱光の波長と強度から、三原色の光の強度の総和である全散乱光強度と、青色の光の強度である青色光強度と、全散乱光強度に対する青色光強度の割合である青色光比率とを、試料の所定の領域内で算出する算出工程と、青色光比率を指標として、ナノ粒子の分散状態を領域内の所定の部分ごとに評価する評価工程を有している。   The nanoparticle evaluation method of the present invention comprises: irradiating the nanoparticles of the sample containing dispersed nanoparticles with light containing three primary colors; and measuring the wavelength and intensity of light scattered by the nanoparticles. And from the wavelength and intensity of the scattered light measured in the measurement step, the total scattered light intensity which is the sum of the light intensities of the three primary colors, the blue light intensity which is the blue light intensity, and the blue light for the total scattered light intensity A calculation step of calculating the blue light ratio, which is a ratio of intensity, in a predetermined region of the sample, and an evaluation step of evaluating the dispersion state of the nanoparticles for each predetermined portion in the region using the blue light ratio as an index Have.

本発明のナノ粒子観察装置は、分散しているナノ粒子を含む試料を載置するためのステージと、試料が載置された状態で、ステージの上面に対して斜め方向から、ナノ粒子に三原色を含む光を照射するように設けられた光源と、光源から照射された光のナノ粒子による散乱光のうち、試料の所定の領域内の散乱光の波長と強度をデジタルデータとして記録するデジタル機器と、デジタル機器が記録したデジタルデータに基づいて、青色の光の強度である青色光強度と、三原色の光の強度の総和である全散乱光強度とを算出するデジタル処理装置と、ステージの上面と対向するように設けられた探針、およびステージを三次元に移動するステージ制御装置を備える走査型プローブ顕微鏡を有している。   The nanoparticle observation device of the present invention is a stage for placing a sample containing dispersed nanoparticles, and in a state in which the sample is placed, three primary colors of nanoparticles are placed obliquely to the upper surface of the stage. And a digital device for recording, as digital data, the wavelength and intensity of scattered light within a predetermined region of a sample among light sources provided to emit light including light and scattered light by nanoparticles of light emitted from the light source A digital processing device that calculates blue light intensity that is blue light intensity and total scattered light intensity that is the sum of light intensities of three primary colors based on digital data recorded by a digital device; And a scanning probe microscope provided with a probe provided opposite to the stage, and a stage control device for moving the stage in three dimensions.

本発明の他のナノ粒子観察装置は、分散しているナノ粒子を含む試料を載置するためのステージと、試料が載置された状態で、ステージの上面に対して斜め方向から、ナノ粒子に三原色を含む光を照射するように設けられた光源と、光源から照射された光のナノ粒子による散乱光のうち、試料の所定の領域内の散乱光の波長と強度をデジタルデータとして記録するデジタル機器と、デジタル機器が記録したデジタルデータに基づいて、青色の光の強度である青色光強度と、三原色の光の強度の総和である全散乱光強度とを算出するデジタル処理装置と、ステージの上面と対向するように設けられた電子銃と、ステージを三次元に移動するステージ制御装置とを備える電子顕微鏡を有している。   Another nanoparticle observation device of the present invention is a stage for placing a sample containing dispersed nanoparticles, and a nanoparticle obliquely from the upper surface of the stage with the sample placed thereon. The wavelength and intensity of the scattered light in a predetermined area of the sample among the light source provided to emit light containing three primary colors and the scattered light by the nanoparticles of the light irradiated from the light source are recorded as digital data A digital processing apparatus that calculates a blue light intensity that is a blue light intensity and a total scattered light intensity that is a sum of light intensities of three primary colors based on digital devices and digital data recorded by the digital devices; And an electron microscope provided with an electron gun provided to face the upper surface of the stage, and a stage control device for moving the stage in three dimensions.

本発明によれば、光学顕微鏡等を用いた簡便な手法によって、TEMやAFM等でナノ粒子を定量的に精密観察すべき試料の部分が選定できる。   According to the present invention, it is possible to select the portion of the sample on which the nanoparticles should be precisely and quantitatively observed by TEM, AFM or the like by a simple method using an optical microscope or the like.

本発明の実施形態に係るナノ粒子観察装置の模式図。The schematic diagram of the nanoparticle observation apparatus which concerns on embodiment of this invention. 各種真球粒子に白色光を照射したときの散乱光スペクトルの理論計算結果(a)と、入射光、粒子、散乱光、入射角、および散乱角の関係を説明するための図(b)。The theoretical calculation result (a) of a scattered light spectrum when white light is irradiated to various true sphere particle | grains, and the figure for demonstrating the relationship between incident light, particle | grains, scattered light, an incident angle, and a scattering angle. 青色光比率の粒子径依存性を示すグラフ。The graph which shows the particle diameter dependence of a blue light ratio. 実施例の試料からの散乱光をカラーデジタルカメラで撮影したときの画像。The image when the scattered light from the sample of an Example was image | photographed with the color digital camera. 実施例の試料の光学顕微鏡像と、全散乱光強度および青色光比率の解析画像。The optical microscope image of the sample of an Example, and the analysis image of a total scattered light intensity and a blue light ratio. 実施例の試料AのSEM像。The SEM image of the sample A of an Example. 実施例の試料BのSEM像。The SEM image of the sample B of an Example.

以下、本発明のナノ粒子観察装置およびナノ粒子評価方法について、実施形態と実施例に基づいて詳細に説明する。図面は、ナノ粒子観察装置、ナノ粒子観察装置の構成部材、およびナノ粒子観察装置の周辺部材を模式的に表したものであり、これらの実物の寸法および寸法比は、図面上の寸法および寸法比と必ずしも一致していない。重複説明は適宜省略する。なお、2つの数値の間に「〜」を記載して数値範囲を表す場合には、この2つの数値も数値範囲に含まれるものとする。   Hereinafter, the nanoparticle observation apparatus and the nanoparticle evaluation method of the present invention will be described in detail based on embodiments and examples. The drawings schematically show the nanoparticle observation device, the constituent members of the nanoparticle observation device, and the peripheral members of the nanoparticle observation device, and the dimensions and dimensional ratio of these real items are the dimensions and dimensions on the drawing. It does not necessarily coincide with the ratio. Duplicate descriptions will be omitted as appropriate. In addition, when describing "-" between two numerical values and expressing a numerical range, these two numerical values shall also be included in a numerical range.

