JPWO2017078100A1 - 心不全の予防又は治療のための医薬組成物 - Google Patents

心不全の予防又は治療のための医薬組成物 Download PDF

Info

Publication number
JPWO2017078100A1
JPWO2017078100A1 JP2017548828A JP2017548828A JPWO2017078100A1 JP WO2017078100 A1 JPWO2017078100 A1 JP WO2017078100A1 JP 2017548828 A JP2017548828 A JP 2017548828A JP 2017548828 A JP2017548828 A JP 2017548828A JP WO2017078100 A1 JPWO2017078100 A1 JP WO2017078100A1
Authority
JP
Japan
Prior art keywords
sequence
angptl2
protein
expression
angiopoietin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017548828A
Other languages
English (en)
Other versions
JP6978774B2 (ja
Inventor
雄一 尾池
雄一 尾池
哲 田
哲 田
毅 門松
毅 門松
敬士 宮田
敬士 宮田
晴紀 堀口
晴紀 堀口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumamoto University NUC
Original Assignee
Kumamoto University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumamoto University NUC filed Critical Kumamoto University NUC
Publication of JPWO2017078100A1 publication Critical patent/JPWO2017078100A1/ja
Application granted granted Critical
Publication of JP6978774B2 publication Critical patent/JP6978774B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/005Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7105Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • C12N15/864Parvoviral vectors, e.g. parvovirus, densovirus
    • C12N15/8645Adeno-associated virus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/05Animals comprising random inserted nucleic acids (transgenic)
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/075Animals genetically altered by homologous recombination inducing loss of function, i.e. knock out
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/105Murine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • A01K2267/035Animal model for multifactorial diseases
    • A01K2267/0375Animal model for cardiovascular diseases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14141Use of virus, viral particle or viral elements as a vector
    • C12N2750/14143Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Epidemiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Plant Pathology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Urology & Nephrology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Cardiology (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Virology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

本発明の目的は、新たな心不全を治療又は予防するための医薬組成物を提供することである。本発明の他の目的は、心不全を治療又は予防するための医薬組成物に用いることができるsiRNA及び該siRNAを発現するベクターを提供することである。本発明により、心不全を治療又は予防するための医薬組成物であって、アンジオポエチン様タンパク質2(ANGPTL2)のmRAN又はその選択的スプライス型RNAからの連続する18〜29ヌクレオチドのセンス鎖配列とその相補的配列であるアンチセンス鎖配列とを含むRNAをコードするDNA配列をプロモーターの調節下に含む発現ベクター、及び医薬上許容可能な担体を含む医薬組成物が提供される。

