JPWO2018003058A1 - Method for producing cured product, cured product and spectacle lens substrate - Google Patents

Method for producing cured product, cured product and spectacle lens substrate Download PDF

Info

Publication number
JPWO2018003058A1
JPWO2018003058A1 JP2018524657A JP2018524657A JPWO2018003058A1 JP WO2018003058 A1 JPWO2018003058 A1 JP WO2018003058A1 JP 2018524657 A JP2018524657 A JP 2018524657A JP 2018524657 A JP2018524657 A JP 2018524657A JP WO2018003058 A1 JPWO2018003058 A1 JP WO2018003058A1
Authority
JP
Japan
Prior art keywords
cured product
curable composition
ppm
compound
polythiol compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018524657A
Other languages
Japanese (ja)
Inventor
幸夫 影山
幸夫 影山
上坂 昌久
昌久 上坂
山本 明典
明典 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Lens Thailand Ltd
Original Assignee
Hoya Lens Thailand Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Lens Thailand Ltd filed Critical Hoya Lens Thailand Ltd
Publication of JPWO2018003058A1 publication Critical patent/JPWO2018003058A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3855Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3855Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur
    • C08G18/3876Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur containing mercapto groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/24Catalysts containing metal compounds of tin
    • C08G18/242Catalysts containing metal compounds of tin organometallic compounds containing tin-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/757Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing at least two isocyanate or isothiocyanate groups linked to the cycloaliphatic ring by means of an aliphatic group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/758Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing two or more cycloaliphatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • C08G18/7628Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring containing at least one isocyanate or isothiocyanate group linked to the aromatic ring by means of an aliphatic group
    • C08G18/7642Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring containing at least one isocyanate or isothiocyanate group linked to the aromatic ring by means of an aliphatic group containing at least two isocyanate or isothiocyanate groups linked to the aromatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate groups, e.g. xylylene diisocyanate or homologues substituted on the aromatic ring
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Eyeglasses (AREA)

Abstract

ポリイソ(チオ)シアネート化合物を質量基準の含水率が20ppm未満のポリチオール化合物と混合することにより硬化性組成物を調製する硬化性組成物調製工程と、上記硬化性組成物を硬化して硬化物を得る硬化工程とを含む硬化物の製造方法、ポリイソ(チオ)シアネート化合物および質量基準の含水率が20ppm未満のポリチオール化合物を含む硬化性組成物を硬化した硬化物、ならびに上記硬化物からなる眼鏡レンズ基材が提供される。A curable composition preparation step for preparing a curable composition by mixing a polyiso (thio) cyanate compound with a polythiol compound having a moisture content of less than 20 ppm by mass, and curing the curable composition to obtain a cured product. And a cured product obtained by curing a curable composition comprising a polyiso (thio) cyanate compound and a polythiol compound having a mass-based water content of less than 20 ppm, and a spectacle lens comprising the cured product. A substrate is provided.

Description

本発明は、硬化物の製造方法、硬化物および眼鏡レンズ基材に関するものであり、詳しくはポリチオール化合物およびポリイソ(チオ)シアネート化合物を含む硬化性組成物を硬化した硬化物の製造方法、硬化物および眼鏡レンズ基材に関する。   The present invention relates to a method for producing a cured product, a cured product, and a spectacle lens substrate, and more specifically, a method for producing a cured product obtained by curing a curable composition containing a polythiol compound and a polyiso (thio) cyanate compound, and a cured product. And a spectacle lens substrate.

ポリチオール化合物とポリイソ(チオ)シアネート化合物とを硬化反応させて得られるポリチオウレタン系樹脂は、眼鏡レンズ等の各種光学部材の材料として広く用いられている(例えば特許文献1参照)。
特許第5026432号明細書
A polythiourethane resin obtained by curing a polythiol compound and a polyiso (thio) cyanate compound is widely used as a material for various optical members such as spectacle lenses (see, for example, Patent Document 1).
Japanese Patent No. 5026432

上記ポリチオウレタン系樹脂に求められる物性の1つとしては、耐熱性が高いことが挙げられる。これは、以下の理由による。例えば眼鏡レンズは、通常、レンズ基材上に一層以上の機能性膜(例えば、ハードコート、反射防止膜、等)を形成した後に製品レンズとして出荷される。上記機能性膜は、真空蒸着、硬化性化合物を含む塗布液を塗布した後に加熱による硬化処理を施すコーティング法等の各種製膜法により形成されるが、多くの製膜法は加熱処理を伴う。レンズ基材が耐熱性に劣るものであると、加熱処理によってレンズ基材が変形および/または変質することにより製品レンズの品質が低下してしまう場合がある。例えば、レンズ基材が変形すると、レンズ基材上に形成された機能性膜がレンズ基材の変形に追従できずに機能性膜にクラックが発生してしまう場合がある。一方、そのような製品レンズの品質低下を防ぐためにレンズ基材が耐え得る加熱温度で加熱処理をしようとすると、製膜条件が制約を受けることとなり使用可能な製膜材料も制限されてしまう。また、眼鏡レンズに限らず各種光学部材の製造工程では、樹脂製の基材を機能性膜の製膜処理等の加熱を伴う処理に付すことが広く行われているため、かかる基材として有用なポリチオウレタン系樹脂を提供するためにポリチオウレタン系樹脂の耐熱性を向上することが望まれる。   One of the physical properties required for the polythiourethane resin is high heat resistance. This is due to the following reason. For example, a spectacle lens is usually shipped as a product lens after one or more functional films (eg, hard coat, antireflection film, etc.) are formed on a lens substrate. The functional film is formed by various film forming methods such as vacuum deposition, coating method in which a coating process including heating is applied after applying a coating solution containing a curable compound, but many film forming methods involve heat treatment. . If the lens substrate is inferior in heat resistance, the quality of the product lens may be deteriorated due to deformation and / or alteration of the lens substrate due to heat treatment. For example, when the lens base material is deformed, the functional film formed on the lens base material may not follow the deformation of the lens base material, and the functional film may crack. On the other hand, if an attempt is made to perform a heat treatment at a heating temperature that the lens substrate can withstand in order to prevent such deterioration of the product lens, the film forming conditions are restricted, and usable film forming materials are also limited. Also, in the manufacturing process of various optical members, not limited to spectacle lenses, it is widely used to subject a resin base material to a process involving heating such as a functional film forming process. In order to provide a new polythiourethane resin, it is desired to improve the heat resistance of the polythiourethane resin.

本発明の一態様は、ポリチオール化合物とポリイソ(チオ)シアネート化合物とを硬化反応させて得られるポリチオウレタン系樹脂の耐熱性を向上するための手段を提供する。   One embodiment of the present invention provides means for improving the heat resistance of a polythiourethane resin obtained by curing a polythiol compound and a polyiso (thio) cyanate compound.

本発明の一態様は、
ポリイソ(チオ)シアネート化合物を、質量基準の含水率(以下、単に「含水率」と記載する。)が20ppm未満のポリチオール化合物と混合することにより硬化性組成物を調製する硬化性組成物調製工程と、
上記硬化性組成物を硬化して硬化物を得る硬化工程と、
を含む硬化物の製造方法、
に関する。
One embodiment of the present invention provides:
Curable composition preparation step of preparing a curable composition by mixing a polyiso (thio) cyanate compound with a polythiol compound having a moisture content on a mass basis (hereinafter simply referred to as “moisture content”) of less than 20 ppm. When,
A curing step of curing the curable composition to obtain a cured product;
A method for producing a cured product comprising
About.

本発明者らは、ポリチオール化合物とポリイソ(チオ)シアネート化合物とを硬化反応させて得られる硬化物(ポリチオウレタン系樹脂)の耐熱性を向上するための手段を見出すために鋭意検討を重ねる中で、ポリチオール化合物に含まれる水分が、ポリイソ(チオ)シアネート化合物をポリチオール化合物と硬化反応させて得られる硬化物の耐熱性に影響を及ぼすという、従来知られていなかった新たな知見を得た。そしてかかる知見に基づき更に鋭意検討を重ねた結果、上記の本発明の一態様にかかる硬化物の製造方法を完成させた。   The present inventors are intensively studying to find a means for improving the heat resistance of a cured product (polythiourethane resin) obtained by curing a polythiol compound and a polyiso (thio) cyanate compound. Thus, new knowledge that has not been known so far has been obtained that the moisture contained in the polythiol compound affects the heat resistance of a cured product obtained by curing the polyiso (thio) cyanate compound with the polythiol compound. As a result of further earnest studies based on this finding, the method for producing a cured product according to one embodiment of the present invention was completed.