(ナノ粒子観察装置)
図1は、本発明の実施形態に係るナノ粒子観察装置10を模式的に示している。ナノ粒子観察装置10は、ステージ12と、光源である白色LED14と、集光レンズ16,18と、マルチモードファイバー20と、偏光フィルター22と、接眼レンズ24と、投影レンズ26と、デジタル機器であるカラーデジタルカメラ28と、デジタル処理装置であるコンピュータ30と、走査型プローブ顕微鏡であるAFM40とを備えている。
(Nanoparticle observation device)
FIG. 1 schematically shows a nanoparticle observation device 10 according to an embodiment of the present invention. The nanoparticle observation device 10 includes a stage 12, a white LED 14 as a light source, condensing lenses 16 and 18, a multimode fiber 20, a polarizing filter 22, an eyepiece lens 24, a projection lens 26, and digital devices. A color digital camera 28, a computer 30 which is a digital processing device, and an AFM 40 which is a scanning probe microscope are provided.

ステージ12は、三次元に移動可能で、その上面に試料Sを載置する。試料Sは、基板Pと、基板上で分散しているナノ粒子Nを備えている。ステージ12は、AFM40の構成部材である試料載置台を兼ねている。白色LED14は、ステージ12の上面、すなわち基板Pの上面に対して斜め方向から、ナノ粒子に白色光が照射されるように設置されている。なお、光源は、三原色、すなわち青色、緑色、および赤色を含む光が照射できれば、白色LED14でなくもよい。三原色を含む光源として、ハロゲンランプや蛍光灯などが例示できる。また、白色LED14は、ナノ粒子に照射する白色光の入射角が変更できるように設置されている。このため、様々な材質、大きさ、形状、および分散度等を備えるナノ粒子Nの観察に対応できる。   The stage 12 is movable in three dimensions, and places the sample S on its upper surface. The sample S comprises a substrate P and nanoparticles N dispersed on the substrate. The stage 12 doubles as a sample mounting table which is a component of the AFM 40. The white LEDs 14 are disposed such that the nanoparticles are irradiated with white light from an oblique direction with respect to the upper surface of the stage 12, ie, the upper surface of the substrate P. The light source may not be the white LED 14 as long as it can emit light including three primary colors, that is, blue, green and red. A halogen lamp, a fluorescent lamp, etc. can be illustrated as a light source containing three primary colors. In addition, the white LED 14 is installed so that the incident angle of the white light irradiated to the nanoparticles can be changed. Therefore, it is possible to cope with the observation of the nanoparticles N provided with various materials, sizes, shapes, degrees of dispersion, and the like.

集光レンズ16は、白色LED14から射出された白色光を収束する。マルチモードファイバー20は、集光レンズ16から入射した白色光を多くのモードに分散して伝送する。集光レンズ18は、マルチモードファイバー20から入射した白色光を収束する。本実施形態では、偏光フィルター22は、白色LED14が射出した白色光の偏光を適宜変えることができる。このため、様々な材質、大きさ、形状、および分散度等を備えるナノ粒子の観察に対応できる。偏光フィルター22を通過した白色光は、基板Pの上面に対して斜め方向から試料Sに照射される。   The condenser lens 16 converges the white light emitted from the white LED 14. The multimode fiber 20 disperses the white light incident from the condenser lens 16 into many modes and transmits it. The condenser lens 18 converges the white light incident from the multimode fiber 20. In the present embodiment, the polarizing filter 22 can appropriately change the polarization of the white light emitted by the white LED 14. For this reason, it can respond to observation of nanoparticles provided with various materials, sizes, shapes, degrees of dispersion, and the like. The white light that has passed through the polarizing filter 22 is irradiated onto the sample S in a direction oblique to the upper surface of the substrate P.

試料Sに照射された白色光は、ナノ粒子Nによって散乱される。このうち、所定の散乱角、例えば散乱角110°の散乱光が対物レンズ24によって集光される。対物レンズ24を通過した散乱光は、さらに投影レンズ26を通過して、カラーデジタルカメラ28の焦点面に結像される。本実施形態では、カラーデジタルカメラ28は、ステージ12の上面と対向するように、すなわちステージ12上の試料Sからの散乱光像を撮影できるように設けられている。ステージ12とカラーデジタルカメラ28の間に光学顕微鏡を設置して、この光学顕微鏡の対物レンズと投影レンズをそれぞれ利用するのが好ましい。この場合、光学顕微鏡の実像焦点位置にカラーデジタルカメラ28を取り付け、カラーデジタルカメラ28のフォーカスを基板Pの上面に合わせる。光学顕微鏡の空間分解能は、1μm以上であってもよい。   The white light irradiated to the sample S is scattered by the nanoparticles N. Among these, scattered light having a predetermined scattering angle, for example, a scattering angle of 110 ° is collected by the objective lens 24. The scattered light that has passed through the objective lens 24 further passes through the projection lens 26 and is imaged on the focal plane of the color digital camera 28. In the present embodiment, the color digital camera 28 is provided to face the upper surface of the stage 12, that is, to be able to capture a scattered light image from the sample S on the stage 12. Preferably, an optical microscope is placed between the stage 12 and the color digital camera 28 to utilize the objective lens and the projection lens of the optical microscope, respectively. In this case, the color digital camera 28 is attached to the real image focal position of the optical microscope, and the color digital camera 28 is focused on the upper surface of the substrate P. The spatial resolution of the optical microscope may be 1 μm or more.

カラーデジタルカメラ28は、白色LED14から照射された白色光のナノ粒子Nによる散乱光のうち、試料Sの所定の領域内の散乱光の波長と強度をデジタルデータとして記録する。ここで、試料Sの所定の領域内とは、例えば、カラーデジタルカメラ28の全視野に対応する試料Sの数百μm角の範囲内である。試料Sの大きさによっては、所定の領域内が試料S全体の場合もある。なお、カラーデジタルカメラ28でナノ粒子Nからの光散乱による像が得られる。しかし、回折限界のため、個々のナノ粒子Nを分解して観察することはできない。   The color digital camera 28 records, as digital data, the wavelength and intensity of the scattered light in a predetermined region of the sample S among the scattered light of the white light nanoparticle N emitted from the white LED 14. Here, “within the predetermined region of the sample S” means, for example, within a range of several hundred μm square of the sample S corresponding to the entire field of view of the color digital camera 28. Depending on the size of the sample S, the predetermined area may be the entire sample S. The color digital camera 28 obtains an image by light scattering from the nanoparticles N. However, due to diffraction limitations, individual nanoparticles N can not be resolved and observed.

