JPWO2018055618A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2018055618A5
JPWO2018055618A5 JP2019515840A JP2019515840A JPWO2018055618A5 JP WO2018055618 A5 JPWO2018055618 A5 JP WO2018055618A5 JP 2019515840 A JP2019515840 A JP 2019515840A JP 2019515840 A JP2019515840 A JP 2019515840A JP WO2018055618 A5 JPWO2018055618 A5 JP WO2018055618A5
Authority
JP
Japan
Prior art keywords
image
eye
processing method
region
presented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019515840A
Other languages
Japanese (ja)
Other versions
JP2020509790A (en
JP2020509790A5 (en
Publication date
Application filed filed Critical
Priority claimed from PCT/IL2017/051063 external-priority patent/WO2018055618A1/en
Publication of JP2020509790A publication Critical patent/JP2020509790A/en
Publication of JP2020509790A5 publication Critical patent/JP2020509790A5/ja
Priority to JP2022186018A priority Critical patent/JP2023022142A/en
Publication of JPWO2018055618A5 publication Critical patent/JPWO2018055618A5/ja
Pending legal-status Critical Current

Links

Description

1.患者の両眼に同時適用される、別個で互いに無関係な2つの処理方法を使用し、視覚関係の疾病を測定及び/又は治療するための装置。
例えば、患者の各々に提示される画像には、以下の異なった処理を行う。
a.弱視でない眼の場合、当該処理は画像劣化の制御型測定子を有する領域を含み、患者に他眼、即ち弱い方の眼に多く依存させる。更にまた、劣化領域の位置は、弱視でない眼の視線の測定方向に対し画面上で移動させる。
b.弱視の眼の場合、当該処理は、画像を変更して同一の実在の3次元視差、即ち、できるだけ同様の画像を2つの眼に提示し、脳内の画像を組み合わせることを可能にすることを含む。
1. Apparatus for measuring and/or treating vision-related ailments using two separate and unrelated processing methods applied simultaneously to both eyes of a patient.
For example, the images presented to each of the patients undergo the following different processing.
a. For the non-amblyopic eye, the process includes regions with image degradation controlled probes, making the patient more dependent on the other eye, the weaker eye. Furthermore, the position of the degraded region is moved on the screen with respect to the measurement direction of the line of sight of the non-amblyopic eye.
b. In the case of amblyopic eyes, the process modifies the images to present the same real 3D parallax , i.e. as similar images as possible, to the two eyes, allowing the images in the brain to be combined. include.

(弱視の治療)
・両眼用画像(各々の眼に異なった画像)を映画、ゲーム、アニメーションなどの形態で固定式又は移動式に付与しているため、脳内の斜視処理を行える。この2つの画像は同一であっても、実際の奥行感覚を付与して斜視処理の更なる改善を行うことで斜視の補償を行うための表示特性を有するものであってもよい。
・斜位弱視(克服が困難な類の弱視)の場合、ここで示唆される装置は、眼視方向が異なるに伴って斜位角度が変化する場合でも、瞳孔上の溶融画像が両眼とも鮮明になることを可能にする唯一の解決策となる。この補償は、生身の眼の追跡データに基づく実時間の画像視差補償によって実現される。
・画像の性質は、弱視の眼を好適に使用するよう試行する一方、他眼を(低画質の画像又は部分画像を以って)刺激するような態様においては異なるため、弱視の眼から受け入れた視覚情報の場合には関連する脳の回路の運動となり、脳の視覚中心窩における斜視処理を行える。
・各々の眼に異なったサイズの画像を付与して非対称性弱視を治療するための固有の機能。
・単一又は複数のアイトラッカー(先行技術)により、捻じれ偏倚を含めた非対称の眼の動きの状態全てについての瞬間的な眼視方向に従って、2つの眼の中心窩領域に対する2つの画像の一貫性投影を保証する。
・可搬性ゴーグルの場合、「能動的な」治療を可能にする1つ又は2つの映像カメラによって画像が付与可能である。
・近位領域及び遠位領域で視力を訓練する機能。
・アイトラッキングフィードバックを使用した進捗状況モニタリング及び査定の自動化。
(Treatment of amblyopia)
・Because images for both eyes (different images for each eye) are provided in the form of movies, games, animations, etc., in a fixed or mobile manner, strabismus processing in the brain can be performed. The two images may be identical or may have display properties to compensate for strabismus by imparting a real depth sensation and further improving strabismus processing.
In the case of oblique amblyopia (a class of amblyopia that is difficult to overcome), the device suggested here will allow the fused image on the pupil to be visible to both eyes, even if the oblique angle changes with different viewing directions. It's the only solution that makes it possible to be sharp. This compensation is achieved by real-time image parallax compensation based on live eye tracking data.
Acceptable from amblyopic eyes because the nature of the image differs in ways that stimulate the other eye (with low-quality images or partial images) while attempting to favor the amblyopic eye. In the case of visual information, it becomes a movement of the relevant brain circuits, and strabismus processing can be performed in the visual fovea of the brain.
• A unique ability to treat asymmetric amblyopia by presenting different sized images to each eye.
- With a single or multiple eye trackers (prior art), two images for the foveal region of the two eyes according to the instantaneous eye viewing direction for all asymmetric eye movement conditions, including torsional deviation. Ensures consistent projection.
• In the case of portable goggles, images can be delivered by one or two video cameras that allow "active" treatment.
• Ability to train vision in the proximal and distal regions.
• Automated progress monitoring and assessment using eye-tracking feedback.

