JPWO2017217514A1 - Liver-type fatty acid binding protein preparation, method for evaluating the preparation, method for suppressing fluctuation of measurement value caused by liver-type fatty acid binding protein in measurement using the preparation, liver-type fatty acid binding protein, the protein DNA encoding, cell transformed with the DNA, method for producing the protein, method for preparing a calibration curve of liver type fatty acid binding protein, and method for quantifying the protein - Google Patents

Liver-type fatty acid binding protein preparation, method for evaluating the preparation, method for suppressing fluctuation of measurement value caused by liver-type fatty acid binding protein in measurement using the preparation, liver-type fatty acid binding protein, the protein DNA encoding, cell transformed with the DNA, method for producing the protein, method for preparing a calibration curve of liver type fatty acid binding protein, and method for quantifying the protein Download PDF

Info

Publication number
JPWO2017217514A1
JPWO2017217514A1 JP2018524015A JP2018524015A JPWO2017217514A1 JP WO2017217514 A1 JPWO2017217514 A1 JP WO2017217514A1 JP 2018524015 A JP2018524015 A JP 2018524015A JP 2018524015 A JP2018524015 A JP 2018524015A JP WO2017217514 A1 JPWO2017217514 A1 JP WO2017217514A1
Authority
JP
Japan
Prior art keywords
fatty acid
liver
binding protein
acid binding
type fatty
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018524015A
Other languages
Japanese (ja)
Other versions
JP6563598B2 (en
Inventor
健 菅谷
健 菅谷
正晃 岡▲崎▼
正晃 岡▲崎▼
剛 及川
剛 及川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CMIC Holdings Co Ltd
Original Assignee
CMIC Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CMIC Holdings Co Ltd filed Critical CMIC Holdings Co Ltd
Priority claimed from PCT/JP2017/022209 external-priority patent/WO2017217514A1/en
Publication of JPWO2017217514A1 publication Critical patent/JPWO2017217514A1/en
Application granted granted Critical
Publication of JP6563598B2 publication Critical patent/JP6563598B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

特異的に結合する物質を用いた測定における肝型脂肪酸結合蛋白質に起因する測定値の変動幅を減少し得る肝型脂肪酸結合蛋白質標品、該標品を評価する方法、肝型脂肪酸結合蛋白質の検量線を作成する方法、及び該蛋白質を定量する方法を提供すること。10mMの酸化剤により25℃1時間の酸化処理を行わない肝型脂肪酸結合蛋白質標品を用いた測定値に対する前記酸化処理を行った測定値の比で表される酸化変動係数が1.4以下に設定された肝型脂肪酸結合蛋白質標品、該標品に用いられる肝型脂肪酸結合蛋白質、該蛋白質をコードするDNA、該DNAで形質転換された細胞、該蛋白質の製造方法、該標品を評価する方法、該標品を用いる測定における測定値の変動幅を抑制する方法、該蛋白質の検量線を作成する方法、及び該蛋白質を定量する方法。A liver-type fatty acid binding protein preparation capable of reducing the fluctuation range of the measurement value caused by the liver-type fatty acid binding protein in the measurement using a specifically binding substance, a method for evaluating the preparation, a liver-type fatty acid binding protein Providing a method of preparing a calibration curve and a method of quantifying the protein. The oxidation variation coefficient represented by the ratio of the measured value obtained by the oxidation treatment to the measured value using a liver-type fatty acid binding protein preparation not oxidized at 25 ° C. for 1 hour with 10 mM oxidizing agent is 1.4 or less A liver-type fatty acid binding protein preparation set for the invention, a liver-type fatty acid binding protein used for the preparation, a DNA encoding the protein, a cell transformed with the DNA, a method for producing the protein, the preparation A method of evaluating, a method of suppressing fluctuation of measured value in measurement using the preparation, a method of preparing a calibration curve of the protein, and a method of quantifying the protein.

Description

本発明は、特異的に結合する物質を用いた測定における肝型脂肪酸結合蛋白質に起因する測定値の変動幅を減少し得る肝型脂肪酸結合蛋白質標品、該標品を評価する方法、該標品を用いる測定における肝型脂肪酸結合蛋白質に起因する測定値の変動幅を抑制する方法、肝型脂肪酸結合蛋白質、該蛋白質をコードするDNA、該DNAで形質転換された細胞、該蛋白質の製造方法、肝型脂肪酸結合蛋白質の検量線を作成する方法、及び該蛋白質を定量する方法に関するものである。   The present invention provides a liver-type fatty acid binding protein preparation capable of reducing the fluctuation range of the measurement value caused by the liver-type fatty acid binding protein in the measurement using a specifically binding substance, a method for evaluating the preparation, and the standard For suppressing the fluctuation range of the measurement value caused by liver type fatty acid binding protein in the measurement using the product, liver type fatty acid binding protein, DNA encoding said protein, cells transformed with said DNA, method for producing said protein The present invention relates to a method of preparing a calibration curve of a liver-type fatty acid binding protein, and a method of quantifying the protein.

脂肪酸結合蛋白質(Fatty Acid−Binding Protein;以下FABPともいう。)は細胞内脂質結合蛋白質ファミリーに属する分子量約14kDaの蛋白質で、脂肪酸をはじめとする疎水性リガンドと可逆的に結合し細胞内輸送を担うことが知られている(例えば、非特許文献1)。その中でも肝型脂肪酸結合蛋白質(L−type fatty acid−binding protein;以下、単に「L−FABP蛋白質」ともいう。)は肝臓や腎臓の近位尿細管細胞の細胞質に局在しており、尿細管障害による虚血・酸化ストレスに応答して尿中への排泄量が増加する(例えば、非特許文献2)。そのため尿中の腎臓組織由来L−FABP蛋白質を検出することで腎疾患の検査が可能である(例えば、特許文献1)。
また、図24に示したように、L−FABP蛋白質は、逆平行βシートが2枚直行したβバレル構造に2本のαへリックスが蓋をするような形で安定化され、2分子の遊離脂肪酸(例えば、オレイン酸)と結合することが知られている(PDB ID:2LKK)(非特許文献3)。
そして、L−FABP蛋白質は遊離脂肪酸をミトコンドリアやペルオキシソームへ輸送し、β酸化を促進する機構を有している(非特許文献4)。
脂肪酸リガンドの結合親和性としては、脂肪酸の炭素鎖が伸長し、二重結合が増えるほど高くなる傾向が見られ(非特許文献5、6)、L−FABP蛋白質は特に過酸化物に対して結合親和性が高いことなどが報告されている(非特許文献7)。
また、L−FABP蛋白質の抗酸化機構を研究した報告では、AAPHによってラットL−FABP蛋白質のメチオニン残基が酸化されていたことが示されている(非特許文献8)。
A fatty acid binding protein (Fatty Acid-Binding Protein; hereinafter also referred to as FABP) is a protein with a molecular weight of about 14 kDa that belongs to the intracellular lipid binding protein family, and reversibly binds to a hydrophobic ligand such as fatty acid to carry out intracellular transport. It is known that it bears (for example, nonpatent literature 1). Among them, liver-type fatty acid binding protein (L-type fatty acid-binding protein; hereinafter, also simply referred to as "L-FABP protein") is localized in the cytoplasm of the proximal tubular cells of the liver and kidney, and urine Urinary excretion is increased in response to ischemia / oxidative stress due to tubular injury (for example, Non-Patent Document 2). Therefore, examination of a renal disease is possible by detecting kidney tissue origin L-FABP protein in urine (for example, patent documents 1).
Also, as shown in FIG. 24, the L-FABP protein is stabilized in such a manner that two α-helices cover a β-barrel structure in which two anti-parallel β-sheets are orthogonal to each other. It is known to bind to free fatty acids (eg, oleic acid) (PDB ID: 2 LKK) (Non-patent Document 3).
And L-FABP protein transports free fatty acid to mitochondria and peroxisome, and has a mechanism which promotes beta oxidation (nonpatent literature 4).
As the binding affinity of fatty acid ligands, the carbon chains of fatty acids are elongated, and the double bond tends to increase as the number of double bonds increases (Non-patent Documents 5 and 6), and L-FABP proteins are particularly suitable for peroxides. It has been reported that the binding affinity is high (Non-patent Document 7).
Moreover, in the report which studied the antioxidant mechanism of L-FABP protein, it is shown that the methionine residue of rat L-FABP protein was oxidized by AAPH (nonpatent literature 8).

特開平11−242026号公報Japanese Patent Application Publication No. 11-242026

Furuhashi,M.,et al.:Nat Rev Drug Discov,7:489−503,2008Furuhashi, M .; , Et al. : Nat Rev Drug Discov, 7: 489-503, 2008 Kamijo,A.et al.:J Lab Clin Med,143:23−30,2004Kamijo, A. et al. et al. : J Lab Clin Med, 143: 23-30, 2004 Cai,J.et al.:Biophys J,102:2585−2594,2012Cai, J. et al. et al. : Biophys J, 102: 2585-2594, 2012 Veerkamp,J.H.et al.:Prostaglandins Leukot Essent Fatty Acids,49:887−906,1993Veerkamp, J. et al. H. et al. Prostaglandins Leukot Essent Fatty Acids, 49: 887-906, 1993 Zimmerman,A.W.et al.:Int J Biochem Cell Biol,33:865−876,2001Zimmerman, A. et al. W. et al. : Int J Biochem Cell Biol, 33: 865-876, 2001 Norris,A.W.,Spector,A.A.:J Lipid Res,43:646−653,2002Norris, A .; W. Spector, A., et al. A. J Lipid Res, 43: 646-653, 2002. Raza,H.et al.:Biochem Biophys Res Commun,161:448−455,1989Raza, H. et al. : Biochem Biophys Res Commun, 161: 448-455, 1989 Yan,J.et al.:J Lipid Res,50:2445−2454,2009Yan, J. et al. et al. J Lipid Res, 50: 2445-2454, 2009

上述のようなL−FABP蛋白質を検出するための検査キットとしては、例えば、L−FABP蛋白質に対する認識部位が異なる2種類の抗体を組み合わせて用いるサンドイッチELISA法を採用した検査キットが開発されている。
ここで、図1は、L−FABPの保存安定性を示す図であり、図1におけるグラフはL−FABPを4℃、25℃又は37℃で保存した場合の保存日数によるELISA測定値の変化(−80℃保管サンプルを100とした場合の割合(%))を示す。
サンドイッチELISA法を採用した上記検査キットにおいて、リコンビナントL−FABP蛋白質を使用した従来の測定標準物質(標品)では、上記L−FABP蛋白質を室温(25℃)以上で長期保存すると、図1に示したように、抗体結合能が変化してしまい、ELISA法等の抗原抗体反応を利用した免疫学的手法によるL−FABP蛋白質の正確な測定を行うことができない問題があった。
このようにL−FABP蛋白質の不安定性のため、L−FABP蛋白質標品の製造条件や測定環境に厳密な管理が求められ、また標品は低温保存が要求され、更なる操作性、安定性の向上が望まれていた。
As a test kit for detecting L-FABP protein as described above, for example, a test kit employing a sandwich ELISA method using two types of antibodies having different recognition sites for L-FABP protein has been developed. .
Here, FIG. 1 is a view showing the storage stability of L-FABP, and the graph in FIG. 1 shows changes in ELISA measurement values according to the number of storage days when L-FABP is stored at 4 ° C., 25 ° C. or 37 ° C. (The ratio (%) when making a -80 degreeC storage sample into 100) is shown.
In the above test kit employing the sandwich ELISA method, when the conventional L-FABP protein is stored for a long time at room temperature (25 ° C.) or more with the conventional measurement standard substance (standard product) using the recombinant L-FABP protein, FIG. As shown, there is a problem that the antibody binding ability is changed, and accurate measurement of L-FABP protein can not be performed by an immunological method utilizing an antigen-antibody reaction such as ELISA.
Thus, due to the instability of the L-FABP protein, strict control is required for the production conditions and measurement environment of the L-FABP protein preparation, and low-temperature storage is required for the preparation, and further operability and stability are required. Improvement was desired.

本発明は、上記事情に鑑みてなされたものであり、特異的に結合する物質を用いた測定における肝型脂肪酸結合蛋白質に起因する測定値の変動幅を減少し得る肝型脂肪酸結合蛋白質標品、該標品を評価する方法、該標品を用いる測定における肝型脂肪酸結合蛋白質に起因する測定値の変動幅を抑制する方法、肝型脂肪酸結合蛋白質の検量線を作成する方法、及び該蛋白質を定量する方法の提供を目的とする。   The present invention has been made in view of the above-mentioned circumstances, and a liver-type fatty acid binding protein preparation capable of reducing the fluctuation range of the measurement value caused by the liver-type fatty acid binding protein in the measurement using a specifically binding substance A method for evaluating the preparation, a method for suppressing the fluctuation of the measurement value caused by the liver-type fatty acid binding protein in the measurement using the preparation, a method for preparing a calibration curve of the liver-type fatty acid binding protein, and the protein Aims to provide a method to quantify

本発明者らは、上述した問題点を解決すべく鋭意検討した結果、L−FABP蛋白質は酸化剤である2,2’−アゾビス2−アミジノプロパン(以下、AAPHと略記)処理によってメチオニン残基の酸化修飾及び構造変化が生じ、その結果、ELISAにおける抗体結合能が変化し、ELISA測定値が大きく変動することを見出した。また、驚くべきことに、AAPH無添加の場合(HOを添加)においても室温で1時間反応させることによりELISA測定値が上昇しており、空気酸化による影響が生じていることも見出した。特に、ELISA測定値の変動幅の抑制に関しては、19番目、74番目及び113番目のメチオニンのなかでも、19番目及び113番目のメチオニンの酸化率が支配的であることを見出した。As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that L-FABP protein is a methionine residue by treatment with an oxidizing agent 2,2'-azobis 2-amidinopropane (hereinafter abbreviated as AAPH). It has been found that oxidative modification and structural change occur in the antibody, and as a result, the antibody binding ability in the ELISA is changed, and the ELISA measurement value largely fluctuates. In addition, it was also surprisingly found that, even in the case of no addition of AAPH (addition of H 2 O), the ELISA measurement value was raised by reacting at room temperature for 1 hour, and the effect of air oxidation was caused. . In particular, it was found that among the 19th, 74th and 113th methionines, the oxidation rates of the 19th and 113th methionines are dominant in suppressing the fluctuation range of the ELISA measurement value.

更に、L−FABP蛋白質中のメチオニン残基を遺伝子改変技術により別のアミノ酸に変異させたL−FABP蛋白質が、酸化反応や脂肪酸の添加、室温以上の温度における長期保存においても抗体結合能が変化せずに安定化されることを見出した。
本発明は、上記知見に基づき完成されるに至ったものである。
Furthermore, L-FABP protein in which the methionine residue in L-FABP protein is mutated to another amino acid by genetic modification technology changes antibody binding ability even in oxidation reaction, addition of fatty acid, and long-term storage at room temperature or more It was found to be stabilized without
The present invention has been completed based on the above findings.

すなわち本発明は以下の通りである。
本発明の第1の態様は、
酸化変動係数が1.4以下に設定された肝型脂肪酸結合蛋白質標品である。
本発明の第2の態様は、
配列表の配列番号1と同一性90%以上のアミノ酸配列からなり、19番目、74番目、113番目の1つ以上のメチオニンが、メチオニン以外の非極性アミノ酸に置換された肝型脂肪酸結合蛋白質であって、少なくとも19番目のメチオニンが、メチオニン以外の非極性アミノ酸に置換された肝型脂肪酸結合蛋白質を含む、肝型脂肪酸結合蛋白質標品である。
本発明の第3の態様は、
上記第1の態様に係る肝型脂肪酸結合蛋白質標品に用いられる、配列表の配列番号1と同一性90%以上のアミノ酸配列からなり、19番目、74番目、113番目の1つ以上のメチオニンが、メチオニン以外の非極性アミノ酸に置換された肝型脂肪酸結合蛋白質である。
本発明の第4の態様は、
上記第3の態様に係る蛋白質をコードするDNAである。
本発明の第5の態様は、
上記第4の態様に係るDNAで形質転換された細胞である。
本発明の第6の態様は、
上記第5の態様に係る細胞を培養し、上記第3の態様に係る蛋白質を回収する工程を含む、蛋白質の製造方法である。
That is, the present invention is as follows.
The first aspect of the present invention is
It is a liver-type fatty acid binding protein preparation whose oxidation variation coefficient is set to 1.4 or less.
The second aspect of the present invention is
A liver-type fatty acid binding protein consisting of an amino acid sequence having 90% or more identity to SEQ ID NO: 1 in the sequence listing, and one or more methionines at 19th, 74th and 113th being substituted with nonpolar amino acids other than methionine It is a liver-type fatty acid binding protein preparation, which comprises a liver-type fatty acid binding protein in which at least the 19th methionine is substituted with a nonpolar amino acid other than methionine.
The third aspect of the present invention is
The amino acid sequence having an identity of 90% or more with SEQ ID NO: 1 of the sequence listing, which is used for the preparation of a liver-type fatty acid binding protein preparation according to the first aspect, and one or more methionine of 19th, 74th and 113th Is a liver-type fatty acid binding protein substituted with a nonpolar amino acid other than methionine.
The fourth aspect of the present invention is
It is a DNA encoding the protein according to the third aspect.
The fifth aspect of the present invention is
It is a cell transformed with the DNA according to the fourth aspect.
The sixth aspect of the present invention is
A method for producing a protein, comprising the steps of culturing the cell according to the fifth aspect and recovering the protein according to the third aspect.

本発明の第7の態様は、
配列表の配列番号1と同一性90%以上のアミノ酸配列からなり、19番目のメチオニンの酸化率が30%以上、又は113番目のメチオニンが70%以上の酸化率を有する肝型脂肪酸結合蛋白質を含む肝型脂肪酸結合蛋白質標品である。
本発明の第8の態様は、
上記酸化変動係数が1.4以下になる量でアラキドン酸、オレイン酸、8−イソプロスタグランジンF2α及び2,3−ジノル−8−イソプロスタグランジンF2αよりなる群から選択される少なくとも1種の脂肪酸を含み、かつ配列表の配列番号1と同一性90%以上のアミノ酸配列からなる肝型脂肪酸結合蛋白質を含む肝型脂肪酸結合蛋白質標品である。
The seventh aspect of the present invention is
A liver-type fatty acid binding protein comprising an amino acid sequence having an identity of 90% or more with SEQ ID NO: 1 in the sequence listing and having an oxidation rate of 30% or more at the 19th methionine or 70% or more of the 113th methionine It is a liver-type fatty acid binding protein preparation containing.
The eighth aspect of the present invention is
At least the oxidation coefficient of variation is selected from 1.4 to qs with arachidonic acid, oleic acid, 8 iso static Prostaglandin F 2.alpha and 2,3-dinor-8-iso static prostaglandin F group consisting 2.alpha A liver-type fatty acid binding protein preparation comprising a liver-type fatty acid binding protein comprising one type of fatty acid and consisting of an amino acid sequence having an identity of 90% or more with SEQ ID NO: 1 in the sequence listing.

本発明の第9の態様は、
酸化変動係数を指標として肝型脂肪酸結合蛋白質標品を評価する方法である。
本発明の第10の態様は、
肝型脂肪酸結合蛋白質標品を用いる測定における測定値の変動幅を抑制する方法であって、
(1)配列表の配列番号1と同一性90%以上のアミノ酸配列からなる肝型脂肪酸結合蛋白質の19番目、74番目、113番目の1つ以上のメチオニンを、メチオニン以外の非極性アミノ酸に置換し、少なくとも19番目のメチオニンを、メチオニン以外の非極性アミノ酸に置換すること、
(2)配列表の配列番号1と同一性90%以上のアミノ酸配列からなる肝型脂肪酸結合蛋白質の19番目のメチオニンの酸化率が30%以上、又は113番目のメチオニンの酸化率を70%以上とすること、及び
(3)アラキドン酸、オレイン酸、8−イソプロスタグランジンF2α及び2,3−ジノル−8−イソプロスタグランジンF2αよりなる群から選択される少なくとも1種の脂肪酸を上記肝型脂肪酸結合蛋白質標品に含有させること
よりなる群から選択される少なくともいずれかを含む方法である。
本発明の第11の態様は、
上記第1、第2、第7及び第8のいずれかの態様に係る肝型脂肪酸結合蛋白質標品を用いて、肝型脂肪酸結合蛋白質の検量線を作成する方法である。
本発明の第12の態様は、
上記第11の態様に係る方法で作成した検量線を用いて、試料中の肝型脂肪酸結合蛋白質を定量する方法である。
The ninth aspect of the present invention is
It is a method of evaluating a liver-type fatty acid binding protein preparation using an oxidation variation coefficient as an index.
The tenth aspect of the present invention is
A method for suppressing the fluctuation range of measurement values in measurement using a liver-type fatty acid binding protein preparation,
(1) At least one methionine in the 19th, 74th and 113th positions of the liver-type fatty acid binding protein consisting of an amino acid sequence of 90% or more identity to SEQ ID NO: 1 in the sequence listing is substituted with nonpolar amino acids other than methionine And replacing at least the 19th methionine with a nonpolar amino acid other than methionine,
(2) The oxidation rate of methionine of the 19th methionine of the liver-type fatty acid binding protein consisting of an amino acid sequence of 90% or more identity to SEQ ID NO: 1 in the sequence listing is 30% or more, or the oxidation rate of methionine of the 113th is 70% or more And (3) at least one fatty acid selected from the group consisting of arachidonic acid, oleic acid, 8-isostataglandin F and 2,3-dinor-8-isoprostaglandin F It is a method including at least one selected from the group consisting of including the above-mentioned liver-type fatty acid binding protein preparation.
An eleventh aspect of the present invention is
It is a method of preparing a calibration curve of a liver-type fatty acid binding protein using the liver-type fatty acid binding protein preparation according to any one of the first, second, seventh and eighth aspects.
The twelfth aspect of the present invention is
It is a method of quantifying a liver-type fatty acid binding protein in a sample using the calibration curve prepared by the method according to the eleventh aspect.

