JP6059388B1 - Liver-type fatty acid binding protein, DNA encoding the protein, cells transformed with the DNA, a method for producing the protein, a preparation of the protein, a method for preparing a calibration curve for the protein, and quantifying the protein Method - Google Patents

Liver-type fatty acid binding protein, DNA encoding the protein, cells transformed with the DNA, a method for producing the protein, a preparation of the protein, a method for preparing a calibration curve for the protein, and quantifying the protein Method Download PDF

Info

Publication number
JP6059388B1
JP6059388B1 JP2016120073A JP2016120073A JP6059388B1 JP 6059388 B1 JP6059388 B1 JP 6059388B1 JP 2016120073 A JP2016120073 A JP 2016120073A JP 2016120073 A JP2016120073 A JP 2016120073A JP 6059388 B1 JP6059388 B1 JP 6059388B1
Authority
JP
Japan
Prior art keywords
protein
fabp
fatty acid
liver
binding protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016120073A
Other languages
Japanese (ja)
Other versions
JP2017221155A (en
Inventor
健 菅谷
健 菅谷
正晃 岡▲崎▼
正晃 岡▲崎▼
剛 及川
剛 及川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CMIC Holdings Co Ltd
Original Assignee
CMIC Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CMIC Holdings Co Ltd filed Critical CMIC Holdings Co Ltd
Priority to JP2016120073A priority Critical patent/JP6059388B1/en
Application granted granted Critical
Publication of JP6059388B1 publication Critical patent/JP6059388B1/en
Priority to EP17813408.6A priority patent/EP3421600B1/en
Priority to PCT/JP2017/022209 priority patent/WO2017217514A1/en
Priority to US16/087,333 priority patent/US10981960B2/en
Priority to CN201780019737.XA priority patent/CN109121419A/en
Publication of JP2017221155A publication Critical patent/JP2017221155A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Peptides Or Proteins (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

【課題】幅広い保存条件において、特異的に結合する抗体による結合能の安定性に優れる肝型脂肪酸結合蛋白質、該蛋白質を用いた標品、該蛋白質をコードするDNA、該DNAで形質転換された細胞、該蛋白質の検量線を作成する方法、及び該蛋白質を定量する方法の提供を提供すること。【解決手段】配列表の配列番号1と相同性90%以上のアミノ酸配列からなり、19番目、74番目、113番目の1つ以上のメチオニンが、メチオニン以外の非極性アミノ酸に置換された肝型脂肪酸結合蛋白質。【選択図】図1A liver-type fatty acid binding protein having excellent stability of binding ability by an antibody that specifically binds under a wide range of storage conditions, a preparation using the protein, a DNA encoding the protein, and transformed with the DNA To provide a cell, a method for preparing a calibration curve for the protein, and a method for quantifying the protein. A liver type comprising an amino acid sequence having a homology of 90% or more with SEQ ID NO: 1 in the sequence listing, wherein one or more methionines at the 19th, 74th, and 113th positions are substituted with nonpolar amino acids other than methionine. Fatty acid binding protein. [Selection] Figure 1

Description

本発明は、特異的に結合する抗体による結合能が安定化された肝型脂肪酸結合蛋白質、該蛋白質をコードするDNA、該DNAで形質転換された細胞、該蛋白質の製造方法、該蛋白質を用いた標品、該蛋白質の検量線を作成する方法、及び該蛋白質を定量する方法に関するものである。   The present invention relates to a liver-type fatty acid binding protein in which the binding ability of an antibody that specifically binds is stabilized, a DNA encoding the protein, a cell transformed with the DNA, a method for producing the protein, and the use of the protein The present invention relates to a standard preparation, a method for preparing a calibration curve for the protein, and a method for quantifying the protein.

脂肪酸結合蛋白質(Fatty Acid−Binding Protein;以下FABPともいう。)は細胞内脂質結合蛋白質ファミリーに属する分子量約14kDaの蛋白質で、脂肪酸をはじめとする疎水性リガンドと可逆的に結合し細胞内輸送を担うことが知られている(例えば、非特許文献1)。その中でも肝型脂肪酸結合蛋白質(L−type fatty acid−binding protein;以下、単に「L−FABP蛋白質」ともいう。)は肝臓や腎臓の近位尿細管細胞の細胞質に局在しており、尿細管障害による虚血・酸化ストレスに応答して尿中への排泄量が増加する(例えば、非特許文献2)。そのため尿中の腎臓組織由来L−FABP蛋白質を検出することで腎疾患の検査が可能である(例えば、特許文献1)。
また、図15に示したように、L−FABP蛋白質は、逆平行βシートが2枚直行したβバレル構造に2本のαへリックスが蓋をするような形で安定化され、2分子の遊離脂肪酸(例えば、オレイン酸)と結合することが知られている(PDB ID:2LKK)(非特許文献3)。
そして、L−FABP蛋白質は遊離脂肪酸をミトコンドリアやペルオキシソームへ輸送し、β酸化を促進する機構を有している(非特許文献4)。
脂肪酸リガンドの結合親和性としては、脂肪酸の炭素鎖が伸長し、二重結合が増えるほど高くなる傾向が見られ(非特許文献5、6)、L−FABP蛋白質は特に過酸化物に対して結合親和性が高いことなどが報告されている(非特許文献7)。
また、L−FABP蛋白質の抗酸化機構を研究した報告では、AAPHによってラットL−FABP蛋白質のメチオニン残基が酸化されていたことが示されている(非特許文献8)。
Fatty Acid-Binding Protein (hereinafter also referred to as FABP) is a protein having a molecular weight of about 14 kDa belonging to the family of intracellular lipid-binding proteins, and reversibly binds to hydrophobic ligands including fatty acids to transport into the cell. It is known to bear (for example, Non-Patent Document 1). Among them, hepatic fatty acid binding protein (L-type fatty acid-binding protein; hereinafter also simply referred to as “L-FABP protein”) is localized in the cytoplasm of the proximal tubule cells of the liver and kidney, and urine The amount of urinary excretion increases in response to ischemia / oxidative stress due to tubule injury (for example, Non-Patent Document 2). Therefore, it is possible to test for renal diseases by detecting L-FABP protein derived from kidney tissue in urine (for example, Patent Document 1).
Further, as shown in FIG. 15, the L-FABP protein is stabilized in such a way that two α helices cover a β barrel structure in which two antiparallel β sheets are orthogonally crossed, and two molecules of It is known to bind to free fatty acids (for example, oleic acid) (PDB ID: 2LKK) (Non-patent Document 3).
The L-FABP protein has a mechanism for transporting free fatty acids to mitochondria and peroxisomes and promoting β-oxidation (Non-patent Document 4).
The binding affinity of the fatty acid ligand tends to increase as the carbon chain of the fatty acid grows and double bonds increase (Non-Patent Documents 5 and 6). It has been reported that the binding affinity is high (Non-patent Document 7).
In addition, a report on the study of the antioxidant mechanism of L-FABP protein indicates that the methionine residue of rat L-FABP protein was oxidized by AAPH (Non-patent Document 8).

特開平11−242026号公報JP-A-11-242026

Furuhashi,M.,et al.:Nat Rev Drug Discov,7:489−503,2008Furuhashi, M .; , Et al. : Nat Rev Drug Discov, 7: 489-503, 2008 Kamijo,A.et al.:J Lab Clin Med,143:23−30,2004Kamijo, A .; et al. : J Lab Clin Med, 143: 23-30, 2004 Cai,J.et al.:Biophys J,102:2585−2594,2012Cai, J .; et al. : Biophys J, 102: 2585-2594, 2012 Veerkamp,J.H.et al.:Prostaglandins Leukot Essent Fatty Acids,49:887−906,1993Veerkamp, J. et al. H. et al. : Prostaglandins Leukot Essent Fatty Acids, 49: 887-906, 1993. Zimmerman,A.W.et al.:Int J Biochem Cell Biol,33:865−876,2001Zimmerman, A.M. W. et al. : Int J Biochem Cell Biol, 33: 865-876, 2001 Norris,A.W.,Spector,A.A.:J Lipid Res,43:646−653,2002Norris, A.M. W. , Spector, A .; A. : J Lipid Res, 43: 646-653, 2002 Raza,H.et al.:Biochem Biophys Res Commun,161:448−455,1989Raza, H .; et al. : Biochem Biophys Res Commun, 161: 448-455, 1989. Yan,J.et al.:J Lipid Res,50:2445−2454,2009Yan, J .; et al. : J Lipid Res, 50: 2445-2454, 2009

上述のようなL−FABP蛋白質を検出するための検査キットとしては、例えば、L−FABP蛋白質に対する認識部位が異なる2種類の抗体を組み合わせて用いるサンドイッチELISA法を採用した検査キットが開発されている。
ここで、図1は、L−FABPの保存安定性を示す図であり、図1におけるグラフはL−FABPを4℃、25℃又は37℃で保存した場合の保存日数によるELISA測定値の変化(−80℃保管サンプルを100とした場合の割合(%))を示す。
サンドイッチELISA法を採用した上記検査キットにおいて、リコンビナントL−FABP蛋白質を使用した従来の測定標準物質(標品)では、上記L−FABP蛋白質を室温(25℃)以上で長期保存すると、図1に示したように、抗体結合能が変化してしまい、ELISA法等の抗原抗体反応を利用した免疫学的手法によるL−FABP蛋白質の正確な測定を行うことができない問題があった。
このようにL−FABP蛋白質の不安定性のため、L−FABP蛋白質標品の製造条件や測定環境に厳密な管理が求められ、また標品は低温保存が要求され、更なる操作性、安定性の向上が望まれていた。
As a test kit for detecting the L-FABP protein as described above, for example, a test kit employing a sandwich ELISA method in which two types of antibodies having different recognition sites for the L-FABP protein are used has been developed. .
Here, FIG. 1 is a diagram showing the storage stability of L-FABP, and the graph in FIG. 1 shows changes in ELISA measurement values depending on the storage days when L-FABP is stored at 4 ° C., 25 ° C. or 37 ° C. (Ratio (%) when the sample stored at −80 ° C. is 100).
In the above-described test kit employing the sandwich ELISA method, with the conventional measurement standard substance (standard) using recombinant L-FABP protein, when the L-FABP protein is stored for a long time at room temperature (25 ° C.) or more, FIG. As shown, the antibody binding ability was changed, and there was a problem that L-FABP protein could not be accurately measured by an immunological technique using an antigen-antibody reaction such as ELISA.
Due to the instability of the L-FABP protein, strict control is required for the production conditions and measurement environment of the L-FABP protein preparation, and the preparation is required to be stored at a low temperature for further operability and stability. Improvement was desired.

本発明は、上記事情に鑑みてなされたものであり、幅広い保存条件において、特異的に結合する抗体による結合能の安定性に優れる肝型脂肪酸結合蛋白質、該蛋白質をコードするDNA、該DNAで形質転換された細胞、該蛋白質の製造方法、該蛋白質を用いた標品、該蛋白質の検量線を作成する方法、及び該蛋白質を定量する方法の提供を目的とする。   The present invention has been made in view of the above circumstances, and has a liver-type fatty acid binding protein excellent in stability of binding ability by an antibody that specifically binds under a wide range of storage conditions, a DNA encoding the protein, and the DNA. It is an object of the present invention to provide transformed cells, a method for producing the protein, a preparation using the protein, a method for preparing a calibration curve for the protein, and a method for quantifying the protein.

本発明者らは、上述した問題点を解決すべく鋭意検討した結果、L−FABP蛋白質は酸化剤である2,2’−アゾビス2−アミジノプロパン(以下、AAPHと略記)処理によってメチオニン残基の酸化修飾及び構造変化が生じ、その結果、ELISAにおける抗体結合能が変化し、ELISA測定値が大きく変動することを見出した。また、驚くべきことに、AAPH無添加の場合(HOを添加)においても室温で1時間反応させることによりELISA測定値が上昇しており、空気酸化による影響が生じていることも見出した。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that the L-FABP protein is treated with 2,2′-azobis-2-amidinopropane (hereinafter abbreviated as AAPH) which is an oxidant. As a result, it was found that the antibody binding ability in ELISA was changed, and the ELISA measurement value varied greatly. Surprisingly, even when AAPH was not added (added with H 2 O), the ELISA measurement value was increased by reacting at room temperature for 1 hour, and it was also found that the effect of air oxidation occurred. .

更に、L−FABP蛋白質中のメチオニン残基を遺伝子改変技術により別のアミノ酸に変異させたL−FABP蛋白質が、酸化反応や脂肪酸の添加、室温以上の温度における長期保存においても抗体結合能が変化せずに安定化されることを見出した。
本発明は、上記知見に基づき完成されるに至ったものである。
Furthermore, the L-FABP protein, in which the methionine residue in the L-FABP protein is mutated to another amino acid by genetic modification technology, changes its antibody binding ability even during oxidation reaction, addition of fatty acids, and long-term storage at temperatures above room temperature. It was found that it can be stabilized without.
The present invention has been completed based on the above findings.