(各々の眼に対し別々の処理方法を使用して1つ以上の視界に関係する疾病の測定及び治療を同時に行うための装置)
例えば、患者の2つの眼の各々に提示される画像には、以下の異なった処理が実施される。
a.弱視でない眼の場合、当該処理は画像劣化の制御型計測器を有する領域を含み、患者に他眼、即ち弱い方の眼に多く依存させる。更にまた、劣化領域の位置は、弱視でない眼の視線の測定方向に応じて画面上で移動させる。
b.弱視の眼の場合、当該処理は、画像を変更して同一の実在の3次元視差、即ち2つの眼に対し同様の想定画像を提示し、脳内の画像を組み合わせることを可能にすることを含む。処理としては、垂直及び/又は水平方向への画像の移動、画像の倍率の変更(ズームイン又はズームアウト)、及び/又は画像の回転を含む。この処理は、弱視の眼の視線の測定方向に対応している。即ち、視線が垂直及び/又は水平方向に移動するに伴い、画面上に提示される画像も移動する。
Apparatus for Simultaneously Measuring and Treating One or More Vision-Related Diseases Using Separate Processing Methods for Each Eye
For example, images presented to each of the patient's two eyes undergo the following different processing.
a. For non-amblyopic eyes, the process includes areas with controlled instrumentation of image degradation, making the patient more dependent on the other eye, the weaker eye. Furthermore, the position of the degraded region is moved on the screen according to the measurement direction of the line of sight of the eye without amblyopia.
b. For amblyopic eyes, the process modifies the images to present the same real three-dimensional parallax , ie similar hypothetical images for the two eyes, allowing the images in the brain to be combined. include. Processing may include moving the image vertically and/or horizontally, changing the magnification of the image (zooming in or out), and/or rotating the image. This processing corresponds to the measurement direction of the line of sight of the amblyopic eye. That is, as the line of sight moves vertically and/or horizontally, the image presented on the screen also moves.

(立体視奥行の検査)
立体視は、2つの眼から派生する視覚情報に基づき得られる奥行知覚及び3次元構造の処理である。人の両眼は頭上部の異なった横方向の位置にあるため、両眼視界は、結果的に両眼の瞳孔に投影される2つの僅かに異なった画像を生成する。この差は、主に2つの画像において異なった対象の相対的な水平位置にある。これら位置の差は、水平視差とも呼ばれる。これらの視差は、奥行知覚を出力するため脳の視覚中心窩において処理される。
(Inspection of stereoscopic depth)
Stereopsis is the processing of depth perception and three-dimensional structure obtained based on visual information derived from two eyes. Since a person's eyes are at different lateral positions on the top of the head, binocular vision results in two slightly different images projected onto the pupils of both eyes. This difference is mainly in the relative horizontal position of different objects in the two images. These positional differences are also called horizontal parallax . These parallaxes are processed in the visual fovea of the brain to output depth perception.

両眼視差は、両眼で実在の3次元映像を見ている場合の差異において自然に存在するが、各々の眼に別々に2つの異なった画像を人工的に提示することによってもシミュレーション可能である。このような場合における奥行知覚は、「立体視奥行」とも呼ばれる。
Binocular parallax naturally exists in the difference when viewing a real 3D image with both eyes, but it can also be simulated by artificially presenting two different images separately to each eye. be. The depth perception in such cases is also called "stereoscopic depth".

