JPWO2017209297A1 - Triarylene compound and method for producing the same - Google Patents

Triarylene compound and method for producing the same Download PDF

Info

Publication number
JPWO2017209297A1
JPWO2017209297A1 JP2018521145A JP2018521145A JPWO2017209297A1 JP WO2017209297 A1 JPWO2017209297 A1 JP WO2017209297A1 JP 2018521145 A JP2018521145 A JP 2018521145A JP 2018521145 A JP2018521145 A JP 2018521145A JP WO2017209297 A1 JPWO2017209297 A1 JP WO2017209297A1
Authority
JP
Japan
Prior art keywords
substituted
group
unsubstituted
compound
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018521145A
Other languages
Japanese (ja)
Inventor
健一郎 伊丹
健一郎 伊丹
慧 村上
慧 村上
義人 古賀
義人 古賀
岳志 金田
岳志 金田
雄太朗 齋藤
雄太朗 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Tokai National Higher Education and Research System NUC
Original Assignee
Nagoya University NUC
Tokai National Higher Education and Research System NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC, Tokai National Higher Education and Research System NUC filed Critical Nagoya University NUC
Publication of JPWO2017209297A1 publication Critical patent/JPWO2017209297A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/76Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation of hydrocarbons with partial elimination of hydrogen
    • C07C2/82Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation of hydrocarbons with partial elimination of hydrogen oxidative coupling
    • C07C2/84Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation of hydrocarbons with partial elimination of hydrogen oxidative coupling catalytic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/20Polycyclic condensed hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/20Polycyclic condensed hydrocarbons
    • C07C15/38Polycyclic condensed hydrocarbons containing four rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/30Preparation of carboxylic acid nitriles by reactions not involving the formation of cyano groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/49Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C255/50Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton to carbon atoms of non-condensed six-membered aromatic rings
    • C07C255/51Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton to carbon atoms of non-condensed six-membered aromatic rings containing at least two cyano groups bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C319/00Preparation of thiols, sulfides, hydropolysulfides or polysulfides
    • C07C319/14Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides
    • C07C319/20Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides by reactions not involving the formation of sulfide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C321/00Thiols, sulfides, hydropolysulfides or polysulfides
    • C07C321/24Thiols, sulfides, hydropolysulfides, or polysulfides having thio groups bound to carbon atoms of six-membered aromatic rings
    • C07C321/28Sulfides, hydropolysulfides, or polysulfides having thio groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • C07C41/30Preparation of ethers by reactions not forming ether-oxygen bonds by increasing the number of carbon atoms, e.g. by oligomerisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/20Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/333Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton
    • C07C67/343Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/76Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/52Benzo[b]thiophenes; Hydrogenated benzo[b]thiophenes
    • C07D333/54Benzo[b]thiophenes; Hydrogenated benzo[b]thiophenes with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the hetero ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

パラジウム触媒及び塩基の存在下に、一般式(2):[式中、R1及びR2は前記に同じである。Xはハロゲン原子を示す。]で表される化合物を反応させることで、入手容易な化合物を用いて、温和な条件でトリアリーレン化合物を合成することができる。In the presence of a palladium catalyst and a base, a compound of the general formula (2): wherein R 1 and R 2 are as defined above. X represents a halogen atom. The triarylene compound can be synthesized under mild conditions using a readily available compound by reacting the compound represented by the formula].

Description

本発明は、トリアリーレン化合物及びその製造方法に関する。   The present invention relates to a triarylene compound and a method for producing the same.

ベンゼンからオルト位に位置する2個の水素原子を取り除いたベンザインは大きく歪んだ三重結合を有しており、高い反応性を示す。このため、反応中間体として様々な有機合成に用いられてきており、例えば、海綿から単離されたテロメラーゼ阻害活性を有するDictyodendrin A、抗癌剤Ukrainの有効成分であるChelidonine等の他、トリアリーレン化合物等の合成にも用いられている。なかでも、トリアリーレン化合物(特にトリフェニレン化合物)は、有機EL材料、液晶材料等としても利用される有用な化合物である。   Benzyne from which two hydrogen atoms located at the ortho position are removed from benzene has a highly distorted triple bond and exhibits high reactivity. For this reason, it has been used for various organic syntheses as a reaction intermediate, for example, Dictyodendrin A having telomerase inhibitory activity isolated from sponge, Chelidonine which is an active ingredient of anticancer drug Ukrain, etc., triarylene compounds etc. It is also used in the synthesis of Among them, triarylene compounds (in particular, triphenylene compounds) are useful compounds which are also used as organic EL materials, liquid crystal materials and the like.

このように、ベンザインは有機合成化学において広く用いられてきた有用な化学種であるが、ベンザインは不安定な化合物であるため系中で発生させる必要がある。また、ベンザインの発生には強塩基、酸化剤等を使用したり、前駆体の事前に調製したりすることが必要であった。このため、適用可能な基質が制限されたり、前駆体調製により工程数が増加したりすることが問題とされてきた。   Thus, although benzine is a useful chemical species that has been widely used in synthetic organic chemistry, benZane is an unstable compound and must be generated in situ. In addition, it is necessary to use a strong base, an oxidizing agent or the like for the generation of benzine or to prepare a precursor in advance. For this reason, there has been a problem that the applicable substrate is limited, or the number of steps is increased due to precursor preparation.

このため、上記のトリアリーレン化合物の合成においては、反応中間体であるベンザインをどのようにして発生させるかが鍵となっている。   For this reason, in the synthesis of the above-described triarylene compounds, how to generate benzyne, which is a reaction intermediate, is a key.

例えば、ハロゲン化アリール化合物に強塩基を作用させることで、ハロゲンが脱離して強塩基を付加させることが知られている。この反応においては、強塩基がハロゲン原子のオルト位水素原子を脱プロトンすることでベンザインを発生させていることが知られている(例えば、非特許文献1参照)。また、オルト位にシリル基を有するアリールトリフラートにフッ化テトラブチルアンモニウム(TBAF)を作用させることによっても、ベンザインが発生することも知られている(例えば、非特許文献2参照)。この反応においては、TBAFをアリールトリフラートに作用させることでシリル基が脱離し、トリフラート基のオルト位にカルバニオンを生成している。   For example, it is known that halogen is eliminated and a strong base is added by causing a strong base to act on a halogenated aryl compound. In this reaction, it is known that strong bases generate benzine by deprotonating a hydrogen atom at the ortho position of a halogen atom (see, for example, Non-Patent Document 1). It is also known that benzyne is also generated by the action of tetrabutylammonium fluoride (TBAF) on an aryl triflate having a silyl group at the ortho position (see, for example, Non-Patent Document 2). In this reaction, silyl group is eliminated by acting TBAF on aryl triflate to generate carbanion in the ortho position of triflate group.

J. Am. Chem. Soc. 1953, 75, 3290J. Am. Chem. Soc. 1953, 75, 3290 Chem. Lett. 1983, 1211Chem. Lett. 1983, 1211

しかしながら、非特許文献1の方法では強塩基の使用が不可欠であるため、基質の官能基許容性が低く、基質の適用範囲が大きく制限されていた。一方、非特許文献2の方法では、TBAFをアリールトリフラートに作用させることでシリル基が脱離し、トリフラート基のオルト位にカルバニオンを生成しており、強塩基が不要であるうえに室温で行うことができるため温和な反応を行えるものの、基質であるアリールトリフラートの調製が煩雑であり、工程数の増大が不可避である。このため、入手容易な化合物を用いて、温和な条件でベンザインを発生させる方法は存在しない。当然ながら、入手容易な化合物を用いて、温和な条件でトリアリーレン化合物を合成する方法も知られていない。   However, since the use of a strong base is indispensable in the method of Non-Patent Document 1, the functional group tolerance of the substrate is low, and the range of application of the substrate is greatly limited. On the other hand, in the method of Non-Patent Document 2, the silyl group is eliminated by acting TBAF on the aryl triflate to generate carbanion at the ortho position of the triflate group, and a strong base is not necessary, and it is carried out at room temperature. Although the reaction can be mild because it can be carried out, the preparation of the aryl triflate which is a substrate is complicated, and an increase in the number of steps is inevitable. For this reason, there is no method for generating benzine under mild conditions using readily available compounds. Of course, there is also no known method for synthesizing triarylene compounds under mild conditions using readily available compounds.

以上から、本発明は、入手容易な化合物を用いて、温和な条件でトリアリーレン化合物を合成することを目的とする。   From the above, it is an object of the present invention to synthesize triarylene compounds under mild conditions using easily available compounds.

本発明者らは上記の課題を解決するために鋭意研究を行った結果、パラジウム触媒及び塩基の存在下に、所望の基質化合物同士を反応させることにより、強塩基を使用せずとも、温和な条件でトリアリーレン化合物を合成することができることを見出した。この際使用できる基質化合物は、入手が容易な化合物である。本発明者らは、このような知見に基づき、さらに研究を重ね、本発明を完成した。すなわち、本発明は以下の構成を包含する。   As a result of intensive studies to solve the above problems, the present inventors have found that by reacting desired substrate compounds with each other in the presence of a palladium catalyst and a base, a mild base is obtained without using a strong base. It has been found that triarylene compounds can be synthesized under the conditions. The substrate compound which can be used at this time is a compound which is easy to obtain. Based on such findings, the present inventors have further studied and completed the present invention. That is, the present invention includes the following configurations.

項1.一般式(1):   Item 1. General formula (1):

Figure 2017209297
Figure 2017209297

[式中、R1及びR1'は水素原子、置換若しくは無置換アリール基、又は置換若しくは無置換ヘテロアリール基を示す。R2は置換若しくは無置換アリール基、又は置換若しくは無置換ヘテロアリール基を示す。R3は水素原子を示す。R'は置換若しくは無置換芳香族炭化水素環又は置換若しくは無置換複素芳香環を示す。R1とR3は結合し、環を形成してもよい。R1'とR3は結合し、環を形成してもよい。R2とR'は結合し、環を形成してもよい。]
で表される多環芳香族化合物の製造方法であって、
パラジウム触媒及び塩基の存在下に、
一般式(2):
[Wherein, R 1 and R 1 ′ represent a hydrogen atom, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group. R 2 represents a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group. R 3 represents a hydrogen atom. R ′ represents a substituted or unsubstituted aromatic hydrocarbon ring or a substituted or unsubstituted heteroaromatic ring. R 1 and R 3 may combine to form a ring. R 1 ′ and R 3 may combine to form a ring. R 2 and R ′ may combine to form a ring. ]
A process for producing a polycyclic aromatic compound represented by
In the presence of a palladium catalyst and a base
General formula (2):

Figure 2017209297
Figure 2017209297

[式中、R1及びR2は前記に同じである。Xはハロゲン原子を示す。]
で表される化合物を反応させる反応工程
を備える、製造方法。
[Wherein, R 1 and R 2 are as defined above. X represents a halogen atom. ]
A production method comprising a reaction step of reacting a compound represented by

項2.前記R1が水素原子、置換若しくは無置換フェニル基、置換若しくは無置換ナフチル基、又は置換若しくは無置換ベンゾチエニル基である、項1に記載の製造方法。Item 2. The production method according to Item 1, wherein R 1 is a hydrogen atom, a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, or a substituted or unsubstituted benzothienyl group.

項3.前記R2が置換若しくは無置換フェニル基、置換若しくは無置換ナフチル基、又は置換若しくは無置換ベンゾチエニル基である、項1又は2に記載の製造方法。Item 3. The production method according to Item 1 or 2, wherein R 2 is a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, or a substituted or unsubstituted benzothienyl group.

項4.前記R’が置換若しくは無置換ベンゼン環、置換若しくは無置換ナフタレン環、又は置換若しくは無置換ベンゾチオフェン環である、項1〜3のいずれかに記載の製造方法。   Item 4. The method according to any one of Items 1 to 3, wherein R 'is a substituted or unsubstituted benzene ring, a substituted or unsubstituted naphthalene ring, or a substituted or unsubstituted benzothiophene ring.

項5.前記反応工程において、配位子化合物を添加する、項1〜4のいずれかに記載の製造方法。   Item 5. Item 5. The production method according to any one of Items 1 to 4, wherein a ligand compound is added in the reaction step.

項6.前記配位子化合物がホスフィン化合物である、項5に記載の製造方法。   Item 6. Item 6. The production method according to Item 5, wherein the ligand compound is a phosphine compound.

項7.前記塩基がアルカリ金属炭酸塩又はアルカリ金属フッ化物塩である、項1〜6のいずれかに記載の製造方法。   Item 7. 7. The method according to any one of Items 1 to 6, wherein the base is an alkali metal carbonate or an alkali metal fluoride salt.

項8.前記反応工程において、カルボン酸を添加する、項1〜7のいずれかに記載の製造方法。   Item 8. Item 8. The method according to any one of Items 1 to 7, wherein a carboxylic acid is added in the reaction step.

項9.前記反応工程の後に、酸化剤の存在下に分子内環化反応を起こす工程を備える、項1〜8のいずれかに記載の製造方法。   Item 9. Item 9. The method according to any one of Items 1 to 8, further comprising the step of causing an intramolecular cyclization reaction in the presence of an oxidizing agent after the reaction step.

項10.一般式(1A1):   Item 10. General formula (1A1):

Figure 2017209297
Figure 2017209297

[式中、R1及びR1'は置換若しくは無置換アリール基、又は置換若しくは無置換ヘテロアリール基を示す。R2は置換若しくは無置換アリール基、又は置換若しくは無置換ヘテロアリール基を示す。R'は置換若しくは無置換芳香族炭化水素環又は置換若しくは無置換複素芳香環を示す。ただし、R1、R1’及びR2がいずれも無置換フェニル基であり、R’が4-(9,12-ジフェニルトリフェニル)-2,5-ジメチルフェニル基、4-(2,9,12-トリフェニルトリフェニル)-2,5-ジメチルフェニル基、又はトリフェニルフェニル基で置換されたベンゼンである化合物を除く。]
、一般式(1A2):
[Wherein, R 1 and R 1 ′ represent a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group. R 2 represents a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group. R ′ represents a substituted or unsubstituted aromatic hydrocarbon ring or a substituted or unsubstituted heteroaromatic ring. Provided that R 1 , R 1 ′ and R 2 are all unsubstituted phenyl groups, R ′ is 4- (9,12-diphenyltriphenyl) -2,5-dimethylphenyl group, 4- (2,9) , 12-triphenyltriphenyl) -2,5-dimethylphenyl group, or compounds which are benzene substituted with triphenylphenyl group. ]
, General formula (1A2):

Figure 2017209297
Figure 2017209297

[式中、R2は置換若しくは無置換アリール基、又は置換若しくは無置換ヘテロアリール基を示す。R'は置換芳香族炭化水素環又は置換若しくは無置換複素芳香環を示す。ただし、R2が置換フェニル基でありR’が置換ベンゼン環である場合は、1,5-ビス[3-(9,9-ジメチル-9H-フルオレン-3-イル)フェニルトリフェニレン、7,7’-(1,5-トリフェニレンジイル)-ビスベンゾオキサゾール、1,12-ビス([1,1’:3’,1-ターフェニル]-3-イル)トリフェニレン、3,3’-(1-12-トリフェニレンジイル)ビス[9-フェニル-9H-カルバゾール], ,3’-(1-12-トリフェニレンジイル)ビスジベンゾチオフェン、1-[3-(ブロモメチル)-5-メチルフェニル]-12-(3,5-ジメチルフェニル)-トリフェニレン、1-[3-(ブロモメチル)-5-メチルフェニル]-12-フェニルトリフェニレン、1-フェニル-12-(2,4,6-トリメチルフェニル)-トリフェニレン、1-(4-メチルフェニル)-12-フェニル-トリフェニレン、1-(3,5-ジメチルフェニル)-12-フェニルトリフェニレン、1,12-ビス(3,5-ジメチルフェニル)-トリフェニレン、8,9-ジフェニルジベンゾ[f,j]ピセン、2-ヨード-1,12-ジフェニルトリフェニレン、及び1,12-ジフェニルトリフェニレンを除く。また、R’が無置換ベンゼン環である場合は、R2は、置換若しくは無置換フェニル基、置換ナフチル基、置換ピリジル基、置換ピラジル、置換若しくは無置換ジベンゾフラン基、置換若しくは無置換ジベンゾチオフェン基、置換若しくは無置換カルバゾール基、置換若しくは無置換ベンゾトリアゾール基、置換若しくは無置換キノリン基、トリフェニレン基、フェナントレン基、インダンジオン基、並びにフローレン基を除く。]
で表されるトリアリーレン化合物。
[Wherein, R 2 represents a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group. R ′ represents a substituted aromatic hydrocarbon ring or a substituted or unsubstituted heteroaromatic ring. However, when R 2 is a substituted phenyl group and R ′ is a substituted benzene ring, 1,5-bis [3- (9,9-dimethyl-9H-fluoren-3-yl) phenyltriphenylene, 7,7 '-(1,5-triphenylenediyl) -bisbenzoxazole, 1,12-bis ([1,1': 3 ', 1-terphenyl] -3-yl) triphenylene, 3,3'-(1- 12-triphenylenediyl) bis [9-phenyl-9H-carbazole] ,, 3 '-(1-12-triphenylenediyl) bisdibenzothiophene, 1- [3- (bromomethyl) -5-methylphenyl] -12- 3,5-Dimethylphenyl) -triphenylene, 1- [3- (bromomethyl) -5-methylphenyl] -12-phenyltriphenylene, 1-phenyl-12- (2,4,6-trimethylphenyl) -triphenylene, 1 -(4-Methylphenyl) -12-phenyl-triphenylene, 1- (3,5-dimethylphenyl) -12-phenyltriphenylene, 1,12-bis (3,5-dimethylphenyl) -triphenylene, 8,9- The Enirujibenzo except [f, j] picene, 2-iodo-1,12-diphenyl triphenylene, and 1,12 diphenyl triphenylene. When R ′ is a non-substituted benzene ring, R 2 is a substituted or non-substituted phenyl group, a substituted naphthyl group, a substituted pyridyl group, a substituted pyrazyl, a substituted or non-substituted dibenzofuran group, or a substituted or non-substituted dibenzothiophene group Excluding substituted or unsubstituted carbazole group, substituted or unsubstituted benzotriazole group, substituted or unsubstituted quinoline group, triphenylene group, phenanthrene group, indandione group, and flowene group. ]
A triarylene compound represented by

項11.前記R1及びR1'が水素原子、置換若しくは無置換フェニル基、置換若しくは無置換ナフチル基、又は置換若しくは無置換ベンゾチエニル基である、項10に記載のトリアリーレン化合物。Item 11. Item 11. The triarylene compound according to item 10, wherein R 1 and R 1 ′ are a hydrogen atom, a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, or a substituted or unsubstituted benzothienyl group.

項12.前記R2が置換若しくは無置換フェニル基、置換若しくは無置換ナフチル基、又は置換若しくは無置換ベンゾチエニル基である、項10又は11に記載のトリアリーレン化合物。Item 12. Item 12. The triarylene compound according to item 10 or 11, wherein R 2 is a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, or a substituted or unsubstituted benzothienyl group.

項13.前記R’が置換若しくは無置換ベンゼン環、置換若しくは無置換ナフタレン環、又は置換若しくは無置換ベンゾチオフェン環である、項10〜12のいずれかに記載のトリアリーレン化合物。   Item 13. Item 13. The triarylene compound according to any of items 10 to 12, wherein R ′ is a substituted or unsubstituted benzene ring, a substituted or unsubstituted naphthalene ring, or a substituted or unsubstituted benzothiophene ring.

項14.一般式(1B):   Item 14. General formula (1B):

Figure 2017209297
Figure 2017209297

で表される、多環芳香族化合物。 Polycyclic aromatic compound represented by

本発明によれば、パラジウム触媒及び塩基の存在下に、所望の基質化合物同士を反応させることにより、わずか1工程のみで、温和な条件の反応によりトリアリーレン化合物を得ることができる。なお、使用できる基質化合物は、入手容易な化合物である。   According to the present invention, by reacting desired substrate compounds with each other in the presence of a palladium catalyst and a base, a triarylene compound can be obtained by a mild condition reaction in only one step. In addition, the substrate compound which can be used is an easily available compound.

実施例2で得た化合物2bの熱振動楕円体作画ソフト(ORTEP)による構造である。7 is a structure of compound 2b obtained in Example 2 by thermal ellipsometry drawing software (ORTEP). 実施例2及び5で得た化合物2pの熱振動楕円体作画ソフト(ORTEP)による構造である。It is the structure by thermal oscillation ellipsoid drawing software (ORTEP) of the compound 2p obtained in Examples 2 and 5. 実施例5で得た化合物2p’の熱振動楕円体作画ソフト(ORTEP)による構造である。7 is a structure of compound 2p ′ obtained in Example 5 by thermal ellipsometry drawing software (ORTEP). (A) 化合物3cのフレークのラマンスペクトル、及び係数0.9613でスケーリングしたB3LYP/6-31G(d)レベルの理論を用いて計算したシミュレートスペクトルを示す。(B, C) Aの拡大スペクトルを示す。(A) Raman spectra of flakes of compound 3c and simulated spectra calculated using B3LYP / 6-31G (d) level theory scaled with a factor of 0.9613. (B, C) The expanded spectrum of A is shown. 化合物2bのUV-Vis吸収スペクトル(実線)及び蛍光スペクトル(破線)を示す。The UV-Vis absorption spectrum (solid line) and the fluorescence spectrum (broken line) of compound 2b are shown. 化合物2pのUV-Vis吸収スペクトル(実線)及び蛍光スペクトル(破線)を示す。The UV-Vis absorption spectrum (solid line) and the fluorescence spectrum (broken line) of compound 2p are shown. 化合物2p’のUV-Vis吸収スペクトル(実線)及び蛍光スペクトル(破線)を示す。The UV-Vis absorption spectrum (solid line) and the fluorescence spectrum (broken line) of compound 2p 'are shown. 化合物2dのUV-Vis吸収スペクトル(実線)及び蛍光スペクトル(破線)を示す。The UV-Vis absorption spectrum (solid line) and the fluorescence spectrum (broken line) of compound 2d are shown. 化合物2lのUV-Vis吸収スペクトル(実線)及び蛍光スペクトル(破線)を示す。The UV-Vis absorption spectrum (solid line) and the fluorescence spectrum (dotted line) of compound 2l are shown. 化合物2mのUV-Vis吸収スペクトル(実線)及び蛍光スペクトル(破線)を示す。The UV-Vis absorption spectrum (solid line) and the fluorescence spectrum (broken line) of compound 2m are shown. 化合物2nのUV-Vis吸収スペクトル(実線)及び蛍光スペクトル(破線)を示す。The UV-Vis absorption spectrum (solid line) and the fluorescence spectrum (broken line) of compound 2n are shown. 化合物2gのUV-Vis吸収スペクトル(実線)及び蛍光スペクトル(破線)を示す。The UV-Vis absorption spectrum (solid line) and the fluorescence spectrum (dotted line) of compound 2g are shown. 化合物2eのUV-Vis吸収スペクトル(実線)及び蛍光スペクトル(破線)を示す。The UV-Vis absorption spectrum (solid line) and the fluorescence spectrum (broken line) of compound 2e are shown. 化合物2fのUV-Vis吸収スペクトル(実線)及び蛍光スペクトル(破線)を示す。The UV-Vis absorption spectrum (solid line) and the fluorescence spectrum (broken line) of compound 2f are shown. 化合物2kのUV-Vis吸収スペクトル(実線)及び蛍光スペクトル(破線)を示す。The UV-Vis absorption spectrum (solid line) and the fluorescence spectrum (broken line) of compound 2k are shown. 化合物2cのUV-Vis吸収スペクトル(実線)及び蛍光スペクトル(破線)を示す。The UV-Vis absorption spectrum (solid line) and the fluorescence spectrum (broken line) of compound 2c are shown. 化合物3aのUV-Vis吸収スペクトル(実線)及び蛍光スペクトル(破線)を示す。The UV-Vis absorption spectrum (solid line) and the fluorescence spectrum (broken line) of compound 3a are shown.