すなわち本発明は以下の通りである。
本発明の第1の態様は、
配列表の配列番号1と相同性90%以上のアミノ酸配列からなり、19番目、74番目、113番目の1つ以上のメチオニンが、メチオニン以外の非極性アミノ酸に置換された肝型脂肪酸結合蛋白質である。
本発明の第2の態様は、
上記第1の態様に係る蛋白質をコードするDNAである。
本発明の第3の態様は、
上記第2の態様に係るDNAで形質転換された細胞である。
本発明の第4の態様は、
上記第3の態様に係る細胞を培養し、上記第1の態様に係る蛋白質を回収する工程を含む上記第1の態様に係る蛋白質の製造方法である。
That is, the present invention is as follows.
The first aspect of the present invention is:
A liver type fatty acid binding protein comprising an amino acid sequence having 90% or more homology with SEQ ID NO: 1 in the sequence listing, wherein one or more methionines at the 19th, 74th, and 113th positions are substituted with nonpolar amino acids other than methionine. is there.
The second aspect of the present invention is:
DNA encoding the protein according to the first aspect.
The third aspect of the present invention is:
A cell transformed with the DNA according to the second aspect.
The fourth aspect of the present invention is:
A method for producing a protein according to the first aspect, comprising the steps of culturing the cell according to the third aspect and recovering the protein according to the first aspect.

本発明の第5の態様は、
上記第1の態様に係る蛋白質からなる肝型脂肪酸結合蛋白質標品である。
本発明の第6の態様は、
配列表の配列番号1と相同性90%以上のアミノ酸配列からなり、19番目、74番目、113番目の1つ以上はメチオニンであり、前記メチオニンの少なくとも1つが66.7%超の酸化率を有する肝型脂肪酸結合蛋白質標品である。
本発明の第7の態様は、
アラキドン酸、オレイン酸、8−イソプロスタグランジンF2α及び2,3−ジノル−8−イソプロスタグランジンF2αよりなる群から選択される少なくとも1種の脂肪酸を0.35μM以上含み、かつ配列表の配列番号1と相同性90%以上のアミノ酸配列からなる肝型脂肪酸結合蛋白質を含む肝型脂肪酸結合蛋白質標品である。
According to a fifth aspect of the present invention,
A liver type fatty acid binding protein preparation comprising the protein according to the first aspect.
The sixth aspect of the present invention is:
It consists of an amino acid sequence having a homology of 90% or more with SEQ ID NO: 1 in the sequence listing, and one or more of the 19th, 74th and 113th are methionine, and at least one of the methionine has an oxidation rate of more than 66.7%. It is a liver type fatty acid binding protein preparation.
The seventh aspect of the present invention is
0.35 μM or more of at least one fatty acid selected from the group consisting of arachidonic acid, oleic acid, 8-isoprostaglandin F and 2,3-dinor-8-isoprostaglandin F It is a liver type fatty acid binding protein preparation containing a liver type fatty acid binding protein consisting of an amino acid sequence having a homology of 90% or more with SEQ ID NO: 1 in the table.

本発明の第8の態様は、
上記第5〜7のいずれかの態様に係る肝型脂肪酸結合蛋白質標品を用いて、肝型脂肪酸結合蛋白質の検量線を作成する方法である。
本発明の第9の態様は、
上記第8の態様に係る方法で作成した検量線を用いて、試料中の肝型脂肪酸結合蛋白質を定量する方法である。
The eighth aspect of the present invention is
A method for preparing a calibration curve for a liver-type fatty acid-binding protein using the liver-type fatty acid-binding protein preparation according to any one of the fifth to seventh aspects.
The ninth aspect of the present invention provides
This is a method for quantifying liver-type fatty acid binding protein in a sample using a calibration curve prepared by the method according to the eighth aspect.

本発明によれば、幅広い保存条件において、特異的に結合する抗体による結合能の安定性に優れる肝型脂肪酸結合蛋白質、該蛋白質をコードするDNA、該DNAで形質転換された細胞、該蛋白質の製造方法、該蛋白質を用いた標品、該蛋白質の検量線を作成する方法、及び該蛋白質を定量する方法を提供することができる。
本発明の肝型脂肪酸結合蛋白質の製造方法は、得られる肝型脂肪酸結合蛋白質が酸化や脂肪酸結合状態による抗体結合能の変化を抑制することができることから、由来生物種や蛋白質発現方法によらない肝型脂肪酸結合蛋白質標品を提供することができる。すなわち肝型脂肪酸結合蛋白質標品の製造条件、保存条件、操作性における安定性と汎用性を提供することができる。
According to the present invention, a liver type fatty acid-binding protein excellent in stability of binding ability by an antibody that specifically binds under a wide range of storage conditions, DNA encoding the protein, cells transformed with the DNA, A production method, a preparation using the protein, a method for preparing a calibration curve for the protein, and a method for quantifying the protein can be provided.
The method for producing a liver-type fatty acid binding protein of the present invention does not depend on the source species or protein expression method because the obtained liver-type fatty acid binding protein can suppress changes in antibody binding ability due to oxidation or fatty acid binding state. A liver-type fatty acid binding protein preparation can be provided. That is, it is possible to provide stability and versatility in the production conditions, storage conditions, and operability of the liver type fatty acid binding protein preparation.

本発明の肝型脂肪酸結合蛋白質標品は、上記安定性に優れる肝型脂肪酸結合蛋白質からなるので、温度や酸化の程度によらずに、正確な検出ないし定量を可能とする。
また、本発明の肝型脂肪酸結合蛋白質標品は、幅広い保存条件において、特異的に結合する抗体による結合能の安定性に優れることから、測定用標準物質又は精度管理用物質としての肝型脂肪酸結合蛋白質の製造管理を容易にし、免疫学的手法における測定の操作性、汎用性が向上することが期待される。
Since the liver-type fatty acid binding protein preparation of the present invention comprises the above-described liver-type fatty acid binding protein having excellent stability, accurate detection or quantification is possible regardless of the temperature and the degree of oxidation.
In addition, since the liver type fatty acid binding protein preparation of the present invention is excellent in stability of binding ability by antibodies that specifically bind under a wide range of storage conditions, liver type fatty acid as a measurement standard substance or a quality control substance It is expected that the production management of the binding protein is facilitated, and the operability and versatility of the measurement in the immunological technique are improved.

L−FABP蛋白質の保存安定性を示す図である。It is a figure which shows the storage stability of L-FABP protein. (a)は酸化型L−FABP及び非酸化型L−FABPのLC−ESI−MSによる分子量測定結果を示す図であり、(b)は酸化型L−FABPと非酸化型L−FABPのCDスペクトルを示す図である。(A) is a figure which shows the molecular weight measurement result by LC-ESI-MS of oxidation type L-FABP and non-oxidation type L-FABP, (b) is CD of oxidation type L-FABP and non-oxidation type L-FABP. It is a figure which shows a spectrum. L−FABP蛋白質のAAPH処理によるELISA測定値の変化(無処理を100とした場合の割合(%))を示す図である。It is a figure which shows the change (ratio (%) when non-processing is set to 100) of the ELISA measured value by the AAPH process of L-FABP protein. 各種濃度のAAPHをヒトL−FABP蛋白質に添加し、37℃で1.5時間反応させた後のMSスペクトルを示す図である。It is a figure which shows MS spectrum after adding AAPH of various density | concentrations to human L-FABP protein, and making it react at 37 degreeC for 1.5 hours. (a)は、配列番号1に示したヒトL−FABP蛋白質のアミノ酸配列を示す図であり、(b)は、ヒトL−FABP蛋白質のトリプシン消化によって生じ得る各種ペプチド断片の推定分子量を示す図である。(A) is a figure which shows the amino acid sequence of human L-FABP protein shown to sequence number 1, (b) is a figure which shows the estimated molecular weight of the various peptide fragments which can be produced by the trypsin digestion of human L-FABP protein. It is. (a)は、上記各種濃度(40mM、200mM)のAAPHと反応後のヒトL−FABP蛋白質をトリプシン消化して得られたMet1を含むペプチド断片No.1のMSスペクトルを示す図であり、(b)は、上記各種濃度のAAPHと反応後のヒトL−FABP蛋白質をトリプシン消化して得られたMet19を含むペプチド断片No.2のMSスペクトルを示す図であり、(c)は、上記各種濃度のAAPHと反応後のヒトL−FABP蛋白質をトリプシン消化して得られたMet74を含むペプチド断片No.9及びペプチド断片No.10のMSスペクトルを示す図であり、(d)は、上記各種濃度のAAPHと反応後のヒトL−FABP蛋白質をトリプシン消化して得られたMet113を含むペプチド断片No.14及びペプチド断片15のMSスペクトルを示す図である。(A) shows peptide fragment No. 1 containing Met1 obtained by trypsin digesting the human L-FABP protein after reaction with AAPH at various concentrations (40 mM, 200 mM). 1 (b) is a peptide fragment No. 1 containing Met19 obtained by trypsin digestion of human L-FABP protein after reaction with AAPH at various concentrations. (C) is a peptide fragment No. 2 containing Met74 obtained by trypsin digestion of the human L-FABP protein after reaction with AAPH at various concentrations. 9 and peptide fragment no. 10 (d) is a diagram showing the MS spectrum of No. 10, wherein (d) shows peptide fragment No. 1 containing Met113 obtained by trypsin digestion of human L-FABP protein after reaction with AAPH at various concentrations. 14 shows MS spectra of 14 and peptide fragment 15. FIG. CORYNEX(登録商標)により発現したL−FABP M19L/M74L/M113L及び精製蛋白質を示す図である。It is a figure which shows L-FABP M19L / M74L / M113L and purified protein which were expressed by CARYNEX (trademark). 各種濃度のAAPH処理による変異L−FABP蛋白質のELISA測定値の変化(無処理の場合を100とした場合の割合(%))を示す図である。It is a figure which shows the change (ratio (%) when the case of non-processing is set to 100) of the ELISA measurement value of the variation | mutation L-FABP protein by AAPH treatment of various density | concentrations. 変異L−FABP蛋白質のAAPH処理によるELISA測定値の変化(無処理サンプルを100とした割合(%))を示す図である。It is a figure which shows the change (ratio (%) which made the unprocessed sample 100) by the ELISA measurement value by the AAPH process of the mutant L-FABP protein. 変異L−FABP蛋白質の室温長期保存(25℃)によるELISA測定値の変化(−80℃保存サンプルを100とした割合(%))を示す図である。It is a figure which shows the change (ratio (%) which set the -80 degreeC storage sample to 100) by the ELISA measurement value by room temperature long-term storage (25 degreeC) of the mutant L-FABP protein. 変異L−FABP蛋白質の37℃長期保存によるELISA測定値の変化(−80℃保存サンプルを100とした割合(%))を示す図である。It is a figure which shows the change (ratio (%) which set the -80 degreeC storage sample to 100) by the ELISA measurement value by 37 degreeC long-term storage of the mutant L-FABP protein. クローン2とは認識部位が異なる標識抗体を用いたELISA測定におけるAAPHの影響(無処理サンプルを100とした割合(%))を示す図である。It is a figure which shows the influence (ratio (%) which set the untreated sample to 100) in the ELISA measurement using the labeled antibody from which the recognition site | part differs from the clone 2. FIG. 各種濃度の各種脂肪酸によるELISA測定値の変化(脂肪酸添加濃度0μMを100とした割合(%))を示す図である。It is a figure which shows the change (ratio (%) which made the fatty-acid addition density | concentration 0 micromol 100) by the ELISA measured value by various fatty acids of various density | concentrations. L−FABP変異蛋白質の脂肪酸添加処理によるELISA測定値の変化(無処理サンプルを100とした割合(%))を示す図である。It is a figure which shows the change (ratio (%) which set the unprocessed sample to 100) by the ELISA measurement value by the fatty acid addition process of L-FABP mutein. L−FABP蛋白質の遊離脂肪酸との結合を示す立体構造モデルを示す図である。It is a figure which shows the three-dimensional structure model which shows the coupling | bonding with the free fatty acid of L-FABP protein.

以下、本発明の実施態様について詳細に説明するが、本発明は、以下の実施態様に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。   Hereinafter, embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments, and can be implemented with appropriate modifications within the scope of the object of the present invention. .

<安定化された肝型脂肪酸結合蛋白質>
本発明の第1の態様に係る肝型脂肪酸結合蛋白質は、
配列表の配列番号1と相同性90%以上のアミノ酸配列からなり、19番目、74番目、113番目の1つ以上のメチオニンが、メチオニン以外の非極性アミノ酸に置換された変異肝型脂肪酸結合蛋白質である。
第1の態様に係る肝型脂肪酸結合蛋白質は、19番目、74番目、113番目の1つ以上のメチオニンがメチオニン以外の非極性アミノ酸に置換されることにより、肝型脂肪酸結合蛋白質に対する特異的に結合する抗体の結合能を安定化することができる。
メチオニン以外にも、ジスルフィド結合や酸素の直接付加を受けるシステイン残基や、カルボニル化するリシン残基、アルギニン残基、プロリン残基、ニトロ化されるチロシン残基等の酸化修飾が知られているが(Toda T.,etal.,基礎老化研究,35(3);17−22,2011)、19番目、74番目、113番目の1つ以上のメチオニンを置換するアミノ酸が非極性アミノ酸であることにより酸化修飾を防ぐことができる。
<Stabilized liver-type fatty acid binding protein>
The liver-type fatty acid binding protein according to the first aspect of the present invention is:
A mutant liver-type fatty acid binding protein comprising an amino acid sequence having a homology of 90% or more with SEQ ID NO: 1 in the sequence listing, wherein one or more methionines at the 19th, 74th, and 113th positions are replaced with nonpolar amino acids other than methionine It is.
The liver-type fatty acid binding protein according to the first aspect is specifically directed to the liver-type fatty acid binding protein by replacing one or more methionines at the 19th, 74th, and 113th with nonpolar amino acids other than methionine. The binding ability of the antibody to be bound can be stabilized.
In addition to methionine, oxidative modifications such as cysteine residues that undergo direct addition of disulfide bonds and oxygen, lysine residues that are carbonylated, arginine residues, proline residues, and tyrosine residues that are nitrated are known. (Toda T., et al., Basic Aging Research, 35 (3); 17-22, 2011), the amino acid replacing one or more methionines at the 19th, 74th, and 113th is a nonpolar amino acid. Can prevent oxidation modification.

