JPWO2017081782A1 - Waste heat recovery heat pump device - Google Patents

Waste heat recovery heat pump device Download PDF

Info

Publication number
JPWO2017081782A1
JPWO2017081782A1 JP2017549927A JP2017549927A JPWO2017081782A1 JP WO2017081782 A1 JPWO2017081782 A1 JP WO2017081782A1 JP 2017549927 A JP2017549927 A JP 2017549927A JP 2017549927 A JP2017549927 A JP 2017549927A JP WO2017081782 A1 JPWO2017081782 A1 JP WO2017081782A1
Authority
JP
Japan
Prior art keywords
refrigerant
gas
liquid separator
liquid
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017549927A
Other languages
Japanese (ja)
Other versions
JP6465218B2 (en
Inventor
中村 淳
淳 中村
賢哲 安嶋
賢哲 安嶋
修平 柴田
修平 柴田
宏幸 寺脇
宏幸 寺脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Publication of JPWO2017081782A1 publication Critical patent/JPWO2017081782A1/en
Application granted granted Critical
Publication of JP6465218B2 publication Critical patent/JP6465218B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

2段圧縮機の高段側圧縮機が、気液分離器からの中間圧冷媒と低段側圧縮機からの中間圧冷媒との混合冷媒を吸入冷媒として動作する場合、装置起動時における高段側圧縮機の液圧縮を確実に回避することができる排熱回収ヒートポンプ装置を提供することを目的とする。このため、気液分離器4の気体側出口から吐出された冷媒を低段圧縮機構の吐出口と高段圧縮機構の吸入口との間に導入する中間配管L1と、気液分離器4の液側出口と、高段膨張弁3を介して凝縮器2の冷媒出口Q2と気液分離器4の冷媒入口とをつなぐ配管とを連通するバイパス配管L2と、中間配管L1に設けられた開閉制御弁7と、バイパス配管L2に設けられたバイパス弁8と、を備え、気液分離器4の液相冷媒連通口4Lは凝縮器2の冷媒出口Q2よりも上方に配置され、制御部は、装置停止時にバイパス弁8を開制御し、低段膨張弁5を閉制御する。When the high-stage compressor of the two-stage compressor operates using the mixed refrigerant of the intermediate-pressure refrigerant from the gas-liquid separator and the intermediate-pressure refrigerant from the low-stage compressor as the intake refrigerant, An object of the present invention is to provide an exhaust heat recovery heat pump device that can reliably avoid liquid compression of a side compressor. For this reason, the intermediate pipe L1 for introducing the refrigerant discharged from the gas side outlet of the gas-liquid separator 4 between the discharge port of the low-stage compression mechanism and the suction port of the high-stage compression mechanism, and the gas-liquid separator 4 A bypass pipe L2 for connecting the liquid side outlet, a pipe connecting the refrigerant outlet Q2 of the condenser 2 and the refrigerant inlet of the gas-liquid separator 4 via the high stage expansion valve 3, and an opening / closing provided in the intermediate pipe L1 A control valve 7 and a bypass valve 8 provided in the bypass pipe L2, the liquid-phase refrigerant communication port 4L of the gas-liquid separator 4 is disposed above the refrigerant outlet Q2 of the condenser 2, and the control unit When the apparatus is stopped, the bypass valve 8 is controlled to be opened and the low stage expansion valve 5 is controlled to be closed.

Description

本発明は、2段圧縮機の高段側圧縮機が、気液分離器からの中間圧冷媒と低段側圧縮機からの中間圧冷媒との混合冷媒を吸入冷媒として動作する場合、装置起動時における高段側圧縮機の液圧縮を確実に回避することができる排熱回収ヒートポンプ装置に関する。   In the present invention, when the high-stage compressor of the two-stage compressor operates using the mixed refrigerant of the intermediate-pressure refrigerant from the gas-liquid separator and the intermediate-pressure refrigerant from the low-stage compressor as the intake refrigerant, the apparatus is activated. The present invention relates to an exhaust heat recovery heat pump device that can reliably avoid liquid compression of a high stage compressor at the time.

ヒートポンプ装置には、ヒートポンプサイクル上に低圧側圧縮機と高圧側圧縮機との2つの圧縮機を設けた2段圧縮式を用いるものがある。特許文献1では、室内側熱交換器と、低圧側圧縮機と、高圧側圧縮機と、室内側熱交換器とから送られた冷媒を減圧する第1減圧装置と、第1減圧装置から送られた冷媒を気液分離する気液分離器と、気液分離器の液相側に接続され、気液分離器から送られた冷媒を減圧し、減圧した冷媒を室外側熱交換器に向けて送る第2減圧装置と、気液分離器の気相側に接続され、気液分離器から送られた冷媒を、低圧側圧縮機と高圧側圧縮機との間の管路上に導くインジェクション管路と、高圧側圧縮機に流入する冷媒を加熱ガス状態または飽和蒸気状態とするために、第2減圧装置における冷媒の減圧比を制御する制御部とを備えたヒートポンプ式加熱装置が記載されている。   Some heat pump apparatuses use a two-stage compression type in which two compressors, a low-pressure compressor and a high-pressure compressor, are provided on a heat pump cycle. In patent document 1, the 1st decompression device which decompresses the refrigerant | coolant sent from the indoor side heat exchanger, the low pressure side compressor, the high pressure side compressor, and the indoor side heat exchanger, A gas-liquid separator for gas-liquid separation of the generated refrigerant and a liquid phase side of the gas-liquid separator, depressurizing the refrigerant sent from the gas-liquid separator, and directing the depressurized refrigerant to the outdoor heat exchanger A second pressure reducing device to be sent and an injection pipe connected to the gas phase side of the gas-liquid separator and guiding the refrigerant sent from the gas-liquid separator onto a pipe line between the low-pressure side compressor and the high-pressure side compressor There is described a heat pump heating device including a passage and a control unit that controls a pressure reduction ratio of the refrigerant in the second pressure reducing device in order to change the refrigerant flowing into the high pressure side compressor into a heated gas state or a saturated vapor state. Yes.

