JPWO2017184153A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2017184153A5
JPWO2017184153A5 JP2018555257A JP2018555257A JPWO2017184153A5 JP WO2017184153 A5 JPWO2017184153 A5 JP WO2017184153A5 JP 2018555257 A JP2018555257 A JP 2018555257A JP 2018555257 A JP2018555257 A JP 2018555257A JP WO2017184153 A5 JPWO2017184153 A5 JP WO2017184153A5
Authority
JP
Japan
Prior art keywords
graft
stent
diameter
expansion element
controlled expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018555257A
Other languages
Japanese (ja)
Other versions
JP2019514493A5 (en
JP2019514493A (en
JP7248430B2 (en
Publication date
Application filed filed Critical
Priority claimed from PCT/US2016/028671 external-priority patent/WO2017184153A1/en
Publication of JP2019514493A publication Critical patent/JP2019514493A/en
Publication of JP2019514493A5 publication Critical patent/JP2019514493A5/ja
Priority to JP2021122433A priority Critical patent/JP7248749B2/en
Publication of JPWO2017184153A5 publication Critical patent/JPWO2017184153A5/ja
Application granted granted Critical
Publication of JP7248430B2 publication Critical patent/JP7248430B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

ある例では、ベースグラフトは、結晶溶融温度を有する延伸PTFEを含み、およびさらに被制御拡張エレメントは、結晶溶融温度未満の温度でステント-グラフト構成部分に連結されている。また、被制御拡張エレメントが滑走界面においてステント-グラフトと異なる速度で縦寸法において変化(例えば、放射状の拡張の間の縦方向への収縮)できるように、被制御拡張エレメントは、任意選択的にステント-グラフト構成部分に連結されている。例えば、ステント-グラフトと被制御拡張エレメントとの間の界面の1つまたは2つ以上の部分は、内部人工器官の拡張の間に縦方向の収縮差を防ぐであろう様式で結合またはそうでなければ取り付けられていない。 In one example, the base graft comprises stretched PTFE having a crystal melting temperature, and further the controlled expansion element is coupled to the stent-graft component at a temperature below the crystal melting temperature. Also, the controlled expansion element is optional so that the controlled expansion element can change in longitudinal dimensions (eg, longitudinal contraction during radial expansion) at a different rate than the stent-graft at the gliding interface. It is connected to the stent-graft component. For example, one or more parts of the interface between the stent-graft and the controlled expansion element are coupled or so in a manner that will prevent longitudinal contraction differences during expansion of the internal prosthesis. If not, it is not installed.

設定工程は被制御拡張エレメント20を内部人工器官10の外側表面にならうようにし、これは熱および/または接着剤結合の使用なしで内部人工器官10のその後の加工、配置、および移植を通して、被制御拡張エレメント20を定位置に保持することを助けると考えられる。いくつかの態様において、被制御拡張エレメント20とステント-グラフト12、18との間の界面の少なくとも一部に沿って熱および/または接着剤結合または他の取付具がないことは、滑走界面を画定し、これは、膨らんだ場合に被制御拡張エレメント20がステント-グラフト12、18の表面上を滑るのを可能にすることを助け、したがって被制御拡張エレメント20の縮小量を制限することは、ステント-グラフト12、18につたわる(translate to)。いくつかの態様により、例えば、ステントグラフト12、18と被制御拡張エレメント20との間の締りばめは、構成部分間で滑走界面を提供する。別の言葉でいうと、内部人工器官10の直径の拡張の間に、被制御拡張エレメント20とステント-グラフト12、18との間の滑走界面は、被制御拡張エレメント20の少なくとも一部が滑走界面においてステント-グラフト12、18と異なる速度で、縦寸法において変化すること(例えば、放射状拡張の間の収縮)を可能にする。 The setting process follows the outer surface of the controlled expansion element 20 through subsequent processing, placement, and implantation of the internal organ 10 without the use of heat and / or adhesive binding. It is believed to help hold the controlled expansion element 20 in place. In some embodiments, the absence of thermal and / or adhesive binding or other fittings along at least part of the interface between the controlled expansion element 20 and the stent-grafts 12, 18 provides a gliding interface. Demarcated, which helps allow the controlled expansion element 20 to slide on the surface of the stent-grafts 12, 18 when inflated, thus limiting the amount of reduction of the controlled expansion element 20. , Stent-grafts 12, 18 (translate to). In some embodiments, for example, the clamp between the stent grafts 12 and 18 and the controlled expansion element 20 provides a gliding interface in the component minutes. In other words, during the expansion of the diameter of the internal prosthesis 10, the sliding interface between the controlled expansion element 20 and the stent-grafts 12 and 18 is such that at least part of the controlled expansion element 20 slides. Allows changes in longitudinal dimensions (eg, contraction during radial expansion) at a different rate than stent-grafts 12, 18 at the interface.

