JPWO2017217085A1 - Electrolytic copper foil, negative electrode for lithium ion secondary battery, lithium ion secondary battery and printed wiring board - Google Patents

Electrolytic copper foil, negative electrode for lithium ion secondary battery, lithium ion secondary battery and printed wiring board Download PDF

Info

Publication number
JPWO2017217085A1
JPWO2017217085A1 JP2017536985A JP2017536985A JPWO2017217085A1 JP WO2017217085 A1 JPWO2017217085 A1 JP WO2017217085A1 JP 2017536985 A JP2017536985 A JP 2017536985A JP 2017536985 A JP2017536985 A JP 2017536985A JP WO2017217085 A1 JPWO2017217085 A1 JP WO2017217085A1
Authority
JP
Japan
Prior art keywords
copper foil
elongation
electrolytic copper
ion secondary
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017536985A
Other languages
Japanese (ja)
Other versions
JP6248233B1 (en
Inventor
政登 胡木
政登 胡木
篠崎 淳
淳 篠崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority claimed from PCT/JP2017/014131 external-priority patent/WO2017217085A1/en
Application granted granted Critical
Publication of JP6248233B1 publication Critical patent/JP6248233B1/en
Publication of JPWO2017217085A1 publication Critical patent/JPWO2017217085A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本発明は、高強度、高耐熱性で、かつ伸び異方性の小さい電解銅箔、リチウムイオン二次電池用負極電極およびリチウムイオン二次電池ならびにプリント配線板を提供する。
本発明の表面処理銅箔は、炭素を0.001〜0.020質量%含有する電解銅箔であって、該電解銅箔の十点平均粗さ(Rz)が1.8μm以下であり、前記電解銅箔を150℃で1時間加熱した後に常温で測定したときの引張特性は、前記銅箔の引張強度が400MPa以上、銅箔の幅方向(TD)の伸びが2%以上であり、かつ銅箔の長手方向(MD)の伸びと前記幅方向(TD)の伸びの差を表すパラメータである伸び異方性{[(MD伸び−TD伸び)/MD伸び]×100}が50%以下であることを特徴とする。
The present invention provides an electrolytic copper foil, a negative electrode for a lithium ion secondary battery, a lithium ion secondary battery, and a printed wiring board that have high strength, high heat resistance, and low elongation anisotropy.
The surface-treated copper foil of the present invention is an electrolytic copper foil containing 0.001 to 0.020% by mass of carbon, and the ten-point average roughness (Rz) of the electrolytic copper foil is 1.8 μm or less. Tensile properties when measured at room temperature after heating for 1 hour at 150 ° C are as follows: the tensile strength of the copper foil is 400 MPa or more, the elongation in the width direction (TD) of the copper foil is 2% or more, and the length of the copper foil The elongation anisotropy {[(MD elongation−TD elongation) / MD elongation] × 100}, which is a parameter representing the difference between the elongation in the direction (MD) and the width direction (TD), is 50% or less. Features.

Description

本発明は、電解銅箔と、この電解銅箔を有する、リチウムイオン二次電池用負極電極およびリチウムイオン二次電池ならびにプリント配線板に関するものである。   The present invention relates to an electrolytic copper foil, a negative electrode for a lithium ion secondary battery, a lithium ion secondary battery, and a printed wiring board having the electrolytic copper foil.

近年、リチウム(Li)イオン二次電池の小型・軽量化を図るため、集電体として用いる銅箔を薄箔化する検討が進んでおり、それに伴い、銅箔に作用する応力やひずみは増加する傾向にある。また、リチウムイオン二次電池の高容量化のため、活物質を従来のカーボン系に加えてシリコン系を混ぜ合わせ、理論容量を増加させる試みや、従来よりも活物質層を高密度に充填し、体積当たりの容量を増加させるなど、次世代リチウムイオン二次電池の開発が本格化しつつあり、それに伴い、集電体である銅箔に作用する応力は一段と高くなり、拘束状況も強くなる結果、充放電後における電解銅箔のシワや箔切れがこれまで以上に顕在化し、それによる電池特性の低下が懸念されている。   In recent years, in order to reduce the size and weight of lithium (Li) ion secondary batteries, studies to reduce the thickness of the copper foil used as a current collector have progressed, and the stress and strain acting on the copper foil have increased accordingly. Tend to. In addition, in order to increase the capacity of lithium ion secondary batteries, active materials are mixed with conventional carbon materials and silicon materials are mixed to try to increase the theoretical capacity, and the active material layer is filled more densely than before. The development of next-generation lithium-ion secondary batteries, such as increasing the capacity per volume, is becoming full-fledged, and as a result, the stress acting on the copper foil as a current collector becomes higher and the restraint situation becomes stronger. Further, wrinkles and foil breakage of the electrolytic copper foil after charge / discharge are more obvious than ever, and there is a concern that the battery characteristics may be deteriorated.

銅箔の薄箔化を実現するための従来の手段としては、例えば電解銅箔の高強度化や、電池製造工程の熱処理においても軟化などの特性劣化が生じにくい特性の向上(高耐熱化)が行われてきた(例えば、特許文献1〜4等)。   Conventional means for realizing thin copper foil include, for example, higher strength of electrolytic copper foil, and improvement of characteristics that do not easily cause characteristic deterioration such as softening even during heat treatment in the battery manufacturing process (high heat resistance) (For example, Patent Documents 1 to 4 etc.).

電解銅箔の高強度化・高耐熱化は、電解液中に添加剤を添加し、電析中に母相の結晶粒内や結晶粒界に添加剤成分を取り込ませることで、結晶粒の微細化効果による高強度化や、ピン止め効果によって行うのが一般的である。   The strength and heat resistance of the electrolytic copper foil are increased by adding additives to the electrolyte and incorporating the additive components into the crystal grains and grain boundaries of the matrix during electrodeposition. Generally, it is carried out by increasing the strength by the miniaturization effect or by the pinning effect.

しかしながら、高強度化と高耐熱化を実現できた場合であっても、次世代リチウムイオン二次電池においては、シワや箔切れを完全に防止することは困難であり、従来設計とは別の観点からのさらなる特性改善が必要であった。   However, even when high strength and high heat resistance can be realized, it is difficult to completely prevent wrinkles and foil breakage in next-generation lithium ion secondary batteries. Further improvement in characteristics from the viewpoint was necessary.

特許第5771392号公報Japanese Patent No. 5771392 特開2008-285727号公報JP 2008-285727 A 特開2014-224321号公報JP 2014-224321 A 特許第5598700号公報Japanese Patent No. 5598700 特許第3850155号公報Japanese Patent No. 3850155

本発明の目的は、高強度、高耐熱性で、かつ伸び異方性の小さい電解銅箔、リチウムイオン二次電池用負極電極およびリチウムイオン二次電池ならびにプリント配線板を提供することにある。   An object of the present invention is to provide an electrolytic copper foil, a negative electrode for a lithium ion secondary battery, a lithium ion secondary battery, and a printed wiring board that have high strength, high heat resistance, and low elongation anisotropy.

本発明者らは、上記の設計指針を基に新規電解銅箔の開発を検討したところ、高強度・高耐熱性を有する電解銅箔において、伸び異方性(引張試験を行う方向によって伸び値が異なる現象)が顕在化すること、また、詳細は後述するが、伸び異方性の低減が、充放電後のシワおよび箔切れの発生や、プレス後のシワや箔切れの発生を有効に低減できることを見出した。   The present inventors examined the development of a new electrolytic copper foil based on the above design guidelines, and found that an electrolytic copper foil having high strength and high heat resistance had an elongation anisotropy (elongation value depending on the direction in which the tensile test was performed). However, the details of this phenomenon will be described later, and the reduction in elongation anisotropy effectively reduces the occurrence of wrinkles and foil breaks after charging and discharging, and the occurrence of wrinkles and foil breaks after pressing. We found that it can be reduced.

なお、電解銅箔は一般にチタン製陰極ドラム表面に銅を析出させ、それを連続的に引き剥がし、巻き取ることで長尺の製品(電解銅箔)が製造される。このとき、ドラムの回転方向、すなわち長尺品の長手方向をMDと表記し、MD方向に対し直交する方向、すなわち銅箔の幅方向をTDと表記する。   In general, the electrolytic copper foil deposits copper on the surface of the titanium cathode drum, continuously peels it off, and winds up to produce a long product (electrolytic copper foil). At this time, the rotation direction of the drum, that is, the longitudinal direction of the long product is expressed as MD, and the direction orthogonal to the MD direction, that is, the width direction of the copper foil is expressed as TD.

従来の一般的な電解銅箔と、従来の高強度・高耐熱性電解銅箔について、それぞれMD方向とTD方向に切り出した試験片を作製し、引張り試験機で応力および歪みを測定して得られた応力−歪み曲線(SSカーブ)の代表的な例を図1に示す。図1からも明らかな通り、従来の高強度・高耐熱箔では、MD方向のひずみ(伸び)が5.8%、TD方向の伸びが2.0%で、伸びの異方性が約65.5%((5.8-2.0)/5.8×100%)と大きく、顕在化していることが分かる。しかしながら、特許文献1〜4はいずれも、高強度・高耐熱性電解銅箔の伸び異方性については何ら着目しておらず、かかる構成では、次世代リチウムイオン二次電池におけるシワや箔切れの発生を有効に抑制することはできない。なお、従来の一般的な電解銅箔においても、伸び異方性が約11.1%と若干生じているが、これは、電解ドラムに存在するバフスジが転写されて生じる表面凹凸に起因したものであると考えられ、伸び異方性としては小さく、シワや箔切れが発生する原因にはなりにくい。   For conventional conventional electrolytic copper foil and conventional high-strength and high-heat-resistant electrolytic copper foil, specimens cut in the MD and TD directions were prepared, and the stress and strain were measured with a tensile tester. A typical example of the obtained stress-strain curve (SS curve) is shown in FIG. As is clear from FIG. 1, in the conventional high strength and high heat resistance foil, the strain (elongation) in the MD direction is 5.8%, the elongation in the TD direction is 2.0%, and the anisotropy of elongation is about 65.5% ((5.8 -2.0) /5.8×100%), and it is clear that it has become obvious. However, none of Patent Documents 1 to 4 pays attention to the elongation anisotropy of the high-strength and high-heat-resistant electrolytic copper foil, and in such a configuration, wrinkles and foil breakage in the next-generation lithium ion secondary battery are not observed. The occurrence of this cannot be effectively suppressed. The conventional general electrolytic copper foil also has a slight elongation anisotropy of about 11.1%, which is due to surface irregularities caused by the transfer of buff lines present in the electrolytic drum. It is considered that the anisotropy of elongation is small, and it is difficult to cause wrinkles and foil breakage.