本発明によれば、特異的に結合する物質を用いた測定における肝型脂肪酸結合蛋白質に起因する測定値の変動幅を減少し得る肝型脂肪酸結合蛋白質標品、肝型脂肪酸結合蛋白質の検量線を作成する方法、及び該蛋白質を定量する方法を提供することができる。
本発明の肝型脂肪酸結合蛋白質標品は、酸化や脂肪酸結合状態による抗体結合能の変化を抑制することができることから、由来生物種や蛋白質発現方法によらない。すなわち本発明の肝型脂肪酸結合蛋白質標品は、製造条件、保存条件、操作性における安定性と汎用性を提供することができる。
また、本発明の肝型脂肪酸結合蛋白質標品を評価する方法は、肝型脂肪酸結合蛋白質の測定値が酸化により変動する程度を係数として評価することができる。
According to the present invention, a standard of liver-type fatty acid binding protein preparation, liver-type fatty acid binding protein, which can reduce the fluctuation range of the measurement value caused by liver-type fatty acid binding protein in measurement using a specifically binding substance It is possible to provide a method of producing and a method of quantifying the protein.
The liver-type fatty acid binding protein preparation of the present invention can suppress the change in antibody binding ability due to oxidation or fatty acid binding state, so it is not based on the derived species or protein expression method. That is, the liver-type fatty acid binding protein preparation of the present invention can provide stability and versatility in production conditions, storage conditions and operability.
In addition, the method for evaluating the liver-type fatty acid binding protein preparation of the present invention can evaluate the degree to which the measured value of the liver-type fatty acid binding protein changes due to oxidation as a coefficient.

本発明の肝型脂肪酸結合蛋白質標品は、特異的に結合する物質(例えば、抗体)を用いた測定における肝型脂肪酸結合蛋白質に起因する測定値の変動幅を減少し得ることから、温度や酸化の程度によらずに、正確な検出ないし定量を可能とする。
また、本発明の肝型脂肪酸結合蛋白質標品は、特異的に結合する物質を用いた測定における肝型脂肪酸結合蛋白質に起因する測定値の変動幅を減少し得ることから、測定用標準物質又は精度管理用物質としての肝型脂肪酸結合蛋白質の製造管理を容易にし、免疫学的手法における測定の操作性、汎用性が向上することが期待される。
The liver-type fatty acid binding protein preparation of the present invention can reduce the fluctuation range of the measurement value due to the liver-type fatty acid binding protein in the measurement using a substance (for example, an antibody) that specifically binds. It enables accurate detection or quantification regardless of the degree of oxidation.
In addition, since the liver-type fatty acid binding protein preparation of the present invention can reduce the fluctuation range of the measurement value due to the liver-type fatty acid binding protein in the measurement using a substance that specifically binds, it is possible to measure standard substances or It is expected that production control of the hepatic fatty acid binding protein as a quality control substance is facilitated, and operability and versatility of measurement in the immunological method are improved.

L−FABP蛋白質の保存安定性を示す図である。It is a figure which shows the storage stability of L-FABP protein. (a)は酸化型L−FABP及び非酸化型L−FABPのLC−ESI−MSによる分子量測定結果を示す図であり、(b)は酸化型L−FABPと非酸化型L−FABPの蛍光スペクトルを示す図である。(A) is a figure which shows the molecular weight measurement result by LC-ESI-MS of oxidized L-FABP and nonoxidized L-FABP, (b) is the fluorescence of oxidized L-FABP and nonoxidized L-FABP It is a figure which shows a spectrum. L−FABP蛋白質のAAPH処理によるELISA測定値の変化(無処理を100とした場合の割合(%))を示す図である。It is a figure which shows the change (The ratio (%) at the time of making untreated a 100) of the ELISA measured value by AAPH process of L-FABP protein. 各種濃度のAAPHをヒトL−FABP蛋白質に添加し、37℃で1.5時間反応させた後のMSスペクトルを示す図である。It is a figure which shows MS spectrum after adding various concentrations of AAPH to human L-FABP protein, and making it react at 37 degreeC for 1.5 hours. (a)は、配列番号1に示したヒトL−FABP蛋白質のアミノ酸配列を示す図であり、(b)は、ヒトL−FABP蛋白質のトリプシン消化によって生じ得る各種ペプチド断片の推定分子量を示す図である。(A) shows the amino acid sequence of human L-FABP protein shown in SEQ ID NO: 1, (b) shows the estimated molecular weight of various peptide fragments which can be produced by trypsin digestion of human L-FABP protein It is. (a)は、上記各種濃度(40mM、200mM)のAAPHと反応後のヒトL−FABP蛋白質をトリプシン消化して得られたMet1を含むペプチド断片No.1のMSスペクトルを示す図であり、(b)は、上記各種濃度のAAPHと反応後のヒトL−FABP蛋白質をトリプシン消化して得られたMet19を含むペプチド断片No.2のMSスペクトルを示す図であり、(c)は、上記各種濃度のAAPHと反応後のヒトL−FABP蛋白質をトリプシン消化して得られたMet74を含むペプチド断片No.9及びペプチド断片No.10のMSスペクトルを示す図であり、(d)は、上記各種濃度のAAPHと反応後のヒトL−FABP蛋白質をトリプシン消化して得られたMet113を含むペプチド断片No.14及びペプチド断片15のMSスペクトルを示す図である。(A) is a peptide fragment No. 1 containing Met1 obtained by trypsin digestion of human L-FABP protein after reaction with the above-mentioned various concentrations (40 mM, 200 mM) of AAPH. 1 (b) shows a peptide fragment No. 1 containing Met19 obtained by trypsin digestion of human L-FABP protein after reaction with various concentrations of AAPH. FIG. 10 (c) is a diagram showing a Met74-containing peptide fragment No. 1 obtained by trypsin digestion of human L-FABP protein after reaction with the above-mentioned various concentrations of AAPH. 9 and peptide fragment no. 10 shows MS spectra of 10, and (d) is peptide fragment No. 1 containing Met113 obtained by trypsin digestion of human L-FABP protein after reaction with various concentrations of AAPH. 14 shows MS spectra of 14 and peptide fragment 15. FIG. CORYNEX(登録商標)により発現したL−FABP M19L/M74L/M113L及び精製蛋白質を示す図である。FIG. 6 shows L-FABP M19L / M74L / M113L and purified protein expressed by CORYNEX®. 各種濃度のAAPH処理による変異L−FABP蛋白質のELISA測定値の変化(無処理の場合を100とした場合の割合(%))を示す図である。It is a figure which shows the change (The ratio (%) when the case of non-processing is made into 100) of the ELISA measured value of the mutation L-FABP protein by AAPH treatment of various density | concentrations. 変異L−FABP蛋白質のAAPH処理によるELISA測定値の変化(無処理サンプルを100とした割合(%))を示す図である。It is a figure which shows the change (The ratio (%) which made the untreated sample 100) by the AAPH process of mutant | variant L-FABP protein. 変異L−FABP蛋白質の室温長期保存(25℃)によるELISA測定値の変化(−80℃保存サンプルを100とした割合(%))を示す図である。It is a figure which shows the change (The ratio (%) when making a -80 degreeC storage sample into 100) of the ELISA measured value by room temperature long-term storage (25 degreeC) of mutant L-FABP protein. 変異L−FABP蛋白質の37℃長期保存によるELISA測定値の変化(−80℃保存サンプルを100とした割合(%))を示す図である。It is a figure which shows the change (The ratio (%) made into 100 of -80 degreeC storage sample) by 37 degreeC extended storage of mutant L-FABP protein. クローン2とは認識部位が異なる標識抗体を用いたELISA測定におけるAAPHの影響(無処理サンプルを100とした割合(%))を示す図である。Clone 2 is a figure which shows the influence (the ratio (%) which made the untreated sample 100) in ELISA measurement using the labeled antibody from which a recognition site differs. 酸化の進行が異なる様々なL−FABP蛋白質の19番目、74番目及び113番目のメチオニン各々の酸化率を測定した図である。It is the figure which measured the oxidation rate of each 19th, 74th, and 113th methionine of various L-FABP protein in which progress of oxidation differs. 酸化させたL−FABP蛋白質の37℃2週間保存によるELISA測定値の変化(4℃保存サンプルを100とした割合(%))を示す図である。It is a figure which shows the change (The ratio (%) on the 4 degreeC storage sample 100) by the 37 degreeC 2 week storage of the oxidized L-FABP protein. (a)は、各種濃度の各種脂肪酸によるELISA測定値の変化(脂肪酸添加量0モル倍量を100とした割合(%))を示す図である。(b)は、各種脂肪酸の種類を示す図である。(A) is a figure which shows the change (The ratio (%) which made the fatty-acid addition amount 0 molar amount 100 100) by the various fatty acids of various density | concentrations. (B) is a figure which shows the kind of various fatty acids. L−FABP変異蛋白質の脂肪酸添加処理によるELISA測定値の変化(無処理サンプルを100とした割合(%))を示す図である。It is a figure which shows the change (The ratio (%) which made the untreated sample 100) by the fatty acid addition process of L-FABP mutein. BSA非存在下、アラキドン酸を添加後、透析により遊離アラキドン酸を除去した際のアラキドン酸添加量とELISA測定値の変化(アラキドン酸添加量0モル倍量を100とした割合(%))を示す図である。After addition of arachidonic acid in the absence of BSA, change in arachidonic acid addition amount and ELISA measurement value when free arachidonic acid was removed by dialysis (ratio (%) based on 0 molar volume of arachidonic acid addition amount as 100) FIG. BSA非存在下、オレイン酸を添加後、透析により遊離オレイン酸を除去した際のオレイン酸添加量とELISA測定値の変化(オレイン酸添加量0モル倍量を100とした割合(%))を示す図である。After addition of oleic acid in the absence of BSA, changes in the addition amount of oleic acid and the ELISA measurement value when free oleic acid was removed by dialysis (ratio (%) based on 0 molar amount of oleic acid added as 100) FIG. BSA非存在下、50モル倍量のアラキドン酸を添加した後、透析により遊離アラキドン酸を除去しアラキドン酸を結合させたL−FABP蛋白質の37℃2週間保存によるELISA測定値の変化(4℃保存サンプルを100とした割合(%))を示す図である。After 50 molar volumes of arachidonic acid were added in the absence of BSA, the free arachidonic acid was removed by dialysis and L-FABP protein bound to arachidonic acid was changed in ELISA measurement value by two-week storage at 37 ° C (4 ° C It is a figure which shows the ratio (%) which made the preservation | save sample 100. FIG. BSA非存在下、1000モル倍量のオレイン酸を添加した後、透析により遊離オレイン酸を除去しオレイン酸を結合させたL−FABP蛋白質の37℃2週間保存によるELISA測定値の変化(4℃保存サンプルを100とした割合(%))を示す図である。After addition of 1000 molar volumes of oleic acid in the absence of BSA, dialysis removes the free oleic acid and changes the ELISA measurement value by 2 weeks storage at 37 ° C. of oleic acid-bound L-FABP protein (4 ° C. It is a figure which shows the ratio (%) which made the preservation | save sample 100. FIG. L−FABP M19L/M74L/M113L、0.5mM又は4mMのAAPHで処理したL−FABP WT、及びL−FABP WTについて酸化変動係数を示す図である。FIG. 6 shows the oxidation variation coefficient for L-FABP WT treated with L-FABP M19 L / M 74 L / M 113 L, 0.5 mM or 4 mM of AAPH, and L-FABP WT. 19番目、74番目、及び113番目のメチオニン各々について、残存未酸化型メチオニンの含有率と酸化変動係数との相関を示す図である。It is a figure which shows correlation with the content rate of a residual unoxidized type methionine, and an oxidation variation coefficient about each of the 19th, 74th, and 113th methionine. 各種L−FABPの酸化変動係数の算出結果を示す図である。It is a figure which shows the calculation result of the oxidation variation coefficient of various L-FABP. L−FABP蛋白質の遊離脂肪酸との結合を示す立体構造モデルを示す図である。It is a figure which shows the three-dimensional-structure model which shows the coupling | bonding with the free fatty acid of L-FABP protein.

以下、本発明の実施態様について詳細に説明するが、本発明は、以下の実施態様に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。   Hereinafter, embodiments of the present invention will be described in detail, but the present invention is not limited to the following embodiments at all, and can be implemented with appropriate modifications within the scope of the object of the present invention. .

≪肝型脂肪酸結合蛋白質標品≫
本明細書において、「標品」とは、測定用標準物質(キャリブレータ)及び精度管理用物質(コントロール)を代表例とし、常用参照標準物質、実用標準物質、製造業者製品校正物質、診断用標準物質、校正用標準物質等の標準品全て、及び、その他、品質管理用物質等をも包含する物質を意味する(飯塚儀明ら、「トレーサビリティ連鎖と不確かさの現状」生物試料分析Vol.34,No3(2011),第179頁〜第188頁、日本薬局方における標準品及び標準物質、2009年度JCCLS(日本臨床検査標準協議会)用語委員会 用語(英語)とその邦訳語(案) 番号226)。
«Liver-type fatty acid binding protein preparation»
In the present specification, “standard product” refers to a standard substance for measurement (calibrator) and a substance for quality control (control) as a typical example, and is a standard reference substance for practical use, a practical standard substance, a calibration substance for manufacturer's product, a standard for diagnosis. A substance, all standard products such as calibration standard substances, and other substances including quality control substances etc. are also included (Giaki Iizuka et al., “Current Status of Traceability Chain and Uncertainty” Biological Sample Analysis Vol. 34 , No. 3 (2011), pp. 179-188, standard products and standard substances in the Japanese Pharmacopoeia, 2009 JCCLS (Japan Clinical Laboratory Standards Council) Terminology Committee Terms (English) and their translated Japanese words (draft) 226).

<酸化変動係数が1.4以下に設定された肝型脂肪酸結合蛋白質標品>
第1の態様に係る肝型脂肪酸結合蛋白質標品は、10mMの酸化剤により25℃1時間の酸化処理を行い、酸化処理無の肝型脂肪酸結合蛋白質標品を用いた測定値に対する前記酸化処理有の測定値の比で表される酸化変動係数が1.4以下に設定された肝型脂肪酸結合蛋白質を含む。酸化変動係数が1.4以下であることにより、測定値の酸化による変動が抑制され得る。
上記第1の態様に係る肝型脂肪酸結合蛋白質標品は、実用的及び商業的に利用される観点から、販売に供される肝型脂肪酸結合蛋白質標品であることが好ましい。
Liver-type fatty acid binding protein preparation whose oxidation variation coefficient is set to 1.4 or less
The liver-type fatty acid binding protein preparation according to the first aspect is subjected to an oxidation treatment at 25 ° C. for 1 hour with 10 mM oxidizing agent, and the oxidation treatment to the measured value using a liver-type fatty acid binding protein preparation without oxidation treatment It includes a liver-type fatty acid binding protein whose oxidation variation coefficient, which is represented by the ratio of measured values, is set to 1.4 or less. By the oxidation variation coefficient being 1.4 or less, the variation due to oxidation of the measured value can be suppressed.
The liver-type fatty acid binding protein preparation according to the first aspect is preferably a liver-type fatty acid binding protein preparation to be sold, from the viewpoint of practical and commercial use.

本明細書及び特許請求の範囲において、酸化変動係数とは、10mMの酸化剤(例えば、AAPH)により室温(25℃)1時間の酸化処理を行い、酸化処理無の肝型脂肪酸結合蛋白質標品を用いた測定値に対する上記酸化処理有の肝型脂肪酸結合蛋白質標品を用いた測定値の比をいい、10mMのAAPHにより室温(25℃)1時間の酸化処理を行い、酸化処理無の肝型脂肪酸結合蛋白質標品を用いた測定値に対する上記酸化処理有の肝型脂肪酸結合蛋白質標品を用いた測定値(例えば、標識強度)の比(例えば、下記式で表される吸光度比(OD比))であることが好ましい。

上記酸化処理有の肝型脂肪酸結合蛋白質標品を用いたOD値/
上記酸化処理無の肝型脂肪酸結合蛋白質標品を用いたOD値
In the present specification and claims, the oxidation variation coefficient refers to a liver-type fatty acid-binding protein preparation that is subjected to oxidation treatment at room temperature (25 ° C.) for 1 hour with 10 mM of an oxidizing agent (eg, AAPH) Ratio of the measured value using the above-mentioned liver-type fatty acid binding protein preparation with oxidation treatment to the measurement value using the above-mentioned, and the oxidation treatment without oxidation treatment by performing oxidation treatment at room temperature (25 ° C) for 1 hour with 10 mM AAPH. Ratio of the measured value (for example, labeling intensity) using the above-mentioned oxidation-treated liver-type fatty acid binding protein preparation to the measurement value using the fatty acid-binding protein preparation (for example, the absorbance ratio (OD Ratio)) is preferred.

OD value using the above-mentioned liver-type fatty acid binding protein preparation with oxidation treatment
OD value using the above-mentioned liver-type fatty acid binding protein preparation without oxidation treatment

第1の態様に係る肝型脂肪酸結合蛋白質標品において、酸化変動係数としては、1.3以下であることが好ましい。
第1の態様に係る肝型脂肪酸結合蛋白質標品において、酸化変動係数の下限値としては本発明の効果を損なわない限り特に制限はないが、例えば、0.8以上が挙げられ、0.9以上であることが好ましく、1.0以上であることがより好ましい。
In the liver-type fatty acid binding protein preparation according to the first aspect, the oxidation variation coefficient is preferably 1.3 or less.
In the liver-type fatty acid binding protein preparation according to the first aspect, the lower limit value of the oxidation variation coefficient is not particularly limited as long as the effect of the present invention is not impaired, and for example, 0.8 or more can be mentioned. It is preferable that it is the above, and it is more preferable that it is 1.0 or more.

(第2の態様に係る肝型脂肪酸結合蛋白質標品)
第2の態様に係る肝型脂肪酸結合蛋白質標品は、配列表の配列番号1と同一性90%以上のアミノ酸配列からなり、19番目、74番目、113番目の1つ以上のメチオニンが、メチオニン以外の非極性アミノ酸に置換されている下記第3の態様に係る変異肝型脂肪酸結合蛋白質を含む。下記変異肝型脂肪酸結合蛋白質を含むことから、特異的に結合する物質による結合能の変動が抑制され得る。
第2の態様に係る肝型脂肪酸結合蛋白質標品は、酸化変動係数が1.4以下に設定された肝型脂肪酸結合蛋白質標品であっても酸化変動係数が1.4以下に設定された肝型脂肪酸結合蛋白質標品でなくてもよいが、酸化変動係数が1.4以下に設定された肝型脂肪酸結合蛋白質標品であることが好ましい。
(The liver-type fatty acid binding protein preparation according to the second aspect)
The liver-type fatty acid binding protein preparation according to the second aspect comprises an amino acid sequence having an identity of 90% or more with SEQ ID NO: 1 in the sequence listing, and one or more methionine of 19th, 74th and 113th is methionine It comprises a mutant liver-type fatty acid binding protein according to the following third aspect, which is substituted with a nonpolar amino acid other than the above. By containing the following mutant liver-type fatty acid binding proteins, it is possible to suppress the fluctuation of binding ability due to the specifically binding substance.
In the liver-type fatty acid binding protein preparation according to the second aspect, the oxidation fluctuation coefficient is set to 1.4 or less even if the liver-type fatty acid binding protein preparation is set to an oxidation fluctuation coefficient of 1.4 or less It may not be a liver-type fatty acid binding protein preparation, but is preferably a liver-type fatty acid binding protein preparation whose oxidation variation coefficient is set to 1.4 or less.

