JPWO2017122774A1 - Biaxially stretched sheet and molded product thereof - Google Patents

Biaxially stretched sheet and molded product thereof Download PDF

Info

Publication number
JPWO2017122774A1
JPWO2017122774A1 JP2017561179A JP2017561179A JPWO2017122774A1 JP WO2017122774 A1 JPWO2017122774 A1 JP WO2017122774A1 JP 2017561179 A JP2017561179 A JP 2017561179A JP 2017561179 A JP2017561179 A JP 2017561179A JP WO2017122774 A1 JPWO2017122774 A1 JP WO2017122774A1
Authority
JP
Japan
Prior art keywords
styrene
biaxially stretched
methacrylic acid
stretched sheet
acrylic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017561179A
Other languages
Japanese (ja)
Other versions
JP6444539B2 (en
Inventor
学 横塚
学 横塚
大輔 吉村
大輔 吉村
大介 元井
大介 元井
英二 和泉
英二 和泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd, Denki Kagaku Kogyo KK filed Critical Denka Co Ltd
Publication of JPWO2017122774A1 publication Critical patent/JPWO2017122774A1/en
Application granted granted Critical
Publication of JP6444539B2 publication Critical patent/JP6444539B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/34Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents for packaging foodstuffs or other articles intended to be cooked or heated within the package
    • B65D81/3446Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents for packaging foodstuffs or other articles intended to be cooked or heated within the package specially adapted to be heated by microwaves
    • B65D81/3461Flexible containers, e.g. bags, pouches, envelopes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/14Copolymers of styrene with unsaturated esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Food Science & Technology (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

透明性、強度、製膜性および成形性が良好で、生産性、耐熱性、耐油性に優れた、スチレン系樹脂組成物からなる二軸延伸シートおよびその成形品を提供する。
スチレン−メタクリル酸共重合体(A)およびアクリル系樹脂(B)を含有するスチレン系樹脂組成物からなる二軸延伸シートであって、前記スチレン−メタクリル酸共重合体(A)と前記アクリル系樹脂(B)との質量比(A)/(B)が90/10〜97/3であり、前記スチレン−メタクリル酸共重合体(A)は、スチレン単量体単位とメタクリル酸単量体単位を87/13〜94/6の質量比で含有し、前記アクリル系樹脂(B)の重量平均分子量が100万〜700万であり、前記スチレン系樹脂組成物のビカット軟化温度が106〜132℃の範囲である二軸延伸シートとその成形品である。
Provided are a biaxially stretched sheet made of a styrenic resin composition and a molded product thereof having excellent transparency, strength, film-forming property and moldability, and excellent productivity, heat resistance and oil resistance.
A biaxially stretched sheet comprising a styrene resin composition containing a styrene-methacrylic acid copolymer (A) and an acrylic resin (B), the styrene-methacrylic acid copolymer (A) and the acrylic resin The mass ratio (A) / (B) to the resin (B) is 90/10 to 97/3, and the styrene-methacrylic acid copolymer (A) is composed of a styrene monomer unit and a methacrylic acid monomer. The unit is contained in a mass ratio of 87/13 to 94/6, the acrylic resin (B) has a weight average molecular weight of 1 million to 7 million, and the Vicat softening temperature of the styrene resin composition is 106 to 132. A biaxially stretched sheet having a temperature range of ° C. and a molded product thereof.

Description

本発明は、電子レンジで加熱する食品の包装容器の用途に好適に用いることができるスチレン系樹脂組成物からなる二軸延伸シートおよびその成形品に関するものである。   The present invention relates to a biaxially stretched sheet comprising a styrenic resin composition that can be suitably used for food packaging containers heated in a microwave oven, and a molded product thereof.

ポリスチレンの二軸延伸シートは、その透明性、剛性に優れることから、型成形されて主に軽量容器等の成形品に大量に使用されている。しかしながら、これらの容器は、耐熱性に劣ることから、沸騰水に直接接触する用途や、電子レンジで加熱する用途へはあまり使用されていない。そこで、原料であるポリスチレンに耐熱性を付与する試みがなされてきた。耐熱性を向上させたポリスチレンとしては、例えば、スチレン−アクリル酸共重合体またはスチレン−メタクリル酸共重合体(特許文献1、特許文献2)、スチレン−無水マレイン酸共重合体(特許文献3、特許文献4)が挙げられる。これらは一般的にスチレン系耐熱性樹脂として知られており、透明性、剛性を損なわずに耐熱性を向上させている。   Polystyrene biaxially stretched sheets are excellent in transparency and rigidity, and thus are molded and used mainly in molded articles such as lightweight containers. However, since these containers are inferior in heat resistance, they are rarely used for applications that directly contact boiling water or those that are heated in a microwave oven. Thus, attempts have been made to impart heat resistance to polystyrene as a raw material. Examples of polystyrene with improved heat resistance include styrene-acrylic acid copolymer or styrene-methacrylic acid copolymer (Patent Document 1, Patent Document 2), styrene-maleic anhydride copolymer (Patent Document 3, Patent document 4) is mentioned. These are generally known as styrenic heat-resistant resins, and improve heat resistance without impairing transparency and rigidity.

しかし、上記スチレン系耐熱性樹脂は通常のポリスチレンよりも溶融押出時の流動性が低く、樹脂の生産能力やシートの生産能力を上げることが難しい。上記スチレン系耐熱性樹脂の流動性を上げるためには、(i)押出温度を高くする方法、(ii)樹脂の分子量を下げる方法が考えられる。押出温度を高くすると、上記スチレン系耐熱性樹脂中のカルボン酸基が反応し、ゲル状の異物となってシートの品質低下を招く。また、樹脂の分子量を下げると、シート押出時のドローダウンが発生しやすくなり製膜が難しくなる。   However, the styrenic heat-resistant resin has lower fluidity during melt extrusion than ordinary polystyrene, and it is difficult to increase the resin production capacity and sheet production capacity. In order to increase the fluidity of the styrenic heat-resistant resin, (i) a method of increasing the extrusion temperature and (ii) a method of decreasing the molecular weight of the resin can be considered. When the extrusion temperature is increased, the carboxylic acid group in the styrene heat-resistant resin reacts to form a gel-like foreign material, resulting in a reduction in sheet quality. Further, when the molecular weight of the resin is lowered, drawdown at the time of sheet extrusion tends to occur and film formation becomes difficult.

押出温度を高くしつつ、ゲル発生を抑える方法としては、例えば押出時にゲル化防止剤を添加する方法が提案されている(特許文献5)。しかし、特許文献5に記載のゲル化防止剤は可塑剤としても働くため、得られるスチレン系樹脂シートの耐熱性、耐油性が低下する。そのため、これらの性能を低下させにくい添加剤を選定する必要がある。   As a method of suppressing gel generation while increasing the extrusion temperature, for example, a method of adding an antigelling agent during extrusion has been proposed (Patent Document 5). However, since the anti-gelling agent described in Patent Document 5 also works as a plasticizer, the heat resistance and oil resistance of the resulting styrene resin sheet are lowered. Therefore, it is necessary to select an additive that does not easily lower these performances.

また、スチレン系樹脂の分子量を下げつつ、製膜性を維持する方法としては、高分子量のポリスチレンを少量添加することにより、歪み硬化性を与える方法(特許文献6)が知られている。しかし、特許文献6に記載の高分子量のポリスチレンは前記スチレン系耐熱性樹脂とは相溶性が低く、期待する歪み硬化性が出にくいほか、得られるシートの透明性が低下する欠点を持つ。そこで、互いに相溶性を有するスチレン系耐熱性樹脂と高分子量ポリマーの組み合わせを選定する必要がある。   Further, as a method for maintaining the film forming property while lowering the molecular weight of the styrene resin, a method of imparting strain curability by adding a small amount of high molecular weight polystyrene is known (Patent Document 6). However, the high molecular weight polystyrene described in Patent Document 6 has low compatibility with the styrenic heat-resistant resin, and has the disadvantages that the expected strain-hardening property is not easily obtained and the transparency of the resulting sheet is lowered. Therefore, it is necessary to select a combination of a styrene-based heat resistant resin and a high molecular weight polymer that are compatible with each other.

また、前記スチレン系耐熱性樹脂はシート強度、特に耐折性、耐衝撃性が低く、樹脂の分子量を下げることによって更に低下する。前記スチレン系耐熱性樹脂は、耐折性、耐衝撃性が低いことにより、特に成形工程において通紙が難しい、型抜きが困難である、切り粉が出やすいなどの不具合が発生しやすく、成形容器の生産性が低下する。
これらの理由から、透明性、強度を有しつつ、製膜性、成形性が良好で、生産性に優れ、耐熱性、耐油性に優れたスチレン系樹脂からなる延伸シートが求められている。
The styrenic heat-resistant resin has low sheet strength, particularly folding resistance and impact resistance, and is further reduced by lowering the molecular weight of the resin. The styrenic heat-resistant resin has low folding resistance and impact resistance, so that it is difficult to pass paper especially in the molding process, it is difficult to remove the die, and chips are likely to be produced. Container productivity is reduced.
For these reasons, there is a need for a stretched sheet made of a styrene resin that has transparency and strength, has good film forming properties and moldability, is excellent in productivity, and is excellent in heat resistance and oil resistance.

米国特許第3035033号公報US Patent No. 3035033 特開2003−12734公報JP 2003-12734 A 特公昭59−15133号公報Japanese Patent Publication No.59-15133 特開昭55−71530号公報JP-A-55-71530 特開昭56−161409号公報JP 56-161409 A 特開2011−225866号公報JP 2011-225866 A

本発明の課題は、透明性、強度、製膜性および成形性が良好で、生産性、耐熱性、耐油性に優れた、スチレン系樹脂組成物からなる二軸延伸シートおよびその成形品を提供することである。   An object of the present invention is to provide a biaxially stretched sheet made of a styrene-based resin composition and a molded product thereof having excellent transparency, strength, film-forming property, and moldability, and excellent productivity, heat resistance, and oil resistance. It is to be.

本発明者らは、上記の課題を解決すべくスチレン系樹脂シートの成分や組成について鋭意検討を重ねた結果、スチレン−メタクリル酸共重合体をベースとし、高分子量アクリル系樹脂を所定量添加した樹脂を用いることよって、その目的が達成されることを見出し、本発明を完成するに至った。   As a result of intensive studies on the components and composition of the styrene resin sheet in order to solve the above problems, the present inventors added a predetermined amount of a high molecular weight acrylic resin based on a styrene-methacrylic acid copolymer. The inventors have found that the purpose is achieved by using a resin, and have completed the present invention.

すなわち本発明は以下の通りである。
(1)スチレン−メタクリル酸共重合体(A)およびアクリル系樹脂(B)を含有するスチレン系樹脂組成物からなる二軸延伸シートであって、前記スチレン−メタクリル酸共重合体(A)と前記アクリル系樹脂(B)との質量比(A)/(B)が90/10〜97/3であり、前記スチレン−メタクリル酸共重合体(A)は、スチレン単量体単位とメタクリル酸単量体単位を84/16〜94/6の質量比で含有し、前記アクリル系樹脂(B)の重量平均分子量が100万〜700万であり、前記スチレン系樹脂組成物のビカット軟化温度が106〜132℃の範囲である二軸延伸シート。
That is, the present invention is as follows.
(1) A biaxially stretched sheet comprising a styrene-based resin composition containing a styrene-methacrylic acid copolymer (A) and an acrylic resin (B), the styrene-methacrylic acid copolymer (A) and The mass ratio (A) / (B) to the acrylic resin (B) is 90/10 to 97/3, and the styrene-methacrylic acid copolymer (A) is composed of a styrene monomer unit and methacrylic acid. The monomer unit is contained in a mass ratio of 84/16 to 94/6, the acrylic resin (B) has a weight average molecular weight of 1,000,000 to 7,000,000, and the Vicat softening temperature of the styrene resin composition is A biaxially stretched sheet in the range of 106 to 132 ° C.

(2)前記スチレン−メタクリル酸共重合体(A)の重量平均分子量が12万〜25万である前記(1)に記載の二軸延伸シート。 (2) The biaxially stretched sheet according to (1), wherein the styrene-methacrylic acid copolymer (A) has a weight average molecular weight of 120,000 to 250,000.

(3)前記アクリル系樹脂(B)が、メタクリル酸メチル単量体単位とアクリル酸ブチル単量体単位を含有する前記(1)または前記(2)に記載の二軸延伸シート。 (3) The biaxially stretched sheet according to (1) or (2), wherein the acrylic resin (B) contains a methyl methacrylate monomer unit and a butyl acrylate monomer unit.