Description

本発明は新規な心不全を治療又は予防するための医薬組成物に関する。本発明は特には、アンジオポエチン様タンパク質2(ANGPTL2)の遺伝子を分子標的とすることにより、心不全を治療又は予防するための医薬組成物に関する。
高齢化社会の到来に伴い、心不全患者数は増加し、一旦罹患すると生活の質を落とすなど健康長寿社会実現への大きな阻害要因となっており、医学的にも社会的にも大きな問題となっている。また、重症化した心不全は、補助人工心臓(VAD)や、ペースメーカー挿入による心臓再同期療法(CRT)など、侵襲的な治療法以外に有効な治療法はない。
心肥大は、高血圧のような負荷が増加する状態における適応応答であり、しばしば心不全へと進む。心不全は、主要な死亡原因となっており、患者は、世界中で23百万人以上である。心不全は、心機能異常が原因の、周辺の酸素の供給と需要の不均衡と定義できる。心筋収縮能の減少は、駆出率が減少した心不全(HFrEF)を引き起こす。一方、駆出率が維持された心不全(HFpEF)においては、症状にもかかわらず伸縮率は正常に見え、心不全は異常な拡張機能により引き起こされると考えられる。収縮及び弛緩のいずれも主要なエネルギー消費プロセスであり、心筋エネルギー代謝の異常はHFrEF及びHFpEFのいずれでも起こると考えられる。しかしながら、心機能と心筋エネルギー代謝が、心不全の進展の間にどのようにして低下するかは明らかでない。
心肥大は、心筋細胞肥大による心臓の質量の増大と定義され、負荷の増大に対する適応応答であり、そして、心機能を維持するための手段である。高血圧などの病的刺激は、肥大から、心臓線維症や胎児心臓遺伝子プログラムの再発現を伴う状態である心不全への移行を促進する。これとは対照的に、運動は、保存された心筋構造及びエネルギー代謝に特徴づけられる生理的肥大を誘導し、心不全から心臓を保護する。2つのタイプの肥大の機構的な違いは、まだ明らかでない。
心不全において、心機能維持に重要なSERCA2のタンパク発現量が低下していることが報告されている。そのため、現在心不全に対する治療法として、SERCA2のタンパク量を心臓で増加させることを目的に、生体において心筋にデリバリーできる手段としてアデノ随伴ウイルス6(AAV6)を用いたAAV6−SERCA2遺伝子治療の臨床治験が行われており、心機能回復及び生命予後において良好な結果が報告されてきている。
アンジオポエチン様タンパク質(ANGPTL,Angiopoietin-like protein)は、血管新生因子であるアンジオポエチンに構造上類似する分泌型タンパク質で、これまでに7種類のANGPTLが同定されている。ANGPTL2は血管細胞や単球細胞に作用することが分かっているが、この他にもANGPTL3やANGPTL4は脂質代謝、AGF(Angiopoietin-like growth factor)/ANGPTL6はエネルギーや糖の代謝おいて重要な役割を果たすことなどが分かっている。このようなANGPTLファミリーの多様な生理学的作用は、メタボリックシンドロームなどの生活習慣病やがんの新しい治療標的として注目されている。最近では、肥満やインスリン抵抗性が強い状態、糖尿病患者、動脈硬化症患者で、血中のANGPTL2濃度が高くなることが報告されている。
ANGPTL2については、肥満、糖尿病、アテローム性動脈硬化症、及び癌の進行と関連した慢性炎症におけるその役割を同定した研究は報告されている(例えば、特許文献1、非特許文献1−8)。しかしながら、今日まで、心臓におけるシグナル伝達因子、アンジオポエチン様タンパク質2(ANGPTL2)の機能は不明であった。
特開2011-93896号公報
Kadomatsu, T., et al. Trends Endocrinol Metab 25, 245-254 (2014). Tabata, M., et al. Cell Metab 10, 178-188 (2009). Tazume, H., et al. Arterioscler Thromb Vasc Biol 32, 1400-1409 (2012). Tian, Z., et al. J Mol Cell Cardiol 57, 1-12 (2013). Horio, E., et al. Arterioscler Thromb Vasc Biol 34, 790-800 (2014). Aoi, J., et al. Cancer Res 71, 7502-7512 (2011). Endo, M., et al. Cancer Res 72, 1784-1794 (2012). Odagiri, H., et al. Sci Signal 7, ra7 (2014).
本発明の目的は、新たな心不全を治療又は予防するための医薬組成物を提供することである。
本発明の他の目的は、心不全を治療又は予防するための医薬組成物に用いることができるsiRNA及び該siRNAを発現するベクターを提供することである。
本発明の他の目的はまた、本発明の医薬組成物を適用する対象を選択するための方法及び本発明の医薬組成物の効果を確認するための方法を提供することである。
本発明者らは、心筋細胞及び微小血管内皮細胞など、心臓組織においてアンジオポエチン様タンパク質2(ANGPTL2)が発現しており、アンジオテンシンII(AngII)負荷マウス心肥大モデルや、横行大動脈縮窄圧負荷(TAC)マウス心肥大・心不全モデルにおいてその発現が有意に増強していること、そして、ヒト心不全患者においても健常心に比較しその発現が増強していることを発見し、病的心でANGPTL2が何らかの役割を果たしていることを見いだした。そして、遺伝子改変マウスを作成し解析した結果、ANGPTL2過剰発現マウスは、心機能低下を示し、さらに心不全発症に感受性を示すことを確認した。また逆に、ANGPTL2欠損マウスでは、心機能増強、及び心不全発症に抵抗性を示し、ANGPTL2は、心機能に対して抑制的に機能し、病的心肥大、心不全発症に促進的に作用することを確認した。
そして、詳細なメカニズム解析の結果、ANGPTL2は、病的心肥大形成時に発現が増強し、AKTの分解を促進することで心機能維持に重要なSERCA2タンパク量を減少させ、さらに心エネルギー代謝経路に対して抑制的に作用すること、逆に、ANGPTL2発現抑制により、AKTの安定化を介したSERCA2タンパク量の増加、及び心エネルギー代謝経路活性化をもたらし、心不全発症に拮抗的に作用することを見いだした。
さらに、ラット新生児心筋培養及びヒトiPS由来心筋細胞を用いて、ANGPTL2に対するsiRNAが、心筋細胞においてANGPTL2のmRNA及びタンパク質の発現量を有意に低下させ、AKT−SERCA2経路の活性化、心エネルギー代謝経路活性化をもたらすことを確認した。
そして、以上のことより、本発明者らは、ANGPTL2に対するsiRNAを用いたANGPTL2の作用抑制が心不全に対する新たな治療及び予防のための医薬組成物になることを見いだし、本発明を完成させた。
本発明は、以下の態様を含む。
[1]心不全を治療又は予防するための医薬組成物であって、アンジオポエチン様タンパク質2(ANGPTL2)のmRNA又はその選択的スプライス型RNAからの連続する18〜29ヌクレオチド(好ましくは、19〜27、さらに好ましくは19〜25ヌクレオチド、より好ましくは19〜23ヌクレオチド)のセンス鎖配列とその相補的配列であるアンチセンス鎖配列とを含むRNAをコードするDNA配列をプロモーターの調節下に含む発現ベクター、及び医薬上許容可能な担体を含む医薬組成物、
ここで、前記センス鎖配列と前記アンチセンス鎖配列を含むsiRNAは、動物細胞(好ましくは、ヒト細胞)に形質導入されると、細胞におけるアンジオポエチン様タンパク質2遺伝子の発現を抑制し、アンジオポエチン様タンパク質2遺伝子のサイレンシング効果を生じることを特徴とする。
[2]前記DNA配列が、前記センス鎖配列、前記アンチセンス鎖配列、及び前記センス鎖配列と前記アンチセンス鎖配列との間を共有結合によって結合する一本鎖ループ配列(ヘアピン配列)からなるヘアピン型RNAをコードする配列を含み、該ヘアピン配列が細胞内RNaseであるDicerによってプロセシングされて、前記センス鎖配列と前記アンチセンス鎖配列を含むsiRNAが形成される、上記[1]に記載の医薬組成物。
[3]前記センス鎖配列が、下記の配列番号2〜配列番号8のいずれか一つに示される塩基配列又は該配列において1つの塩基が置換・欠失又は付加された配列である、上記[1]又は[2]に記載の医薬組成物、
配列番号2:GGAACAUUGACGGCGAAUA
配列番号3:GAGAGUUCAUUUACCUAAA
配列番号4:GGCUCUUACUCACUCAAGA
配列番号5:GGCAUUGUGAGCGAGGUGA
配列番号6:GCCAUUACCGGAGCCGCUA
配列番号7:GUUUCCGCCUGGAACCUGA
配列番号8:GAAACUGUGCCCACUACCA。
[4]前記DNA配列が、下記の配列番号9〜配列番号15のいずれか一つに示される塩基配列又は該配列において1つの塩基が置換・欠失又は付加された配列を含む、上記[1]又は[2]に記載の医薬組成物、
配列番号9:GGAACATTGACGGCGAATA
配列番号10:GAGAGTTCATTTACCTAAA
配列番号11:GGCTCTTACTCACTCAAGA
配列番号12:GGCATTGTGAGCGAGGTGA
配列番号13:GCCATTACCGGAGCCGCTA
配列番号14:GTTTCCGCCTGGAACCTGA
配列番号15:GAAACTGTGCCCACTACCA。
[5]前記発現ベクターが、プラスミド又はウイルスベクターである、上記[1]〜[4]のいずれか一つに記載の医薬組成物。
[6]前記ウイルスベクターが、アデノウイルスベクター、アデノ随伴ウイルスベクター、レンチウイルスベクター又はレトロウイルスベクターである上記[5]に記載の医薬組成物。
[7]前記ウイルスベクターが、アデノ随伴ウイルスベクターAAV6ベクターである上記[6]に記載の医薬組成物。
[8]心不全を治療又は予防するための医薬組成物であって、アンジオポエチン様タンパク質2(ANGPTL2)のmRNA又はその選択的スプライス型RNAからの連続する18〜29ヌクレオチド(好ましくは、19〜27、さらに好ましくは19〜25ヌクレオチド、より好ましくは19〜23ヌクレオチド)のセンス鎖配列とその相補的配列であるアンチセンス鎖配列を含むsiRNA、及び医薬上許容可能な担体を含む医薬組成物、
ここで、前記センス鎖配列と前記アンチセンス鎖配列を含むsiRNAは、動物細胞(好ましくは、ヒト細胞)に形質導入されると、アンジオポエチン様タンパク質2遺伝子の発現を抑制し、アンジオポエチン様タンパク質2遺伝子のサイレンシング効果を生じることを特徴とする。
[9]前記センス鎖配列が、下記の配列番号2〜配列番号8のいずれか一つに示される塩基配列又は該配列において1つの塩基が置換・欠失又は付加された配列を含む上記[8]に記載の医薬組成物、
配列番号2:GGAACAUUGACGGCGAAUA
配列番号3:GAGAGUUCAUUUACCUAAA
配列番号4:GGCUCUUACUCACUCAAGA
配列番号5:GGCAUUGUGAGCGAGGUGA
配列番号6:GCCAUUACCGGAGCCGCUA
配列番号7:GUUUCCGCCUGGAACCUGA
配列番号8:GAAACUGUGCCCACUACCA。
[10]アンジオポエチン様タンパク質2(ANGPTL2)のmRNA又はその選択的スプライス型RNAからの連続する18〜29ヌクレオチド(好ましくは、19〜27、さらに好ましくは19〜25ヌクレオチド、より好ましくは19〜23ヌクレオチド)のセンス鎖配列とその相補的配列であるアンチセンス鎖配列とを含むRNAをコードするDNA配列をプロモーターの調節下に含む発現ベクターを含む、動物細胞(好ましくは、ヒト細胞)でのアンジオポエチン様タンパク質2の発現抑制剤、
ここで、前記センス鎖配列と前記アンチセンス鎖配列を含むsiRNAは、動物細胞(好ましくは、ヒト細胞)に形質導入されると、細胞におけるアンジオポエチン様タンパク質2遺伝子の発現を抑制し、アンジオポエチン様タンパク質2遺伝子のサイレンシング効果を生じることを特徴とする。
[11]前記DNA配列が、前記センス鎖配列、前記アンチセンス鎖配列、及び前記センス鎖配列と前記アンチセンス鎖配列との間を共有結合によって結合する一本鎖ループ配列(ヘアピン配列)からなるヘアピン型RNAをコードする配列を含み、該ヘアピン配列が細胞内RNaseであるDicerによってプロセシングされて、前記センス鎖配列と前記アンチセンス鎖配列を含むsiRNAが形成される、上記[10]に記載のアンジオポエチン様タンパク質2の発現抑制剤。
[12]前記センス鎖配列が、下記の配列番号2〜配列番号8のいずれか一つに示される塩基配列又は該配列において1つの塩基が置換・欠失又は付加された配列である、上記[10]又は[11]に記載のアンジオポエチン様タンパク質2の発現抑制剤、
配列番号2:GGAACAUUGACGGCGAAUA
配列番号3:GAGAGUUCAUUUACCUAAA
配列番号4:GGCUCUUACUCACUCAAGA
配列番号5:GGCAUUGUGAGCGAGGUGA
配列番号6:GCCAUUACCGGAGCCGCUA
配列番号7:GUUUCCGCCUGGAACCUGA
配列番号8:GAAACUGUGCCCACUACCA。
[13]前記DNA配列が、下記の配列番号9〜配列番号15のいずれか一つに示される塩基配列又は該配列において1つの塩基が置換・欠失又は付加された配列を含む、上記[10]又は[11]に記載のアンジオポエチン様タンパク質2の発現抑制剤、
配列番号9:GGAACATTGACGGCGAATA
配列番号10:GAGAGTTCATTTACCTAAA
配列番号11:GGCTCTTACTCACTCAAGA
配列番号12:GGCATTGTGAGCGAGGTGA
配列番号13:GCCATTACCGGAGCCGCTA
配列番号14:GTTTCCGCCTGGAACCTGA
配列番号15:GAAACTGTGCCCACTACCA。
[14]前記発現ベクターが、プラスミド又はウイルスベクターである、上記[10]〜[13]のいずれか一つに記載のアンジオポエチン様タンパク質2の発現抑制剤。
[15]前記ウイルスベクターが、アデノウイルスベクター、アデノ随伴ウイルスベクター、レンチウイルスベクター又はレトロウイルスベクターである上記[14]に記載のアンジオポエチン様タンパク質2の発現抑制剤。
[16]前記ウイルスベクターが、アデノ随伴ウイルスベクターAAV6ベクターである上記[15]に記載のアンジオポエチン様タンパク質2の発現抑制剤。
[17]対象である哺乳動物(好ましくはヒト)由来の血液中のアンジオポエチン様タンパク質2(ANGPTL2)の発現を測定することにより、該対象が上記[1]〜[9]のいずれか一つに記載の医薬組成物による心不全の治療又は予防が必要であるか否かを判定する方法。
[18]前記血液が拡張型心筋症(DCM)患者由来の血液である上記[17]に記載の方法。
[19]前記血液が拡張型心筋症患者の大動脈基部(Ao)及び冠状静脈洞(CS)の血液である上記[18]に記載の方法。
[20]冠状静脈洞(CS)の血液中のアンジオポエチン様タンパク質2(ANGPTL2)の発現レベルが、大動脈基部(Ao)の血液中の発現レベルより高い場合に、該血液が由来する対象が、心不全の治療又は予防が必要であると判定する、上記[19]に記載の方法。
[21]冠状静脈洞(CS)の血液中のアンジオポエチン様タンパク質2(ANGPTL2)の発現レベルが、大動脈基部(Ao)の血液中の発現レベルより高い場合に、該血液が由来する対象が、上記[1]〜[9]のいずれか一つに記載の医薬組成物を投与する対象と判定する方法。
[22]上記[1]〜[9]のいずれか一つに記載の医薬組成物が投与された対象由来の血液中のアンジオポエチン様タンパク質2(ANGPTL2)の発現を測定することにより、該対象において心不全の治療効果が得られているか否かを判定する方法。
[23]前記血液が対象の冠状静脈洞(CS)の血液である上記[22]に記載の方法。
[24]上記[1]〜[9]のいずれか一つに記載の医薬組成物の投与前後のアンジオポエチン様タンパク質2(ANGPTL2)の発現を測定する上記[23]に記載の方法。
[25]心不全を治療又は予防するための方法において、治療又は予防が必要な対象(好ましくは、ヒト)に、アンジオポエチン様タンパク質2(ANGPTL2)のmRNA又はその選択的スプライス型RNAからの連続する18〜29ヌクレオチド(好ましくは、19〜27、さらに好ましくは19〜25ヌクレオチド、より好ましくは19〜23ヌクレオチド)のセンス鎖配列とその相補的配列であるアンチセンス鎖配列とを含むRNAをコードするDNA配列をプロモーターの調節下に含む発現ベクターを投与して、対象の心不全を治療又は予防するのに有効な量の前記センス鎖配列と前記アンチセンス鎖配列を含むsiRNAを発現生成させ、該siRNAは、該siRNAが発現生成した細胞内におけるアンジオポエチン様タンパク質2遺伝子の発現を抑制し、アンジオポエチン様タンパク質2遺伝子のサイレンシング効果を生じることを特徴とする方法。
[26]前記DNA配列が、前記センス鎖配列、前記アンチセンス鎖配列、及び前記センス鎖配列と前記アンチセンス鎖配列との間を共有結合によって結合する一本鎖ループ配列(ヘアピン配列)からなるヘアピン型RNAをコードする配列を含み、該ヘアピン配列が細胞内RNaseであるDicerによってプロセシングされて、前記センス鎖配列と前記アンチセンス鎖配列を含むsiRNAが形成される、上記[25]に記載の心不全を治療又は予防するための方法。
[27]前記センス鎖配列が、下記の配列番号2〜配列番号8のいずれか一つに示される塩基配列又は該配列において1つの塩基が置換・欠失又は付加された配列である、上記[25]又は[26]に記載の心不全を治療又は予防するための方法、
配列番号2:GGAACAUUGACGGCGAAUA
配列番号3:GAGAGUUCAUUUACCUAAA
配列番号4:GGCUCUUACUCACUCAAGA
配列番号5:GGCAUUGUGAGCGAGGUGA
配列番号6:GCCAUUACCGGAGCCGCUA
配列番号7:GUUUCCGCCUGGAACCUGA
配列番号8:GAAACUGUGCCCACUACCA。
[28]前記DNA配列が、下記の配列番号9〜配列番号15のいずれか一つに示される塩基配列又は該配列において1つの塩基が置換・欠失又は付加された配列を含む、上記[25]又は[26]に記載の心不全を治療又は予防するための方法、
配列番号9:GGAACATTGACGGCGAATA
配列番号10:GAGAGTTCATTTACCTAAA
配列番号11:GGCTCTTACTCACTCAAGA
配列番号12:GGCATTGTGAGCGAGGTGA
配列番号13:GCCATTACCGGAGCCGCTA
配列番号14:GTTTCCGCCTGGAACCTGA
配列番号15:GAAACTGTGCCCACTACCA。
[29]前記発現ベクターが、プラスミド又はウイルスベクターである、上記[25]〜[28]のいずれか一つに記載の心不全を治療又は予防するための方法。
[30]前記ウイルスベクターが、アデノウイルスベクター、アデノ随伴ウイルスベクター、レンチウイルスベクター又はレトロウイルスベクターである上記[29]に記載の心不全を治療又は予防するための方法。
[31]前記ウイルスベクターが、アデノ随伴ウイルスベクターAAV6ベクターである上記[30]に記載の心不全を治療又は予防するための方法。
[32]対象である哺乳動物(好ましくはヒト)由来の血液中のアンジオポエチン様タンパク質2(ANGPTL2)の発現を測定することにより、該対象が心不全に罹患しているか心不全を発症するリスクがあるかを判定する方法。
[33]前記血液が大動脈基部(Ao)及び/又は冠状静脈洞(CS)の血液である上記[32]に記載の方法。
[34]冠状静脈洞(CS)の血液中のアンジオポエチン様タンパク質2(ANGPTL2)の発現レベルが、大動脈基部(Ao)の血液中の発現レベルより高い場合に、該血液が由来する対象が、心不全に罹患しているまたは心不全を発症するリスクがあると判定する、上記[33]に記載の方法。
本発明により、心筋細胞においてアンジオポエチン様タンパク質2遺伝子の発現を抑制することができ、心不全の治療又は予防に有効な医薬組成物が提供される。