本発明の多環芳香族化合物の製造方法は、一般式(1):   The process for producing a polycyclic aromatic compound of the present invention comprises the general formula (1):

Figure 2017209297
Figure 2017209297

[式中、R1及びR1'は水素原子、置換若しくは無置換アリール基、又は置換若しくは無置換ヘテロアリール基を示す。R2は置換若しくは無置換アリール基、又は置換若しくは無置換ヘテロアリール基を示す。R3は水素原子を示す。R'は置換若しくは無置換芳香族炭化水素環又は置換若しくは無置換複素芳香環を示す。R1とR3は結合し、環を形成してもよい。R1'とR3は結合し、環を形成してもよい。R2とR'は結合し、環を形成してもよい。]
で表される多環芳香族化合物(以下、「多環芳香族化合物(1)」と言うこともある)の製造方法であって、
パラジウム触媒及び塩基の存在下に、
一般式(2):
[Wherein, R 1 and R 1 ′ represent a hydrogen atom, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group. R 2 represents a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group. R 3 represents a hydrogen atom. R ′ represents a substituted or unsubstituted aromatic hydrocarbon ring or a substituted or unsubstituted heteroaromatic ring. R 1 and R 3 may combine to form a ring. R 1 ′ and R 3 may combine to form a ring. R 2 and R ′ may combine to form a ring. ]
A method for producing a polycyclic aromatic compound (hereinafter sometimes referred to as "polycyclic aromatic compound (1)")
In the presence of a palladium catalyst and a base
General formula (2):

Figure 2017209297
Figure 2017209297

[式中、R1及びR2は前記に同じである。Xはハロゲン原子を示す。]
で表される化合物を反応させる反応工程
を備える。
[Wherein, R 1 and R 2 are as defined above. X represents a halogen atom. ]
And a reaction step of reacting the compound represented by

この反応工程においては、パラジウム触媒及び塩基の存在下に、基質となる一般式(2)で表される化合物(以下、「化合物(2)」と言うこともある)同士を反応させ、多環芳香族化合物(1)を得ることができる。この際、反応させる化合物(2)としては、同種の化合物(2)同士を反応させることが好ましい。この反応工程において、基質となる化合物(2)は、様々な置換基を有する化合物も使用することができるため、様々な多環芳香族化合物を合成することが可能である。   In this reaction step, compounds represented by the general formula (2) as a substrate (hereinafter sometimes referred to as “compound (2)”) are reacted with each other in the presence of a palladium catalyst and a base to form a polycyclic ring. An aromatic compound (1) can be obtained. At this time, as the compound (2) to be reacted, it is preferable to make the same kind of compound (2) react with each other. In this reaction step, as the compound (2) as a substrate, compounds having various substituents can also be used, so that various polycyclic aromatic compounds can be synthesized.

一般式(1)及び(2)において、R1及びR1'で示されるアリール基としては、例えば、フェニル基、ペンタレニル基、インデニル基、ナフチル基、アントラセニル基、フェナントレニル基、ベンゾアントラセニル基、ピレニル基、ペリレニル基、トリフェニレニル基、アズレニル基、ヘプタレニル基、インダセニル基、アセナフチル基、フルオレニル基、フェナレニル基、フルオランテニル基、コロネニル基等が挙げられる。In the general formulas (1) and (2), examples of the aryl group represented by R 1 and R 1 ′ include, for example, phenyl group, pentalenyl group, indenyl group, naphthyl group, anthracenyl group, phenanthrenyl group, benzoanthracenyl group And pyrenyl group, perylenyl group, triphenylenyl group, azulenyl group, heptalenyl group, indasenyl group, acenaphthyl group, acenaphthyl group, fluorenyl group, phenalenyl group, fluoranthenyl group, colonenyl group and the like.

また、R1及びR1'で示されるアリール基が有していてもよい置換基としては、例えば、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子等)、シアノ基、アルキル基(メチル基、tert-ブチル基等のC1-6アルキル基等)、アルコキシ基(メトキシ基等のC1-6アルコキシ基等)、上記アリール基、後述のヘテロアリール基、アルコキシカルボニル基(メトキシカルボニル基等のC2-7アルコキシカルボニル基等)、チオアルキル基(チオメチル基等のC1-6チオアルキル基等)等が挙げられる。置換基としてのアルキル基、アルコキシ基、アリール基及びヘテロアリール基は、上記置換基で置換されていてもよい。置換基を有する場合の置換基の数は、1〜6個が好ましく、1〜3個がより好ましい。Moreover, as a substituent which the aryl group shown by R 1 and R 1 ′ may have, for example, a halogen atom (a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc.), a cyano group, an alkyl group ( C1-6 alkyl group such as methyl group, tert-butyl group etc., alkoxy group (C1-6 alkoxy group such as methoxy group etc.), the above aryl group, heteroaryl group described later, alkoxycarbonyl group (methoxycarbonyl group etc.) C2-7 alkoxycarbonyl group of 1), a thioalkyl group (a C1-6 thioalkyl group such as a thiomethyl group etc.) and the like. The alkyl group, alkoxy group, aryl group and heteroaryl group as a substituent may be substituted by the above-mentioned substituent. The number of substituents in the case of having a substituent is preferably 1 to 6, and more preferably 1 to 3.

一般式(1)及び(2)において、R1及びR1'で示されるヘテロアリール基としては、例えば、イミダゾリル基、ピラゾリル基、ピラジル基、ピリミジル基、ピリダジル基、オキサゾリル基、イソオキサゾリル基、チアゾリル基、イソチアゾリル基、インドリル基、キノリル基、イソキノリル基、ベンゾイミダゾリル基、キナゾリル基、フタラジル基、プテリジル基、ベンゾフラニル基、クマリル基、ベンゾチエニル基等が挙げられる。Examples of the heteroaryl group represented by R 1 and R 1 ′ in the general formulas (1) and (2) include imidazolyl group, pyrazolyl group, pyrazyl group, pyrimidyl group, pyridazyl group, oxazolyl group, isoxazolyl group, thiazolyl group. Groups, isothiazolyl groups, indolyl groups, quinolyl groups, isoquinolyl groups, benzimidazolyl groups, quinazolyl groups, phthalazyl groups, pteridyl groups, benzofuranyl groups, coumaryl groups, benzothienyl groups and the like.

また、R1及びR1'で示されるヘテロアリール基が有していてもよい置換基としては、例えば、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子等)、シアノ基、アルキル基(メチル基等のC1-6アルキル基等)、アルコキシ基(メトキシ基等のC1-6アルコキシ基等)、上記アリール基、上記ヘテロアリール基、アルコキシカルボニル基(メトキシカルボニル基等のC2-7アルコキシカルボニル基等)、チオアルキル基(チオメチル基等のC1-6チオアルキル基等)等が挙げられる。置換基としてのアルキル基、アルコキシ基、アリール基及びヘテロアリール基は、上記置換基で置換されていてもよい。置換基を有する場合の置換基の数は、1〜6個が好ましく、1〜3個がより好ましい。Moreover, as a substituent which the heteroaryl group shown by R 1 and R 1 ′ may have, for example, a halogen atom (a fluorine atom, a chlorine atom, a bromine atom, an iodine atom etc.), a cyano group, an alkyl group (C1-6 alkyl group such as methyl group), alkoxy group (C1-6 alkoxy group such as methoxy group), the above aryl group, the above heteroaryl group, alkoxycarbonyl group (C2-7 alkoxy such as methoxycarbonyl group) Examples thereof include a carbonyl group etc., a thioalkyl group (C1-6 thioalkyl group such as a thiomethyl group etc.) and the like. The alkyl group, alkoxy group, aryl group and heteroaryl group as a substituent may be substituted by the above-mentioned substituent. The number of substituents in the case of having a substituent is preferably 1 to 6, and more preferably 1 to 3.

なかでも、R1及びR1'としては、水素原子、フェニル基、ナフチル基、ベンゾチエニル基等が好ましく、これらは、シアノ基、上記アルキル基、上記アルコキシ基、上記アリール基、上記アルコキシカルボニル基、上記チオアルキル基等で置換されていてもよい。ただし、ヘテロアリール基は安定性が低く収率が低くなりやすいためR1としては、水素原子又はアリール基が好ましい。Among them, as R 1 and R 1 ′ , a hydrogen atom, a phenyl group, a naphthyl group, a benzothienyl group and the like are preferable, and these are a cyano group, the above alkyl group, the above alkoxy group, the above aryl group, the above alkoxycarbonyl group And may be substituted with the above-mentioned thioalkyl group or the like. However, since a heteroaryl group tends to have low stability and low yield, a hydrogen atom or an aryl group is preferable as R 1 .

一般式(1)及び(2)において、R2で示されるアリール基及びヘテロアリール基としては、上記したものを採用できる。置換基の種類及び数も同様である。なかでも、R2としては、フェニル基、ナフチル基、ベンゾチエニル基等が好ましく、これらは、シアノ基、上記アルキル基、上記アルコキシ基、上記アリール基、上記アルコキシカルボニル基、上記チオアルキル基等で置換されていてもよい。ただし、ヘテロアリール基は安定性が低く収率が低くなりやすいためR1としては、水素原子又はアリール基が好ましい。In the general formulas (1) and (2), as the aryl group and heteroaryl group represented by R 2 , those described above can be adopted. The types and numbers of substituents are also the same. Among them, as R 2 , a phenyl group, a naphthyl group, a benzothienyl group and the like are preferable, and these are substituted with a cyano group, the above alkyl group, the above alkoxy group, the above aryl group, the above aryl group, the above alkoxycarbonyl group, the above thioalkyl group etc. It may be done. However, since a heteroaryl group tends to have low stability and low yield, a hydrogen atom or an aryl group is preferable as R 1 .

一般式(1)において、R'は置換若しくは無置換芳香族炭化水素環又は置換若しくは無置換複素芳香環を示す。基質として使用する化合物(2)のR2が置換若しくは無置換アリール基である場合はR'は当該置換若しくは無置換アリール基由来の置換若しくは無置換芳香族炭化水素環であり、基質として使用する化合物(2)のR2が置換若しくは無置換ヘテロアリール基である場合はR'は当該置換若しくは無置換ヘテロアリール基由来の置換若しくは無置換複素芳香環である。In the general formula (1), R ′ represents a substituted or unsubstituted aromatic hydrocarbon ring or a substituted or unsubstituted heteroaromatic ring. When R 2 of compound (2) used as a substrate is a substituted or unsubstituted aryl group, R ′ is a substituted or unsubstituted aromatic hydrocarbon ring derived from the substituted or unsubstituted aryl group and used as a substrate When R 2 of the compound (2) is a substituted or unsubstituted heteroaryl group, R ′ is a substituted or unsubstituted heteroaromatic ring derived from the substituted or unsubstituted heteroaryl group.

この観点から、R'で示される芳香族炭化水素環としては、例えば、ベンゼン環、ペンタレン環、インデン環、ナフタレン環、アントラセン環、テトラセン環、ペンタセン環、フェナントレン環、ベンゾアントラセン環、ピレン環、ペリレン環、トリフェニレン環、アズレン環、ヘプタレン環、インダセン環、アセナフタレン環、フルオレン環、フェナレン環、フルオランテン環、コロネン環等が挙げられ、上記ハロゲン原子、シアノ基、上記アルキル基、上記アルコキシ基、上記アリール基、上記ヘテロアリール基、上記アルコキシカルボニル基、上記チオアルキル基等の1〜6個(特に1〜3個)で置換されていてもよい。   From this viewpoint, examples of the aromatic hydrocarbon ring represented by R ′ include benzene ring, pentalene ring, indene ring, naphthalene ring, anthracene ring, tetracene ring, pentacene ring, phenanthrene ring, benzoanthracene ring, pyrene ring, Perylene ring, triphenylene ring, azulene ring, heptalene ring, indacene ring, acenaphthalene ring, a fluorene ring, phenalene ring, fluoranthene ring, coronene ring etc. are mentioned, and the above-mentioned halogen atom, cyano group, the above alkyl group, the above alkoxy group, It may be substituted by 1 to 6 (particularly 1 to 3) such as the above aryl group, the above heteroaryl group, the above alkoxycarbonyl group, the above thioalkyl group and the like.

また、R'で示される複素芳香環としては、例えば、ピロール環、ピロリジン環、ピペリジン環、イミダゾール環、ピラゾール環、ピラジン環、ピリミジン環、ピリダジン環、ピペラジン環、トリアジン環、オキサゾール環、イソオキサゾール環、モルホリン環、チアゾール環、イソチアゾール環、インドール環、キノリン環、イソキノリン環、ベンゾイミダゾール環、キナゾリン環、フタラジン環、プリン環、プテリジン環、ベンゾフラン環、クマリン環、ベンゾチオフェン環等が挙げられ、上記ハロゲン原子、シアノ基、上記アルキル基、上記アルコキシ基、上記アリール基、上記ヘテロアリール基、上記アルコキシカルボニル基、上記チオアルキル基等の1〜6個(特に1〜3個)で置換されていてもよい。   Moreover, as the heteroaromatic ring represented by R ′, for example, pyrrole ring, pyrrolidine ring, piperidine ring, imidazole ring, pyrazole ring, pyrazine ring, pyrimidine ring, pyridazine ring, piperazine ring, triazine ring, oxazole ring, isoxazole Ring, morpholine ring, thiazole ring, isothiazole ring, indole ring, quinoline ring, isoquinoline ring, benzimidazole ring, quinazoline ring, phthalazine ring, purine ring, pteridine ring, benzofuran ring, coumarin ring, benzothiophene ring, etc. Substituted by 1 to 6 (particularly 1 to 3) such as the above halogen atom, cyano group, the above alkyl group, the above alkoxy group, the above aryl group, the above heteroaryl group, the above alkoxycarbonyl group, the above thioalkyl group, etc. May be

なかでも、R'としては、ベンゼン環、ナフタレン環、ベンゾチオフェン環等が好ましく、これらは、シアノ基、上記アルキル基、上記アルコキシ基、上記アリール基、上記アルコキシカルボニル基、上記チオアルキル基等で置換されていてもよい。ただし、複素芳香環は安定性が低く収率が低くなりやすいためR'としては、芳香族炭化水素環が好ましい。Among them, as R , a benzene ring, a naphthalene ring, a benzothiophene ring and the like are preferable, and these are substituted by a cyano group, the above alkyl group, the above alkoxy group, the above aryl group, the above alkoxycarbonyl group, the above thioalkyl group and the like It may be done. However, an aromatic hydrocarbon ring is preferable as R because a heteroaromatic ring tends to have low stability and a low yield.

一般式(1)において、R1とR3は結合し、環を形成してもよい。形成され得る環としては、上記した芳香族炭化水素環が挙げられる。In the general formula (1), R 1 and R 3 may combine to form a ring. As a ring which may be formed, the above-mentioned aromatic hydrocarbon ring is mentioned.

一般式(1)において、R1'とR3は結合し、環を形成してもよい。形成され得る環としては、上記した芳香族炭化水素環が挙げられる。In the general formula (1), R 1 ′ and R 3 may combine to form a ring. As a ring which may be formed, the above-mentioned aromatic hydrocarbon ring is mentioned.

一般式(1)において、R2とR'は結合し、環を形成してもよい。形成され得る環としては、上記した芳香族炭化水素環が挙げられる。In the general formula (1), R 2 and R ′ may combine to form a ring. As a ring which may be formed, the above-mentioned aromatic hydrocarbon ring is mentioned.

一般式(2)において、Xで示されるハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、収率等の観点から、フッ素原子、塩素原子等が好ましく、塩素原子がより好ましい。   In the general formula (2), examples of the halogen atom represented by X include a fluorine atom, chlorine atom, bromine atom, iodine atom and the like, and from the viewpoint of yield etc., fluorine atom, chlorine atom and the like are preferable. The chlorine atom is more preferred.

以上のような観点から、基質として使用される化合物(2)としては、例えば、   From the above viewpoints, as the compound (2) used as a substrate, for example,

Figure 2017209297
Figure 2017209297

[式中、t-Buはtert-ブチル基を示す。Phはフェニル基を示す。以下同様である。]
等が挙げられる。
[Wherein, t-Bu represents a tert-butyl group. Ph represents a phenyl group. The same applies to the following. ]
Etc.

パラジウム触媒を使用することにより、本発明の製造方法によりトリアリーレン化合物を得ることができる。パラジウム触媒を使用しない場合は、本発明の反応が進行しない。パラジウム触媒としては、特に制限されず、金属パラジウムをはじめ、有機化合物(高分子化合物を含む)等の合成用触媒として公知のパラジウム化合物等が挙げられる。パラジウム触媒としては、0価パラジウムを含む化合物及びII価パラジウムを含む化合物のいずれも採用できる。なお、0価パラジウムを含む化合物を用いた場合には、当該0価パラジウムは、系中で酸化されてII価パラジウムになる。使用できるパラジウム化合物としては、具体的には、テトラキス(トリフェニルホスフィン)パラジウム(0)(Pd(PPh3)4)、トリス(ジベンジリデンアセトン)二パラジウム(0)(Pd2(dba)3)、ビス(ジベンジリデンアセトン)パラジウム(0)、ビス(トリtert-ブチルホスフィノ)パラジウム(0)、酢酸パラジウム(Pd(OAc)2(Acはアセチル基;以下同様))、ハロゲン化パラジウム(PdCl2、PdBr2、PdI2)、Pd(PPh3)2Cl2(Phはフェニル基;以下同様)、Pd(OTf)2(Tfはトリフルオロメチルスルホニル基)等が挙げられる。本発明においては、反応収率等の観点から、ハロゲン化パラジウムが好ましく、PdCl2がより好ましい。これらのパラジウム触媒は、単独で用いることもでき、2種以上を組合せて用いることもできる。By using a palladium catalyst, triarylene compounds can be obtained by the production method of the present invention. When the palladium catalyst is not used, the reaction of the present invention does not proceed. The palladium catalyst is not particularly limited, and examples thereof include metallic palladium and palladium compounds known as catalysts for synthesis of organic compounds (including polymer compounds). As the palladium catalyst, any of a compound containing zero-valent palladium and a compound containing II-valent palladium can be employed. When a compound containing zero-valent palladium is used, the zero-valent palladium is oxidized in the system to become II-valent palladium. Specific examples of palladium compounds that can be used include tetrakis (triphenylphosphine) palladium (0) (Pd (PPh 3 ) 4 ), tris (dibenzylideneacetone) dipalladium (0) (Pd 2 (dba) 3 ) , Bis (dibenzylideneacetone) palladium (0), bis (tritert-butylphosphino) palladium (0), palladium acetate (Pd (OAc) 2 (Ac is an acetyl group; the same applies hereinafter)), palladium halide (PdCl 2 , PdBr 2 , PdI 2 ), Pd (PPh 3 ) 2 Cl 2 (Ph is a phenyl group; the same shall apply hereinafter), Pd (OTf) 2 (Tf is a trifluoromethylsulfonyl group), and the like. In the present invention, from the viewpoint of reaction yield and the like, palladium halides are preferred, and PdCl 2 is more preferred. These palladium catalysts can be used alone or in combination of two or more.

パラジウム触媒の使用量は、基質の種類により適宜選択することが可能であり、例えば、基質である化合物(2)の合計量1モルに対して、通常、0.01〜1モルが好ましく、0.02〜0.5モルがより好ましく、0.03〜0.3モルがさらに好ましい。   The amount of the palladium catalyst to be used can be appropriately selected depending on the type of the substrate, and for example, usually 0.01 to 1 mol is preferable, and 0.02 to 0.5 per 1 mol of the total amount of the compound (2) which is the substrate. The mole is more preferable, and 0.03 to 0.3 mole is more preferable.

本発明においては、上記パラジウム触媒とともに、パラジウム原子に配位し得る配位子化合物を使用することができる。配位子化合物を使用しなくても反応を進行させることができるが、配位子化合物を使用することにより、反応収率をさらに向上させることも可能である。   In the present invention, a ligand compound which can be coordinated to a palladium atom can be used together with the above-mentioned palladium catalyst. Although the reaction can be allowed to proceed without using a ligand compound, it is also possible to further improve the reaction yield by using a ligand compound.