特開2014−119157号公報JP 2014-119157 A

ところで、上述した特許文献1に記載されたヒートポンプ式加熱装置では、低圧側(低段側)膨張弁(第2減圧装置)による減圧量を制御することで高圧側(高段側)圧縮機の液圧縮を防止している。しかしながら、特許文献1に記載されたものは、低段側膨張弁の制御によって低段側の冷媒流量を減少させ、低段側圧縮機吐出温度を高温化することで高段側圧縮機の吸入冷媒の過熱状態を実現するものである。したがって、中間配管(インジェクション管路)への液冷媒混入量によっては必ずしも過熱状態を維持できるものではない。   By the way, in the heat pump type heating device described in Patent Document 1 described above, the amount of pressure reduction by the low-pressure side (low-stage side) expansion valve (second decompression device) is controlled to control the high-pressure side (high-stage side) compressor. Liquid compression is prevented. However, what is described in Patent Document 1 is that the low-stage side refrigerant flow is reduced by controlling the low-stage side expansion valve, and the low-stage compressor discharge temperature is increased to increase the suction of the high-stage compressor. This realizes an overheated state of the refrigerant. Therefore, the overheated state cannot always be maintained depending on the amount of liquid refrigerant mixed into the intermediate pipe (injection pipe line).

特に、作動冷媒として高沸点の冷媒を用いた場合、装置停止後の周囲温度によっては、気液分離器内に凝縮した冷媒が貯留され、装置起動時に中間配管から液冷媒が流出する可能性が大きい。   In particular, when a high-boiling point refrigerant is used as the working refrigerant, depending on the ambient temperature after the apparatus is stopped, the condensed refrigerant is stored in the gas-liquid separator, and the liquid refrigerant may flow out from the intermediate pipe when the apparatus is activated. large.

本発明は、上記に鑑みてなされたものであって、2段圧縮機の高段側圧縮機が、気液分離器からの中間圧冷媒と低段側圧縮機からの中間圧冷媒との混合冷媒を吸入冷媒として動作する場合、装置起動時における高段側圧縮機の液圧縮を確実に回避することができる排熱回収ヒートポンプ装置を提供することを目的とする。   The present invention has been made in view of the above, and the high-stage compressor of the two-stage compressor mixes the intermediate-pressure refrigerant from the gas-liquid separator and the intermediate-pressure refrigerant from the low-stage compressor. An object of the present invention is to provide an exhaust heat recovery heat pump device that can reliably avoid liquid compression of a high-stage compressor when the apparatus is activated when the refrigerant operates as an intake refrigerant.

上述した課題を解決し、目的を達成するために、本発明にかかる排熱回収ヒートポンプ装置は、外部熱源から回収した熱で冷媒を蒸発させる蒸発器と、前記蒸発器で蒸発された冷媒を圧縮する低段圧縮機構と、前記低段圧縮機構で圧縮された冷媒を圧縮する高段圧縮機構と、前記高段圧縮機構で圧縮された冷媒を凝縮させ被加熱水を加熱する凝縮器と、前記凝縮器によって凝縮された冷媒を減圧膨張する高段膨張弁と、前記高段膨張弁から導入された冷媒を気液分離する気液分離器と、前記気液分離器の液側出口から吐出された冷媒をさらに減圧膨張して前記蒸発器に導入する低段膨張弁と、前記気液分離器の気体側出口から吐出された冷媒を前記低段圧縮機構の吐出口と前記高段圧縮機構の吸入口との間に導入する中間配管と、前記気液分離器の前記液側出口と、前記高段膨張弁を介して前記凝縮器の冷媒出口と前記気液分離器の冷媒入口とをつなぐ配管とを連通するバイパス配管と、前記中間配管に設けられた開閉制御弁と、前記バイパス配管に設けられたバイパス弁と、装置停止時に前記バイパス弁を開制御し、前記低段膨張弁を閉制御する制御部と、を備え、前記気液分離器の液相冷媒出口は前記凝縮器の冷媒出口よりも上方に配置されることを特徴とする。   In order to solve the above-described problems and achieve the object, an exhaust heat recovery heat pump device according to the present invention compresses an evaporator that evaporates the refrigerant with heat recovered from an external heat source, and the refrigerant evaporated in the evaporator A low-stage compression mechanism, a high-stage compression mechanism that compresses the refrigerant compressed by the low-stage compression mechanism, a condenser that condenses the refrigerant compressed by the high-stage compression mechanism and heats heated water, and A high-stage expansion valve that decompresses and expands the refrigerant condensed by the condenser; a gas-liquid separator that separates the refrigerant introduced from the high-stage expansion valve; and a liquid-side outlet of the gas-liquid separator. A low-stage expansion valve that expands the refrigerant further under reduced pressure and introduces the refrigerant into the evaporator; a refrigerant discharged from a gas-side outlet of the gas-liquid separator; and a discharge port of the low-stage compression mechanism and a high-stage compression mechanism An intermediate pipe introduced between the inlet and the gas-liquid component Provided in the intermediate pipe, a bypass pipe communicating the liquid side outlet of the condenser, a pipe connecting the refrigerant outlet of the condenser and the refrigerant inlet of the gas-liquid separator via the high stage expansion valve An open / close control valve; a bypass valve provided in the bypass pipe; and a control unit that controls the opening of the bypass valve and the low stage expansion valve when the apparatus is stopped, and the liquid of the gas-liquid separator is provided. The phase refrigerant outlet is disposed above the refrigerant outlet of the condenser.