本発明の範囲から離れることなく、記載された例示的な態様に種々の改変および追加をなすことができる。例えば、上記の態様は、特定の特徴をいうが、本発明の範囲はまた、上記の特徴のすべてを含まない異なる組み合わせの特徴および態様を有する態様を含む。
(態様)
(態様1)
ステントと前記ステントに固定されたベースグラフトとを含むステント-グラフトと、
連続した壁を有する被制御拡張エレメントと、
を含む、
直径を調節可能な内部人工器官であって、
前記ベースグラフトは第1終端および第2終端を有し、ならびに前記ステント-グラフトは自己拡張性でありおよび自己拡張力を有し、前記ステント-グラフトは最大直径拡張限界を有し、
前記被制御拡張エレメントは、初期直径拡張限界を有し、および前記ステント-グラフトの前記自己拡張力に加えて拡張力下で配置された場合に前記初期直径拡張限界と前記最大直径拡張限界との間の直径の範囲内の調節された直径に調節可能であり、前記拡張力を除いた後で前記被制御拡張エレメントは生理的条件下で前記調節された直径を維持するように構成されており、および前記ステント-グラフトは、前記調節された直径のための前記直径の範囲を前記最大直径拡張限界に制限するように構成されている、内部人工器官。
(態様2)
前記内部人工器官の直径の拡張の間に、前記被制御拡張エレメントと前記ステント-グラフトとの間の滑走界面は、前記被制御拡張エレメントの少なくとも一部が前記滑走界面で前記ステント-グラフトと異なる速度で縦寸法を変化させることを可能にするように、前記被制御拡張エレメントは、前記ステント-グラフトで前記滑走界面を画定している、態様1に記載の内部人工器官。
(態様3)
前記内部人工器官は生体体液を運ぶように構成された内側管腔を有し、およびさらに前記ベースグラフトは前記内部人工器官の前記内側管腔を画定している、態様1に記載の内部人工器官。
(態様4)
前記初期直径拡張限界において前記被制御拡張エレメントは直径で1つまたは2つ以上のテーパーを画定する、態様1に記載の内部人工器官。
(態様5)
前記被制御拡張エレメントは、第1終端部と、第2終端部と、前記第1終端部と前記第2終端部との間の中央部とを有し、およびさらに前記初期直径拡張限界において前記被制御拡張エレメントは、第1の直径へ外側に向かってテーパーしている前記第1終端部と、第2の直径へ外側に向かってテーパーしている前記第2終端部と、前記第1の直径および第2の直径より小さい直径を有する前記中央部と含む、態様1に記載の内部人工器官。
(態様6)
前記被制御拡張エレメントは、前記拡張力の適用で変形し、および生理的条件で前記調節された直径を維持するように構成された制御された拡張材料のスリーブを含む、態様1に記載の内部人工器官。
(態様7)
前記ベースグラフトは長さを有し、および前記ステント-グラフトは、裏地のついた領域および裏地のついていない領域を含み、前記裏地のついた領域は前記グラフトの前記長さに相当し、および前記裏地のついていない領域は覆いのないままである、態様1に記載の内部人工器官。
(態様8)
前記ステントは鎖リンクパターンを画定する区間を含み、前記区間は前記ステント-グラフトの前記裏地のついていない領域に相当する、態様8に記載の内部人工器官。
(態様9)
態様1~8のいずれか一項に記載の前記内部人工器官を用いて肝臓内門脈体静脈シャントを形成する方法であって、
送達直径寸法で患者の肝臓内に前記内部人工器官を配置することと、
前記内部人工器官がin situで前記初期直径拡張限界に自己拡張し、および前記患者の前記肝臓に固定されて肝臓内門脈体静脈シャントを形成するように、前記内部人工器官を配置することと、
前記被制御拡張エレメントの少なくとも一部が前記ステント-グラフトの前記最大直径拡張限界未満の調節された直径に選択的に拡大し、および前記調節された直径が生理的条件下で維持されるように、前記内部人工器官を配置した後で前記内部人工器官に内部圧力を掛けることと、
を含む、方法。
(態様10)
肝臓内門脈体静脈シャントを形成する方法であって、
送達直径寸法で内部人工器官を患者の肝臓内に配置することであって、前記内部人工器官は自己拡張性ステント-グラフトおよび被制御拡張エレメントを含むことと、
前記内部人工器官が、自己拡張しおよび前記患者の前記肝臓に固定されて肝臓内門脈体静脈シャントを形成するように、前記内部人工器官を配置することであって、初期の配置された直径寸法が生理学的条件下で維持されるように、前記被制御拡張エレメントは、前記内部人工器官の直径被制御部分の拡張を前記初期の配置された直径寸法に制限することと、
前記被制御拡張エレメントの少なくとも一部が機械的に変化されおよび前記内部人工器官の前記直径被制御部分の直径寸法が拡大された直径寸法に選択的に拡大し、および生理学的条件下で前記拡大された直径寸法に維持されるように、前記内部人工器官を配置した後で前記内部人工器官に内部圧力を掛けることと、
を含む、方法。
(態様11)
前記内部圧力は、膨らませることができるバルーンによって掛けられる、態様10に記載の方法。
(態様12)
内部人工器官の性能を評価し、そして次に前記内部人工器官の前記直径寸法をin situでさらに拡大させることをさらに含む、態様10に記載の方法。
(態様13)
前記内部人工器官の前記部分を選択的に拡大させることは、血液が前記内部人工器官を通って流れることの増加となる、態様10に記載の方法。
(態様14)
前記内部人工器官を配置した後で少なくとも1つの圧力測定を行って、門脈と全身の静脈循環との間の圧力勾配を決定することをさらに含む、態様10~13のいずれか一項に記載の方法。
(態様15)
前記内部人工器官の前記直径被制御部分を選択的に拡張した後で少なくとも1つの圧力測定を行って患者の門脈と全身の静脈循環との間の圧力勾配を決定することと、前記内部人工器官の前記直径被制御部分を機械的に変化させて前記直径被制御部分を選択的にさらに拡張することと、をさらに含む、態様10~13のいずれか一項に記載の方法。
(態様16)
前記内部圧力は前記内部人工器官の前記直径被制御部分に適用されて、前記被制御拡張エレメントを変形させる、態様10~13のいずれか一項に記載の方法。
(態様17)
前記内部人工器官の前記直径被制御部分は、前記ステント-グラフトの全長未満で延びている、態様10~13のいずれか一項に記載の方法。
(態様18)
門脈圧亢進症を治療するための方法であって、
ステントと、第1グラフト部分と、前記第1グラフト部分の少なくとも一部に沿って延びている第2グラフト部分と、を含む内部人工器官を提供することであって、前記内部人工器官は管腔内に挿入されるための送達拘束部によって第1の直径寸法に拘束され、および前記送達拘束部が解放された場合に、第2の拡大された直径寸法に自己拡張するように構成されており、前記第2グラフト部分は、制限された直径への自己拡張によるさらなる直径の拡大を制限されている前記内部人工器官の直径被制御部分を画定していることと、
門脈および肝静脈中に前記内部人工器官を配置することと、
前記送達拘束部を解放することおよび前記内部人工器官を自己拡張可能にすることにより前記内部人工器官を前記第2の拡大された直径寸法に配置することであって、前記直径被制御部分は、生理学的条件下で前記制限された直径を維持することと、
前記内部人工器官の前記直径被制御部分に膨張力を掛けることによって、前記内部人工器官の前記直径被制御部分の少なくとも一部を調節された直径に直径方向で拡張させることを含む、in situで前記内部人工器官の直径の調節を行うことであって、前記内部人工器官の前記直径被制御部分は、生理学的条件下で前記調節された直径を維持することと、を含む、方法。
(態様19)
前記内部人工器官の前記直径被制御部分を直径方向で拡張させることは、門脈と全身の静脈循環との間の圧力勾配を低下させる、態様18に記載の方法。
(態様20)
前記内部人工器官の前記直径被制御部分を直径方向で拡張させることは、前記第2グラフト部分を変形させる、態様18に記載の方法。
(態様21)
少なくとも1つの圧力測定を行い、そして次にさらに前記内部人工器官の前記直径被制御部分を第2の拡大された直径に直径方向で拡張させること、をさらに含む、態様18に記載の方法。
(態様22)
前記内部人工器官の前記直径被制御部分を前記調節された直径より大きいさらに拡大された直径に直径方向で拡張させることをさらに含む、態様18に記載の方法。
(態様23)
前記内部人工器官の前記直径被制御部分を前記ステントおよび前記第1グラフト部分によって画定された最大直径拡張限界に直径方向で拡張させることをさらに含む、態様18に記載の方法。
(態様24)
前記内部人工器官の複数の直径の調節をin situで行うことをさらに含む、態様18に記載の方法。
(態様25)
前記内部人工器官は、裏地のついていない領域を含み、前記方法は前記門脈中に前記裏地のついていない領域を配置することをさらに含む、態様18に記載の方法。
(態様26)
門脈圧亢進症を治療するための方法であって、
シャントの形成の少なくとも24時間後に、少なくとも1つの圧力測定を行って、門脈と全身の静脈循環との間の内部人工器官によって形成された前記シャントから生じる圧力勾配を決定することであって、前記内部人工器官は、
少なくとも第1セグメントおよび第2セグメントを有する自己拡張性ステントと、
前記第1セグメント上のグラフト構成部分と、
を含み、機械的に調節できる被制御拡張エレメントによって前記グラフト構成部分の少なくとも一部は初期配置直径に維持されていることと、
前記被制御拡張エレメントによって前記初期配置直径に維持されている前記グラフト構成部分の少なくとも一部が前記被制御拡張エレメントによって拡大された直径に拡大されおよび維持されて前記圧力勾配を低下させるように、膨張力で前記被制御拡張エレメントを機械的に調節することによって前記被制御拡張エレメントの直径方向で拡張させることと、を含む、方法。
(態様27)
前記被制御拡張エレメントを直径方向で拡張させた後に少なくとも1つの圧力測定を行うこと、そして次に前記被制御拡張エレメントによって前記拡大された直径で維持されている前記グラフト構成部分の少なくとも一部が前記被制御拡張エレメントを前記圧力勾配に低下させることによってさらに拡大された直径にさらに拡大されおよび維持されるように、前記被制御拡張エレメントをさらに直径方向で拡張させることをさらに含む、態様26に記載の方法。
Various modifications and additions can be made to the exemplary embodiments described without leaving the scope of the invention. For example, although the above embodiments refer to specific features, the scope of the invention also includes embodiments having different combinations of features and embodiments that do not include all of the above features.
(Aspect)
(Aspect 1)
A stent-graft, including a stent and a base graft immobilized on the stent, and
A controlled expansion element with a continuous wall,
including,
An internal artificial organ with adjustable diameter
The base graft has first and second terminations, and the stent-graft is self-expandable and self-expanding, and the stent-graft has a maximum diameter expansion limit.
The controlled expansion element has an initial diameter expansion limit, and when placed under the expansion force in addition to the self-expansion force of the stent-graft, the initial diameter expansion limit and the maximum diameter expansion limit. It is adjustable to an adjusted diameter within the range of diameters between, and after removing the expanding force, the controlled expansion element is configured to maintain the adjusted diameter under physiological conditions. , And the stent-graft is an internal prosthesis configured to limit the range of diameter for the adjusted diameter to the maximum diameter expansion limit.
(Aspect 2)
During the expansion of the diameter of the internal prosthesis, the gliding interface between the controlled expansion element and the stent-graft is such that at least a portion of the controlled expansion element differs from the stent-graft at the gliding interface. The internal prosthesis of aspect 1, wherein the controlled expansion element defines the gliding interface with the stent-graft so that the longitudinal dimension can be varied at a rate .
(Aspect 3)
The internal prosthesis according to aspect 1, wherein the internal prosthesis has an medial lumen configured to carry body fluids, and further the base graft defines the medial lumen of the internal prosthesis. ..
(Aspect 4)
The internal prosthesis according to aspect 1, wherein at the initial diameter expansion limit, the controlled expansion element defines one or more tapers in diameter.
(Aspect 5)
The controlled expansion element has a first termination, a second termination, and a central portion between the first termination and the second termination, and further at the initial diameter expansion limit. The controlled expansion element has the first termination that tapers outward to a first diameter, the second termination that tapers outward to a second diameter, and the first. The internal artificial organ according to aspect 1, comprising the central portion having a diameter and a diameter smaller than the second diameter.
(Aspect 6)
The interior of aspect 1, wherein the controlled expansion element comprises a sleeve of a controlled expansion material that is deformed by the application of the expansion force and is configured to maintain the adjusted diameter under physiological conditions. Artificial organ.
(Aspect 7)
The base graft has a length, and the stent-graft includes a lined area and an unlined area, the lined area corresponding to the length of the graft, and said. The internal prosthesis according to aspect 1, wherein the unlined area remains uncovered.
(Aspect 8)
8. The internal prosthesis of aspect 8, wherein the stent comprises a section defining a chain link pattern, wherein the section corresponds to the unlined region of the stent-graft.