人は、両眼視覚の水平視差効果によるだけでなく、関連対象サイズ、関連動作などの単眼用の読影糸口によっても3D印象を知覚する。当方の自動検査は幾つかの方法で実施される。以下、一例について詳述する。
Humans perceive 3D impressions not only by the horizontal parallax effect of binocular vision, but also by monocular reading cues such as relevant object size, relevant movement, and so on. Our automated inspection is implemented in several ways. An example will be described in detail below.

(先行技術の方法)
ここに示される検査は単眼用の読影糸口を有さないため、両眼視差、並びに視覚中心窩において実施される立体視処理から生ずる信頼性の高い立体視力査定を行う。この検査は、ランダムドット立体視画像(RDS)に基づく。図29参照。この技法は、通常、人の立体奥行のレベルを査定するのに使用される。また、直交方向に分極された2つの画像を有するため、2つの直交方向に分極されたフィルターを有するアイグラスを着用した人は、適切な眼で各画像を見られる。
(Prior Art Method)
Since the test presented here does not have monocular reading cues, it provides a reliable stereoscopic acuity assessment resulting from binocular parallax as well as stereoscopic processing performed at the visual fovea. This test is based on random dot stereoscopic images (RDS). See FIG. This technique is commonly used to assess a person's level of stereoscopic depth. Also, having two orthogonally polarized images, a person wearing eyeglasses with two orthogonally polarized filters can view each image with the appropriate eye.

これら2画像の一部は、両眼によって別々に確認される場合、表示レベルの手前又は背後に対象が現れた状態で奥行知覚を生成するような態様で所望の空間相違を生み出すように水平方向に移動する。正常な奥行知覚を有する人によって知覚された視覚の一例(図30)を参照。この移動領域により奥行感覚を付与するのに必要な両眼視差を生成する。移動の違いは奥行の違いに対応する。
Portions of these two images, when viewed separately by both eyes, are oriented horizontally to produce the desired spatial difference in a manner that produces a depth perception with objects appearing in front of or behind the display level. move to See an example of vision perceived by a person with normal depth perception (Fig. 30). This moving region creates the binocular parallax needed to provide depth perception. Differences in movement correspond to differences in depth.

画像内での関連部分の視差は、現在の手順で使用される標準値、例えば4,800~12.5秒の弧の速度に従って変わる可能性がある。被検者によって3D画像として見られるように認識された視差が低いほど、その被検者の立体視力は良くなる。
The parallax of the relevant part in the image can vary according to the standard values used in the current procedure, eg arc speed of 4,800-12.5 seconds. The lower the parallax perceived by a subject to be viewed as a 3D image, the better that subject's stereoscopic vision.

患者が対象を適切に追跡するに伴い、対象画像の水平方向の視差は、アイトラッカーによってこれ以上追跡対象がないと判定されるまで、最高視差からより低い視差まで徐々に変化する。患者が奥行知覚を有さなければ対象を追跡できない。
As the patient successfully tracks the object, the horizontal disparity of the object image gradually changes from the highest disparity to lower disparities until the eye tracker determines that there are no more objects to be tracked. Objects cannot be tracked unless the patient has depth perception.

(ステップ1)
(初期化段階において)高い視差を有するRDS対象を表示し、それを画面上に移動させる(831)。
(Step 1)
Display the RDS object with high parallax (at the initialization stage) and move it onto the screen (831).

(ステップ4)
対象視差パラメータが減少し、ステップ1に戻る(834)。
(Step 4)
Decrease the target parallax parameter and return to step 1 (834).

(ステップ5)
プロセッサにより、追跡された最後の対象視差、並びにその最後の視差を関連立体視力に関連付ける標準的な既存の表に基づき、立体視力を計算する(835)。
(Step 5)
A processor calculates 835 stereo acuity based on the last object disparity tracked and a standard pre-existing table relating that last disparity to the associated stereo acuity.