また、本発明にかかる排熱回収ヒートポンプ装置は、上記の発明において、前記気液分離器の前記中間配管への気体側連通口は、前記凝縮器の冷媒入口よりも上方に配置されることを特徴とする。   Further, in the exhaust heat recovery heat pump device according to the present invention, in the above invention, the gas side communication port to the intermediate pipe of the gas-liquid separator is disposed above the refrigerant inlet of the condenser. Features.

また、本発明にかかる排熱回収ヒートポンプ装置は、上記の発明において、前記制御部は、装置停止時に前記開閉制御弁を閉にすることを特徴とする。   In the exhaust heat recovery heat pump apparatus according to the present invention, the control unit closes the open / close control valve when the apparatus is stopped.

本発明によれば、装置停止時に気液分離器に貯留した液冷媒がバイパス弁を介して凝縮器側に自然導出されるので、装置起動における高段側圧縮機の液圧縮を確実に回避することができる。   According to the present invention, since the liquid refrigerant stored in the gas-liquid separator when the apparatus is stopped is naturally led out to the condenser side via the bypass valve, the liquid compression of the high stage compressor at the time of starting the apparatus is surely avoided. be able to.

本発明の実施の形態1に係る排熱回収ヒートポンプ装置の全体構成図である。1 is an overall configuration diagram of an exhaust heat recovery heat pump device according to Embodiment 1 of the present invention. 飽和ガス線と等エントロピー線とを含むR245faのP−h線図である。It is a Ph diagram of R245fa including a saturated gas line and an isentropic line. 図1に示したヒートポンプ部の詳細構成図である。It is a detailed block diagram of the heat pump part shown in FIG. ヒートポンプ部の気液分離器と凝縮器との配置関係を示す模式図である。It is a schematic diagram which shows the arrangement | positioning relationship between the gas-liquid separator and condenser of a heat pump part.

以下、添付図面を参照してこの発明を実施するための形態について説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described with reference to the accompanying drawings.

(全体構成)
図1は、本発明の実施の形態に係る排熱回収ヒートポンプ装置10の全体構成図である。排熱回収ヒートポンプ装置10は、工場排水等の温水から排熱を回収し、回収した排熱を利用して水蒸気を生成するシステムであり、生成した水蒸気は乾燥装置や殺菌装置等の外部の蒸気利用設備に送られる。
(overall structure)
FIG. 1 is an overall configuration diagram of an exhaust heat recovery heat pump apparatus 10 according to an embodiment of the present invention. The exhaust heat recovery heat pump device 10 is a system that recovers exhaust heat from warm water such as factory waste water and generates steam using the recovered exhaust heat. The generated steam is external steam such as a drying device or a sterilizer. Sent to the use facility.

図1に示すように、排熱回収ヒートポンプ装置10は、水を蒸発させて水蒸気を生成し、外部へと送り出す蒸気生成部12と、温水供給部14によって供給される温水(熱源温水)から熱を回収し、この熱を蒸気生成部12での蒸気生成のための熱源として供給するヒートポンプ部16と、制御部20とを備える。   As shown in FIG. 1, the exhaust heat recovery heat pump device 10 generates heat by evaporating water to generate water vapor, and heat is generated from the hot water (heat source hot water) supplied by the hot water supply unit 14 and the hot water supply unit 14. The heat pump unit 16 that supplies the heat as a heat source for generating steam in the steam generation unit 12 and the control unit 20 are provided.

ヒートポンプ部16は、外部熱源である熱源温水から回収した熱で冷媒を蒸発させる蒸発器6と、蒸発器で蒸発された冷媒を圧縮する低段圧縮機構1aと、低段圧縮機構1aで圧縮された冷媒を圧縮する高段圧縮機構1bと、高段圧縮機構で圧縮された冷媒を凝縮させ被加熱水を加熱する凝縮器2と、凝縮器2によって凝縮された冷媒を減圧膨張する高段膨張弁3と、高段膨張弁3から導入された冷媒を気液分離する気液分離器4と、気液分離器4の液側出口から吐出された冷媒をさらに減圧膨張して蒸発器6に導入する低段膨張弁5と、気液分離器4の気体側出口から吐出された冷媒を低段圧縮機構の吐出口と高段圧縮機構の吸入口との間に導入する中間配管L1と、中間配管L1に設けられた開閉制御弁7とを有する。本実施の形態では、凝縮器2の出口側と高段膨張弁3との間に加熱器2aを接続している。高段膨張弁3および低段膨張弁5は、例えば電子膨張弁である。また、開閉制御弁7は、例えば電動弁である。   The heat pump unit 16 is compressed by the evaporator 6 that evaporates the refrigerant with heat recovered from the heat source hot water that is an external heat source, the low-stage compression mechanism 1a that compresses the refrigerant evaporated by the evaporator, and the low-stage compression mechanism 1a. A high-stage compression mechanism 1b that compresses the refrigerant, a condenser 2 that condenses the refrigerant compressed by the high-stage compression mechanism and heats the water to be heated, and a high-stage expansion that decompresses and expands the refrigerant condensed by the condenser 2 Valve 3, a gas-liquid separator 4 that gas-liquid separates the refrigerant introduced from high-stage expansion valve 3, and refrigerant discharged from the liquid-side outlet of gas-liquid separator 4 is further decompressed and expanded to evaporator 6. A low-stage expansion valve 5 to be introduced, an intermediate pipe L1 for introducing the refrigerant discharged from the gas side outlet of the gas-liquid separator 4 between the discharge port of the low-stage compression mechanism and the suction port of the high-stage compression mechanism; And an open / close control valve 7 provided in the intermediate pipe L1. In the present embodiment, a heater 2 a is connected between the outlet side of the condenser 2 and the high stage expansion valve 3. The high stage expansion valve 3 and the low stage expansion valve 5 are, for example, electronic expansion valves. The open / close control valve 7 is, for example, an electric valve.