(Aspect 9)
A method for forming an intrahepatic portal vein venous shunt using the internal artificial organ according to any one of aspects 1 to 8.
Placing the internal prosthesis within the patient's liver in the delivery diameter dimension and
With the placement of the internal prosthesis such that the internal prosthesis self-expands to the initial diameter dilation limit in situ and is anchored to the liver of the patient to form an intrahepatic portal vein venous shunt. ,
At least a portion of the controlled expansion element selectively expands to an adjusted diameter below the maximum diameter expansion limit of the stent-graft, and the adjusted diameter is maintained under physiological conditions. After placing the internal prosthesis, applying internal pressure to the internal prosthesis,
Including, how.
(Aspect 10)
A method of forming an intrahepatic portal vein shunt,
To place the internal prosthesis in the patient's liver in the delivery diameter dimension, said internal prosthesis comprising a self-expandable stent-graft and a controlled dilation element.
By arranging the internal prosthesis such that the internal prosthesis self-expands and is anchored to the liver of the patient to form an intrahepatic portal vein venous shunt, the initial arranged diameter. The controlled expansion element limits the expansion of the diameter controlled portion of the internal prosthesis to the initially placed diameter dimension so that the dimensions are maintained under physiological conditions.
At least a portion of the controlled expansion element is mechanically altered and the diameter dimension of the diameter controlled portion of the internal prosthesis selectively expands to an expanded diameter dimension, and said expansion under physiological conditions. After placing the internal prosthesis, applying internal pressure to the internal prosthesis so that it is maintained at the desired diameter dimension,
Including, how.
(Aspect 11)
10. The method of aspect 10, wherein the internal pressure is applied by a balloon that can be inflated.
(Aspect 12)
10. The method of aspect 10, comprising assessing the performance of the internal prosthesis and then further expanding the diameter dimension of the internal prosthesis in situ.
(Aspect 13)
10. The method of aspect 10, wherein selectively enlarging the portion of the internal prosthesis results in increased flow of blood through the internal prosthesis.
(Aspect 14)
13. A section according to any one of embodiments 10-13, further comprising making at least one pressure measurement after placing the internal prosthesis to determine a pressure gradient between the portal vein and systemic venous circulation. the method of.
(Aspect 15)
After selectively expanding the diameter controlled portion of the internal prosthesis, at least one pressure measurement is performed to determine the pressure gradient between the patient's portal vein and systemic venous circulation, and the internal prosthesis. The method according to any one of aspects 10 to 13, further comprising mechanically varying the diameter controlled portion of the organ to selectively further expand the diameter controlled portion.
(Aspect 16)
13. The method of any one of embodiments 10-13, wherein the internal pressure is applied to the diameter controlled portion of the internal artificial organ to deform the controlled expansion element.
(Aspect 17)
The method of any one of aspects 10-13, wherein the diameter controlled portion of the internal prosthesis extends below the full length of the stent-graft.
(Aspect 18)
A method for treating portal hypertension,
To provide an internal prosthesis comprising a stent, a first graft portion, and a second graft portion extending along at least a portion of the first graft portion, wherein the internal prosthesis is a lumen. It is constrained to a first diameter dimension by a delivery restraint for insertion into, and is configured to self-expand to a second enlarged diameter dimension when the delivery restraint is released. The second graft portion defines a diameter controlled portion of the internal prosthesis that is restricted from further diameter expansion due to self-expansion to a restricted diameter.
Placing the internal prosthesis in the portal vein and hepatic vein,
By releasing the delivery restraint and making the internal prosthesis self-expandable, the internal prosthesis is placed in the second enlarged diameter dimension, the diameter controlled portion. Maintaining the restricted diameter under physiological conditions and
In situ, comprising applying an expansion force to the diameter controlled portion of the internal organ to diametrically expand at least a portion of the diameter controlled portion of the internal organ to a regulated diameter. A method comprising adjusting the diameter of the internal artificial organ, wherein the diameter controlled portion of the internal artificial organ maintains the adjusted diameter under physiological conditions.
(Aspect 19)
18. The method of aspect 18, wherein expanding the diameter controlled portion of the internal prosthesis in the diametrical direction reduces the pressure gradient between the portal vein and systemic venous circulation.
(Aspect 20)
18. The method of aspect 18, wherein expanding the diameter controlled portion of the internal prosthesis in the diametrical direction deforms the second graft portion.
(Aspect 21)
18. The method of aspect 18, further comprising making at least one pressure measurement and then diametrically expanding the diameter controlled portion of the internal prosthesis to a second enlarged diameter.
(Aspect 22)
18. The method of aspect 18, further comprising expanding the diameter controlled portion of the internal prosthesis in the diametrical direction to a further expanded diameter greater than the regulated diameter.
(Aspect 23)
18. The method of aspect 18, further comprising expanding the diameter controlled portion of the internal prosthesis in the radial direction to the maximum diameter expansion limit defined by the stent and the first graft portion.
(Aspect 24)
18. The method of aspect 18, further comprising adjusting a plurality of diameters of the internal prosthesis in situ.
(Aspect 25)
18. The method of aspect 18, wherein the internal prosthesis comprises an unlined area, wherein the method further comprises placing the unlined area in the portal vein.
(Aspect 26)
A method for treating portal hypertension,
At least 24 hours after the formation of the shunt, at least one pressure measurement is performed to determine the pressure gradient resulting from the shunt formed by the internal prosthesis between the portal vein and the systemic venous circulation. The internal artificial organ is
With a self-expandable stent having at least the first and second segments,
The graft component on the first segment and
At least a portion of the graft component is maintained at the initial placement diameter by a mechanically adjustable controlled expansion element.
At least a portion of the graft component maintained at the initial placement diameter by the controlled expansion element is expanded and maintained at the diameter expanded by the controlled expansion element to reduce the pressure gradient. A method comprising expanding in the radial direction of the controlled expansion element by mechanically adjusting the controlled expansion element with an expansion force.
(Aspect 27)
At least one pressure measurement is made after expanding the controlled expansion element in the radial direction, and then at least a portion of the graft component maintained at the expanded diameter by the controlled expansion element. 26 further comprises expanding the controlled expansion element further diametrically so that it is further expanded and maintained to a further expanded diameter by reducing the controlled expansion element to the pressure gradient. The method described.