(変異肝型脂肪酸結合蛋白質)
第3の態様に係る変異肝型脂肪酸結合蛋白質は、第1の態様に係る肝型脂肪酸結合蛋白質標品に用いられる蛋白質であっても、第1の態様に係る肝型脂肪酸結合蛋白質標品に用いられる蛋白質でなくてもよく、
配列表の配列番号1と同一性90%以上のアミノ酸配列からなり、19番目、74番目、113番目の1つ以上のメチオニンが、メチオニン以外の非極性アミノ酸に置換されていることが好ましい。
第3の態様に係る変異肝型脂肪酸結合蛋白質は、19番目、74番目、113番目の1つ以上のメチオニンがメチオニン以外の非極性アミノ酸に置換されることにより、肝型脂肪酸結合蛋白質に対する特異的に結合する物質(例えば、抗体)の結合能を安定化することができる。
メチオニン以外にも、ジスルフィド結合や酸素の直接付加を受けるシステイン残基や、カルボニル化するリシン残基、アルギニン残基、プロリン残基、ニトロ化されるチロシン残基等の酸化修飾が知られているが(Toda T.,etal.,基礎老化研究,35(3);17−22,2011)、19番目、74番目、113番目の1つ以上のメチオニンを置換するアミノ酸が非極性アミノ酸であることにより酸化修飾を防ぐことができる。
(Mutated liver-type fatty acid binding protein)
Even if the mutant liver-type fatty acid binding protein according to the third aspect is a protein used for the liver-type fatty acid binding protein preparation according to the first aspect, the liver-type fatty acid binding protein preparation according to the first aspect It does not have to be the protein used,
It is preferable that it consists of an amino acid sequence having 90% or more identity with SEQ ID NO: 1 in the Sequence Listing, and one or more methionines at the 19th, 74th and 113th positions are substituted with nonpolar amino acids other than methionine.
The mutant liver-type fatty acid-binding protein according to the third aspect is specific to a liver-type fatty acid-binding protein by replacing one or more of the 19th, the 74th, and the 113th methionine with a nonpolar amino acid other than methionine. The binding ability of a substance (eg, an antibody) that binds to
Besides methionine, oxidation modification such as cysteine residue which receives direct addition of disulfide bond or oxygen, lysine residue to be carbonylated, arginine residue, proline residue, tyrosine residue to be nitrated is known. (Toda T., et al., 35 (3); 17-22, 2011), 19th, 74th, 113th amino acids replacing one or more methionines are nonpolar amino acids Can prevent oxidative modification.

配列番号1は、野生型ヒトL−FABP蛋白質(以下、L−FABP WTともいう。)のアミノ酸配列を表す。
本明細書で言う「同一性90%以上のアミノ酸配列」とは、アミノ酸の同一性が90%以上であることを意味し、同一性は好ましくは95%以上、より好ましくは97%以上である。
配列表の配列番号1に記載した野生型ヒト肝型脂肪酸結合蛋白質のアミノ酸配列上の置換、挿入、欠失、付加等による変異蛋白質であっても、その変異が野生型ヒト肝型脂肪酸結合蛋白質の3次元構造において保存性が高い変異であれば、これらは全て肝型脂肪酸結合蛋白質の範囲内に属し得る。具体的には、配列表の配列番号1と同一性90%以上のアミノ酸配列のN末端及びC末端よりなる群から選択される少なくとも1つの末端に1若しくは複数のアミノ酸(例えば、ヒスチジン(His)、アラニン(Ala)等)を付加して配列表の配列番号1と同一性90%未満(例えば、同一性85%以上)となった変異蛋白質であっても、その変異が野生型ヒト肝型脂肪酸結合蛋白質の3次元構造において保存性が高い変異であれば、これらは全て肝型脂肪酸結合蛋白質の範囲内に属し得る。
蛋白質の構成要素となるアミノ酸の側鎖は、疎水性、電荷、大きさなどにおいてそれぞれ異なるものであるが、実質的にタンパク質全体の3次元構造(立体構造とも言う)に影響を与えないという意味で保存性の高い幾つかの関係が、経験的にまた物理化学的な実測により知られている。例えば、アミノ酸残基の置換については、グリシン(Gly)とプロリン(Pro)、Glyとアラニン(Ala)又はバリン(Val)、ロイシン(Leu)とイソロイシン(Ile)、グルタミン酸(Glu)とグルタミン(Gln)、アスパラギン酸(Asp)とアスパラギン(Asn)、システイン(Cys)とスレオニン(Thr)、Thrとセリン(Ser)又はAla、リジン(Lys)とアルギニン(Arg)等が挙げられる。
SEQ ID NO: 1 represents the amino acid sequence of a wild-type human L-FABP protein (hereinafter also referred to as L-FABP WT).
The term "amino acid sequence of 90% or more of identity" as used herein means that the identity of amino acids is 90% or more, preferably 95% or more, more preferably 97% or more. .
Even if it is a mutant protein by substitution, insertion, deletion, addition, etc. on the amino acid sequence of the wild type human liver-type fatty acid binding protein described in SEQ ID NO: 1 in the sequence listing, the mutation is a wild-type human liver-type fatty acid binding protein These mutations can all be within the range of liver-type fatty acid binding proteins if they are highly conserved in the three-dimensional structure of Specifically, one or more amino acids (for example, histidine (His)) at at least one end selected from the group consisting of the N-terminus and the C-terminus of an amino acid sequence having 90% or more identity to SEQ ID NO: 1 in the sequence listing. And alanine (Ala etc.), and even if the mutant protein is less than 90% identical (for example, 85% or more identical) to SEQ ID NO: 1 in the sequence listing, the mutation is wild type human liver type If the mutations are highly conserved in the three-dimensional structure of the fatty acid binding protein, they can all fall within the range of liver-type fatty acid binding protein.
The side chains of amino acids that are constituents of proteins differ from each other in hydrophobicity, charge, size, etc., meaning that they do not substantially affect the three-dimensional structure (also referred to as a three-dimensional structure) of the entire protein. Some of the highly conserved relationships are known empirically and by physical and chemical measurements. For example, for substitution of amino acid residues, glycine (Gly) and proline (Pro), Gly and alanine (Ala) or valine (Val), leucine (Leu) and isoleucine (Ile), glutamic acid (Glu) and glutamine (Gln) Aspartic acid (Asp) and asparagine (Asn), cysteine (Cys) and threonine (Thr), Thr and serine (Ser) or Ala, lysine (Lys) and arginine (Arg) and the like.

上記変異肝型脂肪酸結合蛋白質の取得方法については特に制限はなく、化学合成により合成した蛋白質でもよいし、遺伝子組み換え技術による作製した組み換え蛋白質でもよい。
L−FABP蛋白質のアミノ酸配列や遺伝子配列は既に報告されているため(Veerkamp and Maatman, Prog. Lipid Res.,34:17−52,1995)、例えば、それらを基にプライマーを設計し、PCR法により適当なcDNAライブラリ等からcDNAをクローニングし、これを用いて遺伝子組換えを行うことより、上記変異肝型脂肪酸結合蛋白質を調製することができる。
The method for obtaining the mutant liver-type fatty acid binding protein is not particularly limited, and may be a protein synthesized by chemical synthesis or a recombinant protein produced by genetic recombination technology.
Since the amino acid sequence and gene sequence of L-FABP protein have already been reported (Veerkamp and Maatman, Prog. Lipid Res., 34: 17-52, 1995), for example, primers are designed based on them, and PCR method The above-mentioned mutant liver-type fatty acid binding protein can be prepared by cloning cDNA from a suitable cDNA library or the like and performing gene recombination using this.

第3の態様に係る変異肝型脂肪酸結合蛋白質は、19番目、74番目、113番目の2つ以上のメチオニンがメチオニン以外の非極性アミノ酸に置換されることが好ましく、19番目のメチオニンを含む2つ以上のメチオニンがメチオニン以外の非極性アミノ酸に置換されることがより好ましく、19番目、74番目、113番目のメチオニン全てがメチオニン以外の非極性アミノ酸に置換されることが更に好ましい。   In the mutant liver-type fatty acid binding protein according to the third aspect, it is preferable that the 19th, the 74th, and the 113th two or more methionines be replaced with nonpolar amino acids other than methionine, and the 19th methionine It is more preferable that one or more methionines be substituted with nonpolar amino acids other than methionine, and it is even more preferable that all of the 19th, 74th and 113th methionines be substituted with nonpolar amino acids other than methionine.

19番目、74番目、113番目の1つ以上のメチオニンを置換する非極性アミノ酸としては、19番目、74番目、113番目の1つ以上のメチオニンが同一の非極性アミノ酸で置換されてもよく、異なる非極性アミノ酸で置換されていてもよい。19番目、74番目、113番目の1つ以上のメチオニンを置換する非極性アミノ酸としては、ロイシン、イソロイシン、バリン、アラニン、フェニルアラニン、トリプトファンであることが好ましく、抗体の結合性を大きく変化させないメチオニンと類似した構造である観点から、ロイシン、イソロイシン、バリン、アラニンであることがより好ましく、ロイシン、イソロイシン、バリンであることが更に好ましく、ロイシン、イソロイシンであることが特に好ましく、ロイシンであることが最も好ましい。   As nonpolar amino acids that substitute one or more methionines at the 19th, 74th, and 113th positions, one or more methionine at the 19th, 74th, and 113th positions may be substituted with the same nonpolar amino acid, It may be substituted with different nonpolar amino acids. The nonpolar amino acids substituting one or more of the 19th, 74th and 113th methionines are preferably leucine, isoleucine, valine, alanine, phenylalanine and tryptophan, and methionine which does not significantly change the antibody binding property From the viewpoint of the similar structure, leucine, isoleucine, valine and alanine are more preferable, leucine, isoleucine and valine are more preferable, leucine and isoleucine are particularly preferable, and leucine is most preferable. preferable.

(変異肝型脂肪酸結合蛋白質をコードするDNA)
第4の態様に係るDNAは、上記変異肝型脂肪酸結合蛋白質をコードするDNAである。
上記変異肝型脂肪酸結合蛋白質をコードするDNA(変異遺伝子)は、化学合成、遺伝子工学的手法又は突然変異誘発などの任意の方法で作製することができる。上述のように、L−FABP蛋白質のアミノ酸配列や遺伝子配列は既に報告されているため、例えば、それらを基にプライマーを設計し、PCR法により適当なcDNAライブラリ等からcDNAをクローニングし、これを用いて遺伝子組換えにより得ることができる。遺伝子工学的手法の一つである部位特異的変異誘発法は特定の位置に特定の変異を導入できる手法であることから有用であり、モレキュラークローニング第2版、カレント・プロトコールズ・イン・モレキュラー・バイオロジー等に記載の方法に準じて行うことができる。
(DNA encoding mutant liver-type fatty acid binding protein)
The DNA according to the fourth aspect is a DNA encoding the above mutant liver-type fatty acid binding protein.
The DNA (mutant gene) encoding the above mutant liver-type fatty acid binding protein can be prepared by any method such as chemical synthesis, genetic engineering or mutagenesis. As described above, since the amino acid sequence and gene sequence of L-FABP protein have been already reported, for example, primers are designed based on them, and cDNA is cloned from a suitable cDNA library etc. by PCR method, It can be obtained by genetic recombination. Site-directed mutagenesis, which is one of the genetic engineering techniques, is useful because it is a technique that can introduce a specific mutation at a specific position, and is useful in molecular cloning, 2nd edition, Current Protocols in Molecular. It can carry out according to the method as described in the biology etc.

(形質転換細胞)
第5の態様に係る細胞は、上記第4の態様に係るDNAで形質転換された細胞である。
上記第4の態様に係るDNA又は上記第4の態様に係るDNA含む組み換えベクターを適当な宿主に導入することによって形質転換細胞を作製することができる。
上記DNA含む組み換えベクターは、適当な宿主ベクター系による一般的遺伝子組み換え技術によって調製することができる。適当なベクターとしては、大腸菌由来のプラスミド(例、pBR322、pUC118その他)、枯草菌由来のプラスミド(例、pUB110、pSH19その他)、さらにバクテリオファージやレトロウイルスやワクシニアウイルス等の動物ウイルス等が利用できる。
上記DNA又は上記DNA含む組み換えベクターを導入される宿主細胞は、細菌、酵母等が挙げられる。
細菌細胞の例としては、コリネバクテリウム属細菌(例えば、Corynebacterium glutamicum)、バチルス属細菌(例えば、Bacillus subtilis)又はストレプトマイセス属細菌等のグラム陽性菌又は大腸菌(Escherichia coli)等のグラム陰性菌が挙げられる。これら細菌の形質転換は、プロトプラスト法、または公知の方法でコンピテント細胞を用いることにより行えばよい。
酵母細胞の例としては、サッカロマイセス又はシゾサッカロマイセスに属する細胞が挙げられ、例えば、サッカロマイセス・セレビシエ(Saccharomyces cerevislae)またはサッカロマイセス・クルイベリ(Saccharomyces kluyveri)等が挙げられる。酵母宿主への組み換えベクターの導入方法としては、例えば、エレクトロポレーション法、スフェロブラスト法、酢酸リチウム法等を挙げることができる。
上記DNAで形質転換された細胞としては、上記変異肝型脂肪酸結合蛋白質を効率よく製造し、かつ後述の肝型脂肪酸結合蛋白質の精製が煩雑な工程を要することがないことから、Corynebacterium glutamicumを用いたタンパク質分泌発現系(CORYNEX(登録商標):味の素株式会社製)であることが好ましい。
(Transformed cells)
The cell according to the fifth aspect is a cell transformed with the DNA according to the fourth aspect.
A transformed cell can be prepared by introducing the DNA according to the fourth aspect or the recombinant vector containing the DNA according to the fourth aspect into a suitable host.
The recombinant vector containing the above DNA can be prepared by a general genetic recombination technique using an appropriate host vector system. As a suitable vector, a plasmid derived from E. coli (eg, pBR322, pUC118 etc.), a plasmid derived from Bacillus subtilis (eg, pUB110, pSH19 etc.), and further, animal viruses such as bacteriophage, retrovirus and vaccinia virus can be used. .
Host cells into which the above DNA or a recombinant vector containing the above DNA is introduced include bacteria, yeast and the like.
Examples of bacterial cells include gram-positive bacteria such as Corynebacterium bacteria (eg Corynebacterium glutamicum), Bacillus bacteria (eg Bacillus subtilis) or Streptomyces bacteria, or gram-negative bacteria such as Escherichia coli. Can be mentioned. Transformation of these bacteria may be carried out by using a competent cell by a protoplast method or a known method.
Examples of yeast cells include cells belonging to Saccharomyces or Schizosaccharomyces, and examples thereof include Saccharomyces cerevisae (Saccharomyces cerevislae) and Saccharomyces kluyveri. Examples of the method for introducing the recombinant vector into the yeast host include electroporation, spheroplast method, lithium acetate method and the like.
As the cells transformed with the above DNA, Corynebacterium glutamicum can be used because the above mutant liver type fatty acid binding protein is efficiently produced and purification of the liver type fatty acid binding protein described later does not require complicated steps. It is preferable that it is a protein secretion expression system (CORYNEX (registered trademark): manufactured by Ajinomoto Co., Ltd.).

(上記変異肝型脂肪酸結合蛋白質の製造方法)
第6の態様に係る上記変異肝型脂肪酸結合蛋白質の製造方法は、上記形質転換細胞を培養し、上記蛋白質を回収する工程を含むことが好ましい。
上記形質転換細胞は、導入された遺伝子の発現を可能にする条件下で適切な栄養培地中で培養する。上記形質転換細胞の培養物から、上記蛋白質を回収するには、通常の蛋白質の単離、精製法を用いればよい。
例えば、上記蛋白質が、細胞内に溶解状態で発現した場合には、培養終了後、細胞を遠心分離により回収し水系緩衝液に懸濁後、超音波破砕機等により細胞を破砕し、無細胞抽出液を得る。該無細胞抽出液を遠心分離することにより得られた上清から、通常の蛋白質の単離精製法、即ち、溶媒抽出法、硫安等による塩析法、脱塩法、有機溶媒による沈殿法、ジエチルアミノエチル(DEAE)セファロース等のレジンを用いた陰イオン交換クロマトグラフィー法、S−Sepharose FF(ファルマシア社製)等のレジンを用いた陽イオン交換クロマトグラフィー法、ブチルセファロース、フェニルセファロース等のレジンを用いた疎水性クロマトグラフィー法、分子篩を用いたゲルろ過法、アフィニティークロマトグラフィー法、クロマトフォーカシング法、等電点電気泳動等の電気泳動法等の手法を単独あるいは組み合わせて用い、精製標品を得ることができる。
上記Corynebacterium glutamicumを用いたタンパク質分泌発現系(CORYNEX(登録商標):味の素株式会社製)を用いることにより、細胞を破砕して無細胞抽出液を得るような煩雑な工程を要することがなく、任意の遠心分離後、アニオン交換クロマトグラフィー(例えば、HiTrapQ FF5mL FPLCカラム)による精製等により精製標品を得ることができる。
(Method for producing the above-mentioned mutant liver-type fatty acid binding protein)
The method for producing the mutant liver-type fatty acid binding protein according to the sixth aspect preferably includes the step of culturing the transformed cell and recovering the protein.
The transformed cells are cultured in an appropriate nutrient medium under conditions that allow expression of the introduced gene. In order to recover the above-mentioned protein from the culture of the above-mentioned transformed cells, a conventional isolation and purification method of protein may be used.
For example, when the above protein is expressed in a dissolved state in cells, after completion of culture, the cells are recovered by centrifugation, suspended in an aqueous buffer solution, and disrupted by a sonicator etc. Obtain an extract. From the supernatant obtained by centrifuging the cell-free extract, a conventional protein isolation and purification method, that is, a solvent extraction method, a salting out method with ammonium sulfate, a desalting method, a precipitation method with an organic solvent, Anion exchange chromatography method using resin such as diethylaminoethyl (DEAE) sepharose, cation exchange chromatography method using resin such as S-Sepharose FF (manufactured by Pharmacia), resin such as butyl sepharose or phenyl sepharose Obtain purified products using methods such as hydrophobic chromatography, gel filtration using molecular sieve, affinity chromatography, chromatofocusing, isoelectric focusing, etc. alone or in combination. be able to.
By using a protein secretion expression system (CORYNEX (registered trademark): manufactured by Ajinomoto Co., Ltd.) using the above-mentioned Corynebacterium glutamicum, any complicated process such as crushing of cells to obtain a cell-free extract is not required, After centrifugation, the purified preparation can be obtained, for example, by purification using anion exchange chromatography (for example, HiTrap Q FF 5 mL FPLC column).

