JPWO2017164019A1 - Hollow fiber membrane - Google Patents

Hollow fiber membrane Download PDF

Info

Publication number
JPWO2017164019A1
JPWO2017164019A1 JP2017517388A JP2017517388A JPWO2017164019A1 JP WO2017164019 A1 JPWO2017164019 A1 JP WO2017164019A1 JP 2017517388 A JP2017517388 A JP 2017517388A JP 2017517388 A JP2017517388 A JP 2017517388A JP WO2017164019 A1 JPWO2017164019 A1 JP WO2017164019A1
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
dense layer
less
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017517388A
Other languages
Japanese (ja)
Other versions
JP6973071B2 (en
Inventor
竜太 田宮
竜太 田宮
誠之 山田
誠之 山田
上野 良之
良之 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JPWO2017164019A1 publication Critical patent/JPWO2017164019A1/en
Application granted granted Critical
Publication of JP6973071B2 publication Critical patent/JP6973071B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • B01D69/081Hollow fibre membranes characterised by the fibre diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/44Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of groups B01D71/26-B01D71/42
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/44Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of groups B01D71/26-B01D71/42
    • B01D71/441Polyvinylpyrrolidone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/18Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/76Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from other polycondensation products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2201/00Details relating to filtering apparatus
    • B01D2201/29Filter cartridge constructions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/022Asymmetric membranes
    • B01D2325/0232Dense layer on both outer sides of the membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • B01D2325/02834Pore size more than 0.1 and up to 1 µm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/04Characteristic thickness
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • C02F2201/006Cartridges

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)

Abstract

本発明の中空糸膜は、中空糸膜の長手方向に垂直な断面で観察した状態において、孔面積が0.28μm2以下の孔のみを有する緻密層を備え、緻密層は中空糸膜の外表面側または内表面側に配されており、外径は350μm以下であり、内径は150μm以上であり、膜厚は30μm以上90μm以下であり、緻密層が配された中空糸膜の表面は複数の孔を有しており、複数の孔の中空糸膜表面で観察した平均孔径が0.3μm以上0.9μm以下であり、緻密層の厚み(DT)と中空糸膜の膜厚(WT)との比(DT/WT)が0.24以上である。The hollow fiber membrane of the present invention includes a dense layer having only pores having a pore area of 0.28 μm 2 or less in a state observed in a cross section perpendicular to the longitudinal direction of the hollow fiber membrane, and the dense layer is an outer surface of the hollow fiber membrane. The inner diameter is 350 μm or less, the inner diameter is 150 μm or more, the film thickness is 30 μm or more and 90 μm or less, and the surface of the hollow fiber membrane on which the dense layer is arranged has a plurality of surfaces The pores have an average pore diameter of 0.3 μm or more and 0.9 μm or less observed on the surface of the hollow fiber membrane of a plurality of pores, and the thickness of the dense layer (DT) and the thickness of the hollow fiber membrane (WT) The ratio (DT / WT) is 0.24 or more.

Description

本発明は、中空糸膜に関する。   The present invention relates to a hollow fiber membrane.

中空糸膜は、逆浸透から精密濾過に至る分野において従来から広く使用されている。用途としては、腎不全患者の血液浄化器などの医療用途や、浄水器用などの水処理用途などに広く用いられている。   Hollow fiber membranes have been widely used in the field from reverse osmosis to microfiltration. As its application, it is widely used for medical applications such as blood purifiers for patients with renal failure and water treatment applications such as for water purifiers.

中空糸膜の素材としては、ポリエチレン、ポリスルホンなどの疎水性高分子が知られており、それらの素材を用いた中空糸膜には親水化処理を施し用いることが知られている。親水化処理には、中空糸膜の製膜後に親水性高分子で被覆する方法や、中空糸膜の紡糸原液とともに、親水性高分子を含む注入液を二重環状の口金から吐出し、親水性を付与する方法などがある。このような親水化処理を施すことにより、中空糸膜の透水性を高めている。   As materials for hollow fiber membranes, hydrophobic polymers such as polyethylene and polysulfone are known, and it is known that hollow fiber membranes using these materials are subjected to hydrophilization treatment. For the hydrophilization treatment, a hollow fiber membrane is coated with a hydrophilic polymer after the hollow fiber membrane has been formed, or an injection solution containing a hydrophilic polymer is discharged from a double annular die together with a spinning solution of the hollow fiber membrane to make the hydrophilic There is a method of imparting sex. By performing such a hydrophilic treatment, the water permeability of the hollow fiber membrane is increased.

また、浄水器用のカートリッジに要求される特性としては、高い水圧への耐性を有すること、高い透水性を有すこと、高い物質除去特性を有すること、長いカートリッジ寿命を有することである。そのために、浄水器用の中空糸膜としては、水圧に耐える強度を持ちつつ、高い透水性能およびシャープな物質分画性能を有する中空糸膜の開発が行われてきた。   Further, the characteristics required for the cartridge for the water purifier are to have resistance to high water pressure, to have high water permeability, to have high substance removal characteristics, and to have a long cartridge life. Therefore, as a hollow fiber membrane for a water purifier, a hollow fiber membrane having high water permeability and sharp substance fractionation performance has been developed while having strength to withstand water pressure.

例えば、特許文献1には、高い水圧に対する耐性を向上させるべく、溶融紡糸法において、100や185という高い紡糸ドラフト率で中空糸膜を紡糸する方法が開示されている。   For example, Patent Document 1 discloses a method of spinning a hollow fiber membrane at a high spinning draft rate of 100 or 185 in a melt spinning method in order to improve resistance to high water pressure.

特許文献2には、緻密層を設けた非対称構造を持つ中空糸膜において、紡糸ドラフト率を制御することで、膜の細孔構造を制御し、透水性を高める方法が開示されている。   Patent Document 2 discloses a method for increasing the water permeability by controlling the spinning draft rate in a hollow fiber membrane having an asymmetric structure provided with a dense layer, thereby controlling the pore structure of the membrane.

また、浄水器用のカートリッジの寿命を長くするためには、中空糸膜の面積を増やすことが有効であることが知られている。   Further, it is known that increasing the area of the hollow fiber membrane is effective for extending the life of the cartridge for the water purifier.

日本国特開平04−018112号公報Japanese Patent Laid-Open No. 04-018112 国際公開第2010/029908号International Publication No. 2010/029908

しかしながら、特許文献1に開示された製造方法で得られる中空糸膜は、高い水圧に対する耐性には優れるものの、中空糸膜の断面構造が均一、すなわち、中空糸膜の断面に存在する微孔がいずれも緻密なものであるため透水性能に劣るとの課題がある。ここで、この中空糸膜の透水性能を高める手段としては、上記の微孔の孔面積を大きくすることが考えられるが、この場合、分画性能に劣る中空糸膜となるとの課題がある。   However, the hollow fiber membrane obtained by the production method disclosed in Patent Document 1 is excellent in resistance to high water pressure, but the cross-sectional structure of the hollow fiber membrane is uniform, that is, there are micropores present in the cross section of the hollow fiber membrane. Since all of them are dense, there is a problem that the water permeability is inferior. Here, as a means for improving the water permeability of the hollow fiber membrane, it is conceivable to increase the pore area of the above-mentioned micropores.

また、特許文献2に開示された中空糸膜は、緻密層と非緻密層を有し、細孔構造が制御されることで透水性能に優れたものとなってはいるものの、高い水圧に対する耐性に劣るとの課題がある。   In addition, the hollow fiber membrane disclosed in Patent Document 2 has a dense layer and a non-dense layer, and has excellent water permeability by controlling the pore structure, but is resistant to high water pressure. There is a problem that it is inferior.

また、中空糸膜を備える浄水器用カートリッジ(以下、カートリッジと言うことがある。)の製品寿命を長期化すべく、浄水器用カートリッジが備える中空糸膜の膜面積を増やす場合、カートリッジが大型化するとの課題がある。そこで、中空糸膜の膜面積を増やしつつカートリッジの大型化を抑制するためには中空糸膜を細径化することが考えられるが、この場合、この中空糸膜は高い水圧に対する耐性に劣り、透水性能にも劣ったものとなる傾向がある。なお、緻密層を有する中空糸膜を細径化すると、この中空糸膜の高い水圧に対する耐性はより一層劣ったものとなる。   In addition, in order to increase the product life of a water purifier cartridge (hereinafter sometimes referred to as a cartridge) provided with a hollow fiber membrane, when the membrane area of the hollow fiber membrane provided in the water purifier cartridge is increased, the cartridge is increased in size. There are challenges. Therefore, in order to suppress the enlargement of the cartridge while increasing the membrane area of the hollow fiber membrane, it is conceivable to reduce the diameter of the hollow fiber membrane, in this case, this hollow fiber membrane is inferior in resistance to high water pressure, It tends to be inferior in water permeability. In addition, when the hollow fiber membrane having a dense layer is reduced in diameter, the resistance of the hollow fiber membrane to high water pressure is further deteriorated.

そこで、本発明は、上記の課題に鑑み、高い水圧に対する耐性に優れ、かつ、透水性能にも優れる中空糸膜を提供し、さらに、中空糸膜を搭載する浄水器用カートリッジの長寿命化を実現することを目的とする。   Therefore, in view of the above-mentioned problems, the present invention provides a hollow fiber membrane that is excellent in resistance to high water pressure and excellent in water permeability, and further achieves a long life of a water purifier cartridge equipped with the hollow fiber membrane. The purpose is to do.

上記課題を解決するため、本発明は以下の(1)〜(5)を特徴とする。
(1)中空糸膜の長手方向に垂直な断面で観察した状態において、孔面積が0.28μm以下の孔のみを有する緻密層を備える中空糸膜であって、前記緻密層は前記中空糸膜の外表面側または内表面側に配されており、前記中空糸膜の外径は350μm以下であり、前記中空糸膜の内径は150μm以上であり、前記中空糸膜の膜厚は30μm以上90μm以下であり、前記緻密層が配された前記中空糸膜の表面は複数の孔を有しており、前記複数の孔の中空糸膜表面で観察した平均孔径が0.3μm以上0.9μm以下であり、前記緻密層の厚み(DT)と前記中空糸膜の膜厚(WT)との比(DT/WT)が0.24以上である、中空糸膜。
(2)前記緻密層が前記中空糸膜の外表面側に配された、前記(1)に記載の中空糸膜。
(3)前記緻密層が配された前記中空糸膜の表面の開孔率が15%以上45%以下である、前記(1)または(2)に記載の中空糸膜。
(4)ポリスルホン系ポリマーとポリビニルピロリドンとを含む、前記(1)〜(3)のいずれか1つに記載の中空糸膜。
(5)前記(1)〜(4)のいずれか1つに記載の中空糸膜を搭載した浄水器用カートリッジ。
In order to solve the above problems, the present invention is characterized by the following (1) to (5).
(1) A hollow fiber membrane including a dense layer having only pores having a pore area of 0.28 μm 2 or less in a state observed in a cross section perpendicular to the longitudinal direction of the hollow fiber membrane, wherein the dense layer is the hollow fiber It is arranged on the outer surface side or inner surface side of the membrane, the outer diameter of the hollow fiber membrane is 350 μm or less, the inner diameter of the hollow fiber membrane is 150 μm or more, and the film thickness of the hollow fiber membrane is 30 μm or more 90 μm or less, the surface of the hollow fiber membrane on which the dense layer is arranged has a plurality of holes, and the average pore diameter observed on the surface of the hollow fiber membrane of the plurality of holes is 0.3 μm or more and 0.9 μm A hollow fiber membrane, wherein the ratio (DT / WT) of the dense layer thickness (DT) and the hollow fiber membrane thickness (WT) is 0.24 or more.
(2) The hollow fiber membrane according to (1), wherein the dense layer is disposed on an outer surface side of the hollow fiber membrane.
(3) The hollow fiber membrane according to (1) or (2), wherein a porosity of the surface of the hollow fiber membrane on which the dense layer is disposed is 15% or more and 45% or less.
(4) The hollow fiber membrane according to any one of (1) to (3), comprising a polysulfone-based polymer and polyvinylpyrrolidone.
(5) A water purifier cartridge equipped with the hollow fiber membrane according to any one of (1) to (4).

本発明によれば、高い水圧に対する耐性に優れ、かつ、透水性能にも優れる中空糸膜を提供し、さらに、中空糸膜を搭載する浄水器用カートリッジの長寿命化を実現することができる。   ADVANTAGE OF THE INVENTION According to this invention, the hollow fiber membrane which is excellent in the tolerance with respect to a high water pressure, and is excellent also in water permeability is provided, Furthermore, the lifetime improvement of the cartridge for water purifiers which mounts a hollow fiber membrane is realizable.

以下、本発明の好適な実施形態について詳細に説明する。
尚、本明細書において、質量で表される全ての百分率や部は、重量で表される百分率や部と同様である。
Hereinafter, preferred embodiments of the present invention will be described in detail.
In the present specification, all percentages and parts expressed by mass are the same as percentages and parts expressed by weight.