Claims (17)

ステントと前記ステントに固定されたベースグラフトとを含むステント-グラフトと、
連続した壁を有する被制御拡張エレメントと、
を含む、
直径を調節可能な内部人工器官であって、
前記ベースグラフトは第1終端および第2終端を有し、ならびに前記ステント-グラフトは自己拡張性でありおよび自己拡張力を有し、前記ステント-グラフトは最大直径拡張限界を有し、
前記被制御拡張エレメントは、初期直径拡張限界を有し、および前記ステント-グラフトの前記自己拡張力に加えて拡張力下で配置された場合に前記初期直径拡張限界と前記最大直径拡張限界との間の直径の範囲内の調節された直径に調節可能であり、前記拡張力を除いた後で前記被制御拡張エレメントは生理的条件下で前記調節された直径を維持するように構成されており、および前記ステント-グラフトは、前記調節可能な直径の範囲の上限を前記最大直径拡張限界に制限するように構成されており、
前記内部人工器官の直径の拡張の間に、前記被制御拡張エレメントと前記ステント-グラフトとの間の滑走界面は、前記被制御拡張エレメントの少なくとも一部の縦寸法の変化の速度が前記滑走界面で前記ステント-グラフトの縦寸法の変化の速度と異なるように、前記被制御拡張エレメントは、前記ステント-グラフトで前記滑走界面を画定している、内部人工器官。
A stent-graft, including a stent and a base graft immobilized on the stent, and
A controlled expansion element with a continuous wall,
including,
An internal artificial organ with adjustable diameter
The base graft has first and second terminations, and the stent-graft is self-expandable and self-expanding, and the stent-graft has a maximum diameter expansion limit.
The controlled expansion element has an initial diameter expansion limit, and when placed under the expansion force in addition to the self-expansion force of the stent-graft, the initial diameter expansion limit and the maximum diameter expansion limit. It is adjustable to an adjusted diameter within the range of diameters between, and after removing the expanding force, the controlled expansion element is configured to maintain the adjusted diameter under physiological conditions. , And the stent-graft is configured to limit the upper limit of the adjustable diameter range to the maximum diameter expansion limit.
During the expansion of the diameter of the internal prosthesis, the gliding interface between the controlled expansion element and the stent-graft is such that the rate of change in the longitudinal dimension of at least a portion of the controlled expansion element is the gliding interface. The controlled expansion element is an internal prosthesis that defines the gliding interface at the stent-graft so that it differs from the rate of change in the longitudinal dimension of the stent-graft.
前記内部人工器官は生体体液を運ぶように構成された内側管腔を有し、およびさらに前記ベースグラフトは前記内部人工器官の前記内側管腔を画定している、請求項1に記載の内部人工器官。 The internal artificial organ according to claim 1, wherein the internal artificial organ has an inner lumen configured to carry biological fluid, and the base graft further defines the inner lumen of the internal artificial organ. organ. 前記初期直径拡張限界において前記被制御拡張エレメントは直径で1つまたは2つ以上のテーパーを画定する、請求項1に記載の内部人工器官。 The internal prosthesis of claim 1, wherein at the initial diameter expansion limit the controlled expansion element defines one or more tapers in diameter. 前記被制御拡張エレメントは、第1終端部と、第2終端部と、前記第1終端部と前記第2終端部との間の中央部とを有し、およびさらに前記初期直径拡張限界において前記被制御拡張エレメントは、第1の直径へ外側に向かってテーパーしている前記第1終端部と、第2の直径へ外側に向かってテーパーしている前記第2終端部と、前記第1の直径および第2の直径より小さい直径を有する前記中央部と含む、請求項1に記載の内部人工器官。 The controlled expansion element has a first termination, a second termination, a central portion between the first termination and the second termination, and further at the initial diameter expansion limit. The controlled expansion element has the first termination that tapers outward to a first diameter, the second termination that tapers outward to a second diameter, and the first. The internal artificial organ according to claim 1, comprising the central portion having a diameter and a diameter smaller than the second diameter. 前記被制御拡張エレメントは、前記拡張力の適用で変形し、および生理的条件で前記調節された直径を維持するように構成された制御された拡張材料のスリーブを含む、請求項1に記載の内部人工器官。 The controlled expansion element according to claim 1, wherein the controlled expansion element includes a sleeve of a controlled expansion material that is deformed by the application of the expansion force and is configured to maintain the adjusted diameter under physiological conditions. Internal artificial organ. 前記ベースグラフトは長さを有し、および前記ステント-グラフトは、裏地のついた領域および裏地のついていない領域を含み、前記ステント-グラフトの前記裏地のついた領域の長さは前記ベースグラフトの前記長さに相当し、および前記ステント-グラフトの前記裏地のついていない領域は覆いのないままである、請求項1に記載の内部人工器官。 The base graft has a length, and the stent-graft includes a lined area and an unlined area, and the length of the lined area of the stent-graft is that of the base graft. The internal prosthesis according to claim 1, wherein the unlined area of the stent-graft, which corresponds to the length, remains uncovered. 前記ステントは鎖リンクパターンを画定する区間を含み、前記区間は前記ステント-グラフトの前記裏地のついていない領域に相当する、請求項6に記載の内部人工器官。 The internal prosthesis of claim 6, wherein the stent comprises a section defining a chain link pattern, wherein the section corresponds to the unlined region of the stent-graft. 内部人工器官を製造する方法であって、
ステントをベースグラフトに固定してステント-グラフトを形成させることと、
前記ステント-グラフトに沿って被制御拡張エレメントを配置することと、
前記被制御拡張エレメントを前記ステント-グラフトに連結することと、
を含み、
前記ステント-グラフトは自己拡張性でありおよび自己拡張力を有し、前記ステント-グラフトは最大直径拡張限界を有し、
前記被制御拡張エレメントは、初期直径拡張限界を有し、および前記ステント-グラフトの前記自己拡張力に加えて拡張力下で配置された場合に前記初期直径拡張限界と前記最大直径拡張限界との間の直径の範囲内の調節された直径に調節可能であり、前記拡張力を除いた後で前記被制御拡張エレメントは生理的条件下で前記調節された直径を維持するように構成されており、
前記ステント-グラフトは、前記調節可能な直径の範囲の上限を前記最大直径拡張限界に制限するように構成されており、
前記内部人工器官の直径の拡張の間に、前記被制御拡張エレメントと前記ステント-グラフトとの間の滑走界面は、前記被制御拡張エレメントの少なくとも一部の縦寸法の変化の速度が前記滑走界面で前記ステント-グラフトの縦寸法の変化の速度と異なるように、前記被制御拡張エレメントは、前記ステント-グラフトで前記滑走界面を画定している、方法。
A method of manufacturing internal artificial organs
Fixing the stent to the base graft to form a stent-graft,
Placing a controlled expansion element along the stent-graft and
Connecting the controlled expansion element to the stent-graft and
Including
The stent-graft is self-expandable and has self-expanding power, and the stent-graft has a maximum diameter expansion limit.
The controlled expansion element has an initial diameter expansion limit, and when placed under the expansion force in addition to the self-expansion force of the stent-graft, the initial diameter expansion limit and the maximum diameter expansion limit. It is adjustable to an adjusted diameter within the range of diameters between, and after removing the expanding force, the controlled expansion element is configured to maintain the adjusted diameter under physiological conditions. ,
The stent-graft is configured to limit the upper limit of the adjustable diameter range to the maximum diameter expansion limit.
During the expansion of the diameter of the internal prosthesis, the gliding interface between the controlled expansion element and the stent-graft is such that the rate of change in the longitudinal dimension of at least a portion of the controlled expansion element is the gliding interface. The method in which the controlled expansion element defines the gliding interface with the stent-graft so as to be different from the rate of change in the longitudinal dimension of the stent-graft.
前記被制御拡張エレメントは、ベースグラフト部分内の中間層、前記ベースグラフト部分の外側の最外層、または前記ベースグラフト部分の内側の最内層である、請求項8に記載の方法。 The method of claim 8, wherein the controlled expansion element is an intermediate layer within the base graft portion, an outermost layer outside the base graft portion, or an innermost layer inside the base graft portion. 複数の被制御拡張エレメントは、以下の位置:ベースグラフト部分内の中間層、前記ベースグラフト部分の外側の最外層、または前記ベースグラフト部分の内側の最内層のいずれかに配置されている、請求項8に記載の方法。 The controlled expansion elements are located in one of the following locations: an intermediate layer within the base graft portion, an outermost layer outside the base graft portion, or an innermost layer inside the base graft portion. Item 8. The method according to Item 8. 前記被制御拡張エレメントは、前記内部人工器官のベースグラフト部分の少なくとも一部中に取り込まれているか、または前記内部人工器官の前記ベースグラフト部分の少なくとも一部の下にあるか、または前記内部人工器官の前記ベースグラフト部分の少なくとも一部の上にある、請求項8に記載の方法。 The controlled expansion element is incorporated into at least a portion of the base graft portion of the internal prosthesis, or is below at least a portion of the base graft portion of the internal prosthesis, or the internal prosthesis. 8. The method of claim 8, which is on at least a portion of the base graft portion of the organ. 前記被制御拡張エレメントは、機械的嵌合によって前記ステント-グラフトに連結されている、請求項8に記載の方法。 8. The method of claim 8, wherein the controlled expansion element is coupled to the stent-graft by mechanical fitting. 前記ステント-グラフトおよび被制御拡張エレメントは、第1の直径から初期直径拡張限界に前記被制御拡張エレメントを機械的に調節することによって連結されており、前記第1の直径は前記初期直径拡張限界より小さい、請求項8に記載の方法。 The stent-graft and the controlled expansion element are linked from the first diameter to the initial diameter expansion limit by mechanically adjusting the controlled expansion element, the first diameter being the initial diameter expansion limit. The method of claim 8, which is smaller. 直径を調節可能な内部人工器官を製造するための方法であって、
自己拡張性であるステントをベースグラフトに固定してステント-グラフトを形成させることと、
前記ステント-グラフトの一部の周りに連続した壁を有する被制御拡張エレメントを配置することと、
前記ステント-グラフトに前記被制御拡張エレメントを連結することと、
を含み、
前記ステント-グラフトは自己拡張性でありおよび自己拡張力を有し、前記ステント-グラフトは最大直径拡張限界を有し、
前記被制御拡張エレメントは、初期直径拡張限界を有し、および前記ステント-グラフトの前記自己拡張力に加えて拡張力下で配置された場合に前記初期直径拡張限界と前記最大直径拡張限界との間の直径の範囲内の調節された直径に調節可能であり、前記拡張力を除いた後で前記被制御拡張エレメントは生理的条件下で前記調節された直径を維持するように構成されており、
前記ステント-グラフトは、前記調節可能な直径の範囲の上限を前記最大直径拡張限界に制限するように構成されており、
前記内部人工器官の直径の拡張の間に、前記被制御拡張エレメントと前記ステント-グラフトとの間の滑走界面は、前記被制御拡張エレメントの少なくとも一部の縦寸法の変化の速度が前記滑走界面で前記ステント-グラフトの縦寸法の変化の速度と異なるように、前記被制御拡張エレメントは、前記ステント-グラフトで前記滑走界面を画定している、方法。
A method for producing internal artificial organs with adjustable diameters,
Fixing a self-expanding stent to the base graft to form a stent-graft,
Placing a controlled expansion element with a continuous wall around a portion of the stent-graft and
Connecting the controlled expansion element to the stent-graft and
Including
The stent-graft is self-expandable and has self-expanding power, and the stent-graft has a maximum diameter expansion limit.
The controlled expansion element has an initial diameter expansion limit, and when placed under the expansion force in addition to the self-expansion force of the stent-graft, the initial diameter expansion limit and the maximum diameter expansion limit. It is adjustable to an adjusted diameter within the range of diameters between, and after removing the expanding force, the controlled expansion element is configured to maintain the adjusted diameter under physiological conditions. ,
The stent-graft is configured to limit the upper limit of the adjustable diameter range to the maximum diameter expansion limit.
During the expansion of the diameter of the internal prosthesis, the gliding interface between the controlled expansion element and the stent-graft is such that the rate of change in the longitudinal dimension of at least a portion of the controlled expansion element is the gliding interface. The method in which the controlled expansion element defines the gliding interface with the stent-graft so as to be different from the rate of change in the longitudinal dimension of the stent-graft.
前記ステント-グラフトに前記被制御拡張エレメントを連結することは、前記内部人工器官が拘束されていない状態で自己拡張する直径に対応する初期直径拡張限界に前記被制御拡張エレメントを機械的に調節することを含む、請求項14に記載の方法。 Connecting the controlled expansion element to the stent-graft mechanically adjusts the controlled expansion element to an initial diameter expansion limit corresponding to a diameter that self-expands without restraining the internal prosthesis. The method according to claim 14, comprising the above. 前記ベースグラフトは、結晶溶融温度を有する延伸PTFEを含み、およびさらに前記被制御拡張エレメントをステントーグラフト構成部分に連結する工程は、前記結晶溶融温度より低い温度で行われる、請求項14に記載の方法。 14. The step of connecting the controlled expansion element to the stent-graft component is performed at a temperature lower than the crystal melting temperature, wherein the base graft comprises a stretched PTFE having a crystal melting temperature. the method of. 前記ステント-グラフトと被制御拡張エレメントとの間の前記滑走界面の1つまたは2つ以上の部分は、前記内部人工器官の拡張の間に縦の収縮差を防ぐ様式で結合されていないか、または前記内部人工器官の拡張の間に縦の収縮差を防ぐ様式で取り付けられていない、請求項14に記載の方法。 One or more portions of the gliding interface between the stent-graft and the controlled expansion element are not coupled in a manner that prevents longitudinal contraction differences during expansion of the internal prosthesis. 14. The method of claim 14, which is not attached in a manner that prevents longitudinal contraction differences during expansion of the internal prosthesis.
JP2018555257A 2016-04-21 2016-04-21 Adjustable diameter endoprosthesis and related systems and methods Active JP7248430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021122433A JP7248749B2 (en) 2016-04-21 2021-07-27 Adjustable diameter endoprosthesis and related systems and methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2016/028671 WO2017184153A1 (en) 2016-04-21 2016-04-21 Diametrically adjustable endoprostheses and associated systems and methods