配列番号1は、野生型ヒトL−FABP蛋白質(以下、L−FABP WTともいう。)のアミノ酸配列を表す。
本明細書で言う「相同性90%以上のアミノ酸配列」とは、アミノ酸の相同性が90%以上であることを意味し、相同性は好ましくは95%以上、より好ましくは97%以上である。
配列表の配列番号1に記載した野生型ヒト肝型脂肪酸結合蛋白質のアミノ酸配列上の置換、挿入、欠失等による変異蛋白質であっても、その変異が野生型ヒト肝型脂肪酸結合蛋白質の3次元構造において保存性が高い変異であれば、これらは全て肝型脂肪酸結合蛋白質の範囲内に属し得る。
蛋白質の構成要素となるアミノ酸の側鎖は、疎水性、電荷、大きさなどにおいてそれぞれ異なるものであるが、実質的にタンパク質全体の3次元構造(立体構造とも言う)に影響を与えないという意味で保存性の高い幾つかの関係が、経験的にまた物理化学的な実測により知られている。例えば、アミノ酸残基の置換については、グリシン(Gly)とプロリン(Pro)、Glyとアラニン(Ala)又はバリン(Val)、ロイシン(Leu)とイソロイシン(Ile)、グルタミン酸(Glu)とグルタミン(Gln)、アスパラギン酸(Asp)とアスパラギン(Asn)、システイン(Cys)とスレオニン(Thr)、Thrとセリン(Ser)又はAla、リジン(Lys)とアルギニン(Arg)等が挙げられる。
SEQ ID NO: 1 represents the amino acid sequence of wild-type human L-FABP protein (hereinafter also referred to as L-FABP WT).
The term “amino acid sequence having 90% or more homology” as used herein means that amino acid homology is 90% or more, and the homology is preferably 95% or more, more preferably 97% or more. .
Even if it is a mutated protein due to substitution, insertion, deletion, etc. on the amino acid sequence of the wild-type human liver type fatty acid binding protein shown in SEQ ID NO: 1 in the sequence listing, the mutation is 3 of the wild type human liver type fatty acid binding protein. All of these mutations that are highly conserved in the dimensional structure may belong to the liver type fatty acid binding protein.
The side chains of amino acids that constitute protein components differ in hydrophobicity, charge, size, etc., but mean that they do not substantially affect the three-dimensional structure (also referred to as a three-dimensional structure) of the entire protein. Some of the relationships that are highly conserved are known empirically and by physicochemical measurements. For example, for substitution of amino acid residues, glycine (Gly) and proline (Pro), Gly and alanine (Ala) or valine (Val), leucine (Leu) and isoleucine (Ile), glutamic acid (Glu) and glutamine (Gln) ), Aspartic acid (Asp) and asparagine (Asn), cysteine (Cys) and threonine (Thr), Thr and serine (Ser) or Ala, lysine (Lys) and arginine (Arg), and the like.

上記第1の態様に係る肝型脂肪酸結合蛋白質の取得方法については特に制限はなく、化学合成により合成した蛋白質でもよいし、遺伝子組み換え技術による作製した組み換え蛋白質でもよい。
L−FABP蛋白質のアミノ酸配列や遺伝子配列は既に報告されているため(Veerkamp and Maatman, Prog. Lipid Res.,34:17−52,1995)、例えば、それらを基にプライマーを設計し、PCR法により適当なcDNAライブラリ等からcDNAをクローニングし、これを用いて遺伝子組換えを行うことより、上記第1の態様に係る肝型脂肪酸結合蛋白質を調製することができる。
The method for obtaining the liver-type fatty acid binding protein according to the first aspect is not particularly limited, and may be a protein synthesized by chemical synthesis or a recombinant protein produced by a gene recombination technique.
Since the amino acid sequence and gene sequence of L-FABP protein have already been reported (Veerkamp and Maatman, Prog. Lipid Res., 34: 17-52, 1995), for example, primers are designed based on them, and PCR method The liver type fatty acid binding protein according to the first aspect can be prepared by cloning cDNA from an appropriate cDNA library and carrying out gene recombination using the cDNA.

第1の態様に係る肝型脂肪酸結合蛋白質は、19番目、74番目、113番目の2つ以上のメチオニンがメチオニン以外の非極性アミノ酸に置換されることが好ましく、19番目のメチオニンを含む2つ以上のメチオニンがメチオニン以外の非極性アミノ酸に置換されることがより好ましく、19番目、74番目、113番目のメチオニン全てがメチオニン以外の非極性アミノ酸に置換されることが更に好ましい。   In the liver-type fatty acid binding protein according to the first aspect, it is preferable that two or more methionines at the 19th, 74th, and 113th are substituted with nonpolar amino acids other than methionine, and two containing 19th methionine More preferably, the above methionine is substituted with a nonpolar amino acid other than methionine, and it is further preferred that all of the 19th, 74th and 113th methionines are substituted with nonpolar amino acids other than methionine.

19番目、74番目、113番目の1つ以上のメチオニンを置換する非極性アミノ酸としては、19番目、74番目、113番目の1つ以上のメチオニンが同一の非極性アミノ酸で置換されてもよく、異なる非極性アミノ酸で置換されていてもよい。19番目、74番目、113番目の1つ以上のメチオニンを置換する非極性アミノ酸としては、ロイシン、イソロイシン、バリン、アラニン、フェニルアラニン、トリプトファンであることが好ましく、抗体の結合性を大きく変化させないメチオニンと類似した構造である観点から、ロイシン、イソロイシン、バリン、アラニンであることがより好ましく、ロイシン、イソロイシン、バリンであることが更に好ましく、ロイシン、イソロイシンであることが特に好ましく、ロイシンであることが最も好ましい。   As the nonpolar amino acid that replaces one or more methionines at the 19th, 74th, and 113th, one or more methionines at the 19th, 74th, and 113th may be substituted with the same nonpolar amino acid, It may be substituted with a different nonpolar amino acid. The nonpolar amino acid that replaces one or more methionines at the 19th, 74th, and 113th positions is preferably leucine, isoleucine, valine, alanine, phenylalanine, tryptophan, and methionine that does not significantly change the binding property of the antibody. From the viewpoint of a similar structure, leucine, isoleucine, valine and alanine are more preferable, leucine, isoleucine and valine are more preferable, leucine and isoleucine are particularly preferable, and leucine is most preferable. preferable.

<安定化された肝型脂肪酸結合蛋白質をコードするDNA>
本発明の第2の態様に係るDNAは、上記第1の態様に係る変異肝型脂肪酸結合蛋白質をコードするDNAである。
上記第1の態様に係る変異肝型脂肪酸結合蛋白質をコードするDNA(変異遺伝子)は、化学合成、遺伝子工学的手法又は突然変異誘発などの任意の方法で作製することができる。上述のように、L−FABP蛋白質のアミノ酸配列や遺伝子配列は既に報告されているため、例えば、それらを基にプライマーを設計し、PCR法により適当なcDNAライブラリ等からcDNAをクローニングし、これを用いて遺伝子組換えにより得ることができる。遺伝子工学的手法の一つである部位特異的変異誘発法は特定の位置に特定の変異を導入できる手法であることから有用であり、モレキュラークローニング第2版、カレント・プロトコールズ・イン・モレキュラー・バイオロジー等に記載の方法に準じて行うことができる。
<DNA encoding stabilized liver-type fatty acid binding protein>
The DNA according to the second aspect of the present invention is a DNA encoding the mutant liver-type fatty acid binding protein according to the first aspect.
The DNA (mutant gene) encoding the mutant liver-type fatty acid binding protein according to the first aspect can be prepared by any method such as chemical synthesis, genetic engineering, or mutagenesis. As described above, since the amino acid sequence and gene sequence of the L-FABP protein have already been reported, for example, primers are designed based on them, and cDNA is cloned from an appropriate cDNA library or the like by the PCR method. And can be obtained by genetic recombination. Site-directed mutagenesis, which is one of the genetic engineering methods, is useful because it can introduce a specific mutation at a specific position. Molecular cloning 2nd edition, Current Protocols in Molecular. It can be performed according to the method described in biology and the like.

<形質転換細胞>
本発明の第3の態様に係る細胞は、上記第2の態様に係るDNAで形質転換された細胞である。
上記第2の態様に係るDNA又は上記第2の態様に係るDNA含む組み換えベクターを適当な宿主に導入することによって上記第3の態様に係る形質転換細胞を作製することができる。
上記第2の態様に係るDNA含む組み換えベクターは、適当な宿主ベクター系による一般的遺伝子組み換え技術によって調製することができる。適当なベクターとしては、大腸菌由来のプラスミド(例、pBR322、pUC118その他)、枯草菌由来のプラスミド(例、pUB110、pSH19その他)、さらにバクテリオファージやレトロウイルスやワクシニアウイルス等の動物ウイルス等が利用できる。
上記第2の態様に係るDNA又は上記第2の態様に係るDNA含む組み換えベクターを導入される宿主細胞は、細菌、酵母等が挙げられる。
細菌細胞の例としては、コリネバクテリウム属細菌(例えば、Corynebacterium glutamicum)、バチルス属細菌(例えば、Bacillus subtilis)又はストレプトマイセス属細菌等のグラム陽性菌又は大腸菌(Escherichia coli)等のグラム陰性菌が挙げられる。これら細菌の形質転換は、プロトプラスト法、または公知の方法でコンピテント細胞を用いることにより行えばよい。
酵母細胞の例としては、サッカロマイセス又はシゾサッカロマイセスに属する細胞が挙げられ、例えば、サッカロマイセス・セレビシエ(Saccharomyces cerevislae)またはサッカロマイセス・クルイベリ(Saccharomyces kluyveri)等が挙げられる。酵母宿主への組み換えベクターの導入方法としては、例えば、エレクトロポレーション法、スフェロブラスト法、酢酸リチウム法等を挙げることができる。
上記第2の態様に係るDNAで形質転換された細胞としては、上記第1の態様に係る肝型脂肪酸結合蛋白質を効率よく製造し、かつ後述の肝型脂肪酸結合蛋白質の精製が煩雑な工程を要することがないことから、Corynebacterium glutamicumを用いたタンパク質分泌発現系(CORYNEX(登録商標):味の素株式会社製)であることが好ましい。
<Transformed cells>
The cell according to the third aspect of the present invention is a cell transformed with the DNA according to the second aspect.
The transformed cell according to the third aspect can be prepared by introducing the DNA according to the second aspect or the recombinant vector containing the DNA according to the second aspect into a suitable host.
The recombinant vector containing the DNA according to the second aspect can be prepared by a general genetic recombination technique using an appropriate host vector system. As suitable vectors, plasmids derived from E. coli (eg, pBR322, pUC118, etc.), plasmids derived from Bacillus subtilis (eg, pUB110, pSH19, etc.), animal viruses such as bacteriophages, retroviruses, vaccinia viruses and the like can be used. .
Examples of host cells into which the DNA according to the second aspect or the recombinant vector containing the DNA according to the second aspect is introduced include bacteria and yeasts.
Examples of bacterial cells include Gram-positive bacteria such as Corynebacterium bacteria (eg Corynebacterium glutamicum), Bacillus bacteria (eg Bacillus subtilis) or Streptomyces bacteria, or Gram-negative bacteria such as Escherichia coli. Is mentioned. Transformation of these bacteria may be performed by using competent cells by a protoplast method or a known method.
Examples of yeast cells include cells belonging to Saccharomyces or Schizosaccharomyces, such as Saccharomyces cerevisiae or Saccharomyces kluyveri. Examples of the method for introducing a recombinant vector into a yeast host include an electroporation method, a spheroblast method, and a lithium acetate method.
The cells transformed with the DNA according to the second aspect include a step of efficiently producing the liver fatty acid binding protein according to the first aspect and complicated purification of the liver fatty acid binding protein described later. Since it is not necessary, a protein secretion expression system (CORYNEX (registered trademark): manufactured by Ajinomoto Co., Inc.) using Corynebacterium glutamicum is preferable.