このような配位子化合物は、ホスフィン化合物が好ましく、例えば、トリフェニルホスフィン、トリメトキシホスフィン、トリエチルホスフィン、トリイソプロピルホスフィン、トリ(tert-ブチル)ホスフィン、トリ(n-ブチル)ホスフィン、トリイソプロポキシホスフィン、トリシクロペンチルホスフィン、トリメシチルホスフィン、トリフェノキシホスフィン、ジ(tert-ブチル)メチルホスフィン、メチルジフェニルホスフィン、ジメチルフェニルホスフィン、n-ブチルジアダマンチルホスフィン(Pn-Bu(Ad)2)、1,1’-ビス(ジフェニルホスフィノ)フェロセン、1,1’-ビス(tert−ブチル)フェロセン、ジフェニルホスフィノメタン、1,2-ビス(ジフェニルホスフィノ)エタン、1,3-ビス(ジフェニルホスフィノ)プロパン、1,5-ビス(ジフェニルホスフィノ)ペンタン、1,2-ビス(ジペンタフルオロフェニルホスフィノ)エタン、1,2-ビス(ジシクロヘキシルホスフィノ)エタン、1,3-(ジシクロヘキシルホスフィノ)プロパン、1,2-ビス(ジ-tert-ブチルホスフィノ)エタン、1,3-ビス(ジ-tert-ブチルホスフィノ)プロパン、1,2-ビス(ジフェニルホスフィノ)ベンゼン等が挙げられる。これらの配位子化合物は、溶媒和物であってもよい。これらは単独で用いることもでき、2種以上を組合せて用いることもできる。なかでも、反応収率等の観点から、n-ブチルジアダマンチルホスフィン(Pn-Bu(Ad)2)が好ましい。Such ligand compounds are preferably phosphine compounds, and examples thereof include triphenylphosphine, trimethoxyphosphine, triethylphosphine, triisopropylphosphine, tri (tert-butyl) phosphine, tri (n-butyl) phosphine and triisopropoxy. Phosphine, tricyclopentyl phosphine, trimesityl phosphine, triphenoxy phosphine, di (tert-butyl) methyl phosphine, methyl diphenyl phosphine, dimethyl phenyl phosphine, n-butyl diadamantyl phosphine (Pn-Bu (Ad) 2 ), 1, 1 '-Bis (diphenylphosphino) ferrocene, 1,1'-bis (tert-butyl) ferrocene, diphenylphosphinomethane, 1,2-bis (diphenylphosphino) ethane, 1,3-bis (diphenylphosphino) Propane, 1,5-bis (diphenylphosphino) pentane, 1, 2-Bis (dipentafluorophenylphosphino) ethane, 1,2-bis (dicyclohexylphosphino) ethane, 1,3- (dicyclohexylphosphino) propane, 1,2-bis (di-tert-butylphosphino) Ethane, 1,3-bis (di-tert-butylphosphino) propane, 1,2-bis (diphenylphosphino) benzene and the like can be mentioned. These ligand compounds may be solvates. These can be used alone or in combination of two or more. Among them, n-butyl diadamantyl phosphine (Pn-Bu (Ad) 2 ) is preferable from the viewpoint of reaction yield and the like.

配位子化合物の使用量は、反応収率等の観点から、パラジウム触媒1モルに対して、0.1〜20モルが好ましく、0.5〜10モルがより好ましく、1〜5モルがさらに好ましい。   The amount of the ligand compound used is preferably 0.1 to 20 moles, more preferably 0.5 to 10 moles, and still more preferably 1 to 5 moles with respect to 1 mole of the palladium catalyst, from the viewpoint of reaction yield and the like.

本発明において使用される塩基としては、化合物(2)が有するベンゼン環に作用して脱プロトンすることにより系中でベンザインを発生しやすくして本発明の反応をより効率的に行わせる観点から、アルカリ金属炭酸塩、アルカリ金属フッ化物塩、アルカリ金属リン酸塩等が好ましい。これらの塩基としては、強塩基ではなく弱塩基を使用しても、本発明の反応を進行させることができる。このような塩基としては、例えば、リン酸リチウム、リン酸ナトリウム、リン酸カリウム等のアルカリ金属リン酸塩;炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム等のアルカリ金属炭酸塩;フッ化ナトリウム、フッ化カリウム、フッ化セシウム等のアルカリ金属フッ化物塩等が挙げられる。これらは単独で使用することもでき、2種以上を組合せて用いることもできる。なかでも、本工程では、選択率、収率及び安全性の観点から、アルカリ金属炭酸塩又はアルカリ金属フッ化物塩が好ましい。   As a base used in the present invention, from the viewpoint of facilitating the reaction of the present invention more efficiently by generating benzine in the system by acting on the benzene ring of the compound (2) to deprotonate. , Alkali metal carbonates, alkali metal fluorides, alkali metal phosphates and the like are preferable. The reaction of the present invention can be advanced by using a weak base instead of a strong base as these bases. As such bases, for example, alkali metal phosphates such as lithium phosphate, sodium phosphate and potassium phosphate; alkali metal carbonates such as lithium carbonate, sodium carbonate, potassium carbonate and cesium carbonate; sodium fluoride, Examples thereof include alkali metal fluoride salts such as potassium fluoride and cesium fluoride. These can be used alone or in combination of two or more. Among them, in the present step, an alkali metal carbonate or an alkali metal fluoride salt is preferable from the viewpoint of selectivity, yield and safety.

本発明において、塩基の使用量は、選択率及び収率の観点から、基質である化合物(2)の合計量1モルに対して、通常、0.5〜10モルが好ましく、1〜8モルがより好ましい。なお、塩基として、アルカリ金属炭酸塩、アルカリ金属リン酸塩等を使用する場合は基質である化合物(2)の合計量1モルに対して2〜4モルが特に好ましく、アルカリ金属フッ化物塩を使用する場合は基質である化合物(2)の合計量1モルに対して4〜6モルが特に好ましい。   In the present invention, from the viewpoint of selectivity and yield, the amount of the base used is usually preferably 0.5 to 10 moles, more preferably 1 to 8 moles, per mole of the total amount of the compound (2) as a substrate. preferable. When an alkali metal carbonate, alkali metal phosphate or the like is used as the base, 2 to 4 moles is particularly preferable to 1 mole of the total amount of the compound (2) as a substrate, and an alkali metal fluoride salt is used. When used, 4 to 6 moles are particularly preferable to 1 mole of the total amount of the compound (2) which is a substrate.

本発明では、さらに、添加剤として、カルボン酸を使用することもできる。カルボン酸を使用することにより、より高収率に本発明のトリアリーレン化合物を得ることも可能である。なお、Xが塩素である場合は、カルボン酸を使用した場合は、使用しない場合と比較して副反応が発生しやすく、単離が必要になるとともに、目的物自体の収率はカルボン酸を使用しないほうが高いことから、収率と副反応抑制のバランスの観点から、カルボン酸を使用しないことが好ましい。一方、Xが臭素である場合は、カルボン酸を使用することで、目的物自体の収率を向上させることができるため、カルボン酸を使用することが好ましい。   In the present invention, carboxylic acids can also be used as additives. It is also possible to obtain the triarylene compound of the present invention in higher yield by using a carboxylic acid. When X is chlorine, when a carboxylic acid is used, side reactions are more likely to occur than when it is not used, isolation is required, and the yield of the desired product itself is the carboxylic acid. From the viewpoint of the balance between the yield and the side reaction suppression, it is preferable not to use a carboxylic acid because it is higher when not used. On the other hand, when X is bromine, it is preferable to use a carboxylic acid because the yield of the desired product itself can be improved by using a carboxylic acid.

カルボン酸としては、例えば、ピバル酸、1-メチルシクロプロパンカルボン酸、イソ酪酸、2,2-ジメチル酪酸、2-メチルマロン酸、シクロヘキサンカルボン酸、1-メチル-1-シクロヘキサンカルボン酸、1-アダマンタンカルボン酸等の分岐カルボン酸;2,4,6-トリメチル安息香酸、安息香酸等の芳香族カルボン酸;酢酸等が挙げられる。これらのカルボン酸は、単独で用いることもでき、2種以上を組合せて用いることもできる。なかでも、収率及び副反応抑制の観点から、分岐カルボン酸が好ましく、ピバル酸、1-メチルシクロプロパンカルボン酸、イソ酪酸、2-メチルマロン酸、シクロヘキサンカルボン酸、1-メチル-1-シクロヘキサンカルボン酸等がより好ましく、1-メチルシクロプロパンカルボン酸がさらに好ましい。   Examples of the carboxylic acid include pivalic acid, 1-methylcyclopropanecarboxylic acid, isobutyric acid, 2,2-dimethylbutyric acid, 2-methylmalonic acid, cyclohexanecarboxylic acid, 1-methyl-1-cyclohexanecarboxylic acid, 1- Examples thereof include branched carboxylic acids such as adamantane carboxylic acid; aromatic carboxylic acids such as 2,4,6-trimethylbenzoic acid and benzoic acid; acetic acid and the like. These carboxylic acids can be used alone or in combination of two or more. Among them, branched carboxylic acids are preferred from the viewpoint of yield and suppression of side reactions, and pivalic acid, 1-methylcyclopropanecarboxylic acid, isobutyric acid, 2-methylmalonic acid, cyclohexanecarboxylic acid, 1-methyl-1-cyclohexane Carboxylic acids and the like are more preferable, and 1-methylcyclopropanecarboxylic acid is more preferable.

カルボン酸を使用する場合の使用量は、基質の種類により適宜選択することが可能であり、例えば、基質である化合物(2)の合計量1モルに対して、通常、0.01〜5モルが好ましく、0.05〜2モルがより好ましく、0.1〜1モルがさらに好ましい。なお、複数のカルボン酸を使用する場合には、合計使用量が上記範囲内となるように調整することが好ましい。   The amount used in the case of using a carboxylic acid can be appropriately selected according to the type of substrate, and, for example, usually 0.01 to 5 mol is preferable per 1 mol of the total amount of the compound (2) which is a substrate 0.05-2 mol is more preferable, and 0.1-1 mol is further more preferable. In addition, when using several carboxylic acid, it is preferable to adjust so that the total usage-amount may become in the said range.

本発明においては、上記成分以外にも、本発明の効果を損なわない範囲で、適宜添加剤を使用することもできる。この場合の添加剤の使用量は、本発明の効果を損なわない範囲とすることが好ましい。   In the present invention, in addition to the above components, additives can be appropriately used as long as the effects of the present invention are not impaired. The amount of additive used in this case is preferably in a range that does not impair the effects of the present invention.

本発明の反応は、溶媒中で行うことが好ましい。溶媒としては、例えば、ヘプタン、シクロヘキサン等の脂肪族炭化水素;ジクロロメタン、ジクロロエタン、クロロホルム、四塩化炭素等の脂肪族ハロゲン化炭化水素;ベンゼン、トルエン、キシレン、メシチレン、ペンタメチルベンゼン等の芳香族炭化水素;ジイソプロピルエーテル、ジブチルエーテル、ジメトキシエタン、シクロペンチルメチルエーテル(CPME)、tert-ブチルメチルエーテル等の鎖状エーテル;テトラヒドロフラン、ジオキサン等の環状エーテル;酢酸エチル、酢酸ブチル(AcOn-Bu)、プロピオン酸エチル等のエステル;2-メチル-2-ブタノール(tert-アミルアルコール)等のアルコール等が挙げられる。これらは、単独で用いることもでき、2種以上を組合せて用いることもできる。これらのうち、本発明では、反応収率等の観点から、鎖状エーテルが好ましく、シクロペンチルメチルエーテル(CPME)がより好ましい。   The reaction of the present invention is preferably carried out in a solvent. Examples of the solvent include aliphatic hydrocarbons such as heptane and cyclohexane; aliphatic halogenated hydrocarbons such as dichloromethane, dichloroethane, chloroform and carbon tetrachloride; and aromatic carbonization such as benzene, toluene, xylene, mesitylene, pentamethylbenzene and the like Hydrogen; linear ethers such as diisopropyl ether, dibutyl ether, dimethoxyethane, cyclopentyl methyl ether (CPME), tert-butyl methyl ether; cyclic ethers such as tetrahydrofuran and dioxane; ethyl acetate, butyl acetate (AcOn-Bu), propionic acid Esters such as ethyl; alcohols such as 2-methyl-2-butanol (tert-amyl alcohol) and the like. These can be used alone or in combination of two or more. Among these, in the present invention, a chain ether is preferable from the viewpoint of reaction yield and the like, and cyclopentyl methyl ether (CPME) is more preferable.

本発明の製造方法は、不活性ガス雰囲気(窒素ガス、アルゴンガス等)下で行うことが好ましく、反応温度は、通常、100〜200℃が好ましく、110〜180℃がより好ましく、120〜170℃がさらに好ましい。反応時間は、反応が十分に進行する時間とすることができ、通常、10分〜48時間が好ましく、1〜36時間がより好ましい。   The production method of the present invention is preferably carried out under an inert gas atmosphere (nitrogen gas, argon gas, etc.), and the reaction temperature is usually preferably 100 to 200 ° C., more preferably 110 to 180 ° C., 120 to 170 ° C is more preferred. The reaction time can be a time for the reaction to proceed sufficiently, and is preferably 10 minutes to 48 hours, and more preferably 1 to 36 hours.

反応終了後は、必要に応じて通常の単離及び精製工程を経て、目的化合物を得ることができる。   After completion of the reaction, the desired compound can be obtained, if necessary, through the usual isolation and purification steps.

このようにして、本発明の多環芳香族化合物の1種として、一般式(1A):   Thus, as one type of polycyclic aromatic compound of the present invention, a compound represented by the general formula (1A):

Figure 2017209297
Figure 2017209297

[式中、R1及びR1'は水素原子、置換若しくは無置換アリール基、又は置換若しくは無置換ヘテロアリール基を示す。R2は置換若しくは無置換アリール基、又は置換若しくは無置換ヘテロアリール基を示す。R'は置換若しくは無置換芳香族炭化水素環又は置換若しくは無置換複素芳香環を示す。]
で表されるトリアリーレン化合物を得ることができる。
[Wherein, R 1 and R 1 ′ represent a hydrogen atom, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group. R 2 represents a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group. R ′ represents a substituted or unsubstituted aromatic hydrocarbon ring or a substituted or unsubstituted heteroaromatic ring. ]
The triarylene compound represented by these can be obtained.

本発明では、このようにしてトリアリーレン化合物を得た後、酸化剤の存在下に分子内環化反応を起こすことにより、一般式(1B):   In the present invention, after obtaining a triarylene compound in this manner, an intramolecular cyclization reaction is caused in the presence of an oxidizing agent to obtain a compound represented by general formula (1B):

Figure 2017209297
Figure 2017209297

[式中、R1及びR1'は水素原子、置換若しくは無置換アリール基、又は置換若しくは無置換ヘテロアリール基を示す。R3は水素原子を示す。R'は置換若しくは無置換芳香族炭化水素環又は置換若しくは無置換複素芳香環を示す。R1とR3は結合し、環を形成してもよい。R1'とR3は結合し、環を形成してもよい。]
で表される多環芳香族化合物を得ることもできる。上記一般式(1A)で表されるトリアリーレン化合物と、一般式(1B)で表される芳香族化合物とを、まとめて一般式(1)で表される芳香族化合物と表記することができる。
[Wherein, R 1 and R 1 ′ represent a hydrogen atom, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group. R 3 represents a hydrogen atom. R ′ represents a substituted or unsubstituted aromatic hydrocarbon ring or a substituted or unsubstituted heteroaromatic ring. R 1 and R 3 may combine to form a ring. R 1 ′ and R 3 may combine to form a ring. ]
It is also possible to obtain a polycyclic aromatic compound represented by The triarylene compound represented by the general formula (1A) and the aromatic compound represented by the general formula (1B) can be collectively described as an aromatic compound represented by the general formula (1) .

酸化剤としては、特に制限はなく、分子内環化反応(Scholl反応等)を引き起こすことができる酸化剤であれば特に制限はなく、FeCl3、2,3-ジクロロ-5,6-ジシアノ-p-ベンゾキノン(DDQ)等が挙げられる。これらの酸化剤は、単独で用いることもでき、2種以上を組合せて用いることもできる。The oxidizing agent is not particularly limited, and is not particularly limited as long as it can cause an intramolecular cyclization reaction (Scholl reaction etc.), and FeCl 3 , 2,3-dichloro-5,6-dicyano- p-benzoquinone (DDQ) and the like can be mentioned. These oxidizing agents can be used alone or in combination of two or more.

酸化剤の使用量は、基質によって適宜調整することが好ましいが、基質であるトリアリーレン化合物(1A)に対して過剰量とすることが好ましい。具体的には、トリアリーレン化合物(1A)1モルに対して、通常、1.0〜30.0モルが好ましく、2.0〜20.0モルがより好ましい。なお、複数の酸化剤を使用する場合には、合計使用量が上記範囲内となるように調整することが好ましい。   The amount of the oxidizing agent used is preferably adjusted appropriately depending on the substrate, but is preferably in excess with respect to the substrate triarylene compound (1A). Specifically, 1.0 to 30.0 mol is preferable, and 2.0 to 20.0 mol is more preferable, with respect to 1 mol of the triarylene compound (1A). In addition, when using several oxidizing agent, it is preferable to adjust so that the total usage-amount may become in the said range.

上記分子内環化反応は、溶媒中で行うことが好ましい。溶媒としては、例えば、ヘプタン、シクロヘキサン等の脂肪族炭化水素;ジクロロメタン、ジクロロエタン、クロロホルム、四塩化炭素等の脂肪族ハロゲン化炭化水素;ベンゼン、トルエン、キシレン、メシチレン、ペンタメチルベンゼン等の芳香族炭化水素;ジイソプロピルエーテル、ジブチルエーテル、ジメトキシエタン、シクロペンチルメチルエーテル(CPME)、tert-ブチルメチルエーテル等の鎖状エーテル;テトラヒドロフラン、ジオキサン等の環状エーテル;酢酸エチル、酢酸ブチル(AcOn-Bu)、プロピオン酸エチル等のエステル;2-メチル-2-ブタノール(tert-アミルアルコール)等のアルコール等が挙げられる。これらは、単独で用いることもでき、2種以上を組合せて用いることもできる。これらのうち、本発明では、反応収率等の観点から、脂肪族ハロゲン化炭化水素が好ましく、ジクロロメタンがより好ましい。   The intramolecular cyclization reaction is preferably carried out in a solvent. Examples of the solvent include aliphatic hydrocarbons such as heptane and cyclohexane; aliphatic halogenated hydrocarbons such as dichloromethane, dichloroethane, chloroform and carbon tetrachloride; and aromatic carbonization such as benzene, toluene, xylene, mesitylene, pentamethylbenzene and the like Hydrogen; linear ethers such as diisopropyl ether, dibutyl ether, dimethoxyethane, cyclopentyl methyl ether (CPME), tert-butyl methyl ether; cyclic ethers such as tetrahydrofuran and dioxane; ethyl acetate, butyl acetate (AcOn-Bu), propionic acid Esters such as ethyl; alcohols such as 2-methyl-2-butanol (tert-amyl alcohol) and the like. These can be used alone or in combination of two or more. Among these, in the present invention, from the viewpoint of reaction yield and the like, aliphatic halogenated hydrocarbons are preferable, and dichloromethane is more preferable.

上記分子内環化反応は、不活性ガス雰囲気(窒素ガス、アルゴンガス等)下で行うことが好ましく、反応温度は、通常、-50〜100℃が好ましく、-20〜50℃がより好ましい。反応時間は、反応が十分に進行する時間とすることができ、通常、10分〜72時間が好ましく、1〜48時間がより好ましい。   The above-mentioned intramolecular cyclization reaction is preferably carried out under an inert gas atmosphere (nitrogen gas, argon gas or the like), and the reaction temperature is usually preferably −50 to 100 ° C., more preferably −20 to 50 ° C. The reaction time can be a time for the reaction to proceed sufficiently, and usually 10 minutes to 72 hours is preferable, and 1 to 48 hours is more preferable.

反応終了後は、必要に応じて通常の単離及び精製工程を経て、目的化合物を得ることができる。   After completion of the reaction, the desired compound can be obtained, if necessary, through the usual isolation and purification steps.

このようにして得られる本発明の多環芳香族化合物は、一般式(1):   The thus-obtained polycyclic aromatic compound of the present invention has the general formula (1):

Figure 2017209297
Figure 2017209297

[式中、R1、R2及びR'は前記に同じである。]
で表される化合物であり、このうち、一般式(1A1):
[Wherein, R 1 , R 2 and R ′ are as defined above. ]
And a compound represented by the general formula (1A1):

Figure 2017209297
Figure 2017209297

[式中、R1及びR1'は置換若しくは無置換アリール基、又は置換若しくは無置換ヘテロアリール基を示す。R2は置換若しくは無置換アリール基、又は置換若しくは無置換ヘテロアリール基を示す。R'は置換若しくは無置換芳香族炭化水素環又は置換若しくは無置換複素芳香環を示す。ただし、R1、R1’及びR2がいずれも無置換フェニル基であり、R’が4-(9,12-ジフェニルトリフェニル)-2,5-ジメチルフェニル基、4-(2,9,12-トリフェニルトリフェニル)-2,5-ジメチルフェニル基、又はトリフェニルフェニル基で置換されたベンゼンである化合物を除く。]
、一般式(1A2):
[Wherein, R 1 and R 1 ′ represent a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group. R 2 represents a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group. R ′ represents a substituted or unsubstituted aromatic hydrocarbon ring or a substituted or unsubstituted heteroaromatic ring. Provided that R 1 , R 1 ′ and R 2 are all unsubstituted phenyl groups, R ′ is 4- (9,12-diphenyltriphenyl) -2,5-dimethylphenyl group, 4- (2,9) , 12-triphenyltriphenyl) -2,5-dimethylphenyl group, or compounds which are benzene substituted with triphenylphenyl group. ]
, General formula (1A2):

Figure 2017209297
Figure 2017209297

[式中、R2は置換若しくは無置換アリール基、又は置換若しくは無置換ヘテロアリール基を示す。R'は置換芳香族炭化水素環又は置換若しくは無置換複素芳香環を示す。ただし、R2が置換フェニル基でありR’が置換ベンゼン環である場合は、1,5-ビス[3-(9,9-ジメチル-9H-フルオレン-3-イル)フェニルトリフェニレン、7,7’-(1,5-トリフェニレンジイル)-ビスベンゾオキサゾール、1,12-ビス([1,1’:3’,1-ターフェニル]-3-イル)トリフェニレン、3,3’-(1-12-トリフェニレンジイル)ビス[9-フェニル-9H-カルバゾール], ,3’-(1-12-トリフェニレンジイル)ビスジベンゾチオフェン、1-[3-(ブロモメチル)-5-メチルフェニル]-12-(3,5-ジメチルフェニル)-トリフェニレン、1-[3-(ブロモメチル)-5-メチルフェニル]-12-フェニルトリフェニレン、1-フェニル-12-(2,4,6-トリメチルフェニル)-トリフェニレン、1-(4-メチルフェニル)-12-フェニル-トリフェニレン、1-(3,5-ジメチルフェニル)-12-フェニルトリフェニレン、1,12-ビス(3,5-ジメチルフェニル)-トリフェニレン、8,9-ジフェニルジベンゾ[f,j]ピセン、2-ヨード-1,12-ジフェニルトリフェニレン、及び1,12-ジフェニルトリフェニレンを除く。また、R’が無置換ベンゼン環である場合は、R2は、置換若しくは無置換フェニル基、置換ナフチル基、置換ピリジル基、置換ピラジル、置換若しくは無置換ジベンゾフラン基、置換若しくは無置換ジベンゾチオフェン基、置換若しくは無置換カルバゾール基、置換若しくは無置換ベンゾトリアゾール基、置換若しくは無置換キノリン基、トリフェニレン基、フェナントレン基、インダンジオン基、並びにフローレン基を除く。]
、又は一般式(1B):
[Wherein, R 2 represents a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group. R ′ represents a substituted aromatic hydrocarbon ring or a substituted or unsubstituted heteroaromatic ring. However, when R 2 is a substituted phenyl group and R ′ is a substituted benzene ring, 1,5-bis [3- (9,9-dimethyl-9H-fluoren-3-yl) phenyltriphenylene, 7,7 '-(1,5-triphenylenediyl) -bisbenzoxazole, 1,12-bis ([1,1': 3 ', 1-terphenyl] -3-yl) triphenylene, 3,3'-(1- 12-triphenylenediyl) bis [9-phenyl-9H-carbazole] ,, 3 '-(1-12-triphenylenediyl) bisdibenzothiophene, 1- [3- (bromomethyl) -5-methylphenyl] -12- 3,5-Dimethylphenyl) -triphenylene, 1- [3- (bromomethyl) -5-methylphenyl] -12-phenyltriphenylene, 1-phenyl-12- (2,4,6-trimethylphenyl) -triphenylene, 1 -(4-Methylphenyl) -12-phenyl-triphenylene, 1- (3,5-dimethylphenyl) -12-phenyltriphenylene, 1,12-bis (3,5-dimethylphenyl) -triphenylene, 8,9- The Enirujibenzo except [f, j] picene, 2-iodo-1,12-diphenyl triphenylene, and 1,12 diphenyl triphenylene. When R ′ is a non-substituted benzene ring, R 2 is a substituted or non-substituted phenyl group, a substituted naphthyl group, a substituted pyridyl group, a substituted pyrazyl, a substituted or non-substituted dibenzofuran group, or a substituted or non-substituted dibenzothiophene group Excluding substituted or unsubstituted carbazole group, substituted or unsubstituted benzotriazole group, substituted or unsubstituted quinoline group, triphenylene group, phenanthrene group, indandione group, and flowene group. ]
Or general formula (1B):

Figure 2017209297
Figure 2017209297

で表される化合物は文献未記載の新規化合物である。 The compounds represented by are novel compounds not described in the literature.