左図は、野生型マウスのTAC処置6週間後の、心臓でのANGPTL2タンパク質の発現を、ウェスタンブロットを用いて定量した結果である。Shamは、擬似コントロールマウスを表す。グラフは、各グループn=5の平均である。右図は、アンジオテンシンII(Ang II)で誘導した病的肥大のマウスモデルの心臓でのANGPTL2タンパク質の発現を、誘導2週間後に、ウェスタンブロットを用いて定量した結果である。Vehicleは、コントロールマウスを示す。グラフは、各グループn=8の平均である。コントロールの値を1とした。データは、平均±SEMで表した。**:p<0.01である。 GFP+心筋細胞及びGFP-心筋細胞におけるANGPTL2の発現を確認した結果である。図2aは、Myh6−EGFP TgマウスからのGFP+心筋細胞及びGFP-非心筋筋細胞での、ANGPTL2及びGFPをウェスタンブロットにより分析した結果である。Hsc70は、コントロールとして用いた。GFP+の値を1とした。グラフは、各グループn=3の平均である。図2bは、TAC処置又は擬似コントロール処置(Sham)の6週間後の、GFP+及びGFP-細胞中のAngptl2発現を定量的RT−PCR分析した結果である。各グループn=3の平均である。コントロールの値を1とした。図2cは、Ang II処置又はビークル処置の2週間後の、GFP+及びGFP-細胞中のAngptl2発現を定量的RT−PCR分析した結果である。各グループn=3の平均である。コントロールの値を1とした。データは、平均±SEMで表した。*:p<0.05である。 図3aは、8週齢及び12週齢のαMHC−Angptl2 Tgマウス及び野生型同腹子の心収縮機能障害を確認した結果である。図3aの上段は、M−モードの超音波検査の記録である。図3aの中段は、小麦胚芽凝集素(WGA)で染色した左心室切片の結果であり、心筋細胞の大きさを示している(スケールバー:50μm)。図3aの下段は、DAPIで染色した左心室切片の結果であり、心筋細胞の大きさを示している(スケールバー:200μm)。図3bは、8週齢、12週齢及び18週齢のαMHC−Angptl2 Tgマウス及び野生型同腹子(各群n=5−7)の、拡張期左室後壁の厚さ(LVPW;d)、左心室拡張末期内径(LVID;d)、及びパーセント短縮率(%FS)の結果である。図3cは、12週齢のαMHC−Angptl2 Tgマウス及び野生型同腹子(各群n=5−7)の心臓におけるHF及び線維症と関連する遺伝子の相対的発現の結果である。野生型(WT)の値を1とした。データは、平均±SEMで表した。*:p<0.05である。 αMHC−Angptl2のTg及び野生型対照マウスから単離した単一細胞を用いて心筋細胞の興奮収縮(EC)カップリングを評価した結果である。図4aは、αMHC−Angptl2のTg(n=31、N=3)及び野生型対照マウス(n=40、N=3)から単離した心筋細胞の短縮率を、図4bは、1Hzの刺激での平均Ca2+移行を、図4cは、Ca2+移行のピーク値を、図4dは、ピーク[Ca2+]iに達する時間を、図4eは、αMHC−Angptl2のTg(n=54、N=3)及び野生型対照マウス(n=35、N=3)からの心筋細胞におけるCa2+移行減衰の時定数τを示している。図4fは、αMHC−Angptl2 Tgマウス(n=54,N=3)及び野生型マウス(n=35,N=3)からの心筋細胞中の平均SR Ca+値を示している。データは、平均±SEMで表した。*:p<0.05,**:p<0.01である。Nは、独立した実験の回数である。 αMHC−Angptl2 Tgマウス及び野生型マウスの、TAC処置の3週間後の心臓組織切片を、Masson's Trichrome染色した結果である(スケールバー:100μm)。 αMHC−Angptl2 Tgマウス及び野生型マウスの、TAC処置の3週間後の心臓組織における、心不全及び心臓線維症関連遺伝子の相対的発現を確認した結果である。各群n=6である。WTの値を1とした。 αMHC−Angptl2 Tgマウス(n=13)及び野生型マウス(n=28)のTAC処置後の生存率を示している。 12週齢のAngptl2 KOマウス及び野生型同腹子マウス(WT)の、心不全及び線維症関連遺伝子の相対発現を確認した結果である。WTの値を1とした。 Angptl2 KO及び同腹子マウス(WT)の心臓における種々のシグナル因子及びSERCA2aのイムノブロッティングの結果を定量的に示している。各群n=3−6である。対照の値を1とした。データは、平均±SEMで表した。*:p<0.05,**:p<0.01である。 αMHC−Angptl2 Tg及び同腹子マウス(WT)の心臓における種々のシグナル因子及びSERCA2aの免疫ブロッティングの結果を定量的に示している。各群n=3−6である。対照の値を1とした。データは、平均±SEMで表した。*:p<0.05,**:p<0.01である。 Angptl2又は対照のsiRNAで形質転換したNRCMsにおける、各因子の免疫ブロッティングの結果を定量的に示している。各群n=2−4である。対照の値を1とした。データは、平均±SEMで表した。*:p<0.05,**:p<0.01である。 Ad−Angptl2又は対照Ad−LacZで形質転換したNRCMsにおける、各因子の免疫ブロッティングの結果を定量的に示している。各群n=2−4である。対照の値を1とした。データは、平均±SEMで表した。*:p<0.05,**:p<0.01である。 運動負荷を行っていない対照マウス、トレッドミルランニングによる急性の訓練及び持続訓練を受けたマウス、の心臓からのANGPTL2タンパク質の免疫ブロッティングの結果である。Hsc70を、泳動コントロールとして用いた。運動負荷を行っていない対照マウスの値を1とした。各群n=6−8である。 FLuc−Angptl2−3’UTR構築物のマウスAngptl2 3’UTR上の、miR−135a、miR−204、miR−211、miR−221、及びmiR−222の結合部位の予測である。FLuc−Angptl2−3’UTR構築物を有し、対照のpcDNA3.1ベクター、或いはmiR−221、miR−222、miR−211、miR−204又はmiR−135aを発現するベクターで形質転換したNRCMsの相対ルシフェラーゼ活性を示している。対照のpcDNA3.1ベクターで形質転換したNRCMsの値を1とした。各群n=10−12である。データは、平均±SEMで表した。*:p<0.05,**:p<0.01である。 図15aの模式図は、miR−221/222結合部位を有する(上段)又は有しない(下段)FLuc−Angptl2−3’UTR構築物を模式的に示した図である。図15aのグラフは、WT又は欠失したFLuc−Angptl2−3’UTR構築物を有し、対照ベクター或いはmiR−221又はmiR−222を発現するベクターで形質転換したNRCMsの相対ルシフェラーゼ活性を示している。対照のpcDNA3.1ベクターで形質転換したNRCMsの値を1とした。各群n=10−12である。図15bは、持久運動トレーニング後の、対照及びmiR−221/222KOマウスの心臓のANGPTL2のウェスタンブロット(左図)及び定量(右図)の結果を示した図である。Hsc70は、泳動コントロールである。運動負荷を行っていないmiR−221/222非KO対照マウスのレベルを1とした。データは、平均±SEMで表した。*:p<0.05,**:p<0.01である。 野生型マウスに、マウスAngptl2のshRNA(AAV6−shAngptl2−A及び−B)を、1×1010vg/マウス及び3×1010vg/マウスで静脈内投与した2週間後の、ANGPTL2の免疫ブロティングの結果である。投与していないマウスの値を1とした。各群n=4である。 図16と同様に、図17aは、shRNA投与の2週間後の、PGC−1α及びPPARα転写物の測定結果であり、図17bは、shRNA投与の2週間後の、AKT及びSERCA2aタンパク質レベルの測定結果である。 ウイルスなし(コントロール)、或いは、1×1010 vg/マウス又は3×1010 vg/マウスにてAAV6−shAngptl2−Bを静脈内投与した4週間後の、TAC誘導異常肥大心臓におけるANGPTL2の免疫ブロッティングの結果を示している。Hsc70を泳動コントロールとして用いた。データは、平均±SEMで表した。*:p<0.05,**:p<0.01である。 ウイルスなし(コントロール)、或いは、1×1010 vg/マウス又は3×1010 vg/マウスにてAAV6−shAngptl2−Bを静脈内投与したマウス間の指標パラメーターの比較結果である。データは、平均±SEMで表した。*:p<0.05,**:p<0.01である。 対照、TAC処置マウス、及びAAV6−shAngptl2−B投与4週間のTAC処置マウスの、M−モード心臓エコー検査の記録、心臓の中央部の切片のHE染色の結果(スケールバー:1mm)、及び全心臓の形状である。 TAC処置及びウイルス投与なし(コントロール)、或いは、TACモデルに、3×1010 vg/マウスにてAAV−shScramble又はAAV6−shAngptl2−Aを静脈内投与したマウス間の指標パラメーターの比較結果である。各グループn=10。データは、平均±SEMで表した。**:p<0.01、+:p<0.001である。 ANGPTL2を標的とするsiRNA(siANGPTL2−B:s23854)又はコントロールsiRNAで形質転換したヒトiPS由来心筋細胞における、ANGPTL2、AKT及びSERCA2Aの発現を確認した結果である。図22aは、培地中のANGPTL2タンパク質レベルを測定した結果である。各群n=4である。図22bは、ANGPTL2、AKT及びSERCA2Aのウェスタンブロットの結果(左図)、及びAKT及びSERCA2Aの相対タンパク質レベルである。実験は、少なくとも3回行った。Hsc70を泳動コントロールとして用いた。コントロールsiRNAの値を1とした。図22cは、エネルギー関連遺伝子、PGC−1α及びPPARαの発現の結果である。コントロールsiRNAの値を1とした。データは、平均±SEMで表した。*:p<0.05,**:p<0.01、+:p<0.001である。 ANGPTL2を標的とする7種類のsiRNA(siANGPTL2−A〜G)又はコントロールsiRNAで形質転換したヒトiPS由来心筋細胞における、培地中のANGPTL2タンパク質レベルをウェスタンブロットにより検出した結果である。Hsc70を泳動コントロールとして用いた。 実施例で用いたヒトANGPTL2を標的としたsiRNAのそれぞれの配列のヒトANGPTL2配列上の位置を示している。線で囲った部分は、翻訳領域を示す。
以下、本発明を、例示的な実施態様を例として、本発明の実施において使用することができる好ましい方法及び材料とともに説明する。
なお、文中で特に断らない限り、本明細書で用いるすべての技術用語及び科学用語は、本発明が属する技術分野の当業者に一般に理解されるのと同じ意味をもつ。また、本明細書に記載されたものと同等又は同様の任意の材料及び方法は、本発明の実施において同様に使用することができる。
また、本明細書に記載された発明に関連して本明細書中で引用されるすべての刊行物及び特許は、例えば、本発明で使用できる方法や材料その他を示すものとして、本明細書の一部を構成するものである。
アンジオポエチン様タンパク質2(ANGPTL2)は、肥満、糖尿病、アテローム性動脈硬化症、及び癌の進行と関連した慢性炎症に関連することが報告されている。
ヒトANGPTL2遺伝子のmRNA配列を配列番号1に示す。
本発明によれば、心筋細胞においてアンジオポエチン様タンパク質2遺伝子の発現が抑制される。その結果、本発明は、心不全への移行を阻止又は遅延でき、心不全の治療又は予防のために有効である。
本発明によれば、哺乳動物(好ましくは、ヒト)のANGPTL2のmRNA又はその選択的スプライス型RNAを分解するのに有効なsiRNAを、心筋細胞におけるANGPTL2遺伝子の発現を抑制するために用いることによって特徴づけられる。siRNAは、哺乳動物(好ましくは、ヒト)のANGPTL2 mRNA又はその選択的スプライス型RNAの部分配列と相同の配列をもつセンス鎖配列とその相補的配列であるアンチセンス鎖配列を含む二本鎖RNAである。センス及びアンチセンスの各鎖を構成するヌクレオチド数は、約18〜29であり、好ましくは約19〜27、さらに好ましくは19〜25、より好ましくは19〜23である。細胞内に導入された、又は細胞内で形成された、siRNAは、RNA-ヌクレアーゼ複合体(RISC)の形成を誘導し、それによって哺乳動物(好ましくは、ヒト)のANGPTL2 mRNA又はその選択的スプライス型RNAが選択的に分解され、ANGPTL2の発現が阻止又は抑制される。
したがって、本発明のsiRNAは、哺乳動物(好ましくはヒト)のANGPTL2 mRNA又はその選択的スプライス型RNA配列からの連続する約18〜29ヌクレオチドのセンス鎖配列とその相補的配列であるアンチセンス鎖配列とを含む。
本明細書中で使用する「選択的スプライス型RNA」とは、転写によって形成されたmRNA前駆体が成熟mRNAにスプライシングされるときに、通常のスプライス部位と異なる部位での切断の結果生じるmRNAを意味する。
以下、ヒトのANGPTL2を代表例として説明するが、本発明の医薬組成物及び方法は哺乳動物の心不全の治療又は予防に用いることができる。
本発明の実施形態によれば、ヒトANGPTL2 mRNAは、配列番号1に示される核酸配列によってコードされるRNA配列である。該RNA配列は、配列番号1の核酸配列中のすべてのTがUに読み替えられた配列に相当する。このRNA又は該核酸配列から本発明に使用可能なsiRNA配列を決定することができる。本発明に使用するsiRNAのための該mRNA上のターゲットサイトの選択は、公知の知識を用いて行うことができる。例えば、これに限定されないが、U. Tei K., et al. Nucleic Acids Research (2004) 32 (3): 936-948などの文献の記載を参考にすることができる。また、これに限定されないが、例えば、(i)GC含量が約30〜約70%、好ましくは約50%である、(ii)すべての塩基が均等であり、また、Gが連続していない、(iii)アンチセンス鎖の5'末端の塩基がA又はUである、などの基準を参考にできる。なお、本発明の実施例においては、AAに続く19ヌクレオチドであり、AAのあとにGやCが存在することを一つの基準としてターゲットサイトを選択したが、これに限定されるものではない。
本発明に使用するsiRNAが具備すべき特徴は、該siRNAを動物細胞(例えば、ヒト細胞)に形質導入した場合に、細胞におけるANGPTL2遺伝子の発現を抑制し、ANGPTL2遺伝子のサイレンシング効果を生じることができる。本明細書で言う「ANGPTL2遺伝子の発現を抑制し、ANGPTL2遺伝子のサイレンシング効果を生じる」とは、「タンパク質レベルでのANGPTL2の減少を引き起こす効果を生じる」を意味する。従って、本発明で使用するsiRNAは、タンパク質レベルでのANGPTL2の減少を引き起こす標的配列を含むことを特徴とする。
また、標的遺伝子であるANGPTL2遺伝子の発現を効率よく抑制すると同時に、無関係の遺伝子の発現に影響(off−target効果)を及ぼすことのない高い選択性を有すること、及び、オリゴ核酸(siRNA)自体が望ましくない毒性、副作用を発現しないことが望ましい。このようなsiRNA配列は、公知知識に基づき、当業者が決定することができ、siRNA自体は、常法に従って作製して検討を行う(例えば、実際にsiRNAを作製し、細胞に形質転換し、ANGPTL2遺伝子の発現抑制活性や細胞に対する毒性を確認することを含む)ことにより、当業者が取得することができる。off−target効果がないことの確認は、これに限定されないが、例えば、候補siRNAについて、予めジーンチップなどを利用して交差反応がないことにより確認できる。
本発明において用いることができるsiRNA配列のセンス鎖配列は、これに限定されないが、例えば、好ましくは以下に示す配列番号2〜8の配列をあげることができる。
配列番号2:GGAACAUUGACGGCGAAUA
配列番号3:GAGAGUUCAUUUACCUAAA
配列番号4:GGCUCUUACUCACUCAAGA
配列番号5:GGCAUUGUGAGCGAGGUGA
配列番号6:GCCAUUACCGGAGCCGCUA
配列番号7:GUUUCCGCCUGGAACCUGA
配列番号8:GAAACUGUGCCCACUACCA。
また、これらの配列において1つの塩基が置換・欠失又は付加された配列をセンス鎖配列とするsiRNAも同様に、ANGPTL2遺伝子のサイレンシング効果を生じ、かつ、避けるべきoff−target効果を生じない限り用いることができる。これらの配列において任意の1つの塩基を置換・欠失又は付加することは常法に従って行うことができる。また、そのようにして作製した配列を用いて、本明細書の実施例に示された手法に準じて、それらの配列から作製したsiRNAが本発明の目的の効果を生じるか否かを確認することができる。従って、上記配列において、1つの塩基が置換・欠失又は付加された配列も本発明の効果を生じる限り本発明に含まれ、それらを含む医薬組成物及びそれを利用する方法も本発明に含まれる。
また、それらのセンス鎖配列を含むRNAコードするDNA配列も本発明において用いることができ、本発明に含まれる。
さらに、本発明において用いることができるsiRNA配列のセンス鎖配列は、上記した配列の何れかの配列の主要部分(例えば、上記配列中の連続する12以上、好ましくは15以上の配列)を含むようにして決定した、ANGPTL2のmRNA又はその選択的スプライス型RNAからの連続する18〜29ヌクレオチド、好ましくは19〜27、さらに好ましくは19〜25ヌクレオチド、より好ましくは19〜23ヌクレオチドの配列も含む。そのようにして決定した配列を用いて、本明細書の実施例に示された手法に準じて、それらの配列から作製したsiRNAが本発明の目的の効果を生じるか否かを確認することができる。従って、上記した配列の何れかの配列の主要部分を含ようにして決定された配列も、それから作製したsiRNAが本発明の効果を生じる限り本発明に含まれ、それらを含む医薬組成物及びそれを利用する方法も本発明に含まれる。
また、それらのセンス鎖配列を含むRNAをコードするDNA配列も本発明において用いることができ、本発明に含まれる。
本発明で用いるsiRNAは、センス鎖配列及び/又はアンチセンス鎖配列の末端にオーバーハングをもつことが好ましい。siRNAのオーバーハングは、5’又は3’末端、好ましくはRNAの3’末端にある。オーバーハングを構成するヌクレオチド数は、約1〜5ヌクレオチドであり、好ましくは約1〜4ヌクレオチド、さらに好ましくは約2〜3ヌクレオチド、より好ましくは2ヌクレオチドである。オーバーハングは、T又はUもしくはGであるのが好ましい。これに限定されないが、オーバーハングとして、TT、UU、UGをもつsiRNAが好ましい。
本発明で用いられるsiRNAの例として、市販のものも用いることができる。例えば、Santa Cruz Biotech社(米国)により販売されているAngptl2 siRNA(カタログ# sc-72351)、ORIGENE社(米国)により販売されているAngptl2 siRNA(カタログ# SR415901)、Sigma-Aldrich社のMission(登録商標)siRNAライブラリーにあげられているAngptl2のsiRNAをあげることができる。
本発明で使用するsiRNAは、単一のsiRNAであってもよく、また、複数のsiRNAの混合物(いわゆる、カクテル)であってもよい。上記した市販のAngptl2 siRNAは、いずれも、複数(3〜5種類)のsiRNAの混合物である。
本発明のsiRNAを生体内で使用するときには、siRNAを直接患部に注入するか、又はsiRNAの発現が可能なベクターを使用することができる。
siRNAを直接患部に注入する場合には、それらをリポソーム、たとえばリポフェクタミン、リポフェクチン、セルフェクチン及びその他の正電荷リポソームと複合体形成して注入することができる。
本発明のsiRNAの発現が可能なベクターを使用する場合は、例えば、siRNAのセンス鎖配列とその相補的配列であるアンチセンス鎖配列とを含むRNAをコードするDNA配列をプロモーターの調節下に含む発現ベクターが好ましく用いられる。
本発明のsiRNAを得るために、ヘアピン型RNAを用いる又はヘアピン型RNAを細胞内で発現させることもできる。
本発明で使用可能なヘアピン型RNAは、前記センス鎖配列、前記アンチセンス鎖配列、及び前記センス鎖配列と前記アンチセンス鎖配列との間を共有結合によって結合する一本鎖ループ配列を含むものであり、細胞内RNaseであるDicerによってプロセシングされてsiRNAが形成されるRNAである。
本発明のsiRNAを生じるヘアピン型RNAをコードするヘアピン型DNAは、その3’末端には、転写停止シグナル配列として、或いはオーバーハングのために、1〜6個、好ましくは1〜5個のTからなるポリT配列、例えば、4個又は5個のTからなるTTTT又はTTTTTが連結される。ベクターDNAから転写されたsiRNA前駆体としてのshort hairpin RNA(shRNA)は、そのアンチセンス鎖の3’末端に2〜4個のUからなるオーバーハングを有することが望ましく、オーバーハングの存在によって、センスRNA及びアンチセンスRNAはヌクレアーゼによる分解に対して安定性を増すことができる。ヒトには内在性のDicerが1つ存在し、これが長鎖dsRNAや前駆体マイクロRNA(miRNA)をそれぞれsiRNAと成熟miRNAに変換する役割をもつ。本発明における前記ループ配列の例(RNAをコードするDNA配列を示す)としては、例えば、TAGTGCTCCTGGTTG(配列番号16)及びCAACCAGGAGCACTA(配列番号17)をあげることができるが、これに限定されず公知のループ配列も使用できる。
本発明のsiRNAを生じる(コードする)、別のDNAの例はタンデム型DNAであり、これは前記センス鎖をコードするDNA配列と前記アンチセンス鎖をコードするDNA配列とを5'→3'方向に連続して含み、各鎖の5'末端にプロモーターが、また各鎖の3'末端にポリT配列がそれぞれ連結された配列からなり、細胞内で転写後、同時に生成したセンスRNAとアンチセンスRNAとがハイブリダイズしてsiRNAを形成する。ポリT配列は、上記と同様に、転写停止シグナル配列としての1〜5個、特に4〜5個のTからなることが好ましい。また、ヘアピン型と同様に、生成するsiRNAは、センス鎖及び/又はアンチセンス鎖の3'末端に2〜4個のUからなるオーバーハングを有していてもよい。
本発明のRNA配列又はDNA配列を有するRNA又はDNAは、化学的に又は組換え的に周知の方法で合成することができるが、ヌクレオチド数を考慮すると、慣用のDNA/RNA自動合成装置を使用して化学的に合成するのが容易である。また、siRNA関連の受託合成会社に合成を依頼して作製することも可能である。
本発明のDNA配列を有するDNAは、ベクター中に組み込まれ、適当なプロモーターの調節下でRNAに転写される。本発明で使用されるベクターには、プラスミド及びウイルスベクターが含まれる。
プロモーターとして、特に限定されないが、polIIIプロモーター、たとえばヒトもしくはマウスU6プロモーター及びH1プロモーターを使用することができる。
siRNAは、5’又は3’末端、好ましくはRNAの3’末端にオーバーハングをもつことが好ましい。従って、siRNAをコードするDNA配列は、オーバーハングを構成するようにした配列を含むことが好ましい。オーバーハングのヌクレオチド数は、約1〜5ヌクレオチドであり、好ましくは約1〜4ヌクレオチド、さらに好ましくは約2〜3ヌクレオチド、より好ましくは2ヌクレオチドである。また、コードされるsiRNAのオーバーハングは、U又はGであるのが好ましい。これに限定されないが、siRNAのオーバーハングとして、UU、UGをコードするDNA配列が好ましい。
プラスミドベクターは、公知の報告に基づいて調整できる。又は、市販のベクター系を用いて製造業社の手順書に従って作製することもできる。さらには、Angptl2に対するsiRNA2を発現するように設計されたベクターも市販されており、これらを制限なく用いることができる。例えば、Santa Cruz Biotech社(米国)により販売されているAngptl2 shRNAプラスミド(カタログ# sc-72351-SH)、ORIGENE社(米国)により販売されているAngptl2 shRNAを有するレトロウィルスプラスミド(カタログ# TG502578)をあげることができる。
本発明で使用するshRNAは、単一のshRNAであってもよく、また、複数のshRNAの混合物(いわゆる、カクテル)であってもよい。上記した市販のAngptl2 shRNAは、いずれも、複数(3〜5種類)の混合物である。また、本明細書の実施例では、2つのshRNAであるAAV6−shAngptl2−B又はAAV6−shAngptl2−Aを別々に用いたが、それらを組み合わせて用いてもよい。
本発明で用いることができるプラスミドベクターは、一般に、本発明のsiRNAをコードするDNA配列及びプロモーターに加え、薬剤耐性遺伝子(たとえばピューロマイシン耐性遺伝子、ハイグロマイシン耐性遺伝子)、転写停止配列、ユニーク制限部位もしくはマルチプルクローニングサイト、複製開始点、シャイン−ダルガルノ配列などを含むことができる。
プラスミドベクターは、例えば、リポフェクタミン、リポフェクチン、セルフェクチン及びその他の正電荷リポソームから選択されるリポソームと複合体を形成しカプセル化された状態で患部に直接注入することができる。正電荷リポソームによる遺伝子導入では、DNAが細胞内にエンドサイトーシスされたのち、エンドソームと核膜との融合が起こり、ベクターが核へ移行する。
本発明で用いることができるウイルスベクターは、特に制限はないが、例えば、アデノウイルスベクター、アデノ随伴ウイルスベクター、レンチウイルスベクター、レトロウイルスベクター(白血病ウイルスベクターなど)、ヘルペスウイルスベクターなどをあげることができる。ウイルスベクターは、ヒトに使用する際に疾病を引き起こさないように例えば自己複製能を欠損したタイプのものが好ましい。例えば、アデノウイルスベクターの場合には、E1遺伝子及びE3遺伝子を欠失した自己複製能欠損型アデノウイルスベクターを使用することができる。ウイルスベクターの構築方法は、公知の方法に従い行うことができる。