本発明の一態様によれば、ポリチオール化合物とポリイソ(チオ)シアネート化合物とを硬化反応させて得られる硬化物の耐熱性を向上することができる。   According to one embodiment of the present invention, the heat resistance of a cured product obtained by curing reaction of a polythiol compound and a polyiso (thio) cyanate compound can be improved.

本発明の一態様は、上記の硬化物の製造方法に関する。
更に本発明の一態様によれば、ポリイソ(チオ)シアネート化合物および質量基準の含水率が20ppm未満のポリチオール化合物を含む硬化性組成物を硬化した硬化物、ならびに上記硬化物からなる眼鏡レンズ基材も提供される。
以下に、上記硬化物の製造方法、硬化物および眼鏡レンズ基材について、更に詳細に説明する。
One aspect of the present invention relates to a method for producing the cured product.
Furthermore, according to one aspect of the present invention, a cured product obtained by curing a curable composition comprising a polyiso (thio) cyanate compound and a polythiol compound having a moisture content of less than 20 ppm by mass, and a spectacle lens substrate comprising the cured product. Is also provided.
Below, the manufacturing method of the said hardened | cured material, hardened | cured material, and a spectacles lens base material are demonstrated in detail.

<硬化性組成物調製工程>
上記硬化性組成物は、ポリチオール化合物とポリイソ(チオ)シアネート化合物を少なくとも含む。「ポリチオール化合物」とは、チオール基(−SH)を1分子中に2個以上有する多官能化合物である。また、本発明および本明細書において、「ポリイソ(チオ)シアネート化合物」とは、ポリイソシアネート化合物とポリイソチオシアネート化合物とを包含する意味で用いるものとする。なお、イソシアネートはイソシアナートと呼ばれることもあり、イソチオシアネートはイソチオシアナートと呼ばれることもある。「イソ(チオ)シアネート基」とは、イソシアネート基(−N=C=O)とイソチオシアネート基(−N=C=S)とを包含する意味で用いるものとする。「ポリイソ(チオ)シアネート化合物」とは、イソ(チオ)シアネート基を1分子中に2個以上有する多官能化合物である。ポリチオール化合物とポリイソ(チオ)シアネート化合物とを硬化反応させることにより、ポリチオール化合物が有するチオール基と、ポリイソ(チオ)シアネート化合物が有するイソ(チオ)シアネート基とが反応し、分子内に以下の結合:

Figure 2018003058
を有する反応生成物を得ることができる。上記において、Zは酸素原子または硫黄原子である。チオール基がイソシアネート基と反応することによりZが酸素原子の上記結合が形成され、イソチオシアネート基と反応することによりZが硫黄原子の上記結合が形成される。本発明および本明細書では、上記結合を1分子中に複数含む反応生成物(樹脂)を、「ポリチオウレタン系樹脂」と記載する。<Curable composition preparation process>
The curable composition contains at least a polythiol compound and a polyiso (thio) cyanate compound. The “polythiol compound” is a polyfunctional compound having two or more thiol groups (—SH) in one molecule. Further, in the present invention and the present specification, the “polyiso (thio) cyanate compound” is used to include a polyisocyanate compound and a polyisothiocyanate compound. It should be noted that isocyanate is sometimes referred to as isocyanate, and isothiocyanate is sometimes referred to as isothiocyanate. The term “iso (thio) cyanate group” is used to include an isocyanate group (—N═C═O) and an isothiocyanate group (—N═C═S). The “polyiso (thio) cyanate compound” is a polyfunctional compound having two or more iso (thio) cyanate groups in one molecule. By curing the polythiol compound and the polyiso (thio) cyanate compound, the thiol group possessed by the polythiol compound reacts with the iso (thio) cyanate group possessed by the polyiso (thio) cyanate compound, resulting in the following bonds in the molecule: :
Figure 2018003058
A reaction product having can be obtained. In the above, Z is an oxygen atom or a sulfur atom. When the thiol group reacts with the isocyanate group, Z forms the above bond of oxygen atom, and when it reacts with the isothiocyanate group, Z forms the above bond of sulfur atom. In the present invention and the present specification, a reaction product (resin) containing a plurality of the bonds in one molecule is referred to as “polythiourethane resin”.

例えば特許文献1(特許第5026432号明細書)では、ポリチオール化合物とポリイソ(チオ)シアネート化合物(特許文献1には「ポリイソ(チオ)シアナート化合物」と記載されている。)からなる重合性組成物を重合する光学材料用樹脂の製造方法において、重合前のポリチオール化合物の水分の含有量が20〜600ppmであることが必須とされている(特許文献1の請求項1参照)。また、特許文献1には、ポリチオール化合物の含水とポリチオウレタン系樹脂の耐熱性との関連については何ら記載がない。
これに対し本発明者らは鋭意検討を重ねた結果、ポリチオール化合物の含水がポリチオウレタン系樹脂の耐熱性に影響を及ぼすという従来知られていなかった新たな知見を得た。そしてかかる知見に基づき更に鋭意検討を重ねた結果、含水率が20ppm未満という特許文献1で必須とされている範囲とは含水率が異なるポリチオール化合物を合成原料として用いることにより、含水率が20ppm以上のポリチオ―ル化合物を合成原料として得られたポリチオウレタン系樹脂と比べて、耐熱性が向上したポリチオウレタン系樹脂が得られることを新たに見出したのである。上記硬化物の製造方法において用いられるポリチオール化合物の含水率は20ppm未満であって、ポリチオウレタン系樹脂の耐熱性を更に向上する観点からは、19ppm以下であることが好ましく、18ppm以下であることがより好ましく、15ppm以下であることが更に好ましく、12ppm以下であることが一層好ましく、10ppm以下であることがより一層好ましい。また、ポリチオール化合物の含水率は、例えば5ppm以上または7ppm以上であることができる。ただし、ポリチオウレタン系樹脂の耐熱性向上のためには低いほど好ましいため、上記で例示した下限を下回ってもよい。
For example, in Patent Document 1 (Japanese Patent No. 5026432), a polymerizable composition comprising a polythiol compound and a polyiso (thio) cyanate compound (described in Patent Document 1 as “polyiso (thio) cyanate compound”). In the method for producing a resin for optical materials that polymerizes the water, it is essential that the water content of the polythiol compound before polymerization is 20 to 600 ppm (see claim 1 of Patent Document 1). Patent Document 1 does not describe any relation between the water content of the polythiol compound and the heat resistance of the polythiourethane resin.
On the other hand, as a result of intensive studies, the present inventors have obtained a new knowledge that has not been known so far that the water content of the polythiol compound affects the heat resistance of the polythiourethane resin. And as a result of further earnest examination based on such knowledge, the moisture content is 20 ppm or more by using a polythiol compound having a moisture content different from the range that is essential in Patent Document 1 in which the moisture content is less than 20 ppm. The present inventors have newly found that a polythiourethane resin having improved heat resistance can be obtained as compared with a polythiourethane resin obtained using the above polythiol compound as a synthesis raw material. The water content of the polythiol compound used in the method for producing a cured product is less than 20 ppm, and from the viewpoint of further improving the heat resistance of the polythiourethane resin, it is preferably 19 ppm or less, and 18 ppm or less. Is more preferably 15 ppm or less, still more preferably 12 ppm or less, and even more preferably 10 ppm or less. The water content of the polythiol compound can be, for example, 5 ppm or more or 7 ppm or more. However, since it is preferable that it is low for improving the heat resistance of the polythiourethane resin, the lower limit exemplified above may be used.