Claims (14)

視覚悪化のスクリーニング、治療、モニタリング及び/又は査定のための装置において、
2つの別々な処理方法を患者の両眼に提示される画像にそれぞれ同時に適用するための電子手段であって、該電子手段は、画像生成手段と、デジタル画像処理手段と、前記患者の両眼の視線の方向を測定するためのアイトラッカー手段と、前記患者の両眼に画像を提示する表示手段と、を備え、
前記2つの別々な処理方法は、
弱視でない眼に提示される画像に適用される第1の処理方法と、
弱視の眼に提示される画像に適用される第2の処理方法と、を備え、
前記第1の処理方法は、劣化領域の位置が、前記弱視でない眼の視線の前記測定方向に応じて移動する、制御された画像劣化を有する領域を生成し、
前記第2の処理方法は、前記弱視の眼の視線の測定方向に応じたものであり、これは、両眼の視線の測定方向の間に偏差がある時、生身の眼の追跡データに基づく実時間(リアルタイム)の画像視差補償のような前記画像の垂直方向及び又は水平方向の移動を含み、弱視の眼の視線が垂直方向及び又は水平方向に移動する時に前記表示手段に表された画像も同様に移動するようになっており、それにより、各々の眼が注視する方向において、中心窩領域に刺激中心が何ら残っていないことを保証する、装置。
In a device for screening, treating, monitoring and/or assessing visual deterioration,
Electronic means for simultaneously applying two separate processing methods respectively to images presented to both eyes of a patient, said electronic means comprising image generation means, digital image processing means and both eyes of said patient. eye tracker means for measuring the direction of gaze of the patient; and display means for presenting images to both eyes of the patient;
The two separate processing methods are:
a first processing method applied to an image presented to a non-amblyopic eye;
a second processing method applied to the image presented to the amblyopic eye;
The first processing method generates a region with controlled image degradation in which the position of the degraded region moves according to the measured direction of the line of sight of the non-amblyopic eye;
The second processing method is according to the measured direction of the line of sight of the amblyopic eye, which is based on live eye tracking data when there is a deviation between the measured directions of the line of sight of both eyes. including vertical and/or horizontal movement of the image, such as real-time image parallax compensation , the image presented on the display means as the line of sight of the amblyopic eye moves vertically and/or horizontally. is adapted to move as well, thereby ensuring that there are no remaining stimulation centers in the foveal region in the direction each eye gazes.
前記画像劣化を有する領域は、前記弱視でない眼の中心窩に提示されるように前記表示手段に配置される、請求項1記載の装置。 2. The apparatus of claim 1, wherein the region with image degradation is arranged on the display means so as to be presented at the fovea of the non-amblyopic eye. 前記画像劣化を有する領域は、前記弱視でない眼の斑点に提示されるように前記表示手段に配置される、請求項1に記載の装置。 2. Apparatus according to claim 1, wherein the region with image degradation is arranged on the display means so as to be presented to the patch of the non-amblyopic eye. 前記第2の処理方法は、前記画像の垂直方向及び/又は水平方向への移動、前記画像の倍率(ズームイン又はズームアウト)の変更、及び/又は前記画像の回転を含む、請求項1に記載の装置。 2. The method of claim 1, wherein the second processing method includes moving the image vertically and/or horizontally, changing the magnification (zoom in or zoom out) of the image, and/or rotating the image. device. 生身の眼の追跡データに基づいた実時間(リアルタイム)の画像視差によって、斜視角度の変化を異なる視線方向で補償するように構成されている、請求項1に記載の装置。 3. The apparatus of claim 1, configured to compensate for changes in squint angle at different viewing directions by real-time image parallax based on live eye tracking data. 前記画像を変化させる前記第2の処理方法は、前記弱視の眼の欠陥を該眼に提示された画像を処理することにより矯正することを含む、請求項1に記載の装置。 2. The apparatus of claim 1, wherein the second processing method of altering the image includes correcting defects in the amblyopic eye by processing an image presented to the eye. 前記画像を変化させることは、前記画像の垂直方向及び/又は水平方向への移動、前記画像の倍率の変更、及び/又は前記画像の回転を含む、請求項1に記載の装置。 2. The apparatus of claim 1, wherein changing the image comprises moving the image vertically and/or horizontally, changing the magnification of the image, and/or rotating the image. 前記画像を変化させる前記第2の処理方法は、前記弱視の眼を、鮮明な画像あるいは高コントラストの画像を用いて刺激することを含む、請求項1に記載の装置。 2. The apparatus of claim 1, wherein the second processing method for changing the image comprises stimulating the amblyopic eye with a sharp image or a high contrast image. 制御された画像劣化を有する前記領域において、画像劣化の度合いは一定ではない、請求項1に記載の装置。 2. The apparatus of claim 1, wherein in said regions with controlled image degradation, the degree of image degradation is not constant. 制御された画像劣化を有する前記領域において、前記劣化は、前記領域の中央で強く、前記領域の縁に向かうほど徐々に低下し、滑らかな移行を与える、請求項9に記載の装置。 10. Apparatus according to claim 9, wherein in said region with controlled image degradation, said degradation is strong in the center of said region and gradually decreases towards edges of said region, giving a smooth transition. 前記第2の処理方法は、3D視差を提示するように前記画像を変化させ、前記患者が深さを認識するようになっている、請求項1に記載の装置。 2. The apparatus of claim 1, wherein the second processing method alters the image to present 3D parallax , such that the patient perceives depth. 前記第1の処理方法及び前記第2の処理方法は、異なる補足的な画像の劣化領域を前記弱視でない眼と前記弱視の眼に適用することを含む、請求項1に記載の装置。 2. The apparatus of claim 1, wherein the first processing method and the second processing method comprise applying different complementary image degradation regions to the non-amblyopic eye and the amblyopic eye. 前記劣化領域は、異なった形状で、時間と共に変化する、請求項12に記載の装置。 13. The apparatus of claim 12, wherein the degraded regions are of different shapes and change over time. 前記第1の処理方法及び前記第2の処理方法は、前記弱視の眼に提示される前記画像のみが移動中の対象を含むようになっている、請求項1に記載の装置。
2. The apparatus of claim 1, wherein the first processing method and the second processing method are such that only the image presented to the amblyopic eye includes moving objects.
JP2019515840A 2016-09-23 2017-09-24 Screening device and method Pending JP2020509790A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022186018A JP2023022142A (en) 2016-09-23 2022-11-21 Screening apparatus and method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662398532P 2016-09-23 2016-09-23
US62/398,532 2016-09-23
PCT/IL2017/051063 WO2018055618A1 (en) 2016-09-23 2017-09-24 Screening apparatus and method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022186018A Division JP2023022142A (en) 2016-09-23 2022-11-21 Screening apparatus and method

