JPWO2017061056A1 - Hydrogen generation unit - Google Patents

Hydrogen generation unit Download PDF

Info

Publication number
JPWO2017061056A1
JPWO2017061056A1 JP2017544169A JP2017544169A JPWO2017061056A1 JP WO2017061056 A1 JPWO2017061056 A1 JP WO2017061056A1 JP 2017544169 A JP2017544169 A JP 2017544169A JP 2017544169 A JP2017544169 A JP 2017544169A JP WO2017061056 A1 JPWO2017061056 A1 JP WO2017061056A1
Authority
JP
Japan
Prior art keywords
hydrogen
main
water
sub
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017544169A
Other languages
Japanese (ja)
Other versions
JP6648879B2 (en
Inventor
和久 福岡
和久 福岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ECOMO INTERNATIONAL CO., LTD.
Original Assignee
ECOMO INTERNATIONAL CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ECOMO INTERNATIONAL CO., LTD. filed Critical ECOMO INTERNATIONAL CO., LTD.
Publication of JPWO2017061056A1 publication Critical patent/JPWO2017061056A1/en
Application granted granted Critical
Publication of JP6648879B2 publication Critical patent/JP6648879B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/08Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents with metals
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

含水して水素を発生する水素発生剤と、水と、前記水を前記水素発生剤と反応しない非流出状態に保持する非流出状態保持手段と、を水素ガスを外部に放出する孔を有した副放出手段を備えた副収容体に収容し、前記副収容体は、水素ガスを外部に放出する孔を有した主放出手段を備えた主収容体に収容して一体に構成すると共に、前記副収容体を内包した前記主収容体は、前記液体中に遊動自在に投入され、前記非流出状態保持手段は、前記主収容体外から所定量のエネルギーを付与することにより前記非流出状態の前記水を前記水素発生剤と反応可能な流出状態に変化させるものであり、前記エネルギーの付与をトリガーとして、前記流出状態となった前記水を前記水素発生剤と反応させ、前記副収容体内にて生成した水素を前記副放出手段と前記主放出手段を介して放出することにより、前記液体の水素発生ユニット内への浸潤によらず前記水素含有液を生成すべく構成した。It has a hole that discharges hydrogen gas to the outside, a hydrogen generating agent that contains water to generate hydrogen, water, and a non-outflowing state holding means that holds the water in a non-outflowing state that does not react with the hydrogen generating agent. The sub container is housed in a main container having a main discharge means having a hole for discharging hydrogen gas to the outside, and is configured integrally with the sub container. The main container including the sub container is slidably inserted into the liquid, and the non-outflow state holding means applies the predetermined amount of energy from the outside of the main container, thereby the non-outflow state of the non-outflow state holding means. Water is changed to an outflow state capable of reacting with the hydrogen generating agent, and with the application of the energy as a trigger, the water in the outflow state is reacted with the hydrogen generating agent in the sub-container. Generated hydrogen as a secondary release By discharged through said main discharge means and stages, and configured to generate the hydrogen-containing liquid regardless of the infiltration into the hydrogen generating unit of the liquid.

Description

本発明は、液体中に水素を含有させて水素含有液を生成する水素発生ユニットに関する。  The present invention relates to a hydrogen generation unit that generates hydrogen-containing liquid by containing hydrogen in a liquid.

我々が日常的に摂取する水は、健康の基礎作りとして極めて重要な役割を果たしており、人々の間で健康志向が高まる中、飲用水への注目が更に高まっている。  The water we drink on a daily basis plays an extremely important role as the basis for health, and as people are becoming more health conscious, more attention is being paid to drinking water.

従来より、このようなニーズに合致するような飲用水は種々提案されており、例えば、飲用水中に酸素を多量に溶存させた酸素水や、水素を溶存させた水素水が知られている。  Conventionally, various drinking waters that meet such needs have been proposed. For example, oxygen water in which a large amount of oxygen is dissolved in drinking water and hydrogen water in which hydrogen is dissolved are known. .