ヒートポンプ部16のヒートポンプサイクルに流れる冷媒は、図2に示すように、P−h線図上での等エントロピー線L11が低圧側で過熱域にあり、高圧側で飽和ガス線L12と等エントロピー線L11とが2点以上の交点もしくは接点を有する特性を持つ冷媒である。この冷媒は、例えば、1,1,1,3,3−ペンタフルオロプロパン(構造式:CHFCHCF、R245fa)である。図2は、R245faのP−h線図を示しており、飽和ガス線L12と等エントロピー線L11とが交点PP1,PP2の2点で交わっている。As shown in FIG. 2, the refrigerant flowing in the heat pump cycle of the heat pump unit 16 has an isentropic line L11 in the superheated region on the low pressure side and an isentropic line on the high pressure side with the saturated gas line L12. L11 is a refrigerant having the characteristic of having two or more intersections or contact points. This refrigerant is, for example, 1,1,1,3,3-pentafluoropropane (structural formula: CHF 2 CH 2 CF 3 , R245fa). FIG. 2 shows a Ph diagram of R245fa, where the saturated gas line L12 and the isentropic line L11 intersect at two points PP1 and PP2.

高段圧縮機構1bで圧縮されて高温高圧となった冷媒は、凝縮器2で蒸気生成部12を循環する水と熱交換して冷却され凝縮する。凝縮器2を出た冷媒は、加熱器2aで給水経路30を流れる水を予熱してさらに冷却された後、高段膨張弁3で減圧膨張され、気液分離器4に導入される。気液分離器4の液側出口から吐出された冷媒は、さらに低段膨張機構5で減圧膨張され、蒸発器6で温水供給部14の温水経路32を流れる熱源温水から吸熱して蒸発して低段圧縮機構1aの吸入口に導入される。一方、気液分離器4の気体側出口から吐出された冷媒は、開閉制御弁7が設けられた中間配管L1を介して低段圧縮機構1aの吐出口と高段圧縮機構1bの吸入口との間に導入され、低段圧縮機構1aから吐出された冷媒と混合されて高段圧縮機構1bの吸入口に導入される。   The refrigerant that has been compressed by the high-stage compression mechanism 1b to become high temperature and high pressure is cooled and condensed by exchanging heat with water circulating in the steam generation unit 12 in the condenser 2. The refrigerant exiting the condenser 2 is preheated with water heated in the water supply path 30 by the heater 2 a and further cooled, then decompressed and expanded by the high stage expansion valve 3, and introduced into the gas-liquid separator 4. The refrigerant discharged from the liquid-side outlet of the gas-liquid separator 4 is further decompressed and expanded by the low-stage expansion mechanism 5, and is evaporated by absorbing heat from the heat source hot water flowing through the hot water path 32 of the hot water supply unit 14 in the evaporator 6. It is introduced into the suction port of the low-stage compression mechanism 1a. On the other hand, the refrigerant discharged from the gas side outlet of the gas-liquid separator 4 passes through the intermediate pipe L1 provided with the open / close control valve 7 and the discharge port of the low stage compression mechanism 1a and the suction port of the high stage compression mechanism 1b. The refrigerant is mixed with the refrigerant discharged from the low-stage compression mechanism 1a and introduced into the suction port of the high-stage compression mechanism 1b.

蒸気生成部12は、ヒートポンプ部16を循環する冷媒を熱源として水を蒸発させて蒸気を生成する凝縮器2と、凝縮器2で生成される水と蒸気を含む気液二相流を蒸気と水とに分離する水蒸気分離器42と、水蒸気分離器42で分離された蒸気を外部の蒸気利用設備に供給する蒸気供給経路44と、水蒸気分離器42で分離された水を給水経路30から供給される水と合流させて凝縮器2から水蒸気分離器42へと導く水循環経路46とを有する。   The steam generating unit 12 uses the refrigerant circulating in the heat pump unit 16 as a heat source to evaporate water to generate steam, and the vapor-liquid two-phase flow including water and steam generated by the condenser 2 is converted into steam. A water vapor separator 42 that separates into water, a steam supply path 44 that supplies the steam separated by the water vapor separator 42 to an external steam utilization facility, and water that is separated by the water vapor separator 42 is supplied from the water supply path 30. And a water circulation path 46 that joins the water to be led from the condenser 2 to the water vapor separator 42.