Publications (3)

Publication Number Publication Date
JP2020509790A JP2020509790A (en) 2020-04-02
JP2020509790A5 JP2020509790A5 (en) 2020-08-27
JPWO2018055618A5 true JPWO2018055618A5 (en) 2022-12-07

Family

ID=61690775

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019515840A Pending JP2020509790A (en) 2016-09-23 2017-09-24 Screening device and method
JP2022186018A Pending JP2023022142A (en) 2016-09-23 2022-11-21 Screening apparatus and method

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022186018A Pending JP2023022142A (en) 2016-09-23 2022-11-21 Screening apparatus and method

Country Status (5)

Country Link
US (3) US11064882B2 (en)
EP (1) EP3515284B1 (en)
JP (2) JP2020509790A (en)
CN (1) CN110381810B (en)
WO (1) WO2018055618A1 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3042513A1 (en) * 2016-11-02 2018-05-11 Massachusetts Eye And Ear Infirmary System and method for the treatment of amblyopia
US11707403B1 (en) * 2017-09-03 2023-07-25 Sandeep Samudre Systems and methods for treatment of abnormal visual development
AU2019208212A1 (en) * 2018-07-27 2020-02-13 Welch Allyn, Inc. Vision screening device and methods
CN110652431A (en) * 2019-10-23 2020-01-07 重庆康萃医药科技有限公司 Amblyopia training reader based on vision separation control and adjusting and setting method thereof
CN110652430A (en) * 2019-10-23 2020-01-07 重庆康萃医药科技有限公司 Strabismus and visual function training reader based on visual control and adjusting method thereof
GB2584546B (en) 2020-04-06 2021-09-01 Novasight Ltd Method and device for treating vision impairment
CN112107416A (en) * 2020-09-14 2020-12-22 郑州诚优成电子科技有限公司 Strabismus correction vision imaging device based on VR technology and working method thereof
CN114255204A (en) * 2020-09-24 2022-03-29 华为技术有限公司 Amblyopia training method, device, equipment and storage medium
CN112294252A (en) * 2020-10-29 2021-02-02 北京京东方光电科技有限公司 Eye muscle performance evaluation device, eye muscle performance evaluation method, VR device, computer device, and medium
CN114983775A (en) * 2021-01-08 2022-09-02 上海青研科技有限公司 Head-mounted visual detection and visual training equipment
WO2022187279A1 (en) * 2021-03-01 2022-09-09 Vivid Vision, Inc. Systems, methods, and devices for vision assessment and therapy
CN113516683B (en) * 2021-04-12 2023-10-10 广东视明科技发展有限公司 Modeling method for evaluating influence of moving speed on stereoscopic vision
CN113081719B (en) * 2021-04-12 2022-12-30 广州市诺以德医疗科技发展有限公司 Stereoscopic vision induction method and system under random element distribution background mode
CN113080839B (en) * 2021-04-12 2022-02-11 广州市诺以德医疗科技发展有限公司 Dynamic stereoscopic vision function evaluation system combined with eyeball motion training
CN113077510B (en) * 2021-04-12 2022-09-20 广州市诺以德医疗科技发展有限公司 System for inspecting stereoscopic vision function under shielding
FR3121834A1 (en) 2021-04-20 2022-10-21 Scale-1 Portal System for treating neurovisual or vestibular disorders and method for controlling such a system
JP7070955B1 (en) 2021-07-16 2022-05-18 株式会社レーベン Sight training equipment
CN113679580A (en) * 2021-08-26 2021-11-23 付珊 Child amblyopia eyesight correction method
KR102549616B1 (en) * 2021-09-03 2023-06-29 재단법인 아산사회복지재단 Apparatus and method for providing eye movement and visual perception training based on virtual reality
WO2023122306A1 (en) * 2021-12-23 2023-06-29 Thomas Jefferson University Systems and methods for identifying double vision
US11918287B2 (en) 2021-12-27 2024-03-05 Novasight Ltd. Method and device for treating / preventing refractive errors as well as for image processing and display
CN116509694A (en) * 2023-04-23 2023-08-01 广州视景医疗软件有限公司 Eyeball smooth aggregation and dispersion training method and device