<安定化された肝型脂肪酸結合蛋白質の製造方法>
本発明の第4の態様に係る蛋白質の製造方法は、上記第3の態様に係る形質転換細胞を培養し、上記第1の態様に係る蛋白質を回収する工程を含む蛋白質の製造方法である。
上記第3の態様に係る形質転換細胞は、導入された遺伝子の発現を可能にする条件下で適切な栄養培地中で培養する。上記第3の態様に係る形質転換細胞の培養物から、上記第1の態様に係る蛋白質を回収するには、通常の蛋白質の単離、精製法を用いればよい。
例えば、上記第1の態様に係る蛋白質が、細胞内に溶解状態で発現した場合には、培養終了後、細胞を遠心分離により回収し水系緩衝液に懸濁後、超音波破砕機等により細胞を破砕し、無細胞抽出液を得る。該無細胞抽出液を遠心分離することにより得られた上清から、通常の蛋白質の単離精製法、即ち、溶媒抽出法、硫安等による塩析法、脱塩法、有機溶媒による沈殿法、ジエチルアミノエチル(DEAE)セファロース等のレジンを用いた陰イオン交換クロマトグラフィー法、S−Sepharose FF(ファルマシア社製)等のレジンを用いた陽イオン交換クロマトグラフィー法、ブチルセファロース、フェニルセファロース等のレジンを用いた疎水性クロマトグラフィー法、分子篩を用いたゲルろ過法、アフィニティークロマトグラフィー法、クロマトフォーカシング法、等電点電気泳動等の電気泳動法等の手法を単独あるいは組み合わせて用い、精製標品を得ることができる。
上記Corynebacterium glutamicumを用いたタンパク質分泌発現系(CORYNEX(登録商標):味の素株式会社製)を用いることにより、細胞を破砕して無細胞抽出液を得るような煩雑な工程を要することがなく、任意の遠心分離後、アニオン交換クロマトグラフィー(例えば、HiTrapQ FF5mL FPLCカラム)による精製等により精製標品を得ることができる。
<Method for producing stabilized liver-type fatty acid binding protein>
The method for producing a protein according to the fourth aspect of the present invention is a method for producing a protein comprising the steps of culturing the transformed cell according to the third aspect and recovering the protein according to the first aspect.
The transformed cell according to the third aspect is cultured in an appropriate nutrient medium under conditions that allow expression of the introduced gene. In order to recover the protein according to the first aspect from the transformed cell culture according to the third aspect, a normal protein isolation and purification method may be used.
For example, when the protein according to the first aspect is expressed in a dissolved state in the cell, the cell is recovered by centrifugation after culturing and suspended in an aqueous buffer, and then the cell is collected by an ultrasonic crusher or the like. To obtain a cell-free extract. From the supernatant obtained by centrifuging the cell-free extract, a normal protein isolation and purification method, that is, a solvent extraction method, a salting-out method using ammonium sulfate, a desalting method, a precipitation method using an organic solvent, Anion exchange chromatography using a resin such as diethylaminoethyl (DEAE) Sepharose, cation exchange chromatography using a resin such as S-Sepharose FF (Pharmacia), resin such as butyl sepharose and phenyl sepharose Use a hydrophobic chromatography method, gel filtration method using molecular sieve, affinity chromatography method, chromatofocusing method, electrophoresis method such as isoelectric focusing etc. alone or in combination to obtain a purified preparation be able to.
By using the protein secretion expression system using the above-mentioned Corynebacterium glutamicum (CORYNEX (registered trademark): manufactured by Ajinomoto Co., Inc.), there is no need for complicated steps such as crushing cells to obtain a cell-free extract. After the centrifugation, a purified sample can be obtained by purification by anion exchange chromatography (for example, HiTrapQ FF 5 mL FPLC column).

<肝型脂肪酸結合蛋白質標品>
本発明の第5の態様に係る肝型脂肪酸結合蛋白質標品は、上記第1の態様に係る安定化された蛋白質からなる肝型脂肪酸結合蛋白質標品である。上記第1の態様に係る安定化された蛋白質からなることから、特異的に結合する抗体による結合能の変動が抑制され得る。
<Liver type fatty acid binding protein preparation>
The liver type fatty acid binding protein sample according to the fifth aspect of the present invention is a liver type fatty acid binding protein sample comprising the stabilized protein according to the first aspect. Since it consists of the stabilized protein which concerns on the said 1st aspect, the fluctuation | variation of the binding ability by the antibody which couple | bonds specifically can be suppressed.

また、本発明の第6の態様に係る肝型脂肪酸結合蛋白質標品は、配列表の配列番号1と相同性90%以上のアミノ酸配列からなり、19番目、74番目、113番目の1つ以上はメチオニンであり、前記メチオニンの少なくとも1つが66.7%超の酸化率を有する肝型脂肪酸結合蛋白質標品である。
19番目、74番目、113番目の1つ以上はメチオニンであり、前記メチオニンの少なくとも1つが66.7%超の酸化率であることにより、更なる酸化率の増大が抑制され結果、特異的に結合する抗体による結合能の変動が抑制され得る。
特異的に結合する抗体による結合能の変動が更に抑制され得る観点から、上記第6の態様に係る肝型脂肪酸結合蛋白質標品は、19番目のメチオニンの酸化率が9.3%以上、74番目のメチオニンの酸化率が57%超、又は113番目のメチオニンの酸化率が66.7%超であることが好ましい。
上記酸化率を有する肝型脂肪酸結合蛋白質標品は、AAPH等の酸化剤等を用いて製造することができるし、空気酸化によって製造することもできる。
上記酸化率の測定方法としては、例えば、後述する図6(b)におけるMet19を含むペプチド断片のMSスペクトル、図6(c)におけるMet74を含むペプチド断片のMSスペクトル、図6(d)におけるMet113を含むペプチド断片のMSスペクトルにおける酸化無処理の場合のピークと、酸化処理後のピークとの比較から算出することができる。
The liver type fatty acid binding protein preparation according to the sixth aspect of the present invention comprises an amino acid sequence having a homology of 90% or more with SEQ ID NO: 1 in the sequence listing, and one or more of the 19th, 74th and 113th positions. Is methionine, which is a liver-type fatty acid binding protein preparation in which at least one of the methionines has an oxidation rate of more than 66.7%.
One or more of the 19th, 74th, and 113th is methionine, and at least one of the methionines has an oxidation rate of more than 66.7%. Variations in binding ability due to antibodies that bind can be suppressed.
From the viewpoint that fluctuations in binding ability due to antibodies that specifically bind can be further suppressed, the liver-type fatty acid binding protein preparation according to the sixth aspect has an oxidation rate of 19% methionine of 9.3% or more, 74 It is preferable that the oxidation rate of the 1st methionine exceeds 57% or the oxidation rate of the 113th methionine exceeds 66.7%.
The liver-type fatty acid binding protein preparation having the oxidation rate can be produced using an oxidizing agent such as AAPH or can be produced by air oxidation.
As the method for measuring the oxidation rate, for example, an MS spectrum of a peptide fragment containing Met19 in FIG. 6 (b) described later, an MS spectrum of a peptide fragment containing Met74 in FIG. 6 (c), and Met113 in FIG. 6 (d). It can be calculated from a comparison between the peak in the MS spectrum of the peptide fragment containing no oxidation and the peak after the oxidation treatment.

また、本発明の第7の態様に係る肝型脂肪酸結合蛋白質標品は、アラキドン酸、オレイン酸、8−イソプロスタグランジンF2α及び2,3−ジノル−8−イソプロスタグランジンF2αよりなる群から選択される少なくとも1種の脂肪酸を、脂肪酸が複数種の場合は合計含有量として0.35μM以上含み、かつ配列表の配列番号1と相同性90%以上のアミノ酸配列からなる肝型脂肪酸結合蛋白質を含む肝型脂肪酸結合蛋白質標品である。
図13を参照して後述するように、本発明者らは、L−FABP蛋白質に結合する脂肪酸の種類(図13(b))や濃度によってL−FABP蛋白質の抗体結合能が変化することを見出した。
本発明の第7の態様に係る肝型脂肪酸結合蛋白質標品は、アラキドン酸、オレイン酸、8−イソプロスタグランジンF2α及び2,3−ジノル−8−イソプロスタグランジンF2αよりなる群から選択される少なくとも1種の脂肪酸を、脂肪酸が複数種の場合は合計含有量として0.35μM以上含むことにより、標品となるL−FABP蛋白質を発現する際、又は標品として使用されるアッセイ系において、由来の異なる生物種による発現系や発現部位ないし臓器によって結合している脂肪酸の種類(例えば、アラキドン酸、オレイン酸、8−イソプロスタグランジンF2α及び2,3−ジノル−8−イソプロスタグランジンF2α等)、結合量、過酸化の程度が異なる場合であっても、特異的に結合する抗体による結合能の変動が抑制され、測定用標準物質又は精度管理用物質としての標品として機能し得る。
特異的に結合する抗体による結合能の変動が更に抑制される観点から、アラキドン酸、オレイン酸、8−イソプロスタグランジンF2α及び2,3−ジノル−8−イソプロスタグランジンF2αよりなる群から選択される少なくとも1種の脂肪酸を、脂肪酸が複数種の場合は合計含有量として0.7μM以上含むことが好ましく、3.5μM以上含むことがより好ましく、7.0μM以上含むことが更に好ましい。
上記少なくとも1種の脂肪酸を、脂肪酸が複数種の場合は合計含有量として0.35μM以上含む上記第7の態様に係る肝型脂肪酸結合蛋白質標品は、肝型脂肪酸結合蛋白質標品を含有する液に、上記少なくとも1種の脂肪酸を脂肪酸が複数種の場合は合計含有量として0.35μM以上添加すること、又はそのような含有量になるような細胞培養、蛋白質単離ないし精製条件により調製することができる。また、上記少なくとも1種の脂肪酸の含有量は、上記添加量に相当する。
In addition, the liver type fatty acid binding protein preparation according to the seventh aspect of the present invention includes arachidonic acid, oleic acid, 8-isoprostaglandin F and 2,3-dinor-8-isoprostaglandin F . A liver type comprising at least one fatty acid selected from the group consisting of amino acid sequences having a total content of 0.35 μM or more and a homology of 90% or more with SEQ ID NO: 1 in the sequence listing when there are a plurality of fatty acids It is a liver type fatty acid binding protein preparation containing a fatty acid binding protein.
As will be described later with reference to FIG. 13, the present inventors have found that the antibody-binding ability of the L-FABP protein varies depending on the type (FIG. 13 (b)) and concentration of the fatty acid that binds to the L-FABP protein. I found it.
The liver type fatty acid binding protein preparation according to the seventh aspect of the present invention is a group consisting of arachidonic acid, oleic acid, 8-isoprostaglandin F and 2,3-dinor-8-isoprostaglandin F 2α. In the case where a plurality of fatty acids are selected, the total content is 0.35 μM or more, so that the L-FABP protein serving as a standard is expressed or used as a standard. In an assay system, the type of fatty acid (for example, arachidonic acid, oleic acid, 8-isoprostaglandin F and 2,3-dinol-8) bound by an expression system or an expression site or organ of a different species of origin. - iso Star prostaglandin F 2.alpha etc.), binding amount, even if the degree of peroxidation are different, the variations in binding ability due to an antibody that specifically binds is suppressed It can function as a standard as reference material for measuring or control material.
From the viewpoint of further suppressing variation in binding ability due to the antibody that specifically binds, it comprises arachidonic acid, oleic acid, 8-isoprostaglandin F and 2,3-dinor-8-isoprostaglandin F 2α. When at least one fatty acid selected from the group is a plurality of fatty acids, the total content is preferably 0.7 μM or more, more preferably 3.5 μM or more, and more preferably 7.0 μM or more. preferable.
The liver-type fatty acid-binding protein preparation according to the seventh aspect, which contains at least one fatty acid as a total content of 0.35 μM or more when there are a plurality of fatty acids, contains a liver-type fatty acid-binding protein preparation. In the liquid, when at least one kind of fatty acid is used, the total content is 0.35 μM or more, or it is prepared by cell culture and protein isolation or purification conditions so as to achieve such content. can do. The content of the at least one fatty acid corresponds to the amount added.