従来の技術では、緻密層を有する中空糸膜を細径化すると、この中空糸膜の高い水圧に対する耐性は劣ったものとなる(中空糸膜の強度の低下が起きる)とともに、十分な透水性能が得られない。そこで、本発明者らは中空糸の外径、内径および膜厚ならびに緻密層の構造が、上記の中空糸膜の強度向上および透水性に大きく影響することを見出し、中空糸膜の長手方向に垂直な断面で観察した状態において、孔面積が0.28μm以下の孔のみを有する緻密層を備える中空糸膜であって、緻密層が前記中空糸膜の外表面側または内表面側に配されており、中空糸膜の外径が350μm以下であり、中空糸膜の内径が150μm以上であり、中空糸膜の膜厚が30μm以上90μm以下であり、緻密層が配された中空糸膜の表面は複数の孔を有しており、前記複数の孔の中空糸膜表面で観察した平均孔径が0.3μm以上0.9μm以下であり、緻密層の厚み(DT)と中空糸膜の膜厚(WT)との比(DT/WT)が0.24以上である本発明の中空糸膜を創作した。In the conventional technology, when the hollow fiber membrane having a dense layer is made smaller in diameter, the resistance of the hollow fiber membrane to high water pressure is inferior (the strength of the hollow fiber membrane is reduced) and sufficient water permeability is achieved. Cannot be obtained. Accordingly, the present inventors have found that the outer diameter, inner diameter and film thickness of the hollow fiber and the structure of the dense layer greatly affect the strength improvement and water permeability of the hollow fiber membrane, and in the longitudinal direction of the hollow fiber membrane. A hollow fiber membrane provided with a dense layer having only pores having a pore area of 0.28 μm 2 or less in a state observed in a vertical cross section, the dense layer being arranged on the outer surface side or inner surface side of the hollow fiber membrane. A hollow fiber membrane in which the outer diameter of the hollow fiber membrane is 350 μm or less, the inner diameter of the hollow fiber membrane is 150 μm or more, the film thickness of the hollow fiber membrane is 30 μm or more and 90 μm or less, and a dense layer is disposed Surface has a plurality of pores, the average pore diameter observed on the hollow fiber membrane surface of the plurality of pores is not less than 0.3 μm and not more than 0.9 μm, and the thickness (DT) of the dense layer and the hollow fiber membrane Ratio (DT / WT) to film thickness (WT) is 0.24 or more It has created a hollow fiber membrane of the invention.

上記のとおり、本発明の中空糸膜はその外径が、350μm以下と細いため、コンパクトな中空糸膜モジュール(以下、モジュールと言うことがある。)や浄水器用カートリッジなどに多数、搭載することができ、そのモジュールやカートリッジの製品寿命を優れたものとすることができる。   As described above, since the outer diameter of the hollow fiber membrane of the present invention is as thin as 350 μm or less, a large number of the hollow fiber membranes are mounted on a compact hollow fiber membrane module (hereinafter sometimes referred to as a module) or a water purifier cartridge. The product life of the module or cartridge can be made excellent.

また、カートリッジの透水性および製品寿命をより優れたものとするとの観点からは、中空糸膜の外径は小さく、内径は大きく、膜厚は薄いほうが好ましい。また、中空糸膜の強度を優れたものとするとの観点からは、中空糸膜の外径が大きく、内径は小さく、膜厚は厚いほうが好ましい。これら相反する条件を両立させるために重要なことは、緻密層の構造を制御することである。緻密層の構造は膜の強度保持および透水性に大きく影響する。以上のことから、中空糸膜の外径は350μm以下であることが重要であり、その下限は190μm以上であることが好ましく、220μm以上であることがより好ましく、260μm以上であることがさらに好ましい。一方で、その上限は、330μm以下であることが好ましく、310μm以下であることがより好ましい。また、中空糸膜の内径は150μm以上であることが重要であり、その下限は155μm以上であることが好ましく、160μm以上であることがより好ましい。一方で、その上限は、220μm以下であることが好ましく、210μm以下であることがより好ましく、200μm以下であることがさらに好ましい。   Further, from the viewpoint of further improving the water permeability and product life of the cartridge, it is preferable that the hollow fiber membrane has a small outer diameter, a large inner diameter, and a thin film thickness. Moreover, from the viewpoint of making the strength of the hollow fiber membrane excellent, it is preferable that the hollow fiber membrane has a large outer diameter, a small inner diameter, and a thick film thickness. In order to satisfy these conflicting conditions, it is important to control the structure of the dense layer. The structure of the dense layer greatly affects the strength retention and water permeability of the membrane. From the above, it is important that the outer diameter of the hollow fiber membrane is 350 μm or less, and the lower limit thereof is preferably 190 μm or more, more preferably 220 μm or more, and further preferably 260 μm or more. . On the other hand, the upper limit is preferably 330 μm or less, and more preferably 310 μm or less. Moreover, it is important that the inner diameter of the hollow fiber membrane is 150 μm or more, and the lower limit thereof is preferably 155 μm or more, and more preferably 160 μm or more. On the other hand, the upper limit is preferably 220 μm or less, more preferably 210 μm or less, and even more preferably 200 μm or less.

中空糸膜の膜厚は30μm以上90μm以下であることが重要であり、その下限は40μm以上であることが好ましく、50μm以上であることがより好ましい。一方で、その上限は80μm以下であることが好ましく、70μm以下であることがより好ましい。   It is important that the thickness of the hollow fiber membrane is 30 μm or more and 90 μm or less, and the lower limit thereof is preferably 40 μm or more, and more preferably 50 μm or more. On the other hand, the upper limit is preferably 80 μm or less, and more preferably 70 μm or less.

本発明の中空糸膜は緻密層を有し、この緻密層は中空糸膜の外表面側または内表面側に配されている。また、本発明の中空糸膜は、緻密層が配された中空糸膜の表面は複数の孔を有しており、複数の孔の中空糸膜表面で観察した平均孔径が0.3μm以上であるため、中空糸膜の透水性能は極めて優れたものとなる。また、一方で、上記の孔の中空糸膜表面で観察した平均孔径が0.9μm以下であるため、中空糸膜の強度を優れたものとでき、かつ細菌や微粒子などの濁質の除去性能を高めることができる。上記の観点から、複数の孔の平均孔径の下限は0.35μm以上が好ましく、0.40μm以上がより好ましい。一方で、複数の孔の平均孔径の上限は0.85μm以下が好ましく、0.80μm以下がより好ましい。ここで、緻密層とは、走査型電子顕微鏡(SEM)で中空糸膜の長手方向に垂直な断面を観察したときに、孔面積が0.28μmを超える孔の存在が認められない、すなわち、孔面積が0.28μm以下の孔のみを有する層をいう。また、本発明の中空糸膜においては、膜断面にマクロボイドやフィンガーボイドが形成されていないことが好ましい。The hollow fiber membrane of the present invention has a dense layer, and this dense layer is disposed on the outer surface side or the inner surface side of the hollow fiber membrane. The hollow fiber membrane of the present invention has a plurality of holes on the surface of the hollow fiber membrane on which the dense layer is arranged, and the average pore diameter observed on the hollow fiber membrane surface of the plurality of holes is 0.3 μm or more. For this reason, the water permeability of the hollow fiber membrane is extremely excellent. On the other hand, since the average pore diameter observed on the hollow fiber membrane surface of the above pores is 0.9 μm or less, the strength of the hollow fiber membrane can be improved, and the turbidity removal performance such as bacteria and fine particles can be removed. Can be increased. From the above viewpoint, the lower limit of the average pore diameter of the plurality of holes is preferably 0.35 μm or more, and more preferably 0.40 μm or more. On the other hand, the upper limit of the average pore diameter of the plurality of holes is preferably 0.85 μm or less, and more preferably 0.80 μm or less. Here, the dense layer means that when a cross section perpendicular to the longitudinal direction of the hollow fiber membrane is observed with a scanning electron microscope (SEM), the presence of pores having a pore area exceeding 0.28 μm 2 is not observed. , Refers to a layer having only pores with a pore area of 0.28 μm 2 or less. Moreover, in the hollow fiber membrane of this invention, it is preferable that the macro void and the finger void are not formed in the membrane cross section.

また、本発明の中空糸膜は、緻密層の厚み(DT)と、中空糸膜の膜厚(WT)の比(DT/WT)が0.24以上であるため、中空糸膜の強度を十分に保つことができ、中空糸膜の高い水圧への耐性のみならず、モジュール化に必要な加工性や取り扱い性も優れたものとすることができる。緻密層の厚みについては、実施例に記載の方法で測定することができる。   Further, the hollow fiber membrane of the present invention has a ratio (DT / WT) of the dense layer thickness (DT) and the hollow fiber membrane thickness (WT) of 0.24 or more. It can be maintained sufficiently, and not only the resistance of the hollow fiber membrane to high water pressure but also excellent workability and handling properties required for modularization can be achieved. The thickness of the dense layer can be measured by the method described in the examples.

また、中空糸膜の緻密層は被処理水が接触する中空糸膜の表面に配置させることが好ましい。例えば、中空糸膜の外表面側から内表面側へ被処理水を透過させる場合には、中空糸膜の外表面側に緻密層を配置させることが好ましい。その理由としては、被処理水に含まれる濁質が中空糸膜の内部に入り込むことを防ぐことができるため、孔の閉塞による濾過抵抗の悪化を抑制し、膜の透水性低下を抑制することができるためである。   Further, the dense layer of the hollow fiber membrane is preferably disposed on the surface of the hollow fiber membrane in contact with the water to be treated. For example, when water to be treated is permeated from the outer surface side to the inner surface side of the hollow fiber membrane, it is preferable to dispose a dense layer on the outer surface side of the hollow fiber membrane. The reason for this is that turbidity contained in the water to be treated can be prevented from entering the inside of the hollow fiber membrane, thereby suppressing the deterioration of filtration resistance due to the blockage of the pores and suppressing the water permeability of the membrane. It is because it can do.

また、本発明の中空糸膜は、緻密層が配された中空糸膜の表面に複数の孔を有しており、この表面における開孔率は15%以上45%以下であることが好ましい。中空糸膜の緻密層側の表面における開孔率が15%以上であると、その透水性能が優れたものとなるため好ましい。一方で、中空糸膜の緻密層側の表面における開孔率が45%以下であると、その強度と除去性能を十分に保つことができる。上記の観点から、その開孔率の下限は18%以上であることがより好ましく、21%以上であることがさらに好ましい。また、その開孔率の上限は42%以下であることがより好ましく、39%以下であることがさらに好ましい。また、中空糸膜の緻密層側の表面における開孔率を上記の範囲とする手段としては、中空糸膜の製造方法において、乾式部雰囲気を調整し、ポリマーの相分離速度を制御することや親水性高分子の含有量を調整することが挙げられる。   In addition, the hollow fiber membrane of the present invention has a plurality of holes on the surface of the hollow fiber membrane on which the dense layer is arranged, and the open area ratio on this surface is preferably 15% or more and 45% or less. A porosity of 15% or more on the surface on the dense layer side of the hollow fiber membrane is preferable because the water permeability is excellent. On the other hand, when the hole area ratio on the surface of the dense layer side of the hollow fiber membrane is 45% or less, the strength and removal performance can be sufficiently maintained. From the above viewpoint, the lower limit of the open area ratio is more preferably 18% or more, and further preferably 21% or more. Further, the upper limit of the open area ratio is more preferably 42% or less, and further preferably 39% or less. In addition, as a means for setting the open area ratio on the dense layer side surface of the hollow fiber membrane in the above range, in the hollow fiber membrane production method, the dry part atmosphere is adjusted and the phase separation rate of the polymer is controlled. Examples include adjusting the content of the hydrophilic polymer.

また、本発明の中空糸膜には親水性高分子が含まれることが好ましい。その理由としては、膜表面に親水性を付与することで、透水性能の向上および濁質が膜へ付着することも抑制できるためである。一方で、親水性高分子の含有量が多いと、親水性高分子自体が水を保持するため、逆に透過抵抗となり透水性が低下する。そのため、親水性高分子の含有量の上限は、中空糸膜全体の質量に対して20質量部以下であることが好ましく、15質量部以下であることがより好ましい。一方で、その下限は、3質量部以上であることが好ましく、5質量部以上であることがより好ましい。また、中空糸膜の膜表面においても、架橋した親水性高分子が多く存在した場合、透水性の低下が認められる傾向にある。したがって、緻密層が存在する中空糸膜の表面の親水性高分子と疎水性高分子との比(親水性高分子/疎水性高分子)は、0.80以下が好ましく、さらには0.70以下が好ましい。さらに、上記の観点から、緻密層が存在する中空糸膜の表面と反対側の表面の親水性高分子と疎水性高分子との比(親水性高分子/疎水性高分子)も、0.80以下が好ましく、さらには0.70以下が好ましい。   The hollow fiber membrane of the present invention preferably contains a hydrophilic polymer. The reason for this is that by imparting hydrophilicity to the membrane surface, it is possible to improve the water permeability and to prevent turbidity from adhering to the membrane. On the other hand, when the content of the hydrophilic polymer is large, the hydrophilic polymer itself retains water, so that it becomes a permeation resistance and water permeability decreases. Therefore, the upper limit of the content of the hydrophilic polymer is preferably 20 parts by mass or less and more preferably 15 parts by mass or less with respect to the mass of the entire hollow fiber membrane. On the other hand, the lower limit is preferably 3 parts by mass or more, and more preferably 5 parts by mass or more. Also, on the membrane surface of the hollow fiber membrane, when a large amount of cross-linked hydrophilic polymer is present, a decrease in water permeability tends to be observed. Therefore, the ratio of the hydrophilic polymer to the hydrophobic polymer (hydrophilic polymer / hydrophobic polymer) on the surface of the hollow fiber membrane where the dense layer is present is preferably 0.80 or less, and more preferably 0.70. The following is preferred. Furthermore, from the above viewpoint, the ratio of the hydrophilic polymer to the hydrophobic polymer (hydrophilic polymer / hydrophobic polymer) on the surface opposite to the surface of the hollow fiber membrane where the dense layer exists is also 0. 80 or less is preferable, and 0.70 or less is more preferable.