Family Cites Families (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1564495A (en) 1923-04-12 1925-12-08 American Optical Corp Astigmatic testing device
US2024194A (en) 1932-06-20 1935-12-17 Lute W Wyckoff Means for correcting ocular defects
US2184131A (en) 1936-05-29 1939-12-19 Educational Lab Inc Means and method of treating eyes
FR2518882A1 (en) 1981-12-30 1983-07-01 Pos Lab THERAPEUTIC COMPOSITION, BASED ON INOSINE MONOPHOSPHATE, FOR THE TREATMENT OF EYE ACCOMMODATION DISORDERS
FR2526963B1 (en) 1982-05-14 1985-09-27 Thomson Csf OPTICAL SIGHT FOR CORRECTION OF CONVERGENCE DEFECTS OF A COLOR CAMERA
US5026151A (en) 1989-06-23 1991-06-25 Mentor O & O, Inc. Visual function tester with binocular vision testing
US5094521A (en) 1990-11-07 1992-03-10 Vision Research Laboratories Apparatus for evaluating eye alignment
GB9207315D0 (en) 1992-04-03 1992-05-13 Donaldson William B M Method and apparatus for ocular motility testing
DE4417768C2 (en) 1994-05-20 1998-09-10 Juergen Prof Dr Med Lamprecht Method and device for projecting image information in persons with visual disturbances caused by a deviation in the position of their visual axis
US5838420A (en) 1994-09-30 1998-11-17 Bid Instruments Limited Method and apparatus for ocular motility testing
GB9722949D0 (en) 1997-10-30 1998-01-07 Bid Instr Ltd Ocular testing and related projection apparatus and method
US6099124A (en) 1999-12-14 2000-08-08 Hidaji; Faramarz Ophthalmological system and method
US6511175B2 (en) 2000-01-10 2003-01-28 Sam H. Hay Apparatus and method for treatment of amblyopia
WO2001084149A2 (en) 2000-04-29 2001-11-08 University Of Iowa Research Foundation Diagnostics and therapeutics for macular degeneration-related disorders
US6652458B2 (en) 2000-06-20 2003-11-25 The Mclean Hospital Corporation ADHD detection by eye saccades
AU2002233323A1 (en) 2001-02-09 2002-08-28 Sensomotoric Instruments Gmbh Multidimensional eye tracking and position measurement system
GB2372683A (en) 2001-02-23 2002-08-28 Ibm Eye tracking display apparatus
GB0210288D0 (en) * 2002-05-04 2002-06-12 Univ Nottingham Ocular display apparatus for assessment and measurement of and for treatment of ocular disorders, and methods therefor
US7033025B2 (en) * 2002-05-17 2006-04-25 Virtocc, Inc. Interactive occlusion system
US7206022B2 (en) 2002-11-25 2007-04-17 Eastman Kodak Company Camera system with eye monitoring
JP4600290B2 (en) 2004-01-29 2010-12-15 コニカミノルタホールディングス株式会社 Visual auxiliary display device
US7900158B2 (en) 2005-08-04 2011-03-01 Microsoft Corporation Virtual magnifying glass with intuitive use enhancements
EP1928295A2 (en) 2005-09-02 2008-06-11 EL-Vision Ltd. Multi-functional optometric - ophthalmic system for testing, diagnosing, or treating, vision or eyes of a subject, and methodologies thereof
US7429108B2 (en) 2005-11-05 2008-09-30 Outland Research, Llc Gaze-responsive interface to enhance on-screen user reading tasks
US7878652B2 (en) 2006-01-24 2011-02-01 University Of Tennessee Research Foundation Adaptive photoscreening system
JP2010511486A (en) 2006-12-04 2010-04-15 ファテ,シナ System, method and apparatus for correction of amblyopia and eyeball deviation
US8243797B2 (en) 2007-03-30 2012-08-14 Microsoft Corporation Regions of interest for quality adjustments
CA2916780C (en) 2007-04-02 2020-12-22 Esight Corp. An apparatus and method for augmenting sight
DE102007032564A1 (en) 2007-07-12 2009-01-15 Rodenstock Gmbh Method for checking and / or determining user data, computer program product and device
WO2009053917A1 (en) 2007-10-23 2009-04-30 Mcgill University Binocular vision assessment and/or therapy
US8130262B2 (en) 2009-01-15 2012-03-06 International Business Machines Corporation Apparatus and method for enhancing field of vision of the visually impaired
US8042940B2 (en) 2009-03-24 2011-10-25 Crossbows Optical Limited Opthalmic lenses having reduced base out prism