上記第5〜7のいずれかの態様に係る肝型脂肪酸結合蛋白質標品は、実用的及び商業的に利用される観点から、販売に供される肝型脂肪酸結合蛋白質標品であることが好ましい。販売に供される肝型脂肪酸結合蛋白質標品とは、販売済みの蛋白質、具体的には販売後に長期放置された肝型脂肪酸結合蛋白質標品ではない。
上記第5〜7のいずれかの態様に係る肝型脂肪酸結合蛋白質標品は、抗原抗体反応を利用した免疫学的手法によりサンプル中の肝型脂肪酸結合蛋白質を測定するためのキットの測定用標準物質又は精度管理用物質として有用であり、L−FABP蛋白質に特異的に結合する抗L−FABP蛋白質抗体による特異的に結合を利用したL−FABP蛋白質の検出ないし定量等の測定の標準物質(標品)として用いることが好ましい。
上記第5〜7のいずれかの態様に係る肝型脂肪酸結合蛋白質標品が用いられるL−FABP蛋白質の検出ないし定量等の測定としては、酵素免疫測定法(EIA,ELISA)、蛍光酵素免疫測定法(FLEIA)、化学発光酵素免疫測定法(CLEIA)、化学発光免疫測定法(CLIA)、電気化学発光測免疫測定法(ECLIA)、イムノクロマトグラフィー法(ICA)、ラテックス凝集法(LA)、蛍光抗体法(FA)、ラジオイムノアッセイ(RIA)、ウェスタンブロット法(WB)、イムノブロット法などを採用したアッセイ等が挙げられ、抗原(L−FABP蛋白質)に対する認識部位が異なる2種類の抗体を組み合わせて用いるサンドイッチELISA法を採用したアッセイであることが好ましい。
認識部位が異なる2種類の抗体は、一方を、マイクロプレートのウェル中の表面に結合させた固相化抗体として用い、他方を、検出ないし定量のための標識抗体として用いることが好ましい。上記標識抗体における標識としては特に制限はなく、例えば、パーオキシダーゼ標識等の酵素標識、蛍光標識、紫外線標識、放射線標識等が挙げられる。
The liver-type fatty acid binding protein preparation according to any one of the fifth to seventh aspects is preferably a liver-type fatty acid binding protein preparation for sale, from the viewpoint of practical and commercial use. . A liver-type fatty acid binding protein preparation to be sold is not a protein that has already been sold, specifically a liver-type fatty acid binding protein preparation that has been left for a long time after the sale.
The liver type fatty acid binding protein preparation according to any one of the above aspects 5 to 7 is a measurement standard for a kit for measuring liver type fatty acid binding protein in a sample by an immunological technique utilizing an antigen-antibody reaction. Standard substance for detection or quantification of L-FABP protein using specific binding by anti-L-FABP protein antibody which is useful as a substance or a substance for quality control and specifically binds to L-FABP protein ( It is preferable to use it as a standard product.
Examples of measurement such as detection or quantification of L-FABP protein in which the liver type fatty acid binding protein preparation according to any one of the fifth to seventh aspects is used include enzyme immunoassay (EIA, ELISA), fluorescent enzyme immunoassay (FLEIA), chemiluminescent enzyme immunoassay (CLEIA), chemiluminescent immunoassay (CLIA), electrochemiluminescence immunoassay (ECLIA), immunochromatography (ICA), latex agglutination (LA), fluorescence Examples include assays employing antibody method (FA), radioimmunoassay (RIA), western blot method (WB), immunoblot method, etc., combining two antibodies with different recognition sites for antigen (L-FABP protein) It is preferable that the assay adopts the sandwich ELISA method used.
It is preferable to use one of the two types of antibodies having different recognition sites as a solid-phased antibody bound to the surface in the well of the microplate and the other as a labeled antibody for detection or quantification. There is no restriction | limiting in particular as a label in the said labeled antibody, For example, enzyme labels, such as a peroxidase label, a fluorescent label, an ultraviolet-ray label, a radiation label etc. are mentioned.

抗原(L−FABP蛋白質)に対する認識部位が異なる抗体としては、抗L−FABP抗体クローン1、クローン2、クローンL及びクローンFよりなる群から選択される抗体を含む抗体が挙げられ、抗L−FABP抗体クローンLを含む組み合わせ、又は抗L−FABP抗体クローン2を含む組み合わせであることが好ましく、抗L−FABP抗体クローンLを含む組み合わせであることがより好ましく、抗L−FABP抗体クローンLを固相化抗体として用い、任意の抗L−FABP抗体を標識抗体として用いることが更に好ましく、抗L−FABP抗体クローンLを固相化抗体として用い、抗L−FABP抗体クローン2を標識抗体として用いることが特に好ましい。   Examples of antibodies having different recognition sites for antigen (L-FABP protein) include antibodies comprising an antibody selected from the group consisting of anti-L-FABP antibody clone 1, clone 2, clone L and clone F, and anti-L- A combination including FABP antibody clone L or a combination including anti-L-FABP antibody clone 2 is preferable, a combination including anti-L-FABP antibody clone L is more preferable, and anti-L-FABP antibody clone L is It is more preferable to use any anti-L-FABP antibody as a labeled antibody, using as a solid-phased antibody, using anti-L-FABP antibody clone L as a solid-phased antibody, and using anti-L-FABP antibody clone 2 as a labeled antibody. It is particularly preferable to use it.

そのようなアッセイに用いられるL−FABP蛋白質測定キットとしては、標品として上記第5〜7のいずれかの態様に係る肝型脂肪酸結合蛋白質標品を含み、試薬として上記抗L−FABP蛋白質抗体を含むことが好ましく、標識抗L−FABP蛋白質抗体を更に含むことがより好ましく、必要に応じて前処理液(任意の緩衝液、任意の界面活性剤等)、反応緩衝液(任意の緩衝液等)、発色基質(3,3’,5,5’−テトラメチルベンジジン、過酸化水素水等)等を含んでいてもよい。
L−FABP蛋白質測定キットとして、抗原に対する認識部位が異なる2種類の抗体を組み合わせて用いるサンドイッチELISA法を用いたキットであることが好ましく、固相に任意の抗L−FABP抗体、標識抗体に抗L−FABP抗体クローン2を使用しているキットであることがより好ましい。
サンドイッチELISA法を用いたL−FABP蛋白質測定キットの具体的態様として、例えば、下記(1)〜(9)を含むキットが挙げられる。
(1)L−FABP抗体固相化マイクロプレート……抗ヒトL−FABPマウスモノクローナル抗体結合ウェル
(2)前処理液
(3)反応緩衝液
(4)酵素標識抗体……パーオキシダーゼ標識抗ヒトL−FABPマウスモノクローナル抗体〔クローン2産生細胞株由来〕
(5)酵素基質液
(6)洗浄剤(任意の緩衝液、界面活性剤等)
(7)反応停止液(1N硫酸等)
(8)標準緩衝液(任意の緩衝液等)
(9)肝型脂肪酸結合蛋白質標品
(9)肝型脂肪酸結合蛋白質標品としては、従来は、任意の緩衝液にリコンビナントヒトL−FABPを混合させた液が用いられてきたが、任意の緩衝液に上記肝型脂肪酸結合蛋白質標品を混合した液が好ましく、標品の濃度としては特に制限はなく、例えば、10〜10000ng/mLが挙げられ、50〜5000ng/mLが好ましく、100〜1000ng/mLがより好ましく、200〜800ng/mLが更に好ましく、300〜600ng/mLが特に好ましい。
肝型脂肪酸結合蛋白質標品として、従来のリコンビナントヒトL−FABPを用いたこと以外は上記第5〜7のいずれかの態様に係る肝型脂肪酸結合蛋白質標品を用いたサンドイッチELISA法を利用したL−FABP蛋白質測定キットと同様のキットの市販品としては、「レナプロ L−FABP テスト TMB」(シミックホールディングス社製)が挙げられる。
As an L-FABP protein measurement kit used in such an assay, the liver-type fatty acid binding protein sample according to any one of the fifth to seventh aspects is used as a preparation, and the anti-L-FABP protein antibody is used as a reagent. , More preferably a labeled anti-L-FABP protein antibody, and pretreatment liquid (arbitrary buffer, arbitrary surfactant, etc.), reaction buffer (arbitrary buffer, if necessary) Etc.), a chromogenic substrate (3,3 ′, 5,5′-tetramethylbenzidine, hydrogen peroxide solution, etc.) and the like.
The L-FABP protein measurement kit is preferably a kit using a sandwich ELISA method in which two types of antibodies having different recognition sites for an antigen are used in combination, and any anti-L-FABP antibody on the solid phase and anti-labeled antibody can be used. More preferably, the kit uses L-FABP antibody clone 2.
Specific examples of the L-FABP protein measurement kit using the sandwich ELISA method include kits including the following (1) to (9).
(1) L-FABP antibody-immobilized microplate ... anti-human L-FABP mouse monoclonal antibody binding well (2) pretreatment solution (3) reaction buffer (4) enzyme-labeled antibody ... peroxidase-labeled anti-human L -FABP mouse monoclonal antibody [from clone 2 producing cell line]
(5) Enzyme substrate solution (6) Detergent (arbitrary buffer, surfactant, etc.)
(7) Reaction stop solution (1N sulfuric acid, etc.)
(8) Standard buffer (arbitrary buffer, etc.)
(9) Liver-type fatty acid binding protein preparation (9) As a liver-type fatty acid binding protein preparation, conventionally, a solution prepared by mixing recombinant human L-FABP with an arbitrary buffer has been used. A solution obtained by mixing the above-mentioned liver-type fatty acid binding protein preparation in a buffer solution is preferable, and the concentration of the preparation is not particularly limited, and examples thereof include 10 to 10000 ng / mL, preferably 50 to 5000 ng / mL, and 100 to 100 1000 ng / mL is more preferable, 200 to 800 ng / mL is still more preferable, and 300 to 600 ng / mL is particularly preferable.
As a liver type fatty acid binding protein sample, a sandwich ELISA method using the liver type fatty acid binding protein sample according to any one of the above fifth to seventh aspects was used except that the conventional recombinant human L-FABP was used. “Lenapro L-FABP Test TMB” (manufactured by Simic Holdings Co., Ltd.) is an example of a commercially available kit similar to the L-FABP protein measurement kit.

安定化されたL−FABP蛋白質からなる肝型脂肪酸結合蛋白質標品の保存溶液はタンパク吸着防止を目的としてウシ血清アルブミン(BSA)を含有する蛋白質保存緩衝液とすることが好ましい。例えば、下記蛋白質保存緩衝液が挙げられる。
(蛋白質保存緩衝液)
10mMリン酸バッファー(pH7.2)、150mM NaCl、1.0%BSA、0.1%NaN
The preservation solution of a liver type fatty acid binding protein preparation comprising a stabilized L-FABP protein is preferably a protein preservation buffer containing bovine serum albumin (BSA) for the purpose of preventing protein adsorption. For example, the following protein storage buffer is mentioned.
(Protein preservation buffer)
10 mM phosphate buffer (pH 7.2), 150 mM NaCl, 1.0% BSA, 0.1% NaN 3

<検量線を作成する方法及び肝型脂肪酸結合蛋白質を定量する方法>
本発明の第8の態様に係る肝型脂肪酸結合蛋白質の検量線を作成する方法は、上記第5〜7のいずれかの態様に係る肝型脂肪酸結合蛋白質標品を用いる。
具体的には、測定される上記標識の強度(例えば、酵素標識強度、蛍光強度、紫外線強度、放射線強度等)と、上記標品の量(例えば、濃度)との関係に基づき検量線を作成することができる。
本発明の第9の態様に係る試料中の肝型脂肪酸結合蛋白質を定量する方法は、上記第8の態様に係る方法で作成した検量線を用いる。
具体的には、上記検量線の作成と同様な条件により、標識抗体等により標識された試料中の肝型脂肪酸結合蛋白質の標識強度を測定し、上記検量線に基づき(例えば、対比し)、試料中の肝型脂肪酸結合蛋白質を検出ないし定量することができる。
<Method for preparing calibration curve and method for quantifying liver-type fatty acid binding protein>
The method for preparing a calibration curve for liver-type fatty acid binding protein according to the eighth aspect of the present invention uses the liver-type fatty acid binding protein preparation according to any one of the above fifth to seventh aspects.
Specifically, a calibration curve is created based on the relationship between the measured label intensity (eg, enzyme label intensity, fluorescence intensity, ultraviolet intensity, radiation intensity, etc.) and the amount (eg, concentration) of the standard. can do.
The method for quantifying liver-type fatty acid binding protein in a sample according to the ninth aspect of the present invention uses the calibration curve created by the method according to the eighth aspect.
Specifically, under the same conditions as in the preparation of the calibration curve, the labeling strength of the liver-type fatty acid binding protein in the sample labeled with a labeled antibody or the like is measured, based on the calibration curve (for example, compared), It is possible to detect or quantify liver-type fatty acid binding protein in a sample.

以下、実施例を示して本発明を更に詳細に説明するが、本発明の範囲は、これらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated further in detail, the scope of the present invention is not limited to these Examples.

参考例
<酸化によるL−FABP蛋白質の構造変化>
L−FABP蛋白質をAAPH処理した。結果を図2(a)及び(b)に示す。
図2(a)は酸化型L−FABP及び非酸化型L−FABPのLC−ESI−MSによる分子量測定結果を示す図であり、図2(b)は酸化型L−FABPと非酸化型L−FABPのCDスペクトルを示す図である。
図2(a)から明らかなように、酸化型L−FABPでは理論分子量よりおおよそ酸素分子2〜3分子に相当する分子量増加が観測されている。
図2(b)に示したように、酸化型L−FABPでは350nm付近(図中矢印)に蛍光ピークが出現しており、L−FABP蛋白質中に存在する芳香族アミノ酸周辺が極性の高い環境に変化したことを意味しており、酸化型L−FABPと非酸化型L−FABPでは構造変化を生じていると考えられる。
Reference Example <Structural change of L-FABP protein by oxidation>
L-FABP protein was treated with AAPH. The results are shown in FIGS. 2 (a) and (b).
FIG. 2 (a) is a diagram showing the molecular weight measurement results by LC-ESI-MS of oxidized L-FABP and non-oxidized L-FABP, and FIG. 2 (b) shows oxidized L-FABP and non-oxidized L FIG. 6 shows a CD spectrum of FABP.
As is clear from FIG. 2A, in the oxidized L-FABP, an increase in molecular weight corresponding to about 2 to 3 oxygen molecules is observed from the theoretical molecular weight.
As shown in FIG. 2B, in the oxidized L-FABP, a fluorescent peak appears around 350 nm (arrow in the figure), and the environment around the aromatic amino acid present in the L-FABP protein is highly polar. It is considered that the structural change occurred between oxidized L-FABP and non-oxidized L-FABP.