本発明および本明細書におけるポリチオール化合物の含水率とは、カールフィッシャー法により、温度20〜25℃および絶対湿度0.8〜1.2g/m3の環境下で水分気化装置を用いて行う測定によって求められる値である。カールフィッシャー法による含水率測定は、電量滴定方式で行ってもよく、容量滴定方式で行ってもよい。The water content of the polythiol compound in the present invention and in the present specification is a measurement performed by a Karl Fischer method using a water vaporizer in an environment of a temperature of 20 to 25 ° C. and an absolute humidity of 0.8 to 1.2 g / m 3. Is a value obtained by. The moisture content measurement by the Karl Fischer method may be performed by a coulometric titration method or a volumetric titration method.

ポリチオール化合物の含水率低減方法としては、窒素バブリング法、減圧脱気法、無水硫酸ナトリウムまたはモレキュラーシーブ等を浸漬させる吸着法等の方法の1つまたは2つ以上を組み合わせて用いることができる。これにより、含水率が20ppm未満のポリチオール化合物を得ることができる。   As a method for reducing the water content of the polythiol compound, one or a combination of two or more methods such as a nitrogen bubbling method, a vacuum degassing method, an adsorption method in which anhydrous sodium sulfate or molecular sieve is immersed can be used. Thereby, a polythiol compound having a water content of less than 20 ppm can be obtained.

ポリチオール化合物としては、脂肪族ポリチオール化合物、芳香族ポリチオール化合物等の各種ポリチオール化合物を用いることができる。ポリチオール化合物の1分子中に含まれるチオール基の数は、2個以上であり、好ましくは2〜6個であり、より好ましくは2〜4個である。ポリチオール化合物の具体例としては、WO2008/047626A1の段落0035〜0044に例示されている各種ポリチオール化合物を挙げることができる。好ましいポリチオール化合物としては、ビス(メルカプトメチル)−3,6,9,−トリチア−ウンデカンジチオール、2,3−ビスメルカプトエチルチオ−1−メルカプトプロパン、ビスメルカプトメチルジチアン、ペンタエリスリトールテトラキスメルカプトアセテート、ペンタエリスリトールテトラキスメルカプトプロピオネート、トリメチロールプロパントリスメルカプトアセテート、トリメチロールプロパントリスメルカプトプロピオネートを挙げることができる。これらの化合物は単独で使用してもよく、二種以上を混合して使用してもよい。   As a polythiol compound, various polythiol compounds, such as an aliphatic polythiol compound and an aromatic polythiol compound, can be used. The number of thiol groups contained in one molecule of the polythiol compound is 2 or more, preferably 2 to 6, and more preferably 2 to 4. Specific examples of the polythiol compound include various polythiol compounds exemplified in paragraphs 0035 to 0044 of WO2008 / 047626A1. Preferred polythiol compounds include bis (mercaptomethyl) -3,6,9, -trithia-undecanedithiol, 2,3-bismercaptoethylthio-1-mercaptopropane, bismercaptomethyldithiane, pentaerythritol tetrakismercaptoacetate, Mention may be made of pentaerythritol tetrakismercaptopropionate, trimethylolpropane trismercaptoacetate, trimethylolpropane trismercaptopropionate. These compounds may be used alone or in combination of two or more.

硬化性組成物を調製するために上記ポリチオール化合物と混合されるポリイソ(チオ)シアネート化合物としては、脂肪族ポリイソ(チオ)シアネート化合物、脂環族ポリイソ(チオ)シアネート化合物、芳香族ポリイソ(チオ)シアネート化合物等の各種ポリイソ(チオ)シアネート化合物を用いることができる。ポリイソ(チオ)シアネート化合物の1分子中に含まれるイソ(チオ)シアネート基の数は、2個以上であり、好ましくは2〜4個であり、より好ましくは2個または3個である。ポリイソ(チオ)シアネート化合物の具体例としては、例えば特許第5319037号公報段落0052にポリイソ(チオ)シアナート化合物として例示されている各種化合物を挙げることができる。好ましいポリイソ(チオ)シアネート化合物としては、ヘキサメチレンジイソシアネート、1,5−ペンタンジイソシアネート、イソホロンジイソシアネート、ビス(イソシアナトメチル)シクロヘキサン、ジシクロヘキシルメタンジイソシアネート、2,5−ビス(イソシアナトメチル)−ビシクロ[2.2.1]ヘプタン、2,6−ビス(イソシアナトメチル)−ビシクロ[2.2.1]ヘプタン、ビス(4−イソシアナトシクロへキシル)メタン、1,3−ビス(イソシアナトメチル)シクロヘキサン、1,4−ビス(イソシアナトメチル)シクロヘキサン等の脂肪族ポリイソシアネート化合物;ビス(イソシアナトメチル)ベンゼン、m−キシリレンジイソシアネート、p−キシリレンジイソシアネート、1,3−ジイソシアナトベンゼン、トリレンジイソシアネート、2,4−ジイソシアナトトルエン、2,6−ジイソシアナトトルエン、4,4'−メチレンビス(フェニルイソシアネート)等の芳香族ポリイソシアネート化合物を挙げることができる。更に、上記ポリイソ(チオ)シアネート化合物の塩素置換体、臭素置換体等のハロゲン置換体、アルキル置換体、アルコキシ置換体、ニトロ置換体や多価アルコールとのプレポリマー型変性体、カルボジイミド変性体、ウレア変性体、ビュレット変性体、ダイマー化またはトリマー化反応生成物等も使用できる。これらの化合物は単独で使用してもよく、二種以上を混合して使用してもよい。   Examples of the polyiso (thio) cyanate compound mixed with the polythiol compound for preparing the curable composition include aliphatic polyiso (thio) cyanate compounds, alicyclic polyiso (thio) cyanate compounds, and aromatic polyiso (thio). Various polyiso (thio) cyanate compounds such as cyanate compounds can be used. The number of iso (thio) cyanate groups contained in one molecule of the polyiso (thio) cyanate compound is 2 or more, preferably 2 to 4, and more preferably 2 or 3. Specific examples of the polyiso (thio) cyanate compound include various compounds exemplified as a polyiso (thio) cyanate compound in Japanese Patent No. 5319037, paragraph 0052. Preferred polyiso (thio) cyanate compounds include hexamethylene diisocyanate, 1,5-pentane diisocyanate, isophorone diisocyanate, bis (isocyanatomethyl) cyclohexane, dicyclohexylmethane diisocyanate, 2,5-bis (isocyanatomethyl) -bicyclo [2 2.1] heptane, 2,6-bis (isocyanatomethyl) -bicyclo [2.2.1] heptane, bis (4-isocyanatocyclohexyl) methane, 1,3-bis (isocyanatomethyl) Aliphatic polyisocyanate compounds such as cyclohexane and 1,4-bis (isocyanatomethyl) cyclohexane; bis (isocyanatomethyl) benzene, m-xylylene diisocyanate, p-xylylene diisocyanate, 1,3-diisocyanatobenzene And aromatic polyisocyanate compounds such as tolylene diisocyanate, 2,4-diisocyanatotoluene, 2,6-diisocyanatotoluene, and 4,4′-methylenebis (phenylisocyanate). Furthermore, halogen substituted products such as chlorine-substituted products and bromine-substituted products of the above polyiso (thio) cyanate compounds, alkyl-substituted products, alkoxy-substituted products, nitro-substituted products and prepolymer-modified products with polyhydric alcohols, carbodiimide-modified products, Urea-modified products, burette-modified products, dimerization or trimerization reaction products, and the like can also be used. These compounds may be used alone or in combination of two or more.

上記硬化性組成物は、ポリイソ(チオ)シアネート化合物を、含水率が20ppm未満のポリチオール化合物と混合することにより調製することができる。上記硬化性組成物におけるポリチオール化合物とポリイソ(チオ)シアネート化合物との混合割合は、特に限定されないが、例えば、モル比として、ポリチオール化合物に含まれるチオール基/ポリイソ(チオ)シアネート化合物に含まれるイソ(チオ)シアネート基=0.5〜3.0の範囲、好ましくは0.8〜1.4、更に好ましくは0.9〜1.1の範囲とすることができる。混合割合を上記範囲とすることは、高屈折率、高耐熱性等の各種優れた物性を有する硬化物を提供可能な硬化性組成物を得るうえで好ましい。   The curable composition can be prepared by mixing a polyiso (thio) cyanate compound with a polythiol compound having a water content of less than 20 ppm. The mixing ratio of the polythiol compound and the polyiso (thio) cyanate compound in the curable composition is not particularly limited. For example, as a molar ratio, the thiol group contained in the polythiol compound / the isoform contained in the polyiso (thio) cyanate compound. The (thio) cyanate group = 0.5 to 3.0, preferably 0.8 to 1.4, and more preferably 0.9 to 1.1. Setting the mixing ratio in the above range is preferable for obtaining a curable composition capable of providing a cured product having various excellent physical properties such as a high refractive index and high heat resistance.