(第7の態様に係る肝型脂肪酸結合蛋白質標品)
第7の態様に係る肝型脂肪酸結合蛋白質標品は、配列表の配列番号1と同一性90%以上のアミノ酸配列からなり、19番目のメチオニンの酸化率が30%以上、又は113番目のメチオニンが70%以上の酸化率を有する肝型脂肪酸結合蛋白質を含む。
図13を参照して後述するように、19番目のメチオニンの酸化率が30%以上、又は113番目のメチオニンが70%以上の酸化率であることにより、更なる酸化率の増大が抑制され結果、特異的に結合する物質による結合能の変動が抑制され得る。
第7の態様に係る肝型脂肪酸結合蛋白質標品は、酸化変動係数が1.4以下に設定された肝型脂肪酸結合蛋白質標品であっても酸化変動係数が1.4以下に設定された肝型脂肪酸結合蛋白質標品でなくてもよいが、酸化変動係数が1.4以下に設定された肝型脂肪酸結合蛋白質標品であることが好ましい。
上記第7の態様に係る肝型脂肪酸結合蛋白質標品において、19番目のメチオニンの酸化率を30%以上とする場合、特異的に結合する物質による結合能の変動が更に抑制され得る観点から、74番目及び113番目よりなる群から選択される少なくとも1つのメチオニンが、メチオニン以外の上述した非極性アミノ酸に置換されていてもいなくてもよい。
同様の観点から、113番目のメチオニンの酸化率を70%以上とする場合、19番目及び74番目よりなる群から選択される少なくとも1つのメチオニンが、メチオニン以外の上述した非極性アミノ酸に置換されていてもいなくてもよい。
また、19番目のメチオニンの酸化率は、特異的に結合する物質による結合能の変動が更に抑制され得る観点から、35%以上であることが好ましく、38%以上であることがより好ましく、40%以上であることが更に好ましく、45%以上であることが特に好ましい。
同様の観点から、113番目のメチオニンの酸化率が73%以上であることが好ましく、75%以上であることがより好ましく、80%以上であることが更に好ましい。
上記酸化率の測定方法としては、例えば、後述する図6(b)におけるMet19を含むペプチド断片のMSスペクトル、図6(c)におけるMet74を含むペプチド断片のMSスペクトル、図6(d)におけるMet113を含むペプチド断片のMSスペクトルにおける酸化無処理の場合のピークと、酸化処理後のピークとの比較から算出することができる。
また、肝型脂肪酸結合蛋白質標品は、19番目のメチオニンの酸化率及び113番目のメチオニンの酸化率には依存せずに、特異的に結合する物質による結合能の変動を抑制され得る観点から、74番目のメチオニンの酸化率が60%以上であってもよい。
この場合、74番目のメチオニンの酸化率が65%以上であることが好ましく、74番目のメチオニンの酸化率が70%以上であることがより好ましく、74番目のメチオニンの酸化率が75%以上であることが更に好ましく、74番目のメチオニンの酸化率が80%以上であることが特に好ましく、74番目のメチオニンの酸化率が85%以上であることが最も好ましい。
上記酸化率を有する肝型脂肪酸結合蛋白質標品は、AAPH等の酸化剤等を用いて製造することができるし、空気酸化によって製造することもできる。
(The liver-type fatty acid binding protein preparation according to the seventh aspect)
The liver-type fatty acid-binding protein preparation according to the seventh aspect comprises an amino acid sequence having an identity of 90% or more with SEQ ID NO: 1 in the sequence listing, and an oxidation rate of methionine at 19th is 30% or more, or 113th methionine Contains a liver-type fatty acid binding protein having an oxidation rate of 70% or more.
As described later with reference to FIG. 13, when the oxidation rate of the 19th methionine is 30% or more, or the oxidation rate of the 113th methionine is 70% or more, a further increase in the oxidation rate is suppressed. The fluctuation of the binding ability due to the specifically binding substance can be suppressed.
In the liver-type fatty acid binding protein preparation according to the seventh aspect, even if it is a liver-type fatty acid binding protein preparation whose oxidation variation coefficient is set to 1.4 or less, the oxidation variation coefficient is set to 1.4 or less It may not be a liver-type fatty acid binding protein preparation, but is preferably a liver-type fatty acid binding protein preparation whose oxidation variation coefficient is set to 1.4 or less.
In the preparation of the liver-type fatty acid binding protein preparation according to the seventh aspect, when the oxidation rate of methionine 19 is set to 30% or more, from the viewpoint of being able to further suppress the fluctuation of the binding ability due to the specifically binding substance At least one methionine selected from the group consisting of 74th and 113th may or may not be substituted with the above-mentioned nonpolar amino acids other than methionine.
From the same point of view, at least one methionine selected from the group consisting of the 19th and the 74th is substituted with the above-mentioned nonpolar amino acids other than methionine when the oxidation rate of the 113th methionine is 70% or more. It does not have to be.
Further, the oxidation rate of methionine 19 is preferably 35% or more, more preferably 38% or more, from the viewpoint that variation in binding ability due to a specifically binding substance can be further suppressed. % Or more is more preferable, and 45% or more is particularly preferable.
From the same viewpoint, the oxidation rate of the 113th methionine is preferably 73% or more, more preferably 75% or more, and still more preferably 80% or more.
As a method of measuring the oxidation rate, for example, MS spectrum of a peptide fragment containing Met19 in FIG. 6 (b) described later, MS spectrum of a peptide fragment containing Met 74 in FIG. 6 (c), Met 113 in FIG. It can be calculated from the comparison of the peak in the case of no oxidation treatment in the MS spectrum of the peptide fragment containing and the peak after oxidation treatment.
In addition, the liver-type fatty acid binding protein preparation is capable of suppressing the fluctuation of the binding ability due to the specifically binding substance regardless of the oxidation rate of methionine at position 19 and the oxidation rate of methionine at position 113. The oxidation rate of methionine at position 74 may be 60% or more.
In this case, the oxidation rate of the 74th methionine is preferably 65% or more, more preferably 70% or more, and the oxidation rate of the 74th methionine is 75% or more. The oxidation rate of methionine at position 74 is particularly preferably 80% or more, and the oxidation rate of methionine at position 74 is most preferably 85% or more.
The liver-type fatty acid binding protein preparation having the above-mentioned oxidation rate can be produced using an oxidizing agent such as AAPH or the like, or can be produced by air oxidation.

(第8の態様に係る肝型脂肪酸結合蛋白質標品)
また、第8の態様に係る肝型脂肪酸結合蛋白質標品は、上記酸化変動係数が1.4以下になる量でアラキドン酸、オレイン酸、8−イソプロスタグランジンF2α及び2,3−ジノル−8−イソプロスタグランジンF2αよりなる群から選択される少なくとも1種の脂肪酸を含み、かつ配列表の配列番号1と同一性90%以上のアミノ酸配列からなる肝型脂肪酸結合蛋白質を含む肝型脂肪酸結合蛋白質標品である。
上記酸化変動係数が1.4以下になる量が、肝型脂肪酸結合蛋白質のモル量に対し、前記脂肪酸の量を30倍以上のモル量で含む量であることが好ましい。
第8の態様に係る肝型脂肪酸結合蛋白質標品は、酸化変動係数が1.4以下に設定された肝型脂肪酸結合蛋白質標品であっても酸化変動係数が1.4以下に設定された肝型脂肪酸結合蛋白質標品でなくてもよいが、酸化変動係数が1.4以下に設定された肝型脂肪酸結合蛋白質標品であることが好ましい。
図15を参照して後述するように、本発明者らは、L−FABP蛋白質に結合する脂肪酸の種類(図15(b))や濃度によってL−FABP蛋白質の抗体結合能が変化することを見出した。
第8の態様に係る肝型脂肪酸結合蛋白質標品は、アラキドン酸、オレイン酸、8−イソプロスタグランジンF2α及び2,3−ジノル−8−イソプロスタグランジンF2αよりなる群から選択される少なくとも1種の脂肪酸を、上記酸化変動係数が1.4以下になる量(好ましくは、肝型脂肪酸結合蛋白質のモル量に対し、脂肪酸が複数種の場合は合計含有量として30倍以上のモル量)で含むことにより、標品となるL−FABP蛋白質を発現する際、又は標品として使用されるアッセイ系において、由来の異なる生物種による発現系や発現部位ないし臓器によって結合している脂肪酸の種類(例えば、アラキドン酸、オレイン酸、8−イソプロスタグランジンF2α及び2,3−ジノル−8−イソプロスタグランジンF2α等)、結合量、過酸化の程度が異なる場合であっても、特異的に結合する物質による結合能の変動が抑制され、測定用標準物質、精度管理用物質等の標品として機能し得る。
特異的に結合する物質による結合能の変動が更に抑制される観点から、肝型脂肪酸結合蛋白質のモル量に対し、アラキドン酸、オレイン酸、8−イソプロスタグランジンF2α及び2,3−ジノル−8−イソプロスタグランジンF2αよりなる群から選択される少なくとも1種の脂肪酸を、脂肪酸が複数種の場合は合計含有量として50倍以上のモル量含むことが好ましく、75倍以上のモル量含むことがより好ましく、100倍以上のモル量含むことが更に好ましく、300倍以上のモル量含むことが特に好ましい。
(The liver-type fatty acid binding protein preparation according to the eighth aspect)
In the liver-type fatty acid binding protein preparation according to the eighth aspect, the arachidonic acid, oleic acid, 8-isostataglandin F and 2,3-dinor in an amount such that the oxidation variation coefficient is 1.4 or less. A liver comprising a liver-type fatty acid binding protein comprising at least one fatty acid selected from the group consisting of -8-isoprostaglandin F and consisting of an amino acid sequence of 90% or more identity to SEQ ID NO: 1 in the sequence listing Type fatty acid binding protein preparation.
It is preferable that the amount by which the oxidation variation coefficient is 1.4 or less is an amount including 30 times or more the amount of the fatty acid with respect to the molar amount of the liver-type fatty acid binding protein.
In the liver-type fatty acid binding protein preparation according to the eighth aspect, even if it is a liver-type fatty acid binding protein preparation whose oxidation variation coefficient is set to 1.4 or less, the oxidation variation coefficient is set to 1.4 or less It may not be a liver-type fatty acid binding protein preparation, but is preferably a liver-type fatty acid binding protein preparation whose oxidation variation coefficient is set to 1.4 or less.
As described later with reference to FIG. 15, the present inventors changed the antibody binding ability of L-FABP protein depending on the type (FIG. 15 (b)) and concentration of fatty acid binding to L-FABP protein. I found it.
The liver-type fatty acid binding protein preparation according to the eighth aspect is selected from the group consisting of arachidonic acid, oleic acid, 8-isostataglandin F and 2,3-dinor-8-isoprostaglandin F The amount of at least one fatty acid is not more than 1.4 (preferably in the case of a plurality of fatty acids with respect to the molar amount of the liver-type fatty acid binding protein, at least 30 times the total content) In the case of expressing the L-FABP protein as a standard product by containing it in molar amounts, or in an assay system used as a standard, it is bound by an expression system, expression site or organ by different species of origin type fatty acids (e.g., arachidonic acid, oleic acid, 8 iso static prostaglandin F 2.alpha and 2,3-dinor-8-iso static prostaglandin F 2.alpha etc.), binding amount Even if the degree of peroxidation are different, it is specifically variations in binding ability due to the binding substance is suppressed, reference material for measuring, can function as a standard, such as control material.
From the viewpoint of further suppressing the fluctuation of the binding ability due to the specifically binding substance, arachidonic acid, oleic acid, 8-isostataglandin F and 2,3-dinor relative to the molar amount of the hepatic fatty acid binding protein Preferably, the total content of at least one fatty acid selected from the group consisting of -8-isoprostaglandin F is 50 times or more, preferably 75 times or more, in the case of multiple fatty acids. The amount is more preferably contained, further preferably 100 times or more, and particularly preferably 300 times or more.

より詳細には、脂肪酸がアラキドン酸である場合、肝型脂肪酸結合蛋白質のモル量に対し、30倍以上のモル量含むことが好ましく、50倍以上のモル量含むことがより好ましく、75倍以上のモル量含むことが更に好ましく、100倍以上のモル量含むことが特に好ましい。
また、脂肪酸がオレイン酸である場合、肝型脂肪酸結合蛋白質のモル量に対し、100倍以上のモル量含むことが好ましく、300倍以上のモル量含むことがより好ましく、1000倍以上のモル量含むことが更に好ましい。
また、脂肪酸が8−イソプロスタグランジンF2αである場合、肝型脂肪酸結合蛋白質のモル量に対し、500倍以上のモル量含むことが好ましく、1000倍以上のモル量含むことがより好ましい。
More specifically, when the fatty acid is arachidonic acid, it is preferably contained 30 times or more, more preferably 50 times or more, more preferably 75 times or more, the molar amount of the liver-type fatty acid binding protein. It is further more preferable to contain the molar amount of 100, and it is particularly preferable to contain the molar amount of 100 times or more.
When the fatty acid is oleic acid, it is preferably contained 100 times or more, more preferably 300 times or more, and more preferably 1000 times or more the molar amount of the liver-type fatty acid binding protein. It is further preferable to include.
When the fatty acid is 8-isostastaglandin F 2 α , it is preferably contained 500 times or more, and more preferably 1000 times or more, the molar amount of the liver-type fatty acid binding protein.

また、第8の態様に係る肝型脂肪酸結合蛋白質標品が、吸着防止剤としてウシ血清アルブミン(BSA)を含む場合には、BSAに脂肪酸が吸着する観点から、BSAのモル量に対し、アラキドン酸、オレイン酸、8−イソプロスタグランジンF2α及び2,3−ジノル−8−イソプロスタグランジンF2αよりなる群から選択される少なくとも1種の脂肪酸を、脂肪酸が複数種の場合は合計含有量として0.02〜10倍のモル量含むことが好ましく、0.2〜5倍のモル量含むことがより好ましい。
また、標品がBSAを含む場合に脂肪酸がアラキドン酸である場合、肝型脂肪酸結合蛋白質のモル量に対し、アラキドン酸は1000倍以上のモル量含むことが好ましく、10000倍以上のモル量含むことがより好ましく、100000倍以上のモル量含むことが更に好ましく、200000倍以上のモル量含むことが特に好ましい。
標品がBSAを含む場合に脂肪酸がオレイン酸である場合、肝型脂肪酸結合蛋白質のモル量に対し、オレイン酸は100000倍以上のモル量含むことが好ましく、200000倍以上のモル量含むことがより好ましい。
標品がBSAを含む場合に脂肪酸が8−イソプロスタグランジンF2αである場合、肝型脂肪酸結合蛋白質のモル量に対し、8−イソプロスタグランジンF2αは200000倍以上のモル量含むことが好ましい。
上記少なくとも1種の脂肪酸を特定量含む上記第8の態様に係る肝型脂肪酸結合蛋白質標品は、肝型脂肪酸結合蛋白質標品を含有する液に、肝型脂肪酸結合蛋白質のモル量に対し、上記少なくとも1種の脂肪酸を脂肪酸が複数種の場合は合計含有量として30倍以上のモル量添加すること、又はそのような含有量になるような細胞培養、蛋白質単離ないし精製条件により調製することができる。また、上記少なくとも1種の脂肪酸の含有量は、上記添加量に相当する。
上記脂肪酸の含有量の上限値としては特に制限はないが、下記吸着防止剤を更に含有させる場合、上記脂肪酸が上記吸着防止剤に吸着することがあることから、肝型脂肪酸結合蛋白質のモル量に対し上記脂肪酸を500000倍のモル量含有させることができ、300000倍のモル量以下であることが好ましく、200000倍のモル量以下であることがより好ましく、10000倍のモル量以下であることが更に好ましい。
In addition, when the preparation of liver-type fatty acid binding protein preparation according to the eighth aspect contains bovine serum albumin (BSA) as an adsorption inhibitor, arachidone is used relative to the molar amount of BSA from the viewpoint of adsorption of fatty acid to BSA. At least one type of fatty acid selected from the group consisting of acid, oleic acid, 8-isoprostaglandin F and 2,3-dinor-8-isoprostaglandin F , in the case of multiple fatty acids, the total The content is preferably 0.02 to 10 times by mole, more preferably 0.2 to 5 times by mole.
When the preparation contains BSA and the fatty acid is arachidonic acid, the molar amount of arachidonic acid is preferably 1000 times or more, preferably 10000 times or more, the molar amount of the liver-type fatty acid binding protein. It is more preferable that the resin be contained in a molar amount of at least 100,000 times, and it is particularly preferable that the molar amount be at least 200,000 times.
When the fatty acid is oleic acid when the preparation contains BSA, it is preferable that oleic acid is contained in a molar amount of at least 100,000 times, preferably at least 200,000 times the molar amount of the liver-type fatty acid binding protein. More preferable.
When the preparation contains BSA and the fatty acid is 8-Isoprostaglandin F , 8-Isoprostaglandin F should contain a molar amount of at least 200,000 times the molar amount of the liver-type fatty acid binding protein Is preferred.
The liver-type fatty acid binding protein preparation according to the eighth aspect, which contains a specific amount of at least one type of fatty acid, is a liquid containing the liver-type fatty acid binding protein preparation, relative to the molar amount of the liver-type fatty acid binding protein. In the case of a plurality of fatty acids, the total content of at least one type of fatty acid is added in a molar amount of 30 times or more, or prepared by cell culture, protein isolation or purification conditions to achieve such content be able to. In addition, the content of the at least one type of fatty acid corresponds to the addition amount.
The upper limit value of the content of the fatty acid is not particularly limited, but when the following adsorption inhibitor is further contained, the fatty acid may be adsorbed to the adsorption inhibitor, so the molar amount of the liver-type fatty acid binding protein The fatty acid may be contained in a molar amount of 500,000 times, preferably not more than 300,000 times, more preferably not more than 200,000 times, and preferably not more than 10,000 times. Is more preferred.

上記第1、第2、第7及び第8のいずれかの態様に係る肝型脂肪酸結合蛋白質標品は、肝型脂肪酸結合蛋白質に特異的に結合する物質を用いた測定における測定値の37℃2週間前後の変動幅(例えば、酸化による変動幅)は、本発明の効果が損なわれない限り特に制限はないが、15%以下であることが好ましく、10%以下であることがより好ましく、5%以下であることが更に好ましく、1%以下であることが特に好ましい。
上記第1、第2、第7及び第8のいずれかの態様に係る肝型脂肪酸結合蛋白質標品は、必要に応じて、吸着防止剤、任意の緩衝液、任意の界面活性剤等を含んでいてもよい。
吸着防止剤としては本発明の効果を損なわない限りにおいて特に制限はないが、BSA、カゼイン、スキムミルク、ポリエチレングリコール等が挙げられ、BSAであることが好ましい。
上記第1、第2、第7及び第8のいずれかの態様に係る肝型脂肪酸結合蛋白質標品における吸着防止剤の含有量としては本発明の効果を損なわない限りにおいて特に制限はないが、0.05〜10質量%であることが好ましい。
The liver-type fatty acid binding protein preparation according to any one of the first, second, seventh and eighth aspects is characterized in that the measurement value of 37 ° C. in the measurement using a substance that specifically binds to the liver-type fatty acid binding protein The fluctuation range (for example, fluctuation due to oxidation) around 2 weeks is not particularly limited as long as the effects of the present invention are not impaired, but is preferably 15% or less, more preferably 10% or less. It is more preferably 5% or less, particularly preferably 1% or less.
The liver-type fatty acid binding protein preparation according to any one of the above first, second, seventh and eighth aspects optionally contains an adsorption inhibitor, an optional buffer solution, an optional surfactant and the like. It may be.
The adsorption inhibitor is not particularly limited as long as the effects of the present invention are not impaired, but includes BSA, casein, skim milk, polyethylene glycol and the like, with BSA being preferred.
The content of the adsorption inhibitor in the preparation of the liver-type fatty acid binding protein preparation according to any one of the first, second, seventh and eighth aspects is not particularly limited as long as the effects of the present invention are not impaired. It is preferable that it is 0.05-10 mass%.

上記第1、第2、第7及び第8のいずれかの態様に係る肝型脂肪酸結合蛋白質標品は、実用的及び商業的に利用される観点から、販売に供される肝型脂肪酸結合蛋白質標品であることが好ましい。販売に供される肝型脂肪酸結合蛋白質標品とは、販売済みの蛋白質、具体的には販売後に長期放置された肝型脂肪酸結合蛋白質標品ではない。
上記第1、第2、第7及び第8のいずれかの態様に係る肝型脂肪酸結合蛋白質標品は、抗原抗体反応を利用した免疫学的手法によりサンプル中の肝型脂肪酸結合蛋白質を測定するためのキットの測定用標準物質又は精度管理用物質として有用であり、L−FABP蛋白質に特異的に結合する抗L−FABP蛋白質抗体による特異的に結合を利用したL−FABP蛋白質の検出ないし定量等の測定の標準物質(標品)として用いることが好ましい。
上記第1、第2、第7及び第8のいずれかの態様に係る肝型脂肪酸結合蛋白質標品が用いられるL−FABP蛋白質の検出ないし定量等の測定としては、酵素免疫測定法(EIA,ELISA)、蛍光酵素免疫測定法(FLEIA)、化学発光酵素免疫測定法(CLEIA)、化学発光免疫測定法(CLIA)、電気化学発光測免疫測定法(ECLIA)、イムノクロマトグラフィー法(ICA)、ラテックス凝集法(LA)、蛍光抗体法(FA)、ラジオイムノアッセイ(RIA)、ウェスタンブロット法(WB)、イムノブロット法などを採用したアッセイ等が挙げられ、抗原(L−FABP蛋白質)に対する認識部位が異なる2種類の抗体を組み合わせて用いるサンドイッチELISA法を採用したアッセイであることが好ましい。
認識部位が異なる2種類の抗体は、一方を、マイクロプレートのウェル中の表面に結合させた固相化抗体として用い、他方を、検出ないし定量のための標識抗体として用いることが好ましい。上記標識抗体における標識としては特に制限はなく、例えば、パーオキシダーゼ標識等の酵素標識、蛍光標識、紫外線標識、放射線標識等が挙げられる。
The liver-type fatty acid binding protein preparation according to any one of the first, second, seventh and eighth aspects is a liver-type fatty acid binding protein to be offered for sale from the viewpoint of practical and commercial use. It is preferably a standard product. The liver-type fatty acid binding protein preparation to be offered for sale is not a sold protein, specifically a liver-type fatty acid binding protein preparation which has been left for a long time after being sold.
The liver-type fatty acid binding protein preparation according to any one of the first, second, seventh and eighth aspects measures a liver-type fatty acid binding protein in a sample by an immunological method utilizing an antigen-antibody reaction. For detecting or assaying L-FABP protein using binding specifically with an anti-L-FABP protein antibody that is useful as a standard substance for measurement of a kit or a substance for quality control and specifically binds to L-FABP protein It is preferable to use as a standard substance (standard product) of measurement of the
The measurement or detection of L-FABP protein for which the liver-type fatty acid binding protein preparation according to any one of the first, second, seventh and eighth aspects is used includes enzyme immunoassay (EIA, ELISA), fluorescent enzyme immunoassay (FLEIA), chemiluminescent enzyme immunoassay (CLEIA), chemiluminescent immunoassay (CLIA), electrochemiluminescent immunoassay (ECLIA), immunochromatographic assay (ICA), latex Assays that employ agglutination (LA), fluorescent antibody (FA), radioimmunoassay (RIA), western blotting (WB), immunoblotting, etc. are mentioned, and the recognition site for the antigen (L-FABP protein) is Preferably, it is an assay employing a sandwich ELISA method using two different types of antibodies in combination.
Preferably, one of two types of antibodies having different recognition sites is used as a solid phase antibody bound to the surface of a well of a microplate, and the other is used as a labeled antibody for detection or quantification. There is no restriction | limiting in particular as a label | marker in the said labeled antibody, For example, enzyme label | markers, such as a peroxidase label | marker, a fluorescent label, an ultraviolet label, a radio label, etc. are mentioned.