今後、次世代リチウムイオン二次電池の開発が本格化することを考えると、高強度・高耐熱性箔の開発は必須と考えられ、それに伴い顕在化する伸びの異方性の低減は、重要な課題と言える。すなわち、高容量リチウムイオン二次電池の集電体用途においては、高強度・高耐熱でかつ伸び異方性の小さい銅箔の開発が望まれる。   Considering that the development of next-generation lithium-ion secondary batteries will become full-scale in the future, it is considered essential to develop high-strength and high-heat-resistant foils, and it is important to reduce the anisotropy of the elongation that becomes apparent along with it. It can be said that it is a difficult task. That is, in the current collector application of a high-capacity lithium ion secondary battery, it is desired to develop a copper foil having high strength, high heat resistance, and low elongation anisotropy.

また、プリント配線板においても、樹脂との張り合わせ時に等方的な応力が付与されることを考えると、伸び異方性は、小さい方が好ましいと考えられ、伸び異方性の小さい銅箔の開発が望まれる。   Also, considering that isotropic stress is applied to the printed wiring board when it is bonded to the resin, it is considered that the elongation anisotropy is preferably smaller. Development is desired.

そして本発明者らは、鋭意検討し、上記課題を解決する方法を見出し、本発明を完成させた。すなわち、本発明の要旨構成は以下の通りである。
(1)炭素を0.001〜0.020質量%含有する電解銅箔であって、該電解銅箔の十点平均粗さ(Rz)が1.8μm以下であり、前記電解銅箔を150℃で1時間加熱した後に常温で測定したときの引張特性は、前記銅箔の引張強度が400MPa以上、銅箔の幅方向(TD)の伸びが2%以上であり、かつ銅箔の長手方向(MD)の伸びと前記幅方向(TD)の伸びの差を表すパラメータである伸び異方性{[(MD伸び−TD伸び)/MD伸び]×100}が50%以下であることを特徴とする電解銅箔。
(2)前記伸び異方性{[(MD伸び−TD伸び)/MD伸び]×100}が30%以下である上記(1)に記載の電解銅箔。
(3)前記引張特性が、両面のいずれにも粗化処理層が形成されていない電解銅箔(原箔)の状態で得られる上記(1)または(2)に記載の電解銅箔。
(4)上記(1)〜(3)のいずれか1項に記載の電解銅箔を集電体として有するリチウムイオン二次電池用負極電極。
(5)上記(1)〜(3)のいずれか1項に記載の電解銅箔を集電体として有するリチウムイオン二次電池用負極電極を備えるリチウムイオン二次電池。
(6)上記(1)〜(3)のいずれか1項に記載の電解銅箔と絶縁フィルムとを積層形成してなるプリント配線板。
Then, the present inventors diligently studied, found a method for solving the above-mentioned problems, and completed the present invention. That is, the gist of the present invention is as follows.
(1) An electrolytic copper foil containing 0.001 to 0.020% by mass of carbon, wherein the electrolytic copper foil has a ten-point average roughness (Rz) of 1.8 μm or less, and the electrolytic copper foil is heated at 150 ° C. for 1 hour. Tensile properties when measured at room temperature after that, the tensile strength of the copper foil is 400 MPa or more, the elongation in the width direction (TD) of the copper foil is 2% or more, and the elongation in the longitudinal direction (MD) of the copper foil And an elongation anisotropy {[(MD elongation−TD elongation) / MD elongation] × 100} which is a parameter representing a difference in elongation in the width direction (TD) is 50% or less. .
(2) The electrolytic copper foil according to (1), wherein the elongation anisotropy {[(MD elongation−TD elongation) / MD elongation] × 100} is 30% or less.
(3) The electrolytic copper foil according to (1) or (2), wherein the tensile properties are obtained in a state of an electrolytic copper foil (raw foil) in which a roughening treatment layer is not formed on either side.
(4) A negative electrode for a lithium ion secondary battery having the electrolytic copper foil according to any one of (1) to (3) as a current collector.
(5) A lithium ion secondary battery comprising a negative electrode for a lithium ion secondary battery having the electrolytic copper foil according to any one of (1) to (3) as a current collector.
(6) A printed wiring board formed by laminating the electrolytic copper foil according to any one of (1) to (3) above and an insulating film.

本発明によれば、炭素を0.001〜0.020質量%含有する電解銅箔であって、該電解銅箔の十点平均粗さ(Rz)が1.8μm以下であり、前記電解銅箔を150℃で1時間加熱した後に常温で測定したときの引張特性は、前記銅箔の引張強度が400MPa以上、銅箔の幅方向(TD)の伸びが2%以上であり、かつ銅箔の長手方向(MD)の伸びと前記幅方向(TD)の伸びの差を表すパラメータである伸び異方性{[(MD伸び−TD伸び)/MD伸び]×100}が50%以下であることによって、高強度、高耐熱性で、かつ伸び異方性の小さい電解銅箔の提供が可能になった。   According to the present invention, an electrolytic copper foil containing 0.001 to 0.020% by mass of carbon, wherein the electrolytic copper foil has a ten-point average roughness (Rz) of 1.8 μm or less, and the electrolytic copper foil is at 150 ° C. Tensile properties when measured at room temperature after heating for 1 hour are as follows: the tensile strength of the copper foil is 400 MPa or more, the elongation in the width direction (TD) of the copper foil is 2% or more, and the longitudinal direction of the copper foil (MD ) And elongation anisotropy {[(MD elongation−TD elongation) / MD elongation] × 100}, which is a parameter representing the difference between the elongation in the width direction (TD), is 50% or less. It has become possible to provide an electrolytic copper foil with high heat resistance and low elongation anisotropy.

また、本発明の電解銅箔を、例えば集電体として有するリチウムイオン二次電池用負極電極を備えるリチウムイオン二次電池に用いれば、充放電時の箔切れやシワを防止し、電池容量、サイクル特性および安全性を向上させることができるため、次世代リチウムイオン二次電池用途に好適である。さらに、本発明の電解銅箔を、絶縁フィルムとともに積層形成してなるプリント配線板に用いれば、プレス時の箔切れやシワの発生を防止し、また、 寸法安定性を向上させることができる。   Moreover, if the electrolytic copper foil of the present invention is used for, for example, a lithium ion secondary battery provided with a negative electrode for a lithium ion secondary battery having a current collector, the foil capacity and wrinkle at the time of charging / discharging are prevented, the battery capacity, Since cycle characteristics and safety can be improved, it is suitable for next-generation lithium ion secondary battery applications. Furthermore, if the electrolytic copper foil of the present invention is used for a printed wiring board formed by laminating with an insulating film, foil breakage and wrinkle generation during pressing can be prevented, and dimensional stability can be improved.

図1は、従来の一般的な電解銅箔と、従来の高強度・高耐熱性電解銅箔について、それぞれMD方向とTD方向に切り出した試験片を作製し、引張り試験機で応力および歪みを測定して得られた代表的な応力−歪み曲線(SSカーブ)である。Fig. 1 shows test pieces cut in the MD and TD directions for a conventional general electrolytic copper foil and a conventional high-strength / high-heat-resistant electrolytic copper foil. It is a typical stress-strain curve (SS curve) obtained by measurement. 図2は、本発明の電解銅箔を製造するための製造装置の要部を説明するための概念図である。FIG. 2 is a conceptual diagram for explaining a main part of a production apparatus for producing the electrolytic copper foil of the present invention.

次に、本発明の実施形態について以下で説明する。
本発明の電解銅箔は、炭素を0.001〜0.020質量%含有する電解銅箔であって、該電解銅箔の十点平均粗さ(Rz)が1.8μm以下であり、前記電解銅箔を150℃で1時間加熱した後に常温(20℃±15℃)で測定したときの引張特性は、前記銅箔の引張強度が400MPa以上、銅箔の幅方向(TD)の伸びが2%以上であり、かつ銅箔の長手方向(MD)の伸びと前記幅方向(TD)の伸びの差を表すパラメータである伸び異方性{[(MD伸び−TD伸び)/MD伸び]×100}が50%以下であることを特徴とする電解銅箔である。
Next, embodiments of the present invention will be described below.
The electrolytic copper foil of the present invention is an electrolytic copper foil containing 0.001 to 0.020% by mass of carbon, and the ten-point average roughness (Rz) of the electrolytic copper foil is 1.8 μm or less. Tensile properties when heated at room temperature for 1 hour and then measured at room temperature (20 ° C ± 15 ° C) are as follows: The tensile strength of the copper foil is 400 MPa or more and the elongation in the width direction (TD) of the copper foil is 2% or more. The elongation anisotropy {[(MD elongation−TD elongation) / MD elongation] × 100}, which is a parameter representing the difference between the elongation in the longitudinal direction (MD) of the copper foil and the elongation in the width direction (TD), is 50. % Of the electrolytic copper foil.