このような本発明のトリアリーレン化合物としては、例えば、   As such a triarylene compound of the present invention, for example,

Figure 2017209297
Figure 2017209297

Figure 2017209297
Figure 2017209297

等が挙げられる。 Etc.

上記した本発明の製造方法における反応機構は、必ずしも明らかではないが、カルボン酸を使用する場合、以下の反応式1:   The reaction mechanism in the above-mentioned production method of the present invention is not necessarily clear, but when a carboxylic acid is used, the following reaction formula 1:

Figure 2017209297
Figure 2017209297

[式中、R1、R2、R’及びXは前記に同じである。Rは置換基を示す。]
にしたがって反応が進行すると想定される。
[Wherein, R 1 , R 2 , R ′ and X are as defined above. R represents a substituent. ]
It is assumed that the reaction proceeds according to

まず、0価のパラジウムに対して化合物(2)が酸化的付加を起こし、化合物(A)を生成する。次に、カルボン酸との配位子交換をして化合物(B)が生成した後に、オルト位に位置する水素原子が塩基により脱プロトン化(CMD)されることにより、反応の鍵となるパラジウム−ベンザイン錯体(C)が生成する。このパラジウム−ベンザイン錯体に対して、もう一分子の化合物(2)が酸化的付加を起こして化合物(D)を生成した後、ベンザインがPd−C結合に挿入することで中間体(E)に誘導される。続く分子内環化反応によって目的とするトリアリーレン化合物が得られると同時に0価のパラジウムが再生し、触媒サイクルが完結する。   First, the compound (2) undergoes oxidative addition to zero-valent palladium to form a compound (A). Next, after ligand exchange with a carboxylic acid to form a compound (B), the hydrogen atom located at the ortho position is deprotonated (CMD) by a base, thereby forming palladium as a reaction key Benzene complex (C) is formed. Another molecule of compound (2) undergoes oxidative addition to this palladium-benzyne complex to form compound (D), and then benzyne is inserted into a Pd-C bond to form intermediate (E). It is induced. The subsequent intramolecular cyclization reaction provides the desired triarylene compound and simultaneously regenerates zero-valent palladium to complete the catalytic cycle.

なお、上記はカルボン酸を使用する場合の反応機構について示したが、カルボン酸を使用しない場合は、配位子交換反応において、カルボン酸由来のアニオンの代わりに、塩基由来のアニオン(フッ化セシウムの場合はフッ化物イオン)が導入され、同様の反応機構に沿って反応が進行すると想定される。このため、基質の種類を変えたとしても、同様の反応機構により反応が進行するため、様々なトリアリーレン化合物を合成することが可能である。   In addition, although the above showed about the reaction mechanism in the case of using carboxylic acid, when not using carboxylic acid, in ligand exchange reaction, the anion derived from a base (cesium fluoride instead of the anion derived from carboxylic acid) In this case, it is assumed that the fluoride ion is introduced and the reaction proceeds along the same reaction mechanism. Therefore, even if the type of substrate is changed, the reaction proceeds according to the same reaction mechanism, so that various triarylene compounds can be synthesized.

以下、本発明について、実施例を挙げて具体的に説明するが、本発明は、これらの実施例に何ら制約されるものではない。   EXAMPLES Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited to these examples.

特に制約しない限り、乾燥溶媒を含む全ての反応剤及び試薬は、市販品をそのまま使用した。PdCl2、Cs2CO3及びシクロペンチルメチルエーテル(CPME)は和光純薬工業(株)から購入した。n−ブチルジアダマンチルホスフィン(PnBu(Ad)2)はAldrichから購入した。特に制約しない限り、全ての反応は、標準的な真空ライン技法を用いて、乾燥ガラス容器中で、N2ガス雰囲気下に乾燥溶媒を用いて行った。全ての後処理及び精製は、空気中で試薬グレードの溶媒を用いて行った。分析用薄層クロマトグラフィー(TLC)は、E. Merckシリカゲル60 F254プレコートプレート(0.25 mm)を用いて行った。開発したクロマトグラムは、UVランプ(254 nm又は365 nm)で分析した。フラッシュカラムクロマトグラフィーは、E. Merckシリカゲル60(230-400メッシュ)を用いて行った。シリカゲルカラムクロマトグラフィーは、Biotage SNAP Ultra 25g cartidgeを備えたIsolera Spektra instrumentを用いて行った。核磁気共鳴(NMR)スペクトルは、JEOL JNM-ECA-600(1H 600 MHz、13C 150MHz)分光計で記録した。1H NMRの化学シフトはテトラメチルシラン(δ0.00 ppm)の相対的な百万分率(ppm)で表した。13C NMRの化学シフトはCDCl3(δ77.2 ppm)の相対的な百万分率(ppm)で表した。データは、chemical shift, multiplicity (s = singlet, d = doublet, dd = doublet of doublets, t = triplet, dt = doublet of triplets, td = triplet of doublets, q = quartet, m = multiplet, brs = broad singlet), coupling constant (Hz), integrationの順に報告する。Unless otherwise limited, all reagents and reagents including dry solvents were commercially available. PdCl 2 , Cs 2 CO 3 and cyclopentyl methyl ether (CPME) were purchased from Wako Pure Chemical Industries, Ltd. n-Butyldiadamantylphosphine (P n Bu (Ad) 2 ) was purchased from Aldrich. Unless otherwise limited, all reactions were carried out using a dry solvent under N 2 gas atmosphere in a dry glass container, using standard vacuum line techniques. All work-up and purifications were performed using reagent grade solvents in air. Analytical thin layer chromatography (TLC) was performed using E. Merck silica gel 60 F 254 precoated plates (0.25 mm). The developed chromatograms were analyzed with a UV lamp (254 nm or 365 nm). Flash column chromatography was performed using E. Merck silica gel 60 (230-400 mesh). Silica gel column chromatography was performed using an Isolera Spektra instrument equipped with Biotage SNAP Ultra 25 g cartidge. Nuclear magnetic resonance (NMR) spectra were recorded on a JEOL JNM-ECA-600 ( 1 H 600 MHz, 13 C 150 MHz) spectrometer. Chemical shifts of 1 H NMR were expressed in relative parts per million (ppm) of tetramethylsilane (δ 0.00 ppm). The chemical shifts of 13 C NMR were expressed as relative parts per million (ppm) of CDCl 3 (δ 77.2 ppm). Data are chemical shift, multiplicity (s = singlet, d = doublet, dd = doublet of doublets, t = triplet, dt = doublet of triplets, td = triplet of doublets, q = quartet, m = multiplet, brs = broad singlet ), coupling constant (Hz), and integration reported in this order.

[合成例1]
合成例1-1:化合物1p
Synthesis Example 1
Synthesis Example 1-1: Compound 1p

Figure 2017209297
Figure 2017209297

空気中、磁気撹拌子を入れたシュレンクチューブに、炭酸カリウム(1.05g, 7.60mmol)、2-クロロヨードベンゼン(712mg, 2.98mmol)、Pd(PPh3)2Cl2(21.0mg, 30μmol)、及び4-ビフェニルボロン酸(713mg, 3.60mmol)を投入した。チューブをN2ガスで充填した。トルエン(10mL)、H2O(2.5mL)及びエタノール(2.5 mL)を引き続いてチューブに投入した。混合物を80℃で10.5時間撹拌した。混合物を室温まで冷却した後。反応をH2O(20mL)でクエンチし、混合物をヘキサン(10mL)、次いでジクロロメタン(10mL×3)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、得られた溶液をシリカゲルパッドでろ過し、真空下に濃縮した。粗生成物をCH2Cl2/メタノールで再結晶させ、目的化合物1pを白色固体として得た(46%, 367mg, 1.39mmol)。
2-クロロ-1,1':4',1''-ターフェニル(化合物1p):
1H NMR (CDCl3) δ 7.29-7.40 (m, 4H), 7.45-7.50 (m, 3H), 7.54 (d, J = 8.4 Hz, 2H), 7.65-7.68 (m, 4H); 13C NMR (CDCl3) δ 126.98, 127.09, 127.34, 127.60, 128.77, 129.00, 130.07, 130.23, 131.58, 132.72, 138.54, 140.31, 140.64, 140.90; HRMS (DART, positive): m/z = 265.0785. calcd for C18H14Cl : 265.0784 [M+H]+
Potassium carbonate (1.05 g, 7.60 mmol), 2-chloroiodobenzene (712 mg, 2.98 mmol), Pd (PPh 3 ) 2 Cl 2 (21.0 mg, 30 μmol) in a Schlenk tube with a magnetic stirrer in the air And 4-biphenylboronic acid (713 mg, 3.60 mmol) were added. The tube was filled with N 2 gas. Toluene (10 mL), H 2 O (2.5 mL) and ethanol (2.5 mL) were subsequently charged to the tube. The mixture was stirred at 80 ° C. for 10.5 hours. After cooling the mixture to room temperature. The reaction was quenched with H 2 O (20 mL) and the mixture was extracted with hexane (10 mL) then dichloromethane (10 mL × 3). The organic layer was dried over anhydrous sodium sulfate and the resulting solution was filtered through a silica gel pad and concentrated in vacuo. The crude product was recrystallized with CH 2 Cl 2 / methanol to give the target compound 1p as white solid (46%, 367 mg, 1.39 mmol).
2-Chloro-1,1 ′: 4 ′, 1 ′ ′-terphenyl (Compound 1p):
1 H NMR (CDCl 3 ) δ 7.29-7.40 (m, 4H), 7.45-7.50 (m, 3H), 7.54 (d, J = 8.4 Hz, 2H), 7.65-1.68 (m, 4H); 13 C NMR HRCD (DART, positive): m / z = 265.0785. Calcd for C 18 (CDCl 3 ) δ 126.98, 127.09, 127.60, 128.77, 129.00, 130.30, 130.23, 131.58, 132.54, 140.31, 140.64, 140.90; HRMS (DART, positive): H 14 Cl: 265.078 [M + H] + .

合成例1-2-1:化合物1bSynthesis Example 1-2-1: Compound 1b

Figure 2017209297
Figure 2017209297

空気中、磁気撹拌子を入れたシュレンクチューブに、炭酸カリウム(3.47g, 25.1mmol)、1,4-ジブロモ-2-クロロベンゼン(1.35g, 5.00mmol)、Pd(PPh3)2Cl2(42.1mg, 60μmol)、及びフェニルボロン酸(1.46g, 12.0mmol)を投入した。チューブをN2ガスで充填した。トルエン(17mL)、H2O(4.2mL)及びエタノール(4.2mL)を引き続いてチューブに投入した。混合物を80℃で18時間撹拌した。混合物を室温まで冷却した後、反応をH2O(20mL)でクエンチし、混合物をヘキサン(10mL)、次いでジクロロメタン(20mL×3)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、得られた溶液をシリカゲルパッドでろ過し、真空下に濃縮した。粗生成物をメタノールで再結晶させ、目的化合物1bを白色固体として得た(71%, 933mg, 3.50mmol)。
2'-クロロ-1,1':4',1''-ターフェニル(化合物1b):
1H NMR (CDCl3) δ 7.38-7.50 (m, 9H), 7.54 (dd, J = 7.8, 1.8 Hz, 1H), 7.61-7.63 (m, 2H), 7.71 (d, J = 1.2 Hz, 1H); 13C NMR (CDCl3) δ 125.71, 127.24, 127.85, 128.08, 128.27, 128.67, 129.13, 129.66, 131.86, 133.07, 139.27, 139.42, 139.63, 141.95; HRMS (DART, positive): m/z = 265.0782. calcd for C18H14Cl : 265.0784 [M+H]+
Potassium carbonate (3.47 g, 25.1 mmol), 1,4-dibromo-2-chlorobenzene (1.35 g, 5.00 mmol), Pd (PPh 3 ) 2 Cl 2 (42.1) in a Schlenk tube equipped with a magnetic stirrer in the air. mg, 60 μmol), and phenylboronic acid (1.46 g, 12.0 mmol) were added. The tube was filled with N 2 gas. Toluene (17 mL), H 2 O (4.2 mL) and ethanol (4.2 mL) were subsequently charged to the tube. The mixture was stirred at 80 ° C. for 18 hours. After cooling the mixture to room temperature, the reaction was quenched with H 2 O (20 mL) and the mixture was extracted with hexane (10 mL) then dichloromethane (20 mL × 3). The organic layer was dried over anhydrous sodium sulfate and the resulting solution was filtered through a silica gel pad and concentrated in vacuo. The crude product was recrystallized from methanol to give the target compound 1b as a white solid (71%, 933 mg, 3.50 mmol).
2′-Chloro-1,1 ′: 4 ′, 1 ′ ′-terphenyl (Compound 1b):
1 H NMR (CDCl 3 ) δ 7.38-7.50 (m, 9 H), 7.54 (dd, J = 7.8, 1.8 Hz, 1 H), 7.61-7.63 (m, 2 H), 7.71 (d, J = 1.2 Hz, 1 H ; 13 C NMR (CDCl 3 ) δ 125.71, 127.25, 128.08, 128.27, 128.67, 129.66, 131.86, 133.07, 139.27, 139.62, 139.63, 141.95; HRMS (DART, positive): m / z = 265.0782 calcd for C 18 H 14 Cl: 265.078 [M + H] + .

合成例1-2-2
一方、別の工程によっても、より収率高く化合物1bを得ることができた。空気中、磁気撹拌子を入れたシュレンクチューブに、炭酸カリウム(10.4g, 75mmol)、1,4-ジブロモ-2-クロロベンゼン(4.06g, 15.0mmol)、Pd(PPh3)2Cl2(211mg, 0.30mmol)、及びフェニルボロン酸(4.39g, 36.0mmol)を投入した。チューブをN2ガスで充填した。トルエン(50mL)、H2O(12.5mL)及びエタノール(12.5mL)を引き続いてチューブに投入した。混合物を80℃で18時間撹拌した。混合物を室温まで冷却した後、反応をH2O(60mL)でクエンチし、混合物をヘキサン(30mL)、次いでジクロロメタン(60mL×3)で抽出した。有機層を硫酸ナトリウムで乾燥し、得られた溶液をシリカゲルパッドでろ過し、真空下に濃縮した。粗生成物をメタノールで再結晶させ、目的化合物1bを白色固体として得た(86%, 3.43g, 13.0mmol)。
Synthesis example 1-2-2
On the other hand, compound 1b could be obtained with higher yield also by another process. In a Schlenk tube equipped with a magnetic stirrer in the air, potassium carbonate (10.4 g, 75 mmol), 1,4-dibromo-2-chlorobenzene (4.06 g, 15.0 mmol), Pd (PPh 3 ) 2 Cl 2 (211 mg, 0.30 mmol) and phenylboronic acid (4.39 g, 36.0 mmol) were charged. The tube was filled with N 2 gas. Toluene (50 mL), H 2 O (12.5 mL) and ethanol (12.5 mL) were subsequently charged to the tube. The mixture was stirred at 80 ° C. for 18 hours. After cooling the mixture to room temperature, the reaction was quenched with H 2 O (60 mL) and the mixture was extracted with hexane (30 mL) then dichloromethane (60 mL × 3). The organic layer was dried over sodium sulfate and the resulting solution was filtered through a silica gel pad and concentrated in vacuo. The crude product was recrystallized from methanol to give target compound 1b as a white solid (86%, 3.43 g, 13.0 mmol).

合成例1-3:化合物1c〜化合物1m
原料として、フェニルボロン酸の代わりに、種々の置換基(R)を有する化合物を使用したこと以外は合成例1-2-1と同様に、以下の化合物1c〜化合物1mを合成した。
Synthesis Example 1-3: Compound 1c to Compound 1m
The following compounds 1c to 1m were synthesized in the same manner as in Synthesis Example 1-2-1 except that compounds having various substituents (R) were used instead of phenylboronic acid as raw materials.