ここで、親水性高分子とは、水溶性の高分子化合物または非水溶性であっても静電相互作用や水素結合により水分子と相互作用する高分子化合物をいう。具体的には、ポリエチレンオキサイドやポリプロピレンオキサイドのようなポリアルキレンオキサイド、ポリビニルアルコール、ポリビニルピロリドン(以下、PVPと言うことがある。)、ポリ酢酸ビニル、ポリジメチルメトキシアクリレート、ポリジメチルアクリルアミド、ビニルピロリドンとアクリル酸とのコポリマー、酢酸ビニルとビニルピロリドンとのコポリマーなどのノニオン性親水性高分子、ポリアクリル酸、ポリビニル硫酸、カルボキシメチルセルロースなどのアニオン性親水性高分子、ポリアリルアミン、ポリリジン、キトサン、ポリ[メタクリル酸{2(ジメチルアミノ)エチル}]などのカチオン性親水性高分子を、ポリメタクリロイルオキシエチルホスホリルコリン、ポリメタクリロイルオキシエチルジメチルアンモニオプロピオナートなどの双イオン性親水性高分子を挙げることができる。なお、中空糸膜に含まれる親水性高分子は2種類以上であっても構わない。特に濁質の付着抑制という観点からは、ノニオン性親水性高分子、双イオン性親水性高分子が好適に用いられる。   Here, the hydrophilic polymer means a water-soluble polymer compound or a polymer compound that interacts with water molecules by electrostatic interaction or hydrogen bonding even if it is water-insoluble. Specifically, polyalkylene oxide such as polyethylene oxide and polypropylene oxide, polyvinyl alcohol, polyvinyl pyrrolidone (hereinafter sometimes referred to as PVP), polyvinyl acetate, polydimethylmethoxy acrylate, polydimethylacrylamide, and vinyl pyrrolidone. Nonionic hydrophilic polymers such as copolymers with acrylic acid, copolymers of vinyl acetate and vinylpyrrolidone, anionic hydrophilic polymers such as polyacrylic acid, polyvinyl sulfate, carboxymethyl cellulose, polyallylamine, polylysine, chitosan, poly [ Cationic hydrophilic polymers such as methacrylic acid {2 (dimethylamino) ethyl}], polymethacryloyloxyethyl phosphorylcholine, polymethacryloyloxyethyldimethylan Zwitterionic hydrophilic polymers such as niobium propionate and the like. Two or more hydrophilic polymers may be contained in the hollow fiber membrane. In particular, from the viewpoint of suppressing adhesion of turbidity, nonionic hydrophilic polymers and zwitterionic hydrophilic polymers are preferably used.

中空糸膜の基材を構成する素材(成分)としては、疎水性高分子が好ましく、この疎水性高分子としては、ポリスルホン(以下、PSFと言うことがある。)、ポリエーテルスルホン、ポリアリレートなどのポリスルホン系ポリマー、ポリビニリデンフルオリドなどのフッ素性樹脂、セルローストリアセテート、セルロースジアセテートなどのセルロース系樹脂、ポリメチルメタクリレート、ポリアクリロニトリル、ポリアミドなどが好適に用いられるが、なかでも、中空糸膜の強度、透水性の観点からポリスルホン系ポリマーが好適に用いられる。ポリスルホン系ポリマーからなる紡糸原液にPVPを添加することは、本発明の膜構造を制御しやすいという観点から、特に好ましい。   As a material (component) constituting the substrate of the hollow fiber membrane, a hydrophobic polymer is preferable. Examples of the hydrophobic polymer include polysulfone (hereinafter sometimes referred to as PSF), polyethersulfone, and polyarylate. Polysulfone polymers such as polyvinylidene fluoride, fluororesins such as polyvinylidene fluoride, cellulose resins such as cellulose triacetate and cellulose diacetate, polymethyl methacrylate, polyacrylonitrile, polyamide, etc. are preferably used. From the viewpoints of strength and water permeability, polysulfone polymers are preferably used. It is particularly preferable to add PVP to a spinning dope composed of a polysulfone polymer from the viewpoint of easy control of the membrane structure of the present invention.

中空糸膜の組成比率は質量比率(%)でポリスルホン系ポリマーが中空糸膜の全構成成分に対し5〜20%であることが好ましい。   The composition ratio of the hollow fiber membrane is preferably 5% to 20% by mass ratio (%) and the polysulfone-based polymer is 5 to 20% with respect to all the components of the hollow fiber membrane.

また、中空糸膜は、ポリスルホン系ポリマーの他にもポリビニルピロリドンを含むことが好ましい。また、ポリビニルピロリドンは種々の分子量のものを用いることが可能であるが、K90(商品名、ISP社製、重量平均分子量130万),K60(商品名、東京化成工業株式会社製、重量平均分子量16万),K30(商品名、BASF社製、重量平均分子量4万),K17(商品名、ISP社製、重量平均分子量1万)など市販されているものを使うと簡便である。これらの混合や、上記以外の分子量領域のものを重合して用いてもよい。   The hollow fiber membrane preferably contains polyvinyl pyrrolidone in addition to the polysulfone polymer. Polyvinylpyrrolidone having various molecular weights can be used, but K90 (trade name, manufactured by ISP, weight average molecular weight 1.3 million), K60 (trade name, manufactured by Tokyo Chemical Industry Co., Ltd., weight average molecular weight). 160,000), K30 (trade name, manufactured by BASF, weight average molecular weight 40,000), K17 (trade name, manufactured by ISP, weight average molecular weight 10,000), and other commercially available products can be used conveniently. You may superpose | polymerize and use these mixing and the thing of molecular weight area | regions other than the above.

また、中空糸膜の製造過程においては、ポリスルホン系ポリマーやPVPなどの中空糸膜の構成成分を溶媒に溶かして紡糸原液とする。ここで、溶媒としてはジメチルアセトアミド(以下、DMAcと略す。)やN−メチルピロリドンのような高沸点極性溶媒が好ましいが、均一に溶解させることができればその他の組み合わせでも使用可能である。   In the production process of the hollow fiber membrane, the components of the hollow fiber membrane such as polysulfone polymer and PVP are dissolved in a solvent to obtain a spinning dope. Here, the solvent is preferably a high-boiling polar solvent such as dimethylacetamide (hereinafter abbreviated as DMAc) or N-methylpyrrolidone, but other combinations can be used as long as they can be uniformly dissolved.

本発明の中空糸膜の透水性としては、30ml/Pa/hr/m以上であることが好ましく、さらには35ml/Pa/hr/m以上であることがより好ましく、40ml/Pa/hr/m以上であることがさらに好ましい。また、中空糸膜の透水性の上限については特に限定はしないが、透水性が高すぎると、分画性能が低下するおそれがあることから、中空糸膜の透水性の上限は120ml/Pa/hr/m以下であることが好ましく、さらには110ml/Pa/hr/m以下であることが好ましく、100ml/Pa/hr/m以下であることがより好ましい。The water permeability of the hollow fiber membrane of the present invention is preferably 30 ml / Pa / hr / m 2 or more, more preferably 35 ml / Pa / hr / m 2 or more, and 40 ml / Pa / hr. / M 2 or more is more preferable. Further, the upper limit of the water permeability of the hollow fiber membrane is not particularly limited, but if the water permeability is too high, the fractionation performance may be lowered. Therefore, the upper limit of the water permeability of the hollow fiber membrane is 120 ml / Pa / It is preferably hr / m 2 or less, more preferably 110 ml / Pa / hr / m 2 or less, and even more preferably 100 ml / Pa / hr / m 2 or less.

中空糸膜の分画性能としては、粒子径0.2μmのラテックスビーズ粒子の除去率が80%以上であることが好ましく、さらには90%以上であることが好ましい。   As the fractionation performance of the hollow fiber membrane, the removal rate of latex bead particles having a particle diameter of 0.2 μm is preferably 80% or more, and more preferably 90% or more.

本発明の中空糸膜は、紡糸原液の組成および注入液組成、口金から紡糸原液を吐出させる際の吐出線速度と注入液吐出線速度、吐出後の乾式部の冷風の露点・温度、冷風速度、紡糸原液吐出時のドラフト比、凝固浴温度、水洗条件などを制御することにより得られる。   The hollow fiber membrane of the present invention comprises the composition of the spinning dope and the composition of the injection solution, the discharge linear velocity and the injection solution discharge linear velocity when discharging the spinning dope from the die, the dew point / temperature of the cold air in the dry part after discharge, and the cold air velocity. It can be obtained by controlling the draft ratio, the coagulation bath temperature, the washing conditions and the like when discharging the spinning dope.

続いて、本発明の中空糸膜の製造方法について説明する。本発明の中空糸膜は、特に限定しないが、オリフィス型二重環口金を用いて、中空糸膜の材料となる高分子を含む紡糸原液を外側の環状スリットから、注入液体を内側の中心パイプから、それぞれ吐出し、乾式部を通過させた後に凝固溶液中で凝固させて、さらに温水洗浄をすることで非対称構造の中空糸膜を製膜することができる。   Then, the manufacturing method of the hollow fiber membrane of this invention is demonstrated. The hollow fiber membrane of the present invention is not particularly limited, but using an orifice type double ring cap, a spinning stock solution containing a polymer as a material for the hollow fiber membrane is fed from the outer annular slit, and the injected liquid is fed to the inner central pipe. Thus, the hollow fiber membrane having an asymmetric structure can be formed by discharging each, passing through the dry part, and then coagulating in a coagulating solution, followed by washing with warm water.

本発明の中空糸膜を製造する際の紡糸ドラフト率は2以上6以下であることが好ましい。ここで、紡糸ドラフト率とは、二重環口金の外周スリット部からの製膜組成物の吐出線速度と、中空糸膜の巻き取り速度との比であり、巻き取り速度を製膜組成物の吐出線速度で割った値を示す。なお吐出線速度とは、二重環口金の外周スリットから製膜組成物が吐出されるときの線速度で、吐出流量を外周スリット断面積で割った値である。   The spinning draft rate when producing the hollow fiber membrane of the present invention is preferably 2 or more and 6 or less. Here, the spinning draft rate is a ratio between the discharge linear velocity of the film-forming composition from the outer peripheral slit portion of the double ring die and the winding speed of the hollow fiber membrane, and the winding speed is defined as the film-forming composition. It shows the value divided by the discharge linear velocity. The discharge linear velocity is a linear velocity when the film-forming composition is discharged from the outer peripheral slit of the double ring die, and is a value obtained by dividing the discharge flow rate by the outer slit sectional area.

紡糸ドラフト率を2以上とすることで、中空糸膜の透水性能が向上する。一方で、紡糸ドラフト率を6以下とすることで、紡糸安定性が向上し、糸切れ頻度を低減することができる。特に、中空糸膜の糸径(外径)が細い場合に、紡糸ドラフト率が高くなると、注入液体が非凝固性を有するときには、中空糸膜の外表面が紡糸ドラフトの影響を受け、外表面の平滑性が失われ、プリーツ構造が形成され、緻密層の厚みが薄くなる傾向がある。緻密層の厚みが薄くなると、中空糸膜の分画性能が低下し、かつ中空糸膜の高い水圧に対する耐性(以下、耐圧性と言うことがある。)が低下し、場合によっては糸切れを起こす懸念がある。   By setting the spinning draft rate to 2 or more, the water permeability of the hollow fiber membrane is improved. On the other hand, by setting the spinning draft rate to 6 or less, the spinning stability can be improved and the yarn breakage frequency can be reduced. In particular, when the spinning fiber draft is high when the hollow fiber membrane has a thin yarn diameter (outer diameter), the outer surface of the hollow fiber membrane is affected by the spinning draft when the injected liquid has non-coagulation properties. The smoothness is lost, a pleated structure is formed, and the dense layer tends to be thin. When the thickness of the dense layer is reduced, the fractionation performance of the hollow fiber membrane is reduced, and the resistance of the hollow fiber membrane to high water pressure (hereinafter sometimes referred to as pressure resistance) is reduced. There is concern to cause.

中空糸膜の紡糸にオリフィス型二重環口金などの二重環口金を用いる場合、紡糸原液の粘度は、2Pa・s以上11Pa・s以下であることが好ましい。紡糸原液の粘度を2Pa・s以上とすることで中空糸膜の曳糸性が向上する。一方で、紡糸原液の粘度を11Pa・s以下とすることで二重環口金における圧力を抑制することができ、安定した紡糸原液の吐出状態を維持することができる。また、緻密層の厚みを制御する観点においても、紡糸原液の粘度が低すぎると、ポリマーの相分離速度が速まり、緻密層の厚みが薄くなりすぎることからも、紡糸原液の粘度は2Pa・s以上が好ましい。   When a double ring die such as an orifice type double ring die is used for spinning the hollow fiber membrane, the viscosity of the spinning dope is preferably 2 Pa · s or more and 11 Pa · s or less. By setting the viscosity of the spinning dope to 2 Pa · s or more, the spinnability of the hollow fiber membrane is improved. On the other hand, by setting the viscosity of the spinning dope to 11 Pa · s or less, the pressure in the double ring die can be suppressed, and a stable discharging state of the spinning dope can be maintained. Also, from the viewpoint of controlling the thickness of the dense layer, if the viscosity of the spinning stock solution is too low, the phase separation rate of the polymer is increased, and the thickness of the dense layer is too thin. s or more is preferable.