抗原(L−FABP蛋白質)に対する認識部位が異なる抗体としては、抗L−FABP抗体クローン1、クローン2、クローンL及びクローンFよりなる群から選択される抗体を含む抗体が挙げられ、抗L−FABP抗体クローンLを含む組み合わせ、又は抗L−FABP抗体クローン2を含む組み合わせであることが好ましく、抗L−FABP抗体クローンLを含む組み合わせであることがより好ましく、抗L−FABP抗体クローンLを固相化抗体として用い、任意の抗L−FABP抗体を標識抗体として用いることが更に好ましく、抗L−FABP抗体クローンLを固相化抗体として用い、抗L−FABP抗体クローン2を標識抗体として用いることが特に好ましい。   Examples of the antibody having a different recognition site for the antigen (L-FABP protein) include an antibody containing an antibody selected from the group consisting of anti-L-FABP antibody clone 1, clone 2, clone L and clone F. The combination containing FABP antibody clone L or the combination containing anti-L-FABP antibody clone 2 is preferable, the combination containing anti-L-FABP antibody clone L is more preferable, and the anti-L-FABP antibody clone L is It is further preferable to use as an immobilized antibody and any anti-L-FABP antibody as a labeled antibody, and to use an anti-L-FABP antibody clone L as an immobilized antibody and an anti-L-FABP antibody clone 2 as a labeled antibody. It is particularly preferred to use.

そのようなアッセイに用いられるL−FABP蛋白質測定キットとしては、標品として上記第1、第2、第7及び第8のいずれかの態様に係る肝型脂肪酸結合蛋白質標品を含み、試薬として上記抗L−FABP蛋白質抗体を含むことが好ましく、標識抗L−FABP蛋白質抗体を更に含むことがより好ましく、必要に応じて吸着防止剤(BSA等)、前処理液(任意の緩衝液、任意の界面活性剤等)、反応緩衝液(任意の緩衝液等)、発色基質(3,3’,5,5’−テトラメチルベンジジン、過酸化水素水等)等を含んでいてもよい。
L−FABP蛋白質測定キットとして、抗原に対する認識部位が異なる2種類の抗体を組み合わせて用いるサンドイッチELISA法を用いたキットであることが好ましく、固相に任意の抗L−FABP抗体、標識抗体に抗L−FABP抗体クローン2を使用しているキットであることがより好ましい。
サンドイッチELISA法を用いたL−FABP蛋白質測定キットの具体的態様として、例えば、下記(1)〜(9)を含むキットが挙げられる。
(1)L−FABP抗体固相化マイクロプレート……抗ヒトL−FABPマウスモノクローナル抗体結合ウェル
(2)前処理液
(3)反応緩衝液
(4)酵素標識抗体……パーオキシダーゼ標識抗ヒトL−FABPマウスモノクローナル抗体〔クローン2産生細胞株由来〕
(5)酵素基質液
(6)洗浄剤(任意の緩衝液、界面活性剤等)
(7)反応停止液(1N硫酸等)
(8)標準緩衝液(任意の緩衝液等)
(9)肝型脂肪酸結合蛋白質標品
(9)肝型脂肪酸結合蛋白質標品としては、従来は、任意の緩衝液にリコンビナントヒトL−FABPを混合させた液が用いられてきたが、任意の緩衝液に上記肝型脂肪酸結合蛋白質標品を混合した液が好ましく、標品の濃度としては特に制限はなく、例えば、10〜10000ng/mLが挙げられ、50〜5000ng/mLが好ましく、100〜1000ng/mLがより好ましく、200〜800ng/mLが更に好ましく、300〜600ng/mLが特に好ましい。
肝型脂肪酸結合蛋白質標品として、従来のリコンビナントヒトL−FABPを用いたこと以外は上記第1、第2、第7及び第8のいずれかの態様に係る肝型脂肪酸結合蛋白質標品を用いたサンドイッチELISA法を利用したL−FABP蛋白質測定キットと同様のキットの市販品としては、「レナプロ L−FABP テスト TMB」(シミックホールディングス社製)が挙げられる。
The L-FABP protein measurement kit used for such an assay comprises the liver-type fatty acid binding protein preparation according to any one of the first, second, seventh and eighth aspects as a preparation, and as a reagent It is preferable that the above-mentioned anti-L-FABP protein antibody is contained, and it is more preferable that a labeled anti-L-FABP protein antibody is further contained, and, if necessary, an adsorption inhibitor (BSA etc.), pretreatment solution (arbitrary buffer solution, arbitrary) And the like, a reaction buffer (any buffer and the like), a color forming substrate (3,3 ', 5,5'-tetramethylbenzidine, hydrogen peroxide water and the like), and the like.
As a L-FABP protein measurement kit, it is preferable to use a sandwich ELISA method in which two types of antibodies having different recognition sites for the antigen are combined and used, and any anti-L-FABP antibody or labeled antibody may be used as a solid phase. More preferably, it is a kit using L-FABP antibody clone 2.
As a specific embodiment of the L-FABP protein measurement kit using a sandwich ELISA method, for example, a kit including the following (1) to (9) can be mentioned.
(1) L-FABP antibody-immobilized microplate: anti-human L-FABP mouse monoclonal antibody binding well (2) pretreatment solution (3) reaction buffer (4) enzyme labeled antibody ... peroxidase labeled anti human L -FABP mouse monoclonal antibody (derived from clone 2 producing cell line)
(5) Enzyme substrate solution (6) Detergent (optional buffer, surfactant, etc.)
(7) Reaction stop solution (1 N sulfuric acid etc.)
(8) Standard buffer (optional buffer etc.)
(9) Liver-type fatty acid binding protein preparation (9) As a liver-type fatty acid binding protein preparation, conventionally, a solution prepared by mixing recombinant human L-FABP with an arbitrary buffer has been used, but any liquid may be used. A solution prepared by mixing the above-mentioned liver-type fatty acid binding protein preparation in a buffer solution is preferable, and the concentration of the preparation is not particularly limited, and is, for example, 10 to 10000 ng / mL, preferably 50 to 5000 ng / mL, 100 to 500 1000 ng / mL is more preferable, 200 to 800 ng / mL is further preferable, and 300 to 600 ng / mL is particularly preferable.
The liver-type fatty acid binding protein preparation according to any one of the above first, second, seventh and eighth aspects is used except that the conventional recombinant human L-FABP is used as a liver-type fatty acid binding protein preparation. As a commercially available product of a kit similar to the L-FABP protein measurement kit using the sandwich ELISA method described above, "Lenapro L-FABP Test TMB" (manufactured by Cimic Holdings, Inc.) can be mentioned.

L−FABP蛋白質からなる肝型脂肪酸結合蛋白質標品の保存溶液はタンパク吸着防止を目的としてBSAを含有する蛋白質保存緩衝液とすることが好ましい。例えば、下記蛋白質保存緩衝液が挙げられる。
(蛋白質保存緩衝液)
10mMリン酸バッファー(pH7.2)、150mM NaCl、1.0%BSA、0.1%NaN
It is preferable that a preservation solution of a liver-type fatty acid binding protein preparation consisting of L-FABP protein be a protein preservation buffer containing BSA for the purpose of preventing protein adsorption. For example, the following protein storage buffer may be mentioned.
(Protein storage buffer)
10 mM phosphate buffer (pH 7.2), 150 mM NaCl, 1.0% BSA, 0.1% NaN 3

<酸化変動係数を指標として肝型脂肪酸結合蛋白質標品を評価する方法>
第9の態様に係る肝型脂肪酸結合蛋白質標品を評価する方法は、酸化処理前の肝型脂肪酸結合蛋白質標品を用いた測定値に対する前記酸化処理後の測定値の比で表される酸化変動係数を指標として、上記標品の酸化変動し難さを評価する。
第9の態様に係る肝型脂肪酸結合蛋白質標品を評価する方法において、酸化変動幅の抑制の観点から、酸化変動係数が1.4以下であることが好ましく、1.3以下であることがより好ましい。
酸化変動係数の下限値としては本発明の効果を損なわない限り特に制限はないが、例えば、0.8以上が挙げられ、0.9以上であることが好ましく、1.0以上であることがより好ましい。
<Method for evaluating liver-type fatty acid binding protein preparation using oxidation variation coefficient as index>
The method for evaluating a liver-type fatty acid binding protein preparation according to the ninth aspect is the oxidation represented by the ratio of the measurement value after the oxidation treatment to the measurement value using the liver-type fatty acid binding protein preparation before the oxidation treatment Using the coefficient of variation as an index, evaluate the difficulty of oxidation variation of the above-mentioned standard.
In the method for evaluating a liver-type fatty acid binding protein preparation according to the ninth aspect, the oxidation variation coefficient is preferably 1.4 or less, and is 1.3 or less, from the viewpoint of suppression of the oxidation variation range. More preferable.
The lower limit value of the oxidation variation coefficient is not particularly limited as long as the effects of the present invention are not impaired, but, for example, 0.8 or more can be mentioned, preferably 0.9 or more, and 1.0 or more. More preferable.

<肝型脂肪酸結合蛋白質標品を用いる測定における測定値の変動幅を抑制する方法>
第10の態様に係る肝型脂肪酸結合蛋白質標品を用いる測定における肝型脂肪酸結合蛋白質に起因する測定値の変動幅を抑制する方法は、
(1)配列表の配列番号1と同一性90%以上のアミノ酸配列からなる肝型脂肪酸結合蛋白質の19番目、74番目、113番目の1つ以上のメチオニンを、メチオニン以外の非極性アミノ酸に置換し、少なくとも19番目のメチオニンを、メチオニン以外の非極性アミノ酸に置換すること、
(2)配列表の配列番号1と同一性90%以上のアミノ酸配列からなる肝型脂肪酸結合蛋白質の19番目のメチオニンの酸化率が30%以上、又は113番目のメチオニンの酸化率を70%以上とすること、及び
(3)アラキドン酸、オレイン酸、8−イソプロスタグランジンF2α及び2,3−ジノル−8−イソプロスタグランジンF2αよりなる群から選択される少なくとも1種の脂肪酸を上記肝型脂肪酸結合蛋白質標品に含有させること
よりなる群から選択される少なくともいずれかを含む。
第10の態様に係る方法において、19番目のメチオニンの酸化率は、35%以上であることが好ましく、38%以上であることがより好ましく、40%以上であることが更に好ましく、45%以上であることが特に好ましい。
また、113番目のメチオニンの酸化率は73%以上であることが好ましく、75%以上であることがより好ましく、80%以上であることが更に好ましい。
第10の態様に係る方法において、上記肝型脂肪酸結合蛋白質標品に含有させる上記少なくとも1種の脂肪酸の含有量としては、本発明の効果を損なわない限り特に制限はないが、肝型脂肪酸結合蛋白質のモル量に対し30倍以上のモル量であることが好ましく、50倍以上のモル量であることがより好ましく、75倍以上のモル量であることが更に好ましく、100倍以上のモル量であることが特に好ましく、300倍以上のモル量であることが特に好ましい。
上記脂肪酸の含有量の上限値としては特に制限はないが、上記吸着防止剤を更に含有させる場合、上記脂肪酸が上記吸着防止剤に吸着することがあることから、肝型脂肪酸結合蛋白質のモル量に対し上記脂肪酸を500000倍のモル量含有させることができ、200000倍のモル量以下であることが好ましく、100000倍のモル量以下であることがより好ましく、10000倍のモル量以下であることが更に好ましく、1000倍のモル量以下であることが特に好ましい。
第10の態様に係る方法によれば、肝型脂肪酸結合蛋白質に特異的に結合する物質を用いた測定における測定値の変動幅を抑制することができ、好ましくは、37℃2週間前後の変動幅15%以下とすることができ、より好ましくは変動幅10%以下とすることができ、さらに好ましくは変動幅5%以下とすることができ、特に好ましくは変動幅1%以下とすることができる。
<Method for suppressing the fluctuation of measured value in measurement using liver-type fatty acid binding protein preparation>
According to a tenth aspect of the present invention, there is provided a method of suppressing the fluctuation range of the measurement value attributed to a hepatic fatty acid binding protein in the measurement using a hepatic fatty acid binding protein preparation according to the tenth aspect,
(1) At least one methionine in the 19th, 74th and 113th positions of the liver-type fatty acid binding protein consisting of an amino acid sequence of 90% or more identity to SEQ ID NO: 1 in the sequence listing is substituted with nonpolar amino acids other than methionine And replacing at least the 19th methionine with a nonpolar amino acid other than methionine,
(2) The oxidation rate of methionine of the 19th methionine of the liver-type fatty acid binding protein consisting of an amino acid sequence of 90% or more identity to SEQ ID NO: 1 in the sequence listing is 30% or more, or the oxidation rate of methionine of the 113th is 70% or more And (3) at least one fatty acid selected from the group consisting of arachidonic acid, oleic acid, 8-isostataglandin F and 2,3-dinor-8-isoprostaglandin F It contains at least one selected from the group consisting of including the above-mentioned liver-type fatty acid binding protein preparation.
In the method according to the tenth aspect, the oxidation rate of methionine at position 19 is preferably 35% or more, more preferably 38% or more, still more preferably 40% or more, and 45% or more Is particularly preferred.
The oxidation rate of the 113th methionine is preferably 73% or more, more preferably 75% or more, and still more preferably 80% or more.
In the method according to the tenth aspect, the content of the at least one type of fatty acid to be contained in the preparation of liver-type fatty acid binding protein is not particularly limited as long as the effects of the present invention are not impaired. The molar amount is preferably 30 times or more, more preferably 50 times or more, still more preferably 75 times or more, and further preferably 100 times or more the molar amount of the protein. It is particularly preferable that the molar amount is 300 times or more.
The upper limit of the content of the fatty acid is not particularly limited, but when the adsorption inhibitor is further contained, the fatty acid may be adsorbed to the adsorption inhibitor, so the molar amount of the liver-type fatty acid binding protein The fatty acid can be contained in a molar amount of 500,000 times, preferably not more than 200,000 times, more preferably not more than 100,000 times, and preferably not more than 10,000 times. Is more preferable, and a molar amount of 1000 times or less is particularly preferable.
According to the method of the tenth aspect, the fluctuation range of the measurement value in the measurement using the substance that specifically binds to the hepatic fatty acid binding protein can be suppressed, and preferably the fluctuation at around 37 ° C. for two weeks The width may be 15% or less, more preferably 10% or less, more preferably 5% or less, and particularly preferably 1% or less. it can.

<検量線を作成する方法及び肝型脂肪酸結合蛋白質を定量する方法>
第11の態様に係る肝型脂肪酸結合蛋白質の検量線を作成する方法は、上記第1、第2、第7及び第8のいずれかの態様に係る肝型脂肪酸結合蛋白質標品を用いる。
具体的には、測定される上記標識の強度(例えば、酵素標識強度、蛍光強度、紫外線強度、放射線強度等)と、上記標品の量(例えば、濃度)との関係に基づき検量線を作成することができる。
第12の態様に係る試料中の肝型脂肪酸結合蛋白質を定量する方法は、上記第11の態様に係る方法で作成した検量線を用いる。
具体的には、上記検量線の作成と同様な条件により、標識抗体等により標識された試料中の肝型脂肪酸結合蛋白質の標識強度を測定し、上記検量線に基づき(例えば、対比し)、試料中の肝型脂肪酸結合蛋白質を検出ないし定量することができる。
<Method of Preparing a Calibration Curve and Method of Quantifying Liver-Type Fatty Acid-Binding Protein>
The method for preparing a calibration curve of a liver-type fatty acid binding protein according to the eleventh aspect uses the preparation of a liver-type fatty acid binding protein according to any one of the first, second, seventh and eighth aspects.
Specifically, a calibration curve is created based on the relationship between the intensity of the label to be measured (for example, enzyme labeling intensity, fluorescence intensity, ultraviolet intensity, radiation intensity, etc.) and the amount of the standard (for example, concentration). can do.
The method for quantifying a liver-type fatty acid binding protein in a sample according to the twelfth aspect uses a calibration curve prepared by the method according to the eleventh aspect.
Specifically, the labeling intensity of the liver-type fatty acid binding protein in a sample labeled with a labeled antibody or the like is measured under the same conditions as the preparation of the above calibration curve, and based on the above calibration curve (for example, comparison) Hepatic fatty acid binding protein in a sample can be detected or quantified.

以下、実施例を示して本発明を更に詳細に説明するが、本発明の範囲は、これらの実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail by way of examples, but the scope of the present invention is not limited to these examples.

参考例
(酸化によるL−FABP蛋白質の構造変化)
L−FABP蛋白質をAAPH処理した。結果を図2(a)及び(b)に示す。
図2(a)は酸化型L−FABP及び非酸化型L−FABPのLC−ESI−MSによる分子量測定結果を示す図であり、図2(b)は酸化型L−FABPと非酸化型L−FABPの蛍光スペクトルを示す図である。
図2(a)から明らかなように、酸化型L−FABPでは理論分子量よりおおよそ酸素分子2〜3分子に相当する分子量増加が観測されている。
図2(b)に示したように、酸化型L−FABPでは350nm付近(図中矢印)に蛍光ピークが出現しており、L−FABP蛋白質中に存在する芳香族アミノ酸周辺が極性の高い環境に変化したことを意味しており、酸化型L−FABPと非酸化型L−FABPでは構造変化を生じていると考えられる。
Reference example (Structure change of L-FABP protein by oxidation)
L-FABP protein was treated with AAPH. The results are shown in FIGS. 2 (a) and (b).
Fig.2 (a) is a figure which shows the molecular weight measurement result by LC-ESI-MS of oxidized L-FABP and nonoxidized L-FABP, FIG.2 (b) is oxidized L-FABP and nonoxidized L -Figure which shows the fluorescence spectrum of FABP.
As apparent from FIG. 2A, in the oxidized L-FABP, an increase in molecular weight corresponding to approximately 2 to 3 oxygen molecules is observed from the theoretical molecular weight.
As shown in FIG. 2 (b), in oxidized L-FABP, a fluorescence peak appears around 350 nm (arrow in the figure), and the environment with high polarity around the aromatic amino acid present in L-FABP protein It is considered that the oxidized L-FABP and the nonoxidized L-FABP have undergone a structural change.

(酸化によるELISA測定値の変化)
AAPHを所定の濃度になるようL−FABP蛋白質溶液に添加し、室温で1時間反応させ、ELISA測定を行った。結果を図3に示す。
図3から、L−FABP蛋白質のAAPH処理によりELISA測定値の変化(無処理を100とした場合の割合(%))が生じていることがわかる。
また、驚くべきことに、図3に示したように、AAPH無添加サンプル(HOを添加)においても室温で1時間反応させることによりELISA測定値が上昇しており、空気酸化による影響が生じていると考えられる。
(Change of ELISA measurement value by oxidation)
AAPH was added to the L-FABP protein solution to a predetermined concentration, reacted at room temperature for 1 hour, and ELISA measurement was performed. The results are shown in FIG.
It can be seen from FIG. 3 that the AAPH treatment of the L-FABP protein causes a change in the ELISA measurement value (ratio (%) when taking no treatment as 100).
Also, surprisingly, as shown in FIG. 3, the ELISA measurement value is increased by reacting for 1 hour at room temperature also in the AAPH additive-free sample (with H 2 O added), and the effect of air oxidation is It is considered to have occurred.

(ヒトL−FABP蛋白質の酸化)
各種濃度(40mM、200mM)のAAPHをヒトL−FABP蛋白質に添加し、37℃で1.5時間反応させた。結果を図4に示す。
図4は、各種濃度(40mM、200mM)のAAPHをヒトL−FABP蛋白質に添加し、37℃で1.5時間反応させた後のMSスペクトルを示す図である。
図4に示したように、AAPH処理によりL−FABPに酸素分子1〜3分子に相当する分子量増加が観測された。
(Oxidation of human L-FABP protein)
Various concentrations (40 mM, 200 mM) of AAPH were added to human L-FABP protein and reacted at 37 ° C. for 1.5 hours. The results are shown in FIG.
FIG. 4 shows MS spectra after adding various concentrations (40 mM, 200 mM) of AAPH to human L-FABP protein and reacting at 37 ° C. for 1.5 hours.
As shown in FIG. 4, an increase in molecular weight corresponding to 1 to 3 oxygen molecules was observed in L-FABP by AAPH treatment.