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021122433A Division JP7248749B2 (en) 2016-04-21 2021-07-27 Adjustable diameter endoprosthesis and related systems and methods

Publications (4)

Publication Number Publication Date
JP2019514493A JP2019514493A (en) 2019-06-06
JP2019514493A5 JP2019514493A5 (en) 2020-12-03
JPWO2017184153A5 true JPWO2017184153A5 (en) 2022-06-09
JP7248430B2 JP7248430B2 (en) 2023-03-29

Family

ID=60116284

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018555257A Active JP7248430B2 (en) 2016-04-21 2016-04-21 Adjustable diameter endoprosthesis and related systems and methods
JP2021122433A Active JP7248749B2 (en) 2016-04-21 2021-07-27 Adjustable diameter endoprosthesis and related systems and methods

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021122433A Active JP7248749B2 (en) 2016-04-21 2021-07-27 Adjustable diameter endoprosthesis and related systems and methods

Country Status (8)

Country Link
US (2) US11229512B2 (en)
EP (2) EP4233806A3 (en)
JP (2) JP7248430B2 (en)
CN (1) CN109069257B (en)
AU (1) AU2016403450B2 (en)
CA (1) CA3021860C (en)
ES (1) ES2956016T3 (en)
WO (1) WO2017184153A1 (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10166128B2 (en) 2011-01-14 2019-01-01 W. L. Gore & Associates. Inc. Lattice
US9839540B2 (en) 2011-01-14 2017-12-12 W. L. Gore & Associates, Inc. Stent
US9283072B2 (en) 2012-07-25 2016-03-15 W. L. Gore & Associates, Inc. Everting transcatheter valve and methods
US9931193B2 (en) 2012-11-13 2018-04-03 W. L. Gore & Associates, Inc. Elastic stent graft
US9101469B2 (en) 2012-12-19 2015-08-11 W. L. Gore & Associates, Inc. Prosthetic heart valve with leaflet shelving
US9968443B2 (en) 2012-12-19 2018-05-15 W. L. Gore & Associates, Inc. Vertical coaptation zone in a planar portion of prosthetic heart valve leaflet
US9144492B2 (en) 2012-12-19 2015-09-29 W. L. Gore & Associates, Inc. Truncated leaflet for prosthetic heart valves, preformed valve
US10842918B2 (en) 2013-12-05 2020-11-24 W.L. Gore & Associates, Inc. Length extensible implantable device and methods for making such devices
US9827094B2 (en) 2014-09-15 2017-11-28 W. L. Gore & Associates, Inc. Prosthetic heart valve with retention elements
CA3021860C (en) * 2016-04-21 2021-06-08 W. L. Gore & Associates, Inc. Diametrically adjustable endoprostheses and associated systems and methods
US10595874B2 (en) 2017-09-21 2020-03-24 W. L. Gore & Associates, Inc. Multiple inflation endovascular medical device
CA3178271A1 (en) 2017-09-27 2019-04-04 W.L. Gore & Associates, Inc. Prosthetic valve with expandable frame and associated systems and methods
DE102017123461A1 (en) * 2017-10-10 2019-04-11 Jotec Gmbh Expandable vascular implant
US20190117369A1 (en) * 2017-10-25 2019-04-25 Cook Medical Technologies Llc Layered cover material and method of use thereof
CN111417361B (en) 2017-12-01 2023-08-11 C·R·巴德股份有限公司 Adjustable vascular grafts for customized inside diameter reduction and related methods
WO2019209745A1 (en) * 2018-04-23 2019-10-31 Boston Scientific Scimed, Inc. Stent with selectively covered region
US20200121845A1 (en) * 2018-10-19 2020-04-23 Stan Batiste AV Flow Restrictors
IT201900000981A1 (en) * 2019-01-23 2020-07-23 Giancarlo Salsano ENDOVASCULAR DEVICE FOR DYSFUNCTIONAL FISTULAS
EP3917450A4 (en) * 2019-01-31 2022-10-26 Becton, Dickinson and Company Mixed-frame intraluminal prosthesis and methods thereof
US10702407B1 (en) 2019-02-28 2020-07-07 Renata Medical, Inc. Growth stent for congenital narrowings
US11497601B2 (en) 2019-03-01 2022-11-15 W. L. Gore & Associates, Inc. Telescoping prosthetic valve with retention element
CN109953780A (en) * 2019-04-30 2019-07-02 靖海岭 A kind of TIPS operation inlays overlay film frame with sacculus
CN110215313B (en) * 2019-06-13 2021-03-09 吉林大学 Cardiovascular blood vessel support system
EP4093324A1 (en) 2020-01-20 2022-11-30 Angiomed GmbH & Co. Medizintechnik KG Stent graft and kit
CN111643221A (en) * 2020-06-16 2020-09-11 郑州大学第一附属医院 Intrahepatic portosystemic shunt bracket with diameter capable of being automatically adjusted
CN113208791B (en) * 2021-04-28 2022-05-10 聚辉医疗科技(深圳)有限公司 Conveyor and blood flow guiding bracket system
CN112972082A (en) * 2021-05-12 2021-06-18 上海微创心脉医疗科技(集团)股份有限公司 Medical support
CN113397762B (en) * 2021-05-31 2022-02-08 上海心瑞医疗科技有限公司 Atrium shunting implantation device
CN117357316B (en) * 2023-12-06 2024-02-20 苏州美创医疗科技有限公司 Tectorial membrane bracket and manufacturing method thereof