<銅箔中の炭素含有量>
本発明では、電解銅箔中の炭素(C)含有量を0.001〜0.020質量%とすることが必要である。炭素含有量が0.001質量%未満だと、十分な強度および耐熱性が得られず、また、炭素含有量が0.020質量%超えだと、延性が低下し、ハンドリング時、ないし充放電時に箔切れが生じやすいからである。このため、炭素含有量は0.001〜0.020質量%とした。なお、銅箔中の炭素含有量の測定は、例えば炭素・硫黄分析装置EMIA−810W(堀場製作所製)を用いて、酸素気流中燃焼(管状電気炉方式)―赤外線吸収法で行うことができる。
<Carbon content in copper foil>
In the present invention, the carbon (C) content in the electrolytic copper foil is required to be 0.001 to 0.020% by mass. If the carbon content is less than 0.001% by mass, sufficient strength and heat resistance cannot be obtained, and if the carbon content exceeds 0.020% by mass, the ductility decreases and the foil breaks during handling or charge / discharge. It is easy to occur. For this reason, carbon content was made into 0.001-0.020 mass%. The carbon content in the copper foil can be measured, for example, by using a carbon / sulfur analyzer EMIA-810W (manufactured by Horiba Seisakusho) in an oxygen stream combustion (tubular electric furnace method) -infrared absorption method. .

<銅箔表面の十点平均粗さ(Rz)>
また、本発明では、電解銅箔の十点平均粗さ(Rz)が1.8μm以下であることが必要である。前記十点平均粗さ(Rz)が1.8μm超えだと、電解銅箔の表面凹凸に起因した伸び異方性が大きくなって顕在化し、充放電試験後の銅箔には、シワが顕著に発生しやすくなるからである。このため、電解銅箔の十点平均粗さ(Rz)は1.8μm以下とした。なお、電解銅箔の十点平均粗さ(Rz)の測定は、JIS B0601:1994に準じて行なった。また、測定面は、粗化処理層が形成されていない未処理の電解銅箔(原箔)のS面(陰極(Ti)ドラム側の表面)とし、測定方向は、バフスジ方向(=MD方向)に対し垂直な方向(=TD方向)とした。
<10-point average roughness of copper foil surface (Rz)>
In the present invention, it is necessary that the ten-point average roughness (Rz) of the electrolytic copper foil is 1.8 μm or less. When the ten-point average roughness (Rz) exceeds 1.8 μm, the elongation anisotropy due to the surface unevenness of the electrolytic copper foil becomes large and becomes apparent, and the copper foil after the charge / discharge test is noticeably wrinkled. This is because it tends to occur. For this reason, the 10-point average roughness (Rz) of the electrolytic copper foil was set to 1.8 μm or less. The ten-point average roughness (Rz) of the electrolytic copper foil was measured according to JIS B0601: 1994. The measurement surface is the S surface (surface on the cathode (Ti) drum side) of the untreated electrolytic copper foil (raw foil) on which the roughened layer is not formed, and the measurement direction is the buffing direction (= MD direction) ) Direction (= TD direction).

<150℃で1時間加熱した後に常温で測定したときの銅箔の引張特性>
さらに、本発明の電解銅箔は、150℃で1時間加熱した後に常温で測定したときの引張特性が、以下の各特性を満足するものである。すなわち、銅箔の引張強度が400MPa以上、銅箔の幅方向(TD)の伸びが2%以上であり、かつ銅箔の長手方向(MD)の伸びと前記幅方向(TD)の伸びの差を表すパラメータである伸び異方性{[(MD伸び−TD伸び)/MD伸び]×100}が50%以下であることを満足することが必要である。
<Tensile property of copper foil when measured at room temperature after heating at 150 ° C for 1 hour>
Furthermore, the electrolytic copper foil of the present invention satisfies the following characteristics in tensile properties when measured at room temperature after heating at 150 ° C. for 1 hour. That is, the tensile strength of the copper foil is 400 MPa or more, the elongation in the width direction (TD) of the copper foil is 2% or more, and the difference between the elongation in the longitudinal direction (MD) of the copper foil and the elongation in the width direction (TD) It is necessary to satisfy that the elongation anisotropy {[(MD elongation−TD elongation) / MD elongation] × 100}, which is a parameter representing the value, is 50% or less.

従来の一般的な電解銅箔は、高強度化や高耐熱化への要求が少なかったこともあり、添加剤を使用しない純度の高い電解銅箔(例えば特許文献5)や、平滑化のために添加剤は加えるものの、電析過程で銅箔中に添加剤がさほど取り込まれない電解銅箔(例えば古河電気工業株式会社製のNC-WS)が一般的であった。しかしながら、電池の高容量化、小型化、軽量化に伴い、高強度・高耐熱性をもつ電解銅箔の需要が拡大したため、電析過程で箔中に取り込まれる添加剤種を積極的に使用するケースが増えてきた(例えば特許文献1〜4等)。   Conventional general electrolytic copper foils have few demands for high strength and high heat resistance, and high purity electrolytic copper foil (for example, Patent Document 5) that does not use an additive or for smoothing. In general, an electrolytic copper foil (for example, NC-WS manufactured by Furukawa Electric Co., Ltd.) in which the additive is not so much incorporated into the copper foil during the electrodeposition process is added. However, the demand for electrolytic copper foil with high strength and high heat resistance has increased with the increase in capacity, size, and weight of batteries. Therefore, the additive species incorporated into the foil during the electrodeposition process are actively used. Increasing number of cases (for example, Patent Documents 1 to 4).

本発明者らは、電池用途ないしプリント配線板用途に好適な高強度・高耐熱性を具備することを前提として様々な添加剤を使用した電解銅箔を製造し、負極にSi系活物質を含有させた次世代型のリチウムイオン二次電池の充放電試験を行ったところ、強度、伸び、耐熱性などの従来必要とされていた特性の向上だけでは、充放電後の銅箔のシワを十分に抑制することができないことが分かった。そこで、シワのさらなる抑制に向けて鋭意検討した結果、高強度・高耐熱化した電解銅箔において、伸び異方性が顕在化すること、そして、伸びの異方性を低減することでシワを有効に抑制できることを見出した。以下、伸び異方性について説明する。   The inventors have produced electrolytic copper foil using various additives on the premise that it has high strength and high heat resistance suitable for battery use or printed wiring board use, and Si-based active material is applied to the negative electrode. When a charge / discharge test was conducted on the next-generation lithium ion secondary battery, the copper foil wrinkle after charge / discharge was only improved by improving the properties that were required in the past, such as strength, elongation, and heat resistance. It turns out that it cannot suppress enough. Therefore, as a result of diligent studies for further suppression of wrinkles, it was found that elongation anisotropy becomes obvious in electrolytic copper foil with high strength and high heat resistance, and wrinkles are reduced by reducing the anisotropy of elongation. It was found that it can be effectively suppressed. Hereinafter, the elongation anisotropy will be described.

伸び異方性とは、引張試験において、引張方向によって伸び値が異なる性質を指す。本発明者らは、複数の高強度・高耐熱性を有する電解銅箔において、伸びの異方性を調査したところ、銅箔の長手方向(MD方向)に引っ張ったときの伸びの値が最も大きく、銅箔の幅方向(TD方向)に引っ張ったときの伸びの値が最も小さくなることが分かった。そこで、本発明では、伸び異方性の大小を表す値として、銅箔の長手方向(MD)の伸びと前記幅方向(TD)の伸びの差を表すパラメータである伸び異方性を、{[(MD伸び−TD伸び)/MD伸び]×100}の式で算出して評価した。以下、伸び異方性とシワの関係について説明する。   Elongation anisotropy refers to a property in which an elongation value varies depending on a tensile direction in a tensile test. The present inventors investigated the anisotropy of elongation in a plurality of electrolytic copper foils having high strength and high heat resistance, and found that the elongation value when the copper foil was pulled in the longitudinal direction (MD direction) was the most. It was found that the elongation value was the smallest when the copper foil was pulled in the width direction (TD direction). Therefore, in the present invention, as a value representing the magnitude of the elongation anisotropy, the elongation anisotropy which is a parameter representing the difference between the elongation in the longitudinal direction (MD) of the copper foil and the width direction (TD) is { [(MD elongation−TD elongation) / MD elongation] × 100} was calculated and evaluated. Hereinafter, the relationship between elongation anisotropy and wrinkles will be described.

電池の充放電や樹脂とのプレスなどで等方的な応力が電解銅箔に負荷されると、伸び異方性が大きい場合、伸び値が低い方向(例えば銅箔の幅方向(TD))では、いち早く不均一変形域(単一引張試験でいうネッキング領域に相当)に達するため、方向によって、均一変形域と不均一変形域が混在し、局所的なひずみの偏りが生じる結果、銅箔にシワが入りやすい。一方、伸び異方性が小さい場合、上述したような均一変形域と不均一変形域が混在しにくいため、ひずみの偏りが抑制される結果、シワが発生しにくいと考えられる。   When isotropic stress is applied to the electrolytic copper foil by charging / discharging the battery or pressing with a resin, when the elongation anisotropy is large, the elongation value is low (for example, the width direction (TD) of the copper foil). However, because it reaches the non-uniform deformation region (corresponding to the necking region in the single tensile test) quickly, the uniform deformation region and the non-uniform deformation region are mixed depending on the direction, resulting in local strain bias. Wrinkles are easy to enter. On the other hand, when the elongation anisotropy is small, the uniform deformation region and the non-uniform deformation region as described above are unlikely to be mixed, so that it is considered that wrinkles are unlikely to occur as a result of suppressing the bias of strain.