光を散乱させるナノ粒子の粒径に応じて、散乱光のスペクトルはレーリー散乱やミー散乱理論に対応する。すなわち、理論的には、粒径100nm程度以下のナノ粒子では、光散乱スペクトルがレーリー散乱理論で説明できる。この場合、光散乱スペクトルの短波長成分ほど強度が大きくなる。一方、それよりも粒径が大きいナノ粒子では、光散乱スペクトルがミー散乱理論に従って複雑な形状となる。しかし、一般に、レーリー散乱条件より光散乱スペクトルの長波長成分の強度が大きくなる。したがって、孤立したナノ粒子が分散した試料では、凝集による大きなナノ粒子が多い試料と比較して青色光比率が高くなる。このため、光散乱スペクトルの比較により、孤立粒子の比率の高低について評価が可能である。一方、散乱光の強度はナノ粒子数が多いほど強くなるので、散乱光の強度から粒子密度がある程度推定できる。   Depending on the particle size of the light scattering nanoparticles, the spectrum of the scattered light corresponds to Rayleigh scattering or Mie scattering theory. That is, theoretically, in nanoparticles having a particle size of about 100 nm or less, the light scattering spectrum can be explained by the Rayleigh scattering theory. In this case, the shorter the wavelength component of the light scattering spectrum, the higher the intensity. On the other hand, with nanoparticles having a larger particle size, the light scattering spectrum has a complicated shape according to the Mie scattering theory. However, in general, the intensity of the long wavelength component of the light scattering spectrum is larger than the Rayleigh scattering condition. Therefore, in the sample in which isolated nanoparticles are dispersed, the blue light ratio is higher as compared with the sample in which large nanoparticles by aggregation are present. For this reason, it is possible to evaluate the high and low of the ratio of isolated particles by comparing the light scattering spectra. On the other hand, since the intensity of the scattered light increases as the number of nanoparticles increases, the particle density can be estimated to some extent from the intensity of the scattered light.

そこで、カラーデジタルカメラ28の出力から三原色の光の強度の総和である全散乱光強度と、青色の光の強度である青色光強度と、全散乱光強度に対する青色光強度の比、すなわち「青色光強度/全散乱光強度」である青色光比率を算出して、青色光強度と青色光比率を指標として、ナノ粒子Nを精密観察するのに最適な試料Sの部分を求める。TEM、SEM、およびAFM等で求められる精密観察に適した条件は、なるべく孤立した粒子が高密度に分散している状態である。したがって、青色光比率が高い試料Sの部分や、全散乱光強度が大きい試料Sの部分を選択すればよい。なお、試料Sの所定の領域内の散乱光の波長と強度をデジタルデータとして記録できれば、カラーデジタルカメラ28以外のデジタル機器を使用してもよい。   Therefore, the ratio of the blue light intensity to the total scattered light intensity, that is, the ratio of the total scattered light intensity that is the sum of the intensities of the three primary colors from the output of the color digital camera 28, the blue light intensity that is the blue light intensity, The blue light ratio which is “light intensity / total scattered light intensity” is calculated, and the portion of the sample S most suitable for precise observation of the nanoparticles N is determined using the blue light intensity and the blue light ratio as an index. The conditions suitable for precision observation determined by TEM, SEM, AFM, etc. are states in which isolated particles are dispersed as densely as possible. Therefore, the portion of the sample S having a high blue light ratio or the portion of the sample S having a large total scattered light intensity may be selected. Note that digital equipment other than the color digital camera 28 may be used as long as the wavelength and intensity of the scattered light in the predetermined region of the sample S can be recorded as digital data.

コンピュータ30は、カラーデジタルカメラ28が記録したデジタルデータに基づいて、すなわちカラーデジタルカメラ28の画像信号を取り込んで画像処理し、青色光強度と、全散乱光強度と、青色光比率を各画素で算出する。そして、試料Sの所定の領域内の所定の部分(例えば、AFM40の全視野に対応する約十μm角)ごとに、全散乱光強度と青色光比率の平均値を算出する。   The computer 30 takes in the image signal of the color digital camera 28 based on the digital data recorded by the color digital camera 28 and processes the image, and the blue light intensity, the total scattered light intensity, and the blue light ratio for each pixel calculate. Then, the average value of the total scattered light intensity and the blue light ratio is calculated for each predetermined portion (for example, about 10 μm square corresponding to the entire field of view of the AFM 40) in the predetermined region of the sample S.

こうして、カラーデジタルカメラ28の全視野にわたって、約十μm角の部分ごとに、青色光比率と全散乱光強度がわかる。その後、青色光比率が高い試料Sの部分、または青色光比率が高く全散乱光強度が大きい試料Sの部分を、AFM40で精密観察する。本実施形態ではAFM40を用いたが、AFM40に代えて、走査型トンネル顕微鏡等のAFM40以外の走査型プローブ顕微鏡を用いてもよいし、電子顕微鏡を用いてもよい。   Thus, the blue light ratio and the total scattered light intensity can be known for each portion of about 10 μm square over the entire field of view of the color digital camera 28. Thereafter, the portion of the sample S having a high blue light ratio or the portion of the sample S having a high blue light ratio and a high total scattered light intensity is precisely observed with the AFM 40. Although the AFM 40 is used in the present embodiment, a scanning probe microscope other than the AFM 40 such as a scanning tunneling microscope may be used instead of the AFM 40, or an electron microscope may be used.

AFM40は、ステージ12と、ステージ制御装置42と、AFMヘッド44と、AFMカンチレバー46と、探針48とを備えている。ステージ12は、カラーデジタルカメラ28で散乱光を撮影するときの試料載置台を兼ねている。すなわち、試料Sのナノ粒子Nの分散状態を評価するときに使用する試料載置台と、AFM40でナノ粒子Nを精密観察するときに使用する試料載置台が、ステージ12として共用されている。したがって、カラーデジタルカメラ28を用いた散乱光撮影とAFM40による精密観察が同じ座標軸上で、試料Sを管理することができる。   The AFM 40 includes a stage 12, a stage controller 42, an AFM head 44, an AFM cantilever 46, and a probe 48. The stage 12 doubles as a sample mounting table when photographing the scattered light with the color digital camera 28. That is, the sample mounting table used when evaluating the dispersion state of the nanoparticles N of the sample S and the sample mounting table used when precisely observing the nanoparticles N with the AFM 40 are shared as the stage 12. Therefore, the sample S can be managed on the same coordinate axis as the scattered light imaging using the color digital camera 28 and the precise observation by the AFM 40.