Family Cites Families (210)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE392582B (en) 1970-05-21 1977-04-04 Gore & Ass PROCEDURE FOR THE PREPARATION OF A POROST MATERIAL, BY EXPANDING AND STRETCHING A TETRAFLUORETENE POLYMER PREPARED IN AN PASTE-FORMING EXTENSION PROCEDURE
US3962153A (en) 1970-05-21 1976-06-08 W. L. Gore & Associates, Inc. Very highly stretched polytetrafluoroethylene and process therefor
US3953556A (en) 1973-01-12 1976-04-27 The United States Of America As Represented By The United States Energy Research And Development Administration Method of preparing uranium nitride or uranium carbonitride bodies
US4096227A (en) 1973-07-03 1978-06-20 W. L. Gore & Associates, Inc. Process for producing filled porous PTFE products
CA1147109A (en) 1978-11-30 1983-05-31 Hiroshi Mano Porous structure of polytetrafluoroethylene and process for production thereof
US5071609A (en) 1986-11-26 1991-12-10 Baxter International Inc. Process of manufacturing porous multi-expanded fluoropolymers
US4816339A (en) 1987-04-28 1989-03-28 Baxter International Inc. Multi-layered poly(tetrafluoroethylene)/elastomer materials useful for in vivo implantation
US4877661A (en) 1987-10-19 1989-10-31 W. L. Gore & Associates, Inc. Rapidly recoverable PTFE and process therefore
GB2211190A (en) 1987-10-19 1989-06-28 Gore & Ass Rapid recoverable ptfe and a process for its manufacture
US5026513A (en) 1987-10-19 1991-06-25 W. L. Gore & Associates, Inc. Process for making rapidly recoverable PTFE
US4902423A (en) 1989-02-02 1990-02-20 W. L. Gore & Associates, Inc. Highly air permeable expanded polytetrafluoroethylene membranes and process for making them
US4955899A (en) 1989-05-26 1990-09-11 Impra, Inc. Longitudinally compliant vascular graft
US5064435A (en) 1990-06-28 1991-11-12 Schneider (Usa) Inc. Self-expanding prosthesis having stable axial length
US6128068A (en) 1991-02-22 2000-10-03 Canon Kabushiki Kaisha Projection exposure apparatus including an illumination optical system that forms a secondary light source with a particular intensity distribution
US5342305A (en) 1992-08-13 1994-08-30 Cordis Corporation Variable distention angioplasty balloon assembly
US5628782A (en) 1992-12-11 1997-05-13 W. L. Gore & Associates, Inc. Method of making a prosthetic vascular graft
DE69424569T2 (en) 1993-01-25 2001-01-18 Daikin Ind Ltd Porous film made of polytetrafluoroethylene
CA2169549C (en) 1993-08-18 2000-07-11 James D. Lewis A tubular intraluminal graft
US6027779A (en) 1993-08-18 2000-02-22 W. L. Gore & Associates, Inc. Thin-wall polytetrafluoroethylene tube
AU8012394A (en) 1993-10-01 1995-05-01 Emory University Self-expanding intraluminal composite prosthesis
US5549663A (en) 1994-03-09 1996-08-27 Cordis Corporation Endoprosthesis having graft member and exposed welded end junctions, method and procedure
ES2216015T3 (en) 1994-05-06 2004-10-16 Bard Peripheral Vascular, Inc. SET FOR THE TREATMENT OF A GLASS OF THE BODY.
US6013854A (en) 1994-06-17 2000-01-11 Terumo Kabushiki Kaisha Indwelling stent and the method for manufacturing the same
CA2183350C (en) 1994-09-02 1999-04-27 Phillip A. Branca Porous polytetrafluoroethylene compositions
AU4596196A (en) 1994-09-02 1996-03-27 W.L. Gore & Associates, Inc. An asymmetrical porous PTFE form and metod of making
CA2301351C (en) 1994-11-28 2002-01-22 Advanced Cardiovascular Systems, Inc. Method and apparatus for direct laser cutting of metal stents
US6896696B2 (en) 1998-11-20 2005-05-24 Scimed Life Systems, Inc. Flexible and expandable stent
US5476589A (en) 1995-03-10 1995-12-19 W. L. Gore & Associates, Inc. Porpous PTFE film and a manufacturing method therefor
US6451047B2 (en) 1995-03-10 2002-09-17 Impra, Inc. Encapsulated intraluminal stent-graft and methods of making same
US5534007A (en) 1995-05-18 1996-07-09 Scimed Life Systems, Inc. Stent deployment catheter with collapsible sheath
US5766201A (en) 1995-06-07 1998-06-16 Boston Scientific Corporation Expandable catheter
US5814405A (en) 1995-08-04 1998-09-29 W. L. Gore & Associates, Inc. Strong, air permeable membranes of polytetrafluoroethylene
US5752934A (en) 1995-09-18 1998-05-19 W. L. Gore & Associates, Inc. Balloon catheter device
US20060271091A1 (en) 1995-09-18 2006-11-30 Campbell Carey V Balloon catheter device
US5868704A (en) 1995-09-18 1999-02-09 W. L. Gore & Associates, Inc. Balloon catheter device
US6193745B1 (en) 1995-10-03 2001-02-27 Medtronic, Inc. Modular intraluminal prosteheses construction and methods
US5824037A (en) * 1995-10-03 1998-10-20 Medtronic, Inc. Modular intraluminal prostheses construction and methods
US6689162B1 (en) 1995-10-11 2004-02-10 Boston Scientific Scimed, Inc. Braided composite prosthesis
US5788626A (en) 1995-11-21 1998-08-04 Schneider (Usa) Inc Method of making a stent-graft covered with expanded polytetrafluoroethylene
US6042605A (en) 1995-12-14 2000-03-28 Gore Enterprose Holdings, Inc. Kink resistant stent-graft
US5843158A (en) 1996-01-05 1998-12-01 Medtronic, Inc. Limited expansion endoluminal prostheses and methods for their use
US5747128A (en) 1996-01-29 1998-05-05 W. L. Gore & Associates, Inc. Radially supported polytetrafluoroethylene vascular graft
JPH09241412A (en) 1996-03-07 1997-09-16 Sumitomo Electric Ind Ltd Drawn polytetrafluoroethylene tube and its production
US5843161A (en) 1996-06-26 1998-12-01 Cordis Corporation Endoprosthesis assembly for percutaneous deployment and method of deploying same
US5769884A (en) 1996-06-27 1998-06-23 Cordis Corporation Controlled porosity endovascular implant
US5749852A (en) 1996-07-23 1998-05-12 Medtronic, Inc. Sheath system for autoperfusion dilatation catheter balloon
US6174329B1 (en) 1996-08-22 2001-01-16 Advanced Cardiovascular Systems, Inc. Protective coating for a stent with intermediate radiopaque coating
US6261320B1 (en) 1996-11-21 2001-07-17 Radiance Medical Systems, Inc. Radioactive vascular liner
US6315791B1 (en) 1996-12-03 2001-11-13 Atrium Medical Corporation Self-expanding prothesis
US6010529A (en) 1996-12-03 2000-01-04 Atrium Medical Corporation Expandable shielded vessel support
US5925061A (en) 1997-01-13 1999-07-20 Gore Enterprise Holdings, Inc. Low profile vascular stent
US5957974A (en) 1997-01-23 1999-09-28 Schneider (Usa) Inc Stent graft with braided polymeric sleeve
US5853419A (en) 1997-03-17 1998-12-29 Surface Genesis, Inc. Stent
CA2424551A1 (en) 1997-05-27 1998-11-27 Schneider (Usa) Inc. Stent and stent-graft for treating branched vessels
US6203536B1 (en) 1997-06-17 2001-03-20 Medtronic, Inc. Medical device for delivering a therapeutic substance and method therefor
US6500174B1 (en) 1997-07-08 2002-12-31 Atrionix, Inc. Circumferential ablation device assembly and methods of use and manufacture providing an ablative circumferential band along an expandable member
US6042606A (en) 1997-09-29 2000-03-28 Cook Incorporated Radially expandable non-axially contracting surgical stent
US6161399A (en) 1997-10-24 2000-12-19 Iowa-India Investments Company Limited Process for manufacturing a wire reinforced monolayer fabric stent
US5931865A (en) 1997-11-24 1999-08-03 Gore Enterprise Holdings, Inc. Multiple-layered leak resistant tube
US6626939B1 (en) 1997-12-18 2003-09-30 Boston Scientific Scimed, Inc. Stent-graft with bioabsorbable structural support
US6190406B1 (en) 1998-01-09 2001-02-20 Nitinal Development Corporation Intravascular stent having tapered struts
US6488701B1 (en) 1998-03-31 2002-12-03 Medtronic Ave, Inc. Stent-graft assembly with thin-walled graft component and method of manufacture
US6042588A (en) 1998-03-03 2000-03-28 Scimed Life Systems, Inc Stent delivery system
US5935162A (en) 1998-03-16 1999-08-10 Medtronic, Inc. Wire-tubular hybrid stent
JP4222655B2 (en) 1998-04-06 2009-02-12 ジャパンゴアテックス株式会社 Medical tube
US6224627B1 (en) 1998-06-15 2001-05-01 Gore Enterprise Holdings, Inc. Remotely removable covering and support
US6217609B1 (en) * 1998-06-30 2001-04-17 Schneider (Usa) Inc Implantable endoprosthesis with patterned terminated ends and methods for making same
US6156064A (en) * 1998-08-14 2000-12-05 Schneider (Usa) Inc Stent-graft-membrane and method of making the same
US7815763B2 (en) 2001-09-28 2010-10-19 Abbott Laboratories Vascular Enterprises Limited Porous membranes for medical implants and methods of manufacture
US6755856B2 (en) 1998-09-05 2004-06-29 Abbott Laboratories Vascular Enterprises Limited Methods and apparatus for stenting comprising enhanced embolic protection, coupled with improved protection against restenosis and thrombus formation