一方、二重環口金の中心パイプに注入される液体は、所望する中空糸膜の形態に合わせて、凝固性であるもの、もしくは非凝固性であるものを適宜選択することができる。注入液体の凝固性の指標として、凝固価がある。この凝固価とは、膜を構成する主ポリマー1質量%溶液50gに対し、注入液を少量ずつ添加し、系内が白濁した時点の、注入液体の添加質量を表す。この凝固価の値が小さい程、注入液体の凝固性が高いことを示す。過去の経験則から、凝固価が40g以上(元の液量の8割以上)であれば、緻密層が形成される膜表面に、凝集ポリマーの粒子構造が見られなくなることから、非凝固性を有すると判断している。   On the other hand, the liquid to be injected into the center pipe of the double ring cap can be appropriately selected from those that are solidified or non-solidified according to the desired form of the hollow fiber membrane. There is a coagulation value as an index of the coagulation property of the injected liquid. This coagulation value represents the added mass of the injected liquid when the injection solution is added little by little with respect to 50 g of 1% by mass of the main polymer constituting the membrane, and the inside of the system becomes cloudy. It shows that the solidification property of injection | pouring liquid is so high that this solidification value is small. From past empirical rules, if the solidification value is 40 g or more (80% or more of the original liquid amount), the particle structure of the aggregated polymer is not seen on the film surface where the dense layer is formed. It is judged that it has.

かかる注入液体に凝固性の液体を用いる場合、内表面から凝固が始まるため、中空糸膜の内表面側に緻密層が形成されることになる。一方、非凝固性の液体を用いる場合には、下流側に設けられる凝固浴によって外表面から凝固が始まるため、中空糸膜の外表面側に緻密層が形成される。そのため、中空糸膜の外表面側から内表面側に濾過する流れで用いられる浄水器用途の場合には、非凝固性の液体が特に好適に用いられる。   When a solidifying liquid is used for the injection liquid, since solidification starts from the inner surface, a dense layer is formed on the inner surface side of the hollow fiber membrane. On the other hand, when a non-solidifying liquid is used, solidification starts from the outer surface by the coagulation bath provided on the downstream side, so that a dense layer is formed on the outer surface side of the hollow fiber membrane. Therefore, in the case of the water purifier use used by the flow filtered from the outer surface side to the inner surface side of the hollow fiber membrane, a non-solidifying liquid is particularly preferably used.

特に、紡糸原液と注入液体の吐出線速度の絶対値および、両者の相対値が緻密層の構造形成に大きく影響を及ぼす。吐出線速度によりポリマーの配向性が決定されるためと推測される。   In particular, the absolute value of the discharge linear velocity of the spinning dope and the injected liquid and the relative value of both greatly affect the formation of the dense layer structure. This is presumably because the orientation of the polymer is determined by the discharge linear velocity.

紡糸原液の吐出線速度の絶対値が高すぎると、得られる中空糸膜の透水性能が低くなり、吐出線速度の絶対値が低すぎると、得られる中空糸膜の外表面の平滑性が失われ、プリーツ構造が形成され、緻密層の厚みが薄くなる傾向がある。いずれも中空糸膜の分画性能が低下し、かつ中空糸膜の高い水圧に対する耐性が低下し、場合によっては糸切れを引き起こすため好ましくない。そのため、紡糸原液の吐出線速度の絶対値としては、0.05m/s以上であることが好ましく、0.1m/s以上であることがより好ましい。一方で、0.3m/s以下であることが好ましく、0.25m/s以下であることがより好ましい。   If the absolute value of the discharge linear velocity of the spinning dope is too high, the water permeability of the resulting hollow fiber membrane will be low, and if the absolute value of the discharge linear velocity is too low, the smoothness of the outer surface of the resulting hollow fiber membrane will be lost. In other words, a pleated structure is formed and the dense layer tends to be thin. In any case, the fractionation performance of the hollow fiber membrane is lowered, and the resistance of the hollow fiber membrane to high water pressure is lowered. Therefore, the absolute value of the discharge linear velocity of the spinning dope is preferably 0.05 m / s or more, and more preferably 0.1 m / s or more. On the other hand, it is preferably 0.3 m / s or less, and more preferably 0.25 m / s or less.

注入液体の吐出線速度の絶対値が高すぎると、二重環口金の中心パイプの圧力損失が高くなり、得られる中空糸膜の外径ばらつきが大きくなる。また、吐出線速度の絶対値が低すぎると、得られる中空糸膜の内表面にプリーツ構造が形成され、中空糸膜の高い水圧に対する耐性が低下し、場合によっては糸切れを引き起こすため好ましくない。そのため、注入液体の吐出線速度の絶対値としては、0.05m/s以上であることが好ましく、0.1m/s以上であることがより好ましい。一方で、0.5m/s以下であることが好ましく、0.3m/s以下であることがより好ましい。   If the absolute value of the discharge linear velocity of the injected liquid is too high, the pressure loss of the center pipe of the double ring cap becomes high, and the outer diameter variation of the hollow fiber membrane obtained increases. Also, if the absolute value of the discharge linear velocity is too low, a pleated structure is formed on the inner surface of the resulting hollow fiber membrane, and the resistance to the high water pressure of the hollow fiber membrane is lowered, and in some cases it is not preferable because yarn breakage is caused. . Therefore, the absolute value of the discharge linear velocity of the injected liquid is preferably 0.05 m / s or more, and more preferably 0.1 m / s or more. On the other hand, it is preferably 0.5 m / s or less, and more preferably 0.3 m / s or less.

紡糸原液と注入液体の吐出線速度の相対値が高すぎると、得られる中空糸膜の外表面にプリーツ構造が形成され、緻密層の厚みが薄くなる傾向がある。緻密層の厚みが薄くなると、中空糸膜の分画性能が低下し、かつ中空糸膜の高い水圧に対する耐性が低下し、場合によっては糸切れを引き起こすため好ましくない。また、紡糸原液と注入液体の吐出線速度の相対値が小さすぎると、得られる中空糸膜の透水性能が低くなるため好ましくない。ここで紡糸原液と注入液体の吐出線速度の相対値とは、注入液体の吐出線速度を紡糸原液の吐出線速度で割った値のことである。そのため、紡糸原液と注入液体の吐出線速度の相対値としては、0.5以上であることが好ましく、0.6以上であることがより好ましい。一方で、2.0以下であることが好ましく、1.5以下であることがより好ましい。   If the relative value of the discharge linear velocity of the spinning dope and the injected liquid is too high, a pleated structure is formed on the outer surface of the resulting hollow fiber membrane, and the dense layer tends to be thin. When the thickness of the dense layer is reduced, the fractionation performance of the hollow fiber membrane is lowered, and the resistance of the hollow fiber membrane to a high water pressure is lowered. In addition, if the relative value of the discharge linear velocity of the spinning dope and the injected liquid is too small, the water permeability of the resulting hollow fiber membrane is lowered, which is not preferable. Here, the relative value of the discharge linear velocity of the spinning stock solution and the injected liquid is a value obtained by dividing the discharge linear velocity of the injected liquid by the discharge linear velocity of the spinning stock solution. Therefore, the relative value of the discharge linear velocity of the spinning solution and the injected liquid is preferably 0.5 or more, and more preferably 0.6 or more. On the other hand, it is preferably 2.0 or less, and more preferably 1.5 or less.

中空糸膜の糸径を細くしていくと、外径ばらつきは大きくなりやすく、中空糸膜構造が乱れ、耐圧性、透水性能、分画性能といった品質に問題が生じる。そのため、中空糸膜の外径ばらつきとしては、15%以下が好ましく、さらには10%以下が好ましい。外径ばらつきは、実施例に記載の方法で評価した。中空糸膜の外径ばらつきを上記の範囲とする手段としては、二重環口金の環状スリットの寸法または、二重環口金の中心パイプの圧力損失を制御することが挙げられる。   As the yarn diameter of the hollow fiber membrane is reduced, the outer diameter variation tends to increase, and the hollow fiber membrane structure is disturbed, causing problems in quality such as pressure resistance, water permeability, and fractionation performance. Therefore, the outer diameter variation of the hollow fiber membrane is preferably 15% or less, more preferably 10% or less. The outer diameter variation was evaluated by the method described in the examples. As a means for setting the outer diameter variation of the hollow fiber membrane within the above range, there is control of the size of the annular slit of the double ring cap or the pressure loss of the central pipe of the double ring cap.

中空糸膜の紡糸工程で、熱で中空糸膜の相分離を誘起する場合には、乾式部で冷却した後に凝固浴で急冷して固化させる。中空糸膜の紡糸工程で、貧溶媒で中空糸膜の相分離を誘起する場合には、紡糸原液に貧溶媒を含有する凝固液と接触させて吐出し、貧溶媒からなる凝固浴で固化させる。また、貧溶媒で中空糸膜の相分離を誘起する方法では、貧溶媒は拡散によって中空糸膜の内部に供給されるため、中空糸膜の膜厚方向で貧溶媒の供給量が変化する。よって、中空糸膜の膜厚方向断面の孔径が中空糸膜の一方の表面から他方の表面に向けて大きくなる構造となる。そのため、貧溶媒を含有する凝固液と紡糸原液とを吐出直後に接触させることが好ましい。凝固液を貧溶媒と良溶媒の混合液として濃度を調整すれば、凝固性が変わり、凝固液と接触する側の表面の孔の短径と緻密層の厚みを制御できる。   When the phase separation of the hollow fiber membrane is induced by heat in the spinning process of the hollow fiber membrane, the hollow fiber membrane is cooled in a dry part and then rapidly cooled in a coagulation bath to be solidified. When inducing hollow fiber membrane phase separation with a poor solvent in the spinning process of the hollow fiber membrane, the spinning solution is discharged in contact with a coagulation liquid containing the poor solvent and solidified in a coagulation bath comprising the poor solvent. . In the method of inducing the phase separation of the hollow fiber membrane with the poor solvent, the poor solvent is supplied into the hollow fiber membrane by diffusion, so that the supply amount of the poor solvent changes in the thickness direction of the hollow fiber membrane. Therefore, the hole diameter of the cross section in the film thickness direction of the hollow fiber membrane increases from one surface of the hollow fiber membrane toward the other surface. Therefore, it is preferable to contact the coagulating liquid containing the poor solvent and the spinning dope immediately after discharge. If the concentration is adjusted by using the coagulation liquid as a mixture of a poor solvent and a good solvent, the coagulation property is changed, and the minor diameter of the pores on the surface in contact with the coagulation liquid and the thickness of the dense layer can be controlled.

また、上記の凝固液と紡糸原液が接触した側は相分離が誘起されて固化の進行が速く、孔径の小さい緻密な構造となる。また、凝固液と紡糸原液が接触した側の反対方向に向けて孔径は連続的に大きくなる。ここで、乾式部の通過時間が充分に長いと、凝固液と接触しない側の孔径が大きく成長してしまう。そこで、乾式部の通過時間を短くして凝固浴に速やかに浸漬することで、凝固浴の貧溶媒との接触によって、凝固液と接触しない側の固化が進行して孔径の小さい緻密な構造を形成できる。   Further, the side where the coagulating liquid and the spinning dope are in contact with each other induces phase separation so that the solidification progresses quickly and the structure has a small pore size. Further, the pore diameter continuously increases in the direction opposite to the side where the coagulating liquid and the spinning dope come into contact. Here, if the passage time of the dry part is sufficiently long, the hole diameter on the side that does not come into contact with the coagulating liquid grows large. Therefore, by shortening the passage time of the dry part and quickly immersing it in the coagulation bath, solidification on the side not in contact with the coagulation liquid proceeds due to contact with the poor solvent of the coagulation bath, and a dense structure with a small pore diameter is formed. Can be formed.

紡糸原液の組成や温度などの相分離の進行に影響する条件にもよるが、乾式部の通過時間は0.02秒以上が好ましく、0.14秒以上がより好ましい。一方で、0.40秒以下が好ましく、0.35秒以下がより好ましい。   Although it depends on conditions affecting the progress of phase separation such as the composition of the spinning solution and temperature, the passage time of the dry part is preferably 0.02 seconds or more, more preferably 0.14 seconds or more. On the other hand, 0.40 second or less is preferable, and 0.35 second or less is more preferable.

凝固浴での貧溶媒濃度は凝固液全体に対し30質量部以上が好ましく、50質量部以上がより好ましく、80質量部以上がさらに好ましい。   The poor solvent concentration in the coagulation bath is preferably 30 parts by mass or more, more preferably 50 parts by mass or more, and still more preferably 80 parts by mass or more with respect to the entire coagulation liquid.

凝固浴の温度は、凝固浴の温度が高いことで凝固浴中での溶媒交換が起こりやすく、中空糸膜の残存溶媒量を低減できることから、凝固浴温度は50℃以上が好ましく、60℃以上がより好ましく、70℃以上がさらに好ましい。   As the temperature of the coagulation bath, since the temperature of the coagulation bath is high, solvent exchange in the coagulation bath is likely to occur, and the amount of residual solvent in the hollow fiber membrane can be reduced. Is more preferable, and 70 ° C. or higher is even more preferable.

凝固浴の温度が高い場合、口金面に結露が形成され、それにより糸切れが発生する懸念が考えられる。そのため、口金面の結露が防止できることから、紡糸原液の吐出温度は、25℃以上が好ましい。また、紡糸原液の吐出温度が高すぎると、紡糸性が不安定になりやすいことから、紡糸原液の吐出温度は、70℃以下が好ましく、55℃以下がより好ましい。   When the temperature of the coagulation bath is high, there is a concern that dew condensation is formed on the surface of the base, which may cause yarn breakage. For this reason, it is possible to prevent dew condensation on the die surface, and the discharge temperature of the spinning dope is preferably 25 ° C. or higher. In addition, if the discharge temperature of the spinning solution is too high, the spinnability tends to become unstable. Therefore, the discharging temperature of the spinning solution is preferably 70 ° C. or less, and more preferably 55 ° C. or less.