(4)前記アクリル系樹脂(B)が、メタクリル酸メチル単量体単位とアクリル酸ブチル単量体単位を65/35〜85/15の質量比で含有する前記(3)に記載の二軸延伸シート。 (4) The biaxial as described in (3), wherein the acrylic resin (B) contains a methyl methacrylate monomer unit and a butyl acrylate monomer unit in a mass ratio of 65/35 to 85/15. Stretched sheet.

(5)ゴム成分を含有する耐衝撃性スチレン系樹脂(C)を、前記スチレン−メタクリル酸共重合体(A)および前記アクリル系樹脂(B)の合計に対して3質量%以下の割合で更に含有する前記(1)〜(4)のいずれか1項に記載の二軸延伸シート。 (5) The impact-resistant styrene resin (C) containing the rubber component is 3% by mass or less based on the total of the styrene-methacrylic acid copolymer (A) and the acrylic resin (B). Furthermore, the biaxially stretched sheet of any one of said (1)-(4) to contain.

(6)前記二軸延伸シート中のゴム成分の含有量が0.05〜0.3質量%であり、平均ゴム粒子径が1.2〜12μmである前記(5)に記載の二軸延伸シート。 (6) The biaxial stretching according to (5), wherein the content of the rubber component in the biaxially stretched sheet is 0.05 to 0.3% by mass, and the average rubber particle diameter is 1.2 to 12 μm. Sheet.

(7)前記スチレン系樹脂組成物中の未反応スチレン単量体の含有量が1000ppm以下、未反応メタクリル酸単量体の含有量が150ppm以下である前記(1)〜(6)のいずれか1項に記載の二軸延伸シート。 (7) The content of the unreacted styrene monomer in the styrenic resin composition is 1000 ppm or less, and the content of the unreacted methacrylic acid monomer is 150 ppm or less. 2. The biaxially stretched sheet according to item 1.

(8)厚みが0.1〜0.7mm、縦方向と横方向の延伸倍率がいずれも1.8〜3.2倍、縦方向と横方向の配向緩和応力がいずれも0.3〜1.2MPaである前記(1)〜(7)のいずれか1項に記載の二軸延伸シート。 (8) The thickness is 0.1 to 0.7 mm, the longitudinal and lateral stretch ratios are both 1.8 to 3.2 times, and the longitudinal and lateral orientation relaxation stresses are both 0.3 to 1. The biaxially stretched sheet according to any one of (1) to (7), which is 2 MPa.

(9)前記(1)〜(8)のいずれか1項に記載の二軸延伸シートからなる成形品。 (9) A molded product comprising the biaxially stretched sheet according to any one of (1) to (8).

(10)電子レンジ加熱用食品包装容器である前記(9)に記載の成形品。 (10) The molded product according to (9), which is a food packaging container for heating in a microwave oven.

本発明の二軸延伸シートおよびその成形品は、透明性、強度、製膜性および成形性が良好であり、耐熱性、耐油性に優れている。本発明の二軸延伸シートおよびその成形品は、成膜性および成形性に優れていることから生産性にも優れている。本発明の二軸延伸シートおよびその成形品は、電子レンジで加熱する食品の包装容器に好適に用いることができる。   The biaxially stretched sheet of the present invention and its molded product are excellent in transparency, strength, film-forming property and moldability, and are excellent in heat resistance and oil resistance. Since the biaxially stretched sheet and the molded product thereof according to the present invention are excellent in film formability and moldability, they are also excellent in productivity. The biaxially stretched sheet and the molded product of the present invention can be suitably used for food packaging containers heated in a microwave oven.

本発明の実施形態について以下説明する。但し、本発明の実施形態は、以下の実施形態に限定されるものではない。   Embodiments of the present invention will be described below. However, embodiments of the present invention are not limited to the following embodiments.

本発明の二軸延伸シートは、スチレン−メタクリル酸共重合体(A)とアクリル系樹脂(B)とを所定の質量比で混合したスチレン系樹脂組成物からなる。本発明の二軸延伸シートは、前記スチレン系樹脂組成物を押出成形し、得られた未延伸シートを二軸延伸することによって得ることができる。以下、スチレン系樹脂組成物の各成分について説明する。   The biaxially stretched sheet of the present invention comprises a styrene resin composition in which a styrene-methacrylic acid copolymer (A) and an acrylic resin (B) are mixed at a predetermined mass ratio. The biaxially stretched sheet of the present invention can be obtained by extruding the styrene resin composition and biaxially stretching the obtained unstretched sheet. Hereinafter, each component of the styrene resin composition will be described.

(スチレン−メタクリル酸共重合体(A))
本発明におけるスチレン系樹脂組成物は、スチレンとメタクリル酸とを共重合させてなるスチレン−メタクリル酸共重合体(A)を含有する。本発明に用いるスチレン−メタクリル酸共重合体(A)において、スチレンとメタクリル酸の共重合比率は、所望とする耐熱性と機械的強度等によって種々設定可能である。耐熱性、機械的強度、シートにしたときの透明性のバランスに優れた樹脂が容易に得られる点から、スチレン単量体単位とメタクリル酸単量体単位の合計量を100質量%としたときに、スチレン単量体単位とメタクリル酸単量体単位を84/16〜94/6の質量比で含有することが必要である。メタクリル酸単量体単位の含有量が6質量%未満であると、耐熱性が不足し、また電子レンジ加熱時に穴あき、変形が起こりやすくなる。メタクリル酸単量体単位の含有量は、好ましくは8質量%以上、さらに好ましくは9質量%以上である。一方、メタクリル酸単量体単位の含有量が16質量%を超えると、製膜時の流動性の低下、二次成形時の賦型性の低下などの加工性の低下に加え、ゲル発生による外観低下が起こりやすくなる。メタクリル酸単量体単位の含有量は、好ましくは14質量%以下、さらに好ましくは13質量%以下である。また、スチレン−メタクリル酸共重合体(A)は、必要に応じて、発明の効果を損なわない限りにおいて、スチレンとメタクリル酸以外の他の単量体を適宜、共重合させてもよい。他の単量体の含有率は10質量%以下であることが好ましく、より好ましくは5%質量以下、さらに好ましくは3質量%以下である。他の単量体の含有率が10質量%を超えるとスチレンまたはメタクリル酸の比率が低下し、十分な透明性、機械的強度及び耐熱性が得られない場合がある。
(Styrene-methacrylic acid copolymer (A))
The styrene resin composition in the present invention contains a styrene-methacrylic acid copolymer (A) obtained by copolymerizing styrene and methacrylic acid. In the styrene-methacrylic acid copolymer (A) used in the present invention, the copolymerization ratio of styrene and methacrylic acid can be variously set according to desired heat resistance, mechanical strength, and the like. When the total amount of styrene monomer units and methacrylic acid monomer units is 100% by mass, a resin excellent in balance of heat resistance, mechanical strength, and transparency when formed into a sheet can be easily obtained. In addition, it is necessary to contain a styrene monomer unit and a methacrylic acid monomer unit in a mass ratio of 84/16 to 94/6. When the content of the methacrylic acid monomer unit is less than 6% by mass, the heat resistance is insufficient, and holes are formed during the microwave heating, and deformation is likely to occur. The content of the methacrylic acid monomer unit is preferably 8% by mass or more, more preferably 9% by mass or more. On the other hand, if the content of the methacrylic acid monomer unit exceeds 16% by mass, in addition to a decrease in processability such as a decrease in fluidity during film formation and a decrease in moldability during secondary molding, Appearance deterioration tends to occur. The content of the methacrylic acid monomer unit is preferably 14% by mass or less, more preferably 13% by mass or less. In addition, the styrene-methacrylic acid copolymer (A) may be appropriately copolymerized with other monomers other than styrene and methacrylic acid as needed, as long as the effects of the invention are not impaired. The content of other monomers is preferably 10% by mass or less, more preferably 5% by mass or less, and further preferably 3% by mass or less. When the content of other monomers exceeds 10% by mass, the ratio of styrene or methacrylic acid is lowered, and sufficient transparency, mechanical strength, and heat resistance may not be obtained.

スチレン−メタクリル酸共重合体(A)の重量平均分子量(Mw)は、12万〜25万であることが好ましく、より好ましくは14万〜22万、さらに好ましくは15万〜20万である。重量平均分子量が12万未満であると、流動性が過剰であるほか、シートのドローダウン、ネックインが発生するなどの製膜性の低下が発生しやすくなる。また、重量平均分子量が25万を超えると、流動性が不足するほか、製膜時の厚みムラ、ダイラインなどのシート外観低下が発生しやすくなる。   The weight average molecular weight (Mw) of the styrene-methacrylic acid copolymer (A) is preferably 120,000 to 250,000, more preferably 140,000 to 220,000, and even more preferably 150,000 to 200,000. When the weight average molecular weight is less than 120,000, the fluidity is excessive, and film forming properties such as sheet drawdown and neck-in are likely to be deteriorated. On the other hand, when the weight average molecular weight exceeds 250,000, the fluidity is insufficient, and the thickness of the film during film formation and the appearance of the sheet such as die lines are liable to deteriorate.

また、スチレン−メタクリル酸共重合体(A)の重量平均分子量(Mw)と数平均分子量(Mn)との比Mw/Mnは、2.0〜3.0であることが好ましく、より好ましくは2.2〜2.8である。Mw/Mnが3.0を超えると、容器成形時の熱板接触による表面荒れが発生し易くなる。一方、Mw/Mnが2.0未満であると、流動性低下による製膜時の厚みムラや容器成形時の賦型不良が発生し易くなる。また、Z平均分子量(Mz)とMwとの比Mz/Mwは、1.5〜2.0であることが好ましく、より好ましくは1.6〜1.9である。Mz/Mwが1.5未満であると、シートのドローダウン、ネックインが発生するなどの製膜性の低下、延伸配向の不足が発生し易くなる。一方、Mz/Mwが2.0を超えると、流動性低下による製膜時の厚みムラやダイラインなどのシート外観低下が発生し易くなる。   The ratio Mw / Mn of the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the styrene-methacrylic acid copolymer (A) is preferably 2.0 to 3.0, more preferably. 2.2 to 2.8. When Mw / Mn exceeds 3.0, surface roughness due to hot plate contact during container molding tends to occur. On the other hand, when Mw / Mn is less than 2.0, unevenness in thickness at the time of film formation due to a decrease in fluidity and molding failure at the time of container molding tend to occur. Moreover, it is preferable that ratio Mz / Mw of Z average molecular weight (Mz) and Mw is 1.5-2.0, More preferably, it is 1.6-1.9. When Mz / Mw is less than 1.5, the sheet is likely to be drawn down, necking-in and the like, and the film-forming property is lowered, and the stretch orientation is insufficient. On the other hand, when Mz / Mw exceeds 2.0, sheet appearance deterioration such as unevenness of thickness during film formation and die line due to decrease in fluidity is likely to occur.

なお、上述の数平均分子量(Mn)、重量平均分子量(Mw)、Z平均分子量(Mz)は、GPC測定にて、以下の方法にて単分散ポリスチレンの溶出曲線より各溶出時間における分子量を算出し、ポリスチレン換算の分子量として算出したものである。
機種:昭和電工株式会社製Shodex GPC−101
カラム:ポリマーラボラトリーズ社製 PLgel 10μm MIXED−B
移動相:テトラヒドロフラン
試料濃度:0.2質量%
温度:オーブン40℃、注入口35℃、検出器35℃
検出器:示差屈折計
The number average molecular weight (Mn), the weight average molecular weight (Mw), and the Z average molecular weight (Mz) described above are calculated by the GPC measurement and the molecular weight at each elution time from the elution curve of monodisperse polystyrene by the following method. And calculated as a molecular weight in terms of polystyrene.
Model: Shodex GPC-101 manufactured by Showa Denko KK
Column: Polymer Laboratories PLgel 10 μm MIXED-B
Mobile phase: Tetrahydrofuran Sample concentration: 0.2% by mass
Temperature: 40 ° C oven, 35 ° C inlet, 35 ° C detector
Detector: Differential refractometer

スチレン−メタクリル酸共重合体(A)の重合方法としては、ポリスチレン等で工業化されている塊状重合法、溶液重合法、懸濁重合法等の公知の重合方法が挙げられる。品質面や生産性の面では、塊状重合法、溶液重合法が好ましく、連続重合であることが好ましい。溶媒としては例えば、ベンゼン、トルエン、エチルベンゼンおよびキシレン等のアルキルベンゼン類やアセトンやメチルエチルケトン等のケトン類、ヘキサンやシクロヘキサン等の脂肪族炭化水素類が使用できる。   Examples of the polymerization method of the styrene-methacrylic acid copolymer (A) include known polymerization methods such as a bulk polymerization method, a solution polymerization method, and a suspension polymerization method that are industrialized with polystyrene and the like. In terms of quality and productivity, bulk polymerization and solution polymerization are preferable, and continuous polymerization is preferable. As the solvent, for example, alkylbenzenes such as benzene, toluene, ethylbenzene and xylene, ketones such as acetone and methyl ethyl ketone, and aliphatic hydrocarbons such as hexane and cyclohexane can be used.