水蒸気分離器42は、鉛直方向に沿った円筒状容器で構成され、下端壁に接続された水循環経路46に接続された給水経路30から水が給水補給されることで容器内部に水を貯留する。給水経路30は、図示しない水道管や水タンクからの水(給水)を給水ポンプ48によって加熱器2aを経て水循環経路46まで導入する。給水ポンプ48は制御部20の制御下に、水蒸気分離器42内に貯留された水の水位を測定する水位センサ50の検出値(水位)に基づきインバータ(INV)52を介してその運転回転数が制御される。水蒸気分離器42には、内部の蒸気圧が所定圧力以上になった際に開放される圧力逃がし弁54が接続されている。   The water vapor separator 42 is formed of a cylindrical container along the vertical direction, and stores water inside the container by supplying water from the water supply path 30 connected to the water circulation path 46 connected to the lower end wall. . The water supply path 30 introduces water (water supply) from a water pipe or water tank (not shown) to the water circulation path 46 via the heater 2a by a water supply pump 48. Under the control of the control unit 20, the feed water pump 48 is operated at its rotational speed via an inverter (INV) 52 based on a detection value (water level) of a water level sensor 50 that measures the water level of water stored in the water vapor separator 42. Is controlled. Connected to the water vapor separator 42 is a pressure relief valve 54 that is opened when the internal vapor pressure exceeds a predetermined pressure.

水循環経路46は、水蒸気分離器42の下端壁から凝縮器2までを連通する液管46aと、凝縮器2から水蒸気分離器42の上部側壁までを連通する蒸気管46bとから構成されている。液管46aには水が流通し、蒸気管46bには水及び蒸気を含む気液二相流が流通する。液管46aには循環ポンプ56が設けられている。循環ポンプ56は制御部20の制御下に、インバータ(INV)58を介してその運転回転数が制御される。   The water circulation path 46 includes a liquid pipe 46 a that communicates from the lower end wall of the water vapor separator 42 to the condenser 2, and a vapor pipe 46 b that communicates from the condenser 2 to the upper side wall of the water vapor separator 42. Water flows through the liquid pipe 46a, and a gas-liquid two-phase flow containing water and steam flows through the steam pipe 46b. A circulation pump 56 is provided in the liquid pipe 46a. The operation speed of the circulation pump 56 is controlled through an inverter (INV) 58 under the control of the control unit 20.

蒸気供給経路44は、水蒸気分離器42の上端壁に接続され、蒸気管46bから当該水蒸気分離器42内に供給され、ここで水が分離された後の蒸気を外部に送り出す経路である。蒸気供給経路44には、流れる蒸気の圧力を調整する圧力調整弁(蒸気圧力調整手段)60が設置されている。圧力調整弁60は、制御部20の制御下に、圧力センサ62で測定される水蒸気分離器42内の蒸気圧力に基づきその開度が調整される。圧力調整弁60の開度を適宜調整することにより、排熱回収ヒートポンプ装置10から外部に送り出される蒸気の流量や圧力を制御できる。蒸気供給経路44を流れる蒸気の圧力を調整する蒸気圧力調整手段としては、圧力調整弁60に代えて又はこれと共に蒸気を圧縮する蒸気圧縮機を用いてもよい。   The steam supply path 44 is a path that is connected to the upper end wall of the water vapor separator 42 and is supplied into the water vapor separator 42 from the steam pipe 46b, where the steam after the water is separated is sent out to the outside. In the steam supply path 44, a pressure adjusting valve (steam pressure adjusting means) 60 for adjusting the pressure of the flowing steam is installed. The opening degree of the pressure regulating valve 60 is adjusted based on the steam pressure in the steam separator 42 measured by the pressure sensor 62 under the control of the control unit 20. By appropriately adjusting the opening degree of the pressure regulating valve 60, the flow rate and pressure of the steam sent out from the exhaust heat recovery heat pump device 10 can be controlled. As the steam pressure adjusting means for adjusting the pressure of the steam flowing through the steam supply path 44, a steam compressor that compresses steam instead of or together with the pressure adjusting valve 60 may be used.

制御部20は、それぞれインバータ(INV)を介して低段圧縮機構1aおよび高段圧縮機構1bの運転回転数を制御する。制御部20は、ヒートポンプサイクル上の圧力および温度を検出する図示しないセンサの検出値をもとに、ヒートポンプ部16の加熱出力を制御する。なお、低段圧縮機構1aおよび高段圧縮機構1bは、回転軸を共有した、例えば1台の2段スクロール圧縮機であってもよい。なお、制御部20は、高段膨張機構3及び低段膨張機構5の開度制御をさらに行うものであってもよい。   The control unit 20 controls the operating rotational speeds of the low-stage compression mechanism 1a and the high-stage compression mechanism 1b through inverters (INV). The control unit 20 controls the heating output of the heat pump unit 16 based on detection values of a sensor (not shown) that detects the pressure and temperature on the heat pump cycle. The low-stage compression mechanism 1a and the high-stage compression mechanism 1b may be, for example, a single two-stage scroll compressor that shares a rotating shaft. The control unit 20 may further perform opening control of the high stage expansion mechanism 3 and the low stage expansion mechanism 5.

また、制御部20は、さらに給水ポンプ48、循環ポンプ56及び圧力調整弁60の制御を行うものであってもよいが、これら蒸気生成部12側は図示しない別の制御部によって制御してもよい。   Further, the control unit 20 may further control the water supply pump 48, the circulation pump 56, and the pressure regulating valve 60, but the steam generation unit 12 side may be controlled by another control unit (not shown). Good.