ステージ制御装置42は、ステージ12を三次元に移動する。すなわち、コンピュータ30によって、試料Sの最適観察部分の位置が計算され、この最適観察部分の位置の座標に基づいて、最適観察部分がAFMカンチレバー46の直下に移動するように、ステージ制御装置42でステージ12の位置が制御される。このように、カラーデジタルカメラ28を用いた散乱光撮影のための試料SをAFM40のステージ12上に置けば、試料Sの精密測定に最適な部分を選定した後、AFMカンチレバー46の直下にこの部分をすぐに移動できる。   The stage control unit 42 moves the stage 12 in three dimensions. That is, the position of the optimum observation portion of the sample S is calculated by the computer 30, and the stage control device 42 causes the optimum observation portion to move immediately below the AFM cantilever 46 based on the coordinates of the position of the optimum observation portion. The position of the stage 12 is controlled. As described above, when the sample S for scattered light imaging using the color digital camera 28 is placed on the stage 12 of the AFM 40, after selecting the part that is most suitable for the precise measurement of the sample S, this part under the AFM cantilever 46 is selected. You can move parts quickly.

その後、AFMヘッド44とAFMカンチレバー46を用いて、試料Sのナノ粒子のAFM画像が取得される。この画像に基づいて、ナノ粒子Nの形状や粒径等が評価できる。このように、ナノ粒子観察装置10によれば、試料Sの最適観察部分の選択のための時間と労力を大幅に省くことができる。このため、ナノ材料の精密観察を効率よく行うことができ、ナノ材料の開発が加速される。   Thereafter, using the AFM head 44 and the AFM cantilever 46, an AFM image of the nanoparticles of the sample S is acquired. The shape, particle size, etc. of the nanoparticles N can be evaluated based on this image. Thus, according to the nanoparticle observation device 10, time and effort for selecting the optimum observation portion of the sample S can be largely saved. Therefore, precise observation of nanomaterials can be efficiently performed, and development of nanomaterials is accelerated.

(ナノ粒子評価方法)
本発明の実施形態に係るナノ粒子評価方法は、照射工程と、測定工程と、算出工程と、評価工程と、観察工程とを備えている。本実施形態のナノ粒子評価方法は、ナノ粒子観察装置10を使って行ってもよいし、他の装置を使って行ってもよい。照射工程では、分散しているナノ粒子を含む試料のナノ粒子に、三原色を含む光を照射する。測定工程では、ナノ粒子による光の散乱光の波長と強度を測定する。測定工程では、撮像素子で認識された散乱光の波長と強度をデジタルデータとして記録する過程を含むことが好ましい。
(Nanoparticle evaluation method)
The nanoparticle evaluation method according to the embodiment of the present invention includes an irradiation step, a measurement step, a calculation step, an evaluation step, and an observation step. The nanoparticle evaluation method of the present embodiment may be performed using the nanoparticle observation device 10 or may be performed using another device. In the irradiation step, nanoparticles of a sample containing dispersed nanoparticles are irradiated with light containing three primary colors. In the measurement step, the wavelength and intensity of scattered light of light by the nanoparticles are measured. The measuring step preferably includes the step of recording the wavelength and intensity of the scattered light recognized by the imaging device as digital data.

算出工程では、測定工程で測定された散乱光の波長と強度から、全散乱光強度と、青色光強度と、青色光比率を、試料の所定の領域内で算出する。評価工程では、青色光比率を指標として、ナノ粒子の分散状態を領域内の所定の部分ごとに評価する。評価工程では、さらに全散乱光強度を指標として、ナノ粒子の分散状態を領域内の所定の部分ごとに評価してもよい。試料が、基板と、基板上で分散しているナノ粒子とを含み、照射工程では、基板上面に対して斜め方向に光を照射してもよい。   In the calculation step, the total scattered light intensity, the blue light intensity and the blue light ratio are calculated within a predetermined area of the sample from the wavelength and the intensity of the scattered light measured in the measurement step. In the evaluation step, the dispersion state of the nanoparticles is evaluated for each predetermined portion in the region using the blue light ratio as an index. In the evaluation step, the dispersion state of the nanoparticles may be further evaluated for each predetermined portion in the region using the total scattered light intensity as an index. The sample may include a substrate and nanoparticles dispersed on the substrate, and the irradiation step may irradiate light in an oblique direction with respect to the upper surface of the substrate.

図2(a)は、粒子径50〜1000nmの9種類のSiO真球粒子に、入射角70°で白色光を照射したときの散乱光スペクトル(散乱角110°)を理論計算結果で示している。図2(b)は、入射光、粒子、散乱光、入射角、および散乱角の関係を示している。この散乱光スペクトルの計算は、ミー散乱理論に基づいて行った。図2(a)に示すように、レーリー散乱領域である粒子径50nmの粒子では、散乱光スペクトルが長波長側に向けて単調に減少している。一方、粒子径100nmを超える粒子では、散乱光スペクトルの重心が赤色側に偏移するとともに、散乱光スペクトルが複雑化している。FIG. 2 (a) shows the scattered light spectrum (scattering angle 110 °) when white light is irradiated at an incident angle of 70 ° to nine kinds of SiO 2 spherical particles with a particle diameter of 50 to 1000 nm as theoretical calculation results. ing. FIG. 2 (b) shows the relationship between incident light, particles, scattered light, incident angle, and scattering angle. The calculation of the scattered light spectrum was performed based on the Mie scattering theory. As shown in FIG. 2A, in the particle having a particle diameter of 50 nm, which is a Rayleigh scattering region, the scattered light spectrum monotonously decreases toward the long wavelength side. On the other hand, in particles having a particle diameter of more than 100 nm, the center of gravity of the scattered light spectrum shifts to the red side, and the scattered light spectrum is complicated.

図3は、真球微粒子からの散乱光スペクトルを特徴づける青色光比率の粒子径依存性を示している。図2の計算結果から、青色光成分(420〜470nm)の可視域全散乱光強度(全散乱光強度)に対する比率を計算した。図3(a)によれば、入射角を変えることで、粒子径の変曲点を変えることができることがわかる。図3(b)では、入射光の偏光を選択することで、粒子径の変曲点が変化することがわかる。図3(a)および図3(b)により、入射角と偏光の選択によって、評価に必要なナノ粒子の粒径のしきい値(評価基準粒径)を変化させることが可能であることがわかる。   FIG. 3 shows the particle size dependency of the ratio of blue light characterizing the scattered light spectrum from the spherical fine particles. From the calculation results of FIG. 2, the ratio of the blue light component (420 to 470 nm) to the total scattered light intensity in the visible region (total scattered light intensity) was calculated. According to FIG. 3A, it can be seen that the inflection point of the particle diameter can be changed by changing the incident angle. In FIG. 3B, it can be seen that the inflection point of the particle diameter changes by selecting the polarization of the incident light. According to FIGS. 3A and 3B, it is possible to change the threshold value of the particle size of the nanoparticles (evaluation standard particle size) necessary for the evaluation by selecting the incident angle and the polarization. Recognize.