Figure 2017209297
Figure 2017209297

2''-クロロ-1,1':4',1'':4'',1''':4''':1''''-キンキフェニル(化合物1c):
1H NMR (CDCl3) δ 7.37-7.39 (m, 2H), 7.46-7.50 (m, 5H), 7.59-7.62 (m, 3H), 7.65-7.73 (m, 10H), 7.79 (d, J = 1.8 Hz, 1H); 13C NMR (CDCl3) δ 125.65, 127.04, 127.27, 127.35, 127.58, 127.63, 127.72, 127.87, 128.62, 129.02, 129.06, 130.10, 131.94, 133.16, 138.18, 138.43, 139.05, 140.68, 140.74, 140.89, 141.02, 141.48; HRMS (DART, positive): m/z = 417.1411. calcd for C30H22Cl : 417.1410 [M+H]+.
2'-クロロ-3,3''-ジメチル-1,1':4',1''-ターフェニル(化合物1e):
1H NMR (CDCl3) δ 2.43 (s, 3H), 2.44 (s, 3H), 7.21 (t, J = 6.3 Hz, 2H), 7.30 (brs, 2H), 7.33-7.43 (m, 5H), 7.51-7.53 (m, 1H), 7.69-7.70 (m, 1H); 13C NMR (CDCl3) δ 21.69, 21.72, 124.33, 125.65, 126.75, 127.99, 128.14, 128.57, 128.60, 128.80, 129.03, 130.33, 131.80, 132.97, 137.89, 138.77, 139.25, 139.43, 139.63, 141.95; HRMS (DART, positive): m/z = 293.1099. calcd for C20H18Cl : 293.1097 [M+H]+.
2-クロロ-1,4-ジ(1-ナフチル)ベンゼン(化合物1f):
1H NMR (CDCl3) δ 7.48-7.61 (m, 10H), 7.66 (d, J = 8.4 Hz, 1H), 7.71 (d, J = 1.2 Hz, 1H), 7.91-7.95 (m, 4H), 8.03-8.05 (m, 1H); 13C NMR (CDCl3) δ 125.45, 125.59, 125.91, 126.13, 126.19, 126.20, 126.43, 126.61, 127.31, 127.52, 128.45, 128.54, 128.64, 131.11, 131.60, 131.96, 132.09, 133.73, 134.06, 134.18, 137.40, 138.32, 138.71, 141.95 (two sp2 signals were not observed because of overlapping); HRMS (DART, positive): m/z = 365.1098. calcd for C26H18Cl : 365.1097 [M+H]+.
4,4''-ビス(メトキシカルボニル)-2'-クロロ-1,1':4',1''-ターフェニル(化合物1g):
1H NMR (CDCl3) δ 3.96 (s, 3H), 3.96 (s, 3H), 7.45 (d, J = 7.8 Hz, 1H), 7.56-7.58 (m, 2H), 7.59 (dd, J = 8.1, 1.5 Hz, 1H), 7.68-7.70 (m, 2H), 7.76 (d, J = 1.8 Hz, 1H), 8.13-8.15 (m, 4H); 13C NMR (CDCl3) δ 52.42, 125.96, 127.20, 129.00, 129.64, 129.73, 129.90, 130.49, 131.83, 133.18, 139.28, 141.34, 143.57, 143.73, 166.96, 167.04 (one aryl sp2 signal and one sp3 signal were not observed because of overlapping); HRMS (DART, positive): m/z = 381.0894. calcd for C22H18ClO4: 381.0894 [M+H]+.
2-クロロ-1,4-ジ(2-ベンゾチエニル)ベンゼン(化合物1k):
H NMR (CDCl3) δ 7.34-7.41 (m, 4H), 7.63 (s, 1H), 7.67 (brs, 3H), 7.81 (d, J = 7.2 Hz, 1H), 7.83-7.88 (m, 4H); 13C NMR (CDCl3) δ 120.91, 122.24, 122.56, 124.09, 124.16, 124.74, 124.88, 124.92, 125.00, 125.06, 125.11, 128.43, 132.37, 132.86, 133.42, 135.60, 139.92, 139.97, 140.11, 140.37, 140.67, 141.99; HRMS (DART, positive): m/z = 377.0226. calcd for C22H14ClS2: 377.0225 [M+H]+.
2'-クロロ-4,4''-ジメトキシ-1,1':4',1''-ターフェニル(化合物1l):
1H NMR (CDCl3) δ 3.86 (s, 3H), 3.87 (s, 3H), 6.98-7.00 (m, 4H), 7.37 (d, J = 7.8 Hz, 1H), 7.42-7.43 (m, 2H), 7.48 (dd, J = 7.8, 1.8 Hz, 1H), 7.54-7.55 (m, 2H), 7.65 (d, J = 1.8 Hz, 1H); 13C NMR (CDCl3) δ 55.49, 55.57, 113.72, 114.56, 125.23, 128.16, 128.25, 130.83, 131.73, 131.80, 132.15, 133.09, 138.39, 141.21, 159.32, 159.77; HRMS (DART, positive): m/z = 325.0995. calcd for C20H18ClO2: 325.0995 [M+H]+.
2'-クロロ-4,4''-ビス(トリフルオロメチル)-1,1':4',1''-ターフェニル(化合物1m):
1H NMR (CDCl3) δ 7.44 (d, J = 7.8 Hz, 1H), 7.58 (dd, J = 7.8, 1.8 Hz, 1H), 7.61 (d, J = 7.8 Hz, 2H), 7.72-7.74 (m, 7H); 13C NMR (CDCl3) δ 124.31 (q, JC-F= 271 Hz), 124.34 (q, JC-F = 270 Hz), 125.37 (q, JC-F = 4.2 Hz), 126.04, 126.18 (q, JC-F = 4.4 Hz), 127.60, 129.04, 130.03, 130.22 (q, JC-F = 33.0 Hz), 130.41 (q, JC-F = 33.0 Hz), 131.91, 133.26, 138.99, 141.20, 142.51, 142.85; HRMS (DART, positive): m/z = 401.0535. calcd for C20H12Cl1F8 : 401.0532 [M+H]+.
2'-クロロ-4,4''-ビス(トリメチルシリル)-1,1':4',1''-ターフェニル(化合物1n):
1H NMR (CDCl3) δ 0.31 (s, 9H), 0.32 (s, 9H), 7.41 (d, J = 8.4 Hz, 1H), 7.48-7.49 (m, 2H), 7.54 (dd, J = 8.1, 1.5 Hz, 1H), 7.59-7.63 (m, 6H), 7.71 (d, J = 1.8 Hz, 1H); 13C NMR (CDCl3) δ -1.03, -1.00, 125.61, 126.41, 128.57, 128.79, 131.79, 132.93, 133.18, 134.06, 139.29, 139.49, 139.83, 139.93, 140.24, 141.78; HRMS (DART, positive): m/z = 409.1571. calcd for C24H30ClSi2: 409.1575 [M+H]+
2 ''-Chloro-1, 1 ': 4', 1 '': 4 '', 1 ''':4''': 1 ''''-quinkiphenyl (Compound 1c):
1 H NMR (CDCl 3 ) δ 7.37-7.39 (m, 2H), 7.46-7.50 (m, 5H), 7.59-7.62 (m, 3H), 7.65-7.73 (m, 10H), 7.79 (d, J = 1.8 Hz, 1 H); 13 C NMR (CDCl 3 ) δ 125.65, 127.04, 127.27, 127.58, 127.63, 127.72, 127.62, 129.62, 129.06, 130.09, 131.94, 133.16, 138.18, 138.43, 139.06, 140.68, 140.74, 140.89, 141.02, 141.48; HRMS (DART, positive): m / z = 417.1411. Calcd for C 30 H 22 Cl: 417.1410 [M + H] + .
2′-Chloro-3,3 ′ ′-dimethyl-1,1 ′: 4 ′, 1 ′ ′-terphenyl (compound 1e):
1 H NMR (CDCl 3 ) δ 2.43 (s, 3H), 2.44 (s, 3H), 7.21 (t, J = 6.3 Hz, 2H), 7.30 (brs, 2H), 7.33-7.43 (m, 5H), 7.51 to 7.53 (m, 1H), 7.69 to 7.70 (m, 1H); 13 C NMR (CDCl 3 ) δ 21.69, 21.72, 124.33, 125.65, 127.99, 127.99, 128.14, 128.57, 128.60, 128.80, 129.03, 130.33 HRMS (DART, positive): m / z = 293.1099. Calcd for C 20 H 18 Cl: 293.1097 [M + H] + . 131.80, 132.97, 137.89, 138.77, 139.43, 139.63, 141.95;
2-Chloro-1,4-di (1-naphthyl) benzene (compound 1f):
1 H NMR (CDCl 3 ) δ 7.48-7.61 (m, 10H), 7.66 (d, J = 8.4 Hz, 1 H), 7.71 (d, J = 1.2 Hz, 1 H), 7.91-7.95 (m, 4 H), 8.03-8.05 (m, 1 H); 13 C NMR (CDCl 3 ) δ 125.45, 125.59, 125.91, 126.13, 126.20, 126.43, 126.61, 127.31, 127.52, 128.54, 128.64, 131.11, 131.60, 131.96, 132.09 HRMS (DART, positive): m / z = 365.1098. Calcd for C 26 H 18 Cl: 365.1097 [M.S, 133.73, 134.06, 134.18, 137.40, 138.32, 141.95 (two sp 2 signals were not observed because of overlapping); + H] + .
4,4 ′ ′-Bis (methoxycarbonyl) -2′-chloro-1,1 ′: 4 ′, 1 ′ ′-terphenyl (compound 1 g):
1 H NMR (CDCl 3 ) δ 3.96 (s, 3 H), 3.96 (s, 3 H), 7.45 (d, J = 7.8 Hz, 1 H), 7.56-7.58 (m, 2 H), 7.59 (dd, J = 8.1 , 1.5 Hz, 1 H), 7.68-7. 70 (m, 2 H), 7. 76 (d, J = 1.8 Hz, 1 H), 8.13-8.15 (m, 4 H); 13 C NMR (CDCl 3 ) δ 52.42, 125. 96, 127. 20 HRMS (DART, positive): 129.00, 129.64, 129.90, 130.49, 131.83, 133.18, 139.28, 141.34, 143.57, 143.76, 166.94 (one aryl sp2 signal and one sp3 signal were not reflected because of HR) (DART, positive): m / z = 381.0894. calcd for C 22 H 18 ClO 4 : 381.0894 [M + H] + .
2-Chloro-1,4-di (2-benzothienyl) benzene (compound 1k):
1 H NMR (CDCl 3 ) δ 7.34-7.41 (m, 4H), 7.63 (s, 1H), 7.67 (brs, 3H), 7.81 (d, J = 7.2 Hz, 1H), 7.83-7.88 (m, 4H) 13 C NMR (CDCl 3 ) δ 120.91, 122.24, 122.59, 124.16, 124.84, 124.82, 125.00, 125.06, 125.11, 128.43, 132.37, 132.86, 135.42, 135.60, 139.92, 139.97, 140.11, 140.67 HRMS (DART, positive): m / z = 377.0226. Calcd for C 22 H 14 ClS 2 : 377.0225 [M + H] + .
2′-Chloro-4,4 ′ ′-dimethoxy-1,1 ′: 4 ′, 1 ′ ′-terphenyl (compound 1 l):
1 H NMR (CDCl 3 ) δ 3.86 (s, 3H), 3.87 (s, 3H), 6.98-7.00 (m, 4H), 7.37 (d, J = 7.8 Hz, 1H), 7.42-7.43 (m, 2H) ), 7.48 (dd, J = 7.8, 1.8 Hz, 1 H), 7.54-7.55 (m, 2 H), 7.65 (d, J = 1.8 Hz, 1 H); 13 C NMR (CDCl 3 ) δ 55.49, 55.57, 113.72 HRMS (DART, positive): m / z = 325.0995. Calcd for C 20 H 18 ClO 2 : 325.0995, 114.56, 125.23, 128.16, 128.25, 130.73, 131.80, 132.15, 133.39, 141.21, 159.32, 159.77; [M + H] + .
2′-Chloro-4,4 ′ ′-bis (trifluoromethyl) -1,1 ′: 4 ′, 1 ′ ′-terphenyl (compound 1m):
1 H NMR (CDCl 3 ) δ 7.44 (d, J = 7.8 Hz, 1 H), 7.58 (dd, J = 7.8, 1.8 Hz, 1 H), 7.61 (d, J = 7.8 Hz, 2 H), 7.72-7. m, 7 H); 13 C NMR (CDCl 3 ) δ 124. 31 (q, J CF = 271 Hz), 124. 34 (q, J CF = 270 Hz), 125. 37 (q, J CF = 4.2 Hz), 126.04, 126. 18 ( q, J CF = 4.4 Hz), 127.60, 129.04, 130.03, 130.22 (q, J CF = 33.0 Hz), 130.41 (q, J CF = 33.0 Hz), 131.91, 133.26, 138.99, 141.20, 142.51, 142.85; HRMS (DART, positive):. m / z = 401.0535 calcd for C 20 H 12 Cl 1 F 8: 401.0532 [M + H] +.
2′-Chloro-4,4 ′ ′-bis (trimethylsilyl) -1,1 ′: 4 ′, 1 ′ ′-terphenyl (compound 1 n):
1 H NMR (CDCl 3 ) δ 0.31 (s, 9 H), 0.32 (s, 9 H), 7.41 (d, J = 8.4 Hz, 1 H), 7.48-7.49 (m, 2 H), 7.54 (dd, J = 8.1 , 1.5 Hz, 1 H), 7.59-7.63 (m, 6 H), 7.71 (d, J = 1.8 Hz, 1 H); 13 C NMR (CDCl 3 ) δ -1.03, -1.00, 125.61, 126.41, 128.57, 128.79, HRMS (DART, positive): m / z = 409.1571. Calcd for C 24 H 30 ClSi 2 : 409.1575 [M + H] + . 131.79, 132.93, 133.18, 134.06, 139.49, 139.93, 140.24, 141.78;

[実施例1]   Example 1

Figure 2017209297
Figure 2017209297

[式中、Arは置換若しくは無置換アリール基又は置換若しくは無置換ヘテロアリール基を示す。] [Wherein, Ar represents a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group. ]

実施例1-1(化合物2b; Ar=フェニル基)
空気中、J. Young Oリングタップを備えた10mLのガラス容器に磁気撹拌子を入れ、炭酸セシウム(489mg, 1.50mmol, 3当量)を投入した。容器を真空下にヒートガンで乾燥し、次いで、1時間以上かけて室温まで冷却した。このガラス容器に、合成例1−2で得た化合物1b(132mg, 500μmol)、PdCl2(4.40mg, 25.0μmol, 5.0mol%)、n-ブチルジアダマンチルホスフィン(PnBu(Ad)2; 18.0mg, 50.0μmol, 10mol%)、及びピバル酸(26.0mg, 25.0μmol, 0.50当量)を添加した。ガラス容器をN2ガスで充填し、次いで、N2雰囲気下にシクロペンチルメチルエーテル(CPME; 5.0mL)を添加した。混合物を140℃で14時間撹拌した。混合物を室温まで冷却した後、反応をH2Oでクエンチし、混合物をジクロロメタン(20mL×3)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、得られた溶液をシリカゲルパッド又はセライト(登録商標)でろ過し、真空下に濃縮した。粗生成物をカラムクロマトグラフィーで精製し、目的化合物2bを白色固体として得た(52%, 59.6mg, 0.130mmol)。
1,4,6-トリフェニルトリフェニレン(化合物2b):
1H NMR (CDCl3) δ 7.04-7.10 (m, 3H), 7.24-7.31 (m, 3H), 7.36-7.56 (m, 13H), 7.71-7.73 (m, 2H), 8.09 (d, J = 1.2 Hz, 1H), 8.46 (d, J = 7.8 Hz, 1H), 8.50 (d, J = 8.4 Hz, 1H); 13C NMR (CDCl3) δ 123.36, 123.85, 125.45, 125.59, 126.93, 127.16, 127.18, 127.26, 127.29, 128.67, 129.25, 129.28, 129.58, 129.79, 129.95, 130.11, 130.24, 130.32, 130.50, 131.27, 131.31, 131.49, 137.78, 139.31, 140.73, 144.88, 145.44 (three sp2 signals were not observed because of overlapping); HRMS (DART, positive): m/z = 457.1955. calcd for C36H25: 457.1956 [M+H]+
Example 1-1 (compound 2b; Ar = phenyl group)
In air, a magnetic stirrer was placed in a 10 mL glass container equipped with a J. Young O ring tap, and cesium carbonate (489 mg, 1.50 mmol, 3 equivalents) was charged. The vessel was dried with a heat gun under vacuum and then cooled to room temperature over 1 hour. Compound 1b (132 mg, 500 μmol) obtained in Synthesis Example 1-2, PdCl 2 (4.40 mg, 25.0 μmol, 5.0 mol%), n-butyl diadamantyl phosphine (P n Bu (Ad) 2 ; 18.0 mg, 50.0 μmol, 10 mol%) and pivalic acid (26.0 mg, 25.0 μmol, 0.50 equivalents) were added. The glass vessel was filled with N 2 gas and then cyclopentyl methyl ether (CPME; 5.0 mL) was added under N 2 atmosphere. The mixture was stirred at 140 ° C. for 14 hours. After the mixture was cooled to room temperature, the reaction was quenched with H 2 O and the mixture was extracted with dichloromethane (20 mL × 3). The organic layer was dried over anhydrous sodium sulfate, and the resulting solution was filtered through a silica gel pad or Celite® and concentrated in vacuo. The crude product was purified by column chromatography to give target compound 2b as a white solid (52%, 59.6 mg, 0.130 mmol).
1,4,6-triphenyltriphenylene (compound 2b):
1 H NMR (CDCl 3 ) δ 7.04-7.10 (m, 3H), 7.24-7.31 (m, 3H), 7.36-7.56 (m, 13H), 7.71-7.73 (m, 2H), 8.09 (d, J = 1.2 Hz, 1 H), 8. 46 (d, J = 7.8 Hz, 1 H), 8. 50 (d, J = 8.4 Hz, 1 H); 13 C NMR (CDCl 3 ) δ 123.36, 123.85, 125.45, 125.59, 126.93, 127.16, 127.18, 127.26, 127.29, 128.67, 129.28, 129.58, 129.95, 130.11, 130.24, 130.32, 130.50, 131.27, 131.31, 131.48, 139.31, 140.73, 144.88, 145.44 (three sp 2 signals presente HRMS (DART, positive): m / z = 457.1955. calcd for C 36 H 25 : 457.1956 [M + H] + .

実施例1-2(化合物2c〜化合物2k)
原料として、化合物1bの代わりに、合成例1-3で得た化合物1c〜化合物1kを使用したこと以外は実施例1-1と同様に、以下の化合物2c〜化合物2kを合成した。以下には、実施例1-1で得た化合物2bの収率も示す。
Example 1-2 (Compound 2c to Compound 2k)
The following compounds 2c to 2k were synthesized in the same manner as in Example 1-1 except that the compounds 1c to 1k obtained in Synthesis Example 1-3 were used as raw materials in place of the compound 1b. The yield of the compound 2b obtained in Example 1-1 is also shown below.