上記硬化性組成物の調製時に、ポリイソ(チオ)シアネート化合物および含水率が20ppm未満のポリチオール化合物以外の一種以上の他の成分を混合してもよい。そのような他の成分の具体例としては、例えば、ポリチオール化合物とポリイソ(チオ)シアネート化合物との硬化反応の反応触媒等を例示できる。混合してもよい他の成分については、例えば特許第5319037号公報段落0055、0057、0058〜0064を参照できる。また、一般にポリチオウレタン系樹脂等の各種樹脂の添加剤として市販されている添加剤の一種以上を用いることもできる。上記硬化性組成物の調製は、以上説明した各種成分を同時に、または任意の順序で順次、混合して行うことができる。調製方法は特に限定されるものではなく、硬化性組成物の調製方法として公知の方法を、何ら制限なく採用することができる。   At the time of preparing the curable composition, one or more other components other than the polyiso (thio) cyanate compound and the polythiol compound having a water content of less than 20 ppm may be mixed. Specific examples of such other components include a reaction catalyst for a curing reaction between a polythiol compound and a polyiso (thio) cyanate compound. For other components that may be mixed, reference can be made to, for example, Japanese Patent No. 5319037, paragraphs 0055, 0057, and 0058-0064. In addition, one or more kinds of additives generally available as additives for various resins such as polythiourethane resins can be used. Preparation of the said curable composition can be performed by mixing the various components demonstrated above simultaneously or sequentially in arbitrary orders. The preparation method is not particularly limited, and any known method for preparing a curable composition can be employed without any limitation.

<硬化工程>
以上説明した硬化性組成物調製工程において調製された硬化性組成物を硬化することにより、硬化物として、眼鏡レンズ等の光学部材の材料として有用なポリチオウレタン系樹脂を得ることができる。ポリチオール化合物として含水率20ppm未満のポリチオール化合物を用いることにより、含水率が20ppm以上のポリチオール化合物を用いた場合と比べて高い耐熱性を有する硬化物(ポリチオウレタン系樹脂)を得ることが可能となる。耐熱性の指標としては、ガラス転移温度(Tg)を挙げることができる。本発明および本明細書におけるガラス転移温度(Tg)とは、JIS K7196−2012に準拠した熱機械分析(TMA)ペネトレーション法により測定されるガラス転移温度をいう。具体的な測定方法については、後述の実施例を参照できる。ガラス転移温度(Tg)を指標とする耐熱性については、例えばTgとして2℃以上の向上、例えば2〜10℃程度の向上は、眼鏡レンズの製造分野をはじめとする各種光学部材の製造分野におけるポリチオウレタン系樹脂の有用性を高めるうえで好ましい。ポリチオール化合物として含水率20ppm未満のポリチオール化合物を用いることによるポリチオウレタン系樹脂の耐熱性の向上は、ガラス転移温度(Tg)として、より好ましくは3℃以上であり、更に好ましくは4℃以上であり、一層好ましくは5℃以上である。
<Curing process>
By curing the curable composition prepared in the curable composition preparation step described above, a polythiourethane resin useful as a material for optical members such as eyeglass lenses can be obtained as a cured product. By using a polythiol compound having a water content of less than 20 ppm as the polythiol compound, it is possible to obtain a cured product (polythiourethane resin) having high heat resistance compared to the case of using a polythiol compound having a water content of 20 ppm or more. Become. A glass transition temperature (Tg) can be mentioned as an index of heat resistance. The glass transition temperature (Tg) in this invention and this specification means the glass transition temperature measured by the thermomechanical analysis (TMA) penetration method based on JISK7196-2012. For specific measurement methods, the examples described later can be referred to. Regarding the heat resistance using the glass transition temperature (Tg) as an index, for example, improvement of 2 ° C. or more as Tg, for example, improvement of about 2 to 10 ° C. is in the field of manufacturing various optical members including the field of eyeglass lenses. It is preferable for increasing the usefulness of the polythiourethane resin. The improvement in heat resistance of the polythiourethane resin by using a polythiol compound having a water content of less than 20 ppm as the polythiol compound is more preferably 3 ° C. or more, and further preferably 4 ° C. or more, as the glass transition temperature (Tg). Yes, more preferably 5 ° C or higher.

ポリイソ(チオ)シアネート化合物と含水率20ppm未満のポリチオール化合物との硬化反応は、硬化性組成物を硬化可能な各種硬化処理により行うことができる。例えば、レンズ形状を有する硬化物(「プラスチックレンズ」とも呼ばれる。)を製造するためには、注型重合が好ましい。注型重合では、所定の間隔をもって対向する2つのモールドと、上記間隔を閉塞することにより形成されたキャビティを有する成形型のキャビティへ硬化性組成物を注入し、このキャビティ内で硬化性組成物の重合(硬化反応)を行い硬化物を得ることができる。注型重合に使用可能な成形型の詳細については、例えば特開2009−262480号公報段落0012〜0014および同公報の図1を参照できる。なお上記公報では、2つのモールドの間隔を、封止部材としてガスケットにより閉塞した成形型が示されているが、封止部材としてはテープを用いることもできる。   The curing reaction between the polyiso (thio) cyanate compound and the polythiol compound having a water content of less than 20 ppm can be performed by various curing treatments capable of curing the curable composition. For example, cast polymerization is preferable for producing a cured product having a lens shape (also referred to as “plastic lens”). In casting polymerization, a curable composition is injected into a cavity of a mold having two molds facing each other with a predetermined interval and a cavity formed by closing the interval, and the curable composition is injected into the cavity. A cured product can be obtained by polymerization (curing reaction). For details of the mold that can be used for cast polymerization, reference can be made, for example, to paragraphs 0012 to 0014 of JP-A-2009-262480 and FIG. In the above publication, a mold in which the interval between two molds is closed with a gasket as a sealing member is shown, but a tape may be used as the sealing member.

一態様では、注型重合は、次のように行うことができる。硬化性組成物を、成形型側面に設けた注入口から成形型キャビティに注入する(注入工程)。注入後、硬化性組成物を、好ましくは加熱により重合(硬化反応)させることで、硬化性組成物が硬化し、キャビティの内部形状が転写された硬化物を得ることができる(硬化工程)。重合条件は、特に限定されるものではなく、硬化性組成物の組成等に応じて適宜設定することができる。一例として、硬化性組成物をキャビティに注入した成形型を、加熱温度20〜150℃で1〜72時間程度加熱することができるが、この条件に限定されるものではない。なお本発明および本明細書において、注型重合に関する加熱温度等の温度とは、成形型が配置される雰囲気温度をいう。また、加熱中に、任意の昇温速度で昇温することができ、任意の降温速度で降温(冷却)することができる。重合(硬化反応)終了後、キャビティ内部の硬化物を成形型から離型する。注型重合において通常行われているように、キャビティを形成している上下モールドとガスケットまたはテープを任意の順序で取り外すことにより、硬化物を成形型から離型することができる。成形型から離型された硬化物は、好ましくは、眼鏡レンズのレンズ基材として用いることができる。なお眼鏡レンズのレンズ基材として用いられる硬化物は、通常、離型後に、アニーリング、丸め工程等の研削工程、研磨工程、耐衝撃性を向上させるためのプライマーコート層、表面硬度を上げるためのハードコート層等のコート層形成工程等の後工程に付すことができる。更に、反射防止層、撥水層等の各種機能性層を、レンズ基材上に形成することができる。これらの工程については、いずれも公知技術を何ら制限なく適用することができる。こうして、レンズ基材が上記硬化物である眼鏡レンズを得ることができる。更に、この眼鏡レンズをフレームに取り付けることにより、眼鏡を得ることができる。   In one aspect, cast polymerization can be performed as follows. The curable composition is injected into the mold cavity from the injection port provided on the side surface of the mold (injection process). After the injection, the curable composition is preferably polymerized (curing reaction) by heating, so that the curable composition is cured and a cured product to which the internal shape of the cavity is transferred can be obtained (curing step). The polymerization conditions are not particularly limited, and can be appropriately set according to the composition of the curable composition. As an example, a mold in which a curable composition is injected into a cavity can be heated at a heating temperature of 20 to 150 ° C. for about 1 to 72 hours, but is not limited to this condition. In the present invention and the present specification, the temperature such as the heating temperature related to the casting polymerization refers to an atmospheric temperature at which the mold is disposed. Further, during heating, the temperature can be increased at an arbitrary temperature increase rate, and the temperature can be decreased (cooled) at an arbitrary temperature decrease rate. After the polymerization (curing reaction) is completed, the cured product inside the cavity is released from the mold. As is usually done in casting polymerization, the cured product can be released from the mold by removing the upper and lower molds forming the cavity and the gasket or tape in any order. The cured product released from the mold can be preferably used as a lens base material for spectacle lenses. In addition, the cured product used as the lens base material of the spectacle lens is usually a primer coating layer for improving impact resistance, an annealing process, a grinding process such as a rounding process, a primer coating layer for improving the surface hardness after release. It can attach | subject to post processes, such as coat layer formation processes, such as a hard-coat layer. Furthermore, various functional layers such as an antireflection layer and a water repellent layer can be formed on the lens substrate. For these steps, any known technique can be applied without any limitation. Thus, a spectacle lens whose lens base material is the cured product can be obtained. Furthermore, spectacles can be obtained by attaching this spectacle lens to a frame.