このため、本発明の電解銅箔は、150℃で1時間加熱した後に常温で測定したときの引張特性が、引張強度を400MPa以上に維持ないし400MPa未満に低下するのを抑制して、高強度および高耐熱性とするとともに、銅箔の幅方向(TD)の伸びを2%以上とし、かつ銅箔の伸び異方性を50%以下、好ましくは30%以下とする。加熱後の引張強度が400MPa未満だと、薄箔化した銅箔の強度が不足して、箔切れが生じやすくなるからである。また、加熱後の銅箔の幅方向(TD)の伸びが2%未満だと、箔切れが生じやすくなるからである。さらに、加熱後の銅箔の伸び異方性が50%超えだと、均一変形域と不均一変形域が混在し、局所的なひずみの偏りが生じる結果、銅箔にシワが入りやすくなるからである。   For this reason, the electrolytic copper foil of the present invention has a high strength by suppressing the tensile strength when measured at room temperature after heating at 150 ° C. for 1 hour, and maintaining the tensile strength at 400 MPa or higher or lower than 400 MPa. In addition, the heat resistance is high, the elongation in the width direction (TD) of the copper foil is 2% or more, and the elongation anisotropy of the copper foil is 50% or less, preferably 30% or less. This is because if the tensile strength after heating is less than 400 MPa, the strength of the thinned copper foil is insufficient and the foil breaks easily. Further, if the elongation in the width direction (TD) of the copper foil after heating is less than 2%, the foil is likely to break. Furthermore, if the elongation anisotropy of the copper foil after heating exceeds 50%, the uniform deformation region and the non-uniform deformation region coexist, resulting in local strain bias, and the copper foil tends to wrinkle. It is.

このため、本発明の電解銅箔は、150℃で1時間加熱した後に常温で測定したときの引張特性が、引張強度を400MPa以上で維持ないし低下するのを抑制して、高強度および高耐熱性とするとともに、銅箔の幅方向(TD)の伸びを2%以上とし、かつ銅箔の伸び異方性を50%以下とした。   For this reason, the electrolytic copper foil of the present invention has high strength and high heat resistance by suppressing that the tensile properties measured at room temperature after heating at 150 ° C. for 1 hour are maintained or lowered at a tensile strength of 400 MPa or more. The elongation in the width direction (TD) of the copper foil was 2% or more, and the elongation anisotropy of the copper foil was 50% or less.

また、上記加熱前に常温で測定したときの引張強度(初期強度)は、400〜900MPaの範囲であることが好ましい。前記引張強度が400MPa未満だと、初期強度が不足し、150℃で加熱した後に常温で測定したときの引張強度が400MPa以上にすることができなくなって、箔切れが生じやすくなる傾向があり、また、前記引張強度が900MPa超えだと、伸びが不足し、150℃で加熱した後に常温で測定したときの銅箔の幅方向(TD)の伸びが2%以上にすることができなくなって箔切れが生じやすくなる傾向があるからである。   Moreover, it is preferable that the tensile strength (initial strength) when it measures at normal temperature before the said heating is the range of 400-900 MPa. If the tensile strength is less than 400 MPa, the initial strength is insufficient, the tensile strength when measured at room temperature after heating at 150 ° C. can not be more than 400 MPa, the foil tends to break, In addition, if the tensile strength exceeds 900 MPa, the elongation is insufficient, and the elongation in the width direction (TD) of the copper foil when measured at room temperature after heating at 150 ° C. cannot be 2% or more. This is because cutting tends to occur easily.

また、特にプリント配線板の形成に用いられる電解銅箔は、プリント配線板を構成する樹脂との密着性を確保する目的で、製造した電解銅箔(原箔)の後処理として、粗化めっきによる粗化処理が行われることが多い。粗化めっきは、一般的に、硫酸-硫酸銅めっき液中にて比較的短時間、高電流密度の電解を行うことで、およそ0.1〜1μmオーダーの粒状の銅粒子を電解銅箔表面に形成するものである。これに対して、本発明の電解銅箔は、両面のいずれにも粗化処理層が形成されていない未処理の電解銅箔(原箔)の状態で測定したときの引張特性に大きな特徴がある。粗化めっき層の厚さにも依るが、概して粗化めっき層が電解銅箔の表面に存在することで、電解銅箔表面の凹凸が粗大になる。また、一般的に粗化めっきの電解条件は、未処理の電解銅箔(原箔)を製造する電解条件とは大きく異なる。そのため粗化めっきで形成される銅粒子の結晶組織および構造は、未処理の電解銅箔(原箔)の結晶組織および構造と異なるものである。
詳細なメカニズムは明らかでないが、それら複数の要因により、粗化めっき層を備えた電解銅箔は、粗化めっき層を備えない電解銅箔(原箔)に比較して、伸び異方性が見かけ上大きく見えたり、または小さく見えたりすることがある。そのため、本発明の電解銅箔は、上述した引張特性を正確に測定(評価)する際には、粗化めっきによる粗化処理層を備えていないことが好ましい。
In addition, the electrolytic copper foil used for the formation of printed wiring boards is particularly rough plating as a post-treatment of the manufactured electrolytic copper foil (raw foil) for the purpose of ensuring adhesion with the resin constituting the printed wiring board. In many cases, roughening is performed. Roughening plating generally forms granular copper particles on the order of 0.1 to 1 μm on the surface of electrolytic copper foil by electrolysis at a high current density in a sulfuric acid-copper sulfate plating solution for a relatively short time. To do. On the other hand, the electrolytic copper foil of the present invention has a great feature in tensile properties when measured in a state of an untreated electrolytic copper foil (raw foil) in which no roughening treatment layer is formed on either side. is there. Although depending on the thickness of the rough plating layer, generally, the rough plating layer is present on the surface of the electrolytic copper foil, so that the unevenness on the surface of the electrolytic copper foil becomes coarse. Moreover, generally the electrolysis conditions of roughening plating differ greatly from the electrolysis conditions which manufacture untreated electrolytic copper foil (raw foil). Therefore, the crystal structure and structure of the copper particles formed by the rough plating are different from the crystal structure and structure of the untreated electrolytic copper foil (original foil).
Although the detailed mechanism is not clear, due to these multiple factors, the electrolytic copper foil with the roughened plating layer has an elongation anisotropy compared to the electrolytic copper foil (raw foil) without the roughened plated layer. It may appear larger or smaller in appearance. Therefore, when the electrolytic copper foil of the present invention accurately measures (evaluates) the above-described tensile properties, it is preferable that the electrolytic copper foil does not include a roughening treatment layer by roughening plating.

なお、引張試験は、IPC規格(IPC−TM−650)に準じて測定した。各サンプルについて10回測定したのち、それらの引張強度及び伸びを平均した数値を、強度および伸びの数値として採用した。また、引張強度の数値は、銅箔の長手方向に沿って切り出した試験片と、銅箔の幅方向に沿って切り出した試験片とで顕著な異方性が確認されなかったことから、本発明では、引張強度は、銅箔の長手方向に沿って切り出した試験片で測定し、引張試験速度を50mm/minとした。   The tensile test was measured according to the IPC standard (IPC-TM-650). After measuring 10 times for each sample, values obtained by averaging their tensile strength and elongation were adopted as numerical values for strength and elongation. In addition, the numerical value of the tensile strength was not significant because no significant anisotropy was confirmed between the test piece cut out along the longitudinal direction of the copper foil and the test piece cut out along the width direction of the copper foil. In the invention, the tensile strength was measured with a test piece cut out along the longitudinal direction of the copper foil, and the tensile test speed was 50 mm / min.

[電解銅箔の製造方法]
本発明者らは、伸び異方性の低減方法について鋭意検討を行なった結果、銅電析中の電解液の流速を低減すること、理想的には無攪拌状態で製箔することで伸び異方性が大幅に低減されることを見出した。そのメカニズムについて各種解析を実施したが、伸び異方性の有無による金属組織上の明確な差異は確認されておらず、メカニズム解明には至っていない。しかしながら、伸び異方性は、従来箔のような添加剤の取り込みがほとんどない電解銅箔においては確認されず、高強度・高耐熱性を有する電解銅箔特有の現象と考えられる(図1参照)。添加剤成分の吸着及びその後の銅箔中への添加剤成分の取り込みについては、電解液の流速の影響を受けることは一般的に知られていることから、電解銅箔製造時の電解液が、銅箔長手方向に対して速い速度で流れていることに起因して、添加剤の効果が何らか異なり、銅箔の伸びの異方性が発現されたものと推察している。
[Method for producing electrolytic copper foil]
As a result of intensive investigations on methods for reducing elongation anisotropy, the inventors have reduced the flow rate of the electrolyte during copper electrodeposition, ideally by making the foil in an unstirred state. It was found that the directionality is greatly reduced. Although various analyzes have been conducted on the mechanism, no clear difference in the metal structure due to the presence or absence of elongation anisotropy has been confirmed, and the mechanism has not yet been elucidated. However, the elongation anisotropy is not confirmed in an electrolytic copper foil that hardly incorporates an additive such as a conventional foil, and is considered to be a phenomenon peculiar to an electrolytic copper foil having high strength and high heat resistance (see FIG. 1). ). Since it is generally known that the adsorption of the additive component and the subsequent incorporation of the additive component into the copper foil are affected by the flow rate of the electrolytic solution, the electrolytic solution during the production of the electrolytic copper foil is The effect of the additive is somewhat different due to the fact that the copper foil flows at a high speed in the longitudinal direction of the copper foil, and it is assumed that the elongation anisotropy of the copper foil is expressed.