本発明においては、心筋細胞においてANGPTL2遺伝子の発現を抑制することを目的としているので、心筋へのデリバリー選択性があるアデノ随伴ウイルスベクターが特に好ましく用いられる。アデノ随伴ウイルスベクターとしては、現在まで、I型からXI型まで知られており、これらを制限なく用いることができるが、今後開発されるベクターも本発明の目的を達するかぎり制限なく用いることができる。好ましいベクターは、これに限定されないが、AAV1,AAV2,AAV3,AAV4,AAV5,AAV6,又はAAV9であり、特に好ましくはAAV6である。好適に用いられる各種アデノ随伴ウイルスベクターは市販されている。
ウイルスベクターを用いる場合は、患部にベクターを直接注入し細胞に感染させることによって細胞内に遺伝子導入することができる。特にアデノウイルスベクターは種々の細胞種に非常に高い効率で遺伝子導入可能であることが確認されており、また遺伝子治療のために実際に臨床応用されている。このベクターはまた、ゲノム中に組み込まれることがないため、その効果は一過的であり安全性も他のウイルスベクターと比べて高いと考えられる。
本発明の医薬組成物に含まれるsiRNAの配列をコードするDNAを含むウイルスベクターの投与量は、特に限定されないが、1.0X1010〜1.0X1015 、好ましくは5.0X1010〜1.0X1014 、より好ましくは1.0X1011〜1X1013 、さらに好ましくは1.4X1011〜3X1012 vg/injectionである。例えば、アデノ随伴ウイルスベクター(AAV)を用いる場合の、特に好ましい投与量は、1.4X1011〜3X1012 vg/injectionである。siRNA又はshRNAを直接投与する場合の投与量は、特に制限されず、タンパク質レベルでのANGPTL2の減少を引き起こす効果を生じる量が選択される。投与量は、治療有効量であり、また一定の時間的間隔で複数回投与することもできる。実際に用いる際は、患者の状態、年齢、性別、重篤度などに応じて専門医の判断により投与量が決定される。
本発明のベクターは、医薬上許容可能な担体、例えば、生理食塩水、緩衝液などとともに患者に投与される。医薬組成物にはさらに、安定化剤、保存剤、等張化剤などを含有させることができる。本発明の医薬組成物の投与方法については、特に制限はないが、局所投与又は非局所投与のいずれでも実施できるが、好ましくは局所投与である。局所投与の場合、気管支鏡等の内視鏡下、或いは外科手術にて患部を露出し、注射器等の手段で直接ベクターを投与することができる。非局所投与の場合、たとえば静脈内投与で行うことができる。投与形態としては、たとえばウイルスベクター、又はプラスミドとリポソームの複合体、を医薬上許容可能な担体に懸濁させた形態で投与される。
本発明はまた、哺乳類動物(好ましくは、ヒト)由来の血液中のアンジオポエチン様タンパク質2(ANGPTL2)の発現量を測定することにより、対象が本発明の医薬組成物による心不全の治療又は予防に適するか否かを判定する方法である。
アンジオポエチン様タンパク質2(ANGPTL2)の発現は、常法に基づいて行うことができ、例えば、これに限定されないが、抗ANGPTL2抗体を用いて測定できる。抗体と用いた測定方法としては、これに限定されないが、例えば、イムノウェスタンブロティング、ELIZA法をあげることができる。
血液が由来する哺乳動物としてはヒトが好ましく、本発明の医薬組成物による心不全の治療又は予防に適するか否かを判定するという目的より、心不全患者由来の血液が特に好ましい。
血液は、好ましくは心筋細胞から分泌されるタンパク質の量を鋭敏に反映する血液であり、心臓、特に左心室を循環した血液をあげることができる。これに限定されないが、特に好ましくは、大動脈基部(Ao)及び冠状静脈洞(CS)由来の血液である。
本発明の方法においては、心臓組織内を循環した静脈、例えば、冠状静脈洞(CS)の血液中のANGPTL2の発現レベルが、心臓組織内を循環する直前の動脈、例えば、大動脈基部(Ao)の血液中の発現レベルより高い場合に、血液が由来する対象が、本発明の医薬組成物による心不全の治療又は予防が必要であると判定することができる。
或いは、本発明の方法においては、心臓組織内を循環した静脈、例えば、冠状静脈洞(CS)の血液中のANGPTL2の発現レベルが、前もって定めた数値より高い場合に、血液が由来する対象が、本発明の医薬組成物による心不全の治療又は予防が必要であると判定することもできる。
本発明の方法においては、上記のようにして対象が本発明の医薬組成物による心不全の治療又は予防が必要であると判定した場合に、それらの対象は、本発明の医薬組成物を投与する対象であると判定する。
本発明の方法はまた、医薬品、例えば、本発明の医薬組成物が投与された対象由来の血液中のANGPTL2の発現を測定することにより、対象において心不全の治療又は予防効果が得られているか否かを判定する方法である。例えば、心臓組織内を循環した静脈、例えば、冠状静脈洞(CS)の血液中のANGPTL2の発現レベルが、本発明の医薬組成物の投与後において減少している場合は、医薬品の治療又は予防効果が得られていると判定することができる。
よって、本発明の方法は、心不全の治療又は予防のための医薬品の投与前後において、血液中のANGPTL2の濃度を測定することにより、医薬品の治療又は予防効果がでているかを判定する方法でもある。
本発明はまた、哺乳類動物(好ましくは、ヒト)由来の血液中のアンジオポエチン様タンパク質2(ANGPTL2)の発現を測定することにより、対象が心不全に罹患している又は心不全を発症するリスクがあるか否かを判定する方法である。
アンジオポエチン様タンパク質2(ANGPTL2)の発現を測定する方法は上記した通りである。
また、血液が由来する哺乳動物、対象とする血液を採取する部位、その他についても、上記の判定方法の記載がそのまま適用できる。
本発明者らにより以下のことが見いだされ、本発明が新たな心不全の治療又は予防剤となることが示された。
1)ANGPTL2生産が、病的リモデリングを受けたマウスの心臓で活性化されており、また、潜在的なDCM患者の一部で潜在的に活性化されている。
2)病的刺激が、カルシニューリンNFATシグナル伝達を介して心筋細胞のANGPTL2の生産を増加させる。
3)マウス心臓におけるANGPTL2活性(過剰発現)は、AKT−SERCA2aのシグナル伝達及び心筋のエネルギー代謝を乱すことにより、心不全(HF)への進行を加速させる。一方、Angptl2ノックアウトマウスは、増加したAKT−SERCA2aシグナル伝達、増幅した心筋エネルギー代謝及びATP生産、及び運動誘発性肥大に似た表現型である非病的な心筋肥大を示す。
4)運動トレーニング及び/又はmiR−221/222活性は、心臓のANGPTL2発現を減少させる。
5)Angptl2 KOマウスは、増加したAKT−SERCA2aシグナル伝達、増幅した心筋エネルギー代謝及びATP生産を示し、病的な心臓リモデリングから保護され、そして、KOマウスの心臓の表現型は運動によって誘発されるものに似ている。
6)心臓の病的肥大状況でのANGPTL2の抑制が、マウスでは、AKT−SERCA2aのシグナル伝達を活性化し、心筋のエネルギー代謝を増強し、HFへの移行をブロックする。
7)AKT−SERCA2aの活性化及び増強された心筋のエネルギー代謝が、ANGPTL2ノックダウンヒトiPS由来心筋細胞において起こる。
これらのことより、心臓ANGPTL2活性が、心臓リモデリングが病的になるかどうかを支配していると考えられることを示した。また、心臓病理学において、ANGPTL2の抑制が、運動による心臓保護効果を反復できることを示した。
カルシニューリンNFATシグナル伝達は、病的な心臓肥大を促進する遺伝子の発現を増加させる。本発明者らは、カルシニューリンNFATシグナル伝達が心筋Angptl2発現を増加させること、そして、ANGPTL2活性が病的心臓リモデリングを悪化させることを示した。興味深いことに、最近の論文では、心臓のmiR−222の発現が持久運動トレーニング後に増加すること、活性が成体心臓における生理学的な心筋細胞の成長に必要なこと、及びmiR−222の発現が(有害な)心臓のリモデリングから保護することを実証している。miR−221及びmiR−222は、同一の配列を標的とし、miR−221/222は、圧負荷で誘導した病的心臓リモデリングを改善することが報告されている(Peters, T.et al. Cardiovasc Res Suppl 103,S9-S46 (2014).)。
本発明者らの実験結果は、ANGPTL2が、miR−221/222ターゲットであること、そして、ANGPTL2の抑制が、miR−221/222が仲介する心臓保護の基礎となっていることを示唆している。循環miR−222レベルは、運動の後、健常人で上昇しており、ANGPTL2とmiR−221/222結合部位は、ヒトとマウスの間で完全に保存されており、このことは機能が保存されていることを示唆している。これらの知見は、ANGPTL2が肝細胞癌におけるmiR−221の直接のターゲットであるという観察と一致しており、また、ANGPTL2が慢性腎臓病におけるmiR−221の直接のターゲットであるという本発明者らの知見(Morinagaら、Kidney Int. 89: 327-341, 2016)とも一致する。
心臓肥大が進展するにつれ、キャピラリー数と心筋細胞の大きさとの間で不一致が発生し、これが心筋の低酸素症につながることが報告されている。まず、初期の適応段階で誘起される心臓の血管新生は当初は心臓機能を維持するが、不適応段階において不十分となる。これは、恐らく血管内皮増殖因子(VEGF)の発現の低下に起因する。従って、低下した心筋の酸素レベルが恐らくHFへの移行を制御している。抗VEGF療法は、腫瘍細胞におけるVEGFシグナル伝達を減衰させる代わりにANGPTL2発現を増加させると報告されている。ANGPTL2は、VEGFのように、腫瘍微小環境で血管新生促進活性を有する。従って、増加したANGPTL2発現は、VEGFの不足によって引き起こされる低酸素症に起因して、肥大心臓の中で発生する可能性がある。さらに、病的リモデリング環境で見られるANGPTL2の増加は、おそらく、減弱したAKT−SERCA2aのシグナル伝達及び低下した心筋エネルギー代謝に起因した駆出率の減少により、心機能障害を悪化させる。最近の論文は、アップレギュレートしたVEGF及びVEGF受容体mRNAレベルが運動トレーニング後に見られ、このことは、心臓毛細血管化を示唆している。この環境は、老化関連の毛細血管及び血液供給不足の改善に関連する。持久運動トレーニング後にマウスでAngptl2 mRNAのレベルの減少が観察されたことは、運動がAngptl2の転写を調節していることを示唆している。また、マウスの老化に伴い、心臓中でのANGPTL2産生の増加が観察された。したがって、適切な心筋酸素レベルの維持は、運動誘発性肥大の場合、ANGPTL2の発現をダウンレギュレートし、VEGFによってキャピラリー数及び心筋細胞の大きさの正常な調節を可能にすることができる。
最近の論文によると、運動訓練を受けたマウスは、病的な心臓肥大、低下した収縮機能、及び肺うっ血から保護されること、及び、PI3K−Aktシグナル伝達の活性化は、運動誘発性心臓保護のために必要であると示されている。以前の研究では、心筋細胞においてAktを過剰発現するTgマウスは、SERCA2aの発現増加と関連する強化された左室機能を伴う心臓肥大を示した。AKT−SERCA2aの活性化による病的心臓リモデリングからの保護は、下記の実施例においてもAngptl2 KOマウスで観察された。このことは、ANGPTL2の抑制が運動誘発性心臓保護の根底にあることを示唆している。これらの知見はまた、アップレギュレートしたANGPTL2がAKT活性化に拮抗することを示唆している。下記の結果は、SERCA2aは、心筋の収縮と弛緩で機能心筋細胞における細胞内のCa2+の恒常性を調節することによって、心臓の能力を維持するという考えを支持している。SERCA2aの活性は、心臓の病態で変化しているので、通常のその活性を回復することが、心機能障害を管理するための戦略として提案されている。HF患者における遺伝子治療(AAV1/SERCA2a)のCUPIDフェーズ1試験は、このアプローチを支持しているが、フェーズ2b試験は、プライマリーとセカンダリのエンドポイントを満たしていなかった。このことは、SERCA2aの復元のみではHFを改善するのに十分ではないということを示唆している。
適切なATP生産に必要な心筋のエネルギー代謝の最適化は、HFrEFとHFpEFを治療するために重要であると考えられる。PPARα及びPGC−1αの転写物レベルは、病的肥大で減少しており、ミトコンドリア生合成を支配する遺伝子とβ−酸化はPPARα及びPGC−1αによって制御されている。両因子のより高い存在量は、心臓細胞がエネルギー生成のための脂質酸化に依存することを可能とする。本発明者らは、心臓ANGPTL2の抑制が、PPARα及びPGC−1αのmRNAレベルを著しく増加させ、この出来事は、細胞内のATP産生に関連していることを示した。他でも報告されているように、AKTシグナル伝達が、PPARα及びPGC−1αの転写物レベルを増加させるようである。まとめると、病的肥大との関連で、ANGPTL2の不活性化は心機能とエネルギー代謝を回復する可能性が示唆される。
興味深いことに、心臓でのANGPTL2生産は、調査したDCM患者のほぼ40%で起こっていた。このことは、心機能不全がANGPTL2活性によって悪化すること、そして、これらの患者の一団は、治療的ANGPTL2抑制の候補となり得ることを示唆している。これらの知見はまた、DCMなどの疾患の基礎となるメカニズムが個体間で異なること、そして、これらの疾患の治療には個別化医療のアプローチが必要なことを示唆している。また、明らかに活性なANGPTL2の生産を伴うDCM患者は、他のDCM患者よりも高齢であった。機能不全は、老化心臓においてよく認められるものであり、ANGPTL2の発現は、老化関連分泌表現型(SASP)に関連付けられているので、心臓ANGPTL2の活性化は、加齢に関連した機能障害に関連しているかもしれない。
Angptl2のshRNAを発現するAAV6ベクターを静脈内注射されたマウスは、非投与のマウスに比べ、TACにより誘発される心臓肥大に関し重症度が低かった。shRNAのより高い投与量は、低い投与量に比べ、心機能障害に対してより効果的であった。このことは、AAV6遺伝子導入の有効性は投与量に依存することを示唆している。本実施例で用いたAAV6の投与量は、適切であると報告されているものよりも低い。従って、本実施例で用いたよりもより高用量のAAV6−shAngptl2−Bの投与は、より効果的に心臓を保護できるであろう。心臓へのAAV伝達に影響を与える他の要因、たとえば、心臓への優先的な血清型の選択、又は、静脈内注射以外のデリバリーアプローチを用いることが、将来の臨床応用のために有用である。前述のCUPID遺伝子治療治験を解釈するに当たり、研究者は、予想よりも少ない効果は低い遺伝子導入に起因するかもしれないと述べている。これに対し、ANGPTL2をターゲットとする遺伝子治療は、大動脈根と冠状静脈洞のANGPTL2濃度を比較することにより、遺伝子導入効率を容易にモニターすることができるという利点を有する。
要約すると、本発明者らにより、病的な心臓刺激により誘発されたANGPTL2活性により適応から不適応な心臓リモデリングへの移行を加速すること、そして、ANGPTL2の抑制は、心機能や心筋のエネルギー代謝を回復させ、病的リモデリングの進行を阻止できることが示された。本発明により、運動の有益な心臓保護効果を再現することができ、本発明は、定期的な運動に参加することができないHF患者にも適用することができるものである。
以下、実施例により本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。
1.材料及び方法
(1)動物実験
全ての実験手順は、熊本大学の動物実験倫理審査委員会によって承認された手順で行った。すべての動物は通常の食餌を与え、自動制御照明(12時間オン、12時間オフ)で、23℃で飼育した。下記の実験で用いた遺伝子改変マウスは以下のとおりである:C57BL/6NJclバックグランドのAngptl2ノックアウトマウス(Angptl2 KO)、C57BL/6NJclバックグランドのaP2プロモーターによって誘導されたAngptl2過剰発現トランスジェニックマウス(aP2−Angptl2)、C57BL/6JバックグランドのマウスαMHCプロモーターで誘導されたEGFP過剰発現Tgマウス(αMHC−EGFP)、及びFVB/NバックグランドのケラチノサイトでAngptl2を過剰発現しているTgマウス(K14−Angptl2)。Angptl2 KOマウスは、ヘテロ接合のブリーダーによって維持した。KK−Ay及びdb/dbマウスは、日本クレアから購入した。
(2−1)αMHC−Angptl2トランスジェニックマウスの作成
マウスAngptl2をコードするcDNAを、αMHCプロモーター発現ベクターにクローン化した。発現ベクターは、シンシナティ小児病院医療センターの心臓研究所のジェフリー・ロビンス博士から提供を受けた。Tgの子孫を同定するために、以下のフォワード及びリバースプライマーを用いてゲノムPCRを行った:フォワードプライマー(5’−ACTTCTACATGAGATCATTC−3’(配列番号18))、リバースプライマー(5’−GGTATTCTCAGGCTTCACCAGGTA−3’(配列番号19))。同質遺伝子系統を維持するために、マウスは、野生型C57BL/6NJclマウスと交配することによりヘテロ接合体として増殖させた。F2又はF3世代の動物をすべての実験に用いた。
(2−2)miR−221/222コンディショナルKOマウス
C57BL/6NバックグランドのmiR−221/222コンディショナルKOマウスは、German Research Center for Environmental Health(ドイツ)から提供を受けた。同質遺伝子系統を維持するために、野生型C57BL/6NJclマウスと交配させてヘテロ接合体として繁殖させた。
(3)横行大動脈縮窄圧負荷(TAC)により誘発した心肥大マウスモデルの作成
約10週齢の雄マウス(23−25g体重)にTAC手術を施して、圧負荷を与えた。簡単に言えば、マウスを、ペントバルビタールの腹腔内注射によって麻酔して、左開胸から大動脈弓にアクセスし、アーチ形の胸部大動脈を、27ゲージ針を用いて締め付けて、完全な狭窄圧を作り出した。擬似マウスは、大動脈の結束をせずに同じ手順を行った。
(4)アンジオテンシンII処置
アンジオテンシンII(Ang II)は、150mMのNaCl及び1mMの酢酸に溶解した。アンジオテンシンIIは、ミニ浸透圧ポンプを用いてマウスの背部皮下組織に連続的に2週間投与した(3mg/kg/日)。ビークル処置群は、ビークル(150mM NaCl及び1mM 酢酸)を用いて同じ手順を行った。
(5)心筋細胞と非心筋細胞の単離
心室はαMHC−EGFPトランスジェニックマウスから回収し(一試料当たり3つの心臓)、組織を小片に刻んだ後、0.075%のコラゲナーゼ、0.12%のトリプシン及び0.02%のDNaseで、40分間、37℃で消化した。細胞を回収し、再懸濁した後、100μmメッシュフィルターを通して50mlの遠心チューブに入れた。細胞は最終的に、0.5mlのFACS緩衝液(PBS/0.1% BSA)に再懸濁し、GFP陽性(心筋細胞)及びGFP陰性(非心筋細胞)に、セルソーターをFACSAria II(Becton Dickinson社製、米国)を用いて単離した。
(6)組織学的分析
マウス心臓組織試料は、24時間、4%のパラホルムアルデヒドで固定し、パラフィンに包埋した。ブロックは、4μm厚の切片に切断し、空気乾燥し、脱パラフィンした。形態、コムギ胚芽凝集素(WGA)、又はマッソントリクロームを評価するために、切片をヘマトキシリン及びエオシン(H&E)で染色した。スライドをマウントし、BIOREVO BZ−9000顕微鏡(キーエンス、日本)を用いて観察した。アレクサFluor(登録商標)594結合WGA及びDAPI(4’,6ジアミド−2−フェニルインドール)染色後に、心筋細胞の大きさの定量化を行った。各心室について、BZ−H2Aソフトウェア(KEYENCE、日本)を用いて100の心筋細胞を測定した。測定は、中心の円形の心筋細胞核のレベルで、その長軸方向に対して垂直に切断された心筋細胞に限定した。線維化領域の定量化は、青色に染色された領域を可視化することにより行った。線維化領域は、全心室の領域で割った青色染色領域の和としてイメージJソフトウェア(国立衛生研究所)を用いて計算した。
(7)リアルタイム定量的RT−PCR分析
全RNAを、RNeasyミニキット(Qiagen社、米国)を用いて単離した。DNase処理RNAはPrimeScript RT試薬キット(タカラバイオ株式会社、日本)を用いて逆転写した。心臓組織は、マルチビーズshocker(登録商標)を使用して均質化した。リアルタイム定量的RT−PCRは、SYBER Premix Ex TaqTMII(タカラバイオ株式会社、日本)及び及びサーマルサイクラーダイスリアルタイムシステム(タカラバイオ株式会社、日本)を用いて行った。相対的な転写産物量は、マウス、ラット、及びヒト試料中の18S rRNAレベルに対して正規化した。以下の遺伝子のフォワード及びリバースオリゴヌクレオチドをRT−PCRに用いた。
マウス:Rps18,Angptl2,BNP,Myh7,CTGF,Col1,Col3a,PGC−1α,PGC−1β,Nrf1,Nrf2,RXRα,PPARα,FATP,CD36,Fabp3,Acsl1,CPT1α,CTP1β,Acads,Acadm,Acox1,ND6,ND4,as9,Cyt.b,Cyt.c,Cox1,Cox2,Cox3,ATPase6,ATP5a1,ATP5b。
ラット:Rps18,Angptl2,ANP,BNP,MYH7,Serca2a,PGC−1α,PPARα。
ヒト:PRS18,ANGPTL2,PGC−1α,PPARα。
(8)心エコー検査
マウスは予め胸の毛を除去した。マウスは、1.5−2.5%のイソフルラン吸入により麻酔し、撮像中、専用の動物保持具上で仰臥位にて維持した。心臓及び呼吸速度を連続的にモニターしながら、体温を一定に維持した。経胸壁心エコー検査は、MS 400リニアアレイトランスデューサ(18−38 MHz)を使用して、小動物イメージングのための専用の高周波超音波システム(VisualSonics VEVO 2100、Fujifilm VisualSonics Inc, カナダ)を用いて行った。Mモード記録を心室中部レベルで行った。全ての画像は、専用ソフトウェア(VEVO 2100バージョン1.4)を用いて分析した。左心室(LV)壁の厚さ(LVPW)と内部空洞拡張期(LVID;d)及び収縮期(LVID;s)における直径を測定した。パーセントLV短縮率(%FS)をMモードの測定値から算出した。すべての手順は、遺伝子型又は処置に関して、二重盲検条件下で行った。
(9)成人の心筋細胞における細胞ショートニングとCa2+トランジェントの測定
心室心筋細胞を酵素的に単離した後、単一心筋細胞における細胞ショートニングとCa2+トランジェントを公知の情報(Shioya, T. J Physiol Sci 57, 327-335 (2007)、Katanosaka, Y., et al., Nat Commun 5, 3932 (2014))に従って測定した。Ca2+トランジェントを10mMのIndo−1 AMを負荷した心筋細胞で記録した。単離した心筋細胞は、倒立顕微鏡のステージ上で、20倍水浸対物レンズを用いて、二極刺激装置に接続された2つの白金電極インサートを使用して、1 Hzで、電場中で刺激した。細胞ショートニングとIndo−1の蛍光シグナルは、高性能Evolve EMCCDカメラ(Photometrics、米国)を使用して記録し、MetaMorphソフトウェア(バージョン7.7.1.0;Molecular Devices、米国)により分析した。実験は、2mg/mlのBSAを補充したタイロード溶液で細胞を灌流して行った。