観察工程では、評価工程で評価した試料の所定の部分ごとのナノ粒子の分散状態に基づいて、試料の観察部分を選定し、電子顕微鏡および走査型プローブ顕微鏡の少なくとも一方で観察部分を観察する。試料の観察部分の選定では、試料の青色光比率が高い部分、または試料の青色光比率が高く全散乱光強度が大きい部分を選定する。本実施形態のナノ粒子評価方法は、ナノ粒子の平均粒径が50〜100nmであるときに特に有効である。   In the observation step, the observation portion of the sample is selected based on the dispersion state of the nanoparticles for each predetermined portion of the sample evaluated in the evaluation step, and the observation portion is observed with at least one of an electron microscope and a scanning probe microscope. In the selection of the observation portion of the sample, a portion where the blue light ratio of the sample is high or a portion where the blue light ratio of the sample is high and the total scattered light intensity is high is selected. The nanoparticle evaluation method of the present embodiment is particularly effective when the average particle diameter of the nanoparticles is 50 to 100 nm.

ステージとカラーデジタルカメラの間に光学顕微鏡を設置したナノ粒子観察装置を用いて、ナノ粒子を含む試料を観察した。光学顕微鏡は、長作動距離対物レンズ(倍率9倍、開口数0.28、無限焦点補正)と、投影レンズ(焦点距離200mm)を備えていた。光学顕微鏡の実像焦点面にカラーデジタルカメラ(2048×1536画素、画素ピッチ3.2μm)を設置した。これにより640×480μm角の範囲が、空間分解能約1μmで撮影可能であった。   The nanoparticle-containing sample was observed using a nanoparticle observation device in which an optical microscope was installed between the stage and the color digital camera. The optical microscope was equipped with a long working distance objective (9x magnification, 0.28 numerical aperture, infinity focus correction) and a projection lens (200 mm focal length). A color digital camera (2048 × 1536 pixels, pixel pitch 3.2 μm) was placed on the real image focal plane of the optical microscope. As a result, a 640 × 480 μm square area could be photographed with a spatial resolution of about 1 μm.

試料は、平坦なSi基板上に平均直径100nmのシリカ粒子を3種類の手法で分散したものを用いた。試料Aは、凝集が比較的少ない凍結真空乾燥法により作製した。試料Bは、大きな凝集体ができやすい凍結真空乾燥法により作製した。試料Cは、通常一般に用いられている自然乾燥により作製した。光源は、高輝度白色パワーLED(投入電力3W)を用いた。白色LEDから射出された光は、集光レンズでマルチモードファイバー(コア径300μm)に集光され、このファイバーからの射出光を集光レンズで試料面上に集光した。   The sample used was a flat Si substrate on which silica particles with an average diameter of 100 nm were dispersed by three methods. Sample A was prepared by freeze-drying with relatively little aggregation. The sample B was produced by the freeze vacuum drying method in which large aggregates are easily formed. Sample C was produced by natural drying generally used. As a light source, a high brightness white power LED (input power 3 W) was used. The light emitted from the white LED was collected on a multi-mode fiber (core diameter 300 μm) by a collecting lens, and the light emitted from this fiber was collected on the sample surface by a collecting lens.

マルチモードファイバーの射出光側の集光レンズと試料の間に偏光フィルターを設けて、射出光の偏光を制御できるようにした。また、マルチモードファイバーの射出光側の集光レンズの位置を変えて、試料への入射角が変えられるようにした。本実施例では、無偏光で入射角45〜50°の白色光を用いて、試料のナノ粒子の分散状態を評価した。カラーデジタルカメラの露光時間は、各画素での強度オーバーが起きない程度に設定し、同じ露光時間でのバックグラウンドも測定した。撮影後、画素情報の損失が起きないように、TIFF形式のファイルとしてカラーデジタルカメラに保存した。試料A、試料B、および試料Cからの散乱光をカラーデジタルカメラで撮影したときの画像を図4に示す。   A polarization filter was provided between the focusing lens on the exit light side of the multimode fiber and the sample so that the polarization of the exit light could be controlled. In addition, the position of the condensing lens on the exit light side of the multimode fiber was changed to change the incident angle to the sample. In this example, the dispersion state of the nanoparticles of the sample was evaluated using non-polarized white light with an incident angle of 45 to 50 °. The exposure time of the color digital camera was set to such an extent that an intensity over at each pixel did not occur, and the background at the same exposure time was also measured. After shooting, it was saved as a TIFF format file on the color digital camera so that there was no loss of pixel information. The image when the scattered light from the sample A, the sample B, and the sample C was image | photographed with a color digital camera is shown in FIG.

カラーデジタルカメラに保存したTIFFファイルをコンピュータで読み込んだ後、バックグラウンドを差し引いて、試料A、試料B、および試料Cの各画素の真の散乱光強度を三原色について求めた。なお、青色光の波長は420〜470nm、緑色光の波長は490〜600nm、赤色光の波長は540〜680nmとした。そして、32×32画素(10×10μm)の単位で平均化して、三原色の全散乱光強度および青色光比率を指標として、全領域の評価を行った。   After the TIFF file stored in the color digital camera was read by a computer, the background was subtracted and the true scattered light intensities of each pixel of sample A, sample B and sample C were determined for the three primary colors. The wavelength of blue light is 420 to 470 nm, the wavelength of green light is 490 to 600 nm, and the wavelength of red light is 540 to 680 nm. Then, averaging was performed in units of 32 × 32 pixels (10 × 10 μm), and evaluation of the entire area was performed using the total scattered light intensity of the three primary colors and the blue light ratio as an index.