Figure 2017209297
Figure 2017209297

1,4,11-Tris[(1,1’-biphenyl)-4-yl]-6-phenyltriphenylene (2c): 1H NMR (CDCl3) δ 7.07-7.78 (m, 36H), 8.16 (s, 1H), 8.19 (s, 1H), 8.56 (brs, 2H); 13C NMR (CDCl3) δ 123.88, 123.92, 125.55, 125.74, 127.09, 127.25, 127.31, 127.37, 127.42, 127.52, 127.54, 127.68, 127.73, 128.42, 128.44, 128.83, 128.94, 129.13, 129.28, 129.47, 130.20, 130.36, 130.43, 130.54, 131.59, 131.64, 137.40, 137.96, 139.20, 139.70, 140.00, 140.50, 140.55, 140.78, 140.82, 141.09, 144.45 (nine sp2 signals were not observed because of overlapping); HRMS (MALDI-TOF, positive): m/z = 760.3094. calcd for C60H40 : 760.3130 [M]+.
6-(tert-ブチル)-1,4,11-トリス(4-(tert-ブチル)フェニル)トリフェニレン(化合物2d):
1H NMR (CDCl3) δ 1.01 (s, 9H), 1.32 (s, 9H), 1.36 (s, 9H), 1.41 (s, 9H), 7.02 (d, J = 8.4 Hz, 2H), 7.30 (d, J = 8.4 Hz, 2H), 7.42-7.52 (m, 11H), 7.68 (dd, J = 7.8, 1.8 Hz, 1H), 7.91 (d, J = 1.8 Hz, 1H), 8.08 (d, J = 1.2 Hz, 1H), 8.38 (d, J = 9.0 Hz, 1H), 8.45 (d, J = 9.0 Hz, 1H); 13C NMR (CDCl3) δ 31.17, 31.50, 31.59, 31.69, 34.62, 34.66, 34.75, 34.83, 122.88, 123.51, 124.45, 125.21, 125.62, 126.32, 126.34, 126.60, 127.56, 128.82, 128.87, 129.43, 129.56, 129.82, 130.01, 130.05, 130.25, 130.49, 131.53, 131.89, 137.04, 138.00, 139.00, 139.07, 142.45, 147.97, 149.89, 149.97, 150.14 (one sp2 signal was not observed because of overlapping); HRMS (DART, positive): m/z = 681.4461. calcd for C52H57: 681.4460 [M+H]+.
10-メチル-1,4,6-トリス(3-メチルフェニル)トリフェニレン(化合物2e):
1H NMR (CDCl3) δ 2.36 (s, 3H), 2.38 (s, 3H), 2.42 (s, 3H), 2.49 (s, 3H), 6.74 (s, 1H), 6.93 (dd, J = 8.4, 1,2 Hz, 1H), 7.02 (d, J = 7.2 Hz, 1H), 7.08 (d, J = 7.8 Hz, 1H), 7.17-7.41 (m, 9H), 7.49 (s, 2H), 7.63 (d, J = 8.4 Hz, 1H), 7.69 (dd, J = 8.4, 1.8 Hz, 1H), 8.12 (d, J = 1.8 Hz, 1H), 8.26 (s, 1H), 8.48 (d, J = 9.0 Hz, 1H); 13C NMR (CDCl3) δ 21.46, 21.72, 21.78, 123.35, 123.67, 124.20, 125.32, 127.03, 127.23, 127.90, 127.94, 128.00, 128.24, 128.52, 129.01, 129.34, 129.40, 129.66, 130.09, 130.19, 130.27, 130.33, 130.42, 130.66, 130.90, 131.22, 131.50, 136.52, 137.61, 138.39, 138.82, 139.09, 139.19, 139.34, 140.85, 145.04, 145.63 (one sp3 signal and two sp2 signals were not observed because of overlapping); HRMS (DART, positive): m/z = 513.2583. calcd for C40H33: 513.2582 [M+H]+.
1,4,13-トリ(ナフタレン-1-イル)ベンゾ[g]クリセン(化合物2f):
1H NMR (C2D2Cl4, 130℃) δ 6.61-6.62 (m, 1H), 7.27-8.08 (m, 29H), 8.78 (d, J = 8.4 Hz, 1H), 9.02 (d, J = 7.8 Hz, 1H); 13C NMR (C2D2Cl4, 130℃) δ 124.75, 125.01, 125.10, 125.34, 125.39, 125.48, 125.61, 125.68, 125.71, 125.82, 125.92, 126.03, 126.17, 126.22, 126.27, 127.04, 127.48, 127.56, 127.74, 127.81, 127.88, 128.05, 128.13, 128.26, 128.60, 128.79, 129.01, 129.05, 129.63, 129.74, 129.87, 130.81, 130.86, 131.15, 131.39, 131.53, 131.61, 131.84, 131.96, 132.02, 133.05, 133.55, 134.22, 134.29, 136.98, 137.09, 137.32, 139.47, 142.41, 142.79 (two sp2 signals were not observed because of overlapping); HRMS (DART, positive): m/z = 657.2584. calcd for C52H33: 657.2582 [M+H]+.
6-(メトキシカルボニル)-1,4,11-トリス[4-(メトキシカルボニル)フェニル]トリフェニレン(化合物2g):
1H NMR (CDCl3) δ 3.70 (s, 3H), 3.94 (s, 3H), 3.97 (s, 3H), 4.03 (s, 3H), 7.05 (d, J = 8.4 Hz, 2H), 7.56 (d, J = 8.4 Hz, 2H), 7.61-7.64 (m, 4H), 7.79 (dd, J = 8.4, 1.8 Hz, 1H), 7.92 (d, J = 8.4 Hz, 2H), 8.01 (d, J = 1.8 Hz, 1H), 8.10 (dd, J = 9.0, 1.8 Hz, 1H), 8.14 (d, J = 7.8 Hz, 2H), 8.20 (d, J = 8.4 Hz, 2H), 8.40 (d, J = 1.8 Hz, 1H), 8.54 (d, J = 8.4 Hz, 1H), 8.58 (d, J = 7.8 Hz, 1H); 13C NMR (CDCl3) δ 51.99, 52.34, 52.39, 52.55, 123.69, 124.81, 126.03, 126.97, 127.40, 127.55, 128.43, 129.23, 129.28, 129.40, 129.58, 129.70, 129.76, 129.92, 130.17, 130.34, 130.41, 130.48, 130.81, 130.96, 131.30, 132.38, 134.50, 137.83, 138.90, 139.21, 144.60, 148.91, 149.58, 166.71, 166.98, 167.05, 167.17 (one sp2 signal was not observed because of overlapping); HRMS (DART, positive): m/z = 689.2174. calcd for C44H33O8 : 689.2175 [M+H]+.
10-メトキシ-1,4,6-トリス(3-メトキシフェニル)トリフェニレン(化合物2j):
1H NMR (CDCl3) δ 3.78 (s, 6H), 3.81 (s, 3H), 3.95 (s, 3H), 6.69 (s, 1H), 6.72 (d, J = 7.2 Hz, 1H), 6.75 (dd, J = 9.6, 2.4 Hz, 1H), 6.82 (dd, J = 8.1, 2.4 Hz, 1H), 6.92 (dd, J = 8.4, 2.4 Hz, 1H), 6.98 (dd, J = 7.8, 2.4 Hz, 1H), 7.04-7.12 (m, 3H), 7.22 (t, J = 7.8 Hz, 1H), 7.32 (t, J = 7.5 Hz, 1H), 7.37 (t, J = 7.8 Hz, 1H), 7.46-7.50 (m, 2H), 7.68-7.71 (m, 2H), 7.88 (d, J = 2.4 Hz, 1H), 8.14 (s, 1H), 8.43 (d, J = 9.0 Hz, 1H); 13C NMR (CDCl3) δ 55.32, 55.35, 55.41, 55.44, 105.92, 112.49, 112.73, 112.82, 113.73, 115.13, 119.70, 122.14, 122.34, 123.68, 124.12, 125.33, 128.94, 129.03, 129.45, 129.85, 130.02, 130.05, 130.15, 130.24, 130.63, 131.35, 131.57, 132.57, 137.56, 138.30, 139.03, 142.14, 146.19, 146.53, 158.30, 159.93, 160.15, 160.47 (two sp2 signals were not observed because of overlapping)。
化合物2k:
1H NMR (CDCl3) δ 6.62 (s, 1H), 6.87 (t, J = 7.8 Hz, 1H), 7.05 (s, 1H), 7.12 (t, J = 7.8 Hz, 1H), 7.19-7.24 (m, 4H), 7.30 (d, J = 7.8 Hz, 1H), 7.43 (d, J = 7.2 Hz, 1H), 7.47-7.52 (m, 2H), 7.56-7.58 (m, 2H), 7.73 (d, J = 7.8 Hz, 1H), 7.75 (d, J = 7.8 Hz, 1H), 7.81-7.84 (m, 3H), 7.90 (d, J = 7.8 Hz, 1H), 7.94 (d, J = 7.2 Hz, 1H), 7.96 (d, J = 7.8 Hz, 1H), 8.17 (d, J = 8.4 Hz, 1H), 8.63 (d, J = 1.8 Hz, 1H); 13C NMR (CDCl3) δ 120.29, 122.25, 122.27, 122.37, 122.83, 123.75, 123.84, 123.87, 123.93, 124.38, 124.45, 124.54, 124.58, 124.66, 124.81, 124.95, 125.00, 125.06, 125.49, 125.82, 125.90, 127.24, 128.98, 129.10, 129.42, 129.61, 129.94, 130.19, 131.59, 132.14, 132.33, 132.41, 137.55, 138.23, 139.70, 139.98, 140.03, 140.57, 140.83, 141.21, 141.84, 144.26, 145.02, 147.21; HRMS (DART, positive): m/z = 681.0829. calcd for C44H25S4: 681.0839 [M+H]+
1,4,11-Tris [(1,1'-biphenyl) -4-yl] -6-phenyltriphenylene (2c): 1 H NMR (CDCl 3 ) δ 7.07-7.78 (m, 36 H), 8.16 (s, 1H), 8.19 (s, 1H), 8.56 (brs, 2H); 13 C NMR (CDCl 3 ) δ 123.88, 123.92, 125.55, 125.07, 127.25, 127.31, 127.37, 127.42, 127.52, 127.58, 127.68, 127.73 , 128.42, 128.44, 128.94, 129.28, 129.47, 130.36, 130.54, 131.59, 131.40, 137.96, 139.20, 136.50, 140.50, 140.55, 140.78, 140.82, 141.45, 144.45 HRMS (MALDI-TOF, positive): m / z = 760.3094. calcd for C 60 H 40 : 760.3130 [M] + . sp2 signals were not observed because of overlapping.
6- (tert-Butyl) -1,4,11-tris (4- (tert-butyl) phenyl) triphenylene (compound 2d):
1 H NMR (CDCl 3 ) δ 1.01 (s, 9 H), 1.32 (s, 9 H), 1. 36 (s, 9 H), 1.41 (s, 9 H), 7.02 (d, J = 8.4 Hz, 2 H), 7.30 ( d, J = 8.4 Hz, 2 H), 7.42-7.52 (m, 11 H), 7. 68 (dd, J = 7.8, 1.8 Hz, 1 H), 7. 91 (d, J = 1.8 Hz, 1 H), 8.08 (d, J = 1.2 Hz, 1 H), 8. 38 (d, J = 9.0 Hz, 1 H), 8. 45 (d, J = 9.0 Hz, 1 H); 13 C NMR (CDCl 3 ) δ 31.17, 31.50, 31.59, 31.69, 34.62, 34.66 , 34.75, 34.83, 122.88, 124.45, 125.21, 125.62, 126.34, 126.60, 127.62, 128.87, 129.56, 129.52, 120.01, 130.01, 130.05, 130.25, 130.49, 131.53, 131.84, 137.00, 139.00, 139.00 HRMS (DART, positive): m / z = 681.4461. Calcd for C 52 H 57 : 681.4460 [M + H], 139.07, 142.45, 147.97, 149.89, 150.14 (one sp 2 signal was not observed because of overlapping); ] +.
10-methyl-1,4,6-tris (3-methylphenyl) triphenylene (compound 2e):
1 H NMR (CDCl 3 ) δ 2.36 (s, 3H), 2.38 (s, 3H), 2.42 (s, 3H), 2.49 (s, 3H), 6.74 (s, 1H), 6.93 (dd, J = 8.4 , 1, 2 Hz, 1 H), 7.02 (d, J = 7.2 Hz, 1 H), 7.08 (d, J = 7.8 Hz, 1 H), 7.17-7.41 (m, 9 H), 7.49 (s, 2 H), 7.63 (d, J = 8.4 Hz, 1 H), 7. 69 (dd, J = 8.4, 1.8 Hz, 1 H), 8.12 (d, J = 1.8 Hz, 1 H), 8. 26 (s, 1 H), 8. 48 (d, J = 9.0 Hz, 1 H); 13 C NMR (CDCl 3 ) δ 21.46, 21.72, 21.78, 123.67, 124.20, 125.32, 127.23, 127.90, 127.94, 128.00, 128.24, 128.52, 129.01, 129.34, 129.40, 129.66, 130.09, 130.19, 130.27, 130.33, 130.42, 130.66, 131.02, 131.50, 136.52, 1376, 138.39, 138.92, 139.19, 139.34, 140.85, 145.63 (one sp 3 signals and two sp 2 signals being out of view HRMS (DART, positive): m / z = 513.2583. calcd for C 40 H 33 : 513.2582 [M + H] + .
1,4,13-tri (naphthalen-1-yl) benzo [g] chrysene (compound 2f):
1 H NMR (C 2 D 2 Cl 4 , 130 ° C.) δ 6.61-6.62 (m, 1 H), 7. 27-8. 08 (m, 29 H), 8. 78 (d, J = 8.4 Hz, 1 H), 9.02 (d, J 13C NMR (C 2 D 2 Cl 4 , 130 ° C.) δ 124.75, 125.01, 125.10, 125.34, 125.48, 125.61, 125.68, 125.71, 125.82, 125.92, 126.03, 126.17, 126.22 126.27, 127.04, 127.48, 127.56, 127.74, 127.88, 128.13, 128.26, 128.60, 128.79, 129.01, 129.05, 129.63, 129.87, 130.81, 130.86, 131.15, 131.39, 131.53, 131.16, 131. HRMS (DART, positive): m / z = 657.2584. Calcd for 52 132.02, 133.05, 133.55, 134.22, 136.98, 137.92, 137.32, 139.47, 142.41, 142.79 (two sp 2 signals were not observed because of overlapping); H 33 : 657.2582 [M + H] + .
6- (Methoxycarbonyl) -1,4,11-tris [4- (methoxycarbonyl) phenyl] triphenylene (compound 2 g):
1 H NMR (CDCl 3 ) δ 3.70 (s, 3H), 3.94 (s, 3H), 3.97 (s, 3H), 4.03 (s, 3H), 7.05 (d, J = 8.4 Hz, 2H), 7.56 ( d, J = 8.4 Hz, 2 H), 7.61-7. 64 (m, 4 H), 7. 79 (dd, J = 8.4, 1.8 Hz, 1 H), 7. 92 (d, J = 8.4 Hz, 2 H), 8.01 (d, J = 1.8 Hz, 1 H), 8. 10 (dd, J = 9.0, 1.8 Hz, 1 H), 8. 14 (d, J = 7.8 Hz, 2 H), 8. 20 (d, J = 8.4 Hz, 2 H), 8. 40 (d, J = 1.8 Hz, 1 H), 8.54 (d, J = 8.4 Hz, 1 H), 8. 58 (d, J = 7.8 Hz, 1 H); 13 C NMR (CDCl 3 ) δ 51.99, 52.34, 52.39, 52.55, 123.69, 124.81 , 126.03, 126.97, 127.40, 127.55, 128.23, 129.28, 129.58, 129.70, 129.76, 129.17, 130.34, 130.41, 130.48, 130.81, 130.96, 131.30, 132.38, 134.50, 137.83, 138.940, 138601, 139. HRMS (DART, positive): m / z = 689.2174. Calcd for C 44 H 33 O 8 : 689.2175 [M +, 148.91, 149.58, 166.71, 166.98, 167.17 (one sp2 signal was not observed because of overlapping); H] + .
10-methoxy-1,4,6-tris (3-methoxyphenyl) triphenylene (compound 2j):
1 H NMR (CDCl 3 ) δ 3.78 (s, 6H), 3.81 (s, 3H), 3.95 (s, 3H), 6.69 (s, 1H), 6.72 (d, J = 7.2 Hz, 1H), 6.75 ( dd, J = 9.6, 2.4 Hz, 1 H), 6.82 (dd, J = 8.1, 2.4 Hz, 1 H), 6. 92 (dd, J = 8.4, 2.4 Hz, 1 H), 6. 98 (dd, J = 7.8, 2.4 Hz , 1H), 7.04-7.12 (m, 3H), 7.22 (t, J = 7.8 Hz, 1 H), 7.32 (t, J = 7.5 Hz, 1 H), 7.37 (t, J = 7.8 Hz, 1 H), 7.46 -7.50 (m, 2H), 7.68-7.71 (m, 2H), 7.88 (d, J = 2.4 Hz, 1 H), 8.14 (s, 1 H), 8.43 (d, J = 9.0 Hz, 1 H); 13 C NMR (CDCl 3) δ 55.32, 55.35, 55.41, 55.44, 105.92, 112.49, 112.73, 112.82, 113.73, 115.13, 119.70, 122.14, 122.34, 123.68, 124.12, 125.33, 128.94, 129.03, 129.45, 129.85, 130.02, 130.05, 130.15, 130.24, 130.63, 131.35, 131.57, 137.56, 138.30, 142.14, 146.19, 146.53, 158.30, 159.93, 160.15, 160.47 (two sp 2 signals were not seen because of overlapping).
Compound 2k:
1 H NMR (CDCl 3 ) δ 6.62 (s, 1 H), 6.87 (t, J = 7.8 Hz, 1 H), 7.05 (s, 1 H), 7.12 (t, J = 7.8 Hz, 1 H), 7.19-7. m, 4H), 7.30 (d, J = 7.8 Hz, 1 H), 7.43 (d, J = 7.2 Hz, 1 H), 7.47-7.52 (m, 2 H), 7.56-7.58 (m, 2 H), 7.73 (d , J = 7.8 Hz, 1 H), 7.75 (d, J = 7.8 Hz, 1 H), 7.81-7. 84 (m, 3 H), 7. 90 (d, J = 7.8 Hz, 1 H), 7.94 (d, J = 7.2 Hz , 1H), 7.96 (d, J = 7.8 Hz, 1H), 8.17 (d, J = 8.4 Hz, 1 H), 8.63 (d, J = 1.8 Hz, 1 H); 13 C NMR (CDCl 3 ) δ 120.29, 122.25, 122.27, 122.37, 122.83, 123.84, 123.83, 124.38, 124.45, 124.58, 124.56, 124.81, 124.95, 125.00, 125.49, 125.52, 125.90, 127.24, 128.12, 98.12, 12,12. HRMS (DART, positive): m / z = 681.0829. Calc. 129.94, 130.19, 131.59, 132.14, 132.41, 137.55, 138.30, 139.98, 140.03, 140.57, 140.83, 141.21, 141.84, 144.26, 145.21; HRMS (DART, positive): m / z = 681.0829. Calcd for C 44 H 25 S 4 : 681.0839 [M + H] + .

本実施例では、まず、芳香族炭化水素を基質として本反応の適用範囲の検討を行った。クロロターフェニル1bを基質として用いた場合は、環化二量化体2bが52%又は81%の収率で得られた。ビフェニリル体が置換した化合物1c及びtert-ブチル基を置換基として有する化合物1dに対しても反応が進行し、それぞれ化合物2c及び2dが中程度の収率で得られた。特に、化合物1cのように溶解性の低い分子についても、収率は若干低下するものの、本発明の製造方法を適用可能であった。次に、化合物1eを基質として用いた場合、化合物2eが選択的に得られた。トリフェニレン骨格が形成される際に、位置異性体の生成が想定されるが、立体障害のより少ない位置での反応が優先的に進行したためと考えられる。基質として化合物1fを用いた場合も、分子内環化体は得られず、環化二量体2fが得られた。以上の結果から、5員環を分子内で形成し得る場合であっても、分子内環化反応より環化二量化反応が優先することが理解できる。   In the present example, first, the scope of the present reaction was examined using an aromatic hydrocarbon as a substrate. When chloroterphenyl 1b was used as a substrate, cyclized dimerization 2b was obtained in a yield of 52% or 81%. The reaction also proceeded to the compound 1c substituted with biphenylyl and the compound 1d having a tert-butyl group as a substituent, and compounds 2c and 2d were obtained in moderate yields, respectively. In particular, the production method of the present invention was applicable to a low solubility molecule such as compound 1c, although the yield slightly decreased. Next, when Compound 1e was used as a substrate, Compound 2e was selectively obtained. Although formation of a regioisomer is assumed when the triphenylene skeleton is formed, it is considered that the reaction at a position with less steric hindrance preferentially proceeded. Also when Compound 1f was used as a substrate, no intramolecular cyclized compound was obtained, and cyclized dimer 2f was obtained. From the above results, it can be understood that the cyclodimerization reaction takes precedence over the intramolecular cyclization reaction, even when a 5-membered ring can be formed in the molecule.

次に、極性官能基及びヘテロ芳香環を有する基質の適用範囲を検討した。メトキシカルボニル基を有する基質では低収率ながら反応が進行し、化合物2gが得られた。メチルチオ基、シアノ基及びメトキシ基を有する基質においても、収率は低いながら反応が進行し、それぞれ化合物2h、化合物2i、化合物2jが得られた。また、複素芳香環の場合、安定な2-クロロ-1,4-ジ(2-ベンゾチエニル)ベンゼンを基質として反応を行った場合は、化合物2kが中程度の収率で得られた。このことから、ヘテロ原子を含む基質や、五員環を含む基質であっても反応が進行することが理解できる。   Next, the application range of the substrate having a polar functional group and a heteroaromatic ring was examined. The reaction proceeded with a low yield for a substrate having a methoxycarbonyl group to obtain 2 g of a compound. The reaction proceeded with a low yield even with a substrate having a methylthio group, a cyano group and a methoxy group, and Compound 2h, Compound 2i and Compound 2j were obtained, respectively. In the case of a heteroaromatic ring, compound 2k was obtained in a moderate yield when the reaction was performed using stable 2-chloro-1,4-di (2-benzothienyl) benzene as a substrate. From this, it can be understood that the reaction proceeds even with a substrate containing a hetero atom or a substrate containing a five-membered ring.

[実施例2]   Example 2

Figure 2017209297
Figure 2017209297

原料として、化合物1bの代わりに、合成例1-1で得た化合物1pを使用したこと以外は実施例1-1と同様に、反応を行った。   The reaction was performed in the same manner as in Example 1-1 except that the compound 1p obtained in Synthesis Example 1-1 was used as a raw material instead of the compound 1b.

ベンザインが発生していることを証明するため、ターフェニルの末端のフェニル基にクロロ基を導入した基質1pを用いて反応を行った。発生するベンザインXは非対称な反応点を有するため、その後の反応により位置異性体2p及び2p’が得られると予想した。   In order to prove that benzine is generated, the reaction was carried out using a substrate 1p in which a chloro group was introduced to the terminal phenyl group of terphenyl. Since the generated benzine X has an asymmetric reaction point, it was expected that the subsequent reaction would yield regioisomers 2p and 2p '.

しかしながら、実際には、化合物2p’の収率はtraceであり、化合物2pの他に、化合物2bが主生成物として生成している(2p: 2b= 1: 2.3)ことが認められた。
1-([1,1’-ビフェニル]-4-イル)-11-フェニルトリフェニレン(化合物2p):
1H NMR (CDCl3) δ 7.06-7.07 (m, 2H), 7.14-7.15 (m, 3H), 7.41-7.43 (m, 1H), 7.52 (t, J = 7.5 Hz, 2H), 7.57-7.60 (m, 3H), 7.68-7.78 (m, 8H), 8.19 (s, 1H), 8.61-8.68 (m, 4H); 13C NMR (CDCl3) δ 122.71, 123.40, 123.88, 123.92, 125.55, 126.72, 127.21, 127.28, 127.37, 127.55, 127.64, 127.69, 128.37, 128.81, 128.98, 129.11, 129.21, 129.92, 130.03, 130.20, 130.31, 131.52, 132.06, 137.44, 140.28, 140.61, 140.65, 141.10, 145.10 (one sp2 signal was not observed because of overlapping); HRMS (DART, positive): m/z = 457.1954. calcd for C36H25: 457.1956 [M+H]+.
1-([1,1’−ビフェニル]-4-イル)-6-フェニルトリフェニレン(化合物2p’):
1H NMR (CDCl3) δ 7.09 (t, J = 7.8 Hz, 1H), 7.38 (t, J = 7.5 Hz, 1H), 7.44 (t, J = 7.5 Hz, 1H), 7.47-7.59 (m, 8H), 7.67-7.72 (m, 5H), 7.82-7.85 (m, 3H), 7.91 (dd, J = 8.4, 1.8 Hz, 1H), 8.57 (d, J = 7.8 Hz, 1H), 8.68 (d, J = 9.0 Hz 1H), 8.74 (d, J = 7.8 Hz, 1H), 8.85 (d, J = 1.8 Hz, 1H); 13C NMR (CDCl3) δ 122.41, 122.58, 123.37, 123.94, 125.32, 126.64, 126.76, 126.96, 127.22, 127.56, 127.63, 127.74, 127.85, 129.05, 129.16, 129.61, 129.78, 129.93, 130.37, 130.50, 131.05, 131.74, 131.90, 139.83, 140.31, 140.60, 140.88, 141.46, 144.55 (one sp2signal was not observed because of overlapping); HRMS (DART, positive): m/z = 457.1956. calcd for C36H25 : 457.1956 [M+H]+.
However, in practice, the yield of compound 2p ′ was trace, and it was observed that in addition to compound 2p, compound 2b was formed as a main product (2p: 2b = 1: 2.3).
1-([1,1′-biphenyl] -4-yl) -11-phenyltriphenylene (compound 2p):
1 H NMR (CDCl 3 ) δ 7.06-7.07 (m, 2H), 7.14-7.15 (m, 3H), 7.41-7.43 (m, 1H), 7.52 (t, J = 7.5 Hz, 2H), 7.57-7.60 (m, 3H), 7.68-7.78 (m, 8H), 8.19 (s, 1H), 8.61-8.68 (m, 4H); 13 C NMR (CDCl 3 ) δ 122.71, 123.40, 123.88, 123.92, 125.55, 126.72 , 127.21, 127.28, 127.37, 127.55, 127.64, 127.69, 128.81, 128.98, 129.11, 129.92, 130.30, 130.30, 131.52, 132.06, 137.44, 140.28, 140.61, 140.65, 141.10, 145.10 (one sp 2 signal signal HRMS (DART, positive): m / z = 457.1954. calcd for C 36 H 25 : 457.1956 [M + H] + .
1-([1,1′-biphenyl] -4-yl) -6-phenyltriphenylene (compound 2p ′):
1 H NMR (CDCl 3 ) δ 7.09 (t, J = 7.8 Hz, 1 H), 7.38 (t, J = 7.5 Hz, 1 H), 7.44 (t, J = 7.5 Hz, 1 H), 7.47-7.59 (m, 8H), 7.67-7.72 (m, 5H), 7.82-7.85 (m, 3H), 7.91 (dd, J = 8.4, 1.8 Hz, 1 H), 8.57 (d, J = 7.8 Hz, 1 H), 8.68 (d , J = 9.0 Hz 1H, 8.74 (d, J = 7.8 Hz, 1 H), 8.85 (d, J = 1.8 Hz, 1 H); 13 C NMR (CDCl 3 ) δ 122.41, 122.58, 123.37, 123.94, 125.32, 126.64, 126.76, 126.96, 127.22, 127.63, 127.75, 129.16, 129.61, 129.78, 129.37, 130.50, 131.05, 131.94, 131.94, 131.83, 140.31, 140.60, 140.88, 141.46, one hundred and one sp HRMS (DART, positive): m / z = 457.1956. Calcd for C 36 H 25 : 457.1956 [M + H] + . 2 signal was not observed because of overlapping.

Figure 2017209297
Figure 2017209297

[実施例3]
上記の実施例2で見出された副反応の存在が見出された。また、クロロターフェニル1bを基質とした実施例1-1-1の粗生成物には、化合物2bの他に化合物2pが、2b: 2p= 3.3: 1の比で副生していた。
[Example 3]
The presence of side reactions found in Example 2 above was found. Further, in the crude product of Example 1-1-1 using chloroterphenyl 1b as a substrate, in addition to compound 2b, compound 2p was by-produced in a ratio of 2b: 2p = 3.3: 1.

Figure 2017209297
Figure 2017209297

この結果から、単離操作の簡単化及び収率の向上を期待し、副反応を抑制する反応条件の探索を行った。クロロターフェニル1bから得られる副生成物の比は、最初の脱プロトン化の段階で決定されるため、適切な塩基を選択することで副反応を抑制できると考えた。   From this result, the simplification of the isolation operation and the improvement of the yield were expected, and a search for reaction conditions for suppressing side reactions was conducted. Since the ratio of by-products obtained from chloroterphenyl 1b was determined in the initial deprotonation step, it was considered that side reactions can be suppressed by selecting an appropriate base.

Figure 2017209297
Figure 2017209297

この反応では、カルボン酸としてピバル酸、塩基として炭酸セシウムを使用した場合は、これら両者からピバル酸セシウムが発生し、これが塩基としても機能する。このため、カルボン酸を検討することにより、脱プロトン化の遷移状態を制御し、望みのベンザインを選択的に発生できると想定し、以下の実験を行った。   In this reaction, when pivalic acid is used as a carboxylic acid and cesium carbonate is used as a base, cesium pivalate is generated from both of these, and this also functions as a base. For this reason, the following experiment was conducted on the assumption that the transition state of deprotonation can be controlled and the desired benzine can be selectively generated by examining the carboxylic acid.

Figure 2017209297
Figure 2017209297

カルボン酸の種類を以下の表1のとおり変更する他は、実施例1−1と同様の処理を行い、反応を行った。なお、いずれの反応においても、化合物2p’の収率はtraceであった。なお、収率は、内部標準としてベンジルフェニルエーテルを用いて1H NMRで算出した。また、表中の括弧内の収率は単離収率である。結果を表1に示す。A reaction was carried out by the same treatment as in Example 1-1 except that the type of carboxylic acid was changed as shown in Table 1 below. In any of the reactions, the yield of compound 2p ′ was trace. The yield was calculated by 1 H NMR using benzyl phenyl ether as an internal standard. Also, the yields in parentheses in the table are isolated yields. The results are shown in Table 1.