US20110032477A1 (en) 2009-08-10 2011-02-10 Roger Vahram Ohanesian Variable Prism Eyeglasses and Method of Making Same
US20110050546A1 (en) 2009-08-29 2011-03-03 Swartz Jr Peter John Eyewear for people with low vision or impaired vision
EP3611555A1 (en) 2009-11-19 2020-02-19 eSight Corporation Image magnification on a head mounted display
EP2329761A1 (en) 2009-12-02 2011-06-08 RetCorr AB An apparatus and method for establishing and/or improving binocular vision
KR20110065935A (en) 2009-12-10 2011-06-16 엘지전자 주식회사 Method for operating the apparatus for displaying image
JP5643004B2 (en) 2010-06-10 2014-12-17 株式会社ニデック Ophthalmic equipment
WO2012160741A1 (en) 2011-05-20 2012-11-29 パナソニック株式会社 Visual fatigue-measuring apparatus, method thereof, visual fatigue-measuring system and three-dimensional glasses
US8911087B2 (en) 2011-05-20 2014-12-16 Eyefluence, Inc. Systems and methods for measuring reactions of head, eyes, eyelids and pupils
WO2013035086A1 (en) 2011-09-07 2013-03-14 Improved Vision Systems (I.V.S.) Ltd. Method and system for treatment of visual impairment
US20130215147A1 (en) 2012-02-17 2013-08-22 Esight Corp. Apparatus and Method for Enhancing Human Visual Performance in a Head Worn Video System
JP6098061B2 (en) 2012-07-27 2017-03-22 株式会社ニデック Fundus photographing device
US8814361B2 (en) 2012-07-30 2014-08-26 New Jersey Institute Of Technology Method for determining the acceptance of progressive addition lenses
US9370460B2 (en) 2012-09-14 2016-06-21 Visior Technologies, Ltd Systems and methods for treating amblyopia by visual stimulation of the brain
EP2709060B1 (en) 2012-09-17 2020-02-26 Apple Inc. Method and an apparatus for determining a gaze point on a three-dimensional object
US20140208263A1 (en) 2013-01-24 2014-07-24 Victor Maklouf System and method for dynamically displaying characters over a screen of a computerized mobile device
GB201302174D0 (en) 2013-02-07 2013-03-27 Cardiff Metropolitan University Improvements in and relating to image making
US20130258463A1 (en) 2013-03-11 2013-10-03 Allan Thomas Evans System, method, and apparatus for enhancing stereoscopic images
US9463132B2 (en) 2013-03-15 2016-10-11 John Castle Simmons Vision-based diagnosis and treatment
US9298021B2 (en) 2013-08-15 2016-03-29 eyeBrain Medical, Inc. Methods and lenses for alleviating asthenopia
EP3065624B1 (en) 2013-11-07 2018-08-15 Ohio State Innovation Foundation Automated detection of eye alignment
KR102651578B1 (en) 2013-11-27 2024-03-25 매직 립, 인코포레이티드 Virtual and augmented reality systems and methods
GB2524500A (en) * 2014-03-24 2015-09-30 Nottingham University Hospitals Nhs Trust Apparatus and methods for the treatment of ocular disorders
US20160106315A1 (en) 2014-05-30 2016-04-21 Umoove Services Ltd. System and method of diagnosis using gaze and eye tracking
US9237843B1 (en) 2014-07-07 2016-01-19 eyeBrain Medical, Inc. System for measuring visual fixation disparity
US20160037137A1 (en) * 2014-07-31 2016-02-04 Philip Seiflein Sensory perception enhancement device
ES2676352T3 (en) 2014-08-04 2018-07-18 Essilor International Glasses comprising a pair of progressive lenses
EP3238133A4 (en) 2014-12-22 2018-09-05 Novasight Ltd. System and method for improved display
PT3247256T (en) * 2015-01-20 2022-02-02 Green C Tech Ltd Method and system for automatic eyesight diagnosis
JP6663441B2 (en) 2015-03-01 2020-03-11 ノバサイト リミテッド System for measuring eye movement
KR102564748B1 (en) * 2015-03-16 2023-08-07 매직 립, 인코포레이티드 Methods and system for diagnosing and treating health ailments
US20170263107A1 (en) * 2016-03-10 2017-09-14 Derek Thomas Doyle Approaching Proximity Warning System, Apparatus and Method
US20170296421A1 (en) 2016-04-15 2017-10-19 Dean TRAVERS Head-mounted apparatus and methods for treatment and enhancement of visual function
EP3463045B1 (en) 2016-05-29 2022-07-06 Nova-Sight Ltd. Display system and method