<酸化によるELISA測定値の変化>
AAPHを所定の濃度になるようL−FABP蛋白質溶液に添加し、室温で1時間反応させ、ELISA測定を行った。結果を図3に示す。
図3から、L−FABP蛋白質のAAPH処理によりELISA測定値の変化(無処理を100とした場合の割合(%))が生じていることがわかる。
また、驚くべきことに、図3に示したように、AAPH無添加サンプル(HOを添加)においても室温で1時間反応させることによりELISA測定値が上昇しており、空気酸化による影響が生じていると考えられる。
<Change in ELISA measurement value due to oxidation>
AAPH was added to the L-FABP protein solution to a predetermined concentration and reacted at room temperature for 1 hour, and ELISA measurement was performed. The results are shown in FIG.
From FIG. 3, it can be seen that the change in the ELISA measurement value (ratio (%) when no treatment is taken as 100) is caused by the AAPH treatment of the L-FABP protein.
Surprisingly, as shown in FIG. 3, even in the AAPH-free sample (added with H 2 O), the ELISA measurement value was increased by reacting at room temperature for 1 hour, and the influence of air oxidation was affected. It is thought that it has occurred.

<ヒトL−FABP蛋白質の酸化>
各種濃度(40mM、200mM)のAAPHをヒトL−FABP蛋白質に添加し、37℃で1.5時間反応させた。結果を図4に示す。
図4は、各種濃度(40mM、200mM)のAAPHをヒトL−FABP蛋白質に添加し、37℃で1.5時間反応させた後のMSスペクトルを示す図である。
図4に示したように、AAPH処理によりL−FABPに酸素分子1〜3分子に相当する分子量増加が観測された。
<Oxidation of human L-FABP protein>
Various concentrations (40 mM, 200 mM) of AAPH were added to human L-FABP protein and reacted at 37 ° C. for 1.5 hours. The results are shown in FIG.
FIG. 4 shows MS spectra after adding various concentrations (40 mM, 200 mM) of AAPH to human L-FABP protein and reacting at 37 ° C. for 1.5 hours.
As shown in FIG. 4, an increase in molecular weight corresponding to 1 to 3 oxygen molecules was observed in L-FABP due to AAPH treatment.

<ヒトL−FABP蛋白質が含有するメチオニンの酸化>
図5(a)は、配列番号1に示したヒトL−FABP蛋白質のアミノ酸配列を示す図であり、図5(b)は、ヒトL−FABP蛋白質のトリプシン消化によって生じ得る各種ペプチド断片の推定分子量を示す図である。
上記各種濃度(40mM、200mM)のAAPHにより反応した後のヒトL−FABP蛋白質をトリプシン消化して得られた各種ペプチド断片のMSスペクトルを測定した。
図6(a)は、上記各種濃度(40mM、200mM)のAAPHにより反応した後のヒトL−FABP蛋白質をトリプシン消化して得られたMet1を含むペプチド断片No.1のMSスペクトルを示す図であり、図6(b)は、上記各種濃度のAAPHと反応後のヒトL−FABP蛋白質をトリプシン消化して得られたMet19を含むペプチド断片No.2のMSスペクトルを示す図であり、図6(c)は、上記各種濃度のAAPHと反応後のヒトL−FABP蛋白質をトリプシン消化して得られたMet74を含むペプチド断片No.9及びペプチド断片No.10のMSスペクトルを示す図であり、図6(d)は、上記各種濃度のAAPHと反応後のヒトL−FABP蛋白質をトリプシン消化して得られたMet113を含むペプチド断片No.14及びペプチド断片15のMSスペクトルを示す図である。
図6(a)〜(d)に示した結果から、酸化修飾部位は19番目、74番目、113番目のメチオニン残基(以下、それぞれMet19、Met74、Met113ともいう。)であることが明らかになった。
<Oxidation of methionine contained in human L-FABP protein>
FIG. 5 (a) shows the amino acid sequence of the human L-FABP protein shown in SEQ ID NO: 1, and FIG. 5 (b) shows various peptide fragments that can be generated by trypsin digestion of the human L-FABP protein. It is a figure which shows molecular weight.
MS spectra of various peptide fragments obtained by trypsin digestion of human L-FABP protein after reaction with AAPH at various concentrations (40 mM, 200 mM) were measured.
FIG. 6A shows peptide fragment No. 1 containing Met1 obtained by trypsin digestion of human L-FABP protein after reaction with AAPH at various concentrations (40 mM, 200 mM). FIG. 6 (b) is a peptide fragment No. 1 containing Met19 obtained by trypsin digesting the human L-FABP protein after the reaction with the above-mentioned various concentrations of AAPH. FIG. 6 (c) is a peptide fragment No. 2 containing Met74 obtained by trypsin digestion of the human L-FABP protein after the reaction with the above-mentioned various concentrations of AAPH. 9 and peptide fragment no. FIG. 6 (d) shows the peptide fragment No. 10 containing Met113 obtained by trypsin digestion of the human L-FABP protein after the reaction with the above-mentioned various concentrations of AAPH. 14 shows MS spectra of 14 and peptide fragment 15. FIG.
From the results shown in FIGS. 6A to 6D, it is clear that the oxidation modification sites are the 19th, 74th, and 113th methionine residues (hereinafter also referred to as Met19, Met74, and Met113, respectively). became.

実施例1
<変異L−FABP蛋白質の製造方法>
Met19をロイシン残基に変異させた変異蛋白質(以下、L−FABP M19Lともいう。)、
Met74をロイシン残基に変異させた変異蛋白質(以下、L−FABP M74Lともいう。)、
Met113をロイシン残基に変異させた変異蛋白質(以下、L−FABP M113Lともいう。)、
Met19及びMet74をそれぞれロイシン残基に変異させた変異蛋白質(以下、L−FABP M19L/M74Lともいう。)、
Met19及びMet113をそれぞれロイシン残基に変異させた変異蛋白質(以下、L−FABP M19L/M113Lともいう。)、
Met74及びMet113をそれぞれロイシン残基に変異させた変異蛋白質(以下、L−FABP M74L/M113Lともいう。)、
3つのメチオニン残基(Met19、Met74、Met113)をそれぞれロイシン残基に変異させた変異蛋白質(以下、L−FABP M19L/M74L/M113Lともいう。)を製造した。
L−FABP M19L、
L−FABP M74L、
L−FABP M113L、
L−FABP M19L/M74L、
L−FABP M19L/M113L、
L−FABP M74L/M113L、及び
L−FABP M19L/M74L/M113Lは、それぞれ、グラム陽性細菌Corynebacterium glutamicumを用いたタンパク質分泌発現系(CORYNEX(登録商標):味の素株式会社製)を利用して発現を行った。
L−FABP M19L/M74L/M113Lのアミノ酸配列を後記配列表の配列番号2に示した。
蛋白質発現に用いたL−FABP M19L/M74L/M113Lの遺伝子配列を後記配列表の配列番号3に示した。
Example 1
<Method for producing mutant L-FABP protein>
A mutant protein obtained by mutating Met19 to a leucine residue (hereinafter also referred to as L-FABP M19L),
A mutant protein obtained by mutating Met74 to a leucine residue (hereinafter also referred to as L-FABP M74L),
A mutant protein obtained by mutating Met113 to a leucine residue (hereinafter also referred to as L-FABP M113L),
Mutant proteins obtained by mutating Met19 and Met74 to leucine residues (hereinafter also referred to as L-FABP M19L / M74L),
Mutant proteins obtained by mutating Met19 and Met113 to leucine residues (hereinafter also referred to as L-FABP M19L / M113L),
Mutant proteins obtained by mutating Met74 and Met113 to leucine residues (hereinafter also referred to as L-FABP M74L / M113L),
Mutant proteins (hereinafter also referred to as L-FABP M19L / M74L / M113L) were prepared by mutating three methionine residues (Met19, Met74, Met113) to leucine residues, respectively.
L-FABP M19L,
L-FABP M74L,
L-FABP M113L,
L-FABP M19L / M74L,
L-FABP M19L / M113L,
L-FABP M74L / M113L and L-FABP M19L / M74L / M113L are each expressed using a protein secretion expression system (CORYNEX (registered trademark): Ajinomoto Co., Inc.) using a Gram-positive bacterium Corynebacterium glutamicum. went.
The amino acid sequence of L-FABP M19L / M74L / M113L is shown in SEQ ID NO: 2 in the sequence listing below.
The gene sequence of L-FABP M19L / M74L / M113L used for protein expression is shown in SEQ ID NO: 3 in the Sequence Listing below.

上述した方法により発現を行ったL−FABP M19L/M74L/M113L等は、まず遠心式フィルターユニット Amicon(登録商標)Ultra−15、3kDa(ミリポア社製)を用いバッファーA(10mM Tris−HCl(pH8.5),1mM DTT)とバッファー交換を行った。
次に、HiTrapQ FFカラム、5mL(GE Healthcare社製)を用い精製を行った。HiTrapQ FFカラムに吸着したL−FABP M19L/M74L/M113Lは、バッファーAで洗浄後、バッファーAとバッファーB(10mM Tris−HCl(pH8.5),1mM DTT,2M NaCl)による直線的濃度勾配法により溶出させ、バッファーBが3.1%となるピークを含むフラクションを回収した。回収した蛋白質に関してはSDS−PAGE及びSilver StainII Kit Wako(和光純薬株式会社製)による蛋白質染色を行い、精製度合いの確認を行った。L−FABP M19L/M74L/M113Lについての精製結果を図7に示す。
The L-FABP M19L / M74L / M113L and the like which were expressed by the above-described method were first prepared using a centrifugal filter unit Amicon (registered trademark) Ultra-15, 3 kDa (manufactured by Millipore) and buffer A (10 mM Tris-HCl (pH 8)). 5), 1 mM DTT) and buffer exchange.
Next, purification was performed using a HiTrapQ FF column, 5 mL (manufactured by GE Healthcare). L-FABP M19L / M74L / M113L adsorbed on the HiTrapQ FF column was washed with buffer A, and then linear concentration gradient method using buffer A and buffer B (10 mM Tris-HCl (pH 8.5), 1 mM DTT, 2M NaCl). And fractions containing a peak at which buffer B was 3.1% were recovered. The recovered protein was subjected to protein staining with SDS-PAGE and Silver Stain II Kit Wako (manufactured by Wako Pure Chemical Industries, Ltd.) to confirm the degree of purification. The purification results for L-FABP M19L / M74L / M113L are shown in FIG.

上述の操作により得たL−FABP M19L/M74L/M113L等は−80℃にて保管した。   L-FABP M19L / M74L / M113L obtained by the above operation was stored at -80 ° C.

AAPHを所定の最終濃度(0mM、0.5mM、1mM、2mM、4mM)になるようL−FABP蛋白質溶液(L−FABP M19L、L−FABP M74L、L−FABP M113L、L−FABP M19L/M74L、L−FABP M19L/M113L、L−FABP M74L/M113L、及びL−FABP M19L/M74L/M113Lの各溶液)に添加し、室温で1時間反応させ、ELISA測定を実施し、標識抗体の発色(OD450nm)を無処理サンプルと比較した。比較結果を図8に示す。
図8に示した結果から明らかなように、19番目のメチオニンのロイシンへの置換が酸化に対する安定性に寄与が大きいことが分かる(L−FABP M19L)。
特に、19番目のメチオニンを含む2つ以上のメチオニンのロイシンへの置換が酸化に対する安定性に寄与が特に大きいことが分かる(L−FABP M19L/M74L、L−FABP M19L/M113L)。
L−FABP M19L/M74L/M113Lが最も酸化に対する安定性に優れることが分かる。
次に、酸化安定性を確認したL−FABP M19L/M74L/M113L等はサンプルの長期保存のため上述した蛋白質保存緩衝液に溶解し、−80℃にて保管し、以下実施例2〜6に使用した。
L-FABP protein solution (L-FABP M19L, L-FABP M74L, L-FABP M113L, L-FABP M19L / M74L) so that AAPH has a predetermined final concentration (0 mM, 0.5 mM, 1 mM, 2 mM, 4 mM), L-FABP M19L / M113L, L-FABP M74L / M113L, and L-FABP M19L / M74L / M113L solutions), reacted at room temperature for 1 hour, ELISA measurement was performed, and color development of labeled antibody (OD450 nm ) Compared to untreated samples. The comparison results are shown in FIG.
As is clear from the results shown in FIG. 8, it can be seen that the substitution of the 19th methionine with leucine greatly contributes to the stability against oxidation (L-FABP M19L).
In particular, it can be seen that substitution of two or more methionines, including the 19th methionine, with leucine has a particularly large contribution to the stability against oxidation (L-FABP M19L / M74L, L-FABP M19L / M113L).
It can be seen that L-FABP M19L / M74L / M113L is most excellent in stability against oxidation.
Next, L-FABP M19L / M74L / M113L and the like whose oxidation stability was confirmed were dissolved in the protein storage buffer described above for long-term storage of the sample and stored at −80 ° C. used.