(ヒートポンプ部の詳細構成)
図3は、図1に示したヒートポンプ部16の詳細構成図である。また、図4は、ヒートポンプ部16の気液分離器4と凝縮器2との配置関係を示す模式図である。なお、図3および図4に示した凝縮器2は、加熱器2aを含むものである。図3に示すように、ヒートポンプ部16は、さらに、気液分離器4の液側出口と、高段膨張弁3を介して凝縮器2の冷媒出口と気液分離器4の冷媒入口とをつなぐ配管とを連通するバイパス配管L2と、バイパス配管L2に設けられたバイパス弁8とを備える。具体的に、バイパス配管L2は、気液分離器4の液側出口に接続される配管上の位置PT1と、凝縮器2と高段膨張弁3を接続する配管上の位置PT2とを連通する。
(Detailed configuration of heat pump)
FIG. 3 is a detailed configuration diagram of the heat pump unit 16 shown in FIG. FIG. 4 is a schematic diagram showing an arrangement relationship between the gas-liquid separator 4 and the condenser 2 of the heat pump unit 16. The condenser 2 shown in FIGS. 3 and 4 includes a heater 2a. As shown in FIG. 3, the heat pump unit 16 further includes a liquid side outlet of the gas-liquid separator 4, a refrigerant outlet of the condenser 2 and a refrigerant inlet of the gas-liquid separator 4 via the high stage expansion valve 3. A bypass pipe L2 communicating with the connecting pipe and a bypass valve 8 provided in the bypass pipe L2 are provided. Specifically, the bypass pipe L2 communicates a position PT1 on the pipe connected to the liquid side outlet of the gas-liquid separator 4 and a position PT2 on the pipe connecting the condenser 2 and the high stage expansion valve 3. .

また、図4に示すように、気液分離器4の液相冷媒連通口4Lの鉛直位置hb1は、凝縮器2の冷媒出口Q2の鉛直位置ha1よりも上方に配置される。また、気液分離器4の中間配管L1への気体側連通口4Vの鉛直位置hb2は、凝縮器2の冷媒入口Q1の鉛直位置ha1よりも上方に配置される。   4, the vertical position hb1 of the liquid-phase refrigerant communication port 4L of the gas-liquid separator 4 is arranged above the vertical position ha1 of the refrigerant outlet Q2 of the condenser 2. Further, the vertical position hb2 of the gas side communication port 4V to the intermediate pipe L1 of the gas-liquid separator 4 is disposed above the vertical position ha1 of the refrigerant inlet Q1 of the condenser 2.

(制御部による装置停止時の弁制御)
制御部20は、装置停止時にバイパス弁8を開制御し、低段膨張弁5および開閉制御弁7を閉制御する。ここで、装置停止により気液分離器4内の冷媒は外気温度によって冷却され液化することによって増大するが、気液分離器4の液相冷媒連通口4Lの鉛直位置hb1は、凝縮器2の冷媒出口Q2の鉛直位置ha1よりも上方に配置され、低段膨張弁5が閉になっているため、気液分離器4内に貯留した液冷媒は、バイパス配管L2を介して凝縮器2に移動して凝縮器2内に貯留される。これにより、気液分離器4内の液冷媒は、気液分離器4の気体側連通口4Vを介した中間配管L1に流入せず、装置起動時における高段圧縮機構1bの液圧縮を防止することができる。
(Valve control when the device is stopped by the controller)
The control unit 20 controls the opening of the bypass valve 8 when the apparatus is stopped, and controls the low stage expansion valve 5 and the opening / closing control valve 7 to be closed. Here, the refrigerant in the gas-liquid separator 4 is increased by being cooled and liquefied by the outside air temperature by stopping the apparatus, but the vertical position hb1 of the liquid-phase refrigerant communication port 4L of the gas-liquid separator 4 is Since the low stage expansion valve 5 is disposed above the vertical position ha1 of the refrigerant outlet Q2, the liquid refrigerant stored in the gas-liquid separator 4 is transferred to the condenser 2 via the bypass pipe L2. It moves and is stored in the condenser 2. Thereby, the liquid refrigerant in the gas-liquid separator 4 does not flow into the intermediate pipe L1 via the gas side communication port 4V of the gas-liquid separator 4, and prevents liquid compression of the high stage compression mechanism 1b at the time of starting the apparatus. can do.

また、気液分離器4の中間配管L1への気体側連通口4Vの鉛直位置hb2は、凝縮器2の冷媒入口Q1の鉛直位置ha1よりも上方に配置されるため、装置停止後に気液分離器4内の液冷媒が増大し、凝縮器2に貯留される液冷媒が満杯になっても、気液分離器4内の液冷媒が気体側連通口4Vを介して中間配管L1側に流出することがなくなる。この結果、気液分離器4内の液冷媒は、気液分離器4の気体側連通口4Vを介した中間配管L1に流入せず、装置起動時における高段圧縮機構1bの液圧縮を防止することができる。   Further, since the vertical position hb2 of the gas side communication port 4V to the intermediate pipe L1 of the gas-liquid separator 4 is disposed above the vertical position ha1 of the refrigerant inlet Q1 of the condenser 2, the gas-liquid separation is performed after the apparatus is stopped. Even if the liquid refrigerant in the condenser 4 increases and the liquid refrigerant stored in the condenser 2 becomes full, the liquid refrigerant in the gas-liquid separator 4 flows out to the intermediate pipe L1 side through the gas side communication port 4V. There is no longer to do. As a result, the liquid refrigerant in the gas-liquid separator 4 does not flow into the intermediate pipe L1 via the gas side communication port 4V of the gas-liquid separator 4, and prevents liquid compression of the high stage compression mechanism 1b at the time of starting the apparatus. can do.