次に、本発明に従う電解銅箔の代表的な製造方法の例を以下で説明する。
図2は、本発明の電解銅箔Mを製造するために用いられる代表的な製造装置1の要部を示す概略図であって、電解液2を充填した電解槽3と、円筒状の表面をもつ陰極ドラム4と、この陰極ドラム4に対向して位置する陽極5とで主に構成されている。電解液2は、硫酸−硫酸銅水溶液を用いることが好ましい。陽極5は、白金属元素又はその酸化物元素で被覆したチタンからなる不溶性陽極を用いることが好ましい。
Next, the example of the typical manufacturing method of the electrolytic copper foil according to this invention is demonstrated below.
FIG. 2 is a schematic view showing a main part of a typical production apparatus 1 used for producing the electrolytic copper foil M of the present invention, and an electrolytic cell 3 filled with an electrolytic solution 2 and a cylindrical surface. The cathode drum 4 is mainly composed of a cathode drum 4 having an anode and an anode 5 positioned opposite to the cathode drum 4. The electrolytic solution 2 is preferably a sulfuric acid-copper sulfate aqueous solution. The anode 5 is preferably an insoluble anode made of titanium coated with a white metal element or its oxide element.

そして、電解銅箔Mは、不溶性陽極5と、この陽極5に対向させて設けられたチタン製の陰極ドラム4との間に電解液2を満たした状態で、陰極ドラム4を一定速度で回転させながら、両極4、5間に直流電流を通電することにより陰極ドラム表面4上に銅を析出させ、析出した銅を陰極ドラム4の表面から引き剥がして電解銅箔Mを形成し、形成した電解銅箔は巻取りロール6によって巻き取ることにより製造される。   The electrolytic copper foil M rotates the cathode drum 4 at a constant speed in a state where the electrolytic solution 2 is filled between the insoluble anode 5 and the titanium cathode drum 4 provided to face the anode 5. Then, copper was deposited on the cathode drum surface 4 by applying a direct current between the electrodes 4 and 5, and the deposited copper was peeled off from the surface of the cathode drum 4 to form an electrolytic copper foil M. The electrolytic copper foil is manufactured by winding it with a winding roll 6.

電解液2は、電解槽3の底部に設けたデストリビューター7と呼ばれる部分から供給されるため、電解液2の流速方向は、デストリビューター7から電解槽3の上部両側に設けたオーバーフロー部8に向かう方向であって、陰極ドラム4の表面上に形成される銅箔の長手方向と同じ方向である。電解液2の流速は、ポンプ出力等で適宜変更できるが、限界電流密度以上の電解条件で製造すると、いわゆるヤケめっきが生じるため、本実施例のように流速を極端に下げる場合は、限界電流密度未満の電解条件になるように、電解浴組成、浴温、電流密度などを適宜調整する必要がある。本発明の電解銅箔を製造するための好適な電解条件を以下に示す。   Since the electrolytic solution 2 is supplied from a portion called a distributor 7 provided at the bottom of the electrolytic cell 3, the flow rate direction of the electrolytic solution 2 flows from the distributor 7 to the overflow portions 8 provided on both upper sides of the electrolytic cell 3. It is a direction which goes to the same direction as the longitudinal direction of the copper foil formed on the surface of the cathode drum 4. The flow rate of the electrolyte 2 can be changed as appropriate depending on the pump output or the like, but so-called burnt plating occurs when it is manufactured under electrolysis conditions that are higher than the limit current density. It is necessary to appropriately adjust the electrolytic bath composition, bath temperature, current density, etc. so that the electrolysis conditions are lower than the density. Suitable electrolysis conditions for producing the electrolytic copper foil of the present invention are shown below.

銅濃度 :120〜155 g/L
硫酸濃度: 30〜100 g/L
塩素濃度: 60〜140 mg/L
添加剤濃度:2〜20mg/L
浴温 : 65〜80℃
電流密度: 10〜35A/dm2
流速 : 0.02〜0.05m/s
Copper concentration: 120-155 g / L
Sulfuric acid concentration: 30-100 g / L
Chlorine concentration: 60-140 mg / L
Additive concentration: 2-20mg / L
Bath temperature: 65-80 ° C
Current density: 10 ~ 35A / dm 2
Flow rate: 0.02 ~ 0.05m / s

なお、高強度、高耐熱性を有する電解銅箔を得るためには、電解液中に添加剤を添加することが必須である。添加剤の選定方法としては、銅表面に吸着し、結晶粒を微細化する効果と、粒内に取り込まれて耐熱効果を有するものを適宜選んで使用することができる。添加剤は、複数使用しても特に問題ないが、経済性、製造安定性および濃度管理の簡便さから、なるべく少ない方が好ましい。上記効果を有する添加剤としては、一般に、S、N、Oなどの非共有電子対のある官能基を有するものが有効であることが知られており、本実施例においてもS、N、Oが一つ以上含まれており、微細化効果と耐熱効果を併せ持つ添加剤を使用した。尚、添加剤濃度は、高いほど銅箔中への添加剤の取り込みが増え、強度および耐熱性が高くなるが、一方、延性が低下するため、ハンドリング時ないし充放電時に箔切れが生じやすい。従って、最適な濃度範囲が存在する。添加剤としては、例えば ポリエチレングリコール(PEG)、ヒドロキシエチルセルロース(HEC)、チオ尿素などを用いることが好ましい。   In order to obtain an electrolytic copper foil having high strength and high heat resistance, it is essential to add an additive to the electrolytic solution. As a method for selecting the additive, it is possible to appropriately select and use an effect of adsorbing on the copper surface and making the crystal grains fine and a heat resistance effect incorporated into the grains. Although there are no particular problems with the use of a plurality of additives, it is preferable to use as few as possible in view of economy, production stability, and ease of concentration control. As additives having the above-mentioned effects, it is generally known that those having a functional group having an unshared electron pair such as S, N, and O are effective. In this example, S, N, and O are also effective. Is used, and an additive having both a refinement effect and a heat resistance effect was used. The higher the additive concentration is, the more the additive is taken into the copper foil and the strength and heat resistance are increased. On the other hand, the ductility is lowered, so that the foil breaks easily during handling or charging / discharging. Therefore, there is an optimum concentration range. As the additive, for example, polyethylene glycol (PEG), hydroxyethyl cellulose (HEC), thiourea and the like are preferably used.

本発明では、従来の一般的な製造条件に比べて、銅濃度、浴温を大幅に上げて、電流密度を下げることで、極低流速、理想的には無攪拌においても限界電流密度未満の電解条件を満たすように工夫した。また、電解槽中における電解液の流速は、小型微流速計CM-1SX型(株式会社東邦電探製)を用い、電解前の状態で電解槽のデストリビューター7からオーバーフロー部8までの間の位置に流速計を取り付けて計測を行った。本発明の電解銅箔は、上述した方法によって製造することができる。   In the present invention, compared with the conventional general production conditions, the copper concentration and bath temperature are greatly increased, and the current density is decreased, so that the current density is less than the limit current density even at an extremely low flow rate, ideally even without stirring. It was devised to satisfy the electrolytic conditions. Moreover, the flow rate of the electrolyte in the electrolytic cell was measured between the distributor 7 and the overflow part 8 of the electrolytic cell in a state before electrolysis using a small micro flow meter CM-1SX type (manufactured by Toho Denki Co., Ltd.). Measurement was performed with an anemometer attached at the position. The electrolytic copper foil of this invention can be manufactured by the method mentioned above.

また、本発明の電解銅箔を、例えば集電体として有するリチウムイオン二次電池用負極電極を備えるリチウムイオン二次電池に用いれば、充放電時の箔切れやシワを防止し、電池容量、サイクル特性および安全性を向上させることができる。さらに、本発明の電解銅箔を、絶縁フィルムとともに積層形成してなるプリント配線板に用いれば、プレス時の箔切れやシワの発生防止や寸法安定性を向上させることができる。   Moreover, if the electrolytic copper foil of the present invention is used for, for example, a lithium ion secondary battery provided with a negative electrode for a lithium ion secondary battery having a current collector, the foil capacity and wrinkle at the time of charging / discharging are prevented, the battery capacity, Cycle characteristics and safety can be improved. Furthermore, if the electrolytic copper foil of this invention is used for the printed wiring board formed by laminating | stacking with an insulating film, generation | occurrence | production of foil cutting at the time of a press, generation | occurrence | production of a wrinkle, and dimensional stability can be improved.

上述したところは、この発明の実施形態の一例を示したにすぎず、特許請求の範囲において種々の変更を加えることができる。   What has been described above is merely an example of an embodiment of the present invention, and various modifications can be made within the scope of the claims.

(実施例1〜7および比較例1〜8)
実施例1〜7および比較例1〜8は、図2に示す電解銅箔の製造装置を用い、不溶性陽極5と、この陽極5に対向させて設けられたチタン製の陰極ドラム4との間に電解液2を満たした状態で、陰極ドラム4を 一定速度で回転させながら、両極4、5間に直流電流を通電することにより陰極ドラム表面4上に銅を析出させ、析出した銅を陰極ドラム4の表面から引き剥がして、厚さ8μmの電解銅箔Mを作製した。電解液の浴組成、添加剤の種類及び添加量、浴温、電流密度並びに電解液の流速を表1に示す。尚、実施例1〜5および7において、無攪拌ではなく、流速を0.02m/sとしている理由は、連続製箔時にて浴の滞留による濃度変動を防止するためである。また、陰極ドラム4は、研磨方向(バフスジ方向)に対し垂直な方向に測定したときの粗さRzが、表2に示す電解銅箔(S面)の粗さRzの数値と同等程度になるまで、バフにて表面を研磨した。
(Examples 1-7 and Comparative Examples 1-8)
Examples 1 to 7 and Comparative Examples 1 to 8 use the electrolytic copper foil manufacturing apparatus shown in FIG. 2 between the insoluble anode 5 and the titanium cathode drum 4 provided to face the anode 5. In the state where the electrolyte solution 2 is filled, copper is deposited on the cathode drum surface 4 by applying a direct current between the electrodes 4 and 5 while rotating the cathode drum 4 at a constant speed. It peeled off from the surface of the drum 4, and produced the electrolytic copper foil M of thickness 8 micrometers. Table 1 shows the electrolytic bath composition, additive type and amount, bath temperature, current density, and electrolytic flow rate. In Examples 1 to 5 and 7, the reason why the flow rate is 0.02 m / s, not stirring, is to prevent concentration fluctuation due to stagnation of the bath during continuous foil production. Further, the cathode drum 4 has a roughness Rz when measured in a direction perpendicular to the polishing direction (buffing direction) to the same value as the roughness Rz of the electrolytic copper foil (S surface) shown in Table 2. Until the surface was polished with a buff.