(ヒトL−FABP蛋白質が含有するメチオニンの酸化)
図5(a)は、配列番号1に示したヒトL−FABP蛋白質のアミノ酸配列を示す図であり、図5(b)は、ヒトL−FABP蛋白質のトリプシン消化によって生じ得る各種ペプチド断片の推定分子量を示す図である。
上記各種濃度(40mM、200mM)のAAPHにより反応した後のヒトL−FABP蛋白質をトリプシン消化して得られた各種ペプチド断片のMSスペクトルを測定した。
図6(a)は、上記各種濃度(40mM、200mM)のAAPHにより反応した後のヒトL−FABP蛋白質をトリプシン消化して得られたMet1を含むペプチド断片No.1のMSスペクトルを示す図であり、図6(b)は、上記各種濃度のAAPHと反応後のヒトL−FABP蛋白質をトリプシン消化して得られたMet19を含むペプチド断片No.2のMSスペクトルを示す図であり、図6(c)は、上記各種濃度のAAPHと反応後のヒトL−FABP蛋白質をトリプシン消化して得られたMet74を含むペプチド断片No.9及びペプチド断片No.10のMSスペクトルを示す図であり、図6(d)は、上記各種濃度のAAPHと反応後のヒトL−FABP蛋白質をトリプシン消化して得られたMet113を含むペプチド断片No.14及びペプチド断片15のMSスペクトルを示す図である。
図6(a)〜(d)に示した結果から、酸化修飾部位は19番目、74番目、113番目のメチオニン残基(以下、それぞれMet19、Met74、Met113ともいう。)であることが明らかになった。
(Oxidation of methionine contained in human L-FABP protein)
FIG. 5 (a) shows the amino acid sequence of human L-FABP protein shown in SEQ ID NO: 1, and FIG. 5 (b) shows the estimation of various peptide fragments which can be produced by tryptic digestion of human L-FABP protein. It is a figure which shows molecular weight.
MS spectra of various peptide fragments obtained by trypsin digestion of human L-FABP protein after reaction with AAPH at various concentrations (40 mM, 200 mM) were measured.
FIG. 6 (a) shows Met 1 containing peptide fragment No. 1 obtained by trypsin digestion of human L-FABP protein after reaction with the above-mentioned various concentrations (40 mM, 200 mM) of AAPH. FIG. 6 (b) is a diagram showing a Met19-containing peptide fragment No. 1 obtained by trypsin digestion of human L-FABP protein after reaction with the above-mentioned various concentrations of AAPH. FIG. 6 (c) is a diagram showing a Met74-containing peptide fragment No. 5 containing Met74 obtained by trypsin digestion of human L-FABP protein after reaction with the above-mentioned various concentrations of AAPH. 9 and peptide fragment no. FIG. 6 (d) is a diagram showing a peptide fragment No. 10 containing Met113 obtained by trypsin digestion of human L-FABP protein after reaction with the above-mentioned various concentrations of AAPH. 14 shows MS spectra of 14 and peptide fragment 15. FIG.
From the results shown in FIGS. 6A to 6D, it is clear that the oxidation modification sites are the 19th, 74th and 113th methionine residues (hereinafter also referred to as Met19, Met74 and Met113, respectively). became.

実施例1
(変異L−FABP蛋白質の製造方法)
Met19をロイシン残基に変異させた変異蛋白質(以下、L−FABP M19Lともいう。)、
Met74をロイシン残基に変異させた変異蛋白質(以下、L−FABP M74Lともいう。)、
Met113をロイシン残基に変異させた変異蛋白質(以下、L−FABP M113Lともいう。)、
Met19及びMet74をそれぞれロイシン残基に変異させた変異蛋白質(以下、L−FABP M19L/M74Lともいう。)、
Met19及びMet113をそれぞれロイシン残基に変異させた変異蛋白質(以下、L−FABP M19L/M113Lともいう。)、
Met74及びMet113をそれぞれロイシン残基に変異させた変異蛋白質(以下、L−FABP M74L/M113Lともいう。)、
3つのメチオニン残基(Met19、Met74、Met113)をそれぞれロイシン残基に変異させた変異蛋白質(以下、L−FABP M19L/M74L/M113Lともいう。)を製造した。
L−FABP M19L、
L−FABP M74L、
L−FABP M113L、
L−FABP M19L/M74L、
L−FABP M19L/M113L、
L−FABP M74L/M113L、及び
L−FABP M19L/M74L/M113Lは、それぞれ、グラム陽性細菌Corynebacterium glutamicumを用いたタンパク質分泌発現系(CORYNEX(登録商標):味の素株式会社製)を利用して発現を行った。
L−FABP M19L/M74L/M113Lのアミノ酸配列を後記配列表の配列番号2に示した。
蛋白質発現に用いたL−FABP M19L/M74L/M113Lの遺伝子配列を後記配列表の配列番号3に示した。
Example 1
(Method for producing mutant L-FABP protein)
A mutated protein in which Met19 is mutated to a leucine residue (hereinafter also referred to as L-FABP M19L),
A mutated protein in which Met74 is mutated to a leucine residue (hereinafter also referred to as L-FABP M74L),
A mutated protein in which Met113 is mutated to a leucine residue (hereinafter also referred to as L-FABP M113L),
Mutant proteins in which Met19 and Met74 have been mutated to leucine residues, respectively (hereinafter also referred to as L-FABP M19L / M74L),
Mutant proteins in which Met19 and Met113 are mutated to leucine residues respectively (hereinafter also referred to as L-FABP M19L / M113L),
Mutant proteins in which Met74 and Met113 have been mutated to leucine residues, respectively (hereinafter also referred to as L-FABP M74L / M113L),
A mutant protein (hereinafter also referred to as L-FABP M19L / M74L / M113L) in which three methionine residues (Met19, Met74, Met113) were mutated to leucine residues, respectively, was produced.
L-FABP M19L,
L-FABP M74L,
L-FABP M113L,
L-FABP M19L / M74L,
L-FABP M19L / M113L,
L-FABP M74L / M113L and L-FABP M19L / M74L / M113L respectively express their expression using a protein secretion expression system (CORYNEX (registered trademark): made by Ajinomoto Co., Ltd.) using a Gram-positive bacterium Corynebacterium glutamicum went.
The amino acid sequence of L-FABP M19L / M74L / M113L is shown in SEQ ID NO: 2 in the following sequence listing.
The gene sequence of L-FABP M19L / M74L / M113L used for protein expression is shown in SEQ ID NO: 3 in the following sequence listing.

上述した方法により発現を行ったL−FABP M19L/M74L/M113L等は、まず遠心式フィルターユニット Amicon(登録商標)Ultra−15、3kDa(ミリポア社製)を用いバッファーA(10mM Tris−HCl(pH8.5),1mM DTT)とバッファー交換を行った。
次に、HiTrapQ FFカラム、5mL(GE Healthcare社製)を用い精製を行った。HiTrapQ FFカラムに吸着したL−FABP M19L/M74L/M113Lは、バッファーAで洗浄後、バッファーAとバッファーB(10mM Tris−HCl(pH8.5),1mM DTT,2M NaCl)による直線的濃度勾配法により溶出させ、バッファーBが3.1%となるピークを含むフラクションを回収した。回収した蛋白質に関してはSDS−PAGE及びSilver StainII Kit Wako(和光純薬株式会社製)による蛋白質染色を行い、精製度合いの確認を行った。L−FABP M19L/M74L/M113Lについての精製結果を図7に示す。
L-FABP M19L / M74L / M113L etc. which were expressed by the method mentioned above first use centrifugal filter unit Amicon (registered trademark) Ultra-15, 3 kDa (manufactured by Millipore) and buffer A (10 mM Tris-HCl (pH 8) .5) Buffer exchange with 1 mM DTT).
Next, purification was performed using a HiTrap Q FF column, 5 mL (manufactured by GE Healthcare). L-FABP M19L / M74L / M113L adsorbed on HiTrapQ FF column was washed with buffer A, then linear concentration gradient method with buffer A and buffer B (10 mM Tris-HCl (pH 8.5), 1 mM DTT, 2 M NaCl) The fractions containing the peak at which buffer B was 3.1% were collected. The recovered protein was subjected to protein staining with SDS-PAGE and Silver Stain II Kit Wako (manufactured by Wako Pure Chemical Industries, Ltd.) to confirm the degree of purification. The purification results for L-FABP M19L / M74L / M113L are shown in FIG.

上述の操作により得たL−FABP M19L/M74L/M113L等は−80℃にて保管した。   L-FABP M19L / M74L / M113L etc. which were obtained by the above-mentioned operation were stored at -80 ° C.

AAPHを所定の最終濃度(0mM、0.5mM、1mM、2mM、4mM)になるようL−FABP蛋白質溶液(L−FABP M19L、L−FABP M74L、L−FABP M113L、L−FABP M19L/M74L、L−FABP M19L/M113L、L−FABP M74L/M113L、及びL−FABP M19L/M74L/M113Lの各溶液)に添加し、室温で1時間反応させ、ELISA測定を実施し、標識抗体の発色(OD450nm)を無処理サンプルと比較した。比較結果を図8に示す。
図8に示した結果から明らかなように、L−FABP M19LとL−FABP M74Lにおいて酸化に対する安定性が向上することが分かり、19番目及び113番目のメチオニンの酸化率が支配的であることが確認された。さらにL−FABP M19L/M74L/M113Lが最も酸化に対する安定性に優れることが分かる。
次に、酸化安定性を確認したL−FABP M19L/M74L/M113L等はサンプルの長期保存のため上述した蛋白質保存緩衝液に溶解し、−80℃にて保管し、以下、実施例2、3及び8に使用した。
L-FABP protein solution (L-FABP M19L, L-FABP M74L, L-FABP M113L, L-FABP M19L / M74L, so that AAPH reaches a predetermined final concentration (0 mM, 0.5 mM, 1 mM, 2 mM, 4 mM) Add to L-FABP M19L / M113L, L-FABP M74L / M113L, and L-FABP M19L / M74L / M113L), react at room temperature for 1 hour, perform ELISA measurement, and develop colored antibody (OD450nm) ) Was compared to the untreated sample. The comparison results are shown in FIG.
As is clear from the results shown in FIG. 8, it can be seen that the stability against oxidation is improved in L-FABP M19L and L-FABP M74L, and the oxidation rates of the 19th and 113th methionines are dominant. confirmed. Furthermore, it is understood that L-FABP M19L / M74L / M113L is most excellent in oxidation stability.
Next, L-FABP M19L / M74L / M113L etc. whose oxidation stability has been confirmed are dissolved in the above-mentioned protein storage buffer for long-term storage of samples, and stored at -80 ° C. And 8 were used.

実施例2
(酸化に対する安定性)
BSA存在下、L−FABP M19L/M74L/M113Lに対してAAPHを最終濃度0〜5mMとなるよう添加し、室温で1時間反応させた。また空気酸化の影響を考慮し、蛋白質溶液にHOのみを添加し、添加直後に測定を実施した無処理サンプルを比較対象とした。
Example 2
(Stability to oxidation)
In the presence of BSA, AAPH was added to L-FABP M19L / M74L / M113L to a final concentration of 0-5 mM, and reacted at room temperature for 1 hour. In addition, in consideration of the influence of air oxidation, only H 2 O was added to the protein solution, and the untreated sample in which the measurement was performed immediately after the addition was used as a comparison target.

これらの反応溶液及び無処理サンプルを「レナプロ L−FABP テスト TMB」(シミックホールディングス株式会社製)を使用してELISA測定を実施し、標識抗体の発色(OD450nm)を無処理サンプルと比較した。上記診断用キットの使用方法は通常添付されている添付文書に従った測定方法に準じて行った。結果を図9に示す。   These reaction solutions and untreated samples were subjected to ELISA measurement using “Lenapro L-FABP Test TMB” (manufactured by Cimic Holdings Co., Ltd.) to compare the color development of the labeled antibody (OD 450 nm) with the untreated samples. The method of using the above-mentioned diagnostic kit was carried out according to the measurement method according to the attached document usually attached. The results are shown in FIG.

図9に示したELISA測定の結果から明らかなように、L−FABP WTは112〜121%の測定値の上昇が確認され、ばらつきを表す変動係数(CV)は5.8%であった。
一方、L−FABP M19L/M74L/M113Lは102〜107%の上昇までしか認められず、CVは2.4%であった。
以上の結果からAAPHに対してL−FABP M19L/M74L/M113Lの抗体結合能は安定的であり、ELISA測定値の変動は小さいことが明らかとなった。
つまり、L−FABP M19L/M74L/M113Lは酸化反応に対して安定化したといえる。また室温に1時間置くだけでもL−FABP WTの抗体結合能が上昇するが、L−FABP M19L/M74L/M113Lは上昇しないことから、空気酸化に対しても安定化したといえる。
As is clear from the results of the ELISA measurement shown in FIG. 9, the L-FABP WT was confirmed to have an increase of 112 to 121%, and the coefficient of variation (CV) representing the variation was 5.8%.
On the other hand, L-FABP M19L / M74L / M113L was observed only up to 102-107%, and CV was 2.4%.
From the above results, it was revealed that the antibody binding ability of L-FABP M19L / M74L / M113L to AAPH is stable, and the fluctuation of the ELISA measurement value is small.
That is, it can be said that L-FABP M19L / M74L / M113L was stabilized against the oxidation reaction. In addition, the antibody binding ability of L-FABP WT is increased only by placing it at room temperature for 1 hour, but L-FABP M19L / M74L / M113L does not increase, so it can be said that it is stabilized against air oxidation.

(室温での安定性)
BSA存在下、L−FABP M19L/M74L/M113Lを室温(25℃)にて保存し、1週間ごとに4週間後まで「レナプロ L−FABP テスト TMB」を使用して定法に従いELISA測定を実施した。−80℃にて保存しているサンプルに関しても測定を実施し、比較対象とした。室温保存サンプルの標識抗体の発色(OD450nm)について−80℃保存サンプルの標識抗体の発色(OD450nm)を100とした割合(%)を比較した。結果を図10に示す。
(Stability at room temperature)
L-FABP M19L / M74L / M113L was stored at room temperature (25 ° C.) in the presence of BSA, and ELISA measurement was performed according to a standard method using “Lenapro L-FABP test TMB” up to 4 weeks after every week . The measurement was also performed on a sample stored at -80 ° C, and was used as a comparison target. About the color development (OD450nm) of the labeled antibody of a room temperature storage sample, the ratio (%) which made the color development (OD450nm) of the labeling antibody of a -80 degreeC storage sample into 100 was compared. The results are shown in FIG.

図10に示したELISA測定の結果から明らかなように、L−FABP WTは110〜128%の測定値の上昇が確認され、CVは10.5%であった。
一方、L−FABP M19L/M74L/M113Lは101〜111%の上昇までしか認められず、CVは4.7%であった。
以上の結果から室温での長期保存に対してL−FABP M19L/M74L/M113Lの抗体結合能は安定的であり、ELISA測定値の変動は小さいことが明らかとなった。つまり、L−FABP M19L/M74L/M113Lは室温での長期保存に安定化されたといえる。
As is clear from the results of the ELISA measurement shown in FIG. 10, L-FABP WT was confirmed to have an increase of 110 to 128%, and CV was 10.5%.
On the other hand, L-FABP M19L / M74L / M113L was observed only up to 101 to 111%, and CV was 4.7%.
From the above results, it was revealed that the antibody binding ability of L-FABP M19L / M74L / M113L is stable against long-term storage at room temperature, and the fluctuation of the ELISA measurement value is small. That is, it can be said that L-FABP M19L / M74L / M113L was stabilized by long-term storage at room temperature.

(37℃での安定性)
BSA存在下、L−FABP M19L/M74L/M113Lを37℃で保存し、1週間ごとに4週間後まで「レナプロ L−FABP テスト TMB」を使用して定法に従いELISA測定を実施した。−80℃にて保存しているサンプルに関しても測定を実施し、比較対象とした。室温保存サンプルの標識抗体の発色(OD450nm)について−80℃保存サンプルの標識抗体の発色(OD450nm)を100とした割合(%)を比較した。結果を図11に示す。
(Stability at 37 ° C)
L-FABP M19L / M74L / M113L was stored at 37 ° C. in the presence of BSA, and ELISA measurement was performed according to a standard method using “Lenapro L-FABP test TMB” every week until 4 weeks. The measurement was also performed on a sample stored at -80 ° C, and was used as a comparison target. About the color development (OD450nm) of the labeled antibody of a room temperature storage sample, the ratio (%) which made the color development (OD450nm) of the labeling antibody of a -80 degreeC storage sample into 100 was compared. The results are shown in FIG.

図11に示したELISA測定の結果から明らかなように、L−FABP WTは117〜143%の測定値の上昇が確認され、CVは14.5%であった。
一方、L−FABP M19L/M74L/M113Lは104〜113%の上昇までしか認められず、CVは4.8%であった。
以上の結果から37℃での長期保存に対してL−FABP M19L/M74L/M113Lの抗体結合能は安定的であり、ELISA測定値の変動は小さいことが明らかとなった。つまり、L−FABP M19L/M74L/M113Lは37℃での長期保存にも安定化されたといえる。
As is clear from the results of the ELISA measurement shown in FIG. 11, L-FABP WT was confirmed to have an increase of 117 to 143%, and CV was 14.5%.
On the other hand, L-FABP M19L / M74L / M113L was observed only up to 104 to 113%, and CV was 4.8%.
From the above results, it was revealed that the antibody binding ability of L-FABP M19L / M74L / M113L is stable against long-term storage at 37 ° C., and the fluctuation of the ELISA measurement value is small. That is, it can be said that L-FABP M19L / M74L / M113L was stabilized also for long-term storage at 37 ° C.

実施例3
<クローン2とは認識部位が異なる標識抗体を用いたELISA測定における酸化安定性>
AAPHを所定の最終濃度(0〜4mM)になるようL−FABP蛋白質溶液に添加し、室温で1時間反応させ、ELISA測定を実施した。標識抗体としてクローン1、クローン2、クローンFを用い、発色(OD450nm)を無処理サンプルと比較した。結果を図12に示す。
図12に示した結果から明らかなように、クローン1及びクローンFによる標識抗体を用いたL−FABP測定方法では、クローン2と同様に酸化によってL−FABP WTの抗体結合能が変化すること、L−FABP M19L/M74L/M113Lでは酸化による抗体結合能の変化が抑制されることを分かる。
したがって、抗原認識部位が異なる抗L−FABP抗体クローン1、抗L−FABP抗体クローンFによるELISA測定系においても安定化されたL−FABP蛋白質が有効である。
Example 3
<Oxidation stability in ELISA measurement using a labeled antibody having a recognition site different from that of clone 2>
AAPH was added to L-FABP protein solution to a predetermined final concentration (0 to 4 mM), reacted at room temperature for 1 hour, and ELISA measurement was performed. The color development (OD 450 nm) was compared to an untreated sample using clone 1, clone 2 and clone F as labeled antibodies. The results are shown in FIG.
As is clear from the results shown in FIG. 12, in the L-FABP measurement method using the labeled antibody with clone 1 and clone F, the antibody binding ability of L-FABP WT is changed by oxidation as in clone 2. It is found that L-FABP M19L / M74L / M113L suppresses the change in antibody binding ability due to oxidation.
Therefore, L-FABP protein stabilized also in the ELISA measurement system by anti-L-FABP antibody clone 1 and anti-L-FABP antibody clone F which differ in an antigen recognition site is effective.