Figure 2017209297
Figure 2017209297

この結果、嵩高いカルボン酸を用いた場合はいずれも良好な収率で反応が進行するが、選択性の完全な制御には至らなかった。しかしながら、さらに検討を行った結果、カルボン酸を加えずに反応を行うことで、副反応が完全に抑制できることが分かった。この結果、目的物の収率は最も高い結果となった。   As a result, when bulky carboxylic acid was used, the reaction proceeded with good yield in all cases, but did not lead to complete control of selectivity. However, as a result of conducting further examination, it was found that the side reaction can be completely suppressed by conducting the reaction without adding the carboxylic acid. As a result, the yield of the desired product was the highest.

[実施例4]   Example 4

Figure 2017209297
Figure 2017209297

収率の向上を目指して、カルボン酸を加えない条件において、塩基及び配位子化合物の効果を検討した。カルボン酸を使用せず、塩基及び配位子化合物の種類を以下の表2のとおり変更する他は、実施例1−1と同様の処理を行い、反応を行った。なお、いずれの反応においても、化合物2p’の収率はtraceであった。   In order to improve the yield, the effects of the base and the ligand compound were examined under the condition that no carboxylic acid was added. A reaction was carried out by the same treatment as in Example 1-1 except that the type of the base and the ligand compound was changed as shown in Table 2 below without using a carboxylic acid. In all of the reactions, the yield of compound 2p 'was trace.

Figure 2017209297
Figure 2017209297

この結果、炭酸セシウムを3当量とした場合に選択性及び収率が優れていた。また、フッ化セシウムを塩基として用いた場合は、3当量から5当量として場合には収率の向上が見られた。   As a result, selectivity and yield were excellent when cesium carbonate was 3 equivalents. In addition, when cesium fluoride was used as a base, in the case of 3 equivalents to 5 equivalents, an improvement in yield was observed.

[実施例5]   [Example 5]

Figure 2017209297
Figure 2017209297

収率の向上を目指して、カルボン酸を加えない条件において、基質適用性を検討した。カルボン酸を使用せず、基質として化合物1bの代わりに、合成例1−3で得た化合物1c〜化合物1g、化合物1k〜化合物1nを使用したこと以外は実施例1−1と同様に、以下の化合物2c〜化合物2g、化合物2k〜化合物2nを合成した。   In order to improve the yield, the substrate applicability was examined under the condition that no carboxylic acid was added. In the same manner as in Example 1-1 except that a carboxylic acid was not used, and Compound 1c to Compound 1g and Compound 1k to Compound 1n obtained in Synthesis Example 1-3 were used instead of Compound 1b as a substrate, Compound 2c to Compound 2g, and Compound 2k to Compound 2n were synthesized.

Figure 2017209297
Figure 2017209297

得られた各化合物のうち、スペクトルデータを上記で記載していない化合物のスペクトルデータは以下の通りである。
化合物2g(主生成物)+化合物2g’(副生成物)(2g/2g’ = 3:1):
1H NMR (CDCl3) δ 3.70 (s, 9H), 3.89 (s, 3H), 3.94 (s, 9H), 3.97 (s, 9H), 3.98 (s, 3H), 3.99 (s, 3H), 4.03 (s, 12H), 7.05 (d, J = 8.4 Hz, 6H), 7.09 (d, J = 7.8 Hz, 2H), 7.56 (d, J = 8.4 Hz, 6H), 7.60-7.66 (m, 15H), 7.76-7.82 (m, 10H), 7.91-7.94 (m, 7H), 8.01 (s, 3H), 8.09-8.11 (m, 4H), 8.14 (d, J = 9.0 Hz, 6H), 8.19-8.21 (m, 8H), 8.30 (d, J = 7.8 Hz, 1H), 8.40 (s, 3H), 8.53-8.63 (m, 8H), 8.81 (s, 1H) (The integral proton value is normalized based on the 8.81 peak as 1H); 13C NMR (CDCl3) δ 51.99, 52.32, 52.34, 52.39, 52.55, 52.58, 53.12, 123.68, 123.80, 124.80, 124.84, 126.03, 126.15, 126.96, 127.01, 127.26, 127.54, 128.21, 128.40, 128.65, 128.68, 128.97, 129.22, 129.26, 129.28, 129.35, 129.38, 129.57, 129.70, 129.75, 129.91, 130.08, 130.17, 130.17, 130.29, 130.33, 130.39, 130.42, 130.47, 130.57, 130.65, 130.71, 130.74, 130.80, 130.89, 130.95, 131.28, 131.53, 132.37, 134.17, 134.48, 137.82, 137.85, 138.89, 139.19, 139.94, 141.95, 144.24, 144.33, 144.59, 144.65, 145.00, 148.89, 149.57, 166.69, 166.91, 166.97, 167.04, 167.10, 167.15, 171.58 (one sp3 signal and four sp2 signals were not observed because of overlapping). The structure of 2g’ (minor product) was assigned by analogy from the structures of 2p and 2p’. 2g can be separated from the mixture of 2g and 2g’ with extensive purification with silica-gel column chromatography, gel-permeation chromatography, and recrystallization to take the compound data.
6-(メトキシ)-1,4,11-トリス[4-(メトキシ)フェニル]トリフェニレン(化合物2l):
1H NMR (CDCl3) δ 3.32 (s, 3H), 3.83 (s, 3H), 3.86 (s, 3H), 3.92 (s, 3H), 6.84 (d, J = 8.4 Hz, 2H), 6.98 (d, J = 9.0 Hz, 2H), 7.04-7.06 (m, 5H), 7.33 (d, J = 8.4 Hz, 1H), 7.42-7.46 (m, 4H), 7.48-7.52 (m, 2H), 7.64 (dd, J = 8.4, 1.5 Hz, 1H), 8.03 (d, J = 1.8 Hz, 1H), 8.34 (d, J = 9.0 Hz, 1H), 8.38 (d, J = 8.4 Hz, 1H); 13C NMR (CDCl3) δ 54.71, 55.51, 55.65, 55.71, 111.92, 114.10, 114.84, 115.03, 116.92, 123.20, 124.64, 125.03, 125.09, 128.20, 128.50, 129.80, 129.95, 130.04, 130.93, 131.00, 131.33, 131.71, 131.80, 133.62, 136.37, 137.76, 138.05, 138.67, 138.83, 157.15, 159.09, 159.14, 159.29 (one sp2 signal was not observed because of overlapping); HRMS (DART, positive): m/z = 577.2378. calcd for C40H33O4: 577.2379 [M+H]+.
6-(トリフルオロメチル)-1,4,11-トリス[4-(トリフルオロメチル)フェニル]トリフェニレン(っ化合物2m):
1H NMR (CDCl3) δ 7.05 (d, J = 7.8 Hz, 2H), 7.56 (d, J = 8.4 Hz, 2H), 7.59 (d, J = 7.8 Hz, 2H), 7.64 (s, 2H), 7.69-7.71 (m, 3H), 7.74 (d, J = 8.4 Hz, 2H), 7.77 (dd, J = 8.4, 1.8 Hz, 1H), 7.83 (d, J = 8.4 Hz, 2H), 7.87 (s, 1H), 7.91 (d, J = 1.8 Hz, 1H), 8.58-8.61 (m, 2H); 13C NMR (CDCl3) δ 121.61, 121.72, 123.06, 123.47, 124.27, 124.78, 124.86, 125.22, 125.32, 125.85, 125.87, 126.33, 126.59, 126.62, 126.71, 126.73, 127.03, 127.12, 127.35, 127.57, 127.59, 127.89, 128.10, 129.63, 129.69, 129.84, 129.96, 130.06, 130.12, 130.18, 130.30, 130.45, 130.58, 130.85, 130.95, 131.42, 133.57, 137.90, 138.58, 138.95, 143.72, 147.25, 148.48 (The coupling constants (JC-F) could not be determined because the signals are too complicated. Thus, the observed peaks are written as they are.); HRMS (DART, positive): m/z = 729.1452. calcd for C40H21F12: 729.1452 [M+H]+.
6-(トリメチルシリル)-1,4,11-トリス[4-(トリメチルシリル)フェニル]トリフェニレン(化合物2n):
1H NMR (CDCl3) δ 0.01 (s, 9H), 0.28 (s, 9H), 0.31 (s, 9H), 0.36 (s, 9H), 7.02 (d, J = 7.8 Hz, 2H), 7.44 (d, J = 7.8 Hz, 2H), 7.50 (d, J = 8.4 Hz, 2H), 7.52-7.55 (m, 4H), 7.58-7.59 (m, 3H), 7.66 (d, J = 7.8 Hz, 2H), 7.72 (dd, J = 8.4, 1.8 Hz, 1H), 8.04 (s, 1H), 8.10 (d, J = 1.8 Hz, 1H), 8.43 (d, J = 7.8 Hz, 1H), 8.51 (d, J = 8.4 Hz, 1H); 13C NMR (CDCl3) δ -1.18, -0.94, -0.85, -0.73, 122.41, 123.85, 125.39, 126.34, 129.12, 129.23, 129.27, 129.46, 130.00, 130.29, 130.56, 130.67, 131.36, 131.54, 131.61, 133.77, 134.41, 134.55, 136.19, 137.29, 137.69, 139.11, 139.21, 139.26, 139.32, 141.08, 145.58, 145.77 (two sp2 signals were not observed because of overlapping); HRMS (MALDI-TOF, positive): m/z = 744.3438. calcd for C48H56Si4 : 744.3459 [M]+
The spectral data of the compound which has not described spectral data above among each compound obtained is as follows.
Compound 2 g (main product) + compound 2 g ′ (by-product) (2 g / 2 g ′ = 3: 1):
1 H NMR (CDCl 3 ) δ 3.70 (s, 9H), 3.89 (s, 3H), 3.94 (s, 9H), 3.97 (s, 9H), 3.98 (s, 3H), 3.99 (s, 3H), 4.03 (s, 12 H), 7.05 (d, J = 8.4 Hz, 6 H), 7.09 (d, J = 7.8 Hz, 2 H), 7.56 (d, J = 8.4 Hz, 6 H), 7. 60-7. 66 (m, 15 H ), 7.76-7.82 (m, 10H), 7.91-7.94 (m, 7H), 8.01 (s, 3H), 8.09-8.11 (m, 4H), 8.14 (d, J = 9.0 Hz, 6H), 8.19- 8.21 (m, 8H), 8.30 (d, J = 7.8 Hz, 1H), 8.40 (s, 3H), 8.53-8.63 (m, 8H), 8.81 (s, 1H) (The integral proton value is normalized based on the 8.81 peak as 1H); 13 C NMR (CDCl 3 ) δ 51.99, 52.32, 52.34, 52.59, 52.58, 53.12, 123.80, 124.80, 124.84, 126.15, 126.96, 127.01, 127.26, 127.54, 128.21 , 128.40, 128.65, 128.68, 128.97, 129.26, 129.28, 129.35, 129.58, 129.70, 129.91, 130.17, 130.17, 130.17, 130.29, 130.33, 130.39, 130.42, 130.42, 130.57, 130.76, 130.75 , 130.80, 130.89, 130.95, 131.28, 131.53, 134.17, 134.48, 137.82, 137.85, 138.19, 139.94, 141.95, 144.24, 144.33, 144.59, 144.65, 145.00, 148.89, 14 9.57, 166.69, 166.91, 166.97, 167.10, 167.15, 171.58 (one sp 3 signals and four sp 2 signals were not observed because of overlapping). The structure of 2 g '(minor product) was assigned by analogy from the structures of 2 p and 2g can be separated from the mixture of 2g and 2g with extensive purification with silica-gel column chromatography, gel-permeation chromatography, and recrystallization to take the compound data.
6- (Methoxy) -1,4,11-tris [4- (methoxy) phenyl] triphenylene (compound 2l):
1 H NMR (CDCl 3 ) δ 3.32 (s, 3H), 3.83 (s, 3H), 3.86 (s, 3H), 3.92 (s, 3H), 6.84 (d, J = 8.4 Hz, 2H), 6.98 ( d, J = 9.0 Hz, 2 H), 7.04-7.06 (m, 5 H), 7.33 (d, J = 8.4 Hz, 1 H), 7.42-7.46 (m, 4 H), 7.48-7.52 (m, 2 H), 7.64 (dd, J = 8.4, 1.5 Hz, 1H), 8.03 (d, J = 1.8 Hz, 1H), 8.34 (d, J = 9.0 Hz, 1H), 8.38 (d, J = 8.4 Hz, 1H); 13 C NMR (CDCl 3) δ 54.71 , 55.51, 55.65, 55.71, 111.92, 114.10, 114.84, 115.03, 116.92, 123.20, 124.64, 125.03, 125.09, 128.20, 128.50, 129.80, 129.95, 130.04, 130.93, 131.00, 131.33, 131.71 HRMS (DART, positive): m / z = 577.2378. Calcd for C., 131.80, 133.62, 136.37, 137.76, 138.67, 138.63, 157.15, 159.94, 159.29 (one sp 2 signal was not observed because of overlapping); 40 H 33 O 4 : 577.2379 [M + H] + .
6- (Trifluoromethyl) -1,4,11-tris [4- (trifluoromethyl) phenyl] triphenylene (compound 2m):
1 H NMR (CDCl 3 ) δ 7.05 (d, J = 7.8 Hz, 2 H), 7.56 (d, J = 8.4 Hz, 2 H), 7. 59 (d, J = 7.8 Hz, 2 H), 7. 64 (s, 2 H) , 7.69-7.71 (m, 3H), 7.74 (d, J = 8.4 Hz, 2 H), 7. 77 (dd, J = 8.4, 1.8 Hz, 1 H), 7.83 (d, J = 8.4 Hz, 2 H), 7.87 (7 s, 1 H), 7. 91 (d, J = 1.8 Hz, 1 H), 8.5-8. 61 (m, 2 H); 13 C NMR (CDCl 3 ) δ 121.61, 121.72, 123.06, 123.47, 124.27, 124.78, 124.86, 125.22, 125.22 125.32, 125.85, 125.87, 126.33, 126.59, 126.61, 126.73, 127.12, 127.57, 127.59, 127.89, 129.10, 129.69, 129.94, 129.96, 130.06, 130.12, 130.18, 130.130, 1300.50, 1300.50 130.85, 130.95, 131.42, 133.57, 137.95, 138.95, 143.72, 147.25, 148.48 (The coupling constants (J CF ) were not determined because the signals are too complicated. Thus, the observed peaks are as HRMS (DART, positive): m / z = 729.1452. Calcd for C 40 H 21 F 12 : 729.1452 [M + H] + .
6- (trimethylsilyl) -1,4,11-tris [4- (trimethylsilyl) phenyl] triphenylene (compound 2n):
1 H NMR (CDCl 3 ) δ 0.01 (s, 9 H), 0.28 (s, 9 H), 0.31 (s, 9 H), 0.36 (s, 9 H), 7.02 (d, J = 7.8 Hz, 2 H), 7.44 ( d, J = 7.8 Hz, 2 H), 7. 50 (d, J = 8.4 Hz, 2 H), 7.52-7.55 (m, 4 H), 7.58-7.59 (m, 3 H), 7. 66 (d, J = 7.8 Hz, 2 H) ), 7.72 (dd, J = 8.4, 1.8 Hz, 1 H), 8.04 (s, 1 H), 8. 10 (d, J = 1.8 Hz, 1 H), 8.43 (d, J = 7.8 Hz, 1 H), 8.51 (d , J = 8.4 Hz, 1 H); 13 C NMR (CDCl 3 ) δ -1.18, -0.94, -0.85, -0.73, 122.41, 123.85, 125.39, 126.32, 129.12, 129.23, 129.27, 129.46, 130.00, 130.29, 130.56 , 130.67, 131.36, 131.54, 131.61, 133.77, 134.41, 134.55, 136.29, 137.69, 139.11, 139.21, 139.26, 139.32, 141.08, 145.58, 145.77 (two sp 2 signals were not observed because of overlapping); TOF, positive): m / z = 744.3438. Calcd for C 48 H 56 Si 4 : 744.3459 [M] + .

一方、ピバル酸を用いなかったこと以外は実施例2と同様に、反応を行ったところ、化合物2p及び化合物2p’の混合物が収率72%で得られた。また、化合物2pと化合物2p’は、シリカゲルカラムクロマトグラフィー、ゲルパーミエーションクロマトグラフィー、再結晶等により単離することができた。   On the other hand, when the reaction was carried out in the same manner as Example 2 except that pivalic acid was not used, a mixture of compound 2p and compound 2p 'was obtained in a yield of 72%. The compound 2p and the compound 2p 'could be isolated by silica gel column chromatography, gel permeation chromatography, recrystallization and the like.

Figure 2017209297
Figure 2017209297

[実施例6]   [Example 6]

Figure 2017209297
Figure 2017209297

原料として、化合物1bの代わりに、化合物1aを使用したこと以外は実施例1−1と同様に、反応を行い、目的化合物2aを収率83%で得た。この反応は、上記と同様に、パラジウム−ベンザイン中間体を経由していると考えられ、新しい芳香族ハロゲン化物の環化二量化反応である。   The reaction was carried out in the same manner as in Example 1-1 except that Compound 1a was used as a raw material instead of Compound 1b, to obtain Target Compound 2a in a yield of 83%. This reaction is considered to be via a palladium-benzyne intermediate as described above, and is a novel aromatic halide cyclodimerization reaction.

Figure 2017209297
Figure 2017209297

大気下、磁気撹拌子を入れたシュレンク管に、1-フェニルトリフェニレン(32.4mg, 0.106mmol)及び塩化鉄(III)(62.3mg, 0.384mmol)を加えた。シュレンク管にN2を充填した。ジクロロメタン(10mL)を連続的にシュレンク管に添加した。混合物を0℃で2.5時間撹拌した。反応をメタノール(MeOH; 5.0mL)でクエンチした。反応混合物をH2O(40mL)で洗浄し、水層をジクロロメタン(10mL)で抽出した。有機層を硫酸ナトリウムで乾燥し、得られた溶液をシリカゲルパッドでろ過し、真空下に濃縮した。得られた固体をメタノール(MeOH)及びジクロロメタンで洗浄し、ジベンゾ[e,l]ピレンを収率76%(24.6mg, 0.081mmol)で得た。
ジベンゾ[e,l]ピレン:
1H NMR (C2D2Cl4) δ 7.78-7.79 (m, 4H), 8.10 (t, J = 7.8 Hz, 2H), 8.84-8.86 (m, 4H), 8.95 (d, J = 7.8 Hz, 4H); 13C NMR (C2D2Cl4) δ 124.84, 127.09, 129.93, 131.08, 132.78, 133.18 (one sp2 signal was not observed because of overlapping); HRMS (DART, positive): m/z = 303.1171. calcd for C30H21 : 303.1174 [M+H]+
1-phenyltriphenylene (32.4 mg, 0.106 mmol) and iron (III) chloride (62.3 mg, 0.384 mmol) were added to a Schlenk tube equipped with a magnetic stirrer under the atmosphere. It was filled with N 2 in a Schlenk tube. Dichloromethane (10 mL) was continuously added to the Schlenk tube. The mixture was stirred at 0 ° C. for 2.5 hours. The reaction was quenched with methanol (MeOH; 5.0 mL). The reaction mixture was washed with H 2 O (40 mL) and the aqueous layer was extracted with dichloromethane (10 mL). The organic layer was dried over sodium sulfate and the resulting solution was filtered through a silica gel pad and concentrated in vacuo. The resulting solid was washed with methanol (MeOH) and dichloromethane to give dibenzo [e, l] pyrene in 76% yield (24.6 mg, 0.081 mmol).
Dibenzo [e, l] pyrene:
1 H NMR (C 2 D 2 Cl 4 ) δ 7.78-7.79 (m, 4H), 8.10 (t, J = 7.8 Hz, 2 H), 8.84-8.86 (m, 4 H), 8.95 (d, J = 7.8 Hz , 4H); 13 C NMR (C 2 D 2 Cl 4 ) δ 124.84, 127.09, 129.93, 131.08, 132.78, 133.18 (one sp 2 signal was not observed because of overlapping); HRMS (DART, positive): m / z = 303.1171. Calcd for C 30 H 21 : 303.1174 [M + H] + .

[実施例7]
化合物2b及び2cのScholl反応を以下のように行った。
[Example 7]
The Scholl reaction of compounds 2b and 2c was performed as follows.

Figure 2017209297
Figure 2017209297

大気下、磁気撹拌子を入れたシュレンク管に、化合物2b(46.5mg, 0.102mmol)及び塩化鉄(III)(206mg, 1.27mmol)を加えた。シュレンク管にN2を充填した。ジクロロメタン(10mL)を連続的にシュレンク管に添加した。混合物を0℃で2.5時間撹拌した。反応をメタノール(MeOH; 8.0mL)でクエンチした。反応混合物をH2O(40mL)で洗浄し、水層をジクロロメタン(10mL)で抽出した。有機層を乾燥し、得られた溶液を真空下に濃縮した。得られた固体をメタノール(MeOH)及びジクロロメタンで洗浄し、化合物3bを収率77%(35.4mg, 0.0786mmol)で得た。
化合物3b:
1H NMR (C6D4Cl2, 150℃) δ 7.67-7.70 (m, 4H), 8.05-8.06 (m, 2H), 8.75-8.76 (m, 2H), 8.85-8.88 (m, 4H), 9.09-9.10 (m, 2H), 9.15-9.17 (m, 2H), 9.28-9.29 (m, 2H); HRMS (MALDI-TOF, positive): m/z = 450.1390. calcd for C36H18: 450.1409 [M]+. 13C NMR peaks were barely detected because of the low solubility of 3b。
Compound 2b (46.5 mg, 0.102 mmol) and iron (III) chloride (206 mg, 1.27 mmol) were added to a Schlenk tube equipped with a magnetic stirrer under the atmosphere. It was filled with N 2 in a Schlenk tube. Dichloromethane (10 mL) was continuously added to the Schlenk tube. The mixture was stirred at 0 ° C. for 2.5 hours. The reaction was quenched with methanol (MeOH; 8.0 mL). The reaction mixture was washed with H 2 O (40 mL) and the aqueous layer was extracted with dichloromethane (10 mL). The organic layer was dried and the resulting solution was concentrated in vacuo. The resulting solid was washed with methanol (MeOH) and dichloromethane to give compound 3b in 77% yield (35.4 mg, 0.0786 mmol).
Compound 3b:
1 H NMR (C 6 D 4 Cl 2 , 150 ° C.) δ 7.67-7.70 (m, 4H), 8.05-8.06 (m, 2H), 8.75-8.76 (m, 2H), 8.85-8.88 (m, 4H) , 9.09-9.10 (m, 2H), 9.15-9.17 (m, 2H), 9.28-9.29 (m, 2H); HRMS (MALDI-TOF, positive): m / z = 450.1390. Calcd for C 36 H 18 : 450.1409 [M] <+> . < 13 > C NMR peaks were barely detected because of the low solubility of 3b.