(比較例9〜13)
比較例9〜13は、それぞれ特許文献1〜5の実施例1に相当する条件に従って、厚さ8μmの電解銅箔Mを作製した。なお、流速については特に記載がなかったため、比較例9〜13はいずれも、電解液の流速を、従来の電解銅箔の一般的な流速条件範囲である0.5m/sとした。また、陰極ドラム4は、研磨方向(バフスジ方向)に対し垂直な方向に測定したときの粗さRzが、表2に示す電解銅箔(S面)の粗さRzの数値と同等程度になるまで、バフにて表面を研磨した。
(Comparative Examples 9-13)
In Comparative Examples 9 to 13, an electrolytic copper foil M having a thickness of 8 μm was produced in accordance with the conditions corresponding to Example 1 of Patent Documents 1 to 5, respectively. In addition, since there was no description in particular about the flow rate, all the comparative examples 9-13 set the flow rate of electrolyte solution to 0.5 m / s which is the general flow rate condition range of the conventional electrolytic copper foil. Further, the cathode drum 4 has a roughness Rz when measured in a direction perpendicular to the polishing direction (buffing direction) to the same value as the roughness Rz of the electrolytic copper foil (S surface) shown in Table 2. Until the surface was polished with a buff.

(比較例14)
リチウムイオン二次電池用銅箔として広く用いられており、平滑化のために添加剤は電解液中に加えるものの、電析過程で銅箔中に添加剤がさほど取り込まれない電解銅箔である古河電気工業株式会社製の「NC-WS」を使用した。
(Comparative Example 14)
Widely used as a copper foil for lithium ion secondary batteries. Although the additive is added to the electrolyte for smoothing, it is an electrolytic copper foil in which the additive is not taken into the copper foil during the electrodeposition process. “NC-WS” manufactured by Furukawa Electric Co., Ltd. was used.

Figure 2017217085
Figure 2017217085

<評価方法>
1.銅箔中の炭素含有量の測定
銅箔中に含有する炭素量は、炭素・硫黄分析装置EMIA−810W(堀場製作所製)を用い、0.5g程度のサンプルを燃焼させ、酸素気流中燃焼(管状電気炉方式)―赤外線吸収法で測定を行った。測定した炭素含有量を表2に示す。なお、測定する際には、銅箔は表面が汚染されないよう十分に注意して取扱い、必要に応じてアセトン脱脂等の前処理を行った。
<Evaluation method>
1. Measurement of carbon content in copper foil The amount of carbon contained in copper foil was determined by burning a sample of about 0.5 g using a carbon / sulfur analyzer EMIA-810W (manufactured by Horiba Seisakusho) and burning in an oxygen stream ( Tubular electric furnace method)-measured by infrared absorption method. Table 2 shows the measured carbon content. When measuring, the copper foil was handled with great care so as not to contaminate the surface, and pretreated such as acetone degreasing as necessary.

2.銅箔表面の十点平均粗さRzの測定
十点平均粗さRzは、JIS B0601:1994に準じて測定した。測定面は、銅箔のS面(陰極ドラム側の銅箔表面)、測定方向は、バフスジ方向(=MD方向)に対し垂直な方向(=TD方向)とした。
2. Measurement of 10-point average roughness Rz of copper foil surface The 10-point average roughness Rz was measured according to JIS B0601: 1994. The measurement surface was the S surface of the copper foil (the copper foil surface on the cathode drum side), and the measurement direction was the direction (= TD direction) perpendicular to the buffing direction (= MD direction).

3.電池性能試験
(1)リチウム二次電池用負極電極の作製
カーボン系活物質(シリコン系合金活物質を20質量%含む。)と、アセチレンブラックとが、8:1の質量比になるようにボールミルを用いて粉砕混合し、負極材料を作製した。この負極材料を80質量%、結着剤としてポリフッ化ビニリデン(PVDF)を20質量%の割合で混合して負極合剤を調製し、この負極合剤をN−メチルピロリドン(溶剤)に分散させて活物質スラリーとした。次いで、上記の条件で作製した厚さ8μmの帯状(長手方向が銅箔MD方向に平行)の電解銅箔の両面に活物質スラリーを塗布した後、乾燥し、この乾燥した表面処理電解銅箔を150℃で1時間加熱した後、成形後の負極合剤の膜厚が両面共に120μmとなるようにローラープレス機で圧縮成形し、リチウム二次電池用負極電極を得た。
3. Battery performance test (1) Production of negative electrode for lithium secondary battery Ball mill so that carbon-based active material (containing 20% by mass of silicon-based alloy active material) and acetylene black are in a mass ratio of 8: 1. Was used for pulverization and mixing to prepare a negative electrode material. This negative electrode material was mixed at a ratio of 80% by mass and polyvinylidene fluoride (PVDF) as a binder at a rate of 20% by mass to prepare a negative electrode mixture, and this negative electrode mixture was dispersed in N-methylpyrrolidone (solvent). Active material slurry. Next, the active material slurry was applied to both sides of a strip-shaped electrolytic copper foil (longitudinal direction parallel to the copper foil MD direction) having a thickness of 8 μm produced under the above conditions, and then dried, and this dried surface-treated electrolytic copper foil Was heated at 150 ° C. for 1 hour and then compression molded with a roller press so that the film thickness of the molded negative electrode mixture was 120 μm on both sides to obtain a negative electrode for a lithium secondary battery.

(2)リチウム二次電池用正極電極の作製
炭酸リチウム0.5モルと炭酸コバルト1モルとを混合し、空気中で900℃、5時間焼成して正極活物質(LiCoO2)とした。この正極活物質(LiCoO2)を91質量%、導電剤としてグラファイトを6質量%、結着剤としてPVDFを3質量%の割合で混合して正極合材を作製し、これをN−メチル−2ピロリドン(NMP)に分散してスラリー状とした。次に、このスラリーを厚み20μmの帯状のアルミニウムからなる正極集電体の両面に均一に塗布し、成形後の正極合剤の膜厚が表面共に95μmとなるように乾燥後ローラープレス機で圧縮成形し、リチウム二次電池用正極電極を得た。
(2) Preparation of positive electrode for lithium secondary battery 0.5 mol of lithium carbonate and 1 mol of cobalt carbonate were mixed and fired in air at 900 ° C. for 5 hours to obtain a positive electrode active material (LiCoO 2 ). This positive electrode active material (LiCoO 2 ) was mixed at a ratio of 91% by mass, graphite as a conductive agent at 6% by mass, and PVDF as a binder at a rate of 3% by mass to produce a positive electrode mixture. Dispersed in 2 pyrrolidone (NMP) to form a slurry. Next, this slurry is uniformly applied to both surfaces of a positive electrode current collector made of a strip-shaped aluminum having a thickness of 20 μm, dried and compressed by a roller press so that the thickness of the positive electrode mixture after molding is 95 μm on both surfaces. It shape | molded and the positive electrode for lithium secondary batteries was obtained.

(3)リチウムイオン二次電池の作製
非水電解質二次電池の一種として、リチウムイオン二次電池を作製した。上記のようにして作製した正極電極および負極電極と、微多孔性ポリプロピレンフィルムよりなるセパレータとを積層し、積層電極体とした。この積層電極体は、その長さ方向に沿って負極を内側にして渦巻型に多数回巻回し、最外周にセパレータの最終端部をテープで固定し、渦巻式電極体とした。作製した渦巻式電極体を、その上下両面に絶縁板を設置した状態で、ニッケルメッキが施された鉄製の電池缶に収納し、正極及び負極の集電を行うために、アルミニウム製の正極リードを正極集電体から導出して電池蓋に接続し、ニッケル製の負極リードを負極集電体から導出して電池缶に接続した。
(3) Production of lithium ion secondary battery A lithium ion secondary battery was produced as a kind of nonaqueous electrolyte secondary battery. The positive electrode and negative electrode produced as described above and a separator made of a microporous polypropylene film were laminated to obtain a laminated electrode body. This laminated electrode body was wound many times in a spiral shape with the negative electrode inside along its length direction, and the final end of the separator was fixed to the outermost periphery with a tape to form a spiral electrode body. The prepared spiral electrode body is housed in a nickel-plated iron battery can with insulating plates on both upper and lower surfaces, and an aluminum positive electrode lead is used to collect the positive and negative electrodes. Was extracted from the positive electrode current collector and connected to the battery lid, and a negative electrode lead made of nickel was derived from the negative electrode current collector and connected to the battery can.

この渦巻式電極体が収納された電池缶に、プロピレンカーボネートとジエチルカーボネ―トとの等容量混合溶媒中にLiPF6を1モル/Lの割合で溶解した非水電解液を注入した。次いで、アスファルトで表面が塗布された絶縁封口ガスケットを介して電池缶をかしめて電池蓋を固定し、電池缶内の気密性を保持させた。以上のようにして、直径18mm、高さ65mmの円筒形リチウム二次電池を作製した。   A non-aqueous electrolyte solution in which LiPF6 was dissolved at a rate of 1 mol / L in an equal volume mixed solvent of propylene carbonate and diethyl carbonate was injected into the battery can containing the spiral electrode body. Next, the battery can was caulked through an insulating sealing gasket whose surface was coated with asphalt to fix the battery lid, and the airtightness in the battery can was maintained. As described above, a cylindrical lithium secondary battery having a diameter of 18 mm and a height of 65 mm was produced.