スチレン−メタクリル酸共重合体(A)の重合時に、必要に応じて重合開始剤、連鎖移動剤を使用することができる。重合開始剤としては、有機過酸化物を使用することができる。有機過酸化物の具体例としては、過酸化ベンゾイル、t−ブチルパーオキシベンゾネート、1,1−ジ(t−ブチルパーオキシ)シクロヘキサン、1,1−ビス(t−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン、2,2−ビス(4,4−ジ−t−ブチルパーオキシシクロヘキシル)プロパン、t−ブチルパーオキシイソプロピルカーボネート、ジクミルパーオキサイド、t−ブチルクミルパーオキサイド、t−ブチルパーオキシアセテート、t−ブチルパーオキシ−2−エチルヘキサノエート、ポリエーテルテトラキス(t−ブチルパーオキシカーボネート)、エチル−3,3−ジ(t−ブチルパーオキシ)ブチレート、t−ブチルパーオキシイソブチレート等が挙げられる。連鎖移動剤の具体例としては、脂肪族メルカプタン、芳香族メルカプタン、ペンタフェニルエタン、α−メチルスチレンダイマーおよびテルピノーレン等が挙げられる。   When the styrene-methacrylic acid copolymer (A) is polymerized, a polymerization initiator and a chain transfer agent can be used as necessary. An organic peroxide can be used as the polymerization initiator. Specific examples of the organic peroxide include benzoyl peroxide, t-butylperoxybenzoate, 1,1-di (t-butylperoxy) cyclohexane, 1,1-bis (t-butylperoxy) -3. , 3,5-trimethylcyclohexane, 2,2-bis (4,4-di-t-butylperoxycyclohexyl) propane, t-butylperoxyisopropyl carbonate, dicumyl peroxide, t-butylcumyl peroxide, t -Butyl peroxyacetate, t-butylperoxy-2-ethylhexanoate, polyether tetrakis (t-butylperoxycarbonate), ethyl-3,3-di (t-butylperoxy) butyrate, t-butyl Examples include peroxyisobutyrate. Specific examples of the chain transfer agent include aliphatic mercaptans, aromatic mercaptans, pentaphenylethane, α-methylstyrene dimer, terpinolene, and the like.

(アクリル系樹脂(B))
本発明におけるアクリル系樹脂(B)は、アクリル酸およびそのエステルや、メタクリル酸およびそのエステルからなる、超高分子量の単独重合体または共重合体である。
(Acrylic resin (B))
The acrylic resin (B) in the present invention is an ultrahigh molecular weight homopolymer or copolymer made of acrylic acid and its ester, or methacrylic acid and its ester.

上記アクリル酸エステルとしては、アクリル酸メチル、アクリル酸エチル、アクリル酸n−ブチル、アクリル酸イソブチル、アクリル酸2−エチルヘキシル、アクリル酸シクロヘキシル等が挙げられる。上記メタクリル酸エステルとしては、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n−ブチル、メタクリル酸イソブチル、メタクリル酸2−エチルヘキシル、メタクリル酸シクロヘキシル等が挙げられる。これらのうち、アクリル酸ブチル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチルが好ましく、アクリル酸ブチル、メタクリル酸メチルが特に好ましい。アクリル系樹脂(B)は、上記のアクリル酸およびそのエステルや、メタクリル酸およびそのエステルの中のいずれかの単独重合体であってもよいし、2種以上の共重合体であってもよい。   Examples of the acrylic acid ester include methyl acrylate, ethyl acrylate, n-butyl acrylate, isobutyl acrylate, 2-ethylhexyl acrylate, cyclohexyl acrylate, and the like. Examples of the methacrylic acid ester include methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, 2-ethylhexyl methacrylate, cyclohexyl methacrylate and the like. Of these, butyl acrylate, methyl methacrylate, ethyl methacrylate, and butyl methacrylate are preferred, and butyl acrylate and methyl methacrylate are particularly preferred. The acrylic resin (B) may be a homopolymer of any of the above acrylic acid and its ester or methacrylic acid and its ester, or may be a copolymer of two or more. .

メタクリル酸エステルとしてメタクリル酸メチルを用いたアクリル系樹脂(B)の場合、メタクリル酸メチルの含有量は、65〜85質量%が好ましく、より好ましくは70〜80質量%、さらに好ましくは72〜78質量%である。メタクリル酸メチルの含有量が65質量%未満であると、前記スチレン-メタクリル酸共重合体(A)との混合時にシートの透明性が低下する。一方、メタクリル酸メチルの含有量が85質量%を超えると、後述のアクリル酸ブチルの含有量が低下し、アクリル系樹脂の不溶化物が発生しやすくなる。
また、アクリル酸エステルとしてアクリル酸ブチルを用いたアクリル系樹脂(B)の場合、アクリル酸ブチルの含有量は、15〜35質量%が好ましく、より好ましくは20〜30質量%、さらに好ましくは22〜28質量%である。アクリル酸ブチルの含有量が15質量%未満であると、アクリル系樹脂(B)の流動性が低下することにより、アクリル系樹脂の不溶化物が発生しやすくなる。一方、アクリル酸ブチルの含有量が35質量%を超えると、上記メタクリル酸メチルの含有量が低下し、シートの透明性が低下する。
従って、メタクリル酸メチルとアクリル酸ブチルを用いたアクリル系樹脂(B)の場合、メタクリル酸メチル単量体単位とアクリル酸ブチル単量体単位を65/35〜85/15の質量比で含有するアクリル系樹脂(B)が好ましい。
In the case of the acrylic resin (B) using methyl methacrylate as the methacrylate ester, the content of methyl methacrylate is preferably 65 to 85% by mass, more preferably 70 to 80% by mass, and still more preferably 72 to 78%. % By mass. When the content of methyl methacrylate is less than 65% by mass, the transparency of the sheet is lowered during mixing with the styrene-methacrylic acid copolymer (A). On the other hand, when the content of methyl methacrylate exceeds 85% by mass, the content of butyl acrylate described later is lowered, and an insolubilized product of acrylic resin is likely to be generated.
In the case of an acrylic resin (B) using butyl acrylate as an acrylate ester, the content of butyl acrylate is preferably 15 to 35% by mass, more preferably 20 to 30% by mass, and still more preferably 22 It is -28 mass%. When the content of butyl acrylate is less than 15% by mass, the fluidity of the acrylic resin (B) is lowered, so that an insoluble matter of the acrylic resin is easily generated. On the other hand, when content of butyl acrylate exceeds 35 mass%, content of the said methyl methacrylate will fall and the transparency of a sheet | seat will fall.
Therefore, in the case of the acrylic resin (B) using methyl methacrylate and butyl acrylate, the methyl methacrylate monomer unit and the butyl acrylate monomer unit are contained in a mass ratio of 65/35 to 85/15. Acrylic resin (B) is preferable.

また、アクリル系樹脂(B)のガラス転移点は、40〜100℃が好ましく、より好ましくは50〜90℃、さらに好ましくは60〜80℃である。ガラス転移点が低すぎると前記スチレン−メタクリル酸共重合体(A)との混合時に耐熱性が低下する可能性がある。また、高すぎると前記スチレン−メタクリル酸共重合体(A)との混合時にアクリル樹脂が溶融しにくくなり、均一に混合しにくくなる可能性がある。   Moreover, 40-100 degreeC is preferable, as for the glass transition point of acrylic resin (B), More preferably, it is 50-90 degreeC, More preferably, it is 60-80 degreeC. If the glass transition point is too low, the heat resistance may be lowered during mixing with the styrene-methacrylic acid copolymer (A). Moreover, when too high, an acrylic resin will become difficult to melt | dissolve at the time of mixing with the said styrene-methacrylic acid copolymer (A), and it may become difficult to mix uniformly.

アクリル系樹脂(B)の重量平均分子量(Mw)は、100万〜700万であり、好ましくは120万〜600万、更に好ましくは150万〜500万である。アクリル系樹脂(B)の重量平均分子量が100万未満では電子レンジ加熱耐性を発揮が十分でない。一方、アクリル系樹脂(B)の重量平均分子量が700万を超えるとアクリル系樹脂(B)の不溶化物がゲルとして発生し、二軸延伸シートの外観を損ねる。アクリル系樹脂(B)の重量平均分子量の測定は、前記のスチレン−メタクリル酸共重合体(A)の重量平均分子量の測定方法に準じて行うことができる。   The weight average molecular weight (Mw) of the acrylic resin (B) is 1 million to 7 million, preferably 1.2 million to 6 million, and more preferably 1.5 million to 5 million. When the weight average molecular weight of the acrylic resin (B) is less than 1,000,000, the microwave oven heat resistance is not sufficiently exhibited. On the other hand, when the weight average molecular weight of the acrylic resin (B) exceeds 7 million, an insolubilized product of the acrylic resin (B) is generated as a gel, and the appearance of the biaxially stretched sheet is impaired. The measurement of the weight average molecular weight of acrylic resin (B) can be performed according to the measuring method of the weight average molecular weight of said styrene-methacrylic acid copolymer (A).

アクリル系樹脂(B)の重合方法としては、例えば、乳化重合、ソープフリー乳化重合、微細懸濁重合、懸濁重合、塊状重合、溶液重合等の公知の重合方法が挙げられる。これらの重合方法の中でも、高分子量体の生成が容易であることから、乳化重合が好ましい。   Examples of the polymerization method of the acrylic resin (B) include known polymerization methods such as emulsion polymerization, soap-free emulsion polymerization, fine suspension polymerization, suspension polymerization, bulk polymerization, and solution polymerization. Among these polymerization methods, emulsion polymerization is preferable because it is easy to produce a high molecular weight product.

アクリル系樹脂(B)を乳化重合によって製造するときの乳化剤としては、公知の乳化剤を用いることができる。例えば、アニオン性乳化剤、ノニオン性乳化剤、高分子乳化剤、分子内にラジカル重合可能な不飽和二重結合を有する反応性乳化剤が挙げられる。   A known emulsifier can be used as an emulsifier when the acrylic resin (B) is produced by emulsion polymerization. Examples include an anionic emulsifier, a nonionic emulsifier, a polymer emulsifier, and a reactive emulsifier having an unsaturated double bond capable of radical polymerization in the molecule.

(スチレン系樹脂組成物)
本発明におけるスチレン系樹脂組成物は、スチレン−メタクリル酸共重合体(A)およびアクリル系樹脂(B)を含有している。スチレン系樹脂組成物におけるスチレン−メタクリル酸共重合体(A)とアクリル系樹脂(B)との質量比(A)/(B)は、90/10〜97/3である。質量比(A)/(B)は、好ましくは91/9〜96/4であり、より好ましくは93/7〜95/5である。アクリル系樹脂(B)の含有量が3質量%未満では電子レンジ加熱に対する耐久性を十分発揮できない。一方、アクリル系樹脂(B)の含有量が10質量%を超えると、アクリル系樹脂の不溶化物がゲルとして発生し、二軸延伸シートの外観を損ねる。
(Styrenic resin composition)
The styrene resin composition in the present invention contains a styrene-methacrylic acid copolymer (A) and an acrylic resin (B). The mass ratio (A) / (B) of the styrene-methacrylic acid copolymer (A) and the acrylic resin (B) in the styrene resin composition is 90/10 to 97/3. The mass ratio (A) / (B) is preferably 91/9 to 96/4, and more preferably 93/7 to 95/5. When the content of the acrylic resin (B) is less than 3% by mass, the durability against microwave heating cannot be sufficiently exhibited. On the other hand, when the content of the acrylic resin (B) exceeds 10% by mass, an insolubilized product of the acrylic resin is generated as a gel, and the appearance of the biaxially stretched sheet is impaired.