特に、分子状水素を含有させた水素水は、生体内酸化ストレスの低下や、血中LDLの増加抑制など、健康に寄与する報告が種々なされている。  In particular, hydrogen water containing molecular hydrogen has been reported to contribute to health, such as reduction of in vivo oxidative stress and suppression of increase in blood LDL.

このような水素水は、水中に水素を溶存させることで生成されるのであるが、水素の入手や純粋な水素を水中に溶解させることは一般には困難である。  Such hydrogen water is generated by dissolving hydrogen in water, but it is generally difficult to obtain hydrogen or dissolve pure hydrogen in water.

また、水中に溶存させた水素は、水素透過性の極めて低い容器を用いない限り時間と共に徐々に抜けてしまうため、水素水の調製後できるだけ速やかに飲用に供するのが望ましい。  In addition, since hydrogen dissolved in water is gradually removed over time unless a container with extremely low hydrogen permeability is used, it is desirable to use it as soon as possible after preparation of hydrogen water.

そこで、一般家庭などにおいても手軽に水素水を調製できるよう、数cm程度の有底筒状容器の内部に水素発生剤を封入した水素添加器具が提案されている(例えば、特許文献1参照。)。  In view of this, a hydrogen adding device in which a hydrogen generating agent is sealed inside a bottomed cylindrical container of about several centimeters has been proposed so that hydrogen water can be easily prepared even in general households (see, for example, Patent Document 1). ).

このような水素添加器具によれば、水を収容したペットボトル等の容器内に投入して密閉することで、水中に水素を含有させて水素水を生成できるとしている。  According to such a hydrogenation device, hydrogen water can be generated by containing hydrogen in water by being sealed in a container such as a plastic bottle containing water.

ところが、特許文献1に係る従来の水素添加器具は、水素発生剤を防湿包装袋から取出し、この水素発生剤を別途密閉容器に挿入し、さらに水素発生剤と反応させるための水を所定量添加して閉蓋するという作業が必要となる。  However, the conventional hydrogenation device according to Patent Document 1 takes out the hydrogen generator from the moisture-proof packaging bag, inserts the hydrogen generator into a separate sealed container, and further adds a predetermined amount of water for reacting with the hydrogen generator. Then, the work of closing the lid is required.

このような煩雑な作業は、特に高齢者など手先の細かな作業が不得手な者にとっては困難であり、より手軽に水素水を生成できる手段が望まれていたところ、本願発明者が既に発明し出願している特許文献2や特許文献3に係る水素発生ユニットでは、含水して水素を発生する水素発生剤と、水と、水を水素発生剤と反応しない非流出状態に保持する非流出状態保持手段と、を水素ガスを外部に放出する孔を有した放出手段を備えた収容体に収容して構成すると共に、非流出状態保持手段は、収容体外から所定量のエネルギーを付与することにより非流出状態の水を水素発生剤と反応可能な流出状態に変化させるものであり、エネルギーの付与をトリガーとして、流出状態となった水を水素発生剤と反応させ、収容体内にて生成した水素を放出手段を介して放出することにより、液体(以下、飲用水と同義とする。)の水素発生ユニット内への浸潤によらず水素含有液を生成すべく構成した水素発生ユニットを見出している。  Such complicated work is difficult especially for those who are not good at detailed work such as elderly people, and there has been a demand for a means for generating hydrogen water more easily. In the hydrogen generating units according to Patent Document 2 and Patent Document 3 that have been applied, the hydrogen generating agent that contains water to generate hydrogen, the water, and the non-outflow that maintains water in a non-outflowing state that does not react with the hydrogen generating agent The state holding means is configured to be housed in a container having a discharge means having a hole for releasing hydrogen gas to the outside, and the non-outflow state holding means applies a predetermined amount of energy from the outside of the container. The non-outflowing water is changed into an outflowing state capable of reacting with the hydrogen generating agent, and the water in the outflowing state is reacted with the hydrogen generating agent, triggered by the application of energy. Release hydrogen By releasing via means, liquid (hereinafter referred to. As drinking water synonymous) have found a structure hydrogen generating unit to produce a hydrogen-containing liquid regardless of the invasion of the hydrogen generating unit of.