Figure 2017209297
Figure 2017209297

大気下、磁気撹拌子を入れたシュレンク管に、出発物質である化合物2c(7.8mg, 0.010mmol)を加えた。シュレンク管にN2を充填した。ジクロロメタン(2.0mL)及び塩化鉄(III)(75.6mg, 0.466mmol)を連続的にシュレンク管に添加した。混合物を室温で42時間撹拌した。反応をメタノール(MeOH; 5.0mL)でクエンチした。混合物をろ過し、メタノール(MeOH; 40mL)及びジクロロメタン(40mL)で洗浄した。標的物質であるC60H26(化合物3c)を収率72%(5.5mg, 0.0072mmol)で得た。反応が完了し、MALDI-TOF測定によって、部分閉環生成物も出発物質2cも検出されなかった。少量の塩素化された化合物3cがMALDI-TOF測定によって検出された。
化合物3c:
HR-MS (MALDI-TOF, positive): m/z = 746.2072. calcd for C60H26 : 746.2035 [M]+. 1H and 13C NMR peaks were not detected because of the low solubility of 3c。
The starting compound, Compound 2c (7.8 mg, 0.010 mmol), was added to a Schlenk tube equipped with a magnetic stirrer under the atmosphere. It was filled with N 2 in a Schlenk tube. Dichloromethane (2.0 mL) and iron (III) chloride (75.6 mg, 0.466 mmol) were sequentially added to the Schlenk tube. The mixture was stirred at room temperature for 42 hours. The reaction was quenched with methanol (MeOH; 5.0 mL). The mixture was filtered and washed with methanol (MeOH; 40 mL) and dichloromethane (40 mL). The target substance C 60 H 26 (compound 3c) was obtained in a yield of 72% (5.5 mg, 0.0072 mmol). The reaction was complete and neither partial ring closure product nor starting material 2c was detected by MALDI-TOF measurement. A small amount of chlorinated compound 3c was detected by MALDI-TOF measurement.
Compound 3c:
HR-MS (MALDI-TOF, positive):. M / z = 746.2072 calcd for C 60 H 26:. 746.2035 [M] + 1 H and 13 C NMR peaks were not detected because of the low solubility of 3c.

[X線構造解析]
実施例2及び5で得た化合物2b、2p及び2p’について、結晶データの詳細を表3に示す。また、化合物2b、2p及び2p’の熱振動楕円体作画ソフト(ORTEP)による構造を図1〜3に示す。いずれの場合も、結晶をミネラルオイルに浸し、グラスファイバー上に置き、Rigaku PILATUSに移した。また、グラファイト単色光Mo Kα放射線(λ= 0.71075 Å)を用いた。
[X-ray structural analysis]
The crystal data details of the compounds 2b, 2p and 2p ′ obtained in Examples 2 and 5 are shown in Table 3. The structures of the compounds 2b, 2p and 2p 'according to thermal vibration ellipsoid drawing software (ORTEP) are shown in FIGS. In each case, the crystals were soaked in mineral oil, placed on glass fibers and transferred to Rigaku PILATUS. In addition, graphite monochromatic light Mo Kα radiation (λ = 0.71075 Å) was used.

Figure 2017209297
Figure 2017209297

[ラマン顕微鏡解析]
化合物3cのラマンスペクトルを、488nmの半導体レーザーを備えた共焦点ラマン顕微鏡(invia Reflex, Renishaw)を用いて測定した。ラマンシグナルは、熱電冷却チャージカップリングデバイス(CCD)によって検出した。100倍、開口数0.85の対物レンズを使用して、レーザー光を試料に集束させた。レーザーの出力は6.45μWであった。測定は、室温及び大気条件で行った。DFT計算には、Gaussian 09プログラム(40 running on a SGI Altix4700 sustem)を使用した。化合物3cの構造は、対称性仮定なしでB3LYP/6-31G(d)レベルの理論で最適化した。結果を図4に示す。
[Raman microscopy analysis]
The Raman spectrum of compound 3c was measured using a confocal Raman microscope (invia Reflex, Renishaw) equipped with a 488 nm semiconductor laser. The Raman signal was detected by a thermoelectric cooled charge coupling device (CCD). The laser light was focused on the sample using a 100 × objective lens with a numerical aperture of 0.85. The laser output was 6.45 μW. The measurement was performed at room temperature and atmospheric conditions. The Gaussian 09 program (40 running on a SGI Altix 4700 sustem) was used for DFT calculations. The structure of compound 3c was optimized by theory at B3LYP / 6-31G (d) level without symmetry assumption. The results are shown in FIG.

[光物理学的研究]
すべての測定には、1cm四方の石英セル内の脱気スペクトルグレードのジクロロメタン中の希釈溶液を使用した。UV-Vis吸収スペクトルを、0.5nmの分解能を有するShimadzu UV-3510 spectrometerで記録した。蛍光スペクトルは、F-4500 Hitachi spectrometer又はShimadzu RF-6000を用いて0.4nmの分解能で測定した。絶対蛍光量子収率(ΦF)は、較正積分球システム(207-21460-41)を備えたShimadzu RF-6000を用いて測定した。結果を図5〜17に示す。
[Photophysical research]
For all measurements, a diluted solution of degassed spectral grade dichloromethane in a 1 cm square quartz cell was used. UV-Vis absorption spectra were recorded on a Shimadzu UV-3510 spectrometer with a resolution of 0.5 nm. The fluorescence spectrum was measured with an F-4500 Hitachi spectrometer or Shimadzu RF-6000 at a resolution of 0.4 nm. The absolute fluorescence quantum yield ( F F ) was measured using a Shimadzu RF-6000 equipped with a calibrated integrating sphere system (207-21460-41). The results are shown in FIGS.

Claims (14)

一般式(1):
Figure 2017209297
[式中、R1及びR1'は水素原子、置換若しくは無置換アリール基、又は置換若しくは無置換ヘテロアリール基を示す。R2は置換若しくは無置換アリール基、又は置換若しくは無置換ヘテロアリール基を示す。R3は水素原子を示す。R'は置換若しくは無置換芳香族炭化水素環又は置換若しくは無置換複素芳香環を示す。R1とR3は結合し、環を形成してもよい。R1'とR3は結合し、環を形成してもよい。R2とR'は結合し、環を形成してもよい。]
で表される多環芳香族化合物の製造方法であって、
パラジウム触媒及び塩基の存在下に、
一般式(2):
Figure 2017209297
[式中、R1及びR2は前記に同じである。Xはハロゲン原子を示す。]
で表される化合物を反応させる反応工程
を備える、製造方法。
General formula (1):
Figure 2017209297
[Wherein, R 1 and R 1 ′ represent a hydrogen atom, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group. R 2 represents a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group. R 3 represents a hydrogen atom. R ′ represents a substituted or unsubstituted aromatic hydrocarbon ring or a substituted or unsubstituted heteroaromatic ring. R 1 and R 3 may combine to form a ring. R 1 ′ and R 3 may combine to form a ring. R 2 and R ′ may combine to form a ring. ]
A process for producing a polycyclic aromatic compound represented by
In the presence of a palladium catalyst and a base
General formula (2):
Figure 2017209297
[Wherein, R 1 and R 2 are as defined above. X represents a halogen atom. ]
A production method comprising a reaction step of reacting a compound represented by
前記R1が水素原子、置換若しくは無置換フェニル基、置換若しくは無置換ナフチル基、又は置換若しくは無置換ベンゾチエニル基である、請求項1に記載の製造方法。The production method according to claim 1, wherein R 1 is a hydrogen atom, a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, or a substituted or unsubstituted benzothienyl group. 前記R2が置換若しくは無置換フェニル基、置換若しくは無置換ナフチル基、又は置換若しくは無置換ベンゾチエニル基である、請求項1又は2に記載の製造方法。The method according to claim 1, wherein R 2 is a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, or a substituted or unsubstituted benzothienyl group. 前記R’が置換若しくは無置換ベンゼン環、置換若しくは無置換ナフタレン環、又は置換若しくは無置換ベンゾチオフェン環である、請求項1〜3のいずれかに記載の製造方法。 The method according to any one of claims 1 to 3, wherein R 'is a substituted or unsubstituted benzene ring, a substituted or unsubstituted naphthalene ring, or a substituted or unsubstituted benzothiophene ring. 前記反応工程において、配位子化合物を添加する、請求項1〜4のいずれかに記載の製造方法。 The method according to any one of claims 1 to 4, wherein a ligand compound is added in the reaction step. 前記配位子化合物がホスフィン化合物である、請求項5に記載の製造方法。 The method according to claim 5, wherein the ligand compound is a phosphine compound. 前記塩基がアルカリ金属炭酸塩又はアルカリ金属フッ化物塩である、請求項1〜6のいずれかに記載の製造方法。 The method according to any one of claims 1 to 6, wherein the base is an alkali metal carbonate or an alkali metal fluoride salt. 前記反応工程において、カルボン酸を添加する、請求項1〜7のいずれかに記載の製造方法。 The method according to any one of claims 1 to 7, wherein a carboxylic acid is added in the reaction step. 前記反応工程の後に、酸化剤の存在下に分子内環化反応を起こす工程を備える、請求項1〜8のいずれかに記載の製造方法。 The method according to any one of claims 1 to 8, further comprising the step of causing an intramolecular cyclization reaction in the presence of an oxidizing agent after the reaction step. 一般式(1A1):
Figure 2017209297
[式中、R1及びR1'は置換若しくは無置換アリール基、又は置換若しくは無置換ヘテロアリール基を示す。R2は置換若しくは無置換アリール基、又は置換若しくは無置換ヘテロアリール基を示す。R'は置換若しくは無置換芳香族炭化水素環又は置換若しくは無置換複素芳香環を示す。ただし、R1、R1’及びR2がいずれも無置換フェニル基であり、R’が4-(9,12-ジフェニルトリフェニル)-2,5-ジメチルフェニル基、4-(2,9,12-トリフェニルトリフェニル)-2,5-ジメチルフェニル基、又はトリフェニルフェニル基で置換されたベンゼンである化合物を除く。]
、一般式(1A2):
Figure 2017209297
[式中、R2は置換若しくは無置換アリール基、又は置換若しくは無置換ヘテロアリール基を示す。R'は置換芳香族炭化水素環又は置換若しくは無置換複素芳香環を示す。ただし、R2が置換フェニル基でありR’が置換ベンゼン環である場合は、1,5-ビス[3-(9,9-ジメチル-9H-フルオレン-3-イル)フェニルトリフェニレン、7,7’-(1,5-トリフェニレンジイル)-ビスベンゾオキサゾール、1,12-ビス([1,1’:3’,1-ターフェニル]-3-イル)トリフェニレン、3,3’-(1-12-トリフェニレンジイル)ビス[9-フェニル-9H-カルバゾール], ,3’-(1-12-トリフェニレンジイル)ビスジベンゾチオフェン、1-[3-(ブロモメチル)-5-メチルフェニル]-12-(3,5-ジメチルフェニル)-トリフェニレン、1-[3-(ブロモメチル)-5-メチルフェニル]-12-フェニルトリフェニレン、1-フェニル-12-(2,4,6-トリメチルフェニル)-トリフェニレン、1-(4-メチルフェニル)-12-フェニル-トリフェニレン、1-(3,5-ジメチルフェニル)-12-フェニルトリフェニレン、1,12-ビス(3,5-ジメチルフェニル)-トリフェニレン、8,9-ジフェニルジベンゾ[f,j]ピセン、2-ヨード-1,12-ジフェニルトリフェニレン、及び1,12-ジフェニルトリフェニレンを除く。また、R’が無置換ベンゼン環である場合は、R2は、置換若しくは無置換フェニル基、置換ナフチル基、置換ピリジル基、置換ピラジル、置換若しくは無置換ジベンゾフラン基、置換若しくは無置換ジベンゾチオフェン基、置換若しくは無置換カルバゾール基、置換若しくは無置換ベンゾトリアゾール基、置換若しくは無置換キノリン基、トリフェニレン基、フェナントレン基、インダンジオン基、並びにフローレン基を除く。]
で表されるトリアリーレン化合物。
General formula (1A1):
Figure 2017209297
[Wherein, R 1 and R 1 ′ represent a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group. R 2 represents a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group. R ′ represents a substituted or unsubstituted aromatic hydrocarbon ring or a substituted or unsubstituted heteroaromatic ring. Provided that R 1 , R 1 ′ and R 2 are all unsubstituted phenyl groups, R ′ is 4- (9,12-diphenyltriphenyl) -2,5-dimethylphenyl group, 4- (2,9) , 12-triphenyltriphenyl) -2,5-dimethylphenyl group, or compounds which are benzene substituted with triphenylphenyl group. ]
, General formula (1A2):
Figure 2017209297
[Wherein, R 2 represents a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group. R ′ represents a substituted aromatic hydrocarbon ring or a substituted or unsubstituted heteroaromatic ring. However, when R 2 is a substituted phenyl group and R ′ is a substituted benzene ring, 1,5-bis [3- (9,9-dimethyl-9H-fluoren-3-yl) phenyltriphenylene, 7,7 '-(1,5-triphenylenediyl) -bisbenzoxazole, 1,12-bis ([1,1': 3 ', 1-terphenyl] -3-yl) triphenylene, 3,3'-(1- 12-triphenylenediyl) bis [9-phenyl-9H-carbazole] ,, 3 '-(1-12-triphenylenediyl) bisdibenzothiophene, 1- [3- (bromomethyl) -5-methylphenyl] -12- 3,5-Dimethylphenyl) -triphenylene, 1- [3- (bromomethyl) -5-methylphenyl] -12-phenyltriphenylene, 1-phenyl-12- (2,4,6-trimethylphenyl) -triphenylene, 1 -(4-Methylphenyl) -12-phenyl-triphenylene, 1- (3,5-dimethylphenyl) -12-phenyltriphenylene, 1,12-bis (3,5-dimethylphenyl) -triphenylene, 8,9- The Enirujibenzo except [f, j] picene, 2-iodo-1,12-diphenyl triphenylene, and 1,12 diphenyl triphenylene. When R ′ is a non-substituted benzene ring, R 2 is a substituted or non-substituted phenyl group, a substituted naphthyl group, a substituted pyridyl group, a substituted pyrazyl, a substituted or non-substituted dibenzofuran group, or a substituted or non-substituted dibenzothiophene group Excluding substituted or unsubstituted carbazole group, substituted or unsubstituted benzotriazole group, substituted or unsubstituted quinoline group, triphenylene group, phenanthrene group, indandione group, and flowene group. ]
A triarylene compound represented by
前記R1及びR1'が水素原子、置換若しくは無置換フェニル基、置換若しくは無置換ナフチル基、又は置換若しくは無置換ベンゾチエニル基である、請求項10に記載のトリアリーレン化合物。The triarylene compound according to claim 10, wherein R 1 and R 1 ′ are a hydrogen atom, a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, or a substituted or unsubstituted benzothienyl group. 前記R2が置換若しくは無置換フェニル基、置換若しくは無置換ナフチル基、又は置換若しくは無置換ベンゾチエニル基である、請求項10又は11に記載のトリアリーレン化合物。The triarylene compound according to claim 10, wherein R 2 is a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, or a substituted or unsubstituted benzothienyl group. 前記R’が置換若しくは無置換ベンゼン環、置換若しくは無置換ナフタレン環、又は置換若しくは無置換ベンゾチオフェン環である、請求項10〜12のいずれかに記載のトリアリーレン化合物。 The triarylene compound according to any one of claims 10 to 12, wherein R 'is a substituted or unsubstituted benzene ring, a substituted or unsubstituted naphthalene ring, or a substituted or unsubstituted benzothiophene ring. 一般式(1B):
Figure 2017209297
で表される、多環芳香族化合物。
General formula (1B):
Figure 2017209297
Polycyclic aromatic compound represented by
JP2018521145A 2016-06-02 2017-06-02 Triarylene compound and method for producing the same Pending JPWO2017209297A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016111353 2016-06-02
JP2016111353 2016-06-02
PCT/JP2017/020703 WO2017209297A1 (en) 2016-06-02 2017-06-02 Triarylene compound and method for producing same

Publications (1)

Publication Number Publication Date
JPWO2017209297A1 true JPWO2017209297A1 (en) 2019-04-18

Family

ID=60478707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018521145A Pending JPWO2017209297A1 (en) 2016-06-02 2017-06-02 Triarylene compound and method for producing the same

Country Status (2)

Country Link
JP (1) JPWO2017209297A1 (en)
WO (1) WO2017209297A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110002935A (en) * 2018-04-10 2019-07-12 南京大学 A kind of preparation method of large size condensed-nuclei aromatics
CN115197712A (en) * 2022-05-18 2022-10-18 东南大学 Polycyclic aromatic hydrocarbon discotic liquid crystal compound containing benzophenanthrene and preparation method thereof

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0780789B2 (en) * 1988-03-02 1995-08-30 三菱化学株式会社 Dimerization method of aromatic halogen compounds
GB2279072A (en) * 1993-06-11 1994-12-21 British Tech Group Synthesis of substituted triphenylenes useful for discotic liquid crystals
JP4021663B2 (en) * 2001-12-28 2007-12-12 富士フイルムファインケミカルズ株式会社 Method for producing triphenylene compound
KR101460365B1 (en) * 2008-04-29 2014-11-10 주식회사 엘지화학 New imidazole derivatives and organic electronic device using the same
KR101134575B1 (en) * 2009-11-17 2012-04-16 주식회사 이엘엠 Organic Light Emitting Material and Organic Light Emitting Diode Having The Same
DE102010048608A1 (en) * 2010-10-15 2012-04-19 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2013055132A2 (en) * 2011-10-13 2013-04-18 덕산하이메탈(주) Compound for organic electrical device, organic electrical device using same, and electronic device thereof
WO2013056776A1 (en) * 2011-10-20 2013-04-25 Merck Patent Gmbh Materials for organic electroluminescent devices
KR20130075982A (en) * 2011-12-28 2013-07-08 주식회사 두산 Anthracene-based compound and organic electroluminescence device using the same
KR20150033074A (en) * 2013-09-23 2015-04-01 주식회사 이엘엠 Organic Light Emitting Material Having Asymmetric Aromatic Amine Derivative and Organic Light Emitting Diode Using The Same
US9876173B2 (en) * 2013-12-09 2018-01-23 Universal Display Corporation Organic electroluminescent materials and devices
JP2015118958A (en) * 2013-12-16 2015-06-25 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Material for organic electroluminescence element and organic electroluminescence element using the same
US10208026B2 (en) * 2014-03-18 2019-02-19 Universal Display Corporation Organic electroluminescent materials and devices
KR102255197B1 (en) * 2014-05-02 2021-05-25 삼성디스플레이 주식회사 Organic light emitting device
CN104230645A (en) * 2014-08-29 2014-12-24 江西冠能光电材料有限公司 Blue light-emitting material
CN104447505B (en) * 2014-11-04 2017-02-15 江西冠能光电材料有限公司 Stable organic light emitting diode
CN104326971B (en) * 2014-11-04 2016-09-14 江西冠能光电材料有限公司 A kind of thermostability Organic Electricity negativity quasiconductor
CN104557440A (en) * 2015-02-05 2015-04-29 江西冠能光电材料有限公司 Substituted benzophenanthrene derivative organic light emitting diode material
US10680183B2 (en) * 2015-02-15 2020-06-09 Universal Display Corporation Organic electroluminescent materials and devices
KR101909680B1 (en) * 2015-04-10 2018-10-18 삼성에스디아이 주식회사 Compound, organic optoelectric device and display device
KR102546673B1 (en) * 2015-12-03 2023-06-23 삼성디스플레이 주식회사 Organic light emitting device and display device having the same

Also Published As

Publication number Publication date
WO2017209297A1 (en) 2017-12-07

Similar Documents

Publication Publication Date Title
Alcaide et al. Photopromoted Entry to Benzothiophenes, Benzoselenophenes, 3H‐Indoles, Isocoumarins, Benzosultams, and (Thio) flavones by Gold‐Catalyzed Arylative Heterocyclization of Alkynes
Clarke et al. Recent developments in the synthesis of the BODIPY dyes
Knight et al. An approach to 2, 3-dihydropyrroles and β-iodopyrroles based on 5-endo-dig cyclisations
Yamamoto et al. Palladium (0)‐Catalyzed Intramolecular [2+ 2+ 2] Alkyne Cyclotrimerizations with Electron‐Deficient Diynes and Triynes
Ge et al. Synthesis of substituted benzo [ij] imidazo [2, 1, 5-de] quinolizine by rhodium (iii)-catalyzed multiple C–H activation and annulations
CN112534593A (en) Organic light emitting diode
US20230227425A1 (en) Reagents and process for direct c-h functionalization
Hung et al. Palladium catalyzed synthesis and physical properties of indolo [2, 3-b] quinoxalines
Chang et al. Visible light-mediated direct C–H aroylation and alkylation of heteroarenes
Paternoga et al. A Copper‐Catalyzed Synthesis of Pyrroles through Photochemically Generated Acylazirines
WO2017209297A1 (en) Triarylene compound and method for producing same
Chelucci et al. Enantiomerically pure pyridine and 2, 2′-bipyridine thioethers: new N–S chiral ligands for asymmetric catalysis. Palladium-catalyzed allylic alkylation
Zende et al. Pincer CNC bis-N-heterocyclic carbenes: robust ligands for palladium-catalysed Suzuki–Miyaura arylation of bromoanthracene and related substrates
Mitrofanov et al. Regiodivergent metal-controlled synthesis of multiply substituted quinolin-2-yl-and quinolin-3-ylphosphonates
Petrosyan et al. Straightforward synthesis of tetraalkynylpyrazines and their photophysical properties
WO2016125845A1 (en) Cross-coupling method, and method for producing organic compound using said cross-coupling method
Arsenov et al. Synthesis of isocoumarins and PAHs with electron-withdrawing substituents: Impact of the substituent nature on the photophysical behavior
JP2018184393A (en) Condensed ring compound and method for producing the same
JP2021037465A (en) Aromatic ring redox photocatalyst having high reduction power
WO2014203540A1 (en) Metal complex composition and method for producing metal complex
JP2019112387A (en) Raw material for synthesizing organic light-emitting element material, and compound
Gai et al. The intramolecular 5-exo, 7-endo-dig transition metal-free cyclization sequence of (2-alkynylphenyl) benzyl ethers: synthesis of seven-membered fused benzo [b] furans
Oda et al. Synthesis of bright red-emissive dicyanoetheno-bridged hexa-peri-hexabenzocoronene dimers
JP2017132738A (en) Manufacturing method of bipyridyl compound
CN106866348B (en) A kind of polycyclic aromatic hydrocarbon compounds, synthetic method and purposes

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180622