スチレン系樹脂組成物には、外観および透明性を損ねない程度の量のゴム成分を含有する耐衝撃性スチレン系樹脂(C)を添加してもよい。耐衝撃性スチレン系樹脂(C)を添加することにより、シートの脆性、容器のブロッキング性を改善することができる。
耐衝撃性スチレン系樹脂(C)としては、ゴム成分が含まれるスチレン系樹脂であれば良く、スチレンの単独重合体中にゴム成分が含まれているもの、スチレン−メタクリル酸共重合体中にゴム成分が含まれているもの等、いずれも好適に用いることができる。ゴム成分は、マトリックス樹脂となるポリスチレンやスチレン−メタクリル酸共重合体中に、独立して粒子状になって分散していてもよいし、ゴム成分にポリスチレンやスチレン−メタクリル酸共重合体がグラフト重合して粒子状に分散しているものであってもよい。
The styrenic resin composition may contain an impact-resistant styrenic resin (C) containing a rubber component in an amount that does not impair the appearance and transparency. By adding the impact-resistant styrene resin (C), the brittleness of the sheet and the blocking property of the container can be improved.
The impact-resistant styrene resin (C) may be a styrene resin containing a rubber component, and a styrene homopolymer containing a rubber component, or a styrene-methacrylic acid copolymer. Any of those containing a rubber component can be suitably used. The rubber component may be dispersed in the form of particles independently in the polystyrene or styrene-methacrylic acid copolymer used as the matrix resin, or the rubber component may be grafted with polystyrene or styrene-methacrylic acid copolymer. It may be polymerized and dispersed in the form of particles.

ゴム成分としては、例えば、ポリブタジエン、スチレン−ブタジエン共重合体、ポリイソプレン、ブタジエン−イソプレン共重合体などが挙げられる。特に、ポリブタジエン、スチレン−ブタジエン共重合体として含まれていることが好ましい。   Examples of the rubber component include polybutadiene, styrene-butadiene copolymer, polyisoprene, butadiene-isoprene copolymer, and the like. In particular, it is preferably contained as a polybutadiene or styrene-butadiene copolymer.

耐衝撃性スチレン系樹脂(C)の含有量は、シートの外観および透明性を維持するため、スチレン−メタクリル酸共重合体(A)およびアクリル系樹脂(B)の合計に対して3質量%以下であることが好ましい。また、シートの脆性、容器のブロッキング性の改善効果を十分に与えるため、スチレン−メタクリル酸共重合体(A)およびアクリル系樹脂(B)の合計量に対して0.5質量%以上であることが好ましい。   The content of the impact-resistant styrene resin (C) is 3% by mass with respect to the total of the styrene-methacrylic acid copolymer (A) and the acrylic resin (B) in order to maintain the appearance and transparency of the sheet. The following is preferable. Moreover, in order to give the improvement effect of the brittleness of a sheet | seat, and the blocking property of a container fully, it is 0.5 mass% or more with respect to the total amount of a styrene-methacrylic acid copolymer (A) and acrylic resin (B). It is preferable.

耐衝撃性スチレン系樹脂(C)に由来するゴム成分の含有量は、二軸延伸シート中のゴム成分の含有量として0.05〜0.3質量%であることが好ましい。ゴム成分の含有量が0.05質量%未満ではシート脆性の改善効果が十分発揮できないおそれがある。一方、ゴム成分の含有量が0.3質量%を超えるとシートの透明性が低下するおそれがある。また、二軸延伸シート中のゴム成分の平均ゴム粒子径は、1.2〜12μmであることが好ましい。平均ゴム粒子径が1.2μm未満ではシート脆性の改善効果が十分発揮できないおそれがある。一方、平均ゴム粒子径が12μmを超えるとシートの透明性が低下するおそれがある。   The content of the rubber component derived from the impact-resistant styrene resin (C) is preferably 0.05 to 0.3% by mass as the content of the rubber component in the biaxially stretched sheet. If the content of the rubber component is less than 0.05% by mass, the effect of improving sheet brittleness may not be sufficiently exhibited. On the other hand, if the content of the rubber component exceeds 0.3% by mass, the transparency of the sheet may be lowered. Moreover, it is preferable that the average rubber particle diameter of the rubber component in a biaxially stretched sheet is 1.2-12 micrometers. If the average rubber particle size is less than 1.2 μm, the effect of improving sheet brittleness may not be sufficiently exhibited. On the other hand, if the average rubber particle diameter exceeds 12 μm, the transparency of the sheet may be lowered.

二軸延伸シート中のゴム成分の含有量は、二軸延伸シートをクロロホルムに溶解し、一塩化ヨウ素を加えてゴム成分中の二重結合を反応させた後、ヨウ化カリウムを加え、残存する一塩化ヨウ素をヨウ素に変え、チオ硫酸ナトリウムで逆滴定する一塩化ヨウ素法によって測定される。   The content of the rubber component in the biaxially stretched sheet is obtained by dissolving the biaxially stretched sheet in chloroform, adding iodine monochloride to react the double bond in the rubber component, and then adding potassium iodide and remaining. It is measured by the iodine monochloride method in which iodine monochloride is changed to iodine and back titrated with sodium thiosulfate.

二軸延伸シート中のゴム成分の平均ゴム粒子径は、超薄切片法にて観察面がシート平面と平行方向となるよう切削し、四酸化オスミウム(OsO)にてゴム成分を染色した後、透過型顕微鏡にて粒子100個の粒子径を測定し、以下の式により算出した値である。
平均ゴム粒子径=Σni(Di)/Σni(Di)
ここで、niは測定個数、Diは測定した粒子径を示す。
The average rubber particle diameter of the rubber component in the biaxially stretched sheet is cut by an ultrathin section method so that the observation surface is parallel to the sheet plane, and the rubber component is dyed with osmium tetroxide (OsO 4 ). The particle diameter of 100 particles is measured with a transmission microscope, and is a value calculated by the following equation.
Average rubber particle size = Σni (Di) 4 / Σni (Di) 3
Here, ni represents the number of measured particles, and Di represents the measured particle size.

スチレン系樹脂組成物中の未反応スチレン単量体の含有量が1000ppm以下であり、未反応メタクリル酸単量体の含有量が150ppm以下であることが好ましい。これらの未反応単量体の含有量が規定量よりも多いと、シートを成形加工する際に成形加工機の金型等に付着し、成形品の外観を損ねたり、金型汚れを引き起こしてその後の成形容器の外観を損なう懸念がある。
なお、未反応スチレン単量体および未反応メタクリル酸単量体の定量は、下記記載のガスクロマトグラフィーを用い、内部標準法にて測定した。
装置名:GC−12A(島津製作所社製)
カラム:ガラスカラム φ3[mm]×3[m]
定量法:内部標準法(シクロペンタノール)
The content of the unreacted styrene monomer in the styrene-based resin composition is preferably 1000 ppm or less, and the content of the unreacted methacrylic acid monomer is preferably 150 ppm or less. If the content of these unreacted monomers is larger than the specified amount, the sheet will adhere to the mold of the molding machine when molding the sheet, impairing the appearance of the molded product, or causing mold contamination. There is a concern of damaging the appearance of the molded container thereafter.
The unreacted styrene monomer and unreacted methacrylic acid monomer were measured by the internal standard method using the gas chromatography described below.
Device name: GC-12A (manufactured by Shimadzu Corporation)
Column: Glass column φ3 [mm] x 3 [m]
Quantitative method: Internal standard method (cyclopentanol)

スチレン系樹脂組成物は、ビカット軟化温度が106〜132℃の範囲であることが必須である。ビカット軟化温度が106℃未満であると、シートの耐熱性が不足し、電子レンジ加熱時に変形が起こりやすくなる。ビカット軟化温度は、好ましくは108℃以上、さらに好ましくは110℃以上である。一方、ビカット軟化温度が132℃を超えると、製膜時および容器成形時の加工性が低下するおそれがある。ビカット軟化温度は、好ましくは128℃以下、さらに好ましくは126℃以下である。なお、ビカット軟化温度は、JIS K7206に準拠し、昇温速度50℃/hr、試験荷重50Nの条件で測定した。   The styrenic resin composition must have a Vicat softening temperature in the range of 106 to 132 ° C. When the Vicat softening temperature is less than 106 ° C., the heat resistance of the sheet is insufficient, and deformation is likely to occur during microwave heating. The Vicat softening temperature is preferably 108 ° C or higher, more preferably 110 ° C or higher. On the other hand, if the Vicat softening temperature exceeds 132 ° C., the workability during film formation and container molding may be reduced. The Vicat softening temperature is preferably 128 ° C. or lower, more preferably 126 ° C. or lower. The Vicat softening temperature was measured in accordance with JIS K7206 under conditions of a heating rate of 50 ° C./hr and a test load of 50N.

さらに、本発明におけるスチレン系樹脂組成物には、用途に応じて各種添加剤を配合してもよい。添加剤としては、例えば、酸化防止剤、ゲル化防止剤、紫外線吸収剤、光安定剤、滑剤、可塑剤、着色剤、帯電防止剤、難燃剤、鉱油等の添加剤、ガラス繊維、カーボン繊維およびアラミド繊維等の補強繊維、タルク、シリカ、マイカ、炭酸カルシウムなどの充填剤が挙げられる。また、上記スチレン系樹脂組成物をシート化したときの外観の観点から、酸化防止剤およびゲル化防止剤を単独または2種類以上を併用して配合することが好ましい。これらの添加剤は、スチレン−メタクリル酸共重合体(A)およびアクリル系樹脂(B)の重合工程または脱揮工程、造粒工程にて添加しても良いし、スチレン系樹脂組成物を製造するときに添加しても良い。
上記添加剤の添加量に制限はないが、スチレン系樹脂組成物のビカット軟化温度および透明性の範囲から外れないように添加することが好ましい。
Furthermore, you may mix | blend various additives with the styrene resin composition in this invention according to a use. Examples of additives include antioxidants, anti-gelling agents, ultraviolet absorbers, light stabilizers, lubricants, plasticizers, colorants, antistatic agents, flame retardants, mineral oils, glass fibers, and carbon fibers. And reinforcing fibers such as aramid fibers, and fillers such as talc, silica, mica and calcium carbonate. Moreover, it is preferable to mix | blend antioxidant and an antigelling agent individually or in combination of 2 or more types from a viewpoint of the external appearance when the said styrene-type resin composition is sheeted. These additives may be added in the polymerization step or devolatilization step and granulation step of the styrene-methacrylic acid copolymer (A) and the acrylic resin (B), and a styrene resin composition is produced. You may add when you do.
Although there is no restriction | limiting in the addition amount of the said additive, It is preferable to add so that it may not remove | deviate from the Vicat softening temperature and transparency range of a styrene-type resin composition.

ゲル化防止剤は、メタクリル酸の脱水反応によるゲル化反応を抑制する効果を有する。ゲル化防止剤としては、例えば、脂肪族アルコール等が有効である。一般的な脂肪族アルコールとして、7−メチル−2−(3−メチルブチル)−1−オクタノール、5−メチル−2−(1−メチルブチル)−1−オクタノール、5−メチル−2−(3−メチルブチル)−1−オクタノール、2−ヘキシル−1−デカノール、5,7,7−トリメチル−2−(1,3,3−トリメチルブチル)−1−オクタノール、8−メチル−2−(4−メチルヘキシル)−1−デカノール、2−ヘプチル−1−ウンデカノール、2−ヘプチル−4メチル−1−デカノール、2−(1,5−ジメチルヘキシル)−(5,9−ジメチル)−1−デカノールなどが挙げられる。   The gelation inhibitor has an effect of suppressing the gelation reaction due to the dehydration reaction of methacrylic acid. As an anti-gelling agent, for example, an aliphatic alcohol is effective. Common aliphatic alcohols include 7-methyl-2- (3-methylbutyl) -1-octanol, 5-methyl-2- (1-methylbutyl) -1-octanol, 5-methyl-2- (3-methylbutyl ) -1-octanol, 2-hexyl-1-decanol, 5,7,7-trimethyl-2- (1,3,3-trimethylbutyl) -1-octanol, 8-methyl-2- (4-methylhexyl) ) -1-decanol, 2-heptyl-1-undecanol, 2-heptyl-4methyl-1-decanol, 2- (1,5-dimethylhexyl)-(5,9-dimethyl) -1-decanol, and the like. It is done.