NO984143L (en) 1998-09-09 2000-03-10 Norsk Hydro As New process for producing surface modifying substances
US6336937B1 (en) 1998-12-09 2002-01-08 Gore Enterprise Holdings, Inc. Multi-stage expandable stent-graft
US6350277B1 (en) 1999-01-15 2002-02-26 Scimed Life Systems, Inc. Stents with temporary retaining bands
US7049380B1 (en) 1999-01-19 2006-05-23 Gore Enterprise Holdings, Inc. Thermoplastic copolymer of tetrafluoroethylene and perfluoromethyl vinyl ether and medical devices employing the copolymer
US6673102B1 (en) 1999-01-22 2004-01-06 Gore Enterprises Holdings, Inc. Covered endoprosthesis and delivery system
DE60027999T2 (en) * 1999-01-22 2007-04-26 Gore Enterprise Holdings, Inc., Newark COVERED ENDOPROTHESIS
WO2000047271A1 (en) * 1999-02-11 2000-08-17 Gore Enterprise Holdings, Inc. Multiple-layered leak-resistant tube
US6245012B1 (en) 1999-03-19 2001-06-12 Nmt Medical, Inc. Free standing filter
GB2352205A (en) 1999-06-28 2001-01-24 Nestle Sa Chilled roller for moulding a food product
US6890350B1 (en) 1999-07-28 2005-05-10 Scimed Life Systems, Inc. Combination self-expandable, balloon-expandable endoluminal device
US6673107B1 (en) 1999-12-06 2004-01-06 Advanced Cardiovascular Systems, Inc. Bifurcated stent and method of making
US6740962B1 (en) 2000-02-24 2004-05-25 Micron Technology, Inc. Tape stiffener, semiconductor device component assemblies including same, and stereolithographic methods for fabricating same
US6756094B1 (en) 2000-02-28 2004-06-29 Scimed Life Systems, Inc. Balloon structure with PTFE component
US6379382B1 (en) 2000-03-13 2002-04-30 Jun Yang Stent having cover with drug delivery capability
US6436132B1 (en) 2000-03-30 2002-08-20 Advanced Cardiovascular Systems, Inc. Composite intraluminal prostheses
US6352552B1 (en) 2000-05-02 2002-03-05 Scion Cardio-Vascular, Inc. Stent
US7419678B2 (en) 2000-05-12 2008-09-02 Cordis Corporation Coated medical devices for the prevention and treatment of vascular disease
US8252044B1 (en) 2000-11-17 2012-08-28 Advanced Bio Prosthestic Surfaces, Ltd. Device for in vivo delivery of bioactive agents and method of manufacture thereof
US6554841B1 (en) 2000-09-22 2003-04-29 Scimed Life Systems, Inc. Striped sleeve for stent delivery
US8690910B2 (en) 2000-12-07 2014-04-08 Integrated Vascular Systems, Inc. Closure device and methods for making and using them
DE10061936A1 (en) 2000-12-13 2002-07-04 Valentin Kramer Object from ePTFE and method of manufacturing the same
US7083642B2 (en) 2000-12-22 2006-08-01 Avantec Vascular Corporation Delivery of therapeutic capable agents
US20020161388A1 (en) 2001-02-27 2002-10-31 Samuels Sam L. Elastomeric balloon support fabric
US6716239B2 (en) 2001-07-03 2004-04-06 Scimed Life Systems, Inc. ePTFE graft with axial elongation properties
US20030055494A1 (en) 2001-07-27 2003-03-20 Deon Bezuidenhout Adventitial fabric reinforced porous prosthetic graft
US7288105B2 (en) 2001-08-01 2007-10-30 Ev3 Endovascular, Inc. Tissue opening occluder
US20030045923A1 (en) 2001-08-31 2003-03-06 Mehran Bashiri Hybrid balloon expandable/self expanding stent
US6827737B2 (en) 2001-09-25 2004-12-07 Scimed Life Systems, Inc. EPTFE covering for endovascular prostheses and method of manufacture
JP4398244B2 (en) 2001-10-04 2010-01-13 ネオヴァスク メディカル リミテッド Flow reduction implant
US6541589B1 (en) 2001-10-15 2003-04-01 Gore Enterprise Holdings, Inc. Tetrafluoroethylene copolymer
US6946173B2 (en) 2002-03-21 2005-09-20 Advanced Cardiovascular Systems, Inc. Catheter balloon formed of ePTFE and a diene polymer
CA2480021A1 (en) 2002-03-25 2003-10-09 Nmt Medical, Inc. Patent foramen ovale (pfo) closure clips
US7789908B2 (en) 2002-06-25 2010-09-07 Boston Scientific Scimed, Inc. Elastomerically impregnated ePTFE to enhance stretch and recovery properties for vascular grafts and coverings
US20040024448A1 (en) 2002-08-05 2004-02-05 Chang James W. Thermoplastic fluoropolymer-coated medical devices
EP1550477B1 (en) 2002-08-23 2015-11-04 National Cerebral and Cardiovascular Center Stent and process for producing the same
US7273492B2 (en) 2002-08-27 2007-09-25 Advanced Cardiovascular Systems Inc. Stent for treating vulnerable plaque
US6878162B2 (en) 2002-08-30 2005-04-12 Edwards Lifesciences Ag Helical stent having improved flexibility and expandability
CA2499961C (en) 2002-09-26 2014-12-30 Advanced Bio Prosthetic Surfaces, Ltd. High strength vacuum deposited nitinol alloy films, medical thin film graft materials and method of making same
US7001425B2 (en) 2002-11-15 2006-02-21 Scimed Life Systems, Inc. Braided stent method for its manufacture
US7105018B1 (en) 2002-12-30 2006-09-12 Advanced Cardiovascular Systems, Inc. Drug-eluting stent cover and method of use
US9125733B2 (en) 2003-01-14 2015-09-08 The Cleveland Clinic Foundation Branched vessel endoluminal device
US20070207816A1 (en) 2003-02-24 2007-09-06 Polaris Wireless, Inc. Location Estimation of Wireless Terminals Based on Combinations of Signal-Strength Measurements and Geometry-of-Arrival Measurements
US7011646B2 (en) 2003-06-24 2006-03-14 Advanced Cardiovascular Systems, Inc. Balloon catheter having a balloon with a thickened wall portion
US7967829B2 (en) 2003-10-09 2011-06-28 Boston Scientific Scimed, Inc. Medical device delivery system
US7763011B2 (en) 2003-12-22 2010-07-27 Boston Scientific Scimed, Inc. Variable density braid stent
EP1725186B1 (en) * 2004-03-02 2016-05-25 Boston Scientific Scimed, Inc. Medical devices including metallic films and methods for making same
US20050273149A1 (en) 2004-06-08 2005-12-08 Tran Thomas T Bifurcated stent delivery system
US7794490B2 (en) 2004-06-22 2010-09-14 Boston Scientific Scimed, Inc. Implantable medical devices with antimicrobial and biodegradable matrices
US20060009835A1 (en) 2004-07-07 2006-01-12 Osborne Thomas A Graft, stent graft and method
US8308789B2 (en) 2004-07-16 2012-11-13 W. L. Gore & Associates, Inc. Deployment system for intraluminal devices
US7763065B2 (en) * 2004-07-21 2010-07-27 Reva Medical, Inc. Balloon expandable crush-recoverable stent device
CN2768714Y (en) * 2004-11-22 2006-04-05 微创医疗器械(上海)有限公司 Flexible blood vessel stent
US8029563B2 (en) 2004-11-29 2011-10-04 Gore Enterprise Holdings, Inc. Implantable devices with reduced needle puncture site leakage
US8262720B2 (en) 2004-12-02 2012-09-11 Nitinol Development Corporation Prosthesis comprising dual tapered stent
US20060135985A1 (en) 2004-12-21 2006-06-22 Cox Daniel L Vulnerable plaque modification methods and apparatuses
US20060161241A1 (en) 2005-01-14 2006-07-20 Denise Barbut Methods and devices for treating aortic atheroma
US20060190070A1 (en) 2005-02-23 2006-08-24 Dieck Martin S Rail stent and methods of use
US20060276883A1 (en) 2005-06-01 2006-12-07 Cook Incorporated Tapered and distally stented elephant trunk stent graft
US7531611B2 (en) 2005-07-05 2009-05-12 Gore Enterprise Holdings, Inc. Copolymers of tetrafluoroethylene
US7306729B2 (en) 2005-07-18 2007-12-11 Gore Enterprise Holdings, Inc. Porous PTFE materials and articles produced therefrom
CA2619363C (en) 2005-08-17 2014-07-15 C.R. Bard, Inc. Variable speed stent delivery system
WO2007044929A1 (en) 2005-10-14 2007-04-19 Gore Enterprise Holdings, Inc. Device for deploying an implantable medical device
US8956400B2 (en) 2005-10-14 2015-02-17 Flexible Stenting Solutions, Inc. Helical stent
US7862607B2 (en) 2005-12-30 2011-01-04 C. R. Bard, Inc. Stent with bio-resorbable connector and methods
US9681948B2 (en) 2006-01-23 2017-06-20 V-Wave Ltd. Heart anchor device
ATE447370T1 (en) 2006-02-24 2009-11-15 Nat Univ Ireland MINIMAL INVASIVE INTRAVASCULAR TREATMENT DEVICE
CA2643720A1 (en) 2006-02-28 2007-09-07 Debra A. Bebb Flexible stretch stent-graft
US8025693B2 (en) 2006-03-01 2011-09-27 Boston Scientific Scimed, Inc. Stent-graft having flexible geometries and methods of producing the same
US8585753B2 (en) 2006-03-04 2013-11-19 John James Scanlon Fibrillated biodegradable prosthesis
US8721704B2 (en) 2006-04-21 2014-05-13 W. L. Gore & Associates, Inc. Expandable stent with wrinkle-free elastomeric cover
US8425584B2 (en) 2006-04-21 2013-04-23 W. L. Gore & Associates, Inc. Expandable covered stent with wide range of wrinkle-free deployed diameters
US20070254012A1 (en) 2006-04-28 2007-11-01 Ludwig Florian N Controlled degradation and drug release in stents
US9114194B2 (en) 2006-05-12 2015-08-25 W. L. Gore & Associates, Inc. Immobilized biologically active entities having high biological activity following mechanical manipulation
US20080140173A1 (en) 2006-08-07 2008-06-12 Sherif Eskaros Non-shortening wrapped balloon