次に、本発明を実施例により更に詳細に説明するが、本発明は実施例に示す態様に限定されるものではない。以下に記載の操作および評価は、特記しない限り、大気中室温下(20〜25℃程度)で行った。また、以下に記載の%、部は、特記しない限り質量基準である。   EXAMPLES Next, although an Example demonstrates this invention still in detail, this invention is not limited to the aspect shown in an Example. Unless otherwise specified, the operations and evaluations described below were performed at room temperature in the atmosphere (about 20 to 25 ° C.). Further,% and parts described below are based on mass unless otherwise specified.

[ポリチオール化合物の含水率測定]
実施例、比較例において硬化性組成物を調製するために用いるポリチオール化合物の含水率を、温度20〜25℃および絶対湿度0.8〜1.2g/m3の環境下で、カールフィッシャー水分測定装置(京都電子工業株式会社製自動水分測定装置MKC−610型)および水分気化装置(京都電子工業株式会社製水分気化装置ADP−611型)を用いて測定した。
実施例で用いたポリチオール化合物は、市販のチオール化合物を減圧脱気(60℃、100Pa)し含水率を低減させたポリチオール化合物である。含水率は、減圧脱気を行う時間によって調整した。例えば実施例1では2時間減圧脱気した。
上記の含水率測定後、1時間以内に硬化性組成物を調製した。含水率の測定から硬化性組成物の調製までの間にポリチオール化合物の含水率は変化しないか変化するとしても変化量は検出限界以下である。また、通常の作業環境または保管環境であれば、ポリチオール化合物の含水率は変化しないか変化するとしても変化量は検出限界以下である。
[Measurement of water content of polythiol compound]
The water content of the polythiol compound used for preparing the curable compositions in Examples and Comparative Examples was measured by Karl Fischer moisture under an environment of a temperature of 20 to 25 ° C. and an absolute humidity of 0.8 to 1.2 g / m 3. It measured using the apparatus (Kyoto Electronics Industry Co., Ltd. automatic moisture measuring device MKC-610 type | mold) and the moisture vaporizer (Kyoto Electronics Industry Co., Ltd. moisture vaporizer ADP-611 type | mold).
The polythiol compound used in the examples is a polythiol compound obtained by reducing the water content by degassing a commercially available thiol compound (60 ° C., 100 Pa). The water content was adjusted by the time during which vacuum degassing was performed. For example, in Example 1, vacuum degassing was performed for 2 hours.
A curable composition was prepared within 1 hour after the measurement of the water content. Even if the water content of the polythiol compound does not change or changes between the measurement of the water content and the preparation of the curable composition, the amount of change is below the detection limit. Further, in a normal working environment or storage environment, even if the water content of the polythiol compound does not change or changes, the amount of change is below the detection limit.

[硬化物(ポリチオウレタン系樹脂製プラスチックレンズ)のガラス転移温度(Tg)測定]
実施例、比較例で得られた硬化物のガラス転移温度(Tg)を、株式会社リガク製熱器械分析装置TMA8310を用いてペネトレーション法により測定した。測定時の昇温速度は10K/分とし、ペネトレーション法用圧子として直径0.5mmの圧子を用いた。
[Measurement of glass transition temperature (Tg) of cured product (plastic lens made of polythiourethane resin)]
The glass transition temperature (Tg) of the cured product obtained in Examples and Comparative Examples was measured by a penetration method using a thermal instrument analyzer TMA8310 manufactured by Rigaku Corporation. The heating rate during measurement was 10 K / min, and an indenter having a diameter of 0.5 mm was used as an indenter for the penetration method.

[実施例1]
(硬化性組成物調製工程)
キシリレンジイソシアナート50.6部、硬化触媒としてジメチル錫ジクロライド0.01部、離型剤として酸性リン酸エステル(城北化学工業株式会社製JP−506H)0.20部、紫外線吸収剤(シプロ化成株式会社製シーソーブ701)0.50部を混合、溶解させた。更に、表1に示す含水率のビス(メルカプトメチル)−3,6,9−トリチア−ウンデカンジチオール49.4部を添加混合し、混合液とした。この混合液を200Paにて1時間脱泡を行った後、孔径5.0μmのPTFE(ポリテトラフルオロエチレン)フィルターにて濾過を行った。
[Example 1]
(Curable composition preparation process)
50.6 parts of xylylene diisocyanate, 0.01 parts of dimethyltin dichloride as a curing catalyst, 0.20 parts of acidic phosphate ester (JP-506H, manufactured by Johoku Chemical Industry Co., Ltd.), UV absorber (Cipro Kasei) SEASORB 701) 0.50 part was mixed and dissolved. Furthermore, 49.4 parts of bis (mercaptomethyl) -3,6,9-trithia-undecanedithiol having a water content shown in Table 1 were added and mixed to obtain a mixed solution. The mixture was degassed at 200 Pa for 1 hour, and then filtered through a PTFE (polytetrafluoroethylene) filter having a pore size of 5.0 μm.

(注入工程)
濾過後の混合液(硬化性組成物)を、直径75mm、−4.00Dのガラスモールドとテープからなるレンズ用成形型へ注入した。
(Injection process)
The filtered mixed solution (curable composition) was poured into a lens mold composed of a glass mold having a diameter of 75 mm and −4.00 D and a tape.

(硬化工程、アニーリング)
上記成形型を電気炉へ投入し、15℃から120℃まで20時間かけて徐々に昇温し、2時間保持して重合(硬化反応)させた。重合終了後、電気炉から成形型を取り出し、離型して硬化物(ポリチオウレタン系樹脂製プラスチックレンズ)を得た。得られたプラスチックレンズを更に炉内温度120℃のアニール炉において3時間アニールを行った。
(Curing process, annealing)
The mold was put into an electric furnace, gradually heated from 15 ° C. to 120 ° C. over 20 hours, and held for 2 hours for polymerization (curing reaction). After completion of the polymerization, the mold was taken out from the electric furnace and released to obtain a cured product (plastic lens made of polythiourethane resin). The obtained plastic lens was further annealed in an annealing furnace at a furnace temperature of 120 ° C. for 3 hours.

上記の硬化性組成物調製工程および注入工程は、絶対湿度を表1に示す値に制御した雰囲気中で行った。   Said curable composition preparation process and injection | pouring process were performed in the atmosphere which controlled absolute humidity to the value shown in Table 1.