酸化防止剤としては、例えば、トリエチレングリコール−ビス〔3−(3−t−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート〕、2,4−ビス(n−オクチルチオ)−6−(4−ヒドロキシ−3,5−ジ−t−ブチルアニリノ)−1,3,5−トリアジン、ペンタエリスリチルテトラキス〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート〕、オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、2,2−チオビス(4−メチル−6−t−ブチルフェノール)および1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン等のフェノール系酸化防止剤、ジトリデシル−3,3’−チオジプロピオネート、ジラウリル−3,3’−チオジプロピオネート、ジテトラデシル−3,3’−チオジプロピオネート、ジステアリル−3,3’−チオジプロピオネート、ジオクチル−3,3’−チオジプロピオネート等の硫黄系酸化防止剤、トリスノニルフェニルホスファイト、4,4’−ブチリデン−ビス(3−メチル−6−t−ブチルフェニルージートリデシル)ホスファイト、(トリデシル)ペンタエリスリトールジホスファイト、ビス(オクタデシル)ペンタエリスリトールジホスファイト、ビス(ジ−t−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(ジ−t−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト、ジノニルフェニルオクチルホスフォナイト、テトラキス(2,4−ジ−t−ブチルフェニル)1,4−フェニレンージーホスフォナイト、テトラキス(2,4−ジ−t−ブチルフェニル)4,4’−ビフェニレン−ジ−ホスフォナイト、10−デシロキシ−9,10−ジヒドロ−9−オキサ−10−ホスファフェナンスレン等の燐系酸化防止剤が挙げられる。   Examples of the antioxidant include triethylene glycol-bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate], 2,4-bis (n-octylthio) -6- (4 -Hydroxy-3,5-di-t-butylanilino) -1,3,5-triazine, pentaerythrityltetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], octadecyl- 3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, 2,2-thiobis (4-methyl-6-tert-butylphenol) and 1,3,5-trimethyl-2,4,6 -Phenolic antioxidants such as tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene, ditridecyl-3,3'-thiodipropionate , Dilauryl-3,3′-thiodipropionate, ditetradecyl-3,3′-thiodipropionate, distearyl-3,3′-thiodipropionate, dioctyl-3,3′-thiodipropionate, etc. Sulfur-based antioxidant, trisnonylphenyl phosphite, 4,4′-butylidene-bis (3-methyl-6-tert-butylphenyl-ditridecyl) phosphite, (tridecyl) pentaerythritol diphosphite, bis ( Octadecyl) pentaerythritol diphosphite, bis (di-t-butylphenyl) pentaerythritol diphosphite, bis (di-t-butyl-4-methylphenyl) pentaerythritol diphosphite, dinonylphenyloctylphosphonite, Tetrakis (2,4-di-t-butylphenyl 1,4-phenylene-diphosphonite, tetrakis (2,4-di-t-butylphenyl) 4,4′-biphenylene-di-phosphonite, 10-decyloxy-9,10-dihydro-9-oxa-10 -Phosphorus antioxidants such as phosphaphenanthrene.

(二軸延伸シート)
本発明の二軸延伸シートは、次のような方法で製造することができる。まず、前記スチレン系樹脂組成物を押出機により溶融混練して、ダイ(特にTダイ)から押し出す。次に、縦方向(シート流れ方向、MD;Machine Direction)および横方向(シート流れ方向に垂直な方向、TD;Transverse Direction)の二軸方向に逐次又は同時で延伸することによって、二軸延伸シートが製造される。
(Biaxially stretched sheet)
The biaxially stretched sheet of the present invention can be produced by the following method. First, the styrene resin composition is melt-kneaded by an extruder and extruded from a die (particularly a T die). Next, the biaxially stretched sheet is stretched sequentially or simultaneously in the biaxial directions of the machine direction (sheet flow direction, MD; Machine Direction) and the transverse direction (direction perpendicular to the sheet flow direction, TD; Transverse Direction). Is manufactured.

二軸延伸シートの厚みは、シートおよび容器の強度、特に剛性を確保するために、0.1mm以上であることが好ましく、より好ましくは0.15mm以上、さらに好ましくは0.2mm以上である。一方、賦型性および経済性の観点から、二軸延伸シートの厚みは、0.7mm以下であることが好ましく、より好ましくは0.6mm以下、さらに好ましくは0.5mm以下である。   The thickness of the biaxially stretched sheet is preferably 0.1 mm or more, more preferably 0.15 mm or more, and further preferably 0.2 mm or more in order to ensure the strength and particularly rigidity of the sheet and the container. On the other hand, from the viewpoints of formability and economy, the thickness of the biaxially stretched sheet is preferably 0.7 mm or less, more preferably 0.6 mm or less, and even more preferably 0.5 mm or less.

二軸延伸シートの縦方向および横方向の延伸倍率はいずれも、1.8〜3.2倍の範囲にあることが好ましい。延伸倍率が1.8倍未満では、シートの耐折性が低下し易い。一方、延伸倍率が3.2倍を超えると、熱成形時の収縮率が大きすぎることにより賦形性が損なわれる。
なお、本発明の延伸倍率の測定方法は、以下のとおりである。二軸延伸シートの試験片に対して、縦方向(MD)および横方向(TD)に100mm長の直線Yを引く。JIS K7206に準拠して測定したシートのビカット軟化温度より30℃高い温度のオーブンに、上記試験片を60分間静置し収縮させた後の、上記直線の長さZ[mm]を測定する。縦方向および横方向の延伸倍率(倍)は、それぞれ次式によって算出した数値である。
延伸倍率(倍)=100/Z
The stretching ratios in the machine direction and the transverse direction of the biaxially stretched sheet are both preferably in the range of 1.8 to 3.2 times. When the draw ratio is less than 1.8 times, the folding resistance of the sheet tends to decrease. On the other hand, when the draw ratio exceeds 3.2 times, the shrinkage rate at the time of thermoforming is too large, and the formability is impaired.
In addition, the measuring method of the draw ratio of this invention is as follows. A straight line Y having a length of 100 mm is drawn in the machine direction (MD) and the transverse direction (TD) with respect to the test piece of the biaxially stretched sheet. The length Z [mm] of the straight line after the test piece is left to shrink for 60 minutes in an oven having a temperature 30 ° C. higher than the Vicat softening temperature of the sheet measured in accordance with JIS K7206 is measured. The draw ratio (times) in the machine direction and the transverse direction are numerical values calculated by the following equations, respectively.
Stretch ratio (times) = 100 / Z

二軸延伸シートの縦方向および横方向の配向緩和応力はいずれも、0.3〜1.2MPaの範囲にあることが好ましい。配向緩和応力が0.3MPa未満ではシートの耐折性が低下するおそれがある。一方、配向緩和応力が1.2MPaを超えると熱成形時の収縮応力が大きすぎることにより賦形性が損なわれるおそれがある。
なお、本発明の二軸延伸シートの配向緩和応力は、ASTM D1504に準じて、シートを構成する樹脂組成物のビカット軟化温度より30℃高い温度のシリコーンオイル中でのピーク応力値として測定した値である。
Both the longitudinal and lateral orientation relaxation stresses of the biaxially stretched sheet are preferably in the range of 0.3 to 1.2 MPa. If the orientation relaxation stress is less than 0.3 MPa, the folding resistance of the sheet may be lowered. On the other hand, if the orientation relaxation stress exceeds 1.2 MPa, the shrinkage stress during thermoforming is too large, and the formability may be impaired.
The orientation relaxation stress of the biaxially stretched sheet of the present invention is a value measured as a peak stress value in silicone oil at a temperature 30 ° C. higher than the Vicat softening temperature of the resin composition constituting the sheet according to ASTM D1504. It is.

本発明の二軸延伸シートには、公知の離型剤・剥離剤(例えばシリコーンオイル)、防曇剤(例えばショ糖脂肪酸エステル、ポリグリセリン脂肪酸エステル等のノニオン系界面活性剤、ポリエーテル変性シリコーンオイル、二酸化珪素等)、帯電防止剤(例えば各種ノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤等)の内の1種または2種以上を混合して、シートの片面または両面に塗布してもよい。   The biaxially stretched sheet of the present invention includes known release agents / release agents (for example, silicone oil), antifogging agents (for example, nonionic surfactants such as sucrose fatty acid ester and polyglycerin fatty acid ester, polyether-modified silicone) Oil, silicon dioxide, etc.), an antistatic agent (for example, various nonionic surfactants, cationic surfactants, anionic surfactants, etc.) You may apply | coat to both surfaces.

これら塗工剤を二軸延伸シートに塗工する方法は特に限定されることはなく、簡便にはロールコーター、ナイフコーター、グラビアロールコーター等を用い塗工する方法が挙げられる。また、噴霧、浸漬等を採用することも出来る。   The method for coating these coating agents on the biaxially stretched sheet is not particularly limited, and a method of coating using a roll coater, a knife coater, a gravure roll coater or the like can be simply mentioned. Moreover, spraying, immersion, etc. can also be employ | adopted.

本発明の二軸延伸シートから成形品を得る方法としては、特に制限はなく、従来の二軸延伸シートの二次成形方法において慣用されている方法を用いることができる。例えば、真空成形法や圧空成形法等の熱成形方法によって二次成形を行うことができる。これらの方法は例えば高分子学会編「プラスチック加工技術ハンドブック」日刊工業新聞社(1995)に記載されている。本発明の二軸延伸シートの成形品の用途としては、各種の容器があり、各種物品の包装容器等に広く用いることができる。中でも、電子レンジ加熱用食品包装容器等が本発明の特徴が十分に発揮されるため、特に好ましい。   There is no restriction | limiting in particular as a method of obtaining a molded article from the biaxially stretched sheet of this invention, The method currently used in the secondary forming method of the conventional biaxially stretched sheet can be used. For example, the secondary molding can be performed by a thermoforming method such as a vacuum forming method or a pressure forming method. These methods are described in, for example, “Plastic Processing Technology Handbook” edited by the Society of Polymer Science, Nikkan Kogyo Shimbun (1995). As a use of the molded product of the biaxially stretched sheet of the present invention, there are various containers, which can be widely used for packaging containers for various articles. Among these, a food packaging container for heating a microwave oven is particularly preferable because the features of the present invention are sufficiently exhibited.

以下に実施例と比較例を用いて、本発明の実施の形態をさらに具体的に説明するが、本発明はこれらの例に限定されるものではない。   Hereinafter, embodiments of the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to these examples.

(実験例1)[スチレン−メタクリル酸共重合体(A−1)の製造]
内容量200Lのジャケット、攪拌機付きオートクレーブに純水100kg、ポリビニルアルコール100gを加え、130rpmで攪拌した。続いてスチレン72.0kg、メタクリル酸4.0kgおよびt−ブチルパーオキサイド20gを仕込み、オートクレーブを密閉して、110℃に昇温して5時間重合を行った(ステップ1)。また、4.0kgのメタクリル酸を、重合温度が110℃に達した時点から2時間かけて、均等に追加添加した(ステップ2)。さらに140℃で3時間保持し、重合を完結させた(ステップ3)。得られたビーズを洗浄、脱水、乾燥した後、押出し、表1に記載のペレット状のスチレン−メタクリル酸共重合体(A−1)を得た。これを熱分解ガスクロマトグラフィーを用いて分析した結果、スチレン単量体単位/メタクリル酸単量体の質量%比は、90/10であった。また、GPC測定により求めた数平均分子量(Mn)、重量平均分子量(Mw)、Z平均分子量(Mz)はそれぞれ、8.0万、20万、36万であった。
(Experimental example 1) [Production of styrene-methacrylic acid copolymer (A-1)]
100 kg of pure water and 100 g of polyvinyl alcohol were added to an autoclave with an internal volume of 200 L and a stirrer, and the mixture was stirred at 130 rpm. Subsequently, 72.0 kg of styrene, 4.0 kg of methacrylic acid and 20 g of t-butyl peroxide were charged, the autoclave was sealed, the temperature was raised to 110 ° C., and polymerization was performed for 5 hours (Step 1). Further, 4.0 kg of methacrylic acid was uniformly added over 2 hours from the time when the polymerization temperature reached 110 ° C. (Step 2). Further, the temperature was maintained at 140 ° C. for 3 hours to complete the polymerization (Step 3). The obtained beads were washed, dehydrated and dried, and then extruded to obtain pellet-shaped styrene-methacrylic acid copolymer (A-1) shown in Table 1. As a result of analysis using pyrolysis gas chromatography, the mass% ratio of styrene monomer unit / methacrylic acid monomer was 90/10. The number average molecular weight (Mn), weight average molecular weight (Mw), and Z average molecular weight (Mz) determined by GPC measurement were 80,000, 200,000 and 360,000, respectively.