凝固浴濃度は、紡糸原液や凝固液からの溶媒の供給によって経時的に変化する。そのため、凝固浴の液量を増やして濃度変化を抑制することや、濃度をモニタリングして随時、濃度調整を行うことが好ましい。   The concentration of the coagulation bath changes with time depending on the supply of the solvent from the spinning dope or the coagulating solution. For this reason, it is preferable to suppress the change in concentration by increasing the amount of the coagulation bath, or to adjust the concentration as needed by monitoring the concentration.

また、乾式部では、温度と湿度をより積極的に調湿した走行区間を設けることも中空糸膜の開孔の制御に対して有効であり、得られる中空糸膜の性能のばらつきを少なくできることから好ましい。   In the dry section, it is also effective to control the opening of the hollow fiber membrane by providing a traveling section in which the temperature and humidity are more positively controlled, and variation in the performance of the obtained hollow fiber membrane can be reduced. To preferred.

さらに、乾式部において、特に限定はされないが、乾式部雰囲気をより積極的に調湿するために、二重環口金から吐出された紡糸原液の両側に冷風筒を設けることや二重環口金から吐出された紡糸原液の周囲を環状型冷風筒で囲むことなどが考えられる。二重環口金から吐出された紡糸原液の両側に冷風筒を設ける場合には、冷風筒の片側から冷風を給気し、もう片側から冷風を排気する方法や、両側から冷風を給気する方法が、乾式部雰囲気をより積極的に調湿できることから好ましい。また、二重環口金から吐出された紡糸原液の周囲を環状型冷風筒で囲む場合についても、乾式部が外気の影響を受けにくくなり、得られる中空糸膜の性能ばらつきを低減できることから好ましい。   Further, in the dry section, although not particularly limited, in order to more actively control the humidity of the dry section atmosphere, it is possible to provide a cold wind tube on both sides of the spinning stock solution discharged from the double ring mouthpiece or from the double ring mouthpiece. It is conceivable to surround the discharged spinning stock solution with an annular cold wind tube. When installing cold wind tubes on both sides of the spinning dope discharged from the double ring nozzle, a method of supplying cold air from one side of the cold air tube and exhausting cold air from the other side, or a method of supplying cold air from both sides However, it is preferable because the humidity of the dry part atmosphere can be more positively controlled. In addition, when the periphery of the spinning dope discharged from the double ring die is surrounded by an annular cold wind tube, it is preferable because the dry part is less affected by outside air and the performance variation of the obtained hollow fiber membrane can be reduced.

乾式部では、冷風の露点および風速が大きいほど、貧溶媒である水分の供給量が増えるため、外表面の孔の孔径を大きくし、開孔率を高くしたい場合に有効である。乾式部の露点は、18℃以上が好ましく、21℃以上がより好ましい。また、乾式部における冷風の風速は、0.1m/s以上が好ましく、0.5m/s以上がより好ましい。一方で、冷風の風速を低くすることで吐出下での紡糸原液の表面の乱れや吐出下での揺れを抑制できるため、乾式部の風速は10m/s以下が好ましく、5m/s以下がより好ましい。   In the dry section, the larger the dew point and the wind speed of the cold air, the larger the supply amount of moisture, which is a poor solvent, which is effective when the hole diameter of the outer surface is increased and the hole area ratio is increased. The dew point of the dry part is preferably 18 ° C. or higher, and more preferably 21 ° C. or higher. Further, the wind speed of the cold air in the dry part is preferably 0.1 m / s or more, and more preferably 0.5 m / s or more. On the other hand, by reducing the wind speed of the cold air, it is possible to suppress the disturbance of the surface of the spinning dope under discharge and the fluctuation under the discharge. preferable.

また、乾式部の長さは、中空糸膜の表面の孔径を好適なものにする一方で、製膜中の糸揺れを防ぐために、10〜200mmが好ましい。   In addition, the length of the dry part is preferably 10 to 200 mm in order to make the hole diameter on the surface of the hollow fiber membrane suitable, while preventing yarn swinging during film formation.

貧溶媒とは、製膜温度において、主として中空糸膜の構造体となる高分子を溶解しない溶媒である。   The poor solvent is a solvent that does not dissolve the polymer that mainly forms the structure of the hollow fiber membrane at the film forming temperature.

貧溶媒は、高分子の種類に応じて適宜選択すればよいが、水が好適に用いられる。良溶媒は、高分子の種類に応じて適宜選択すればよいが、中空糸膜の構造体となる高分子がポリスルホン系高分子の場合、N,N−ジメチルアセトアミドが好適に用いられる。   The poor solvent may be appropriately selected according to the type of polymer, but water is preferably used. The good solvent may be appropriately selected according to the type of polymer, but N, N-dimethylacetamide is preferably used when the polymer that forms the structure of the hollow fiber membrane is a polysulfone polymer.

上記の製造方法によれば、中空糸膜は湿潤状態で得られるが、このままでは中空糸膜の透水性が不安定であることから、水分の乾燥と親水性高分子(PVPなど)の架橋反応が必要となる。前述の通り、親水性高分子(PVPなど)を含有すると中空糸膜中に親水性を付与でき、透水性能の向上および濁質が膜へ付着することも抑制できる。しかし、膜中に残存する親水性高分子がわずかに溶出することがある。これはメディカル用途、食品工業用途においては望ましくない。不溶化のための架橋反応としては、ビニル系の親水性高分子ではγ線照射が有効である。また、特に親水性高分子がポリビニルピロリドンの場合には、加熱することでも架橋をさせることができる。乾燥温度としては、水を蒸発させることから100℃以上が好ましい。架橋するための熱処理温度は、170℃では5時間程度、180℃では2.5時間程度、190℃でも1.5時間程度とすることが好ましい。さらに温度を上げるとそれだけ処理時間は短縮される。150℃以下においては、処理時間が長すぎ、実用的ではない。   According to the above production method, the hollow fiber membrane can be obtained in a wet state, but since the water permeability of the hollow fiber membrane is unstable as it is, drying of moisture and crosslinking reaction of a hydrophilic polymer (PVP, etc.) Is required. As described above, when a hydrophilic polymer (such as PVP) is contained, hydrophilicity can be imparted to the hollow fiber membrane, and water permeability can be improved and turbidity can be prevented from adhering to the membrane. However, the hydrophilic polymer remaining in the film may be slightly eluted. This is undesirable in medical and food industry applications. As a crosslinking reaction for insolubilization, γ-ray irradiation is effective for vinyl-based hydrophilic polymers. In particular, when the hydrophilic polymer is polyvinylpyrrolidone, it can be crosslinked by heating. The drying temperature is preferably 100 ° C. or higher because water is evaporated. The heat treatment temperature for crosslinking is preferably about 5 hours at 170 ° C., about 2.5 hours at 180 ° C., and about 1.5 hours at 190 ° C. If the temperature is further increased, the processing time is shortened accordingly. At 150 ° C. or lower, the treatment time is too long and is not practical.

中空糸膜の乾燥を行う際に、中空糸膜中の親水性高分子が多く含まれている状態で乾燥を行うと、中空糸膜の表面に親水性高分子が偏在し、それにより中空糸膜の透水性能やモジュール化したときの濾過流量が低下することから前処理として、得られた中空糸膜を温水で洗浄することが好ましい。温水の温度としては、60℃以上が好ましく、70℃以上がより好ましく、80℃以上がさらに好ましい。また99℃以下であることが好ましい。温水洗浄後の親水性高分子の質量は、膜全体の質量に対して、3質量部以上20質量部以下であることが好ましく、さらには5質量部以上10質量部以下が好ましい。   When the hollow fiber membrane is dried, if the drying is performed in a state where the hollow fiber membrane contains a large amount of the hydrophilic polymer, the hydrophilic polymer is unevenly distributed on the surface of the hollow fiber membrane. Since the water permeation performance of the membrane and the filtration flow rate when modularized are lowered, it is preferable to wash the obtained hollow fiber membrane with warm water as a pretreatment. As temperature of warm water, 60 ° C or more is preferred, 70 ° C or more is more preferred, and 80 ° C or more is still more preferred. Moreover, it is preferable that it is 99 degrees C or less. The mass of the hydrophilic polymer after washing with warm water is preferably 3 parts by mass or more and 20 parts by mass or less, and more preferably 5 parts by mass or more and 10 parts by mass or less with respect to the mass of the entire film.

本発明の中空糸膜は浄水器用カートリッジに好適に用いることができるのは上記の通りである。また、中空糸膜を搭載する浄水器用カートリッジの製造方法は従来から用いられている方法を採用することができる。   As described above, the hollow fiber membrane of the present invention can be suitably used for a cartridge for a water purifier. Moreover, the conventionally used method can be employ | adopted for the manufacturing method of the cartridge for water purifiers which mounts a hollow fiber membrane.

以下、実施例により本発明を具体的に説明するが、本発明はこれによって限定されるものではない。   Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto.

(分析方法および評価方法)
(1)粘度測定:
JIS K7117(1999年)に示されるB型粘度計を用いて測定し、n=3の平均値を測定値とした。
(Analysis method and evaluation method)
(1) Viscosity measurement:
It measured using the B-type viscometer shown by JISK7117 (1999), and made the average value of n = 3 into the measured value.

(2)透水性能の測定
両端に還流液用の孔を備えたケースに中空糸膜を挿入し、両端をコニシ株式会社製エポキシ樹脂系接着剤“クイックメンダー”(登録商標)でポッティングし、ケース両端部からはみ出た中空糸膜およびポッティング剤をカットすることで有効長12cmの小型モジュールを作製した。恒温水槽で37℃に保って中空糸膜の内側に水圧をかけて中空糸膜を透過して中空糸膜の外側へ一定時間内に通過する水の量、有効膜面積および膜間圧力差から算出する方法で透水性能を測定した。すなわち、中空糸膜の透水性能(UFRS)は下記の式で算出した。
UFRS(mL/hr/Pa/m)=Qw/T/P/A
Qw:(通過)濾過量(mL)
T:流出時間(hr)
P:圧力(Pa)
A:中空糸膜の膜面積(m
(2) Measurement of water permeation performance A hollow fiber membrane is inserted into a case with reflux holes at both ends, and both ends are potted with an epoxy resin adhesive “Quick Mender” (registered trademark) manufactured by Konishi Co., Ltd. A small module having an effective length of 12 cm was produced by cutting the hollow fiber membrane and the potting agent protruding from both ends. From the amount of water passing through the hollow fiber membrane through the hollow fiber membrane and passing through the hollow fiber membrane within a predetermined time, maintained at 37 ° C. in a constant temperature water tank, and the pressure difference between the membranes The water permeability was measured by the calculation method. That is, the water permeability (UFRS) of the hollow fiber membrane was calculated by the following formula.
UFRS (mL / hr / Pa / m 2 ) = Qw / T / P / A
Qw: (Pass) Filtration volume (mL)
T: Outflow time (hr)
P: Pressure (Pa)
A: Membrane area of the hollow fiber membrane (m 2 )

(3)中空糸膜の表面の開孔率および中空糸膜の有する孔の孔径の測定
SEM(S−5500、株式会社日立ハイテクノロジーズ製)にて中空糸膜外表面の5000倍画像を撮影し、コンピュータに取り込んだ。次に画像処理ソフトにて解析処理を行った。SEM画像を二値化処理し、孔部分を黒、構造高分子部分を白く反転させた画像を得た。孔の総面積Sを読み取り、次式で画像1枚あたりの開孔率(%)を算出した。
開孔率(%)=S(μm)/画像サイズ(μm)×100
また、平均孔径についても、同様に画像処理ソフトにて解析処理を行った。SEM像を二値化処理し、孔が黒、構造高分子部分が白となった画像を得た。孔の総面積S(μm)および黒い孔の個数(以下、総開孔数)を読み取り、次式で平均孔面積(μm)を算出した。さらに平均孔面積(μm)から平均孔径(μm)を算出した。また、今回の計算は、孔形状が真円であるとみなして行った。
平均孔面積(μm)=S(μm)/総開孔数
平均孔径(μm)=2×√(平均孔面積/π)
上記操作を異なる中空糸膜5本について行い、その算術平均を結果とした。
(3) Measurement of the hole area ratio of the surface of the hollow fiber membrane and the hole diameter of the hole of the hollow fiber membrane A 5000 times image of the outer surface of the hollow fiber membrane was taken with SEM (S-5500, manufactured by Hitachi High-Technologies Corporation). , Imported into the computer. Next, analysis processing was performed with image processing software. The SEM image was binarized to obtain an image obtained by inverting the hole portion to black and the structural polymer portion to white. The total area S of the holes was read, and the aperture ratio (%) per image was calculated by the following formula.
Opening ratio (%) = S (μm 2 ) / image size (μm 2 ) × 100
The average pore size was similarly analyzed using image processing software. The SEM image was binarized to obtain an image in which the pores were black and the structural polymer portion was white. The total area S (μm 2 ) of the holes and the number of black holes (hereinafter referred to as the total number of openings) were read, and the average hole area (μm 2 ) was calculated by the following formula. Further, the average pore diameter (μm) was calculated from the average pore area (μm 2 ). In addition, this calculation was performed assuming that the hole shape is a perfect circle.
Average pore area (μm 2 ) = S (μm 2 ) / total number of apertures Average pore diameter (μm) = 2 × √ (average pore area / π)
The above operation was performed on five different hollow fiber membranes, and the arithmetic average was taken as the result.