[実施例2]
硬化性組成物調製工程および注入工程を、絶対湿度を表1に示す値に制御した雰囲気中で行った点以外、実施例1と同様に硬化物を得た。
[Example 2]
A cured product was obtained in the same manner as in Example 1 except that the curable composition preparation step and the injection step were performed in an atmosphere in which the absolute humidity was controlled to the value shown in Table 1.

[実施例3]
表1に示す含水率のビス(メルカプトメチル)−3,6,9−トリチア−ウンデカンジチオールを用いた点以外、実施例1と同様に硬化物を得た。
[Example 3]
A cured product was obtained in the same manner as in Example 1 except that bis (mercaptomethyl) -3,6,9-trithia-undecanedithiol having a moisture content shown in Table 1 was used.

[実施例4]
硬化性組成物調製工程および注入工程を、絶対湿度を表1に示す値に制御した雰囲気中で行った点以外、実施例3と同様に硬化物を得た。
[Example 4]
A cured product was obtained in the same manner as in Example 3 except that the curable composition preparation step and the injection step were performed in an atmosphere in which the absolute humidity was controlled to the value shown in Table 1.

[比較例1、比較例2]
表1に示す含水率のビス(メルカプトメチル)−3,6,9−トリチア−ウンデカンジチオールを用いた点以外、実施例1と同様に硬化物を得た。
[Comparative Example 1 and Comparative Example 2]
A cured product was obtained in the same manner as in Example 1 except that bis (mercaptomethyl) -3,6,9-trithia-undecanedithiol having a moisture content shown in Table 1 was used.

[比較例3]
硬化性組成物調製工程および注入工程を、絶対湿度を表1に示す値に制御した雰囲気中で行った点以外、比較例2と同様に硬化物を得た。
[Comparative Example 3]
A cured product was obtained in the same manner as in Comparative Example 2, except that the curable composition preparation step and the injection step were performed in an atmosphere in which the absolute humidity was controlled to the value shown in Table 1.

[実施例5]
キシリレンジイソシアナート50.6部をビスイソシアナトメチルシクロヘキサン47.6部へ変更し、硬化触媒(ジメチル錫ジクロライド)の量を0.40部に変更し、ポリチオール化合物として、ビス(メルカプトメチル)−3,6,9−トリチア−ウンデカンジチオールをビスメルカプトメチルジチアン26.2部とペンタエリスリトールテトラキスメルカプトアセテート26.2部との混合物(含水率:表1参照)に変更した以外は実施例1と同様に硬化物を得た。
[Example 5]
50.6 parts of xylylene diisocyanate was changed to 47.6 parts of bisisocyanatomethylcyclohexane, the amount of curing catalyst (dimethyltin dichloride) was changed to 0.40 parts, and bis (mercaptomethyl)- Example 1 except that 3,6,9-trithia-undecanedithiol was changed to a mixture of 26.2 parts bismercaptomethyldithiane and 26.2 parts pentaerythritol tetrakismercaptoacetate (water content: see Table 1). Similarly, a cured product was obtained.

[実施例6]
ビスメルカプトメチルジチアン26.2部とペンタエリスリトールテトラキスメルカプトアセテート26.2部との混合物(含水率:表1参照)を使用し、かつ硬化性組成物調製工程および注入工程を、絶対湿度を表1に示す値に制御した雰囲気中で行った点以外、実施例5と同様に硬化物を得た。
[Example 6]
Using a mixture of 26.2 parts of bismercaptomethyldithiane and 26.2 parts of pentaerythritol tetrakismercaptoacetate (moisture content: see Table 1), the curable composition preparation step and the injection step are expressed in terms of absolute humidity. A cured product was obtained in the same manner as in Example 5 except that it was performed in an atmosphere controlled to the value shown in 1.

[比較例4]
ビスメルカプトメチルジチアン26.2部とペンタエリスリトールテトラキスメルカプトアセテート26.2部との混合物(含水率:表1参照)を使用した点以外、実施例5と同様に硬化物を得た。
[Comparative Example 4]
A cured product was obtained in the same manner as in Example 5, except that a mixture of 26.2 parts of bismercaptomethyldithiane and 26.2 parts of pentaerythritol tetrakismercaptoacetate (water content: see Table 1) was used.

[実施例7]
キシリレンジイソシアナート50.6部をビスイソシアナトメチルビシクロヘプタン50.3部へ変更し、硬化触媒(ジメチル錫ジクロライド)の量を0.05部に変更し、ビス(メルカプトメチル)−3,6,9−トリチア−ウンデカンジチオールをビスメルカプトエチルチオメルカプトプロパン24.2部とペンタエリスリトールテトラキスメルカプトプロピオネート25.5部との混合物(含水率:表1参照)に変更した以外は実施例1と同様に硬化物を得た。
[Example 7]
50.6 parts of xylylene diisocyanate was changed to 50.3 parts of bisisocyanatomethylbicycloheptane, the amount of curing catalyst (dimethyltin dichloride) was changed to 0.05 parts, and bis (mercaptomethyl) -3,6 , 9-trithia-undecanedithiol was changed to Example 1 except that 24.2 parts of bismercaptoethylthiomercaptopropane and 25.5 parts of pentaerythritol tetrakismercaptopropionate (water content: see Table 1) were used. Similarly, a cured product was obtained.

[実施例8]
ビスメルカプトエチルチオメルカプトプロパン24.2部とペンタエリスリトールテトラキスメルカプトプロピオネート25.5部との混合物(含水率:表1参照)を使用し、かつ硬化性組成物調製工程および注入工程を、絶対湿度を表1に示す値に制御した雰囲気中で行った点以外、実施例7と同様に硬化物を得た。
[Example 8]
Using a mixture of 24.2 parts of bismercaptoethylthiomercaptopropane and 25.5 parts of pentaerythritol tetrakismercaptopropionate (water content: see Table 1), the curable composition preparation step and the injection step must be A cured product was obtained in the same manner as in Example 7 except that the humidity was controlled in an atmosphere controlled to the value shown in Table 1.

[比較例5]
ビスメルカプトエチルチオメルカプトプロパン24.2部とペンタエリスリトールテトラキスメルカプトプロピオネート25.5部との混合物(含水率:表1参照)を使用した点以外、実施例7と同様に硬化物を得た。
[Comparative Example 5]
A cured product was obtained in the same manner as in Example 7, except that a mixture (water content: see Table 1) of 24.2 parts of bismercaptoethylthiomercaptopropane and 25.5 parts of pentaerythritol tetrakismercaptopropionate was used. .

上記実施例、比較例で得られた硬化物(ポリチオウレタン系樹脂製プラスチックレンズ)のガラス転移温度を、先に記載した方法により測定した。   The glass transition temperature of the cured product (polythiourethane resin plastic lens) obtained in the above Examples and Comparative Examples was measured by the method described above.

以上の結果を、表1に示す。実施例1〜4と比較例1〜3との対比、実施例5、6と比較例4との対比、および実施例7、8と比較例5との対比から、含水率20ppm未満のポリチオール化合物を用いることにより、硬化物(ポリチオウレタン系樹脂製プラスチックレンズ)の耐熱性の向上(具体的にはガラス転移温度として3℃以上の向上)が達成されたことが確認できる。なお同じ含水率のポリチオール化合物を使用して硬化性組成物調製工程および注入工程を異なる絶対湿度の雰囲気中で行った実施例1と実施例2との間で耐熱性の違いはほぼ見られなかったのに対し、含水率の異なるポリチオール化合物を使用して同じ絶対湿度の雰囲気中で硬化性組成物調製工程および注入工程を行った実施例1、3と比較例1、2とを対比すると、実施例1、3では比較例1、2に対して耐熱性の向上(具体的にはガラス転移温度として3℃以上の向上)が達成された。この結果から、ポリチオウレタン系樹脂の耐熱性には、ポリチオール化合物に由来する水分が大きく影響することが確認できる。   The results are shown in Table 1. From the comparison between Examples 1-4 and Comparative Examples 1-3, the comparison between Examples 5, 6 and Comparative Example 4, and the comparison between Examples 7, 8 and Comparative Example 5, the polythiol compound having a water content of less than 20 ppm. It can be confirmed that the heat resistance of the cured product (polythiourethane resin plastic lens) is improved (specifically, the glass transition temperature is improved by 3 ° C. or more). In addition, the difference in heat resistance is hardly seen between Example 1 and Example 2 which performed the curable composition preparation process and injection | pouring process in the atmosphere of different absolute humidity using the polythiol compound of the same moisture content. On the other hand, when comparing Examples 1 and 3 and Comparative Examples 1 and 2 in which the curable composition preparation step and the injection step were performed in an atmosphere of the same absolute humidity using polythiol compounds having different moisture contents, In Examples 1 and 3, an improvement in heat resistance (specifically, an improvement of 3 ° C. or more as the glass transition temperature) was achieved with respect to Comparative Examples 1 and 2. From this result, it can be confirmed that the moisture derived from the polythiol compound greatly affects the heat resistance of the polythiourethane resin.