図5は、試料A、試料B、および試料Cの光学顕微鏡の画像、全散乱光強度の大小を色の濃淡で表わした解析画像、および青色光比率の高低を色の濃淡で表わした解析画像である。図5では、色が薄いほど、全散乱光強度が大きい、または青色光比率が高い。試料Aでは、全散乱光強度が大きく、青色光比率が高い部分が島状に存在していた。図6は、グリセリンを添加した試料AのSEM画像である。図6(a)から図6(c)の順に、低倍率から高倍率になっている。図7は試料BのSEM画像である。図7(a)の倍率は、図7(b)の倍率より低い。図5および図6より、試料Aの全散乱光強度が大きく、青色光比率が高い島状の部分は、孤立粒子と微小凝集体で構成されており、マイクロメータークラスの大凝集体は存在しないことが確認された。   FIG. 5 shows an image of an optical microscope of sample A, sample B, and sample C, an analysis image representing the magnitude of total scattered light intensity by color shading, and an analysis image representing high and low of the blue light ratio by color shading It is. In FIG. 5, the lighter the color, the higher the total scattered light intensity or the higher the blue light ratio. In sample A, the total scattered light intensity was high, and the portion with a high blue light ratio was present in an island shape. FIG. 6 is a SEM image of sample A to which glycerin has been added. From the low magnification to the high magnification in the order of FIG. 6 (a) to FIG. 6 (c). FIG. 7 is a SEM image of sample B. The magnification of FIG. 7 (a) is lower than that of FIG. 7 (b). From FIG. 5 and FIG. 6, the island-like portion with high total scattered light intensity and high blue light ratio of sample A is composed of isolated particles and micro aggregates, and large aggregates of micrometer class do not exist That was confirmed.

全散乱光強度は、ナノ粒子数が多いほど大きくなる。1回の精密観察でなるべく多くのナノ粒子を計測するためには、試料の全散乱光強度が大きな部分を測定することが有利である。一方、青色光比率は分散性の良さを示しており、試料の青色光比率が高い部分を測定することで、凝集体の影響を軽減できる。図5から図7より、試料Bと比較して試料Aは、孤立粒子の多い部分が広く分布することがわかった。   The total scattered light intensity increases as the number of nanoparticles increases. In order to measure as many nanoparticles as possible in a single precision observation, it is advantageous to measure a portion where the total scattered light intensity of the sample is large. On the other hand, the blue light ratio indicates good dispersibility, and the influence of the aggregates can be reduced by measuring the portion where the blue light ratio of the sample is high. From FIGS. 5 to 7, it was found that in the sample A compared with the sample B, the portion with many isolated particles was widely distributed.

図5に示すように、試料Cの左側の領域は、粒子密度が高いものの、青色光比率が低いことから、凝集体が多いことがわかる。一方、試料Cの右側の領域は粒子密度が低い。粒子密度が低いほど凝集しにくいと一般的には予想できるが、図5の試料Cの画像より、必ずしも粒子密度が低ければ粒子が凝集しにくいわけではなく、粒子密度がある程度高く、かつ凝集が少ない(青色光比率が高い)部分があることがわかった。   As shown in FIG. 5, in the region on the left side of the sample C, although the particle density is high, the blue light ratio is low, which indicates that there are many aggregates. On the other hand, the region on the right side of sample C has low particle density. Generally, it can be expected that the lower the particle density, the harder the aggregation, but according to the image of sample C in FIG. 5, the particles are not necessarily difficult to aggregate if the particle density is low, the particle density is somewhat high, and the aggregation is It was found that there is a small portion (high blue light ratio).

図5に示すように、試料Bでは、全散乱光強度および青色光比率がほぼ均一であるが、青色光比率が0.6を超えている領域がなかった。図7より、試料Bの光学顕微鏡画像で観測される点状の領域は、大凝集体であることが確認された。この結果は、青色光比率と全散乱光強度から予想されるものであり、本発明の青色光比率、または青色光比率および全散乱光強度を指標として、ナノ粒子の分散状態を試料の所定の領域内の所定の部分ごとに評価する方法が有効であることを示している。   As shown in FIG. 5, in the sample B, although the total scattered light intensity and the blue light ratio were almost uniform, there was no region in which the blue light ratio exceeded 0.6. From FIG. 7, it was confirmed that the dot-like region observed in the optical microscope image of the sample B was a large aggregate. This result is predicted from the blue light ratio and the total scattered light intensity, and the dispersion state of the nanoparticles is designated as a predetermined value of the blue light ratio or the blue light ratio and the total scattered light intensity of the present invention. It shows that the method of evaluating each predetermined part in the area is effective.

一方、図5に示すように、試料Cでは、全散乱光強度および青色光比率が場所により大きく異なる。全体的に見ると、全散乱光強度が大きい領域では青色光比率が小さい。全散乱光強度大きい領域は、多数のナノ粒子が凝集している領域であるからだと考えられる。また、全散乱光強度が小さい領域であっても、青色光比率が低い部分もあり、必ずしも粒子密度が低ければ粒子が凝集しにくいわけではないことが判明した。ナノ粒子が不均一に分散された試料では、一般的になるべく凝集体が少ない部分を観察するために、粒子濃度が低い部分を観察部分として選定する傾向があった。しかし、本実施例の結果から、必ずしも試料のナノ粒子の密度が低い部分が観察に適しているわけではなく、本発明により最適な場所を選択することが有効であることがわかった。   On the other hand, as shown in FIG. 5, in the sample C, the total scattered light intensity and the blue light ratio largely differ depending on the place. As a whole, the blue light ratio is small in the region where the total scattered light intensity is large. The region where the total scattered light intensity is large is considered to be a region in which a large number of nanoparticles are aggregated. Further, it was found that even in the region where the total scattered light intensity is low, there is a portion where the blue light ratio is low, and it is not necessarily the case that particles are difficult to aggregate if the particle density is low. In the sample in which the nanoparticles were dispersed nonuniformly, there was a tendency to select a portion with low particle concentration as an observation portion in order to observe a portion with as few aggregates as possible. However, from the results of this example, it was found that the low density part of the sample nanoparticles is not necessarily suitable for observation, and it is effective to select the optimum place according to the present invention.