実施例2
<酸化による安定性>
L−FABP M19L/M74L/M113Lに対してAAPHを最終濃度0〜5mMとなるよう添加し、室温で1時間反応させた。また空気酸化の影響を考慮し、蛋白質溶液にHOのみを添加し、添加直後に測定を実施した無処理サンプルを比較対象とした。
Example 2
<Stability by oxidation>
AAPH was added to L-FABP M19L / M74L / M113L to a final concentration of 0 to 5 mM and reacted at room temperature for 1 hour. In consideration of the effect of air oxidation, an untreated sample in which only H 2 O was added to the protein solution and measured immediately after the addition was used as a comparison target.

これらの反応溶液及び無処理サンプルを「レナプロ L−FABP テスト TMB」(シミックホールディングス株式会社製)を使用してELISA測定を実施し、標識抗体の発色(OD450nm)を無処理サンプルと比較した。上記診断用キットの使用方法は通常添付されている添付文書に従った測定方法に準じて行った。結果を図9に示す。   These reaction solutions and untreated samples were subjected to ELISA measurement using “Lenapro L-FABP Test TMB” (manufactured by Simic Holdings Co., Ltd.), and the color development (OD 450 nm) of the labeled antibody was compared with the untreated sample. The diagnostic kit was used in accordance with the measurement method according to the attached package insert. The results are shown in FIG.

図9に示したELISA測定の結果から明らかなように、L−FABP WTは112〜121%の測定値の上昇が確認され、ばらつきを表す変動係数(CV)は5.8%であった。
一方、L−FABP M19L/M74L/M113Lは102〜107%の上昇までしか認められず、CVは2.4%であった。
以上の結果からAAPHに対してL−FABP M19L/M74L/M113Lの抗体結合能は安定的であり、ELISA測定値の変動は小さいことが明らかとなった。
つまり、L−FABP M19L/M74L/M113Lは酸化反応に対して安定化したといえる。また室温に1時間置くだけでもL−FABP WTの抗体結合能が上昇するが、L−FABP M19L/M74L/M113Lは上昇しないことから、空気酸化に対しても安定化したといえる。
As is clear from the results of the ELISA measurement shown in FIG. 9, the L-FABP WT was confirmed to have an increase in the measured value of 112 to 121%, and the coefficient of variation (CV) representing the variation was 5.8%.
On the other hand, L-FABP M19L / M74L / M113L was observed only up to an increase of 102 to 107%, and CV was 2.4%.
From the above results, it was revealed that the antibody binding ability of L-FABP M19L / M74L / M113L was stable with respect to AAPH, and the fluctuation of the ELISA measurement value was small.
That is, it can be said that L-FABP M19L / M74L / M113L is stabilized against the oxidation reaction. In addition, even when placed at room temperature for 1 hour, the antibody-binding ability of L-FABP WT increases, but since L-FABP M19L / M74L / M113L does not increase, it can be said that it is stabilized against air oxidation.

実施例3
<室温での安定性>
L−FABP M19L/M74L/M113Lを室温(25℃)にて保存し、1週間ごとに4週間後まで「レナプロ L−FABP テスト TMB」を使用して定法に従いELISA測定を実施した。−80℃にて保存しているサンプルに関しても測定を実施し、比較対象とした。室温保存サンプルの標識抗体の発色(OD450nm)について−80℃保存サンプルの標識抗体の発色(OD450nm)を100とした割合(%)を比較した。結果を図10に示す。
Example 3
<Stability at room temperature>
L-FABP M19L / M74L / M113L was stored at room temperature (25 ° C.), and ELISA measurement was performed according to a conventional method using “Lenapro L-FABP Test TMB” every week until 4 weeks later. Measurements were also performed on samples stored at −80 ° C. and used as comparison targets. Regarding the color development (OD450 nm) of the labeled antibody of the room temperature storage sample, the ratio (%) where the color development (OD450 nm) of the label antibody of the −80 ° C. storage sample was 100 was compared. The results are shown in FIG.

図10に示したELISA測定の結果から明らかなように、L−FABP WTは110〜128%の測定値の上昇が確認され、CVは10.5%であった。
一方、L−FABP M19L/M74L/M113Lは101〜111%の上昇までしか認められず、CVは4.7%であった。
以上の結果から室温での長期保存に対してL−FABP M19L/M74L/M113Lの抗体結合能は安定的であり、ELISA測定値の変動は小さいことが明らかとなった。つまり、L−FABP M19L/M74L/M113Lは室温での長期保存に安定化されたといえる。
As is clear from the results of the ELISA measurement shown in FIG. 10, the L-FABP WT was confirmed to have an increase in the measured value of 110 to 128%, and the CV was 10.5%.
On the other hand, L-FABP M19L / M74L / M113L was observed only up to 101 to 111%, and CV was 4.7%.
From the above results, it was revealed that the antibody binding ability of L-FABP M19L / M74L / M113L is stable and the fluctuation of the ELISA measurement value is small with respect to long-term storage at room temperature. That is, it can be said that L-FABP M19L / M74L / M113L has been stabilized for long-term storage at room temperature.

実施例4
<37℃での安定性>
L−FABP M19L/M74L/M113Lを37℃で保存し、1週間ごとに4週間後まで「レナプロ L−FABP テスト TMB」を使用して定法に従いELISA測定を実施した。−80℃にて保存しているサンプルに関しても測定を実施し、比較対象とした。室温保存サンプルの標識抗体の発色(OD450nm)について−80℃保存サンプルの標識抗体の発色(OD450nm)を100とした割合(%)を比較した。結果を図11に示す。
Example 4
<Stability at 37 ° C>
L-FABP M19L / M74L / M113L was stored at 37 ° C., and ELISA measurement was performed according to a conventional method using “Lenapro L-FABP Test TMB” every week until 4 weeks later. Measurements were also performed on samples stored at −80 ° C. and used as comparison targets. Regarding the color development (OD450 nm) of the labeled antibody of the room temperature storage sample, the ratio (%) where the color development (OD450 nm) of the label antibody of the −80 ° C. storage sample was 100 was compared. The results are shown in FIG.

図11に示したELISA測定の結果から明らかなように、L−FABP WTは117〜143%の測定値の上昇が確認され、CVは14.5%であった。
一方、L−FABP M19L/M74L/M113Lは104〜113%の上昇までしか認められず、CVは4.8%であった。
以上の結果から37℃での長期保存に対してL−FABP M19L/M74L/M113Lの抗体結合能は安定的であり、ELISA測定値の変動は小さいことが明らかとなった。つまり、L−FABP M19L/M74L/M113Lは37℃での長期保存にも安定化されたといえる。
As is clear from the results of the ELISA measurement shown in FIG. 11, the L-FABP WT was confirmed to increase in measured value by 117 to 143%, and the CV was 14.5%.
On the other hand, L-FABP M19L / M74L / M113L was observed only up to an increase of 104 to 113%, and CV was 4.8%.
From the above results, it was revealed that the antibody binding ability of L-FABP M19L / M74L / M113L is stable and the fluctuation of the ELISA measurement value is small with respect to long-term storage at 37 ° C. That is, it can be said that L-FABP M19L / M74L / M113L was also stabilized during long-term storage at 37 ° C.

実施例5
<クローン2とは認識部位が異なる標識抗体を用いたELISA測定における酸化安定性>
AAPHを所定の最終濃度(0〜4mM)になるようL−FABP蛋白質溶液に添加し、室温で1時間反応させ、ELISA測定を実施した。標識抗体としてクローン1、クローン2、クローンFを用い、発色(OD450nm)を無処理サンプルと比較した。結果を図12に示す。
図12に示した結果から明らかなように、クローン1及びクローンFによる標識抗体を用いたL−FABP測定方法では、クローン2と同様に酸化によってL−FABP WTの抗体結合能が変化すること、L−FABP M19L/M74L/M113Lでは酸化による抗体結合能の変化が抑制されることを分かる。
したがって、抗原認識部位が異なる抗L−FABP抗体クローン1、抗L−FABP抗体クローンFによるELISA測定系においても安定化されたL−FABP蛋白質が有効である。
Example 5
<Oxidation stability in ELISA measurement using labeled antibody with different recognition site from clone 2>
AAPH was added to the L-FABP protein solution at a predetermined final concentration (0 to 4 mM), reacted at room temperature for 1 hour, and ELISA measurement was performed. Clone 1, clone 2, and clone F were used as labeled antibodies, and the color development (OD 450 nm) was compared with the untreated sample. The results are shown in FIG.
As is clear from the results shown in FIG. 12, in the L-FABP measurement method using labeled antibodies from clone 1 and clone F, the antibody-binding ability of L-FABP WT changes due to oxidation as in clone 2, It can be seen that L-FABP M19L / M74L / M113L suppresses the change in antibody binding ability due to oxidation.
Therefore, the stabilized L-FABP protein is also effective in an ELISA measurement system using anti-L-FABP antibody clone 1 and anti-L-FABP antibody clone F having different antigen recognition sites.

実施例6
<脂肪酸添加による安定性>
図13(a)は、L−FABP蛋白質の脂肪酸添加処理によるELISA測定値の変化(脂肪酸添加濃度0μMを100とした割合(%))を示す図である。
図13(a)から明らかなように、結合する脂肪酸の種類(図13(b))や濃度によってL−FABP蛋白質の抗体結合能が変化することが明らかとなった。
Example 6
<Stability by adding fatty acid>
FIG. 13 (a) is a diagram showing a change in ELISA measurement value by fatty acid addition treatment of L-FABP protein (ratio (%) where the fatty acid addition concentration is 0 μM as 100).
As is clear from FIG. 13 (a), it became clear that the antibody binding ability of the L-FABP protein varies depending on the type of fatty acid to be bound (FIG. 13 (b)) and concentration.

次に、L−FABP M19L/M74L/M113Lに対して各種脂肪酸を最終濃度0〜700μMとなるよう添加し、室温で1.5時間反応させた。また空気酸化の影響を考慮し、蛋白質溶液にDMSO(終濃度5%)のみを添加し、添加直後に測定を実施した無処理サンプルを比較対象サンプルとした。   Next, various fatty acids were added to L-FABP M19L / M74L / M113L to a final concentration of 0 to 700 μM and reacted at room temperature for 1.5 hours. In consideration of the effect of air oxidation, an untreated sample in which only DMSO (final concentration 5%) was added to the protein solution and measurement was performed immediately after the addition was used as a comparative sample.

これらの反応溶液及び無処理サンプルを「レナプロ L−FABP テスト TMB」を使用してELISA測定を実施し、標識抗体の発色(OD450nm)を無処理サンプルと比較した。上記診断用キットの使用方法は通常添付されている添付文書に従った測定方法に準じて行った。結果を図14(a)〜(c)に示す。   These reaction solutions and untreated samples were subjected to ELISA measurement using “Lenapro L-FABP Test TMB”, and the color development (OD450 nm) of the labeled antibody was compared with that of the untreated sample. The diagnostic kit was used in accordance with the measurement method according to the attached package insert. The results are shown in FIGS. 14 (a) to (c).

図14(a)は各種濃度のアラキドン酸添加によるELISA測定値の変化を示す図であり、図14(b)は各種濃度のオレイン酸添加によるELISA測定値の変化を示す図であり、図14(c)は各種濃度の8−イソプロスタグランジンF2α添加によるELISA測定値の変化を示す図である。
図14(a)〜(c)に示したELISA測定の結果から明らかなように、L−FABP WTはアラキドン酸に関しては104〜220%の測定値の上昇(CV34.0%)、オレイン酸に関しては100〜124%の測定値の上昇、(CV10.4%)、8−イソプロスタグランジンF2αに関しては95〜118%の測定値の変動(CV6.8%)が確認された。
一方、L−FABP M19L/M74L/M113Lはアラキドン酸に関しては88〜103%の測定値の変動(CV6.1%)、オレイン酸に関しては92〜107%の測定値の変動、(CV5.1%)、8−イソプロスタグランジンF2αに関しては96〜101%の測定値の上昇(CV2.3%)が確認された。
以上の結果から脂肪酸添加に対してL−FABP M19L/M74L/M113Lの抗体結合能は安定的であり、ELISA測定値の変動は小さいことが明らかとなった。つまり、L−FABP M19L/M74L/M113Lは脂肪酸添加に対して安定化したといえる。
FIG. 14 (a) is a diagram showing changes in ELISA measured values by addition of various concentrations of arachidonic acid, and FIG. 14 (b) is a diagram showing changes in ELISA measured values by addition of various concentrations of oleic acid. (c) is a graph showing changes in ELISA measurements by 8 iso static prostaglandin F 2.alpha addition of various concentrations.
As is clear from the results of the ELISA measurement shown in FIGS. 14 (a) to (c), L-FABP WT showed an increase in the measured value of 104 to 220% for arachidonic acid (CV 34.0%), and for oleic acid. Increased 100-124% (CV 10.4%), and 8-isoprostaglandin F was confirmed to have a measured value variation of 95-118% (CV 6.8%).
On the other hand, L-FABP M19L / M74L / M113L has a measured value variation of 88 to 103% for arachidonic acid (CV 6.1%), a measured value variation of 92 to 107% for oleic acid, (CV 5.1%) ), An increase in the measured value of 96 to 101% (CV 2.3%) was confirmed for 8-isoprostaglandin F .
From the above results, it was revealed that the antibody binding ability of L-FABP M19L / M74L / M113L was stable with respect to the addition of fatty acid, and the fluctuation of the ELISA measurement value was small. That is, it can be said that L-FABP M19L / M74L / M113L was stabilized against fatty acid addition.