標識抗体として上記抗L−FABP抗体クローン2を用いたサンドイッチELISA法により実施例3と同様にELISA測定を実施し、酸化の進行が異なる様々なL−FABP蛋白質の19番目、74番目及び113番目のメチオニンの酸化率を測定した。結果を図13に示す。
図13中、*は、実施例3及び図12に示したクローン2を用いたWT L−FABPのELISA測定値のデータ(AAPH添加濃度各種データ)を元に、おおよそ酸化が飽和して安定化している領域として平均値±2SD(標準偏差)の範囲を「酸化によるELISA反応性上昇の飽和領域」とした領域である。
図13から分かるように、おおよそ酸化が飽和して安定化している領域における最小の酸化率は19番目のメチオニンについては約38%であり、74番目のメチオニンについては約70%であり、113番目のメチオニンについては約73%であった。
上記結果から、19番目のメチオニンについては30%以上の酸化率を有することがELISA測定値の変動幅の減少に寄与しているといえる。
また、113番目のメチオニンが70%以上の酸化率を有することもELISA測定値の変動幅の減少に寄与しているといえる。
また、図13に示した結果から、74番目のメチオニンについても、図13中の「酸化によるELISA反応性上昇の飽和領域」において、ELISA測定値の上昇が飽和することを予想することができる。
ELISA measurement is carried out in the same manner as in Example 3 by the sandwich ELISA method using the above-mentioned anti-L-FABP antibody clone 2 as a labeled antibody, and the 19th, 74th and 113th of various L-FABP proteins different in the progress of oxidation The oxidation rate of methionine was measured. The results are shown in FIG.
In FIG. 13, * indicates that the oxidation is saturated and stabilized based on data of ELISA measurement value of WT L-FABP using the clone 2 shown in Example 3 and FIG. 12 (AAPH added concentration data). It is the area which made the range of the mean value ± 2SD (standard deviation) as "the saturation area of the rise in ELISA reactivity by oxidation" as the
As can be seen from FIG. 13, the minimum oxidation rate in the region where oxidation is saturated and stabilized is about 38% for the 19th methionine and about 70% for the 74th methionine, and 113th Was about 73% for methionine.
From the above results, it can be said that having an oxidation rate of 30% or more for the 19th methionine contributes to the reduction of the fluctuation range of the ELISA measurement value.
In addition, it can be said that the 113th methionine having an oxidation rate of 70% or more also contributes to the reduction of the fluctuation range of the ELISA measurement value.
Further, from the results shown in FIG. 13, it is possible to predict that the increase in the ELISA measurement value is saturated in the “saturation region of the increase in ELISA reactivity due to oxidation” also in the 74th methionine.

実施例4
<酸化処理を行ったL−FABP標品の37℃での安定性>
40mMのAAPHによって酸化処理を行ったL−FABPを37℃で保存し、1週間ごとに2週間後まで「レナプロ L−FABP テスト TMB」を使用して定法に従いELISA測定を実施した。4℃にて保存しているサンプルに関しても測定を実施し、比較対象とした。37℃保存サンプルの標識抗体の発色(OD450nm)について4℃保存サンプルの標識抗体の発色(OD450nm)を100とした割合(%)を比較した。結果を図14に示す。
Example 4
<Stability of L-FABP preparation subjected to oxidation treatment at 37 ° C>
L-FABP oxidized with 40 mM AAPH was stored at 37 ° C., and ELISA measurement was performed according to a standard method using “Lenapro L-FABP test TMB” every two weeks up to two weeks later. The measurement was also performed on a sample stored at 4 ° C., and was used as a comparison target. The percentage (%) of the color development (OD450 nm) of the labeled antibody of the 4 ° C. storage sample relative to the color development (OD 450 nm) of the labeled antibody of the 37 ° C. storage sample was compared. The results are shown in FIG.

図14に示したELISA測定の結果から明らかなように、酸化処理を行ったL−FABPは94〜102%の上昇までしか認められなかった。一方、酸化していないL−FABPは114〜130%の上昇が認められた。
以上の結果から37℃での長期保存に対して酸化されたL−FABPの抗体結合能は安定的であり、ELISA測定値の変動は小さいことが明らかとなった。つまり、酸化処理を行ったL−FABPは37℃での長期保存にも安定化されたといえる。
As apparent from the results of the ELISA measurement shown in FIG. 14, L-FABP subjected to oxidation treatment was observed only up to 94 to 102%. On the other hand, L-FABP which has not been oxidized was found to increase by 114 to 130%.
From the above results, it was revealed that the antibody binding ability of oxidized L-FABP was stable for long-term storage at 37 ° C., and the fluctuation of the ELISA measurement value was small. That is, it can be said that L-FABP subjected to oxidation treatment was stabilized also for long-term storage at 37 ° C.

実施例5
<脂肪酸添加による安定性>
図15(a)は、L−FABP蛋白質の脂肪酸添加処理によるELISA測定値の変化(0倍の量の脂肪酸添加を100とした割合(%))を示す図である。
結合する脂肪酸の種類(図15(b))や濃度によってL−FABP蛋白質の抗体結合能が変化することが明らかとなった。
図15(a)には、8−イソプロスタグランジンF2α、2,3−ジノル−8−イソプロスタグランジンF2α及びエンタ−プロスタグランジンEについてのL−FABP蛋白質に対する抗体結合能の変化を示す。アラキドン酸、オレイン酸については後述する。
Example 5
<Stability by fatty acid addition>
FIG. 15 (a) is a figure which shows the change (The ratio (%) which made the fatty acid addition of the quantity of 0 times the amount 100) by the fatty acid addition process of L-FABP protein.
It became clear that the antibody binding ability of L-FABP protein was changed depending on the type of fatty acid to be bound (FIG. 15 (b)) and the concentration.
FIG. 15 (a) shows the antibody binding ability to L-FABP protein for 8-isostataglandin F , 2,3-dinor-8-isostataglandin F and enta-prostaglandin E 2 Indicates a change. Arachidonic acid and oleic acid will be described later.

次に、野生型L−FABP蛋白質(L−FABP WT)又はL−FABP M19L/M74L/M113Lのモル量に対して各種脂肪酸の最終モル量が200000倍となるよう添加し、室温で1.5時間反応させた。また空気酸化の影響を考慮し、蛋白質溶液にDMSO(終濃度5%)のみを添加し、添加直後に測定を実施した無処理サンプルを比較対象サンプルとした。   Next, the final molar amount of each type of fatty acid is added to 200,000 times the molar amount of wild-type L-FABP protein (L-FABP WT) or L-FABP M19L / M74L / M113L, and it is 1.5 at room temperature It was made to react for time. Also, in consideration of the influence of air oxidation, only DMSO (final concentration 5%) was added to the protein solution, and an untreated sample in which the measurement was performed immediately after the addition was used as a comparison target sample.

これらの反応溶液及び無処理サンプルを「レナプロ L−FABP テスト TMB」を使用して1質量%のBSA存在下、ELISA測定を実施し、標識抗体の発色(OD450nm)を無処理サンプルと比較した。上記診断用キットの使用方法は通常添付されている添付文書に従った測定方法に準じて行った。結果を図16(a)〜(c)に示す。   These reaction solutions and untreated samples were subjected to ELISA measurement in the presence of 1% by mass BSA using “Lenapro L-FABP Test TMB” to compare the color development of the labeled antibody (OD450 nm) with the untreated samples. The method of using the above-mentioned diagnostic kit was carried out according to the measurement method according to the attached document usually attached. The results are shown in FIGS. 16 (a) to 16 (c).

図16(a)は各種濃度のアラキドン酸添加によるELISA測定値の変化を示す図であり、図16(b)は各種濃度のオレイン酸添加によるELISA測定値の変化を示す図であり、図16(c)は各種濃度の8−イソプロスタグランジンF2α添加によるELISA測定値の変化を示す図である。
図16(a)〜(c)に示したELISA測定の結果から明らかなように、L−FABP WTはアラキドン酸に関しては104〜220%の測定値の上昇(CV34.0%)、オレイン酸に関しては100〜124%の測定値の上昇(CV10.4%)、8−イソプロスタグランジンF2αに関しては95〜118%の測定値の変動(CV6.8%)が確認された。
一方、L−FABP M19L/M74L/M113Lはアラキドン酸に関しては88〜103%の測定値の変動(CV6.1%)、オレイン酸に関しては92〜107%の測定値の変動、(CV5.1%)、8−イソプロスタグランジンF2αに関しては96〜101%の測定値の上昇(CV2.3%)が確認された。
図16に示した結果から、L−FABP WTに対し、脂肪酸を添加するほどELISA測定値の変化が飽和に近づき、特定量以上の脂肪酸を含有させた肝型脂肪酸結合蛋白質を標品として使用することによりELISA測定値の変動幅が抑制し得ることが分かる。
特に、図16(a)に示した結果から、アラキドン酸を含有させた場合、比較的少ないモル量で、ELISA測定値の変化が飽和に近づくことが分かる。
なお、添加した脂肪酸の少なくとも一部は、L−FABP WTに結合せずに、BSAに吸着しているものと推測される。
また、脂肪酸添加に対してL−FABP M19L/M74L/M113Lの抗体結合能は安定的であり、ELISA測定値の変動は小さいことが明らかとなった。つまり、L−FABP M19L/M74L/M113Lは脂肪酸添加に対して安定化したといえる。
Fig.16 (a) is a figure which shows the change of the ELISA measurement value by the arachidonic acid addition of various concentration, FIG.16 (b) is a figure which shows the change of the ELISA measurement value by the oleic acid addition of various concentration. (c) is a graph showing changes in ELISA measurements by 8 iso static prostaglandin F 2.alpha addition of various concentrations.
As apparent from the results of the ELISA measurement shown in FIG. 16 (a) to (c), L-FABP WT shows a 104-220% increase in measured value for arachidonic acid (CV 34.0%) and for oleic acid There was a 100% to 124% increase in measured value (CV 10.4%) and a variation in measured value of 95 to 118% (CV 6.8%) for 8-Isoprostaglandin F 2 α.
On the other hand, L-FABP M19L / M74L / M113L has a variation of measured value of 88 to 103% (CV6.1%) for arachidonic acid, and a variation of measured value of 92 to 107% for oleic acid, (CV5.1% For 8-Isoprostaglandin F , an increase of 96 to 101% (CV 2.3%) was observed.
From the results shown in FIG. 16, as L-FABP WT is added with fatty acid, the change in ELISA measurement value approaches saturation, and a liver-type fatty acid binding protein containing a specific amount or more of fatty acid is used as a standard Thus, it can be seen that the fluctuation range of the ELISA measurement value can be suppressed.
In particular, from the results shown in FIG. 16 (a), it can be seen that, when arachidonic acid is contained, the change in the ELISA measurement value approaches saturation at a relatively small molar amount.
In addition, it is assumed that at least a part of the added fatty acid is adsorbed to BSA without binding to L-FABP WT.
Moreover, it became clear that the antibody binding ability of L-FABP M19L / M74L / M113L was stable with respect to fatty acid addition, and the fluctuation | variation of ELISA measured value was small. That is, it can be said that L-FABP M19L / M74L / M113L was stabilized against fatty acid addition.

実施例6
<L−FABPに脂肪酸(アラキドン酸又はオレイン酸)を結合させることによるELISA測定値の変動の抑制>
図17及び図18は脂肪酸(アラキドン酸又はオレイン酸)添加量とELISA測定値の変化(脂肪酸添加量0モル倍量を100とした割合(%))を示す図である。
BSA非存在下、L−FABPに対して0〜100モル倍量の脂肪酸(アラキドン酸又はオレイン酸)を添加し、室温において60分間反応させた後、生理食塩水に対して一晩透析を実施した。翌日透析外液を交換し再度一晩透析を実施し、L−FABPに結合していない遊離の脂肪酸を除去した。得られたサンプルのELISA測定値の変化(脂肪酸添加量0モル倍量を100とした割合(%))を図17及び18に示す。
図17から明らかなように、アラキドン酸添加によるELISA測定値の変化はL−FABPに対して10モル倍量以上の脂肪酸を添加した際に一定となり、30モル倍量以上のアラキドン酸を添加した際により一定となることが確認された。
また、図18から明らかなように、オレイン酸添加によるELISA測定値の変化はL−FABPに対して100モル倍量以上の脂肪酸を添加した際に一定となり、300モル倍量以上のオレイン酸を添加した際により一定となることが確認された。
Example 6
<Suppression of fluctuation of ELISA measurement value by binding fatty acid (arachidonic acid or oleic acid) to L-FABP>
FIG. 17 and FIG. 18 are diagrams showing the addition amount of fatty acid (arachidonic acid or oleic acid) and the change in ELISA measurement value (ratio (%) where the amount of fatty acid addition is 0 molar times 100).
0 to 100 molar volumes of fatty acid (arachidonic acid or oleic acid) relative to L-FABP are added in the absence of BSA, reacted at room temperature for 60 minutes, and then dialyzed against saline overnight did. The next day, the dialysis outer solution was replaced and dialysis was performed again overnight to remove free fatty acid not bound to L-FABP. Changes in ELISA measurement values of the obtained sample (the ratio (%) where the amount of fatty acid added is 0 molar times 100) are shown in FIGS.
As apparent from FIG. 17, the change in the ELISA measurement value by the addition of arachidonic acid became constant when 10 or more molar amount of fatty acid was added to L-FABP, and 30 or more molar amount of arachidonic acid was added. It was confirmed that it became more constant.
Further, as apparent from FIG. 18, the change in the ELISA measurement value due to the addition of oleic acid becomes constant when 100 molar times or more amount of fatty acid is added to L-FABP, and 300 molar times or more oleic acid It was confirmed that it becomes more constant when added.

実施例7
<アラキドン酸又はオレイン酸を結合させたL−FABP標品の37℃での安定性>
実施例6と同様の方法でL−FABPのモル量に対して50倍のモル量のアラキドン酸を含有させて結合させたL−FABPをBSA含有蛋白質保存緩衝液に希釈し調製したサンプルを用いて実施例5と同様の方法で保存し、37℃、2週間のELISA測定値の変化を確認した。結果を図19に示す。
同様に、L−FABPのモル量に対して1000倍のモル量のオレイン酸を含有させて結合させたL−FABPをBSA含有蛋白質保存緩衝液に希釈し調製したサンプルを用いて同様の方法により37℃、2週間のELISA測定値の変化を確認した。結果を図14に示す。
Example 7
<Stability of L-FABP preparation bound with arachidonic acid or oleic acid at 37 ° C.>
Using a sample prepared by diluting L-FABP containing 50 times molar amount of arachidonic acid with respect to the molar amount of L-FABP in a manner similar to Example 6 and then binding to a BSA-containing protein storage buffer The sample was stored in the same manner as in Example 5, and changes in ELISA measurements at 37.degree. C. for two weeks were confirmed. The results are shown in FIG.
Similarly, the L-FABP containing and conjugated with a molar amount of oleic acid of 1000 times the molar amount of L-FABP was diluted in a BSA-containing protein storage buffer and prepared by the same method. Changes in ELISA measurements at 37 ° C. for 2 weeks were confirmed. The results are shown in FIG.

図19に示したELISA測定の結果から明らかなように、アラキドン酸を結合させたL−FABPは99.9〜100.3%の変動しか認められなかった。一方、アラキドン酸を結合させていないL−FABPは118〜132%の上昇が認められた。
以上の結果から37℃での長期保存に対してアラキドン酸を結合させたL−FABPの抗体結合能は安定的であり、ELISA測定値の変動は小さいことが明らかとなった。
同様に、図20に示したELISA測定の結果から明らかなように、オレイン酸を結合させたL−FABPは100〜110%の変動しか認められなかった。一方、オレイン酸を結合させていないL−FABPは120〜130%の上昇が認められた。
以上の結果から37℃での長期保存に対してオレイン酸を結合させたL−FABPの抗体結合能は安定的であり、ELISA測定値の変動は小さいことが明らかとなった。
As apparent from the results of the ELISA measurement shown in FIG. 19, L-FABP bound with arachidonic acid showed only a fluctuation of 99.9 to 100.3%. On the other hand, the L-FABP not bound with arachidonic acid was found to increase by 118 to 132%.
From the above results, it was revealed that the antibody binding ability of L-FABP bound with arachidonic acid was stable against long-term storage at 37 ° C., and the variation of the measured value of ELISA was small.
Similarly, as apparent from the results of the ELISA measurement shown in FIG. 20, L-FABP bound to oleic acid showed only a variation of 100 to 110%. On the other hand, L-FABP which did not bind oleic acid showed a 120-130% increase.
From the above results, it was revealed that the antibody binding ability of L-FABP conjugated with oleic acid is stable against long-term storage at 37 ° C., and the fluctuation of the ELISA measurement value is small.

実施例8
<酸化変動係数を指標としたL−FABP標品の評価>
Example 8
<Evaluation of L-FABP standard using oxidation variation coefficient as index>

実施例3及び図12において、ELISA測定値の変動が小さいことが示されたL−FABP M19L/M74L/M113L、0.5mMのAAPHで処理したL−FABP WT、4mMのAAPHで処理したL−FABP WT及びL−FABP WTについて、10mMのAAPHによる25℃1時間酸化処理を行い、上記酸化処理有無でのELISA測定値のOD比から、酸化変動係数を算出した。また、対照としてL−FABP WTについても算出した。結果を図21に示す。
図21に示した結果から明らかなように、対照としてのL−FABP WTの酸化変動係数は約1.8であった。
一方、実施例3及び図12においてELISA測定値の変動が小さいことが示されたL−FABP M19L/M74L/M113L、0.5mMのAAPHで処理したL−FABP WT、4mMのAAPHで処理したL−FABP WTはいずれも、酸化変動係数が1.3以下であった。
そこで、L−FABP M19L/M74L/M113L、0.5mMのAAPHで処理したL−FABP WT、4mMのAAPHで処理したL−FABP WTの酸化変動係数の平均値+2SD(標準偏差)である1.4(1.2+0.2)以下である場合、酸化に対して測定値の変動が抑えられ安定であるといえる。
L-FABP M19 L / M 74 L / M 113 L in which the fluctuation of the ELISA measurement value is shown to be small in Example 3 and FIG. 12 L-FABP WT treated with 0.5 mM AAPH, L- treated with 4 mM AAPH The FABP WT and L-FABP WT were subjected to 1 hour oxidation treatment with 10 mM AAPH at 25 ° C., and the oxidation variation coefficient was calculated from the OD ratio of the ELISA measurement value with or without the above oxidation treatment. Moreover, it calculated also about L-FABP WT as a control. The results are shown in FIG.
As apparent from the results shown in FIG. 21, the oxidation variation coefficient of L-FABP WT as a control was about 1.8.
On the other hand, L-FABP M19L / M74L / M113L shown in Example 3 and FIG. 12 shows a small fluctuation of the ELISA measurement value L-FABP WT treated with 0.5 mM AAPH, L treated with 4 mM AAPH -All of FABP WT had an oxidation variation coefficient of 1.3 or less.
Therefore, L-FABP WT treated with L-FABP M 19 L / M 74 L / M 113 L, 0.5 mM AAPH, mean value + 2 SD (standard deviation) of oxidation variation coefficient of L-FABP WT treated with 4 mM AAPH. When it is 4 (1.2 + 0.2) or less, it can be said that the fluctuation of the measured value is suppressed against oxidation and stable.

次に、実施例3及び図13において使用した酸化の進行が異なる様々なL−FABP蛋白質各々について、10mMのAAPHによる25℃1時間酸化処理を行い、上記酸化処理有無でのELISA測定値のOD比から、酸化変動係数を算出した。その後、19番目、74番目、及び113番目のメチオニン各々について、上記メチオニン酸化率と酸化変動係数との相関を、残存未酸化型メチオニンの含有率(100%−メチオニン酸化率)と酸化変動係数との相関として算出した。結果を図22に示す。
図22に示した結果から明らかなように、19番目のメチオニンについては、残存未酸化型メチオニン含有率が70%未満(すなわち、酸化率が30%以上)において、酸化変動係数が収束しており、酸化変動が抑えられることが分かる。
特に、酸化変動係数が1.4以下となる場合である、残存未酸化型メチオニン含有率が62%未満(すなわち、酸化率が38%以上)において、酸化変動の抑制が特に優れるといえる。
Next, each of various L-FABP proteins different in the progress of oxidation used in Example 3 and FIG. 13 is subjected to oxidation treatment with 10 mM AAPH for 1 hour at 25 ° C., and the OD of the ELISA measurement value with or without the oxidation treatment The oxidation variation coefficient was calculated from the ratio. Thereafter, for each of the 19th, 74th, and 113th methionines, the correlation between the methionine oxidation rate and the oxidation variation coefficient is represented by the remaining unoxidized methionine content rate (100% -methionine oxidation rate) and the oxidation variation coefficient Calculated as the correlation of The results are shown in FIG.
As is clear from the results shown in FIG. 22, the oxidation variation coefficient converges at the remaining unoxidized methionine content of less than 70% (that is, the oxidation ratio of 30% or more) for the 19th methionine. It can be seen that the oxidation fluctuation is suppressed.
In particular, when the residual unoxidized methionine content is less than 62% (that is, the oxidation rate is 38% or more), which is a case where the oxidation variation coefficient is 1.4 or less, it can be said that suppression of oxidation variation is particularly excellent.

また、74番目のメチオニンについては、残存未酸化型メチオニン含有率が30%未満(すなわち、酸化率が70%以上)において、酸化変動係数が収束しており、酸化変動が抑えられることが分かる。
特に、酸化変動係数が1.4以下となる場合である、残存未酸化型メチオニン含有率が25%未満(すなわち、酸化率が75%以上)において、酸化変動の抑制が特に優れるといえる。
また、113番目のメチオニンについても、残存未酸化型メチオニン含有率が30%未満(すなわち、酸化率が70%以上)において、酸化変動係数が収束しており、酸化変動が抑えられることが分かる。
In addition, for the 74th methionine, it is understood that the oxidation variation coefficient converges when the remaining unoxidized methionine content is less than 30% (that is, the oxidation ratio is 70% or more), and the oxidation variation can be suppressed.
In particular, when the residual unoxidized methionine content is less than 25% (that is, the oxidation rate is 75% or more), which is a case where the oxidation variation coefficient is 1.4 or less, it can be said that suppression of oxidation variation is particularly excellent.
In addition, also for the 113th methionine, it is understood that the oxidation variation coefficient converges when the remaining unoxidized methionine content is less than 30% (that is, the oxidation ratio is 70% or more), and the oxidation variation can be suppressed.