(10)ウェスタンブロット分析
マウスの心臓組織を、溶解緩衝液(10mMのTris−HCl、1%のトリトンX−100、50mMのNaCl、30mMのピロリン酸ナトリウム、50mMのNaF、5mMのEDTA、0.1mMのNa3VO4、にプロテアーゼインヒビターカクテル(ナカライテスク、日本)を加えたもの、pH7.5)中で、shocker(登録商標)を用いてホモジナイズした。総タンパク質(20μg)又は血清(0.1μl)をSDS−PAGEで分離し、PVDF膜に転写した。膜を、1:1000倍希釈した抗PDK1(#3062)、抗P−PDK1(S241)(#3438S)、抗AKT(#9272S)、抗P−AKT(s473)(#9271)、抗P−AKT(T308)(#4056)、抗mTOR(#2983)、抗p−mTOR(s2448)(#5536)、抗p−mTOR(s2481)(#2974)、抗p70S6K(#9202)、抗p−p70S6K(T389)(#9205S)、抗Erk(#9102S)、抗p−ERK(T204/y202)(#9106S)、抗AMPK(#2532S)、抗p−AMPK(T172)(#2535)(以上は、Cell Signaling Technology、米国)、又は抗Serca2a(ab3625;Abcam社、米国)と共に、4℃で、一晩インキュベートした。PBSTで洗浄した後、膜を、1:2000倍希釈した西洋ワサビペルオキシダーゼ(HRP)結合ヒツジ抗ウサギIgG抗体と共に60分間室温でインキュベートした。Angptl2の免疫ブロッティングは、膜を、1:3000倍希釈したビオチン化ヤギ抗Angptl2抗体と4℃で一晩インキュベートした。PBSTで洗浄後、膜を、1:6000倍希釈したHRP結合ストレプトアビジンと室温で60分間インキュベートした。内部コントロールとして、1:2000倍希釈したマウス抗Hsc70(SC−7298;Santa Cruz Biotechnology、米国)抗体及び1:2000倍希釈したHRP結合ヒツジ抗マウスIgG抗体を、それぞれ、第一及び二次抗体として使用した。ブロットを、ECLウェスタンブロッティング検出試薬とインキュベートし、発光イメージアナライザーLAS−4000システム(富士フイルム、日本)を用いて可視化し、マルチゲージソフトウェア(富士フイルム、日本)を用いて定量化した。Hsc70は、正規化のために使用した。
(11)細胞内ATPの測定
心臓組織におけるATPレベルは、製造業者の説明書に従って、ATPアッセイキット(東洋インキ社製、日本)を用いて決定した。簡単に述べると、心臓組織片(100mg)を10mlのホモジネート緩衝液(10mMのHEPES−NaOH、pH7.4、0.25Mのスクロース)中でホモジナイズし、10分間、4℃で、1,000×gで遠心分離した。上清を、氷上で、ホモジネート緩衝液で8倍に希釈した。混合物100μlを、100μlのATP抽出液と混合し、発光をルミノメーターモデルTD−20/20(Turner Designs、日本)で測定した。
NRCMsにおけるATPレベルは、同じキットを用いて測定した。簡単に述べると、細胞を形質導入した48時間後に、NRCMs(2×105細胞)をPBSで2回洗浄し、100μlのPBS中に懸濁した。細胞懸濁液は、96ウェルプレートに入れ、ATPアッセイ溶液100μlを加えた。1分間振盪、次いで、室温で10分間インキュベートした後、発光をFLUOROSKAN上昇マイクロプレートルミノメーター(Thermo Fisher Scientific Inc.、米国)を用いて測定し、次いで、Ascent・software・version2.6を用いて分析した。
(12)NRCMの培養
NRCMsを公知の報告(Yoshikawa, N., et al., Am J Physiol Endocrinol Metab 296, E1363-1373 (2009))に従って調製した。簡単に述べると、1〜2日齢の新生仔ウィスターラットの心室を、0.06%のトリプシン、0.025%のコラゲナーゼII、及び20μg/mlのDNase I中で20分間処理し、解離した。心筋細胞は、パーコール密度勾配手順によって別々に調製した。NRCMsを回収し、コラーゲン(タイプI)コートされた24ウェル培養プレートに1×105細胞/cm2で播種した。細胞を、10%のウシ胎児血清及び抗生物質を補充した199/DMEM培地(Life Technologies社、米国)中で、5%CO2で37℃の加湿雰囲気中で増殖させた。24時間後に、特に記載のない限り、種々の試薬又はアデノウイルス感染の処理に先だって培地を交換した。
NRCMsにおけるANGPTL2ノックダウンの作成は、製造業者の指示に従って、Lipofectamine(登録商標)RNAi MAX試薬(Life technologies、米国)を使用して、NRCMsを、Mission siRNA Universal Negativeコントロール(siControl;Sigma-Aldrich社)、又は3つのAngptl2を標的とした有効なMission siRNA(siAngptl2−A:SASI_Rn01_00093802:GGAUCUUACUCACUCAAGATT(配列番号20)、siAngptl2−B:SASI_Rn01_00093800:GAGAGUACAUUUACCUCAATT(配列番号21)、siAngptl2−C:SASI_Rn01_00093799:CCAGAAAGCGAGUACUAUATT(配列番号22)、Sigma-Aldrich社)でトランスフェクトした。48時間後に、細胞をリアルタイムRT−PCRのためにTRI Reagent(登録商標)(コスモバイオ、日本)で処理した、又は、細胞を回収してイムノブロット分析のための溶解緩衝液で溶解した。
NRCMsでの活性NFATの過剰発現のために、製造業者の指示に従って、Amaxa rat cardiomyocyte−neonatal nucleofector Kit(登録商標)又はNucleofector Device(登録商標)(Lonza、米国)を用い、ネガティブコントロールとしてpcDNA3.1、又はDr. Takashi Minami(熊本大学生命資源研究・支援センター、日本)より提供された活性なマウスNFATc3発現プラスミドとともにエレクトロポレートした。エレクトロポレーション後、細胞を播種し、24時間培養した。
Angptl2を発現する組換えアデノウイルス(AD−Angptl2)の生産は、タカラバイオ株式会社(日本)に依頼して行った。簡単に言うと、マウスAngptl2 cDNAは、pAxCAwtit2コスミドベクター(タカラバイオ株式会社、日本)のSmi I部位にクローニングし、293細胞にトランスフェクトした。ドミナントネガティブAKT(AD−dnAKT)及びLacZ(AD−LacZ)を発現する組換えアデノウイルスは、Dr. Tadashi Kadowaki(代謝病科、東京大学、日本)より提供を受けた。NRCMsは、MOI 50で播種した1時間後にアデノウイルスベクターに感染させた。次いで新しい培地と交換し、その後48時間培養した。
Ang II及びイソプロテレノール(ISO;Sigma-Aldrich社)の処置は、NRCMsを、6時間及び12時間、100nMのAng II又は100nMのISOで刺激した。シクロスポリンA(CsA)処置は、NRCMsを、CsAで30分間前処理し、次いで、Ang II及びISOで処置した。
NFATの免疫細胞化学染色は、NRCMsを、無血清培地中で、100nMのAng IIの有無で、コラーゲンコートされたカバーガラス上に置いて行った。12時間後、細胞を、PBSで軽く洗浄し、5分間、4%のパラホルムアルデヒドを含むPBSで固定し、そして、15分間、0.4%のトリトンX−100で処理して透過性とした。3%の正常ヤギ血清を含むPBSでブロックすることにより非特異的結合を最小化した。細胞を、1μg/mlの、抗NFATC1ポリクローナル抗体(sc−7294、SantaCruz Biotechnology、米国)又は抗NFATC4ポリクローナル抗体(ab62613;Abcam、米国)とともにインキュベートし、次いで、アレクサFluor(登録商標)488結合抗ウサギ抗体とインキュベートした。核は、4’,6’−ジアミジノ−2−フェニルインドール(DAPI)で対比染色した。画像は、蛍光顕微鏡(モデルBZ−9000)を用いて取得した。
(13)持久運動トレーニング
10週齢の雄のC57BL/6NJclマウスは、動きの制限なしで、30分間トレッドミル室(モデルMK−680AT/02M、室町株式会社、日本)で適応させた。マウスには、その後15分間、ウォームアップのトレッドミル内ランニングをさせ(5メートル/分で5分間、10メートル/分で5分間、及び15メートル/分で5分間)、次いで、本当の持久運動トレーニングを開始した。急性の持久運動として、20メートル/分で60分間のトレッドミルランニングをマウスに開始した。慢性持久運動として、15分間のウォームアップ及びそれに続く20メートル/分での60間のトレッドミルランニングを、1週間に5日、3週間マウスに繰り返した。最後のランニング運動の3時間後にマウスを安楽死させ、心臓組織を分析した。
(14)ルシフェラーゼレポーターアッセイ
レポータープラスミド(Fluc−Angptl2−3’UTR)を構築するために、マウスAngptl2の3’UTRをポリメラーゼ連鎖反応(PCR)によってゲノムDNAから増幅した後、pGL3−プロモーターベクター(Promega、米国)中のホタルルシフェラーゼ(Fluc)遺伝子の下流のXba I部位にクローニングした。Angptl2 3’UTRからmiR−221/222結合部位を削除するために、以下のプライマーセットを設計した:5’−CATTTCTCATGTTCTGTGTATATATAAAAGGGAGG−3’(配列番号23)及び5’−AGAACATGAGAAATGCTGAGGTAACAGGGCAG−3’(配列番号24)。Angptl2−3’UTRレポーターにおけるmiR−221/222結合部位の削除(Fluc−Angptl2−3’UTR−Δ221/222)は、製造元の手順に従い、PrimeSTAR突然変異誘発基礎キット(タカラバイオ株式会社、日本)を用いて行った。miR−221、miR−222、miR−211、miR−204又はmiR−135aの過剰発現ベクターは、pBApo−CMV(タカラバイオ株式会社、日本)への完全長の成熟マイクロRNA配列を含む配列を挿入することによって構築した。NRCMsを、Lipofectamine(登録商標)3000試薬(Life technologies、米国)を使用して、ネガティブコントロールとしてpcDNA3.1と、或いはマイクロRNAをコードするプラスミド及びウミシイタケルシフェラーゼ(RLuc)又はFluc−Angptl2−3’UTRかFluc−Angptl2−3’UTR−Δ221/222のいずれかをコードするphRL−TKベクター(Promega、米国)とともにトランスフェクトした。ルシフェラーゼ活性は、製造元の指示に従って、デュアル・グロ・ルシフェラーゼアッセイシステム(Promega、米国)を用いて決定した。
(15)組換えアデノ随伴ウイルス(AAV)処理
組換えAAV6ベクターの生産及び精製は、タカラバイオ株式会社(日本)に依頼して行った。簡単に説明すると、shRNA合成のために、マウスAngptl2を標的とするsiRNAをもつ一本鎖のオリゴヌクレオチド(shAngptl2−A、shAngptl2−B)、及びコントロールとしてshScramble)と、その相補鎖を以下のように設計した。A−top:5’−CTAGAGAGAGTACATTTACCTCAATAGTGCTCCTGGTTGTTGAGGTAAATGTACTCTCTTTTTTA−3’(配列番号25)、及びA−bottom:5’−CTAGTAAAAAAGAGAGTACATTTACCTCAACAACCAGGAGCACTATTGAGGTAAATGTACTCTCT−3’(配列番号26)、B−top:5’−CTAGAGCCAGAAAGCGAGTACTATATAGTGCTCCTGGTTGTATAGTACTCGCTTTCTGGCTTTTTTA−3’(配列番号27)、及びB−bottom:5’−CTAGTAAAAAAGCCAGAAAGCGAGTACTATACAACCAGGAGCACTATATAGTACTCGCTTTCTGGCT−3’(配列番号28)、Scramble−top:5′−CTAGAGTCTTAATCGCGTATAAGGCTAGTGCTCCTGGTTGGCCTTATACGCGATTAAGACTTTTTTA−3′(配列番号37)、及びScramble−bottom:5′−CTAGTAAAAAAGTCTTAATCGCGTATAAGGCCAACCAGGAGCACTAGCCTTATACGCGATTAAGACT−3′(配列番号38)。それぞれの配列における、マウスAngptl2を標的とするセンス鎖配列又はアンチセンス鎖配列を下線で示した。なお、下線を付した配列の間の配列(TAGTGCTCCTGGTTG(配列番号16)、及び、CAACCAGGAGCACTA(配列番号17))はループ配列である。
一本鎖オリゴ(shAngptl2−A、shAngptl2−B、及びshScramble)をアニールし、pAAV−2xU6ベクター(タカラバイオ株式会社、日本)にクローニングした。組換えAAV6ベクターは、AAVproヘルパーフリーシステム(タカラバイオ株式会社、日本)を用いて製造し、塩化セシウム密度勾配遠心分離によって精製して、次いでPBSに対して透析した。ゲノムコピー数は、AAVpro滴定キット版(リアルタイムPCR用)バージョン2(タカラバイオ株式会社、日本)を用いて測定した。
TAC動物の分析のために、10週齢の雄のC57BL/6NJclマウスに対してTAC手術を行い、2週間後に、2%のイソフルランで麻酔し、静脈内に、組換えAAV6ベクターを1×1010 vg又は3×1010 vgで注射した。心機能は、注射の前(TAC処置の2週間後)、及び注射の2週間後、4週間又は5週間後に心エコー検査を用いて測定した。4週目又は5週目の心エコー検査の後、マウスを安楽死させ、心臓組織の、組織学的検査、リアルタイムRT−PCR、及びイムノブロット分析を行った。いくつかの実験においては、10週齢の雄性C57BL/6NJclマウスにて、静脈内に、1×1010 vg/マウス又は3×1010 vg/マウスで組換えAAV6ベクターを注射した。注射の2週間後に、マウスを安楽死させ、心臓組織のリアルタイムRT−PCR及びイムノブロット分析を行った。
(16)ヒトiPS由来心筋細胞におけるANGPTL2ノックダウンの作成
ヒトiPS細胞株253G4又は836B3は多能性細胞である。両株の心筋細胞への分化誘導は、公知の報告(Tohyama, S., et al., Cell Stem Cell 12, 127-137 (2013). Uosaki, H., et al., PLoS One 6, e23657 (2011). Hemmi, N., et al. Stem Cells Transl Med 3, 1473-1483 (2014))に従って行った。製造元の説明書に従って、Lipofectamine(登録商標)RNAi MAX試薬(Life technologies、米国)を用いて、誘導した心筋細胞を、Mission Universal Negative Control(Sigma-Aldrich社、米国)、又はヒトANGPTL2を標的としたsiRNA(siANGPTL2−A:s23855:GGAACAUUGACGGCGAAUATT(配列番号29),siANGPTL2−B:s23854:GAGAGUUCAUUUACCUAAATT(配列番号30),siANGPTL2−C:s23853:GGCUCUUACUCACUCAAGATT(配列番号31),siANGPTL2−D:SASI_Hs01_00042802:GGCAUUGUGAGCGAGGUGATT(配列番号32),siANGPTL2−E:SASI_Hs01_00042803:GCCAUUACCGGAGCCGCUATT(配列番号33),siANGPTL2−F:SASI_Hs01_00042804:GUUUCCGCCUGGAACCUGATT(配列番号34),siANGPTL2−G:SASI_Hs01_00042806:GAAACUGUGCCCACUACCATT(配列番号35))でトランスフェクトした。siANGPTL2−A,B,及びCは、Life technologies から購入し、siANGPTL2−D,E,F,及びGは、Sigma-Aldrich から購入した。それぞれの配列のヒトANGPTL2配列(配列番号1)上の位置を図24に示す。トランスフェクションの12時間後に、培地を交換し、細胞をさらに48時間インキュベートした。トランスフェクトされた細胞からの馴化培地中のANGPTL2濃度は、製造元の説明書に従って、ANGPTL2 ELISAキット(IBL、日本)を用いて概算した。リアルタイムRT−PCRのためにTRI Reagent(登録商標)で細胞を処理、又はイムノブロット分析のために細胞を回収し、RIPA(50mMのトリス−HCl、150mMのNaCl、0.5%デオキシコール酸ナトリウム、0.1%SDS、1%のノニデットP−40、1mMのEDTA、プロテアーゼ阻害剤(Roche)、pH7.5)で溶解した。
(17)ヒトでの試験
拡張型心筋症(DCM)に罹った58人の患者(40人の男性と18人の女性;平均年齢±SEM、54.7±1.7)が試験に登録された。26人は、ニューヨーク心臓協会(NYHA)クラスIに分類され、27人はクラスIIに、5人はクラスIIIであった。過去3ヶ月以内に急性HFが発現した者又は腎機能障害[推定糸球体濾過率(EGFR)が30ml/分/1.73m2未満]を持つ者は試験から除外した。すべての被験者に対し、冠動脈疾患の可能性を排除するために冠動脈造影を、そして、心筋炎又は特定の筋肉疾患を除外するために心内膜心筋生検を行った。DCMは、左心室の(LV)駆出率(EF)が50%未満(コントラスト左室造影により明らかになる)であることと、50%を越える冠動脈狭窄、心臓弁膜症、動脈性高血圧、及び公知の全身症状に起因する二次性心筋疾患が存在しない場合の拡張したLV腔の両方が認められる場合と定義される。急性ウイルス性心筋炎又は家族性DCMの履歴をもつ患者はいなかった。免疫トリガーが原因でDCMの進展を起こしていることを示す証拠をもつ患者もいなかった。患者は、心臓カテーテルのために大学病院へ紹介される前は安定した状態であった。書面によるインフォームドコンセントを心臓カテーテルの実施前に各患者から得た。試験は、名古屋大学大学院医学研究科のヒト倫理委員会によって承認され(プロトコル承認番号357−9、2015年3月16日)、行われた。
(18)心臓カテーテル分析
すべての患者は、以前の報告(Okamoto, R., et al. Int Heart J 54, 202-206 (2013). Sakakibara, M., et al.Diabetes Res Clin Pract 92, 348-355 (2011).)のようにして左右心カテーテル診断を受けた。簡単に言うと、肺動脈楔入圧(PCWP)、及び心拍出量(CO)を、右内頸静脈を通して挿入したスワンガンツカテーテルを用いて測定した。心係数(CI)は以下の式により算出した:CI=CO/体表面積(L/分/m2)。右橈骨又は大腿動脈を介して、冠動脈造影と左心室造影も行った。6Fの液体で充たされたピグテールカテーテルを、LV圧を測定するために左心室に配置した。EFは、area-length法を用いて、左心室造影により評価した。血清ANGPTL2の経心臓放出を調べるために、両心室カテーテル時に、大動脈基部(Ao)からのANGPTL2と冠状静脈洞(CS)からのANGPTL2を同時に採取した。血清ANGPTL2レベルはヒトANGPTL2 ELISAキット(IBL、日本)を用いて測定した。
(19)ヒト患者の超音波心エコー分析
二次元心エコー検査は、報告(Okamoto, R., et al. Int Heart J 54, 202-206 (2013))に従って、VIVID7システム(ViVid7、GEヘルスケア、米国)を用いて行った。LVエンド拡張期寸法(LVDd)、LV収縮末期寸法(LVDs)、及び左動脈寸法(LAD)を測定した。パーセント短縮率(%FS)は、LVDd及びLVDsから計算した。LV質量指数(LVMI)は米国カルディオロジー協会により承認された式に従って、二次元の測定値から算出した。
(20)免疫組織学的解析
ヒト心臓組織サンプルは、うっ血性心不全(CHF)患者及び非CHF患者を含む患者からバイオプシーにより得た。全ての場合において、書面によるインフォームドコンセントを、関連する家族から入手した。試験はまた、熊本大学の倫理委員会によって承認された上で行った。ヒト心臓組織サンプルは、24時間、4%のパラホルムアルデヒドで固定し、パラフィンに包埋した。ブロックは、4μm厚の切片に切断し、空気乾燥し、脱パラフィンした。免疫組織化学的分析のために、切片を、過ヨウ素酸で前処理して、内因性ペルオキシダーゼを阻害した。その後試験片は、ヒトANGPTL2のアミノ酸383−400(SFRLEPESEYYKLRLGRY(配列番号36))に対応する合成ペプチドをウサギに免疫して産生した、ウサギポリクローナル抗ヒトANGPTL2抗体を100倍に希釈したものとともに4℃にて一晩インキュベートした。PBSで洗浄後、試験片を、二次抗体としてペルオキシダーゼと結合したヤギ抗ウサギIgGを500倍希釈したものと共に、60分間、室温でインキュベートした。次いで、試験片をヘマトキシリンで対比染色した。ネガティブコントロールとして、同じ手順を、一次抗体の代わりにアイソタイプコントロールIgG用いて行った。ペルオキシダーゼ活性は、3,3−ジアミノベンジジン溶液でインキュベーションすることによって可視化し、光学顕微鏡(モデルBZ−9000)によって分析した。二重免疫蛍光染色は、ウサギポリクローナル抗ヒトANGPTL2抗体(1:100)、ヤギポリクローナル抗ヒトαMHC(1:100)、マウスモノクローナル抗ヒトCD31(1:100)、及びヤギポリクローナル抗ヒトペリオスチン(1:100)と共に用いた。アレクサFluor(登録商標)488結合抗ウサギ又はアレクサFluor(登録商標)594結合抗ヤギ/マウス抗体(1:200)を二次抗体として用いた。PBSで洗浄後、蛍光画像を共焦点レーザー顕微鏡(LSM410、Zeiss、ドイツ)によって取得した。
(21)統計解析
すべての値は、平均±SEMとして記載した。データは、不対の両側t検定によって、変数の2群の比較で評価した。カプラン・マイヤーログランク検定をマウスの生存データを分析するために適用し、グラフパッドプリズムソフトウエア(バージョン5.0、グラフパッドソフトウェア)を用いて計算した。P<0.05の値は、統計的に有意とみなされた。
2.実験結果
(実施例1)マウスの病理学的心臓肥大におけるANGPTL2発現増加
心臓におけるANGPTL2機能を評価するために、TACを用いた過酷な圧負荷により誘導したマウス心肥大モデルの心臓組織におけるANGPTL2タンパク質レベルを測定し、擬似コントロールマウスのレベルと比較した。野生株マウスを用い、TAC又は擬似手術を行い、6週間後に、ウェスタンブロットによりタンパク質の発現を測定した。結果を図1の左図に示す。TACマウスの心臓組織で観察されたANGPTL2のタンパク質レベルは、コントロールマウスに比べて高かった。