すなわち、水素発生ユニットを防湿包装袋から取出した後は、収容体の外部から手指で挟持する押圧力により水を流出状態として水素の発生を開始させ、キャップを有するペットボトル等の調製容器中の飲用水に水素発生ユニットを投入して閉蓋するだけで水素を含有させた水素含有液を生成でき、従来の水素添加器具に比して、水素含有液をより手軽に生成可能な水素発生ユニットを提供することができるものである。  That is, after the hydrogen generation unit is taken out of the moisture-proof packaging bag, water is started to flow out by a pressing force sandwiched by fingers from the outside of the container, and hydrogen generation is started. A hydrogen generation unit that can generate a hydrogen-containing liquid that contains hydrogen just by putting the hydrogen generation unit into potable water and closing it, and can generate a hydrogen-containing liquid more easily than conventional hydrogenation equipment. Can be provided.

特開2012−020962号公報JP2012-02962A 特願2015−000740Japanese Patent Application No. 2015-000740 特願2015−081949Japanese Patent Application No. 2015-081949

上記特許文献2、3に係る水素発生ユニットは、少なくとも高齢者など手先の細かな作業が不得手な者であっても水素含有液を手軽に得られる点で非常に優れており、水素含有液の世界的な普及には欠かすことができない技術である。  The hydrogen generation units according to Patent Documents 2 and 3 are very excellent in that a hydrogen-containing liquid can be easily obtained even at least for those who are not good at fine work such as elderly people. This technology is indispensable for the worldwide spread of

しかしながら、特許文献2に係る水素発生ユニットでは、水素ガスの放出手段として加工が難しく高価な半透膜等の部材を用いる必要があり、多くの一般消費者に安価に提供するには他の技術分野も含めた更なる技術開発の進展を待つ必要がある。  However, in the hydrogen generating unit according to Patent Document 2, it is necessary to use a member such as a semipermeable membrane that is difficult to process and expensive as a hydrogen gas releasing means. It is necessary to wait for further technological development including the field.

また、特許文献2に係る水素発生ユニットは、水素排出口を形成する狭窄通路を備えた合成樹脂材からなる収容体を用いることで一般消費者に安価に提供することができる。また、本願発明者による数多くの実験から、水素の生成後に収容体内部に残る反応済みの水を含む副生成物が水素排出口から調製容器中の飲用水(以下、液体と同義とする。)に流出しないことが確認されており、水素発生ユニットの使用者が予期せぬ使用方法を実施した場合であっても、逆流防止部やトラップ室等の形成により飲用水への流出防止を図っている。  Moreover, the hydrogen generation unit according to Patent Document 2 can be provided to general consumers at low cost by using a container made of a synthetic resin material having a narrow passage that forms a hydrogen discharge port. Further, from many experiments by the inventors of the present application, by-products containing reacted water remaining inside the container after the production of hydrogen are drinking water in the preparation container from the hydrogen discharge port (hereinafter referred to as liquid). Even if the user of the hydrogen generation unit has implemented an unexpected usage method, the prevention of outflow to drinking water should be achieved by forming a backflow prevention unit or trap chamber. Yes.

しかしながら、水素排出口は機械的な狭窄通路であることから、水素発生ユニットの使用者による予期せぬ使用方法を実施した場合にまで飲用水への流出防止を完全に図ることができるか否かについては疑問があった。  However, since the hydrogen outlet is a mechanical constriction passage, whether or not the hydrogen generation unit can be completely prevented from flowing out into drinking water even when the user of the hydrogen generation unit performs an unexpected usage method. There were doubts about.