さらに、開閉制御弁7が閉となるため、気液分離器4内の液冷媒が中間配管L1を介して高段圧縮機構1bの吸入口への流入を中間配管L1上で確実に防ぎ、装置起動時における高段圧縮機構1bの液圧縮を防止することができる。したがって、開閉制御弁7を気液分離器4の気体側連通口4Vの鉛直位置hb2よりも上方に配置することが好ましい。さらに、開閉制御弁7を気液分離器4の最上部よりも上方に配置することが好ましい。   Furthermore, since the open / close control valve 7 is closed, the liquid refrigerant in the gas-liquid separator 4 is reliably prevented from flowing into the suction port of the high-stage compression mechanism 1b via the intermediate pipe L1 on the intermediate pipe L1. Liquid compression of the high stage compression mechanism 1b at the time of starting can be prevented. Therefore, it is preferable to arrange the opening / closing control valve 7 above the vertical position hb2 of the gas side communication port 4V of the gas-liquid separator 4. Furthermore, it is preferable to arrange the opening / closing control valve 7 above the uppermost part of the gas-liquid separator 4.

なお、高段膨張弁3は、気液分離器4内の液冷媒の移動を容易にするため、装置停止時に開制御することが好ましい。   The high stage expansion valve 3 is preferably controlled to be opened when the apparatus is stopped to facilitate the movement of the liquid refrigerant in the gas-liquid separator 4.

また、制御部20は、装置起動時に、バイパス弁8を閉制御し、高段膨張弁3、低段膨張弁5、および開閉制御弁7を運転状況に応じて開制御する。   Further, the control unit 20 controls the bypass valve 8 to close when the apparatus is activated, and controls the high-stage expansion valve 3, the low-stage expansion valve 5, and the open / close control valve 7 to open according to the operating conditions.

1 圧縮機構
1a 低段圧縮機構
1b 高段圧縮機構
2 凝縮器
2a 加熱器
3 高段膨張弁
4 気液分離器
4L 液相冷媒連通口
4V 気体側連通口
5 低段膨張弁
6 蒸発器
7 開閉制御弁
8 バイパス弁
10 排熱回収ヒートポンプ装置
12 蒸気生成部
14 温水供給部
16 ヒートポンプ部
20 制御部
29 熱源温水温度センサ
30 給水経路
32 温水経路
42 水蒸気分離器
44 蒸気供給経路
46 水循環経路
52,58 インバータ
ha1,ha2,hb1,hb2 鉛直位置
L1 中間配管
L2 バイパス配管
Q1 冷媒入口
Q2 冷媒出口
DESCRIPTION OF SYMBOLS 1 Compression mechanism 1a Low stage compression mechanism 1b High stage compression mechanism 2 Condenser 2a Heater 3 High stage expansion valve 4 Gas-liquid separator 4L Liquid phase refrigerant communication port 4V Gas side communication port 5 Low stage expansion valve 6 Evaporator 7 Opening and closing Control valve 8 Bypass valve 10 Waste heat recovery heat pump device 12 Steam generation unit 14 Hot water supply unit 16 Heat pump unit 20 Control unit 29 Heat source hot water temperature sensor 30 Water supply path 32 Hot water path 42 Steam separator 44 Steam supply path 46 Water circulation path 52, 58 Inverter ha1, ha2, hb1, hb2 Vertical position L1 Intermediate piping L2 Bypass piping Q1 Refrigerant inlet Q2 Refrigerant outlet

Claims (3)

外部熱源から回収した熱で冷媒を蒸発させる蒸発器と、
前記蒸発器で蒸発された冷媒を圧縮する低段圧縮機構と、
前記低段圧縮機構で圧縮された冷媒を圧縮する高段圧縮機構と、
前記高段圧縮機構で圧縮された冷媒を凝縮させ被加熱水を加熱する凝縮器と、
前記凝縮器によって凝縮された冷媒を減圧膨張する高段膨張弁と、
前記高段膨張弁から導入された冷媒を気液分離する気液分離器と、
前記気液分離器の液側出口から吐出された冷媒をさらに減圧膨張して前記蒸発器に導入する低段膨張弁と、
前記気液分離器の気体側出口から吐出された冷媒を前記低段圧縮機構の吐出口と前記高段圧縮機構の吸入口との間に導入する中間配管と、
前記気液分離器の前記液側出口と、前記高段膨張弁を介して前記凝縮器の冷媒出口と前記気液分離器の冷媒入口とをつなぐ配管とを連通するバイパス配管と、
前記中間配管に設けられた開閉制御弁と、
前記バイパス配管に設けられたバイパス弁と、
装置停止時に前記バイパス弁を開制御し、前記低段膨張弁を閉制御する制御部と、
を備え、
前記気液分離器の液相冷媒出口は前記凝縮器の冷媒出口よりも上方に配置されることを特徴とする排熱回収ヒートポンプ装置。
An evaporator that evaporates the refrigerant with heat recovered from an external heat source;
A low-stage compression mechanism for compressing the refrigerant evaporated in the evaporator;
A high-stage compression mechanism for compressing the refrigerant compressed by the low-stage compression mechanism;
A condenser that condenses the refrigerant compressed by the high-stage compression mechanism and heats the water to be heated;
A high-stage expansion valve that decompresses and expands the refrigerant condensed by the condenser;
A gas-liquid separator that gas-liquid separates the refrigerant introduced from the high-stage expansion valve;
A low-stage expansion valve for further decompressing and expanding the refrigerant discharged from the liquid-side outlet of the gas-liquid separator and introducing the refrigerant into the evaporator;
An intermediate pipe for introducing the refrigerant discharged from the gas side outlet of the gas-liquid separator between the discharge port of the low-stage compression mechanism and the suction port of the high-stage compression mechanism;
A bypass pipe communicating the liquid side outlet of the gas-liquid separator, and a pipe connecting the refrigerant outlet of the condenser and the refrigerant inlet of the gas-liquid separator via the high stage expansion valve;
An open / close control valve provided in the intermediate pipe;
A bypass valve provided in the bypass pipe;
A control unit for controlling the opening of the bypass valve and closing the low stage expansion valve when the apparatus is stopped;
With
The exhaust heat recovery heat pump apparatus according to claim 1, wherein the liquid-phase refrigerant outlet of the gas-liquid separator is disposed above the refrigerant outlet of the condenser.
前記気液分離器の前記中間配管への気体側連通口は、前記凝縮器の冷媒入口よりも上方に配置されることを特徴とする請求項1に記載の排熱回収ヒートポンプ装置。   The exhaust heat recovery heat pump device according to claim 1, wherein a gas side communication port to the intermediate pipe of the gas-liquid separator is disposed above a refrigerant inlet of the condenser. 前記制御部は、装置停止時に前記開閉制御弁を閉にすることを特徴とする請求項1または2に記載の排熱回収ヒートポンプ装置。   The exhaust heat recovery heat pump apparatus according to claim 1, wherein the control unit closes the open / close control valve when the apparatus is stopped.
JP2017549927A 2015-11-11 2015-11-11 Waste heat recovery heat pump device Active JP6465218B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/081799 WO2017081782A1 (en) 2015-11-11 2015-11-11 Exhaust heat recovery heat pump device