Figure 2018003058
Figure 2018003058

[脈理、白濁の評価]
上記実施例、比較例で得られた硬化物(ポリチオウレタン系樹脂製プラスチックレンズ)について、以下の評価を実施した。脈理および白濁の評価結果がいずれもB以上であれば、きわめて均質で透明性に優れ眼鏡レンズ基材として好適な硬化物と判断することができる。
[Evaluation of striae and cloudiness]
The following evaluation was implemented about the hardened | cured material (plastic lens made from a polythiourethane type resin) obtained by the said Example and comparative example. If the evaluation results of striae and white turbidity are both B or more, it can be determined that the cured product is extremely homogeneous and excellent in transparency and suitable as a spectacle lens substrate.

(脈理の評価)
上記プラスチックレンズについて、ウシオ電機株式会社製外観検査装置オプティカルモデュレックスSX−UI251HQを用いて投影検査を行った。光源の高圧紫外線(UV)ランプとしては同じくウシオ電機株式会社製USH−102Dを用いて光源から1mの距離の位置に白色のスクリーンを設置した。評価対象のプラスチックレンズを光源とスクリーン間に挿入し、スクリーン上の投影像を目視観察し下記の基準により判定を行った。
+:投影像に線状の欠陥が確認されない。
A:投影像に線状のごく薄い欠陥が確認される。
B:投影像に線状の薄い欠陥が確認される。
C:投影像に線状の濃い欠陥が確認される。
D:投影像に線状の著しい欠陥が確認される。
(Evaluation of striae)
About the said plastic lens, the projection test | inspection was performed using the Ushio Electric Co., Ltd. external appearance inspection apparatus Optical Modulex SX-UI251HQ. As a high-pressure ultraviolet (UV) lamp as a light source, USH-102D manufactured by Ushio Electric Co., Ltd. was used, and a white screen was installed at a distance of 1 m from the light source. The plastic lens to be evaluated was inserted between the light source and the screen, and the projected image on the screen was visually observed and judged according to the following criteria.
A + : A linear defect is not confirmed in the projected image.
A: A very thin linear defect is confirmed in the projected image.
B: A linear thin defect is confirmed in the projected image.
C: A linear dark defect is confirmed in the projected image.
D: A remarkable linear defect is confirmed in the projected image.

(白濁の評価)
上記プラスチックレンズを暗箱内で蛍光灯下で目視観察し、下記の基準により判定を行った。
+:プラスチックレンズに白濁が確認されない。
A:プラスチックレンズにごく薄い白濁が確認される。
B:プラスチックレンズに薄い白濁が確認される。
C:プラスチックレンズに濃い白濁が確認される。
D:プラスチックレンズに著しい白濁が確認される。
(Evaluation of cloudiness)
The plastic lens was visually observed under a fluorescent lamp in a dark box and judged according to the following criteria.
A + : No cloudiness is confirmed in the plastic lens.
A: A very thin cloudiness is confirmed on the plastic lens.
B: Thin cloudiness is confirmed on the plastic lens.
C: Dark cloudiness is confirmed in the plastic lens.
D: Remarkable white turbidity is confirmed in the plastic lens.

以上の結果を、表2に示す。表2に示す結果から、含水率20ppm未満のポリチオール化合物を用いることにより、硬化物(ポリチオウレタン系樹脂製プラスチックレンズ)の脈理の低減および白濁の抑制も達成されたことが確認できる。   The results are shown in Table 2. From the results shown in Table 2, it can be confirmed that by using a polythiol compound having a water content of less than 20 ppm, striae of the cured product (plastic lens made of polythiourethane resin) and suppression of white turbidity were also achieved.

Figure 2018003058
Figure 2018003058

最後に、前述の各態様を総括する。   Finally, the above-described aspects are summarized.

一態様によれば、ポリイソ(チオ)シアネート化合物を、質量基準の含水率が20ppm未満のポリチオール化合物と混合することにより硬化性組成物を調製する硬化性組成物調製工程と、上記硬化性組成物を硬化して硬化物を得る硬化工程とを含む硬化物の製造方法を提供することができる。   According to one aspect, a curable composition preparation step of preparing a curable composition by mixing a polyiso (thio) cyanate compound with a polythiol compound having a moisture content of less than 20 ppm by mass, and the curable composition described above. The manufacturing method of hardened | cured material including the hardening process which hardens | cures and obtains hardened | cured material can be provided.

上記の硬化物の製造方法によれば、質量基準の含水率が20ppm未満のポリチオール化合物を用いることにより、ポリイソ(チオ)シアネート化合物とポリチオール化合物との硬化反応により得られる硬化物(ポリチオウレタン系樹脂)の耐熱性を向上することができる。   According to the manufacturing method of said hardened | cured material, the hardened | cured material (polythiourethane type | system | group) obtained by the hardening reaction of a polyiso (thio) cyanate compound and a polythiol compound by using the polythiol compound whose water content of mass reference | standard is less than 20 ppm. Resin) can be improved in heat resistance.

一態様では、上記ポリチオール化合物の質量基準の含水率は、5ppm以上20ppm未満である。   In one aspect, the water content based on mass of the polythiol compound is 5 ppm or more and less than 20 ppm.

一態様では、上記硬化性組成物調製工程は、絶対湿度18g/m3以下、好ましくは15g/m3以下、より好ましくは12g/m3以下、更に好ましくは12g/m3未満、一層好ましくは10g/m3以下、より一層好ましくは10g/m3未満の雰囲気中で行われる。In one aspect, the curable composition preparation step comprises an absolute humidity of 18 g / m 3 or less, preferably 15 g / m 3 or less, more preferably 12 g / m 3 or less, still more preferably less than 12 g / m 3 , more preferably It is carried out in an atmosphere of 10 g / m 3 or less, more preferably less than 10 g / m 3 .

一態様では、上記硬化工程は、上記硬化性組成物を注型重合に付すことにより行われる。   In one aspect, the curing step is performed by subjecting the curable composition to cast polymerization.

一態様では、上記硬化性組成物を注型重合のために成形型へ注入する工程(注入工程)は、絶対湿度18g/m3以下、好ましくは15g/m3以下、より好ましくは12g/m3以下、更に好ましくは12g/m3未満、一層好ましくは10g/m3以下、より一層好ましくは10g/m3未満の雰囲気中で行われる。In one aspect, the step of injecting the curable composition into a mold for casting polymerization (injection step) has an absolute humidity of 18 g / m 3 or less, preferably 15 g / m 3 or less, more preferably 12 g / m. 3 or less, more preferably less than 12 g / m 3 , more preferably 10 g / m 3 or less, and even more preferably less than 10 g / m 3 .

一態様では、上記硬化物は眼鏡レンズ基材である。   In one aspect, the cured product is a spectacle lens substrate.

他の一態様によれば、ポリイソ(チオ)シアネート化合物および質量基準の含水率が20ppm未満のポリチオール化合物を含む硬化性組成物を硬化した硬化物が提供される。   According to another aspect, there is provided a cured product obtained by curing a curable composition containing a polyiso (thio) cyanate compound and a polythiol compound having a moisture content of less than 20 ppm by mass.

上記硬化物は、高い耐熱性を示すことができる。一態様では、上記硬化物のガラス転移温度(Tg)は、98℃以上、好ましくは100℃以上(例えば100〜150℃の範囲)である。   The said hardened | cured material can show high heat resistance. In one aspect | mode, the glass transition temperature (Tg) of the said hardened | cured material is 98 degreeC or more, Preferably it is 100 degreeC or more (for example, the range of 100-150 degreeC).