(実験例2〜11)[スチレン−メタクリル酸共重合体(A−2〜11)の製造]
実験例1の各種原料仕込み量を調整し、表1に記載の各種スチレン−メタクリル酸共重合体(A−2〜11)を得た。
(Experimental examples 2 to 11) [Production of styrene-methacrylic acid copolymer (A-2 to 11)]
Various raw material charging amounts in Experimental Example 1 were adjusted to obtain various styrene-methacrylic acid copolymers (A-2 to 11) shown in Table 1.

(実験例12)[アクリル系樹脂(B−1)の製造]
温度計、窒素導入管、冷却管および攪拌装置を備えたセパラブルフラスコ(容量5リットル)に、分散媒としてイオン交換水300質量部(3000グラム)、乳化剤としてドデシルベンゼンスルホン酸ナトリウム1.1質量部、連鎖移動剤としてn−オクチルメルカプタン0.01質量部、単量体としてメタクリル酸メチル75質量部、アクリル酸ブチル25質量部を投入した。このセパラブルフラスコに窒素気流を通じることにより、フラスコ内雰囲気の窒素置換を行なった。次いで、内温を60℃まで昇温させ、過硫酸カリウム0.15質量部、脱イオン水5質量部を加えた。その後、加熱攪拌を2時間継続して重合を終了し、アクリル系樹脂ラテックスを得た。
得られたアクリル系樹脂ラテックスを25℃まで冷却後、酢酸カルシウム5質量部を含む70℃の温水500質量部中に滴下した後、90℃まで昇温させて凝析させた。得られた凝析物を分離洗浄後、60℃で12時間乾燥させて、アクリル系樹脂(B−1)を得た。アクリル系樹脂(B−1)のガラス転移点を、JIS K 7121:2012プラスチックの転移温度測定方法に準じた示差走査熱量測定(DSC)により測定したところ、60℃であった。
(Experimental example 12) [Production of acrylic resin (B-1)]
In a separable flask (capacity 5 liters) equipped with a thermometer, a nitrogen introduction tube, a cooling tube and a stirrer, 300 parts by mass (3,000 g) of ion-exchanged water as a dispersion medium and 1.1 parts by mass of sodium dodecylbenzenesulfonate as an emulsifier In addition, 0.01 parts by mass of n-octyl mercaptan was added as a chain transfer agent, and 75 parts by mass of methyl methacrylate and 25 parts by mass of butyl acrylate were added as monomers. The atmosphere in the flask was replaced with nitrogen by passing a nitrogen stream through the separable flask. Next, the internal temperature was raised to 60 ° C., and 0.15 parts by mass of potassium persulfate and 5 parts by mass of deionized water were added. Thereafter, heating and stirring were continued for 2 hours to complete the polymerization, and an acrylic resin latex was obtained.
The obtained acrylic resin latex was cooled to 25 ° C., dropped into 500 parts by mass of 70 ° C. hot water containing 5 parts by mass of calcium acetate, and then heated to 90 ° C. for coagulation. The obtained coagulated product was separated and washed, and then dried at 60 ° C. for 12 hours to obtain an acrylic resin (B-1). It was 60 degreeC when the glass transition point of acrylic resin (B-1) was measured by the differential scanning calorimetry (DSC) according to the transition temperature measuring method of JISK7121: 2012 plastics.

(実験例13〜17)[アクリル系樹脂(B−2〜6)の製造]
実験例12の各種単量体、連鎖移動剤の仕込み量を調整し、表2に記載の各種アクリル樹脂(B−2〜6)を得た。
(Experimental Examples 13 to 17) [Production of acrylic resin (B-2 to 6)]
The amounts of various monomers and chain transfer agents charged in Experimental Example 12 were adjusted to obtain various acrylic resins (B-2 to 6) shown in Table 2.

(実験例18)[耐衝撃性スチレン系樹脂(C−1)の製造]
ゴム状重合体として3.4質量%のローシスポリブタジエンゴム(旭化成製、商品名ジエン55AS)を使用し、91.6質量%のスチレンと、溶剤として5.0質量%のエチルベンゼンに溶解して重合原料とした。また、ゴムの酸化防止剤(チバガイギー製、商品名イルガノックス1076)0.1質量部を添加した。この重合原料を翼径0.285mの錨型撹拌翼を備えた14リットルのジャケット付き反応器(R−01)に12.5kg/hrで供給した。反応温度は140℃、回転数は2.17sec−1で反応させた。得られた樹脂液を直列に配置した2基の内容積21リットルのジャケット付きプラグフロー型反応器に導入した。1基目のプラグフロー型反応器(R−02)では、反応温度が樹脂液の流れ方向に120〜140℃、2基目のプラグフロー型反応器(R−03)では、反応温度が樹脂液の流れ方向に130〜160℃の勾配を持つようにジャケット温度を調整した。得られた樹脂液は230℃に加熱後、真空度5torrの脱揮槽に送られ、未反応単量体、溶剤を分離・回収した。その後、脱揮槽からギヤポンプで抜き出し、ダイプレートを通してストランドとした後、水槽を通してペレット化し、製品として回収した。得られた樹脂(C−1)の樹脂率は70%であった。ここで、樹脂率とは、下記式によって算出される。
樹脂率(%)=100×(生成したポリマー量)/{(仕込んだモノマー量)+(溶剤量)}
また、得られた樹脂(C−1)中のゴム成分含有量は10.0質量%、平均ゴム粒子径は2.0μmであった。
(Experimental example 18) [Production of impact-resistant styrenic resin (C-1)]
Using 3.4% by mass of low-cis polybutadiene rubber (trade name: Diene 55AS, manufactured by Asahi Kasei) as a rubbery polymer, dissolved in 91.6% by mass of styrene and 5.0% by mass of ethylbenzene as a solvent. A polymerization raw material was used. Moreover, 0.1 mass part of antioxidant (made by Ciba Geigy, trade name Irganox 1076) of rubber was added. This polymerization raw material was supplied at 12.5 kg / hr to a 14-liter jacketed reactor (R-01) equipped with a vertical stirring blade having a blade diameter of 0.285 m. The reaction temperature was 140 ° C., and the rotation speed was 2.17 sec −1 . The obtained resin solution was introduced into two jacketed plug flow reactors having an internal volume of 21 liters arranged in series. In the first plug flow reactor (R-02), the reaction temperature is 120 to 140 ° C. in the flow direction of the resin liquid. In the second plug flow reactor (R-03), the reaction temperature is resin. The jacket temperature was adjusted to have a gradient of 130 to 160 ° C. in the liquid flow direction. The obtained resin liquid was heated to 230 ° C. and then sent to a devolatilization tank having a vacuum degree of 5 torr to separate and recover unreacted monomers and solvents. Then, after extracting with a gear pump from the devolatilization tank and making it a strand through a die plate, it pelletized through the water tank and collect | recovered as a product. The resin ratio of the obtained resin (C-1) was 70%. Here, the resin rate is calculated by the following formula.
Resin ratio (%) = 100 × (Amount of polymer produced) / {(Amount of monomer charged) + (Amount of solvent)}
Moreover, rubber component content in obtained resin (C-1) was 10.0 mass%, and the average rubber particle diameter was 2.0 micrometers.

(実験例19〜22)[耐衝撃性スチレン系樹脂(C−2〜5)の製造]
実験例18の各種原料仕込み量を調整し、表3に記載の各種耐衝撃性スチレン系樹脂(C−2〜5)を得た。
(Experimental Examples 19 to 22) [Production of Impact Resistant Styrene Resin (C-2 to 5)]
Various raw material charging amounts of Experimental Example 18 were adjusted to obtain various impact-resistant styrene resins (C-2 to 5) shown in Table 3.

Figure 2017122774
Figure 2017122774

Figure 2017122774
Figure 2017122774

Figure 2017122774
Figure 2017122774

<実施例1>
スチレン−メタクリル酸共重合体(A−1)95.0質量%に、アクリル系樹脂(B−1)5.0質量%をハンドブレンドし、ペレット押出機(真空ベント付き二軸同方向押出機 TEM35B (東芝機械製))を用い、押出温度230℃、回転数250rpm、ベント脱揮圧力−760mmHgにてダイプレートを通してストランドとした後、水槽にて冷却したのち、ペレタイザーを通してペレット化し、樹脂組成物を得た。なお、ベント脱揮圧力は、常圧に対する差圧値として示した。得られた樹脂組成物中の未反応スチレン単量体の含有量は500ppm、未反応メタクリル酸単量体の含有量は50ppmであった。また、ビカット軟化温度は116℃、JIS K7210のH条件(200℃、5kg)におけるメルトフローインデックス(MFI)は1.0g/10minであった。上記樹脂組成物をシート押出機(Tダイ幅500mm、リップ開度1.5mm、φ40mmのエキストルーダー(田辺プラスチック機械社製))を用い、押出温度230℃、吐出量20kg/hにて未延伸シートを得た。このシートをバッチ式二軸延伸機(東洋精機社製)を用いて、(ビカット軟化温度+30)℃に予熱し、歪み速度0.1/secで、MD2.4倍、TD2.4倍(面倍率5.8倍)に延伸し、表4に記載の二軸延伸シートを得た。得られたシートの厚みは0.3mm、延伸倍率(MD/TD)は2.4/2.4倍、配向緩和応力(MD/TD)は0.6/0.6MPaであった。
<Example 1>
Hand blend of 95.0% by mass of styrene-methacrylic acid copolymer (A-1) and 5.0% by mass of acrylic resin (B-1) and pellet extruder (biaxial co-directional extruder with vacuum vent) TEM35B (manufactured by TOSHIBA MACHINE CO., LTD.) Was used as a strand through a die plate at an extrusion temperature of 230 ° C., a rotation speed of 250 rpm, a vent devolatilization pressure of −760 mmHg, cooled in a water bath, pelletized through a pelletizer, and resin composition Got. In addition, the vent devolatilization pressure was shown as a differential pressure value with respect to normal pressure. The content of the unreacted styrene monomer in the obtained resin composition was 500 ppm, and the content of the unreacted methacrylic acid monomer was 50 ppm. Further, the Vicat softening temperature was 116 ° C., and the melt flow index (MFI) under JIS K7210 H condition (200 ° C., 5 kg) was 1.0 g / 10 min. The above resin composition was unstretched using a sheet extruder (T-die width 500 mm, lip opening 1.5 mm, φ40 mm extruder (manufactured by Tanabe Plastic Machinery Co., Ltd.)) at an extrusion temperature of 230 ° C. and a discharge rate of 20 kg / h. A sheet was obtained. This sheet is preheated to (Vicat softening temperature +30) ° C. using a batch type biaxial stretching machine (manufactured by Toyo Seiki Co., Ltd.), MD 2.4 times, TD 2.4 times (surface) at a strain rate of 0.1 / sec. The biaxially stretched sheet shown in Table 4 was obtained. The thickness of the obtained sheet was 0.3 mm, the draw ratio (MD / TD) was 2.4 / 2.4 times, and the orientation relaxation stress (MD / TD) was 0.6 / 0.6 MPa.

<実施例2〜19、比較例1〜7>
実施例1の樹脂の配合量、樹脂組成物の押出条件を調整し、表4、表5、表7に記載の二軸延伸シートを得た。
<Examples 2 to 19 and Comparative Examples 1 to 7>
The compounding amount of the resin of Example 1 and the extrusion conditions of the resin composition were adjusted, and biaxially stretched sheets described in Table 4, Table 5, and Table 7 were obtained.

<実施例20〜26>
スチレン−メタクリル酸共重合体(A−1)およびアクリル系樹脂(B−1)の合計100質量%に対して表1に記載の耐衝撃性スチレン系樹脂(C)を加え、実施例1記載の押出機にてペレット化し、スチレン系樹脂組成物を得た後、実施例1記載の製膜条件および延伸条件にて、表5、表6に記載の二軸延伸シートを得た。
<Examples 20 to 26>
The impact-resistant styrene resin (C) shown in Table 1 was added to 100% by mass of the total of the styrene-methacrylic acid copolymer (A-1) and the acrylic resin (B-1), and Example 1 was described. The pellets were obtained by an extruder and a styrene-based resin composition was obtained. Then, biaxially stretched sheets described in Tables 5 and 6 were obtained under the film forming conditions and stretching conditions described in Example 1.