10 ナノ粒子観察装置
12 ステージ
14 白色LED
16,18 集光レンズ
20 マルチモードファイバー
22 偏光フィルター
24 対物レンズ
26 投影レンズ
28 カラーデジタルカメラ
30 コンピュータ
40 AFM
42 ステージ制御装置
44 AFMヘッド
46 AFMカンチレバー
48 探針
S 試料
P 基板
N ナノ粒子
10 Nanoparticle Observation Device 12 Stage 14 White LED
16, 18 condenser lens 20 multi-mode fiber 22 polarization filter 24 objective lens 26 projection lens 28 color digital camera 30 computer 40 AFM
42 stage controller 44 AFM head 46 AFM cantilever 48 probe S sample P substrate N nanoparticle

Claims (12)

分散しているナノ粒子を含む試料の前記ナノ粒子に、三原色を含む光を照射する照射工程と、
前記ナノ粒子による前記光の散乱光の波長と強度を測定する測定工程と、
前記測定工程で測定された散乱光の波長と強度から、三原色の光の強度の総和である全散乱光強度と、青色の光の強度である青色光強度と、前記全散乱光強度に対する前記青色光強度の割合である青色光比率とを、前記試料の所定の領域内で算出する算出工程と、
前記青色光比率を指標として、前記ナノ粒子の分散状態を前記領域内の所定の部分ごとに評価する評価工程と、
を有するナノ粒子評価方法。
Irradiating the nanoparticles of the sample containing dispersed nanoparticles with light containing three primary colors;
Measuring the wavelength and intensity of scattered light of the light by the nanoparticles;
From the wavelength and intensity of the scattered light measured in the measurement step, the total scattered light intensity which is the sum of the light intensities of the three primary colors, the blue light intensity which is the blue light intensity, and the blue for the total scattered light intensity Calculating a blue light ratio, which is a ratio of light intensity, within a predetermined area of the sample;
Evaluating the dispersion state of the nanoparticles for each predetermined portion in the region, using the blue light ratio as an index;
Nanoparticle evaluation method having.
請求項1において、
前記評価工程では、さらに前記全散乱光強度を指標として、前記ナノ粒子の分散状態を前記領域内の所定の部分ごとに評価するナノ粒子評価方法。
In claim 1,
In the said evaluation process, the nanoparticle evaluation method which evaluates the dispersion state of the said nanoparticle for every predetermined part in the said area | region further by making the said total scattered light intensity into a parameter | index.
請求項1または2において、
前記試料が、基板と、前記基板上で分散しているナノ粒子とを含み、
前記照射工程では、基板上面に対して斜め方向に前記光を照射するナノ粒子評価方法。
In claim 1 or 2,
The sample comprises a substrate and nanoparticles dispersed on the substrate,
In the said irradiation process, the nanoparticle evaluation method which irradiates the said light to the diagonal direction with respect to the upper surface of a board | substrate.
請求項1から3のいずれかにおいて、
前記評価工程で評価した前記試料の所定の部分ごとの前記ナノ粒子の分散状態に基づいて、前記試料の観察部分を選定し、電子顕微鏡および走査型プローブ顕微鏡の少なくとも一方で前記観察部分を観察する観察工程をさらに有するナノ粒子評価方法。
In any one of claims 1 to 3,
The observation portion of the sample is selected based on the dispersion state of the nanoparticles for each predetermined portion of the sample evaluated in the evaluation step, and the observation portion is observed with at least one of an electron microscope and a scanning probe microscope The nanoparticle evaluation method which further has an observation process.
請求項1から4のいずれかにおいて、
前記ナノ粒子の平均粒径が50〜100nmであるナノ粒子評価方法。
In any one of claims 1 to 4,
The nanoparticle evaluation method whose average particle diameter of the said nanoparticle is 50-100 nm.
請求項1から5のいずれかにおいて、
前記測定工程では、撮像素子で認識された前記散乱光の波長と強度をデジタルデータとして記録する過程を含むナノ粒子評価方法。
In any one of claims 1 to 5,
The nanoparticle evaluation method comprising the step of recording the wavelength and intensity of the scattered light recognized by the imaging device as digital data in the measurement step.
分散しているナノ粒子を含む試料を載置するためのステージと、
前記試料が載置された状態で、前記ステージの上面に対して斜め方向から、前記ナノ粒子に三原色を含む光を照射するように設けられた光源と、
前記光源から照射された前記光の前記ナノ粒子による散乱光のうち、前記試料の所定の領域内の散乱光の波長と強度をデジタルデータとして記録するデジタル機器と、
前記デジタル機器が記録したデジタルデータに基づいて、青色の光の強度である青色光強度と、三原色の光の強度の総和である全散乱光強度とを算出するデジタル処理装置と、
前記ステージの上面と対向するように設けられた探針と、前記ステージを三次元に移動するステージ制御装置とを備える走査型プローブ顕微鏡と、
を有するナノ粒子観察装置。
A stage for mounting a sample comprising dispersed nanoparticles;
A light source provided so as to irradiate light containing three primary colors to the nanoparticles from an oblique direction with respect to the upper surface of the stage with the sample mounted thereon;
A digital device for recording, as digital data, the wavelength and intensity of scattered light in a predetermined region of the sample among scattered light of the light emitted from the light source by the nanoparticles.
A digital processing device that calculates, based on digital data recorded by the digital device, blue light intensity that is blue light intensity and total scattered light intensity that is a sum of light intensities of three primary colors;
A scanning probe microscope provided with a probe provided to face the upper surface of the stage, and a stage control device for moving the stage in three dimensions;
Nanoparticle observation device having.
分散しているナノ粒子を含む試料を載置するためのステージと、
前記試料が載置された状態で、前記ステージの上面に対して斜め方向から、前記ナノ粒子に三原色を含む光を照射するように設けられた光源と、
前記光源から照射された前記光の前記ナノ粒子による散乱光のうち、前記試料の所定の領域内の散乱光の波長と強度をデジタルデータとして記録するデジタル機器と、
前記デジタル機器が記録したデジタルデータに基づいて、青色の光の強度である青色光強度と、三原色の光の強度の総和である全散乱光強度とを算出するデジタル処理装置と、
前記ステージの上面と対向するように設けられた電子銃と、前記ステージを三次元に移動するステージ制御装置とを備える電子顕微鏡と、
を有するナノ粒子観察装置。
A stage for mounting a sample comprising dispersed nanoparticles;
A light source provided so as to irradiate light containing three primary colors to the nanoparticles from an oblique direction with respect to the upper surface of the stage with the sample mounted thereon;
A digital device for recording, as digital data, the wavelength and intensity of scattered light in a predetermined region of the sample among scattered light of the light emitted from the light source by the nanoparticles.
A digital processing device that calculates, based on digital data recorded by the digital device, blue light intensity that is blue light intensity and total scattered light intensity that is a sum of light intensities of three primary colors;
An electron microscope comprising an electron gun provided to face the upper surface of the stage, and a stage control device for moving the stage in three dimensions;
Nanoparticle observation device having.
請求項7または8において、
前記デジタル機器がカラーデジタルカメラであるナノ粒子観察装置。
In claim 7 or 8,
The nanoparticle observation device whose said digital device is a color digital camera.
請求項7から9のいずれかにおいて、
前記ステージと前記デジタル機器の間に、光学顕微鏡をさらに有するナノ粒子観察装置。
In any one of claims 7 to 9,
An apparatus for observing nanoparticles, further comprising an optical microscope between the stage and the digital device.
請求項7から10のいずれかにおいて、
前記ステージと前記光源の間に、前記光源が射出した光の偏光を変えられる偏光フィルターをさらに有するナノ粒子観察装置。
In any one of claims 7 to 10,
An apparatus for observing nanoparticles, further comprising a polarizing filter between the stage and the light source, capable of changing the polarization of light emitted by the light source.
請求項7から11のいずれかにおいて、
前記光源が、前記ナノ粒子に照射する前記光の入射角を変更できるナノ粒子観察装置。
In any one of claims 7 to 11,
The nanoparticle observation apparatus which can change the incident angle of the said light which the said light source irradiates to the said nanoparticle.
JP2018544975A 2016-10-13 2017-10-04 Nanoparticle evaluation method and nanoparticle observation device Active JP6659062B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016202115 2016-10-13
JP2016202115 2016-10-13
PCT/JP2017/036174 WO2018070324A1 (en) 2016-10-13 2017-10-04 Nanoparticle evaluation method and nanoparticle observation device