このリチウムイオン二次電池における電池の評価を次の方法により温度25℃で行った。   The battery in this lithium ion secondary battery was evaluated at a temperature of 25 ° C. by the following method.

(充放電試験の条件)
充電:1C相当電流で定電流充電し、4.2Vに到達後、定電圧充電に切り換え、充電電流が0.05C相当に低下した時点で終了した。
放電:1C相当電流で定電流放電し、3.0Vになった時点で終了した。
なお、CはCレートであり、電池の全容量を1時間で放電させる電流量をいう。
(Conditions for charge / discharge test)
Charging: Constant current charging at a current equivalent to 1 C. After reaching 4.2 V, switching to constant voltage charging was completed when the charging current dropped to 0.05 C equivalent.
Discharge: A constant current was discharged at a current equivalent to 1 C, and was terminated when the voltage reached 3.0V.
C is a C rate, which means the amount of current that discharges the entire capacity of the battery in one hour.

(充放電後のシワおよび箔切れの評価)
充放電後の箔切れの評価は、上記条件にて1000サイクルまで充放電を繰り返し、サイクル試験終了後に電池を解体し、目視にて銅箔のシワ及び箔切れの有無を確認した。表2中のシワ及び箔切れの評価は、シワおよび箔切れが全く存在しない場合を「◎」とし、シワがわずかに発生している場合を「○」、そして、顕著なシワが発生している場合を「シワ」、箔切れが発生している場合を「箔切れ」、顕著なシワと箔切れが両方発生している場合を「シワ、箔切れ」と示す。
(Evaluation of wrinkles and foil breaks after charge / discharge)
Evaluation of the foil breakage after charging / discharging was repeated up to 1000 cycles under the above conditions, the battery was disassembled after the end of the cycle test, and the presence or absence of copper foil wrinkles and foil breakage was visually confirmed. The evaluation of wrinkles and foil breaks in Table 2 is “◎” when no wrinkles and foil breaks are present, “○” when slight wrinkles are generated, and significant wrinkles are generated. "Wrinkle" when the foil is cut, "Foil cut" when the foil is broken, and "Wrinkle, foil cut" when both the wrinkle and the foil are marked.

上記条件にて製造した電解銅箔に、以下に示すクロメート条件で防錆処理を施した表面処理銅箔を、引張試験、粗さ測定、ガス分析および電池評価サンプルとして使用した。
<クロメート処理条件>
重クロム酸カリウム1〜10g/L
温度(℃) 25℃
浸漬処理時間 2〜20秒
表2に評価結果を示す。
The surface-treated copper foil which gave the antirust process on the chromate conditions shown below to the electrolytic copper foil manufactured on the said conditions was used as a tension test, roughness measurement, a gas analysis, and a battery evaluation sample.
<Chromate treatment conditions>
Potassium dichromate 1-10g / L
Temperature (℃) 25 ℃
Immersion treatment time 2 to 20 seconds Table 2 shows the evaluation results.

Figure 2017217085
Figure 2017217085

表2に示す結果から、実施例1〜7はいずれも、銅箔中に含有する炭素量が0.0015〜0.018質量%と本発明の適正範囲(0.001〜0.020質量%)であり、また、Rzが1.0〜1.7μmと本発明の適正範囲(1.8μm以下)であり、さらに、150℃で1時間加熱後の常温で測定したときの引張特性、すなわち、引張強度が420〜653MPaと本発明の適正範囲(400MPa以上)であり、幅方向伸び(TD)の値が2.1〜6.1%と本発明の適正範囲(2%以上)であり、かつ伸び異方性が6.2〜47.5%と本発明の範囲(50%以下)であり、充放電試験後において、顕著なシワや箔切れはほとんど確認されず、特に実施例1〜4は、伸び異方性が30%以下であり、シワの発生が全くなかった。   From the results shown in Table 2, in all of Examples 1 to 7, the amount of carbon contained in the copper foil is 0.0015 to 0.018% by mass and the appropriate range of the present invention (0.001 to 0.020% by mass), and Rz is 1.0-1.7 μm, the appropriate range of the present invention (1.8 μm or less), and the tensile properties when measured at room temperature after heating at 150 ° C. for 1 hour, that is, the tensile strength is 420-653 MPa. The range (400 MPa or more), the width direction elongation (TD) value is 2.1 to 6.1%, which is an appropriate range of the present invention (2% or more), and the elongation anisotropy is 6.2 to 47.5%. (50% or less) and, after the charge / discharge test, noticeable wrinkles and foil breakage are scarcely confirmed. In particular, Examples 1 to 4 have an elongation anisotropy of 30% or less, and wrinkles are not generated at all. There wasn't.

一方、比較例1〜4は、伸び異方性が57.1〜63.9%と本発明の適正範囲の上限値(50%)を超えており、充放電試験後の銅箔には顕著なシワが確認された。加えて比較例3および4は、銅箔の幅方向伸び(TD)の値が1.3〜1.8%と本発明の適正範囲の下限値(2%)よりも小さいため、充放電試験後の銅箔には箔切れも確認された。比較例5は、炭素含有量が0.023質量%と本発明の適正範囲の上限値(0.02質量%)よりも多いため、充放電試験後の銅箔には箔切れが確認された。比較例6は、炭素含有量が0.0008質量%と本発明の適正範囲の下限値(0.001質量%)よりも少ないため、150℃加熱後の引張強度が370MPaと本発明の適正範囲の下限値(400MPa)よりも低く、また、加熱処理によって著しく軟化し、充放電試験後の銅箔には箔切れが確認された。比較例7は、銅箔の幅方向(TD)伸びが1.3%と本発明の適正範囲の下限値(2%)よりも小さいため、充放電試験後の銅箔には箔切れが確認された。比較例8は、Rzが2.0μmと本発明の適正範囲の上限値(1.8μm)よりも大きいため、表面凹凸に起因した、伸びの異方性が顕在化し、充放電試験後の銅箔には顕著なシワが確認された。加えて、銅箔の幅方向伸び(TD)の値が1.8%と本発明の適正範囲の上限値よりも小さいため、充放電試験後の銅箔には箔切れも確認された。比較例9〜12はいずれも、伸び異方性が53.6〜70.0%と本発明の適正範囲の上限値よりも大きいため、充放電試験後の銅箔には顕著なシワが確認された。加えて、比較例9および10においては、銅箔の幅方向伸び(TD)の値が0.9〜1.3%と本発明の適正範囲の下限値よりも小さいため、箔切れも同時に確認された。比較例13および14はいずれも、150℃加熱後の引張強度が251〜273MPaと本発明の適正範囲の下限値よりも低いため、充放電試験後の銅箔には箔切れが確認された。   On the other hand, in Comparative Examples 1 to 4, the elongation anisotropy is 57.1 to 63.9%, which exceeds the upper limit (50%) of the appropriate range of the present invention, and remarkable wrinkles are confirmed in the copper foil after the charge / discharge test. It was done. In addition, since Comparative Examples 3 and 4 have a copper foil width direction elongation (TD) value of 1.3 to 1.8%, which is smaller than the lower limit (2%) of the proper range of the present invention, The foil breakage was also confirmed. In Comparative Example 5, the carbon content was 0.023% by mass, which is higher than the upper limit (0.02% by mass) of the appropriate range of the present invention, so that the copper foil after the charge / discharge test was confirmed to be broken. In Comparative Example 6, the carbon content is less than 0.0008% by mass and the lower limit of the proper range of the present invention (0.001% by mass), so the tensile strength after heating at 150 ° C. is 370 MPa and the lower limit of the proper range of the present invention ( It was lower than 400 MPa), and it was remarkably softened by the heat treatment, and it was confirmed that the copper foil after the charge / discharge test was broken. Since Comparative Example 7 had a width direction (TD) elongation of the copper foil of 1.3%, which was smaller than the lower limit (2%) of the appropriate range of the present invention, the copper foil after the charge / discharge test was confirmed to be broken. . In Comparative Example 8, since Rz is 2.0 μm, which is larger than the upper limit (1.8 μm) of the appropriate range of the present invention, the anisotropy of elongation due to surface irregularities becomes obvious, and the copper foil after the charge / discharge test is formed. There were noticeable wrinkles. In addition, since the value of the elongation in the width direction (TD) of the copper foil was 1.8%, which was smaller than the upper limit value of the appropriate range of the present invention, it was confirmed that the copper foil after the charge / discharge test was broken. In each of Comparative Examples 9 to 12, since the elongation anisotropy was 53.6 to 70.0%, which was larger than the upper limit value of the appropriate range of the present invention, significant wrinkles were confirmed in the copper foil after the charge / discharge test. In addition, in Comparative Examples 9 and 10, since the value of the elongation in the width direction (TD) of the copper foil was 0.9 to 1.3%, which was smaller than the lower limit value of the appropriate range of the present invention, foil breakage was simultaneously confirmed. Since both Comparative Examples 13 and 14 had a tensile strength after heating at 150 ° C. of 251 to 273 MPa, which was lower than the lower limit value of the appropriate range of the present invention, it was confirmed that the copper foil after the charge / discharge test was broken.