また、TAC処理をしたマウスは、左心室の拡張を伴う心肥大、短縮率(FS)の減少、胎児心臓遺伝子(例えば、心不全マーカーであるANP、BNP、及びMyh7など)と心臓線維化マーカー(CTGF、Col1、及Col3a1)の発現の増加、及び、左心室の拡張を伴う収縮機能障害によるHFrEFの進展が観察された(データは示さず)。
さらに、アンジオテンシンII(Ang II)で誘導した病的肥大のマウスモデルを用いて心臓のANGPTL2タンパク質のレベルを検討した。Ang II処理又はコントロールのビークル処置をした2週間後に、上記と同様にしてANGPTL2タンパク質のレベルを確認した。結果を図1の右図に示す。ANGPTL2タンパク質レベルは、コントロールに比べて、Ang IIで誘導した病的肥大において有意に増加していた。
このAng II誘導モデルでは、マウスは、左心室の拡張を示さず、短縮率(FS)は維持されていたが、ANP、BNP、Myh7、CTGF、のCol1、及びCol3a1の発現増加を示した(データは示さず)。このことは、Ang II誘発性肥大が、HFpEFに関連した病的な心臓リモデリング事象であることを示唆している。
次いで、心筋細胞特異的プロモーターαMHCの制御下で増強された緑色蛍光タンパク質(EGFP)を発現するトランスジェニックマウス(αMHC−EGFP Tgマウス)から、心筋細胞と非心筋細胞をそれぞれ採取し、免疫ブロットを行った。結果を図2(a)に示す。ANGPTL2の発現は、GFP陰性非心筋細胞よりもGFP陽性心筋細胞においてより豊富であった。さらに、TAC処置又はAng II処置したマウスにおいて、RT−PCR分析を行ったところ、図2(b)及び(c)に示されるように、TAC及びAng II誘発性の肥大心の両方において、GFP陽性心筋細胞でANGPTL2の発現が増加していた。このことは、病理学的リモデリングにおいて、ANGPTL2の発現の増加が心筋細胞で一次的に発生することを示唆している。
(実施例2)心筋細胞におけるANGPTL2の過剰発現マウスの心機能障害
心臓におけるANGPTL2タンパク質の増加が、病的リモデリングを促進するかどうかを検討した。検討のために、αMHCプロモーターの制御下で心筋細胞にANGPTL2を過剰発現する4つのトランスジェニックマウス系統(αMHC−Angptl2 Tgマウス)を作成した。全ての系統で出生時には正常であり、ANGPTL2のアップレギュレーションが心臓発生においてひどい混乱を引き起こさないことが示された。3つの系統(#1−9、#2−3、及び#2−14)は、TAC誘発性の肥大に見られるのと同様の、心臓におけるANGPTL2発現増加を示した。これらの3つの系統を以下の実験に用いた。
図3に示すように、野生型同腹子と比較すると、8週齢αMHC−Angptl2 Tgマウスは、心収縮機能障害を示し、そして、12週齢のトランスジェニックマウスは、短縮率の減少、及び心不全マーカーANPとMyh7及び線維症マーカーCTGFとのCol1の発現増加を伴う心筋細胞肥大を示した。
心機能障害は、心筋細胞における異常なCa2+輸送と関連づけられる。ANGPTL2を過剰発現する心筋細胞の興奮収縮(EC)カップリングを評価するために、αMHC−Angptl2のTg及び野生型対照マウスから単離した単一細胞にて、1 Hzで電気刺激により誘発される収縮性及びCa2+移行を分析した。結果を図4に示す。短縮率は、対照に比べてANGPTL2を過剰発現する心筋細胞で著しく減少していた(図4a)。さらに、ANGPTL2を過剰発現する心筋細胞では、電気的に誘発されたCa2+移行の大きさは、野生型の68%の値であった(図4b及びc)。ピーク[Ca2+]iに達する時間及びCa2+移行減衰の時定数は、ANGPTL2過剰発現心筋細胞で延びていた(図4b、d及びe)。更に、αMHC−Angptl2 Tgマウスからの心筋細胞の筋小胞体(SR)中の Ca2+値は、野生型マウスに比べて有意に低かった(図4f)。全体として、これらの知見は、増加したANGPTL2の発現が、心筋細胞における収縮とのCa2+循環を損なうことを示している。
TAC処置の3週間後には、野生型マウスは、左心室拡張なしの心臓の適応肥大に発展したが、αMHC−Angptl2 Tgマウスは、短縮率の高度の低下を伴う左心室の著しい拡張に発展し、それは、肺うっ血を伴うHFrEFへと発展した(データは示さず)。組織学的分析及びマーカー分析によって推定される心臓線維症は、対照と比較してAngptl2αMHC−Tgマウスで有意に増加した。組織学的分析結果を図5に、マーカー分析結果を図6に示す。
TAC処置の8週間後には、殆どのαMHC−Angptl2 Tgマウスは死亡したが、この時点では対照のマウスは殆ど死ななかった。結果を図7に示す。さらに、超音波心エコー検査の結果、短縮率によって推定されるように、野生型マウスは心臓の収縮機能を維持したが、一方、アンギオテンシンIIモデルで分析したαMHC−Angptl2 Tgマウスは減少した短縮率に起因する深刻な心臓の収縮機能障害を示した。心臓線維症及び、心不全及び線維症のマーカーの発現が、対照マウスと比較してαMHC−Angptl2 Tgで有意に増加していた。これらの知見は、心臓ANGPTL2の誤発現が、心臓の収縮を減少させることによって、HFに導くことを示している。
(実施例3)循環ANGPTL2による病的肥大又は心機能不全の促進
TAC処理は循環しているANGPTL2タンパク質レベルを上昇させるので、循環ANGPTL2が心機能不全の内分泌効果を持っているかどうかを検討した。本発明者らは以前、食餌誘導性肥満マウスは、脂肪組織におけるANGPTL2発現と、循環ANGPTL2タンパク質レベルを増加させることを報告している(Tabata M. et al. Cell Metab. 10, 178-188 (2009))。そこで、2つの遺伝性肥満糖尿病マウスモデル(db/db及びKK−Ay)を用いて検討した。このモデルでは、対照に比べて、心臓組織におけるANGPTL2タンパク質レベルは同等であったのに対し、循環ANGPTL2タンパク質レベルは上昇していた。超音波心エコー検査の結果、非肥満の対照に対して、db/db又はKK−Ayマウスでは、心臓肥大、心室拡張、又は心機能障害はなかった。いずれの肥満モデルでも、心臓におけるANP、BNP及びMyh7発現は対照に比較して変化がなかった。
さらに、野生型の対照に比べて循環ANGPTL2タンパク質レベルが上昇している、K14プロモーターの制御下で皮膚にANGPTL2を過剰発現するトランスジェニックマウス(K14−Angptl2 Tgマウス)を用いて検討した。このTgマウスは、心臓のANGPTL2タンパクレベルは野生型と同等である。超音波心エコー検査及びRT−PCR分析の結果、Tgマウスと野生型対照の間で、心臓の表現型又は分子マーカーに差が無いことが判った。このことは、心臓リモデリングにおいて、循環ANGPTL2の内分泌影響がないことを示唆している。
aP2プロモーターの制御下でANGPTL2を過剰発現するトランスジェニックマウス(aP2の−Angptl2 Tgマウス)もまた、対照に比べ、循環ANGPTL2タンパク質レベルの増加を示す。aP2/脂肪酸結合タンパク質4(FABP4)が脂肪細胞及びマクロファージにおいて発現されていることは繰り返し報告されているが、免疫ブロッティングの結果、対照に比べ、aP2−Angptl2 Tgマウスの心臓部でANGPTL2の発現が有意に上昇していることを確認した。興味深いことに、8週齢のaP2−Angptl2 Tgマウスは対照に対し低下した短縮率を示し、16週齢のTgマウスは低下した短縮率を伴う心肥大を示した。TAC処置の3週間後に、野生型マウスは、左心室の拡張なしに適応心臓肥大が起こり、一方、aP2の−Angptl2 Tgマウスは、進行性の減少した短縮率を伴う左心室拡張を起こし、肺うっ血を伴うHFrEFとなった。aP2−Angptl2 Tgマウスにおいて見られる血管周囲線維症の面積も、対照に比べ、有意に拡張していた。心不全マーカー及び線維症のマーカーの発現も観察された。これらの知見は、他の組織に由来する循環ANGPTL2よりも、心臓から局所的に由来するANGPTL2が病的な肥大又は心機能不全を促進することを示唆している。
(実施例4)Angptl2 KOマウスでの慢性圧負荷下での心臓肥大からHFへの進展の検討
心臓でのANGPTL2欠損が病的リモデリングへと変化させるかどうかを評価するために、Angptl2 KOマウス表現型を調べた。Angptl2 KOマウスは出生時には正常であり、肉眼における心臓表現型を示さなかった。対照と比較して、6週齢のAngptl2 KOマウスは心臓の収縮機能の増加を示し、12週齢のAngptl2 KOマウスは増加した心臓の収縮機能を伴う心筋細胞肥大を呈した(データ示さず)。しかしながら、Angptl2 KOマウスの心臓においては、心不全マーカーの発現は相対的に減少していた(図8)が、一方、線維化マーカーは変化がなかった(図8)。このことは、TAC処置なしでAngptl2 KOマウスで見られた心肥大が病的ではないであろうことを示唆している。
TAC処理後6週間までに、対照の野生型は、減少した短縮率を伴う左心室の拡張が進展し、それは、HFrEFへと進展した。Angptl2 KOマウスもまた、短縮率の減少を示したが、それは同腹子の対照よりも少ない程度であり、心室拡張せずに適応心臓肥大を維持した(データ示さず)。ANP、BNP、及びMyh7の発現が、対照マウスに比べてAngptl2 KOで有意に減少していたが、一方、線維症マーカーは同等であった(データは示さず)。これらの知見は、心臓でのANGPTL2欠損は、心臓の収縮性を増加させ、圧負荷下で、HFへの進展に対する耐性を細胞に与えることを示唆している。Ang IIモデルでは、対照の同腹子に比べてAngptl2 KOでは、血管周囲線維症の領域の有意な減少及び、いくつかの心不全マーカー(ANP及びMyh7、しかし、BNPではない)及び線維症マーカー(CTGF及びCol1、しかし、Col3a1ではない)の発現の有意な減少が観察された。このことは、心臓ANGPTL2欠損は、病的リモデリングに拮抗することを示唆している。
(実施例5)ANGPTL2欠損心臓細胞内のβ−脂肪酸酸化、ミトコンドリア生合成、及びATP生産の増加
心機能は、一定の細胞内のATP産生を必要とする。αMHC−Angptl2 Tgマウスは、TAC誘発性のHFに進展するので、αMHC−Angptl2 Tgの心筋エネルギー代謝を調節する遺伝子の発現を野生型対照と比較した。PGC−1α及びPPARα(β−酸化及びミトコンドリア生合成を制御する転写因子)の発現は、これらの活性及びATP産生に関係する他の遺伝子の中で、野生株対照と比較して、13週齢のαMHC−Angptl2 Tgにおいて有意に減少していた(データ示さず)。逆に、13週齢のAngptl2 KOマウスにおけるエネルギー関連遺伝子の発現は、野生型対照よりも有意に大きかった(データ示さず)。さらに、PGC−1α及びPPARαの発現、CD36(脂肪酸の受容体)の発現は、野生型対照マウスに比べて、6週齢Angptl2 KOで有意に増加していた(データ示さず)。また、PPARα及びPGC−1αの発現及び細胞内ATP産生が、Angptl2ノックダウン(KD)プライマリーNRCMsで有意に増加していたが、一方、PPARα(PGC−1αではない)の発現及びATP産生は、アデノウイルス発現ANGPTL2で形質転換したNRCMsでは、有意に減少していた(データ示さず)。これらの知見は、心筋細胞におけるANGPTL2抑制が、正常な心臓のエネルギー代謝を促進する遺伝子の発現を増加させることを示している。
(実施例6)心臓でのAKT−SERCA2aのシグナル伝達のANGPTL2による不活性化
心臓の収縮とANGPTL2活性のリンク機構を同定するために、パスウェイスキャンアッセイを行い、AKT及びその作用因子mTORとp70S6Kを、心臓において活性化し、野生型対照マウスとAngptl2 KOマウスを比較した。免疫ブロッティングの結果を図9〜図12に示す。同腹子対照マウスに比べてAngptl2 KOマウスの心臓でAKTシグナル伝達は活性化していた(図9)。SERCA2aのタンパク質レベルも同様の増加を示した(図9)。逆に、AKTシグナリングはαMHC−Angptl2 Tgマウスの心臓で減衰しており(図10)、相対的SERCA2aレベルは、同様に有意に減少していた(図10)。また、Angptl2 KD NRCMsにおいて、AKTの活性化及び高いSERCA2aのタンパク質レベルが確認された(図11)。このような増加したSERCA2aレベルは、ドミナントネガティブAKT(dnAKT)の過剰発現により有意に減衰した(データ示さず)。逆に、AKTシグナル伝達は、ANGPTL2を過剰発現しているNRCMsで著しく阻害されており(図12)、そして、SERCA2aのタンパク質レベルは比較的減少していた(図12)。従って、ANGPTL2に続くAKT−SERCA2aのシグナル伝達の活性化は、おそらく、心臓の収縮性を増加させる一方、ANGPTL2の過剰発現は反対の表現型を促進する。
(実施例7)心筋細胞でのAngptl2 mRNAレベルに対するカルシニューリンNFATの活性化の影響
病的リモデリングのもとで心臓組織においてどのようにANGPTL2発現が上昇するかを検討するために、培養したNRCMsを心臓肥大の促進因子で刺激した。アンギオテンシンII又はイソプロテレノール(ISO)処理は、NRCMsでのAngptl2 mRNAレベルを有意に増加させた。アンギオテンシンIIとISOは共にNFATの核移行を促進すると報告されており、NFATはまた、病的な心臓肥大の発展を引き起こす転写因子でもある。これらのことより、NFATの活性化が、心筋細胞におけるAngptl2転写を増加させているかも知れないと示唆している。免疫細胞化学的分析の結果、Ang II処理後の核移行下で、NFATC1とNFATC4が共に心筋細胞で発現しており、これらはシクロスポリンA(CsA)によって阻害された。さらに、NRCMsでのAng II又はISO依存的なANGPTL2アップレギュレーションは、CsAの処理によってブロックされた。Ang II処理はまた、NRCMsでのANGPTL2タンパク質レベルを増加させたが、これはCsAによりブロックされた。また、活性なNFAT(CA−NFAT)の過剰発現は、NRCMsでAngptl2 mRNAレベルを上昇させた。このことは、カルシニューリンNFATシグナル伝達が、心筋細胞でのANGPTL2の過剰発現を増加させていることを示唆している。
(実施例8)ANGPTL2の発現に対する持久運動トレーニングの影響
Angptl2 KOマウスで観察された心肥大は、運動によって誘発される肥大に似ている。したがって、運動訓練されたマウスと同様に、Angptl2 KOマウスは、病的な心臓リモデリングに対して心臓保護を示した。このことは、ANGPTL2の欠損が、運動効果を再現することを示唆している。興味深いことに、運動負荷を行っていない対照マウスにおける結果と比較して、ANGPTL2タンパク質レベルは、トレッドミルランニングによる急性の訓練を受けたマウスの心臓部で著しく減少しており、その減少したレベルは慢性訓練を受けたマウスの心臓で持続していた(図13)。
疾患の原因メカニズムを評価するための、心血管疾患において、抑制マイクロRNAとして機能することが報告されているマイクロRNAをmicroRNA.orgデータベースを用いて検討した。miR−135a、miR−204、のmiR−211、miR−221、及びmiR−222を含む5つの候補を同定した。データベースによると、これら全てがAngptl2 mRNAの3’UTRに結合する。その中でも、心臓でのmiR−222の発現は、マウスにおいて運動トレーニング後に増加することが最近報告されている(Liu, X., et al. Cell Metab 21,584-595 (2015))。インビトロでは、NRCMsにおけるmiR−222又はmiR−221の過剰発現は、Angptl2−3’UTRルシフェラーゼレポーター活性を有意に減衰させ(図14)、効果は、miR−221/222結合配列の欠損でブロックされた(図15a)。また、miR−221/222 KOマウス及び対照のmiR−221/222Flox/yマウスに持久運動トレーニングをさせて、ANGPTL2タンパク質レベルを測定した。対照のmiR−221/222Flox/yマウスでは、運動負荷マウスの心臓組織のANGPTL2タンパク質レベルは、運動負荷を行っていないマウスのそれに比べて顕著に低かった。一方、miR−221/222 KOマウスでは、運動負荷による心臓ANGPTL2タンパク質レベルの減少は心臓では起こらなかった(図15b)。これらの知見は、ANGPTL2がmiR−221/222の直接のターゲットである可能性、及び持続運動がAngptl2 mRNAレベルでこれらのmiRsの抑制効果を高めていることを示唆している。
(実施例9)慢性圧負荷マウスのHFへの進展における、病的な肥大でのANGPTL2アップレギュレーションのブロッキングの効果
抗ANGPTL2試薬のインビボでの投与が病的心臓リモデリングを防ぐことができるか否かを検討した。心筋に選択的に形質導入することが報告されている組換えAAV6ベクターの全身デリバリーを用いた。Angptl2のshRNAを発現する組換えアデノ随伴ウイルス血清型6(AAV6)ベクターを静脈内注射することにより、Angptl2のshRNAカセットをマウスの心臓にデリバリーした。これを行うために、マウスAngptl2のshRNAを発現する2つの構築物(AAV6−shAngptl2−A及び−B)を作製し、組換えAAV6−shAngptl2−A又はAAV6−shAngptl2−Bを、1×1010vg/マウス及び3×1010vg/マウスで野生型マウスへ静脈内投与した。2週間後、AAV6−shAngptl2−Bを注射したマウスの心臓においてANGPTL2発現が有意に減少していたが、一方、AAV6−shAngptl2−A構築物は、投与した濃度では効果がなかった(図16)。AAV6−shAngptl2−Bを投与したマウスの心臓は、対照に比べて、PGC−1α及びPPARαの発現の上昇及びAKT−のSERCA2aシグナルデンタルの活性化が見られた(図17)。
(実施例10)TACモデルを用いたANGPTL2アップレギュレーションのブロッキングの効果の確認(実験1)
次いで、処置後2週間で肥大が起こるTACモデルを用いて、インビボで、AAV6−shAngptl2−Bの静脈内注射がANGPTL2のアップレギュレーションを抑制するかを検討した。TAC処置2週間後のTAC誘発性心機能障害をもつマウスを、3群に分け、その後、ウイルスなし(コントロール)、1×1010 vg/マウス及び3×1010 vg/マウスにてAAV6−shAngptl2−Bを静脈内投与した。投与の2週間後から、2週間おきに、超音波心エコー検査により心機能を調べた。いずれのAAV6−shAngptl2−Bの投与量でも、圧負荷での病的心臓リモデリングにおいてANGPTL2アップレギュレーションを抑制した(図18)。対照マウスは減少した短縮率を伴う左心室拡張を示したが、一方、いずれの投与量のAAV6−shAngptl2−Bが投与されたマウスにおいても、対照マウスに比べ、心機能障害を弱められており、左心室の拡張がブロックされていた(図19及び図20)。心臓重量/体重比は、対照と比較して、いずれの投与量のAAV6−shAngptl2−Bが投与されたマウスにおいても減少していた。ANP、BNP及びMyh7の発現は対照心臓に対して有意に増加していたが、アップレギュレートされたANP及びMyh7の発現は組換えAV6−shAngptl2−Bが投与されたマウスでブロックされていた(データ示さず)。
(実施例11)TACモデルを用いたANGPTL2アップレギュレーションのブロッキングの効果の確認(実験2)
実施例10と同様にして、TACモデルを用いて、インビボで、AAV6−shAngptl2−B又はAAV6−shAngptl2−Aの静脈内注射がANGPTL2のアップレギュレーションを抑制するかを検討した。但し、本実施例では、コントロールは、TACモデルにAAV−shScrambleを静脈内投与した。また、超音波心エコー検査による心機能の確認は、投与の2週間後及び5週間後に行った。
AAV6−shAngptl2−B投与は、AAV−shScrambleを投与したTACモデルと比較しても、実施例10と同様に効果を示した。
AAV6−shAngptl2−A投与の結果を図21に示す。AAV6−shAngptl2−Bに加えAAV6−shAngptl2−A投与でも、対照マウスに比べ、心機能障害の改善が確認できた。
(実施例12)ヒトiPS由来心筋細胞におけるANGPTL2の抑制効果
ヒト線維芽細胞由来のiPS細胞から分化したヒト心筋細胞において、ANGPTL2の抑制が、AKT−SERCA2aのシグナル伝達を活性化し、そして、エネルギー代謝を高めるか否かを検討した。結果を図22及び図23に示す。ヒトANGPTL2を標的とするsiRNA(ANGPTL2のsiRNA)で形質転換した心筋細胞では、AKT−SERCA2aのシグナル伝達及びPGC−1α及びPPARαの発現は活性化されたが、ANGPTL2の産生と分泌は抑制された。さらに、対照のヒトiPS由来心筋細胞に比べ、ANGPTL2のsiRNAで形質転換した心筋細胞で、拍動数、(大きさや形状を含む)細胞特性、又は細胞死の頻度について変化はなかった。このことは、心臓毒性がないことを示唆している。図23に示されるように、検討した7種類のヒトANGPTL2を標的とするsiRNAにより、ANGPTL2タンパク質の発現が有意に減少した。
(実施例13)HF患者における心臓ANGPTL2生産
病的心臓リモデリングにおいてANGPTL2が機能するかどうかを検討するために、慢性心不全と診断された患者又は心臓病に関連していない状況下で死亡した患者からのオートプシーで得られた心臓組織におけるANGPTL2タンパク質のレベルを調べた。免疫組織化学的分析の結果、HF患者において、ANGPTL2タンパク質が心筋細胞及び毛細血管内皮細胞で豊富に発現されていたが、心臓線維芽細胞ではそうではなかった。対照的に、対照個体では、ANGPTL2タンパク質は、心臓においてより低いレベルで発現されていた。
冠状静脈洞(CS)は、心臓から血液を排出している。従って、Csと大動脈根(Ao)の間におけるANGPTL2濃度の差は、心臓組織からANGPTL2分泌を反映するであろう。心機能障害をもった患者においてこのような分泌が起こるか否かを検討した。非2次的及び非家族性のDCMをもつ58人の患者のCsとAoでANGPTL2濃度を比較した結果、23人の心臓組織においてANGPTL2生産の有意な上昇(>35%増)が観察された。その23人とこのパターンを示さなかった35人の患者の間では、臨床指標によって推定される、心機能障害の重症度に差は認められなかった。心臓ANGPTL2分泌の増加の兆候を示した患者は、一般的に高齢であり、他の患者に比べ少し拡大したLVDd径を示した。結果を下記の表1に示す。
Figure 2017078100
上記の詳細な記載は、本発明の目的及び対象を単に説明するものであり、添付の特許請求の範囲を限定するものではない。添付の特許請求の範囲から離れることなしに、記載された実施態様に対しての、種々の変更及び置換は、本明細書に記載された教示より当業者にとって明らかである。
本発明は、心筋細胞においてアンジオポエチン様タンパク質2遺伝子の発現を抑制するために有用であり、本発明は、心不全の治療又は予防のための医薬組成物として有用である。