<実施例27〜33>
実施例21のスチレン−メタクリル酸共重合体(A−1)、アクリル系樹脂(B−1)、耐衝撃性スチレン系樹脂(C)からなる樹脂組成物を得た後、実施例1記載のシート押出機、二軸延伸機を用い、製膜時のリップ開度、延伸時の倍率、予熱温度を調整し、表6に記載の厚み、延伸倍率、配向緩和応力を有する二軸延伸シートを得た。
<Examples 27 to 33>
After obtaining a resin composition comprising the styrene-methacrylic acid copolymer (A-1), acrylic resin (B-1), and impact-resistant styrene resin (C) of Example 21, Example 1 was described. Using a sheet extruder and a biaxial stretching machine, adjusting the lip opening during film formation, the stretching ratio, and the preheating temperature, the biaxially stretched sheet having the thickness, stretching ratio, and orientation relaxation stress described in Table 6 Obtained.

得られたシートについて、以下に記載した方法にて各種性能を測定し、評価を行った。○、△、×の相対評価においては、○または△のときを合格と判定した。結果は表4〜表7に記載した。   About the obtained sheet | seat, various performance was measured by the method described below, and evaluation was performed. In relative evaluation of (circle), (triangle | delta), and x, the time of (circle) or (triangle | delta) was determined as the pass. The results are shown in Tables 4-7.

(1)製膜性
未延伸シートにMD方向およびTD方向に20mm間隔で直線を5本ずつ格子状に引いた時の交点25点についてマイクロゲージを用いて厚みを測定し、その標準偏差σを下記基準で評価した。
○:σが0.03mm未満
△:σが0.03mm以上、0.07mm未満
×:σが0.07mm以上
(1) Film-forming property The thickness is measured using a micro gauge at 25 points of intersection when 5 straight lines are drawn in a grid pattern at intervals of 20 mm in the MD direction and TD direction on an unstretched sheet, and the standard deviation σ is calculated. Evaluation was made according to the following criteria.
○: σ is less than 0.03 mm Δ: σ is 0.03 mm or more and less than 0.07 mm ×: σ is 0.07 mm or more

(2)流動性(メルトフローレート)
JIS K7210のH条件(200℃、5kg)に従って測定した。
○:1.0g/10分以上かつ3.0g/10分未満
△:0.5g/10分以上かつ1.0g/10分未満、または、
3.0g/10分以上かつ5.0g/10分未満
×:0.5g/10分未満または5.0g/10分以上
(2) Fluidity (melt flow rate)
It was measured according to JIS K7210 H condition (200 ° C., 5 kg).
○: 1.0 g / 10 min or more and less than 3.0 g / 10 min Δ: 0.5 g / 10 min or more and less than 1.0 g / 10 min, or
3.0 g / 10 min or more and less than 5.0 g / 10 min x: less than 0.5 g / 10 min or 5.0 g / 10 min or more

(3)シート外観
二軸延伸シート350mm×350mmの範囲について、1)面積100mm以上のロール付着跡、2)面積10mm以上の気泡、3)透明および不透明異物、4)付着欠陥、5)幅3mm以上のダイライン(製膜時にTダイ出口で発生するシート流れ方向に走る欠陥)を欠点とし、欠点の個数を下記基準で評価した。
○:0個
△:1〜2個
×:3個以上
(3) Sheet appearance About the range of the biaxially stretched sheet 350 mm × 350 mm, 1) area of roll 100 mm 2 or more, 2) area of 10 mm 2 or more bubbles, 3) transparent and opaque foreign matter, 4) adhesion defect, 5) A die line having a width of 3 mm or more (a defect running in the sheet flow direction generated at the T-die outlet during film formation) was regarded as a defect, and the number of defects was evaluated according to the following criteria.
○: 0 pieces △: 1-2 pieces ×: 3 pieces or more

(4)延伸性
二軸延伸シートにMD方向およびTD方向に50mm間隔で直線を5本ずつ格子状に引いた時の交点25点についてマイクロゲージを用いて厚みを測定し、その標準偏差σを下記基準で評価した。
○:σが0.05mm未満
△:σが0.05mm以上、0.10mm未満
×:σが0.10mm以上
(4) Stretchability The thickness is measured using a microgauge at 25 points of intersection when five straight lines are drawn in a grid pattern at intervals of 50 mm in the MD direction and TD direction on a biaxially stretched sheet, and the standard deviation σ is calculated. Evaluation was made according to the following criteria.
○: σ is less than 0.05 mm △: σ is 0.05 mm or more and less than 0.10 mm ×: σ is 0.10 mm or more

(5)透明性
JIS K−7361−1に準じ、ヘーズメーターNDH5000(日本電色社)を用いて、二軸延伸シートのヘーズを測定した。
○:ヘーズ1.5%未満
△:ヘーズ1.5%以上、3.0%未満
×:ヘーズ3.0%以上
(5) Transparency Haze of the biaxially stretched sheet was measured using a haze meter NDH5000 (Nippon Denshoku) according to JIS K-7361-1.
○: Haze less than 1.5% Δ: Haze 1.5% or more, less than 3.0% ×: Haze 3.0% or more

(6)剛性
後記されるフードパックの本体に500gの錘を入れ、蓋をした弁当容器を5段重ね、24時間静置後の蓋材の変形状態を確認した。
○: 形状変化なし。
△: 変形有り。
×: 割れ有り。
(6) Rigidity A weight of 500 g was put into the main body of the food pack described later, and the lunch box containers with lids were stacked in five stages, and the deformation state of the lid material after standing for 24 hours was confirmed.
○: No change in shape.
Δ: Deformed.
X: There is a crack.

(7)耐折性
ASTM D2176に準じて、シート押出方向(縦方向)とそれに垂直な方向(横方向)の耐折曲げ強さを測定し、最小値を求め、以下のように評価した。
○:5回以上
△:2回以上、5回未満
×:2回未満
(7) Folding resistance According to ASTM D2176, the bending strength in the sheet extrusion direction (longitudinal direction) and the direction perpendicular thereto (lateral direction) was measured, the minimum value was obtained, and evaluated as follows.
○: 5 times or more △: 2 times or more and less than 5 times ×: Less than 2 times

(8)賦型性
熱板成形機HPT?400A(脇坂エンジニアリング社製)にて、熱板温度150℃、加熱時間2.0秒の条件で、フードパック(寸法 蓋:縦150×横130×高さ30mm、本体:縦150×横130×高さ20mm)を成形し、賦型性を下記基準にて評価した。
○:良好
△:コーナー部に僅かな形状不良
×:寸法と異なる形状またはコーナー部に著しい形状不良
(8) Formability With a hot plate molding machine HPT? 400A (Wakisaka Engineering Co., Ltd.), under the conditions of a hot plate temperature of 150 ° C and a heating time of 2.0 seconds (dimension lid: length 150 x width 130 x 30 mm in height, main body: length 150 × width 130 × height 20 mm) was molded, and moldability was evaluated according to the following criteria.
○: Good △: Slightly poor shape at the corner ×: Remarkably different shape from the dimensions or corner

(9)金型汚れ性
上記フードパックの成形時、金型等の汚れの転写を下記基準にて評価した。
○:転写なし(透明、白濁なし)
△:一部に転写あり(不透明、表面が白濁)
×:全体に転写あり(不透明、表面が白濁)
(9) Mold stain resistance When molding the food pack, the transfer of dirt on the mold and the like was evaluated according to the following criteria.
○: No transfer (clear, no cloudiness)
Δ: Transfer in part (opaque, cloudy surface)
×: Transferred throughout (opaque, surface cloudy)

(10)耐熱性
上記成形条件で得られたフードパックを110℃に設定した熱風乾燥機に60分間入れた後、容器の変形を目視で観察した。
○:変形なし
△:軽微な変形、外寸変化5%未満
×:大変形、外寸変化5%以上
(10) Heat resistance The food pack obtained under the above molding conditions was placed in a hot air dryer set at 110 ° C for 60 minutes, and then the deformation of the container was visually observed.
○: No deformation △: Minor deformation, outside dimension change less than 5% ×: Large deformation, outside dimension change 5% or more

(11)耐油性
上記フードパックのヒンジ部にサラダ油(日清製油社製)、マヨネーズ(味の素社製)、ココナードML(登録商標、花王社製)の試験液をしみ込ませたガーゼ10×10mmを貼り付け、60℃オーブンにて24時間静置し、付着部の表面観察を行った。
○:変化無し
△:わずかに白化あり
×:著しい白化、割れあり
(11) Oil resistance 10 × 10 mm of gauze impregnated with a test solution of salad oil (manufactured by Nissin Oil Co., Ltd.), mayonnaise (manufactured by Ajinomoto Co., Inc.), and Coconut ML (registered trademark, manufactured by Kao Co., Ltd.) Affixed and allowed to stand in a 60 ° C. oven for 24 hours to observe the surface of the adhered part.
○: No change △: Slight whitening ×: Significant whitening and cracking

(12)電子レンジ加熱耐性
上記フードパックの蓋中央に5mm×5mmの範囲でマヨネーズを9点付着させ、容器本体に水300gを入れ、蓋容器をかぶせて1500Wの電子レンジで90秒間加熱した後、マヨネーズ付着部分の様子を目視で評価した。
○:変化なし
△:白化あり、容器がわずかに変形
×:穴あきあり、容器が著しく変形
(12) Heat resistance of microwave oven After attaching 9 points of mayonnaise in the range of 5mm x 5mm to the center of the lid of the food pack, putting 300g of water into the container body, covering the lid container and heating for 90 seconds in a 1500W microwave oven The appearance of the mayonnaise adhering portion was visually evaluated.
○: No change △: Whitening occurred, container slightly deformed ×: Perforated, container deformed significantly

Figure 2017122774
Figure 2017122774

Figure 2017122774
Figure 2017122774

Figure 2017122774
Figure 2017122774

Figure 2017122774
Figure 2017122774

表4〜表7の結果から、実施例1〜33はいずれも、本発明の規定を満足するものであり、製膜性(製膜性、流動性、シート外観、延伸性)、透明性、シート強度(剛性、耐折性)、成形性(賦型性、金型汚れ性)、耐熱性、耐油性、電子レンジ加熱耐性のいずれの性能においても、優れた性能を有するものであった。   From the results of Tables 4 to 7, Examples 1 to 33 all satisfy the provisions of the present invention, and film forming properties (film forming properties, fluidity, sheet appearance, stretchability), transparency, The sheet strength (rigidity, folding resistance), formability (moldability, mold stain resistance), heat resistance, oil resistance, and microwave heating resistance were all excellent.

一方、比較例1は、スチレン−メタクリル酸共重合体(A−10)中のメタクリル酸単量体単位の含有量が少ないため、ビカット軟化温度が低く、耐熱性と電子レンジ加熱耐性に劣るものであった。比較例2は、スチレン−メタクリル酸共重合体(A−11)中のメタクリル酸単量体単位の含有量が多いため、流動性と賦型性に劣るものであった。比較例3は、アクリル系樹脂(B−6)の重量平均分子量が小さいため、電子レンジ加熱耐性に劣るものであった。比較例4は、アクリル系樹脂(B−1)の含有量が少ないため、電子レンジ加熱耐性に劣るものであった。比較例5は、アクリル系樹脂(B)を含有しないものであり、電子レンジ加熱耐性および耐油性に劣るものであった。比較例6は、アクリル系樹脂(B−1)の含有量が多いため、アクリル系樹脂の不溶化物がゲルとして発生し、流動性やシート外観に劣るものであった。比較例7は、スチレン−メタクリル酸共重合体(A−2)中のメタクリル酸単量体単位の含有量が比較的少なく、アクリル系樹脂(B−4)中のアクリル酸ブチル単量体単位の含有量が比較的多く、さらにアクリル系樹脂(B−4)の配合比率がやや多いため、ビカット軟化温度が低いものであり、耐熱性および電子レンジ加熱耐性に劣るものであった。   On the other hand, Comparative Example 1 has a low Vicat softening temperature due to a low content of methacrylic acid monomer units in the styrene-methacrylic acid copolymer (A-10), and is inferior in heat resistance and microwave heating resistance. Met. Since the comparative example 2 had much content of the methacrylic acid monomer unit in a styrene-methacrylic acid copolymer (A-11), it was inferior to fluidity | liquidity and a moldability. Since the weight average molecular weight of acrylic resin (B-6) was small, the comparative example 3 was inferior to microwave oven heat resistance. Since the comparative example 4 had little content of acrylic resin (B-1), it was inferior to microwave oven heat resistance. Comparative Example 5 did not contain the acrylic resin (B), and was inferior in microwave oven heat resistance and oil resistance. Since the comparative example 6 had much content of acrylic resin (B-1), the insolubilization material of acrylic resin generate | occur | produced as a gel, and it was inferior to fluidity | liquidity and a sheet | seat external appearance. In Comparative Example 7, the content of the methacrylic acid monomer unit in the styrene-methacrylic acid copolymer (A-2) is relatively small, and the butyl acrylate monomer unit in the acrylic resin (B-4). Since the content of is relatively large and the blending ratio of the acrylic resin (B-4) is slightly large, the Vicat softening temperature is low, and the heat resistance and the microwave oven heat resistance are poor.