以上の結果から、炭素を0.001〜0.020質量%含有し、電解銅箔の十点平均粗さ(Rz)が1.8μm以下であり、電解銅箔を150℃で1時間加熱した後に常温で測定したときの引張特性、すなわち、前記銅箔の引張強度が400MPa以上、銅箔の幅方向(TD)の伸びが2%以上であり、かつ銅箔の長手方向(MD)の伸びと前記幅方向(TD)の伸びの差を表すパラメータである伸び異方性{[(MD伸び−TD伸び)/MD伸び]×100}が50%以下、好ましくは30%以下を満たす電解銅箔は、高容量型のリチウムイオン二次電池においても、充放電時にシワや箔切れが抑制され、電池の長寿命化に極めて好適である。また、プリント基板用途においても、上記特性を満たす銅箔は、プレス後の銅箔にシワ、箔切れの抑制に有効であることが確認された。   From the above results, carbon was contained at 0.001 to 0.020% by mass, the 10-point average roughness (Rz) of the electrolytic copper foil was 1.8 μm or less, and the electrolytic copper foil was measured at room temperature after heating at 150 ° C. for 1 hour. Tensile characteristics of the copper foil, that is, the tensile strength of the copper foil is 400 MPa or more, the elongation in the width direction (TD) of the copper foil is 2% or more, and the elongation in the longitudinal direction (MD) of the copper foil and the width direction ( An electrolytic copper foil satisfying an elongation anisotropy {[(MD elongation−TD elongation) / MD elongation] × 100} which is a parameter representing a difference in elongation of TD) is 50% or less, preferably 30% or less. In the lithium ion secondary battery, wrinkles and foil breakage are suppressed during charging and discharging, which is extremely suitable for extending the life of the battery. Moreover, also in the printed circuit board use, it was confirmed that the copper foil which satisfy | fills the said characteristic is effective in suppression of wrinkles and foil breakage in the copper foil after a press.

尚、加熱後の強度や伸びの異方性は、未処理の電解銅箔に具備する特性であり、防錆処理、シランカップリング処理などの表面処理を施しても、上記特性に影響を及ぼさない。   In addition, the strength and elongation anisotropy after heating are the characteristics of untreated electrolytic copper foil, and even if surface treatment such as rust prevention treatment or silane coupling treatment is applied, the above properties are affected. Absent.

本発明によれば、高強度、高耐熱性で、かつ伸び異方性の小さい電解銅箔の提供が可能になった。また、本発明の電解銅箔を、例えば集電体として有するリチウムイオン二次電池用負極電極を備えるリチウムイオン二次電池に用いれば、充放電時の箔切れやシワを防止し、電池容量、サイクル特性および安全性を向上させることができる。さらに、本発明の電解銅箔を、絶縁フィルムとともに積層形成してなるプリント配線板に用いれば、プレス時の箔切れやシワの発生を防止し、また、寸法安定性を向上させることができる。   According to the present invention, it is possible to provide an electrolytic copper foil having high strength, high heat resistance, and low elongation anisotropy. Moreover, if the electrolytic copper foil of the present invention is used for, for example, a lithium ion secondary battery provided with a negative electrode for a lithium ion secondary battery having a current collector, the foil capacity and wrinkle at the time of charging / discharging are prevented, the battery capacity, Cycle characteristics and safety can be improved. Furthermore, if the electrolytic copper foil of the present invention is used for a printed wiring board formed by laminating with an insulating film, foil breakage and wrinkle generation during pressing can be prevented, and dimensional stability can be improved.

1 電解銅箔の製造装置
2 電解液
3 電解槽
4 陰極ドラム
5 陽極
6 巻取りロール
7 デストリビューター
8 オーバーフロー部
DESCRIPTION OF SYMBOLS 1 Electrolytic copper foil manufacturing apparatus 2 Electrolyte 3 Electrolysis tank 4 Cathode drum 5 Anode 6 Winding roll 7 Distributor 8 Overflow part

Claims (6)

炭素を0.001〜0.020質量%含有する電解銅箔であって、
該電解銅箔の十点平均粗さ(Rz)が1.8μm以下であり、
前記電解銅箔を150℃で1時間加熱した後に常温で測定したときの引張特性は、前記銅箔の引張強度が400MPa以上、銅箔の幅方向(TD)の伸びが2%以上であり、かつ銅箔の長手方向(MD)の伸びと前記幅方向(TD)の伸びの差を表すパラメータである伸び異方性{[(MD伸び−TD伸び)/MD伸び]×100}が50%以下であることを特徴とする電解銅箔。
An electrolytic copper foil containing 0.001 to 0.020% by mass of carbon,
The electrolytic copper foil has a ten-point average roughness (Rz) of 1.8 μm or less,
Tensile properties when the electrolytic copper foil is heated at 150 ° C. for 1 hour and then measured at room temperature are as follows: the copper foil has a tensile strength of 400 MPa or more, and the copper foil has a width direction (TD) elongation of 2% or more. And the elongation anisotropy {[(MD elongation−TD elongation) / MD elongation] × 100} which is a parameter representing the difference between the elongation in the longitudinal direction (MD) of the copper foil and the elongation in the width direction (TD) is 50%. An electrolytic copper foil characterized by:
前記伸び異方性{[(MD伸び−TD伸び)/MD伸び]×100}が30%以下である請求項1に記載の電解銅箔。   2. The electrolytic copper foil according to claim 1, wherein the elongation anisotropy {[(MD elongation−TD elongation) / MD elongation] × 100} is 30% or less. 前記引張特性が、両面のいずれにも粗化処理層が形成されていない電解銅箔(原箔)の状態で得られる請求項1または2に記載の電解銅箔。   The electrolytic copper foil according to claim 1 or 2, wherein the tensile property is obtained in a state of an electrolytic copper foil (raw foil) in which a roughening treatment layer is not formed on both sides. 請求項1〜3のいずれか1項に記載の電解銅箔を集電体として有するリチウムイオン二次電池用負極電極。   The negative electrode for lithium ion secondary batteries which has the electrolytic copper foil of any one of Claims 1-3 as a collector. 請求項1〜3のいずれか1項に記載の電解銅箔を集電体として有するリチウムイオン二次電池用負極電極を備えるリチウムイオン二次電池。   A lithium ion secondary battery provided with the negative electrode for lithium ion secondary batteries which has the electrolytic copper foil of any one of Claims 1-3 as a collector. 請求項1〜3のいずれか1項に記載の電解銅箔と絶縁フィルムとを積層形成してなるプリント配線板。   The printed wiring board formed by laminating | stacking the electrolytic copper foil of any one of Claims 1-3, and an insulating film.
JP2017536985A 2016-06-14 2017-04-04 Electrolytic copper foil, negative electrode for lithium ion secondary battery, lithium ion secondary battery and printed wiring board Active JP6248233B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016117547 2016-06-14
JP2016117547 2016-06-14
PCT/JP2017/014131 WO2017217085A1 (en) 2016-06-14 2017-04-04 Electrolytic copper foil, lithium ion secondary cell negative electrode, lithium ion secondary cell, and printed wiring board

Publications (2)

Publication Number Publication Date
JP6248233B1 JP6248233B1 (en) 2017-12-13
JPWO2017217085A1 true JPWO2017217085A1 (en) 2018-06-21

Family

ID=60659037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017536985A Active JP6248233B1 (en) 2016-06-14 2017-04-04 Electrolytic copper foil, negative electrode for lithium ion secondary battery, lithium ion secondary battery and printed wiring board

Country Status (1)

Country Link
JP (1) JP6248233B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6582156B1 (en) * 2018-02-23 2019-09-25 古河電気工業株式会社 Electrolytic copper foil, and negative electrode for lithium ion secondary battery, lithium ion secondary battery, copper clad laminate and printed wiring board using the electrolytic copper foil
TWI697574B (en) * 2019-11-27 2020-07-01 長春石油化學股份有限公司 Electrolytic copper foil and electrode and lithium-ion battery comprising the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2990676B2 (en) * 1987-06-23 1999-12-13 グールド エレクトロニクス インコーポレイテッド Cathode surface treatment for electroforming metal foil or strip
CN103221584B (en) * 2010-11-22 2016-01-06 三井金属矿业株式会社 Surface treatment copper foil
JP5916904B1 (en) * 2015-01-07 2016-05-11 古河電気工業株式会社 Electrolytic copper foil, negative electrode for lithium ion secondary battery, lithium ion secondary battery, rigid printed wiring board and flexible printed wiring board

Also Published As

Publication number Publication date
JP6248233B1 (en) 2017-12-13

Similar Documents

Publication Publication Date Title
WO2017217085A1 (en) Electrolytic copper foil, lithium ion secondary cell negative electrode, lithium ion secondary cell, and printed wiring board
US9966608B2 (en) Electrolytic copper foil, method of producing electrolytic copper foil, lithium ion secondary cell using electrolytic copper foil as collector
JP5730742B2 (en) Electrolytic copper foil for lithium ion secondary battery and method for producing the same
EP3121885B1 (en) Electrolytic copper foil, and collector, negative electrode, and lithium battery comprising same
JP5722813B2 (en) Electrode copper foil and negative electrode current collector for secondary battery
US20100136434A1 (en) Electrolytic Copper Foil for Lithium Rechargeable Battery and Process for Producing the Copper Foil
WO2013047432A1 (en) Lithium secondary battery
WO2017051767A1 (en) Electrolytic copper foil and various products using electrolytic copper foil
WO2014002996A1 (en) Electrolytic copper foil, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
TW201320454A (en) Metal foil with coating layer and method for producing same, secondary cell electrode and method for producing same, and lithium ion secondary cell
US11346014B2 (en) Electrolytic copper foil, method for producing same, and high-capacity Li secondary battery negative electrode including same
US20040029006A1 (en) Electrodeposited copper foil and electrodeposited copper foil for secondary battery collector
JP6248233B1 (en) Electrolytic copper foil, negative electrode for lithium ion secondary battery, lithium ion secondary battery and printed wiring board
KR101674840B1 (en) Copper foil, negative electrode for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell
JP4413552B2 (en) Electrolytic copper foil and electrolytic copper foil for secondary battery current collector
KR20180110552A (en) Electrodeposited copper foil, current collectors for negative electrode of lithium-ion secondary batteries and lithium-ion secondary batteries
JPH1021928A (en) Electrode material for secondary battery
TWI684651B (en) Electrolytic copper foil, method for manufacturing the same, and anode for lithium secondary battery of high capacity

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171120

R151 Written notification of patent or utility model registration

Ref document number: 6248233

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350