Publications (2)

Publication Number Publication Date
JPWO2018070324A1 true JPWO2018070324A1 (en) 2019-04-25
JP6659062B2 JP6659062B2 (en) 2020-03-04

Family

ID=61905698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018544975A Active JP6659062B2 (en) 2016-10-13 2017-10-04 Nanoparticle evaluation method and nanoparticle observation device

Country Status (2)

Country Link
JP (1) JP6659062B2 (en)
WO (1) WO2018070324A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003161688A (en) * 2001-11-26 2003-06-06 Kurita Water Ind Ltd Probe for detecting states of particles and aggregation monitoring apparatus
JP2004500669A (en) * 2000-04-06 2004-01-08 クアンタム・ドット・コーポレーション 2D spectral imaging system
JP2004275187A (en) * 2003-02-27 2004-10-07 Institute Of Physical & Chemical Research Method for detecting sequence of dna by using gold colloidal particle, method for detecting end monobasic mutation of target dna and method for gene diagnosis
JP2013072679A (en) * 2011-09-27 2013-04-22 Yamada Katsuhiko Evaluation method and evaluation device of dispersion and aggregation state of nanoparticle slurry
JP2014524581A (en) * 2011-08-19 2014-09-22 マルバーン インストゥルメンツ リミテッド Dual mode characterization of fine particles
JP2015040705A (en) * 2013-08-20 2015-03-02 株式会社リコー Microparticle dispersibility evaluation apparatus, and microparticle dispersibility evaluation method
WO2015187881A1 (en) * 2014-06-03 2015-12-10 The Regents Of The University Of California Nanoparticle analyzer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004500669A (en) * 2000-04-06 2004-01-08 クアンタム・ドット・コーポレーション 2D spectral imaging system
JP2003161688A (en) * 2001-11-26 2003-06-06 Kurita Water Ind Ltd Probe for detecting states of particles and aggregation monitoring apparatus
JP2004275187A (en) * 2003-02-27 2004-10-07 Institute Of Physical & Chemical Research Method for detecting sequence of dna by using gold colloidal particle, method for detecting end monobasic mutation of target dna and method for gene diagnosis
JP2014524581A (en) * 2011-08-19 2014-09-22 マルバーン インストゥルメンツ リミテッド Dual mode characterization of fine particles
JP2013072679A (en) * 2011-09-27 2013-04-22 Yamada Katsuhiko Evaluation method and evaluation device of dispersion and aggregation state of nanoparticle slurry
JP2015040705A (en) * 2013-08-20 2015-03-02 株式会社リコー Microparticle dispersibility evaluation apparatus, and microparticle dispersibility evaluation method
WO2015187881A1 (en) * 2014-06-03 2015-12-10 The Regents Of The University Of California Nanoparticle analyzer

Also Published As

Publication number Publication date
JP6659062B2 (en) 2020-03-04
WO2018070324A1 (en) 2018-04-19

Similar Documents

Publication Publication Date Title
JP7026719B2 (en) Defect sampling for electron beam review based on defect attributes from optical inspection and optical review
Lai et al. Super-resolution real imaging in microsphere-assisted microscopy
JP5572293B2 (en) Defect inspection method and defect inspection apparatus
JP5517000B2 (en) Particle size measuring device and particle size measuring method
US9400254B2 (en) Method and device for measuring critical dimension of nanostructure
TWI776085B (en) Method and apparatus for monitoring beam profile and power
JP6150167B2 (en) Fine particle dispersibility evaluation apparatus and fine particle dispersibility evaluation method
CN108801863A (en) The femtosecond optical optical tweezers system of colloidal particle dynamics and image-forming information in solution can be obtained
CN112858304B (en) Optical trap electric field variable calibration device and method based on nano particle optical imaging
JP2019527348A (en) Method for calibrating the surveyed volume of a nanoparticle tracking and counting device based on a light sheet
JP2015040705A5 (en)
JP5224756B2 (en) Droplet particle imaging analysis system and analysis method
WO2020054466A1 (en) Particulate observation device and particulate observation method
JP2019215314A (en) Determination method of nano-particle
CN113125437B (en) Detection system and method based on optical interference scattering microscopy
DE102012005417B4 (en) Apparatus and method for angle-resolved scattered light measurement
JP7446008B2 (en) Particle refractive index measurement method
US11988495B2 (en) Through-focus image-based metrology device, operation method thereof, and computing device for executing the operation
JP6659062B2 (en) Nanoparticle evaluation method and nanoparticle observation device
JP6206871B2 (en) Optical microscope system
JP2022524464A (en) Devices and methods for observing microparticles and nanoparticles
US20090116024A1 (en) Method for obtaining a high resolution image
JP2014013228A (en) Apparatus, and method for evaluating dispersibility of filler microparticles
JP2006112993A (en) Color bead discriminating device
Alcain et al. Microscale Optical Capture System for Digital Fabric Recreation.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200130

R150 Certificate of patent or registration of utility model

Ref document number: 6659062

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250