Publications (2)

Publication Number Publication Date
JPWO2017081782A1 true JPWO2017081782A1 (en) 2018-08-09
JP6465218B2 JP6465218B2 (en) 2019-02-06

Family

ID=58694806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017549927A Active JP6465218B2 (en) 2015-11-11 2015-11-11 Waste heat recovery heat pump device

Country Status (2)

Country Link
JP (1) JP6465218B2 (en)
WO (1) WO2017081782A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017081781A1 (en) * 2015-11-11 2017-05-18 富士電機株式会社 Exhaust heat recovery heat pump device
CN113803900A (en) * 2021-08-25 2021-12-17 东方电气集团东方电机有限公司 Low-pressure steam continuous recovery heat pump system
JP2023037868A (en) * 2021-09-06 2023-03-16 三菱重工サーマルシステムズ株式会社 Refrigerating device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60261A (en) * 1983-06-17 1985-01-05 株式会社日立製作所 Refrigeration cycle
JPH1114199A (en) * 1997-06-24 1999-01-22 Mitsubishi Electric Corp Accumulator
JPH11142001A (en) * 1997-11-06 1999-05-28 Daikin Ind Ltd Air conditioner
JP2005214444A (en) * 2004-01-27 2005-08-11 Sanyo Electric Co Ltd Refrigerator
JP2006275435A (en) * 2005-03-30 2006-10-12 Fujitsu General Ltd Gas-liquid separator and air-conditioner
JP2009229051A (en) * 2008-02-29 2009-10-08 Daikin Ind Ltd Refrigerating device
JP2014119157A (en) * 2012-12-14 2014-06-30 Sharp Corp Heat pump type heating device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60261A (en) * 1983-06-17 1985-01-05 株式会社日立製作所 Refrigeration cycle
JPH1114199A (en) * 1997-06-24 1999-01-22 Mitsubishi Electric Corp Accumulator
JPH11142001A (en) * 1997-11-06 1999-05-28 Daikin Ind Ltd Air conditioner
JP2005214444A (en) * 2004-01-27 2005-08-11 Sanyo Electric Co Ltd Refrigerator
JP2006275435A (en) * 2005-03-30 2006-10-12 Fujitsu General Ltd Gas-liquid separator and air-conditioner
JP2009229051A (en) * 2008-02-29 2009-10-08 Daikin Ind Ltd Refrigerating device
JP2014119157A (en) * 2012-12-14 2014-06-30 Sharp Corp Heat pump type heating device

Also Published As

Publication number Publication date
WO2017081782A1 (en) 2017-05-18
JP6465218B2 (en) 2019-02-06

Similar Documents

Publication Publication Date Title
JP5605991B2 (en) Steam generator
JP5068966B2 (en) Heat pump heat recovery device
WO2016171052A1 (en) Refrigeration cycle device
US10753645B2 (en) Refrigeration cycle apparatus
JP2009243793A (en) Heat pump type hot water supply outdoor unit
JP2002081767A (en) Air conditioner
JP6465218B2 (en) Waste heat recovery heat pump device
WO2017081781A1 (en) Exhaust heat recovery heat pump device
JP5057710B2 (en) Heat pump heat recovery device
KR20140143705A (en) Heat recovery apparatus and operation control method of heat recovery apparatus
JP6119895B1 (en) Heat pump equipment
JP2013231377A (en) Waste heat regeneration system
JP6406583B2 (en) Rankine cycle equipment
JP2017161105A (en) Heat pump type steam generator
JP6844256B2 (en) Steam generation system
JP2020098040A (en) Steam generating heat pump device
JP6406357B2 (en) Heat pump system
JP6766239B2 (en) Refrigeration cycle equipment
JP6394896B2 (en) Steam generation system
JP5929464B2 (en) Heat pump and heat pump activation method
JP6996208B2 (en) Rankine cycle system and its control method
JP7135633B2 (en) Heat pump steam generator
JP2016044938A (en) Steam compression type refrigeration cycle
JP2020024046A (en) Heat pump device
JP7172265B2 (en) heat pump equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181224

R150 Certificate of patent or registration of utility model

Ref document number: 6465218

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250