一態様では、上記ポリチオール化合物の質量基準の含水率は、5ppm以上20ppm未満である。   In one aspect, the water content based on mass of the polythiol compound is 5 ppm or more and less than 20 ppm.

他の一態様によれば、上記硬化物からなる眼鏡レンズ基材も提供される。   According to another aspect, a spectacle lens substrate made of the cured product is also provided.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

本発明の一態様は、眼鏡レンズ等の各種光学部材の製造分野において有用である。   One embodiment of the present invention is useful in the field of manufacturing various optical members such as eyeglass lenses.

Claims (7)

ポリイソ(チオ)シアネート化合物を、質量基準の含水率が20ppm未満のポリチオール化合物と混合することにより硬化性組成物を調製する硬化性組成物調製工程と、
前記硬化性組成物を硬化して硬化物を得る硬化工程と、
を含む硬化物の製造方法。
A curable composition preparation step of preparing a curable composition by mixing a polyiso (thio) cyanate compound with a polythiol compound having a mass-based moisture content of less than 20 ppm;
A curing step of curing the curable composition to obtain a cured product;
The manufacturing method of the hardened | cured material containing this.
前記ポリチオール化合物の質量基準の含水率が5ppm以上20ppm未満である、請求項1に記載の硬化物の製造方法。 The manufacturing method of the hardened | cured material of Claim 1 whose moisture content of the mass reference | standard of the said polythiol compound is 5 ppm or more and less than 20 ppm. 前記硬化工程を前記硬化性組成物を注型重合に付すことにより行う、請求項1または2に記載の硬化物の製造方法。 The manufacturing method of the hardened | cured material of Claim 1 or 2 which performs the said hardening process by attaching | subjecting the said curable composition to cast polymerization. 前記硬化物は眼鏡レンズ基材である、請求項1〜3のいずれか1項に記載の硬化物の製造方法。 The manufacturing method of the hardened | cured material of any one of Claims 1-3 whose said hardened | cured material is a spectacles lens base material. ポリイソ(チオ)シアネート化合物および質量基準の含水率が20ppm未満のポリチオール化合物を含む硬化性組成物を硬化した硬化物。 A cured product obtained by curing a curable composition containing a polyiso (thio) cyanate compound and a polythiol compound having a moisture content on a mass basis of less than 20 ppm. 前記ポリチオール化合物の質量基準の含水率が5ppm以上20ppm未満である、請求項5に記載の硬化物。 The hardened | cured material of Claim 5 whose moisture content of the mass reference | standard of the said polythiol compound is 5 ppm or more and less than 20 ppm. 請求項5または6に記載の硬化物からなる眼鏡レンズ基材。 The spectacle lens base material which consists of hardened | cured material of Claim 5 or 6.
JP2018524657A 2016-06-30 2016-06-30 Method for producing cured product, cured product and spectacle lens substrate Pending JPWO2018003058A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/069442 WO2018003058A1 (en) 2016-06-30 2016-06-30 Method for producing cured product, cured product, and eyeglass lens substrate

Publications (1)

Publication Number Publication Date
JPWO2018003058A1 true JPWO2018003058A1 (en) 2019-01-17

Family

ID=60786132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018524657A Pending JPWO2018003058A1 (en) 2016-06-30 2016-06-30 Method for producing cured product, cured product and spectacle lens substrate

Country Status (6)

Country Link
US (1) US20190062490A1 (en)
EP (1) EP3421512A4 (en)
JP (1) JPWO2018003058A1 (en)
KR (1) KR20180112863A (en)
CN (1) CN108884205A (en)
WO (1) WO2018003058A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108779224A (en) * 2016-06-30 2018-11-09 豪雅镜片泰国有限公司 Manufacturing method, solidfied material and the eyeglass base material of solidfied material
JPWO2018003061A1 (en) * 2016-06-30 2019-01-17 ホヤ レンズ タイランド リミテッドHOYA Lens Thailand Ltd Method for producing cured product, cured product and spectacle lens substrate
KR102651783B1 (en) 2018-09-20 2024-03-26 주식회사 엘지에너지솔루션 Negative electrode for lithium secondary battery and lithium secondary battery comprising the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001342252A (en) * 2000-03-27 2001-12-11 Mitsui Chemicals Inc New polythiol-containing polymerizable composition, resin obtained by polymerizing the composition and lens
JP2003222703A (en) * 2002-01-30 2003-08-08 Seiko Epson Corp Plastic lens
JP2005234528A (en) * 2004-01-21 2005-09-02 Seiko Epson Corp Optical element and method for manufacturing optical element
JP2006162926A (en) * 2004-12-07 2006-06-22 Seiko Epson Corp Method for producing plastic lens and plastic lens
WO2008047626A1 (en) * 2006-10-16 2008-04-24 Mitsui Chemicals, Inc. Method for producing resin for optical material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4139701B2 (en) * 2003-01-31 2008-08-27 日本曹達株式会社 Organic-inorganic composite
CN101097263A (en) * 2006-06-29 2008-01-02 江苏金目光学有限公司 Colophony glasses lens
ES2726954T3 (en) * 2010-12-29 2019-10-10 Koc Solution Co Ltd Process for manufacturing a resin for a urethane-based optical material, resin composition for it, and optical material manufactured in this way
JP5373226B1 (en) * 2012-08-14 2013-12-18 三井化学株式会社 Polythiol composition, polymerizable composition for optical material and use thereof
KR101571275B1 (en) * 2012-11-16 2015-11-23 미쓰이 가가쿠 가부시키가이샤 Polymerizable composition, optical material and manufacturing method for same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001342252A (en) * 2000-03-27 2001-12-11 Mitsui Chemicals Inc New polythiol-containing polymerizable composition, resin obtained by polymerizing the composition and lens
JP2003222703A (en) * 2002-01-30 2003-08-08 Seiko Epson Corp Plastic lens
JP2005234528A (en) * 2004-01-21 2005-09-02 Seiko Epson Corp Optical element and method for manufacturing optical element
JP2006162926A (en) * 2004-12-07 2006-06-22 Seiko Epson Corp Method for producing plastic lens and plastic lens
WO2008047626A1 (en) * 2006-10-16 2008-04-24 Mitsui Chemicals, Inc. Method for producing resin for optical material

Also Published As

Publication number Publication date
EP3421512A4 (en) 2019-11-27
KR20180112863A (en) 2018-10-12
CN108884205A (en) 2018-11-23
WO2018003058A1 (en) 2018-01-04
US20190062490A1 (en) 2019-02-28
EP3421512A1 (en) 2019-01-02

Similar Documents

Publication Publication Date Title
JP6588639B2 (en) Method for producing polythiol compound, method for producing curable composition, and method for producing cured product
US20190062490A1 (en) Method for producing cured product, cured product, and eyeglass lens substrate
KR101988494B1 (en) Xylylene diisocyanate composition with improved stability and reactivity, and optical lens using the same
JP2018020992A (en) Method for producing polythiol compound, method for producing curable composition, and method for producing cured product
US20190062489A1 (en) Method for producing cured product, cured product, and eyeglass lens substrate
WO2019189761A1 (en) Method for producing polythiol compound, method for producing curable composition, and method for producing cured product
JP2018024588A (en) Method for producing polythiol compound, method for producing curable composition, and method for producing cured product
KR20160021742A (en) Composition for optical material
KR101961941B1 (en) Polythiourethane plastic lens
US20190062488A1 (en) Method for producing cured product, cured product, and eyeglass lens substrate
US11834549B2 (en) Method for producing polymerizable composition
US11506819B2 (en) Method for manufacturing optical member
WO2017175407A1 (en) Optical element production method
KR101869785B1 (en) Composition for a novel optical material containing a thiol compound
EP3951442A1 (en) Polymerizable composition for optical member, optical member, and method for producing optical member
WO2022168832A1 (en) Optical material production method, polymerizable composition for optical material, and optical material
WO2019189762A1 (en) Method for manufacturing polythiol compound, method for manufacturing curable composition, and method for manufacturing cured material
US20210206902A1 (en) Optical member resin production method
EP3858883A1 (en) Polymerizable composition for optical members

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191030

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200121