Similar Documents

Publication Publication Date Title
US11678795B2 (en) Screening apparatus and method
JPWO2018055618A5 (en)
US8454166B2 (en) Methods and systems for amblyopia therapy using modified digital content
JP2020509790A5 (en)
JP6189300B2 (en) Visual impairment treatment method and system
Yang et al. Effects of vergence and accommodative responses on viewer's comfort in viewing 3D stimuli
Hoffman et al. Focus information is used to interpret binocular images
CN106659377B (en) System for measuring vision-locked disparity
CN112807200B (en) Strabismus training equipment
JP2002223458A (en) Stereoscopic video image generator
Sugita et al. Effect of viewing a three-dimensional movie with vertical parallax
CN110850596B (en) Two-side eye vision function adjusting device and virtual reality head-mounted display equipment
WO2018203297A1 (en) Ocular misalignment
US20220276495A1 (en) Visual function adjustment method and apparatus
CN110882139B (en) Visual function adjusting method and device by using graph sequence
CN110812146B (en) Multi-region visual function adjusting method and device and virtual reality head-mounted display equipment
CN110812145B (en) Visual function adjusting method and device and virtual reality head-mounted display equipment
Gibaldi et al. The blur horopter: Retinal conjugate surface in binocular viewing
Brooker et al. Operator performance evaluation of controlled depth of field in a stereographically displayed virtual environment
Neveu et al. Stereoscopic viewing can induce changes in the CA/C ratio
JP2005230459A (en) Method for measuring convergent accommodation to convergence ratio using three-dimensional display
권민영 Influence of Eye Position and Binocular Information on Torsion Control
Mikawa et al. Low-Latency Ocular Parallax Rendering and Investigation of Its Effect on Depth Perception in Virtual Reality
Lucas et al. Visual comfort and fatigue in stereoscopy
JP2022539254A (en) Method for inducing controlled changes in accommodation in a subject's eye