(4)緻密層の厚み(DT)の測定
中空糸膜を水に5分間浸けて濡らした後に液体窒素で凍結して速やかに折り、断面の観察試料とした中空糸膜の長手方向に垂直な断面をSEM(S−5500、株式会社日立ハイテクノロジーズ製)にて3000倍で観察し、構造体部分が密になっている方の表面側を画像の左側、構造体部分が粗くなっている方の表面側が画像の右側に配するように画像をコンピュータに取り込んだ。なお、以下の説明では便宜的に、外表面側で構造体部分が密になっており、内表面側で構造体部分が粗くなっている中空糸膜を例として説明をしている。内表面側で構造体部分が密になっており、外表面側で構造体部分が粗くなっている中空糸の場合は、以下の説明の外表面を内表面と、内表面を外表面と読み替えればよい。
取り込んだ画像のサイズは640ピクセル×480ピクセルだった。SEMで観察して、断面における中空糸膜の中空部分が閉塞している場合は試料作製をやりなおした。中空部分の閉塞は、切断処理時に応力方向に中空糸膜が変形しておこる場合がある。また、測定倍率の観察視野で緻密層がおさまらない場合は、緻密層がおさまるように2枚以上のSEM像を合成した。二値化処理により、孔部分を黒、構造体部分を白とした画像を得た。画像内のコントラストの差によって、構造体部分とそれ以外の部分を分けられない場合、コントラストが同じ部分で画像を切り分けてそれぞれ二値化処理をした後に、元のとおりに繋ぎ合わせて一枚の画像に戻した。または、構造体部分以外を黒で塗りつぶして画像解析をしてもよい。孔が深さ方向に二重に観察された場合は、浅い方の孔で測定した。なお、孔面積は、上記の画像の二値化処理により黒で表示される部分、すなわち孔部分の単体の面積を画像処理ソフトにより解析することで得た。
画像内で既知の長さを示しているスケールバーのピクセル数を計測し、1ピクセル数あたりの長さ(μm)を算出した。取り込んだ画像のサイズは横42.38μm×縦31.79μmであった。
(4) Measurement of dense layer thickness (DT) The hollow fiber membrane was soaked in water for 5 minutes, then frozen with liquid nitrogen, quickly folded, and perpendicular to the longitudinal direction of the hollow fiber membrane as a cross-sectional observation sample The cross section is observed with SEM (S-5500, manufactured by Hitachi High-Technologies Corporation) at a magnification of 3000 times. The surface side of the dense structure part is the left side of the image, and the structure part is rough. The image was captured in a computer so that the front side of the image was placed on the right side of the image. In the following description, for convenience, a hollow fiber membrane in which the structure portion is dense on the outer surface side and the structure portion is rough on the inner surface side is described as an example. For hollow fibers with a dense structure on the inner surface and a rough structure on the outer surface, read the following explanation for the outer surface as the inner surface and the inner surface as the outer surface. Just do it.
The size of the captured image was 640 pixels × 480 pixels. When observed by SEM and the hollow part of the hollow fiber membrane in the cross section was blocked, the sample preparation was repeated. The clogging of the hollow portion may occur due to deformation of the hollow fiber membrane in the stress direction during the cutting process. In addition, when the dense layer did not fit in the observation field at the measurement magnification, two or more SEM images were synthesized so that the dense layer could fit. By binarization processing, an image in which the hole portion was black and the structure portion was white was obtained. If the structure part cannot be separated from the other parts due to the difference in contrast in the image, the image is cut out at the same contrast part and binarized, and then connected together as before. Returned to the image. Alternatively, the image analysis may be performed by painting other than the structure portion in black. When a hole was observed twice in the depth direction, the measurement was made with the shallower hole. The hole area was obtained by analyzing the portion displayed in black by the above-described binarization processing of the image, that is, the area of a single hole portion by image processing software.
The number of pixels of the scale bar indicating a known length in the image was measured, and the length per pixel number (μm) was calculated. The size of the captured image was 42.38 μm wide × 31.79 μm long.

画像処理により、孔面積が0.28μmを超える孔を蛍光色に塗りつぶし、孔面積が0.28μmを超える孔がない層を緻密層として、中空糸膜の外表面から内表面の方向に緻密層の厚みを測定した。ただし、中空糸膜の製膜方法の影響で、緻密層表面近傍に孔面積が0.28μmを超える孔が確認される場合がある。また、画像の焦点が合っていない影響などによっても、緻密層表面近傍において孔面積が0.28μm以下の複数の孔が1個の孔として認識され、孔面積が0.28μmを超える孔として蛍光色に塗りつぶされてしまう場合がある。このようなことがあると、正確な緻密層厚みを測定できなくなる。そのため、中空糸膜の外表面から膜厚に対して10%以内(膜厚60μmの場合は6μm)の位置に孔面積が0.28μmを超える孔が存在した場合は、ノイズとして無視することとした。
具体的には以下のようにして緻密層の厚みを測定した。まず、中空糸膜の厚み方向、すなわち、中空糸膜の外表面から内表面の方向に、外表面に垂直な直線を引いた。この直線上に存在する孔の中から、外表面に最も近い孔面積が0.28μmを超える孔を探した。この孔と前記直線との交点のうちの外表面に近い側の交点を選び、この交点と外表面との距離を緻密層の厚みとした。
By image processing, holes with a pore area exceeding 0.28 μm 2 are painted in a fluorescent color, and a layer having no pores with a pore area exceeding 0.28 μm 2 is used as a dense layer in the direction from the outer surface to the inner surface of the hollow fiber membrane. The thickness of the dense layer was measured. However, due to the influence of the hollow fiber membrane production method, pores having a pore area exceeding 0.28 μm 2 may be observed near the dense layer surface. In addition, due to the effect that the image is out of focus, a plurality of holes having a hole area of 0.28 μm 2 or less are recognized as one hole in the vicinity of the dense layer surface, and the hole area exceeds 0.28 μm 2. As a result, the fluorescent color may be filled. If this happens, the accurate dense layer thickness cannot be measured. Therefore, if a hole with a hole area exceeding 0.28 μm 2 exists at a position within 10% of the film thickness from the outer surface of the hollow fiber membrane (6 μm when the film thickness is 60 μm), it should be ignored as noise. It was.
Specifically, the thickness of the dense layer was measured as follows. First, a straight line perpendicular to the outer surface was drawn in the thickness direction of the hollow fiber membrane, that is, in the direction from the outer surface to the inner surface of the hollow fiber membrane. From the holes existing on this straight line, a hole having a hole area closest to the outer surface exceeding 0.28 μm 2 was searched for. Of the intersection points between the holes and the straight line, an intersection point closer to the outer surface was selected, and the distance between the intersection point and the outer surface was taken as the thickness of the dense layer.

取り込んだ画像(横42.38μm×縦31.79μm)について、上記の画像を縦方向に三分割し、横42.38μm×縦10.6μmの視野の画像を3つ得た。次に、各視野の縦の中間点における緻密層の厚みを上述のとおり、測定した。
三分割した各視野の画像からそれぞれ緻密層の厚みを求め、同様の測定を20枚の取り込んだ画像から行い、計60個の緻密層の厚みの測定データを得た。60個の測定データの平均値を算出し、孔面積が0.28μm以下の孔のみを有する緻密層の厚み(DT)と定義した。
With respect to the captured image (width 42.38 μm × length 31.79 μm), the above image was divided into three in the lengthwise direction, and three images having a field of view 42.38 μm × length 10.6 μm were obtained. Next, the thickness of the dense layer at the vertical midpoint of each field of view was measured as described above.
The thickness of the dense layer was determined from each of the three divided fields of view, and the same measurement was performed from the 20 captured images to obtain a total of 60 measurement data of the thickness of the dense layer. The average value of 60 measurement data was calculated and defined as the thickness (DT) of the dense layer having only pores having a pore area of 0.28 μm 2 or less.

(5)中空糸膜の表面における親水性高分子/疎水性高分子
親水性高分子および疎水性高分子を含む中空糸膜の測定サンプルを試料ホルダにセットし、試料ホルダをプレートに設置し、つまみを回して、プリズムと中空糸膜の測定対象となる表面(外表面または内表面)とを密着させた。次に、赤外ATR測定装置(日本分光株式会社製、赤外分光光度計:FT/IR−6000、赤外顕微鏡:IRT−3000)を用いて中空糸膜の測定対象となる表面を分析し、この表面に含まれる親水性高分子と疎水性高分子との比(親水性高分子/疎水性高分子)を得た。以下に、親水性高分子としてPVP、疎水性高分子としてPSFを用いた場合を例示し、本測定方法を具体的に説明する。
赤外ATR測定装置による分析によって得られた赤外吸収スペクトルから、1580cm−1付近のPSFのベンゼン環C=C由来の吸収ピークの面積(Acc)と、1650cm−1付近のPVPのアミド結合由来の吸収ピークの面積(Aco)とを計算し、そのピーク面積の比(Aco)/(Acc)を求めた。中空糸膜30本について、同様の方法でピーク面積比を求め、計30の測定データの平均値を算出し、中空糸膜の測定対象となる表面のPVPとPSFの比(PVP/PSF)とした。
(5) Hydrophilic polymer / hydrophobic polymer on the surface of the hollow fiber membrane A hollow fiber membrane measurement sample containing a hydrophilic polymer and a hydrophobic polymer is set in a sample holder, the sample holder is placed on a plate, The knob was turned to bring the prism and the surface (outer surface or inner surface) to be measured of the hollow fiber membrane into close contact. Next, the surface to be measured of the hollow fiber membrane was analyzed using an infrared ATR measurement device (manufactured by JASCO Corporation, infrared spectrophotometer: FT / IR-6000, infrared microscope: IRT-3000). The ratio of hydrophilic polymer to hydrophobic polymer (hydrophilic polymer / hydrophobic polymer) contained on the surface was obtained. Hereinafter, the measurement method will be described in detail by exemplifying a case where PVP is used as the hydrophilic polymer and PSF is used as the hydrophobic polymer.
From the infrared absorption spectrum obtained by analysis by infrared ATR measuring device, the area of the absorption peak of the PSF from the benzene ring C = C in the vicinity of 1580 cm -1 (Acc), derived from amide bonds PVP near 1650 cm -1 The area (Aco) of the absorption peak was calculated, and the ratio (Aco) / (Acc) of the peak areas was determined. About 30 hollow fiber membranes, the peak area ratio is obtained by the same method, the average value of the measurement data of the total 30 is calculated, and the ratio of PVP to PSF on the surface to be measured of the hollow fiber membranes (PVP / PSF) and did.

(6)0.2μm粒子除去率の測定
上記(2)と同様にして小型モジュールを作製した。中空糸膜外側から200ppmの濃度のポリスチレン製ラテックスビーズ懸濁液(invitrogen社製、Sulfate latex)を供給し、中空糸膜を通して内側に透過してきた懸濁液の濃度を測定した。供給側濃度200ppmと透過側濃度の値を用いて阻止率を下記式により求めた。ラテックスビーズの粒子径は0.2μm(実測値0.203μm)のものを使用した。
阻止率=1−Cp/Cf
Cp:透過側濃度
Cf:供給側濃度
260nmの吸光度とラテックスビーズ濃度の関係をあらかじめ測定しておき、透過側の懸濁液の吸光度を測定することで濃度を求めた。吸光度の測定は分光光度計(株式会社日立製作所製、U−5100)を用いて求めた。
(6) Measurement of 0.2 μm particle removal rate A small module was produced in the same manner as in (2) above. From the outside of the hollow fiber membrane, a polystyrene latex bead suspension having a concentration of 200 ppm (manufactured by Invitrogen, Sulfate Latex) was supplied, and the concentration of the suspension permeated through the hollow fiber membrane to the inside was measured. Using the values of the supply side concentration of 200 ppm and the transmission side concentration, the rejection rate was determined by the following formula. The latex beads having a particle size of 0.2 μm (actual value 0.203 μm) were used.
Rejection rate = 1-Cp / Cf
Cp: Concentration on the transmission side Cf: Concentration on the supply side The relationship between the absorbance at 260 nm and the latex bead concentration was measured in advance, and the concentration was determined by measuring the absorbance of the suspension on the transmission side. Absorbance was measured using a spectrophotometer (manufactured by Hitachi, Ltd., U-5100).

(7)中空糸膜の内径および膜厚の測定
中空糸膜を膜厚方向に片刃で切断し、マイクロウォッチャー(KEYENCE社製、VH−Z100)にセットした。切断により中空糸断面が潰れてしまった場合には、略真円になるまで切断をやり直した。中空糸膜断面を1000倍レンズで観察し、断面を投影させたモニター画面上で中空糸膜の膜厚幅を範囲指定し、モニター画面上に表示された数値を読み取った。また、中空糸膜内径は中空部幅を範囲指定することで、モニター画面上に数値が表示される。中空糸膜30本について同じ測定を行い、計30の測定データの平均値を算出し、中空糸膜の内径(ID)および膜厚(WT)とした。
(7) Measurement of inner diameter and film thickness of hollow fiber membrane The hollow fiber membrane was cut with a single blade in the film thickness direction and set on a microwatcher (VH-Z100, manufactured by KEYENCE). When the cross section of the hollow fiber was crushed by cutting, the cutting was repeated until it became a substantially perfect circle. The cross section of the hollow fiber membrane was observed with a 1000 × lens, the range of the thickness of the hollow fiber membrane was designated on the monitor screen on which the cross section was projected, and the numerical value displayed on the monitor screen was read. Moreover, a numerical value is displayed on a monitor screen by designating the hollow fiber membrane inner diameter as a range of the hollow part width. The same measurement was performed for 30 hollow fiber membranes, and the average value of a total of 30 measurement data was calculated as the inner diameter (ID) and film thickness (WT) of the hollow fiber membranes.