Claims (27)

  1. 心不全を治療又は予防するための医薬組成物であって、アンジオポエチン様タンパク質2(ANGPTL2)のmRNA又はその選択的スプライス型RNAからの連続する18〜29ヌクレオチドのセンス鎖配列とその相補的配列であるアンチセンス鎖配列とを含むRNAをコードするDNA配列をプロモーターの調節下に含む発現ベクター、及び医薬上許容可能な担体を含む医薬組成物、
    ここで、前記センス鎖配列と前記アンチセンス鎖配列を含むsiRNAは、動物細胞に形質導入されると、細胞におけるアンジオポエチン様タンパク質2遺伝子の発現を抑制し、アンジオポエチン様タンパク質2遺伝子のサイレンシング効果を生じることを特徴とする。
  2. 前記DNA配列が、前記センス鎖配列、前記アンチセンス鎖配列、及び前記センス鎖配列と前記アンチセンス鎖配列との間を共有結合によって結合する一本鎖ループ配列(ヘアピン配列)からなるヘアピン型RNAをコードする配列を含み、該ヘアピン配列が細胞内RNaseであるDicerによってプロセシングされて、前記センス鎖配列と前記アンチセンス鎖配列からなるsiRNAが形成される、請求項1に記載の医薬組成物。
  3. 前記センス鎖配列が、下記の配列番号2〜配列番号8のいずれか一つに示される塩基配列又は該配列において1つの塩基が置換・欠失又は付加された配列である、請求項1又は2に記載の医薬組成物、
    配列番号2:GGAACAUUGACGGCGAAUA
    配列番号3:GAGAGUUCAUUUACCUAAA
    配列番号4:GGCUCUUACUCACUCAAGA
    配列番号5:GGCAUUGUGAGCGAGGUGA
    配列番号6:GCCAUUACCGGAGCCGCUA
    配列番号7:GUUUCCGCCUGGAACCUGA
    配列番号8:GAAACUGUGCCCACUACCA。
  4. 前記DNA配列が、下記の配列番号9〜配列番号15のいずれか一つに示される塩基配列又は該配列において1つの塩基が置換・欠失又は付加された配列を含む、請求項1又は2に記載の医薬組成物、
    配列番号9:GGAACATTGACGGCGAATA
    配列番号10:GAGAGTTCATTTACCTAAA
    配列番号11:GGCTCTTACTCACTCAAGA
    配列番号12:GGCATTGTGAGCGAGGTGA
    配列番号13:GCCATTACCGGAGCCGCTA
    配列番号14:GTTTCCGCCTGGAACCTGA
    配列番号15:GAAACTGTGCCCACTACCA。
  5. 前記発現ベクターが、プラスミド又はウイルスベクターである、請求項1〜4のいずれか一つに記載の医薬組成物。
  6. 前記ウイルスベクターが、アデノウイルスベクター、アデノ随伴ウイルスベクター、レンチウイルスベクター又はレトロウイルスベクターである請求項5に記載の医薬組成物。
  7. 前記ウイルスベクターが、アデノ随伴ウイルスベクターAAV6ベクターである請求項6に記載の医薬組成物。
  8. 心不全を治療又は予防するための医薬組成物であって、アンジオポエチン様タンパク質2(ANGPTL2)のmRNA又はその選択的スプライス型RNAからの連続する18〜29ヌクレオチドのセンス鎖配列とその相補的配列であるアンチセンス鎖配列を含むsiRNA、及び医薬上許容可能な担体を含む医薬組成物、
    ここで、前記センス鎖配列と前記アンチセンス鎖配列を含むsiRNAは、動物細胞に形質導入されると、アンジオポエチン様タンパク質2遺伝子の発現を抑制し、アンジオポエチン様タンパク質2遺伝子のサイレンシング効果を生じることを特徴とする。
  9. 前記センス鎖配列が、下記の配列番号2〜配列番号8のいずれか一つに示される塩基配列又は該配列において1つの塩基が置換・欠失又は付加された配列を含む請求項8に記載の医薬組成物、
    配列番号2:GGAACAUUGACGGCGAAUA
    配列番号3:GAGAGUUCAUUUACCUAAA
    配列番号4:GGCUCUUACUCACUCAAGA
    配列番号5:GGCAUUGUGAGCGAGGUGA
    配列番号6:GCCAUUACCGGAGCCGCUA
    配列番号7:GUUUCCGCCUGGAACCUGA
    配列番号8:GAAACUGUGCCCACUACCA。
  10. アンジオポエチン様タンパク質2(ANGPTL2)のmRNA又はその選択的スプライス型RNAからの連続する18〜29ヌクレオチドのセンス鎖配列とその相補的配列であるアンチセンス鎖配列とを含むRNAをコードするDNA配列をプロモーターの調節下に含む発現ベクターを含む、動物細胞でのアンジオポエチン様タンパク質2の発現抑制剤、
    ここで、前記センス鎖配列と前記アンチセンス鎖配列からなるsiRNAは、動物細胞(好ましくは、ヒト細胞)に形質導入されると、細胞におけるアンジオポエチン様タンパク質2遺伝子の発現を抑制し、アンジオポエチン様タンパク質2遺伝子のサイレンシング効果を生じることを特徴とする。
  11. 前記DNA配列が、前記センス鎖配列、前記アンチセンス鎖配列、及び前記センス鎖配列と前記アンチセンス鎖配列との間を共有結合によって結合する一本鎖ループ配列(ヘアピン配列)からなるヘアピン型RNAをコードする配列を含み、該ヘアピン配列が細胞内RNaseであるDicerによってプロセシングされて、前記センス鎖配列と前記アンチセンス鎖配列からなるsiRNAが形成される、請求項10に記載のアンジオポエチン様タンパク質2の発現抑制剤。
  12. 前記センス鎖配列が、下記の配列番号2〜配列番号8のいずれか一つに示される塩基配列又は該配列において1つの塩基が置換・欠失又は付加された配列である、請求項10又は11に記載のアンジオポエチン様タンパク質2の発現抑制剤、
    配列番号2:GGAACAUUGACGGCGAAUA
    配列番号3:GAGAGUUCAUUUACCUAAA
    配列番号4:GGCUCUUACUCACUCAAGA
    配列番号5:GGCAUUGUGAGCGAGGUGA
    配列番号6:GCCAUUACCGGAGCCGCUA
    配列番号7:GUUUCCGCCUGGAACCUGA
    配列番号8:GAAACUGUGCCCACUACCA。
  13. 前記DNA配列が、下記の配列番号9〜配列番号15のいずれか一つに示される塩基配列又は該配列において1つの塩基が置換・欠失又は付加された配列を含む、請求項10又は11に記載のアンジオポエチン様タンパク質2の発現抑制剤、
    配列番号9:GGAACATTGACGGCGAATA
    配列番号10:GAGAGTTCATTTACCTAAA
    配列番号11:GGCTCTTACTCACTCAAGA
    配列番号12:GGCATTGTGAGCGAGGTGA
    配列番号13:GCCATTACCGGAGCCGCTA
    配列番号14:GTTTCCGCCTGGAACCTGA
    配列番号15:GAAACTGTGCCCACTACCA。
  14. 前記発現ベクターが、プラスミド又はウイルスベクターである、請求項10〜13のいずれか一つに記載のアンジオポエチン様タンパク質2の発現抑制剤。
  15. 前記ウイルスベクターが、アデノウイルスベクター、アデノ随伴ウイルスベクター、レンチウイルスベクター又はレトロウイルスベクターである請求項14に記載のアンジオポエチン様タンパク質2の発現抑制剤。
  16. 前記ウイルスベクターが、アデノ随伴ウイルスベクターAAV6ベクターである請求項15に記載のアンジオポエチン様タンパク質2の発現抑制剤。
  17. 対象であるヒト由来の血液中のアンジオポエチン様タンパク質2の発現を測定することにより、該対象が請求項1〜9のいずれか一つに記載の医薬組成物による心不全の治療又は予防が必要であるか否かを判定する方法。
  18. 前記血液が拡張型心筋症(DCM)患者由来の血液である請求項17に記載の方法。
  19. 前記血液が拡張型心筋症患者の大動脈基部(Ao)及び冠状静脈洞(CS)の血液である請求項18に記載の方法。
  20. 冠状静脈洞(CS)の血液中のアンジオポエチン様タンパク質2の発現レベルが、大動脈基部(Ao)の血液中の発現レベルより高い場合に、該血液が由来する対象が、心不全の治療又は予防が必要であると判定する、請求項19に記載の方法。
  21. 冠状静脈洞(CS)の血液中のアンジオポエチン様タンパク質2の発現レベルが、大動脈基部(Ao)の血液中の発現レベルより高い場合に、該血液が由来する対象が、請求項1〜8のいずれか一つに記載の医薬組成物を投与する対象と判定する、請求項19に記載の方法。
  22. 請求項1〜9のいずれか一つに記載の医薬組成物が投与された対象由来の血液中のアンジオポエチン様タンパク質2の発現を測定することにより、該対象において心不全の治療効果が得られているか否かを判定する方法。
  23. 前記血液が対象の冠状静脈洞(CS)の血液である請求項22に記載の方法。
  24. 請求項1〜9のいずれか一つに記載の医薬組成物の投与前後のアンジオポエチン様タンパク質2の発現を測定する請求項23に記載の方法。
  25. 対象であるヒト由来の血液中のアンジオポエチン様タンパク質2の発現を測定することにより、該対象が心不全に罹患しているか心不全を発症するリスクがあるかを判定する方法。
  26. 前記血液が大動脈基部(Ao)及び/又は冠状静脈洞(CS)の血液である請求項25に記載の方法。
  27. 冠状静脈洞(CS)の血液中のアンジオポエチン様タンパク質2の発現レベルが、大動脈基部(Ao)の血液中の発現レベルより高い場合に、該血液が由来する対象が、心不全に罹患しているまたは心不全を発症するリスクがあると判定する、請求項26に記載の方法。
JP2017548828A 2015-11-06 2016-11-02 心不全の予防又は治療のための医薬組成物 Active JP6978774B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2015218507 2015-11-06
JP2015218507 2015-11-06
JP2016123615 2016-06-22
JP2016123615 2016-06-22
PCT/JP2016/082673 WO2017078100A1 (ja) 2015-11-06 2016-11-02 心不全の予防又は治療のための医薬組成物