Claims (10)

スチレン−メタクリル酸共重合体(A)およびアクリル系樹脂(B)を含有するスチレン系樹脂組成物からなる二軸延伸シートであって、
前記スチレン−メタクリル酸共重合体(A)と前記アクリル系樹脂(B)との質量比(A)/(B)が90/10〜97/3であり、
前記スチレン−メタクリル酸共重合体(A)は、スチレン単量体単位とメタクリル酸単量体単位を84/16〜94/6の質量比で含有し、
前記アクリル系樹脂(B)の重量平均分子量が100万〜700万であり、
前記スチレン系樹脂組成物のビカット軟化温度が106〜132℃の範囲である
二軸延伸シート。
A biaxially stretched sheet comprising a styrene resin composition containing a styrene-methacrylic acid copolymer (A) and an acrylic resin (B),
The mass ratio (A) / (B) of the styrene-methacrylic acid copolymer (A) and the acrylic resin (B) is 90/10 to 97/3,
The styrene-methacrylic acid copolymer (A) contains a styrene monomer unit and a methacrylic acid monomer unit in a mass ratio of 84/16 to 94/6,
The acrylic resin (B) has a weight average molecular weight of 1 million to 7 million,
A biaxially stretched sheet in which the Vicat softening temperature of the styrene-based resin composition is in the range of 106 to 132 ° C.
前記スチレン−メタクリル酸共重合体(A)の重量平均分子量が12万〜25万である請求項1に記載の二軸延伸シート。   The biaxially stretched sheet according to claim 1, wherein the styrene-methacrylic acid copolymer (A) has a weight average molecular weight of 120,000 to 250,000. 前記アクリル系樹脂(B)が、メタクリル酸メチル単量体単位とアクリル酸ブチル単量体単位を含有する請求項1または請求項2に記載の二軸延伸シート。   The biaxially stretched sheet according to claim 1 or 2, wherein the acrylic resin (B) contains a methyl methacrylate monomer unit and a butyl acrylate monomer unit. 前記アクリル系樹脂(B)が、メタクリル酸メチル単量体単位とアクリル酸ブチル単量体単位を65/35〜85/15の質量比で含有する請求項3に記載の二軸延伸シート。   The biaxially stretched sheet according to claim 3, wherein the acrylic resin (B) contains a methyl methacrylate monomer unit and a butyl acrylate monomer unit in a mass ratio of 65/35 to 85/15. ゴム成分を含有する耐衝撃性スチレン系樹脂(C)を、前記スチレン−メタクリル酸共重合体(A)および前記アクリル系樹脂(B)の合計に対して3質量%以下の割合で更に含有する請求項1〜4のいずれか1項に記載の二軸延伸シート。   Further containing an impact-resistant styrene resin (C) containing a rubber component at a ratio of 3% by mass or less with respect to the total of the styrene-methacrylic acid copolymer (A) and the acrylic resin (B). The biaxially stretched sheet according to any one of claims 1 to 4. 前記二軸延伸シート中の前記ゴム成分の含有量が0.05〜0.3質量%であり、平均ゴム粒子径が1.2〜12μmである請求項5に記載の二軸延伸シート。   The biaxially stretched sheet according to claim 5, wherein the content of the rubber component in the biaxially stretched sheet is 0.05 to 0.3% by mass, and the average rubber particle diameter is 1.2 to 12 μm. 前記スチレン系樹脂組成物中の未反応スチレン単量体の含有量が1000ppm以下、未反応メタクリル酸単量体の含有量が150ppm以下である請求項1〜6のいずれか1項に記載の二軸延伸シート。   The content of unreacted styrene monomer in the styrenic resin composition is 1000 ppm or less, and the content of unreacted methacrylic acid monomer is 150 ppm or less. Axial stretched sheet. 厚みが0.1〜0.7mm、縦方向と横方向の延伸倍率がいずれも1.8〜3.2倍、縦方向と横方向の配向緩和応力がいずれも0.3〜1.2MPaである請求項1〜7のいずれか1項に記載の二軸延伸シート。   The thickness is 0.1 to 0.7 mm, the longitudinal and lateral stretching ratios are both 1.8 to 3.2 times, and the longitudinal and lateral orientation relaxation stresses are both 0.3 to 1.2 MPa. The biaxially stretched sheet according to any one of claims 1 to 7. 請求項1〜8のいずれか1項に記載の二軸延伸シートからなる成形品。   The molded article which consists of a biaxially stretched sheet of any one of Claims 1-8. 電子レンジ加熱用食品包装容器である請求項9に記載の成形品。   The molded article according to claim 9, which is a food packaging container for heating in a microwave oven.
JP2017561179A 2016-01-13 2017-01-13 Biaxially stretched sheet and molded product thereof Active JP6444539B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016004052 2016-01-13
JP2016004052 2016-01-13
PCT/JP2017/000999 WO2017122774A1 (en) 2016-01-13 2017-01-13 Biaxially-oriented sheet and molded article thereof

Publications (2)

Publication Number Publication Date
JPWO2017122774A1 true JPWO2017122774A1 (en) 2018-09-13
JP6444539B2 JP6444539B2 (en) 2018-12-26

Family

ID=59311802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017561179A Active JP6444539B2 (en) 2016-01-13 2017-01-13 Biaxially stretched sheet and molded product thereof

Country Status (5)

Country Link
JP (1) JP6444539B2 (en)
KR (1) KR20180102540A (en)
CN (1) CN108473697A (en)
TW (1) TWI697507B (en)
WO (1) WO2017122774A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7008436B2 (en) * 2017-07-06 2022-01-25 デンカ株式会社 Stretched sheet and its molded product
JP2019196415A (en) * 2018-05-07 2019-11-14 デンカ株式会社 Biaxially oriented sheet and molded article thereof
JP7336840B2 (en) * 2018-10-12 2023-09-01 Psジャパン株式会社 Styrene-based copolymer resin, resin composition, its sheet and molded article
JP7208799B2 (en) * 2019-01-09 2023-01-19 デンカ株式会社 Composition, foamed sheet and molded article

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000159997A (en) * 1998-11-27 2000-06-13 Idemitsu Petrochem Co Ltd Polycarbonate-based resin for injection molding by gas assist, production of hollow molded product and hollow molded product
JP2014101403A (en) * 2012-11-16 2014-06-05 Ps Japan Corp Heat resistant styrenic resin composition, extruded sheet and molded article
JP2014201605A (en) * 2013-04-01 2014-10-27 Psジャパン株式会社 Heat-resistant styrenic resin composition, extruded sheet and molded product
JP2015042735A (en) * 2013-07-23 2015-03-05 ユニチカ株式会社 Polylactic acid-based resin composition and molding

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6225031A (en) * 1985-07-26 1987-02-03 Asahi Chem Ind Co Ltd Heat-resistive sheet of biaxially oriented styrene base
US5340875A (en) * 1991-08-15 1994-08-23 Arco Chemical Technology Blends of polybutylene terephthalate resins and methacrylic acid-containing styrenic copolymers
CN1210323C (en) * 2002-02-11 2005-07-13 大日本油墨化学工业株式会社 Impact-resistant transparent styron composition
EP1518904A1 (en) * 2003-09-19 2005-03-30 SigmaKalon Services B.V. Styrene acrylic copolymer based waterborne coatings
JP4053022B2 (en) * 2004-06-08 2008-02-27 電気化学工業株式会社 Polystyrene-based biaxially stretched laminated sheet, molded body and container
JP4068120B2 (en) * 2005-10-07 2008-03-26 旭化成ケミカルズ株式会社 Optical compensation film
JP5057807B2 (en) * 2006-09-14 2012-10-24 旭化成イーマテリアルズ株式会社 Retardation film containing acrylic resin and styrene resin
JP5191667B2 (en) * 2007-01-29 2013-05-08 旭化成イーマテリアルズ株式会社 Styrene resin anisotropic film
JP5196519B2 (en) * 2007-03-02 2013-05-15 旭化成イーマテリアルズ株式会社 Optical film with excellent mechanical and thermal properties
JP2009282146A (en) * 2008-05-20 2009-12-03 Asahi Kasei E-Materials Corp Optical film excellent in mechanical strength
JP4990995B2 (en) * 2010-03-26 2012-08-01 サンディック株式会社 Biaxially stretched styrene resin sheet and molded product using the same
JP5934564B2 (en) * 2012-04-18 2016-06-15 シーピー化成株式会社 Styrene resin heat-resistant foam sheet manufacturing method
US9513720B2 (en) 2012-08-30 2016-12-06 Panasonic Intellectual Property Corporation Of America Stylus detecting device and stylus detecting method
JP6085533B2 (en) * 2013-07-19 2017-02-22 サンディック株式会社 Biaxially stretched styrene resin sheet and molded product thereof
JP6373648B2 (en) * 2014-06-06 2018-08-15 デンカ株式会社 Oil-resistant polystyrene resin sheet and molded container thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000159997A (en) * 1998-11-27 2000-06-13 Idemitsu Petrochem Co Ltd Polycarbonate-based resin for injection molding by gas assist, production of hollow molded product and hollow molded product
JP2014101403A (en) * 2012-11-16 2014-06-05 Ps Japan Corp Heat resistant styrenic resin composition, extruded sheet and molded article
JP2014201605A (en) * 2013-04-01 2014-10-27 Psジャパン株式会社 Heat-resistant styrenic resin composition, extruded sheet and molded product
JP2015042735A (en) * 2013-07-23 2015-03-05 ユニチカ株式会社 Polylactic acid-based resin composition and molding

Also Published As

Publication number Publication date
TW201736414A (en) 2017-10-16
KR20180102540A (en) 2018-09-17
WO2017122774A1 (en) 2017-07-20
JP6444539B2 (en) 2018-12-26
CN108473697A (en) 2018-08-31
TWI697507B (en) 2020-07-01

Similar Documents

Publication Publication Date Title
JP6389574B2 (en) Biaxially stretched sheet and molded product thereof
RU2397992C2 (en) Improvement of rubber-modified monovinylidene aromatic polymers and articles made from said polymers
JP6444539B2 (en) Biaxially stretched sheet and molded product thereof
JP6104677B2 (en) Heat-resistant styrenic resin composition, extruded sheet and molded product
JP7019353B2 (en) Stretched sheets and packaging containers, and their manufacturing methods
JP2018203837A (en) Styrenic resin composition, stretched sheet and molding
JP6854819B2 (en) Biaxially stretched sheet and its molded products
JP2018090753A (en) Heat resistant styrene-based resin composition, extrusion sheet and molded article
JP6941487B2 (en) Stretched sheet and its molded product
JP2018203838A (en) Styrenic resin composition, stretched sheet and molding
JP7025998B2 (en) Biaxially stretched sheet and its molded products
KR20160086871A (en) Rubber modified styrene resin, and sheet, food container, and food container lid member produced using same
JP7008436B2 (en) Stretched sheet and its molded product
JP7002264B2 (en) Biaxially stretched sheet and its molded products
JP2019196415A (en) Biaxially oriented sheet and molded article thereof
JP3662025B2 (en) Styrenic resin sheet and molded body
JP6978355B2 (en) Biaxially stretched sheet and its molded products
JP2007177120A (en) Vinyl aromatic hydrocarbon based copolymer
JP7470565B2 (en) Styrene-methacrylic acid copolymer resin composition for film, film, and molded article
JP7085933B2 (en) Styrene resin sheet and molded products
JP3947419B2 (en) Aromatic vinyl compound resin composition
JP2018048319A (en) Stretched sheet, packaging container, and methods of manufacturing the same
JP2010116519A (en) High-gloss polystyrene-based resin film, laminate sheet and laminate sheet-formed article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180511

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180511

AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20180522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180608

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181127

R150 Certificate of patent or registration of utility model

Ref document number: 6444539

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250