(8)緻密層の厚み(DT)と膜厚(WT)との比(DT/WT)
上記(4)で算出した緻密層の厚み(DT)と上記(7)で算出した中空糸膜の膜厚(WT)より、緻密層の厚み(DT)と中空糸膜の膜厚(WT)との比(DT/WT)を算出した。
(8) Ratio of dense layer thickness (DT) to film thickness (WT) (DT / WT)
From the thickness (DT) of the dense layer calculated in (4) above and the film thickness (WT) of the hollow fiber membrane calculated in (7) above, the thickness (DT) of the dense layer and the film thickness (WT) of the hollow fiber membrane are calculated. The ratio (DT / WT) was calculated.

(9)中空糸膜の外径および外径ばらつきの測定
長手方向に30cmに切断した中空糸膜を外径測定器(KEYENCE社製、コントローラ部:LS−5500、センサヘッド部:LS−5040)にセットし、両端部から10cmの位置の中空糸膜の外径をそれぞれ測定した。
中空糸膜20本について同じ測定を行い、計40の測定データの平均値を算出し、中空糸膜の外径(OD)を求めた。さらに計40の測定データの中で最も外径の大きい値(MAX)および、最も外径の小さい値(MIN)を選択し、外径ばらつき(ROD)を下式により算出した。
ROD(%)=(MAX−MIN)/OD×100
(9) Measurement of outer diameter and variation of outer diameter of hollow fiber membrane An outer diameter measuring device (manufactured by KEYENCE, controller part: LS-5500, sensor head part: LS-5040) cut into 30 cm in the longitudinal direction. The outer diameters of the hollow fiber membranes at positions 10 cm from both ends were measured.
The same measurement was performed on 20 hollow fiber membranes, the average value of 40 measurement data was calculated, and the outer diameter (OD) of the hollow fiber membranes was obtained. Furthermore, the largest outer diameter value (MAX) and the smallest outer diameter value (MIN) were selected from a total of 40 measurement data, and the outer diameter variation (ROD) was calculated by the following equation.
ROD (%) = (MAX−MIN) / OD × 100

(10)耐圧性能
アクリルパイプに中空糸膜を挿入し、両端をコニシ株式会社製エポキシ樹脂系接着剤“クイックメンダー”(登録商標)でポッティングし、ケース両端部からはみ出た中空糸膜およびポッティング剤をカットすることで小型モジュールを作製した。
水槽内で小型モジュールを、空気ボンベ、圧力調節計、圧力測定計、ダイヤルゲージおよび開閉コックが連結した回路に継手を用いて接続した。
ダイヤルゲージを徐々に開き、小型モジュール内の中空糸膜に亀裂が入り、圧力が急激に低下した時の圧力値を耐圧性能とした。途中で空気漏れした場合は、最初からやり直した。
(10) Pressure resistance A hollow fiber membrane inserted into an acrylic pipe, both ends potted with an epoxy resin adhesive “Quick Mender” (registered trademark) manufactured by Konishi Co., Ltd. A small module was produced by cutting
In the water tank, the small module was connected to a circuit in which an air cylinder, a pressure controller, a pressure meter, a dial gauge, and an open / close cock were connected using a joint.
The dial gauge was gradually opened, and the pressure value when the pressure suddenly decreased due to cracks in the hollow fiber membrane in the small module was defined as pressure resistance. If air leaks along the way, we started over.

(11)中空糸膜モジュール濾過流量
中空糸膜モジュールの非開口側に原水供給可能となるようにチューブを接続し、20℃の水を0.1MPaで供給し、中空糸膜を透過して流出してくる単位時間あたりの水の量を測定し、単位時間あたりの中空糸膜モジュール濾過流量(L/min)を算出した。
(11) Flow rate of hollow fiber membrane module filtration A tube is connected to the non-opening side of the hollow fiber membrane module so that raw water can be supplied, water at 20 ° C. is supplied at 0.1 MPa, and permeates through the hollow fiber membrane. The amount of water per unit time was measured, and the hollow fiber membrane module filtration flow rate (L / min) per unit time was calculated.

(12)浄水器カートリッジ濁り濾過能力
作製した中空糸膜モジュール上流側に活性炭を配し、カートリッジ化した後、JIS S 3201:2004(家庭用浄水器試験方法)に示される方法に沿って実施した。初期流量は2.0L/minと設定した。
(12) Water purifier cartridge turbidity filtration capacity Activated carbon was placed upstream of the produced hollow fiber membrane module and converted into a cartridge, which was then carried out in accordance with the method shown in JIS S 3201: 2004 (house water purifier test method). . The initial flow rate was set at 2.0 L / min.

(実施例1)
疎水性高分子(PSF(ソルベイ社製ユーデルポリスルホン(登録商標)P−3500))15質量部と親水性高分子(PVP(ISP社製K90))7質量部とN,N−ジメチルアセトアミド(DMAc)75質量部と水3.0質量部を溶解攪拌し、紡糸原液を調製した。この紡糸原液の37℃における粘度は5.0Pa・sであった。この紡糸原液を二重環口金の環状スリットから吐出した。注入液体としてDMAc55質量部、ポリビニルピロリドン(BASF社製K30、重量平均分子量4万)30質量部およびグリセリン15質量部からなる非凝固性液体を中心パイプより吐出した。口金は37℃に保温した。注入液体と紡糸原液の吐出線速度の相対比は、注入液吐出線速度/紡糸原液吐出線速度=0.8であった。
Example 1
15 parts by mass of a hydrophobic polymer (PSF (Udel Polysulfone (registered trademark) P-3500) manufactured by Solvay), 7 parts by mass of a hydrophilic polymer (PVP (K90 manufactured by ISP)) and N, N-dimethylacetamide ( DMAc) 75 parts by mass and 3.0 parts by mass of water were dissolved and stirred to prepare a spinning dope. This spinning dope had a viscosity at 37 ° C. of 5.0 Pa · s. This spinning dope was discharged from the annular slit of the double ring die. A non-solidifying liquid consisting of 55 parts by mass of DMAc, 30 parts by mass of polyvinyl pyrrolidone (BASF K30, weight average molecular weight 40,000) and 15 parts by mass of glycerin was discharged from the center pipe. The base was kept at 37 ° C. The relative ratio of the injection liquid and the spinning linear solution discharge linear velocity was injection liquid discharge linear velocity / spinning raw solution discharge linear velocity = 0.8.

乾式部に冷風筒を設置し、紡糸原液の両側から冷風気体を流しながら所定の乾式長を通過させた。紡糸中の乾式部露点は表1に示す通りであった。乾式部を通過した紡糸原液を90部の水及び10部のDMAcからなる混合溶液を入れた80℃の凝固浴に浸漬して凝固させ、さらに80℃の温浴で温水洗浄してからかせ枠に巻き取り、湿潤状態の中空糸膜を得た。巻き取られた中空糸膜は、外径300μm、内径180μm、膜厚60μmであった。得られた中空糸膜を長手方向に30cmに切断し、90℃で3時間熱水洗浄した。乾熱乾燥器内において中空糸膜を乾燥し、160℃以上で熱処理することで乾燥状態の中空糸膜を得た。   A cold wind cylinder was installed in the dry section, and a predetermined dry length was allowed to pass while flowing cold wind gas from both sides of the spinning dope. The dry part dew point during spinning was as shown in Table 1. The spinning stock solution that has passed through the dry section is solidified by immersing it in an 80 ° C. coagulation bath containing 90 parts of water and 10 parts of DMAc mixed solution. A hollow fiber membrane wound up and wet was obtained. The wound hollow fiber membrane had an outer diameter of 300 μm, an inner diameter of 180 μm, and a film thickness of 60 μm. The obtained hollow fiber membrane was cut into 30 cm in the longitudinal direction and washed with hot water at 90 ° C. for 3 hours. The hollow fiber membrane was dried in a dry heat dryer and heat-treated at 160 ° C. or higher to obtain a dry hollow fiber membrane.

乾燥状態の上記中空糸膜1994本をU字状に折り、筒状ケース(内径26mm、長さ45mm)内に挿入し、ポリウレタン樹脂で開口部を固定し、中空糸膜モジュールとした。   The above-mentioned 1994 hollow fiber membranes in a dry state were folded in a U shape, inserted into a cylindrical case (inner diameter 26 mm, length 45 mm), and the opening was fixed with polyurethane resin to obtain a hollow fiber membrane module.

得られた中空糸膜の構成や各種性能、中空糸膜モジュール濾過流量、浄水器カートリッジ濁り濾過能力等について表1および2に示す。   Tables 1 and 2 show the configuration and various performances of the obtained hollow fiber membrane, the hollow fiber membrane module filtration flow rate, the water purifier cartridge turbidity filtration capability, and the like.

(実施例2)
実施例1と同様の方法により、湿潤状態の中空糸膜を得た。得られた中空糸膜を長手方向に30cmに切断し、乾熱乾燥器内において中空糸膜を乾燥し、160℃以上で熱処理することで乾燥状態の中空糸膜を得た。
(Example 2)
A wet hollow fiber membrane was obtained in the same manner as in Example 1. The obtained hollow fiber membrane was cut into 30 cm in the longitudinal direction, the hollow fiber membrane was dried in a dry heat drier, and heat-treated at 160 ° C. or higher to obtain a dry hollow fiber membrane.

乾燥状態の上記中空糸膜1994本をU字状に折り、筒状ケース(内径26mm、長さ45mm)内に挿入し、ポリウレタン樹脂で開口部を固定し、中空糸膜モジュールとした。   The above-mentioned 1994 hollow fiber membranes in a dry state were folded in a U shape, inserted into a cylindrical case (inner diameter 26 mm, length 45 mm), and the opening was fixed with polyurethane resin to obtain a hollow fiber membrane module.

得られた中空糸膜の構成や各種性能、中空糸膜モジュール濾過流量、浄水器カートリッジ濁り濾過能力等について表1および2に示す。   Tables 1 and 2 show the configuration and various performances of the obtained hollow fiber membrane, the hollow fiber membrane module filtration flow rate, the water purifier cartridge turbidity filtration capability, and the like.

(実施例3)
実施例1と同様の方法により、湿潤状態の中空糸膜を得た。得られた中空糸膜を長手方向に30cmに切断し、90℃で3時間熱水洗浄した。ガンマ線照射(25kGy)により中空糸膜中の親水性高分子を架橋させた。
(Example 3)
A wet hollow fiber membrane was obtained in the same manner as in Example 1. The obtained hollow fiber membrane was cut into 30 cm in the longitudinal direction and washed with hot water at 90 ° C. for 3 hours. The hydrophilic polymer in the hollow fiber membrane was crosslinked by gamma ray irradiation (25 kGy).

ガンマ線照射後の上記中空糸膜1994本をU字状に折り、筒状ケース(内径26mm、長さ45mm)内に挿入し、ポリウレタン樹脂で開口部を固定し、中空糸膜モジュールとした。   The above-mentioned 1994 hollow fiber membranes after gamma ray irradiation were folded in a U shape, inserted into a cylindrical case (inner diameter 26 mm, length 45 mm), and the opening was fixed with polyurethane resin to obtain a hollow fiber membrane module.

得られた中空糸膜の構成や各種性能、中空糸膜モジュール濾過流量、浄水器カートリッジ濁り濾過能力等について表1および2に示す。   Tables 1 and 2 show the configuration and various performances of the obtained hollow fiber membrane, the hollow fiber membrane module filtration flow rate, the water purifier cartridge turbidity filtration capability, and the like.

(比較例1)
二重環口金の環状スリットから紡糸原液を吐出線速度0.003m/sで、注入液パイプから注入液体を吐出線速度0.04m/sで吐出したこと以外は、実施例1と同様の方法により、乾燥状態の中空糸膜を得た。中空糸膜の糸径は、外径300μm、内径180μm、膜厚60μmであった。紡糸原液と注入液体の吐出線速度の相対比は、注入液吐出線速度/紡糸原液吐出線速度=13.3であった。
(Comparative Example 1)
The same method as in Example 1 except that the spinning dope is discharged from the annular slit of the double ring die at a discharge linear velocity of 0.003 m / s and the injection liquid is discharged from the injection liquid pipe at a discharge linear velocity of 0.04 m / s. As a result, a dry hollow fiber membrane was obtained. The yarn diameter of the hollow fiber membrane was an outer diameter of 300 μm, an inner diameter of 180 μm, and a film thickness of 60 μm. The relative ratio of the spinning linear solution and the injection liquid discharge linear velocity was injection liquid discharge linear velocity / spinning raw solution discharge linear velocity = 13.3.

乾燥状態の上記中空糸膜1994本をU字状に折り、筒状ケース(内径26mm、長さ45mm)内に挿入し、ポリウレタン樹脂で開口部を固定し、中空糸膜モジュールとした。   The above-mentioned 1994 hollow fiber membranes in a dry state were folded in a U shape, inserted into a cylindrical case (inner diameter 26 mm, length 45 mm), and the opening was fixed with polyurethane resin to obtain a hollow fiber membrane module.

得られた中空糸膜の構成や各種性能、中空糸膜モジュール濾過流量、浄水器カートリッジ濁り濾過能力等について表1および2に示す。中空糸膜の外表面について、SEM(S−5500、株式会社日立ハイテクノロジーズ製)で観察したところ、外表面の膜構造が長手方向に引き伸ばされ、プリーツ構造が形成されていた。そのため、中空糸膜における緻密層厚みが小さくなり、耐圧性の低い中空糸膜となった。   Tables 1 and 2 show the configuration and various performances of the obtained hollow fiber membrane, the hollow fiber membrane module filtration flow rate, the water purifier cartridge turbidity filtration capability, and the like. When the outer surface of the hollow fiber membrane was observed with SEM (S-5500, manufactured by Hitachi High-Technologies Corporation), the membrane structure of the outer surface was stretched in the longitudinal direction, and a pleated structure was formed. Therefore, the thickness of the dense layer in the hollow fiber membrane was reduced, and a hollow fiber membrane having low pressure resistance was obtained.