Publications (2)

Publication Number Publication Date
JPWO2017078100A1 true JPWO2017078100A1 (ja) 2018-09-20
JP6978774B2 JP6978774B2 (ja) 2021-12-08

Family

ID=58662089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017548828A Active JP6978774B2 (ja) 2015-11-06 2016-11-02 心不全の予防又は治療のための医薬組成物

Country Status (3)

Country Link
US (2) US20190022250A1 (ja)
JP (1) JP6978774B2 (ja)
WO (1) WO2017078100A1 (ja)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090169540A1 (en) 2005-03-03 2009-07-02 Inserm (Institute National De La Sane Et De La Recherche Medicle) Use Of An Antagonist Of Epac For Treating Human Cardiac Hypertrophy
WO2009018492A2 (en) 2007-07-31 2009-02-05 The Board Of Regents Of The University Of Texas System Micro-rnas that control myosin expression and myofiber identity
US8404658B2 (en) * 2007-12-31 2013-03-26 Nanocor Therapeutics, Inc. RNA interference for the treatment of heart failure
JP2011093896A (ja) 2009-09-30 2011-05-12 Kumamoto Univ 癌治療剤
JPWO2011071027A1 (ja) * 2009-12-08 2013-04-22 学校法人 久留米大学 Socs3遺伝子がコードするsocs3タンパク質の発現を抑制し得るrna干渉分子、及びその利用
US8865675B2 (en) * 2010-05-12 2014-10-21 Protiva Biotherapeutics, Inc. Compositions and methods for silencing apolipoprotein B

Also Published As

Publication number Publication date
JP6978774B2 (ja) 2021-12-08
US20190022250A1 (en) 2019-01-24
WO2017078100A1 (ja) 2017-05-11
US11235073B2 (en) 2022-02-01
US20200345866A1 (en) 2020-11-05

Similar Documents

Publication Publication Date Title
Fu et al. Mitophagy directs muscle-adipose crosstalk to alleviate dietary obesity
Tian et al. ANGPTL2 activity in cardiac pathologies accelerates heart failure by perturbing cardiac function and energy metabolism
Widyantoro et al. Endothelial cell–derived endothelin-1 promotes cardiac fibrosis in diabetic hearts through stimulation of endothelial-to-mesenchymal transition
Li et al. Overexpression of microRNA-99a attenuates cardiac hypertrophy
Huang et al. Cardiomyocyte-enriched protein CIP protects against pathophysiological stresses and regulates cardiac homeostasis
Weng et al. Down-regulation of miR-34a-5p potentiates protective effect of adipose-derived mesenchymal stem cells against ischemic myocardial infarction by stimulating the expression of C1q/tumor necrosis factor-related protein-9
Wang et al. Spliced X-box binding protein 1 stimulates adaptive growth through activation of mTOR
Zhong et al. Extracellular vesicles derived from human umbilical cord mesenchymal stem cells protect against DOX-induced heart failure through the miR-100-5p/NOX4 pathway
Chen et al. Mesenchymal stem cells expressing eNOS and a Cav1 mutant inhibit vascular smooth muscle cell proliferation in a rat model of pulmonary hypertension
Minami et al. The Down syndrome critical region gene 1 short variant promoters direct vascular bed–specific gene expression during inflammation in mice
Lv et al. Metformin ameliorates cardiac conduction delay by regulating microRNA-1 in mice
Liu et al. Myeloid MKL1 disseminates cues to promote cardiac hypertrophy in mice
Zhu et al. miR-340-5p mediates cardiomyocyte oxidative stress in diabetes-induced cardiac dysfunction by targeting Mcl-1
Xu et al. The endothelium-dependent effect of RTEF-1 in pressure overload cardiac hypertrophy: role of VEGF-B
US10865412B2 (en) Therapeutics targeting IGFBP7 for the treatment or prevention of heart failure and metabolic diseases
Wang et al. Insufficient S-adenosylhomocysteine hydrolase compromises the beneficial effect of diabetic BMSCs on diabetic cardiomyopathy
US11235073B2 (en) Method for treating or preventing heart failure
US20190209648A1 (en) ApoO FOR USE IN A METHOD FOR TREATING CANCER AND VARIOUS PATHOPHYSIOLOGICAL SITUATIONS
Jalink et al. Non-coding RNAs in the pathophysiology of heart failure with preserved ejection fraction
Pu et al. Salt-inducible kinase 1 deficiency promotes vascular remodeling in pulmonary arterial hypertension via enhancement of yes-associated protein-mediated proliferation
CN114344468B (zh) NFAT的lncRNA非编码阻遏子在血管相关疾病的用途
EP2126047B1 (en) Cardiac hypertrophy
CN114306371B (zh) Nron的表达促进剂在制备动脉粥样硬化斑块动物模型中的用途
US20240026354A1 (en) Suppressing hippo signaling in the stem cell niche promotes skeletal muscle regeneration
US20120035241A1 (en) Use of inhibitors of plac8 activity for the modulation of adipogenesis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20191007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201117

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211105

R150 Certificate of patent or registration of utility model

Ref document number: 6978774

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150