また、(1)L−FABP WT、実施例6及び7における(2)オレイン酸含有L−FABP、(3)アラキドン酸含有L−FABP、(4)0.5mMのAAPHで処理したL−FABP WT、(5)4mMのAAPHで処理したL−FABP WT及び(6)L−FABP M19L/M74L/M113L、(7)L−FABP M19L、及び(8)L−FABP M19L/M113Lについて酸化変動係数を算出した。算出結果を図23に示す。
図23に示した結果から明らかなように、L−FABP WTは酸化変動係数が1.4を大きく超え(約1.8)、L−FABP標品としての酸化に対する安定性を満たしていないことが分かる。
一方、(2)オレイン酸含有L−FABP、(3)アラキドン酸含有L−FABP、(4)0.5mMのAAPHで処理したL−FABP WT、(5)4mMのAAPHで処理したL−FABP WT及び(6)L−FABP M19L/M74L/M113L、(7)L−FABP M19L、及び(8)L−FABP M19L/M113Lはいずれも酸化変動係数が1.4以下であり、酸化に対する安定性に優れることが分かる。
In addition, (1) L-FABP WT, (2) oleic acid-containing L-FABP in Examples 6 and 7, (3) arachidonic acid-containing L-FABP, (4) L-FABP treated with 0.5 mM AAPH Oxidation variation coefficients for WT, (5) L-FABP WT and (6) L-FABP M19L / M74L / M113L, (7) L-FABP M19L, and (8) L-FABP M19L / M113L treated with 4 mM AAPH Was calculated. The calculation results are shown in FIG.
As is clear from the results shown in FIG. 23, the L-FABP WT has an oxidation variation coefficient much larger than 1.4 (about 1.8) and does not satisfy the stability against oxidation as a L-FABP standard. I understand.
On the other hand, (2) L-FABP containing oleic acid, (3) L-FABP containing arachidonic acid, (4) L-FABP WT treated with 0.5 mM AAPH, (5) L-FABP treated with 4 mM AAPH WT and (6) L-FABP M19L / M74L / M113L, (7) L-FABP M19L, and (8) L-FABP M19L / M113L all have an oxidation variation coefficient of 1.4 or less, and stability against oxidation It is understood that it is excellent.

配列番号1:L−FABP WTのアミノ酸配列
配列番号2:L−FABP M19L/M74L/M113Lのアミノ酸配列
配列番号3:L−FABP M19L/M74L/M113LのDNA配列
SEQ ID NO: 1: amino acid sequence of L-FABP WT SEQ ID NO: 2: amino acid sequence of L-FABP M19L / M74L / M113L SEQ ID NO: 3: DNA sequence of L-FABP M19L / M74L / M113L

Claims (15)

10mMの酸化剤により25℃1時間の酸化処理を行わない肝型脂肪酸結合蛋白質標品を用いた測定値に対する前記酸化処理を行った測定値の比で表される酸化変動係数が1.4以下に設定された肝型脂肪酸結合蛋白質標品。   The oxidation variation coefficient represented by the ratio of the measured value obtained by the oxidation treatment to the measured value using a liver-type fatty acid binding protein preparation not oxidized at 25 ° C. for 1 hour with 10 mM oxidizing agent is 1.4 or less Liver-type fatty acid binding protein standard set in 請求項1に記載の肝型脂肪酸結合蛋白質標品に用いられる、配列表の配列番号1と同一性90%以上のアミノ酸配列からなり、19番目、74番目、113番目の1つ以上のメチオニンが、メチオニン以外の非極性アミノ酸に置換された肝型脂肪酸結合蛋白質であって、少なくとも19番目のメチオニンが、メチオニン以外の非極性アミノ酸に置換された肝型脂肪酸結合蛋白質。   An amino acid sequence having an identity of 90% or more with SEQ ID NO: 1 of the sequence listing, which is used for the preparation of liver-type fatty acid binding protein preparation according to claim 1, and one or more methionine of the 19th, the 74th and the 113th A liver-type fatty acid binding protein substituted with a nonpolar amino acid other than methionine, wherein at least the 19th methionine is substituted with a nonpolar amino acid other than methionine. 請求項2記載の蛋白質をコードするDNA。   A DNA encoding the protein according to claim 2. 請求項3記載のDNAで形質転換された細胞。   A cell transformed with the DNA of claim 3. 請求項4記載の細胞を培養し、請求項2記載の蛋白質を回収する工程を含む請求項2記載の蛋白質の製造方法。   A method for producing a protein according to claim 2, comprising the steps of culturing the cell according to claim 4 and recovering the protein according to claim 2. 配列表の配列番号1と同一性90%以上のアミノ酸配列からなり、19番目のメチオニンが30%以上の酸化率を有するか、又は、19番目のメチオニンが30%以上の酸化率及び113番目のメチオニンが70%以上の酸化率を有する肝型脂肪酸結合蛋白質を含む、請求項1に記載の肝型脂肪酸結合蛋白質標品。   It consists of an amino acid sequence of 90% or more identity to SEQ ID NO: 1 in the sequence listing, and the 19th methionine has an oxidation rate of 30% or more, or the 19th methionine has an oxidation rate of 30% or more and the 113th The liver-type fatty acid binding protein preparation according to claim 1, which comprises a liver-type fatty acid binding protein having an oxidation rate of 70% or more of methionine. 前記酸化変動係数が1.4以下になる量でアラキドン酸、オレイン酸、8−イソプロスタグランジンF2α及び2,3−ジノル−8−イソプロスタグランジンF2αよりなる群から選択される少なくとも1種の脂肪酸を含み、かつ配列表の配列番号1と同一性90%以上のアミノ酸配列からなる肝型脂肪酸結合蛋白質を含む、請求項1に記載の肝型脂肪酸結合蛋白質標品。Arachidonic acid in an amount of the oxidizing variation coefficient is 1.4 or less, oleic acid, at least is selected from the group consisting of 8-iso static Prostaglandin F 2.alpha and 2,3-dinor-8-iso static prostaglandin F 2.alpha The liver-type fatty acid binding protein preparation according to claim 1, comprising a liver-type fatty acid-binding protein comprising one type of fatty acid and consisting of an amino acid sequence having an identity of 90% or more with SEQ ID NO: 1 in the sequence listing. 前記酸化変動係数が1.4以下になる量が、肝型脂肪酸結合蛋白質のモル量に対し、前記脂肪酸の量を30倍以上のモル量で含む量である、請求項7に記載の肝型脂肪酸結合蛋白質標品。   The liver type according to claim 7, wherein the amount that the oxidation variation coefficient becomes 1.4 or less is an amount containing the amount of the fatty acid in a molar amount of 30 times or more to the molar amount of the hepatic fatty acid binding protein. Fatty acid binding protein preparation. 肝型脂肪酸結合蛋白質に特異的に結合する物質を用いた測定における測定値の37℃2週間前後の変動幅が10%以下である、請求項1及び6から8いずれか記載の肝型脂肪酸結合蛋白質標品。   The liver-type fatty acid binding according to any one of claims 1 and 6 to 8, wherein a fluctuation range of around 37 ° C for 2 weeks in measurement value in measurement using a substance that specifically binds to liver-type fatty acid binding protein is 10% or less. Protein preparation. 販売に供される、請求項1及び6から9いずれか記載の肝型脂肪酸結合蛋白質標品。   The liver-type fatty acid binding protein preparation according to any one of claims 1 and 6 to 9 for sale. 測定用標準物質又は精度管理用物質として用いられる、請求項1及び6から10いずれか記載の肝型脂肪酸結合蛋白質標品。   The liver-type fatty acid binding protein preparation according to any one of claims 1 and 6 to 10, which is used as a measurement standard substance or a quality control substance. 酸化処理を行わない肝型脂肪酸結合蛋白質標品を用いた測定値に対する前記酸化処理を行った測定値の比で表される酸化変動係数を指標として肝型脂肪酸結合蛋白質標品を評価する方法。   A method of evaluating a liver-type fatty acid binding protein preparation by using an oxidation variation coefficient represented by a ratio of a measurement value obtained by performing the oxidation processing to a measurement value using a liver-type fatty acid binding protein preparation which is not oxidized. 肝型脂肪酸結合蛋白質標品を用いる測定における測定値の変動幅を抑制する方法であって、
(1)配列表の配列番号1と同一性90%以上のアミノ酸配列からなる肝型脂肪酸結合蛋白質の19番目、74番目、113番目の1つ以上のメチオニンを、メチオニン以外の非極性アミノ酸に置換し、少なくとも19番目のメチオニンを、メチオニン以外の非極性アミノ酸に置換すること、
(2)配列表の配列番号1と同一性90%以上のアミノ酸配列からなる肝型脂肪酸結合蛋白質の19番目のメチオニンの酸化率を30%以上とするか、又は、19番目のメチオニンの酸化率を30%以上及び113番目のメチオニンの酸化率を70%以上とすること、及び
(3)アラキドン酸、オレイン酸、8−イソプロスタグランジンF2α及び2,3−ジノル−8−イソプロスタグランジンF2αよりなる群から選択される少なくとも1種の脂肪酸を前記肝型脂肪酸結合蛋白質標品に含有させること
よりなる群から選択される少なくともいずれかを含む方法。
A method for suppressing the fluctuation range of measurement values in measurement using a liver-type fatty acid binding protein preparation,
(1) At least one methionine in the 19th, 74th and 113th positions of the liver-type fatty acid binding protein consisting of an amino acid sequence of 90% or more identity to SEQ ID NO: 1 in the sequence listing is substituted with nonpolar amino acids other than methionine And replacing at least the 19th methionine with a nonpolar amino acid other than methionine,
(2) The oxidation rate of methionine at position 19 of the liver-type fatty acid binding protein consisting of an amino acid sequence of 90% or more identity to SEQ ID NO: 1 in the sequence listing is 30% or more, or the oxidation rate of methionine at position 19 Making the oxidation rate of methionine of 30% or more and 70% or more of the 113th methionine, and (3) arachidonic acid, oleic acid, 8-isostataglandin F and 2,3-dinor-8-isoprostagran A method comprising at least one selected from the group consisting of including in the liver-type fatty acid binding protein preparation at least one fatty acid selected from the group consisting of gin F .
請求項1及び6から11いずれか記載の肝型脂肪酸結合蛋白質標品を用いて、肝型脂肪酸結合蛋白質の検量線を作成する方法。   A method of preparing a calibration curve of liver-type fatty acid binding protein using the liver-type fatty acid binding protein preparation according to any one of claims 1 and 6 to 11. 請求項14記載の方法で作成した検量線を用いて、試料中の肝型脂肪酸結合蛋白質を定量する方法。   A method of quantifying a liver-type fatty acid binding protein in a sample using a calibration curve prepared by the method according to claim 14.
JP2018524015A 2016-12-19 2017-06-15 Liver-type fatty acid-binding protein preparation, method for evaluating the preparation, method for suppressing the fluctuation range of the measurement value caused by liver-type fatty acid-binding protein in measurement using the preparation, liver-type fatty acid binding protein, and protein Encoding DNA, cells transformed with the DNA, method for producing the protein, method for preparing a calibration curve for hepatic fatty acid binding protein, and method for quantifying the protein Active JP6563598B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016246001A JP6174778B1 (en) 2016-12-19 2016-12-19 Liver-type fatty acid binding protein preparation, method for evaluating the preparation, method for suppressing the fluctuation range of the measurement value caused by liver-type fatty acid binding protein in the measurement using the preparation, calibration curve for liver-type fatty acid binding protein Method for preparing and method for quantifying the protein
JP2016246001 2016-12-19
PCT/JP2017/022209 WO2017217514A1 (en) 2016-06-16 2017-06-15 Liver-type fatty acid-binding protein preparation, method for evaluating preparation, method for regulating variation range of measured value caused by liver-type fatty acid-binding protein in measurement using preparation, liver-type fatty acid-binding protein, dna encoding protein, cell transformed by dna, method for producing protein, method for drawing calibration curve for liver-type fatty acid-binding protein, and method for quantifying protein

Publications (2)

Publication Number Publication Date
JPWO2017217514A1 true JPWO2017217514A1 (en) 2019-04-18
JP6563598B2 JP6563598B2 (en) 2019-08-21

Family

ID=59505163

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016246001A Active JP6174778B1 (en) 2016-06-16 2016-12-19 Liver-type fatty acid binding protein preparation, method for evaluating the preparation, method for suppressing the fluctuation range of the measurement value caused by liver-type fatty acid binding protein in the measurement using the preparation, calibration curve for liver-type fatty acid binding protein Method for preparing and method for quantifying the protein
JP2018524015A Active JP6563598B2 (en) 2016-12-19 2017-06-15 Liver-type fatty acid-binding protein preparation, method for evaluating the preparation, method for suppressing the fluctuation range of the measurement value caused by liver-type fatty acid-binding protein in measurement using the preparation, liver-type fatty acid binding protein, and protein Encoding DNA, cells transformed with the DNA, method for producing the protein, method for preparing a calibration curve for hepatic fatty acid binding protein, and method for quantifying the protein

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2016246001A Active JP6174778B1 (en) 2016-06-16 2016-12-19 Liver-type fatty acid binding protein preparation, method for evaluating the preparation, method for suppressing the fluctuation range of the measurement value caused by liver-type fatty acid binding protein in the measurement using the preparation, calibration curve for liver-type fatty acid binding protein Method for preparing and method for quantifying the protein

Country Status (1)

Country Link
JP (2) JP6174778B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6174778B1 (en) * 2016-12-19 2017-08-02 シミックホールディングス株式会社 Liver-type fatty acid binding protein preparation, method for evaluating the preparation, method for suppressing the fluctuation range of the measurement value caused by liver-type fatty acid binding protein in the measurement using the preparation, calibration curve for liver-type fatty acid binding protein Method for preparing and method for quantifying the protein
US10981960B2 (en) 2016-06-16 2021-04-20 Cmic Holdings Co., Ltd. Liver-type fatty acid-binding protein standard, method for evaluating standard, method for regulating variation range of measured value caused by liver-type fatty acid-binding protein in measurement using standard, liver-type fatty acid-binding protein, DNA encoding protein, cell transformed by DNA, method of producing protein, method of drawing calibration curve for liver-type fatty acid-binding protein, and method of quantifying protein
JP6581273B1 (en) * 2018-09-28 2019-09-25 シミックホールディングス株式会社 Method for quantifying liver-type fatty acid binding protein, kit for quantification thereof, method for testing renal disease, test kit for the same, and companion diagnostic agent

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6059388B1 (en) * 2016-06-16 2017-01-11 シミックホールディングス株式会社 Liver-type fatty acid binding protein, DNA encoding the protein, cells transformed with the DNA, a method for producing the protein, a preparation of the protein, a method for preparing a calibration curve for the protein, and quantifying the protein Method
JP6174778B1 (en) * 2016-12-19 2017-08-02 シミックホールディングス株式会社 Liver-type fatty acid binding protein preparation, method for evaluating the preparation, method for suppressing the fluctuation range of the measurement value caused by liver-type fatty acid binding protein in the measurement using the preparation, calibration curve for liver-type fatty acid binding protein Method for preparing and method for quantifying the protein
JP6218983B1 (en) * 2017-04-10 2017-10-25 シミックホールディングス株式会社 Liver-type fatty acid binding protein preparation, method for evaluating the preparation, method for suppressing the fluctuation range of the measurement value caused by liver-type fatty acid binding protein in the measurement using the preparation, calibration curve for liver-type fatty acid binding protein Method for preparing and method for quantifying the protein

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7855279B2 (en) * 2005-09-27 2010-12-21 Amunix Operating, Inc. Unstructured recombinant polymers and uses thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6059388B1 (en) * 2016-06-16 2017-01-11 シミックホールディングス株式会社 Liver-type fatty acid binding protein, DNA encoding the protein, cells transformed with the DNA, a method for producing the protein, a preparation of the protein, a method for preparing a calibration curve for the protein, and quantifying the protein Method
JP6174778B1 (en) * 2016-12-19 2017-08-02 シミックホールディングス株式会社 Liver-type fatty acid binding protein preparation, method for evaluating the preparation, method for suppressing the fluctuation range of the measurement value caused by liver-type fatty acid binding protein in the measurement using the preparation, calibration curve for liver-type fatty acid binding protein Method for preparing and method for quantifying the protein
JP6218983B1 (en) * 2017-04-10 2017-10-25 シミックホールディングス株式会社 Liver-type fatty acid binding protein preparation, method for evaluating the preparation, method for suppressing the fluctuation range of the measurement value caused by liver-type fatty acid binding protein in the measurement using the preparation, calibration curve for liver-type fatty acid binding protein Method for preparing and method for quantifying the protein

Also Published As

Publication number Publication date
JP6563598B2 (en) 2019-08-21
JP6174778B1 (en) 2017-08-02
JP2018100230A (en) 2018-06-28

Similar Documents

Publication Publication Date Title
Kermani A guide to membrane protein X‐ray crystallography
Breustedt et al. Comparative ligand-binding analysis of ten human lipocalins
Woestenenk et al. His tag effect on solubility of human proteins produced in Escherichia coli: a comparison between four expression vectors
Wang et al. Formation and reversibility of BiP protein cysteine oxidation facilitate cell survival during and post oxidative stress
JP6563598B2 (en) Liver-type fatty acid-binding protein preparation, method for evaluating the preparation, method for suppressing the fluctuation range of the measurement value caused by liver-type fatty acid-binding protein in measurement using the preparation, liver-type fatty acid binding protein, and protein Encoding DNA, cells transformed with the DNA, method for producing the protein, method for preparing a calibration curve for hepatic fatty acid binding protein, and method for quantifying the protein
JP5866715B2 (en) Fusion protein for protein detection and protein detection method
JP6059388B1 (en) Liver-type fatty acid binding protein, DNA encoding the protein, cells transformed with the DNA, a method for producing the protein, a preparation of the protein, a method for preparing a calibration curve for the protein, and quantifying the protein Method
KR20220144822A (en) Recombinant Calprotectin
Nagnan-Le Meillour et al. Binding specificity of native Odorant-binding protein isoforms is driven by phosphorylation and O-N-acetylglucosaminylation in the pig Sus scrofa
JP6218983B1 (en) Liver-type fatty acid binding protein preparation, method for evaluating the preparation, method for suppressing the fluctuation range of the measurement value caused by liver-type fatty acid binding protein in the measurement using the preparation, calibration curve for liver-type fatty acid binding protein Method for preparing and method for quantifying the protein
Francis et al. The single C‐terminal helix of human phospholipid scramblase 1 is required for membrane insertion and scrambling activity
EP2328909B1 (en) Human catechol-O-methyltransferase (COMT) assay
Hanes et al. Biochemical characterization of functional domains of the chaperone Cosmc
Charbonnier et al. Overexpression, refolding, and purification of the histidine-tagged outer membrane efflux protein OprM of Pseudomonas aeruginosa
WO2017217514A1 (en) Liver-type fatty acid-binding protein preparation, method for evaluating preparation, method for regulating variation range of measured value caused by liver-type fatty acid-binding protein in measurement using preparation, liver-type fatty acid-binding protein, dna encoding protein, cell transformed by dna, method for producing protein, method for drawing calibration curve for liver-type fatty acid-binding protein, and method for quantifying protein
Zanette et al. Human IL-1 receptor antagonist from Escherichia coli: large-scale microbial growth and protein purification
JP4669929B2 (en) Sample pretreatment method and immunological measurement method using the same
JP7094655B2 (en) Amadriase with improved resistance to anionic surfactant
CN104610443A (en) High-stability recombinant procalcitonin and preparation method and application thereof
Sayers et al. Cloning and expression of Saccharomyces cerevisiae copper‐metallothionein gene in Escherichia coli and characterization of the recombinant protein
Verissimo et al. The Heme Chaperone ApoCcmE Forms a Ternary Complex with CcmI and Apocytochrome c [S]
Galluccio et al. Over-expression in E. coli and purification of the human OCTN1 transport protein
Käkönen et al. Purification and characterization of recombinant osteocalcin fusion protein expressed inEscherichia coli
Zhang et al. Expression and purification of soluble human cystatin C in Escherichia coli with maltose-binding protein as a soluble partner
JP7282689B2 (en) Methods for Producing Refolded Recombinant Humanized Ranibizumab

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20190326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190724

R150 Certificate of patent or registration of utility model

Ref document number: 6563598

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250