(比較例2)
紡糸原液の粘度を1.5Pa・sとして二重環口金の環状スリットから吐出したこと以外は、実施例1と同様の操作により、中空糸膜をかせ枠に巻き取ろうとしたが、二重環口金から凝固浴間での糸切れが繰り返し発生し、困難となった。中空糸膜の評価結果などを表1および2に示す。一部採取できた中空糸膜は、緻密層厚みが薄く、RODが27%と非常に大きかった。RODが大きいため、中空糸膜の性能が不安定なものとなり、中空糸膜の品位が悪化した。なお、比較例2の中空糸膜の品位は劣悪であり、この中空糸膜を束としU字化することはできなかった。よって、モジュール濾過流量を評価するため中空糸膜モジュールを作製することが出来ず、比較例2の中空糸膜においては、中空糸膜モジュール濾過流量および浄水器カートリッジ濁り濾過能力の評価を行うことが出来なかった。
(Comparative Example 2)
The hollow fiber membrane was wound around the skein frame by the same operation as in Example 1 except that the viscosity of the spinning dope was set to 1.5 Pa · s and discharged from the annular slit of the double ring die. The yarn breakage between the base and the coagulation bath repeatedly occurred, making it difficult. The evaluation results of the hollow fiber membrane are shown in Tables 1 and 2. The hollow fiber membrane that was partially collected had a thin dense layer and a very large ROD of 27%. Since the ROD was large, the performance of the hollow fiber membrane became unstable, and the quality of the hollow fiber membrane deteriorated. In addition, the quality of the hollow fiber membrane of the comparative example 2 was inferior, and this hollow fiber membrane could not be bundled into a U shape. Therefore, a hollow fiber membrane module cannot be produced to evaluate the module filtration flow rate, and in the hollow fiber membrane of Comparative Example 2, the hollow fiber membrane module filtration flow rate and the water purifier cartridge turbidity filtration ability can be evaluated. I could not do it.

(比較例3)
二重環口金の環状スリットから紡糸原液を吐出線速度0.28m/sで、注入液パイプから注入液体を吐出線速度0.22m/sで吐出したこと以外は、実施例1と同様の方法により、乾燥状態の中空糸膜を得た。中空糸膜の糸径は、外径360μm、内径220μm、膜厚70μmであった。紡糸原液と注入液体の吐出線速度の相対比は、注入液吐出線速度/紡糸原液吐出線速度=0.79であった。
(Comparative Example 3)
The same method as in Example 1 except that the spinning dope is discharged from the annular slit of the double ring die at a discharge linear velocity of 0.28 m / s and the injection liquid is discharged from the injection liquid pipe at a discharge linear velocity of 0.22 m / s. As a result, a dry hollow fiber membrane was obtained. The hollow fiber membrane had an outer diameter of 360 μm, an inner diameter of 220 μm, and a film thickness of 70 μm. The relative ratio between the spinning solution and the injection liquid discharge linear velocity was injection solution discharge linear velocity / spinning solution discharge linear velocity = 0.79.

乾燥状態の上記中空糸膜1384本をU字状に折り、筒状ケース(内径26mm、長さ45mm)内に挿入し、ポリウレタン樹脂で開口部を固定し、中空糸膜モジュールとした。   1384 hollow fiber membranes in the dry state were folded in a U shape, inserted into a cylindrical case (inner diameter 26 mm, length 45 mm), and the opening was fixed with polyurethane resin to obtain a hollow fiber membrane module.

得られた中空糸膜の構成や各種性能、中空糸膜モジュール濾過流量、浄水器カートリッジ濁り濾過能力等について表1および2に示す。   Tables 1 and 2 show the configuration and various performances of the obtained hollow fiber membrane, the hollow fiber membrane module filtration flow rate, the water purifier cartridge turbidity filtration capability, and the like.

Figure 2017164019
Figure 2017164019

Figure 2017164019
Figure 2017164019

本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は、2016年3月22日出願の日本特許出願(特願2016−056695)に基づくものであり、その内容はここに参照として取り込まれる。   Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application filed on March 22, 2016 (Japanese Patent Application No. 2006-056695), the contents of which are incorporated herein by reference.

本発明は、水処理分野において、中空糸膜モジュール、もしくは浄水器用カートリッジに適用可能な中空糸膜として用いることができる。また、浄水器以外にも血漿分離膜などの医療用途にも用いることができる。   The present invention can be used as a hollow fiber membrane applicable to a hollow fiber membrane module or a water purifier cartridge in the field of water treatment. In addition to the water purifier, it can also be used for medical applications such as a plasma separation membrane.

Claims (5)

中空糸膜の長手方向に垂直な断面で観察した状態において、孔面積が0.28μm以下の孔のみを有する緻密層を備える中空糸膜であって、
前記緻密層は前記中空糸膜の外表面側または内表面側に配されており、
前記中空糸膜の外径は350μm以下であり、
前記中空糸膜の内径は150μm以上であり、
前記中空糸膜の膜厚は30μm以上90μm以下であり、
前記緻密層が配された前記中空糸膜の表面は複数の孔を有しており、前記複数の孔の中空糸膜表面で観察した平均孔径が0.3μm以上0.9μm以下であり、
前記緻密層の厚み(DT)と前記中空糸膜の膜厚(WT)との比(DT/WT)が0.24以上である、中空糸膜。
A hollow fiber membrane comprising a dense layer having only pores having a pore area of 0.28 μm 2 or less in a state observed in a cross section perpendicular to the longitudinal direction of the hollow fiber membrane,
The dense layer is disposed on the outer surface side or the inner surface side of the hollow fiber membrane,
The hollow fiber membrane has an outer diameter of 350 μm or less,
The hollow fiber membrane has an inner diameter of 150 μm or more,
The hollow fiber membrane has a thickness of 30 μm or more and 90 μm or less,
The surface of the hollow fiber membrane on which the dense layer is disposed has a plurality of holes, and the average pore diameter observed on the surface of the hollow fiber membrane of the plurality of holes is 0.3 μm or more and 0.9 μm or less,
The hollow fiber membrane whose ratio (DT / WT) of the thickness (DT) of the said dense layer and the film thickness (WT) of the said hollow fiber membrane is 0.24 or more.
前記緻密層が前記中空糸膜の外表面側に配された、請求項1に記載の中空糸膜。   The hollow fiber membrane according to claim 1, wherein the dense layer is disposed on an outer surface side of the hollow fiber membrane. 前記緻密層が配された前記中空糸膜の表面の開孔率が15%以上45%以下である、請求項1または2に記載の中空糸膜。   The hollow fiber membrane according to claim 1 or 2, wherein a porosity of a surface of the hollow fiber membrane on which the dense layer is arranged is 15% or more and 45% or less. ポリスルホン系ポリマーとポリビニルピロリドンとを含む、請求項1〜3のいずれか1項に記載の中空糸膜。   The hollow fiber membrane according to any one of claims 1 to 3, comprising a polysulfone polymer and polyvinylpyrrolidone. 請求項1〜4のいずれか1項に記載の中空糸膜を搭載した浄水器用カートリッジ。   The cartridge for water purifiers which mounts the hollow fiber membrane of any one of Claims 1-4.
JP2017517388A 2016-03-22 2017-03-15 Hollow fiber membrane Active JP6973071B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016056695 2016-03-22
JP2016056695 2016-03-22
PCT/JP2017/010298 WO2017164019A1 (en) 2016-03-22 2017-03-15 Hollow fiber membrane

Publications (2)

Publication Number Publication Date
JPWO2017164019A1 true JPWO2017164019A1 (en) 2019-01-24
JP6973071B2 JP6973071B2 (en) 2021-11-24

Family

ID=59900269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017517388A Active JP6973071B2 (en) 2016-03-22 2017-03-15 Hollow fiber membrane

Country Status (4)

Country Link
JP (1) JP6973071B2 (en)
KR (1) KR102219541B1 (en)
CN (1) CN109070011B (en)
WO (1) WO2017164019A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114618321B (en) * 2020-12-11 2023-07-25 中国科学院大连化学物理研究所 Hollow fiber membrane, preparation and application thereof in hydraulic oil degassing
US20230110094A1 (en) * 2021-10-13 2023-04-13 Full Sun International Co., Ltd. Hollow fiber filtration cartridge and methods thereof
CN114452844B (en) * 2022-01-29 2023-12-29 杭州科百特过滤器材有限公司 PES hollow fiber membrane for purifying biomacromolecule, and preparation method and application thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001157826A (en) * 1999-09-21 2001-06-12 Asahi Kasei Corp Anisotropic polyethylene hollow-fiber porous membrane
WO2003026779A1 (en) * 2001-08-01 2003-04-03 Asahi Kasei Kabushiki Kaisha Multilayer microporous film
JP2006051094A (en) * 2004-08-10 2006-02-23 Toyobo Co Ltd Hollow fiber membrane module
WO2010029908A1 (en) * 2008-09-10 2010-03-18 東レ株式会社 Hollow-fiber membrane and process for production of hollow-fiber membrane
WO2013012024A1 (en) * 2011-07-21 2013-01-24 東洋紡株式会社 Porous hollow fiber membrane
JP2013076024A (en) * 2011-09-30 2013-04-25 Asahi Kasei Fibers Corp Polyketone porous membrane
JP2014073487A (en) * 2012-09-11 2014-04-24 Toray Ind Inc Porous membrane, water purifier incorporating porous membrane and method for producing porous membrane
WO2016031834A1 (en) * 2014-08-25 2016-03-03 旭化成メディカル株式会社 Porous membrane

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2550204B2 (en) 1990-05-01 1996-11-06 宇部日東化成 株式会社 Porous fiber manufacturing method
WO2015046411A1 (en) * 2013-09-30 2015-04-02 東レ株式会社 Porous membrane, blood purifying module incorporating porous membrane, and method for producing porous membrane
WO2016113964A1 (en) * 2015-01-16 2016-07-21 旭化成メディカル株式会社 Porous hollow fiber membrane

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001157826A (en) * 1999-09-21 2001-06-12 Asahi Kasei Corp Anisotropic polyethylene hollow-fiber porous membrane
WO2003026779A1 (en) * 2001-08-01 2003-04-03 Asahi Kasei Kabushiki Kaisha Multilayer microporous film
JP2006051094A (en) * 2004-08-10 2006-02-23 Toyobo Co Ltd Hollow fiber membrane module
WO2010029908A1 (en) * 2008-09-10 2010-03-18 東レ株式会社 Hollow-fiber membrane and process for production of hollow-fiber membrane
WO2013012024A1 (en) * 2011-07-21 2013-01-24 東洋紡株式会社 Porous hollow fiber membrane
JP2013076024A (en) * 2011-09-30 2013-04-25 Asahi Kasei Fibers Corp Polyketone porous membrane
JP2014073487A (en) * 2012-09-11 2014-04-24 Toray Ind Inc Porous membrane, water purifier incorporating porous membrane and method for producing porous membrane
WO2016031834A1 (en) * 2014-08-25 2016-03-03 旭化成メディカル株式会社 Porous membrane

Also Published As

Publication number Publication date
KR102219541B1 (en) 2021-02-24
CN109070011A (en) 2018-12-21
KR20180122623A (en) 2018-11-13
WO2017164019A1 (en) 2017-09-28
JP6973071B2 (en) 2021-11-24
CN109070011B (en) 2021-05-11

Similar Documents

Publication Publication Date Title
JP5065379B2 (en) Ultrafiltration membrane
AU2009297565B2 (en) Porous membrane, process for producing porous membrane, process for producing clarified liquid, and porous-membrane module
Çulfaz et al. Microstructured hollow fibers for ultrafiltration
JP7157790B2 (en) Porous membrane, porous membrane module, method for producing porous membrane, method for producing clarified liquid and method for producing beer
WO2010029908A1 (en) Hollow-fiber membrane and process for production of hollow-fiber membrane
WO2014156644A1 (en) Porous membrane and water purifier
JP6973071B2 (en) Hollow fiber membrane
JP6201553B2 (en) Porous membrane, water purifier incorporating porous membrane, and method for producing porous membrane
JP5835659B2 (en) Porous hollow fiber membrane for protein-containing liquid treatment
JP2011050881A (en) Method of spinning hollow fiber membrane
JPH02251233A (en) Polysulfone-based hollow yarn membrane and its preparation
JP6155908B2 (en) Method for producing hollow fiber membrane
JP4036740B2 (en) Method for producing hollow fiber blood purification membrane
JPWO2016182015A1 (en) Porous hollow fiber membrane and method for producing the same
JP2688564B2 (en) Cellulose acetate hollow fiber separation membrane
CN112789103B (en) Hollow fiber membrane spinning nozzle and method for producing hollow fiber membrane
JPH119977A (en) Polyethylene composite microporous hollow fiber membrane
JP2675197B2 (en) Manufacturing method of high strength and porous polysulfone hollow fiber membrane
JP2011020071A (en) Method for manufacturing polysulfone-based hollow fiber membrane
JPH11244675A (en) Production of membrane
JP2005211784A (en) Porous membrane and manufacturing method therefor
JP5109083B2 (en) Method for inspecting tube-in-orifice nozzle and method for producing hollow fiber membrane
JPS63100902A (en) Aromatic polysulfone hollow yarn membrane and its manufacture
JPH10314558A (en) Preparation of hollow fiber blood purification membrane
JPS5848201B2 (en) porous hollow fiber membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211018

R151 Written notification of patent or utility model registration

Ref document number: 6973071

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151