US7785290B2 (en) 2006-08-07 2010-08-31 Gore Enterprise Holdings, Inc. Non-shortening high angle wrapped balloons
US8882826B2 (en) 2006-08-22 2014-11-11 Abbott Cardiovascular Systems Inc. Intravascular stent
EP2063824B1 (en) 2006-09-07 2020-10-28 Angiomed GmbH & Co. Medizintechnik KG Helical implant having different ends
US8769794B2 (en) 2006-09-21 2014-07-08 Mico Innovations, Llc Specially configured and surface modified medical device with certain design features that utilize the intrinsic properties of tungsten, zirconium, tantalum and/or niobium
US20080097401A1 (en) 2006-09-22 2008-04-24 Trapp Benjamin M Cerebral vasculature device
US20080097582A1 (en) 2006-10-18 2008-04-24 Conor Medsystems, Inc. Stent with flexible hinges
US8545545B2 (en) 2006-10-18 2013-10-01 Innovational Holdings Llc Stent with flexible hinges
US9622888B2 (en) 2006-11-16 2017-04-18 W. L. Gore & Associates, Inc. Stent having flexibly connected adjacent stent elements
US7967853B2 (en) 2007-02-05 2011-06-28 Boston Scientific Scimed, Inc. Percutaneous valve, system and method
EP2114303A4 (en) 2007-02-09 2012-08-08 Taheri Laduca Llc Vascular implants and methods of fabricating the same
US8057531B2 (en) 2007-06-29 2011-11-15 Abbott Cardiovascular Systems Inc. Stent having circumferentially deformable struts
US7988723B2 (en) 2007-08-02 2011-08-02 Flexible Stenting Solutions, Inc. Flexible stent
US8679519B2 (en) 2007-10-23 2014-03-25 Abbott Cardiovascular Systems Inc. Coating designs for the tailored release of dual drugs from polymeric coatings
US8317857B2 (en) 2008-01-10 2012-11-27 Telesis Research, Llc Biodegradable self-expanding prosthesis
US8926688B2 (en) 2008-01-11 2015-01-06 W. L. Gore & Assoc. Inc. Stent having adjacent elements connected by flexible webs
WO2009100210A1 (en) 2008-02-05 2009-08-13 Silk Road Medical, Inc. Interventional catheter system and methods
WO2009108355A1 (en) 2008-02-28 2009-09-03 Medtronic, Inc. Prosthetic heart valve systems
EP2106820A1 (en) 2008-03-31 2009-10-07 Torsten Heilmann Expansible biocompatible coats comprising a biologically active substance
ES2389274T3 (en) 2008-07-17 2012-10-24 W.L. Gore & Associates Gmbh Polymer coating containing a complex of an ionic fluoropolyether and a counterionic agent
KR20110056539A (en) 2008-09-10 2011-05-30 이브이쓰리 인크. Stents and catheters having improved stent deployment
US9149376B2 (en) 2008-10-06 2015-10-06 Cordis Corporation Reconstrainable stent delivery system
CN102245132A (en) 2008-10-10 2011-11-16 奥巴斯尼茨医学公司 Bioabsorbable polymeric medical device
US8470013B2 (en) 2008-10-20 2013-06-25 Imds Corporation Systems and methods for aneurysm treatment and vessel occlusion
US7968190B2 (en) 2008-12-19 2011-06-28 Gore Enterprise Holdings, Inc. PTFE fabric articles and method of making same
US8764813B2 (en) 2008-12-23 2014-07-01 Cook Medical Technologies Llc Gradually self-expanding stent
US8888836B2 (en) 2009-04-07 2014-11-18 Medtronic Vascular, Inc. Implantable temporary flow restrictor device
WO2010124286A1 (en) 2009-04-24 2010-10-28 Flexible Stenting Solutions, Inc. Flexible devices
CN106137479B (en) 2009-05-14 2017-12-05 奥巴斯尼茨医学公司 Self-expandable stent with polygon transition region
EP3434225B1 (en) 2009-06-23 2023-11-01 Endospan Ltd. Vascular prosthesis for treating aneurysms
EP2445418B1 (en) 2009-06-26 2015-03-18 Cook Medical Technologies LLC Linear clamps for anastomosis
US9327060B2 (en) 2009-07-09 2016-05-03 CARDINAL HEALTH SWITZERLAND 515 GmbH Rapamycin reservoir eluting stent
US8936634B2 (en) 2009-07-15 2015-01-20 W. L. Gore & Associates, Inc. Self constraining radially expandable medical devices
US8435282B2 (en) 2009-07-15 2013-05-07 W. L. Gore & Associates, Inc. Tube with reverse necking properties
US8474120B2 (en) 2009-10-09 2013-07-02 W. L. Gore & Associates, Inc. Bifurcated highly conformable medical device branch access
WO2011056445A1 (en) 2009-11-03 2011-05-12 Wilson-Cook Medical Inc. Planar clamps for anastomosis
US20130204355A1 (en) 2010-02-12 2013-08-08 Spire Biomedical Medical device made of eptfe partially coated with an antimicrobial material
CN101926699A (en) 2010-07-13 2010-12-29 北京迈迪顶峰医疗科技有限公司 Atrial septal pore-forming scaffold and conveyor thereof
AU2011280828A1 (en) * 2010-07-20 2013-01-24 Kyoto Medical Planning Co., Ltd. Stent device
CN201744060U (en) 2010-08-17 2011-02-16 天健医疗科技(苏州)有限公司 Step-type artery balloon expansion conduit
US20130297003A1 (en) * 2011-01-13 2013-11-07 Innovia Llc Endoluminal Drug Applicator and Method of Treating Diseased Vessels of the Body
US9839540B2 (en) 2011-01-14 2017-12-12 W. L. Gore & Associates, Inc. Stent
US10166128B2 (en) 2011-01-14 2019-01-01 W. L. Gore & Associates. Inc. Lattice
KR102022518B1 (en) 2011-01-18 2019-09-18 로마 비스타 메디컬, 인코포레이티드. Inflatable medical devices
US9744033B2 (en) 2011-04-01 2017-08-29 W.L. Gore & Associates, Inc. Elastomeric leaflet for prosthetic heart valves
US9937255B2 (en) 2011-05-18 2018-04-10 Nectero Medical, Inc. Coated balloons for blood vessel stabilization
US10016579B2 (en) 2011-06-23 2018-07-10 W.L. Gore & Associates, Inc. Controllable inflation profile balloon cover apparatus
EP2779940B3 (en) 2011-11-16 2017-09-27 Bolton Medical Inc. Device for aortic branched vessel repair
WO2013109337A1 (en) 2012-01-16 2013-07-25 W.L. Gore & Associates, Inc. Articles including expanded polytetrafluoroethylene membranes with serpentine fibrils and having a discontinuous fluoropolymer layer thereon
US9510935B2 (en) 2012-01-16 2016-12-06 W. L. Gore & Associates, Inc. Articles including expanded polytetrafluoroethylene membranes with serpentine fibrils and having a discontinuous fluoropolymer layer thereon
US20130183515A1 (en) 2012-01-16 2013-07-18 Charles F. White Articles including expanded polytetrafluoroethylene membranes with serpentine fibrils
CN102764165B (en) * 2012-08-13 2015-01-07 宁波健世生物科技有限公司 Percutaneous aorta or aorta valve stent conveying system
US9931193B2 (en) 2012-11-13 2018-04-03 W. L. Gore & Associates, Inc. Elastic stent graft
EP2931273A1 (en) 2012-12-12 2015-10-21 The Charlotte-Mecklenburg Hospital Authority D/B/A Carolinas Healthcare System Methods of treating portal hypertension
US10279084B2 (en) 2012-12-19 2019-05-07 W. L. Gore & Associates, Inc. Medical balloon devices and methods
US10905539B2 (en) * 2013-03-15 2021-02-02 W. L. Gore & Associates, Inc. Self-expanding, balloon expandable stent-grafts
CN105517508B (en) * 2013-07-22 2018-05-22 阿特利姆医疗公司 Graft with expansible region and production and preparation method thereof
US10842918B2 (en) 2013-12-05 2020-11-24 W.L. Gore & Associates, Inc. Length extensible implantable device and methods for making such devices
US9814560B2 (en) * 2013-12-05 2017-11-14 W. L. Gore & Associates, Inc. Tapered implantable device and methods for making such devices
WO2016009337A2 (en) 2014-07-15 2016-01-21 Koninklijke Philips N.V. Devices and methods for intrahepatic shunts
JP6470150B2 (en) 2015-09-03 2019-02-13 日本ライフライン株式会社 Stents and medical devices
US9789294B2 (en) 2015-10-07 2017-10-17 Edwards Lifesciences Corporation Expandable cardiac shunt
US10004617B2 (en) 2015-10-20 2018-06-26 Cook Medical Technologies Llc Woven stent device and manufacturing method
CA3021860C (en) 2016-04-21 2021-06-08 W. L. Gore & Associates, Inc. Diametrically adjustable endoprostheses and associated systems and methods
CA3078496C (en) 2017-10-09 2023-02-28 W. L. Gore & Associates, Inc. Matched stent cover
US20200179663A1 (en) 2018-12-11 2020-06-11 W. L. Gore & Associates, Inc. Medical devices for shunts, occluders, fenestrations and related systems and methods
JP7436007B2 (en) * 2020-02-04 2024-02-21 豊丸産業株式会社 gaming machine

Similar Documents

Publication Publication Date Title
JPWO2017184153A5 (en)
JP2021168971A5 (en)
JP7248749B2 (en) Adjustable diameter endoprosthesis and related systems and methods
JP2019514493A5 (en)
US4503569A (en) Transluminally placed expandable graft prosthesis
CA2354526C (en) Multi-stage expandable stent-graft
US8721819B2 (en) Methods for an expandable covered stent with wide range of wrinkle-free deployed diameters
US8579961B2 (en) Sectional crimped graft
US8518096B2 (en) Elephant trunk thoracic endograft and delivery system
US7025779B2 (en) Endoluminal device having enhanced affixation characteristics
JP2001231867A (en) Dilatable stent graft valve coated with expansible polytetrafluoroethylene
JP2003505144A (en) Endoluminal stent-graft
MXPA01003281A (en) Selective adherence of stent-graft coverings, mandrel and method of making stent-graft device.
US7556643B2 (en) Graft inside stent
JP2022036121A (en) Kink resistant graft
JP2012513860A (en) Endoluminal prosthesis