配列番号1:L−FABP WTのアミノ酸配列
配列番号2:L−FABP M19L/M74L/M113Lのアミノ酸配列
配列番号3:L−FABP M19L/M74L/M113LのDNA配列
SEQ ID NO: 1: Amino acid sequence of L-FABP WT SEQ ID NO: 2: Amino acid sequence of L-FABP M19L / M74L / M113L SEQ ID NO: 3: DNA sequence of L-FABP M19L / M74L / M113L

Claims (9)

配列表の配列番号1と同一性90%以上のアミノ酸配列からなり、19番目、74番目、113番目の1つ以上のメチオニンが、メチオニン以外の非極性アミノ酸に置換された肝型脂肪酸結合蛋白質であって、少なくとも19番目のメチオニンが、メチオニン以外の非極性アミノ酸に置換された肝型脂肪酸結合蛋白質。   A liver-type fatty acid binding protein comprising an amino acid sequence having 90% or more identity with SEQ ID NO: 1 in the sequence listing, wherein one or more methionines at the 19th, 74th, and 113th positions are replaced with nonpolar amino acids other than methionine. A liver-type fatty acid binding protein in which at least the 19th methionine is substituted with a nonpolar amino acid other than methionine. 請求項1記載の蛋白質をコードするDNA。   DNA encoding the protein according to claim 1. 請求項2記載のDNAで形質転換された細胞。   A cell transformed with the DNA according to claim 2. 請求項3記載の細胞を培養し、請求項1記載の蛋白質を回収する工程を含む請求項1記載の蛋白質の製造方法。   The method for producing a protein according to claim 1, comprising a step of culturing the cell according to claim 3 and recovering the protein according to claim 1. 請求項1記載の蛋白質を含む肝型脂肪酸結合蛋白質標品。   A liver-type fatty acid binding protein preparation comprising the protein according to claim 1. 測定用標準物質又は精度管理用物質として用いられる、請求項5記載の肝型脂肪酸結合蛋白質標品。 Measurement is used as a standard or control material of claim 5, SL mounting liver-type fatty acid binding protein preparations. 販売に供される請求項5又は6記載の肝型脂肪酸結合蛋白質標品。 The liver-type fatty acid-binding protein preparation according to claim 5 or 6 for sale. 請求項5からいずれか記載の肝型脂肪酸結合蛋白質標品を用いて、肝型脂肪酸結合蛋白質の検量線を作成する方法。 A method for preparing a calibration curve for a liver-type fatty acid binding protein using the liver-type fatty acid binding protein preparation according to any one of claims 5 to 7 . 請求項記載の方法で作成した検量線を用いて、試料中の肝型脂肪酸結合蛋白質を定量する方法。 A method for quantifying liver-type fatty acid binding protein in a sample using a calibration curve prepared by the method according to claim 8 .
JP2016120073A 2016-06-16 2016-06-16 Liver-type fatty acid binding protein, DNA encoding the protein, cells transformed with the DNA, a method for producing the protein, a preparation of the protein, a method for preparing a calibration curve for the protein, and quantifying the protein Method Active JP6059388B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016120073A JP6059388B1 (en) 2016-06-16 2016-06-16 Liver-type fatty acid binding protein, DNA encoding the protein, cells transformed with the DNA, a method for producing the protein, a preparation of the protein, a method for preparing a calibration curve for the protein, and quantifying the protein Method
EP17813408.6A EP3421600B1 (en) 2016-06-16 2017-06-15 Liver-type fatty acid-binding protein preparation and use thereof
PCT/JP2017/022209 WO2017217514A1 (en) 2016-06-16 2017-06-15 Liver-type fatty acid-binding protein preparation, method for evaluating preparation, method for regulating variation range of measured value caused by liver-type fatty acid-binding protein in measurement using preparation, liver-type fatty acid-binding protein, dna encoding protein, cell transformed by dna, method for producing protein, method for drawing calibration curve for liver-type fatty acid-binding protein, and method for quantifying protein
US16/087,333 US10981960B2 (en) 2016-06-16 2017-06-15 Liver-type fatty acid-binding protein standard, method for evaluating standard, method for regulating variation range of measured value caused by liver-type fatty acid-binding protein in measurement using standard, liver-type fatty acid-binding protein, DNA encoding protein, cell transformed by DNA, method of producing protein, method of drawing calibration curve for liver-type fatty acid-binding protein, and method of quantifying protein
CN201780019737.XA CN109121419A (en) 2016-06-16 2017-06-15 Liver type fatty acid-binding protein preparation, the method that it is evaluated, the method for amplitude of fluctuation for inhibiting measured value caused by using the liver type fatty acid-binding protein in its measurement, liver type fatty acid-binding protein, its manufacturing method, encode it DNA, converted by the DNA cell, make liver type fatty acid-binding protein calibration curve method and quantitative method is carried out to the protein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016120073A JP6059388B1 (en) 2016-06-16 2016-06-16 Liver-type fatty acid binding protein, DNA encoding the protein, cells transformed with the DNA, a method for producing the protein, a preparation of the protein, a method for preparing a calibration curve for the protein, and quantifying the protein Method

Publications (2)

Publication Number Publication Date
JP6059388B1 true JP6059388B1 (en) 2017-01-11
JP2017221155A JP2017221155A (en) 2017-12-21

Family

ID=57756158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016120073A Active JP6059388B1 (en) 2016-06-16 2016-06-16 Liver-type fatty acid binding protein, DNA encoding the protein, cells transformed with the DNA, a method for producing the protein, a preparation of the protein, a method for preparing a calibration curve for the protein, and quantifying the protein Method

Country Status (1)

Country Link
JP (1) JP6059388B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017217514A1 (en) * 2016-12-19 2019-04-18 シミックホールディングス株式会社 Liver-type fatty acid binding protein preparation, method for evaluating the preparation, method for suppressing fluctuation of measurement value caused by liver-type fatty acid binding protein in measurement using the preparation, liver-type fatty acid binding protein, the protein DNA encoding, cell transformed with the DNA, method for producing the protein, method for preparing a calibration curve of liver type fatty acid binding protein, and method for quantifying the protein
US10981960B2 (en) 2016-06-16 2021-04-20 Cmic Holdings Co., Ltd. Liver-type fatty acid-binding protein standard, method for evaluating standard, method for regulating variation range of measured value caused by liver-type fatty acid-binding protein in measurement using standard, liver-type fatty acid-binding protein, DNA encoding protein, cell transformed by DNA, method of producing protein, method of drawing calibration curve for liver-type fatty acid-binding protein, and method of quantifying protein
CN112805565A (en) * 2018-09-28 2021-05-14 Cmic控股有限公司 Method for quantifying liver-type fatty acid binding protein, kit for quantifying same, method for detecting renal disease, kit for detecting same, and diagnostic agent for same

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
JPN6016028077; Biochem. Biophys. Acta., 1994年 Vol.1214, No.1, p.1-10 *
JPN6016028078; Protein Engineering, 2001年 Vol.14, No.5, p.343-347 *
JPN6016028082; Pharmaceutical Res., 2010年 Vol.27, No.4, p.544-575 *
JPN6016028084; J. Lipid Res., 2009年 Vol.50, p.2445-2454 *
JPN6016028085; 'Database DDBJ/EMBL/GenBank [online]' Accession No. NP_036688,03-FEB-2016 uploaded *
JPN6016028086; レナプロL-FABPテストTMB 第3版, 2015, シミックホールディングス株式会社 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10981960B2 (en) 2016-06-16 2021-04-20 Cmic Holdings Co., Ltd. Liver-type fatty acid-binding protein standard, method for evaluating standard, method for regulating variation range of measured value caused by liver-type fatty acid-binding protein in measurement using standard, liver-type fatty acid-binding protein, DNA encoding protein, cell transformed by DNA, method of producing protein, method of drawing calibration curve for liver-type fatty acid-binding protein, and method of quantifying protein
JPWO2017217514A1 (en) * 2016-12-19 2019-04-18 シミックホールディングス株式会社 Liver-type fatty acid binding protein preparation, method for evaluating the preparation, method for suppressing fluctuation of measurement value caused by liver-type fatty acid binding protein in measurement using the preparation, liver-type fatty acid binding protein, the protein DNA encoding, cell transformed with the DNA, method for producing the protein, method for preparing a calibration curve of liver type fatty acid binding protein, and method for quantifying the protein
CN112805565A (en) * 2018-09-28 2021-05-14 Cmic控股有限公司 Method for quantifying liver-type fatty acid binding protein, kit for quantifying same, method for detecting renal disease, kit for detecting same, and diagnostic agent for same

Also Published As

Publication number Publication date
JP2017221155A (en) 2017-12-21

Similar Documents

Publication Publication Date Title
Kermani A guide to membrane protein X‐ray crystallography
Curran et al. The role of the Tim8p–Tim13p complex in a conserved import pathway for mitochondrial polytopic inner membrane proteins
Woestenenk et al. His tag effect on solubility of human proteins produced in Escherichia coli: a comparison between four expression vectors
Lucker et al. Direct interactions of intraflagellar transport complex B proteins IFT88, IFT52, and IFT46
Wang et al. Formation and reversibility of BiP protein cysteine oxidation facilitate cell survival during and post oxidative stress
Hoseini et al. The cytosolic cochaperone Sti1 is relevant for mitochondrial biogenesis and morphology
Weber et al. High level expression in Escherichia coli and characterization of the EF-hand calcium-binding protein caltractin.
Loughran et al. Purification of poly-histidine-tagged proteins
JP6059388B1 (en) Liver-type fatty acid binding protein, DNA encoding the protein, cells transformed with the DNA, a method for producing the protein, a preparation of the protein, a method for preparing a calibration curve for the protein, and quantifying the protein Method
Hu et al. Glucose monitoring in living cells with single fluorescent protein-based sensors
JP6563598B2 (en) Liver-type fatty acid-binding protein preparation, method for evaluating the preparation, method for suppressing the fluctuation range of the measurement value caused by liver-type fatty acid-binding protein in measurement using the preparation, liver-type fatty acid binding protein, and protein Encoding DNA, cells transformed with the DNA, method for producing the protein, method for preparing a calibration curve for hepatic fatty acid binding protein, and method for quantifying the protein
Long et al. FER1 and FER2 encoding two ferritin complexes in Chlamydomonas reinhardtii chloroplasts are regulated by iron
EP3059250A1 (en) Fusion protein for protein detection, and method for detecting protein
Suzuki et al. Methyl-selective isotope labeling using α-ketoisovalerate for the yeast Pichia pastoris recombinant protein expression system
Datskevich et al. Utilization of fluorescent chimeras for investigation of heterooligomeric complexes formed by human small heat shock proteins
WO2017083632A1 (en) Host cells and systems for membrane protein expression
JP6218983B1 (en) Liver-type fatty acid binding protein preparation, method for evaluating the preparation, method for suppressing the fluctuation range of the measurement value caused by liver-type fatty acid binding protein in the measurement using the preparation, calibration curve for liver-type fatty acid binding protein Method for preparing and method for quantifying the protein
Farrell et al. Identification of the Zn (II) site in the copper-responsive yeast transcription factor, AMT1: a conserved Zn module
Dow et al. Characterization of a pre-export enzyme–chaperone complex on the twin-arginine transport pathway
Charbonnier et al. Overexpression, refolding, and purification of the histidine-tagged outer membrane efflux protein OprM of Pseudomonas aeruginosa
WO2017217514A1 (en) Liver-type fatty acid-binding protein preparation, method for evaluating preparation, method for regulating variation range of measured value caused by liver-type fatty acid-binding protein in measurement using preparation, liver-type fatty acid-binding protein, dna encoding protein, cell transformed by dna, method for producing protein, method for drawing calibration curve for liver-type fatty acid-binding protein, and method for quantifying protein
Wong et al. A carboxy-terminal affinity tag for the purification and mass spectrometric characterization of integral membrane proteins
Douette et al. Escherichia coli fusion carrier proteins act as solubilizing agents for recombinant uncoupling protein 1 through interactions with GroEL
Verissimo et al. The Heme Chaperone ApoCcmE Forms a Ternary Complex with CcmI and Apocytochrome c [S]
Zhang et al. Expression and purification of soluble human cystatin C in Escherichia coli with maltose-binding protein as a soluble partner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160616

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20160616

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20160715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161018

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160923

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161208

R150 Certificate of patent or registration of utility model

Ref document number: 6059388

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250