このような事情に鑑みて本願本発明は、従来の水素発生ユニットに比して収容体内の水素生成後の副生成物の飲用水への流出防止を強化した水素発生ユニットを提供する。  In view of such circumstances, the present invention provides a hydrogen generation unit in which prevention of outflow of by-products after hydrogen generation in the container into drinking water is enhanced as compared with conventional hydrogen generation units.

上記従来の課題を解決するために、本発明に係る水素発生ユニットでは、
(1)液体中に投入することにより同液体中に水素を含有させて水素含有液を生成する水素発生ユニットにおいて、同水素発生ユニットは、含水して水素を発生する水素発生剤と、水と、前記水を前記水素発生剤と反応しない非流出状態に保持する非流出状態保持手段と、を水素ガスを外部に放出する孔を有した副放出手段を備えた副収容体に収容し、前記副収容体は、水素ガスを外部に放出する孔を有した主放出手段を備えた主収容体に収容して一体に構成すると共に、前記副収容体を内包した前記主収容体は、前記液体中に遊動自在に投入され、前記非流出状態保持手段は、前記主収容体外から所定量のエネルギーを付与することにより前記非流出状態の前記水を前記水素発生剤と反応可能な流出状態に変化させるものであり、前記エネルギーの付与をトリガーとして、前記流出状態となった前記水を前記水素発生剤と反応させ、前記副収容体内にて生成した水素を前記副放出手段と前記主放出手段を介して放出することにより、前記液体の水素発生ユニット内への浸潤によらず前記水素含有液を生成すべく構成した。
In order to solve the above conventional problems, in the hydrogen generation unit according to the present invention,
(1) In a hydrogen generation unit that generates hydrogen-containing liquid by introducing hydrogen into the liquid to produce hydrogen-containing liquid, the hydrogen generation unit includes a hydrogen generating agent that contains water to generate hydrogen, water, A non-outflow state holding means for holding the water in a non-outflow state that does not react with the hydrogen generating agent, and is housed in a sub-container provided with a sub-release means having a hole for releasing hydrogen gas to the outside, The sub-container is housed in a main container having a main discharge means having a hole for discharging hydrogen gas to the outside, and is integrally formed. The main container including the sub-container is the liquid The non-outflow state holding means changes into an outflow state in which the water in the non-outflow state can react with the hydrogen generating agent by applying a predetermined amount of energy from outside the main container. The energy Triggered by the application of ghee, the water in the spilled state is reacted with the hydrogen generating agent, and the hydrogen generated in the sub-container is released through the sub-release means and the main release means. The hydrogen-containing liquid is generated regardless of the infiltration of the liquid into the hydrogen generation unit.

また、本発明に係る水素発生ユニットでは、以下の点にも特徴を有する。
(2)前記副収容体は、前記水素発生剤と前記水と前記非流出状態保持手段とを収容する副収容室を備え、前記主収容体は、前記副収容体を収容する主収容室を備え、前記非流出状態保持手段は、前記水を密閉収容して前記非流出状態とする可撓性の区画室であり、同区画室は、収容していた前記水を吐出して前記流出状態とする脆弱部を有し、前記エネルギーとして前記主収容体を手指で挟持する押圧力が所定量付与されることにより前記脆弱部を破断し、前記流出状態となった前記水が前記水素発生剤と反応して生成した水素を前記副放出手段と前記主放出手段を介して放出することにより、前記液体の水素発生ユニット内への浸潤によらず前記水素含有液を生成すべく構成したこと。
(3)前記主放出手段は管状の狭窄通路で形成された主水素排出口を備え、前記副放出手段は管状の狭窄通路で形成された副水素排出口を備えること。
(4)前記主・副収容体は可撓性を有する合成樹脂材からなり、前記主収容体は前記主水素排出口と連通し、前記副収容体は前記副水素排出口と連通し、前記副収容室には更に貫通用部材を収容し、前記貫通用部材は先端先鋭の貫通用突起を有し、前記副収容室には、前記脆弱部に前記貫通用突起を対峙して収容し、前記エネルギーとして前記主収容体を手指で挟持する押圧力が所定量付与されることにより前記貫通用突起が前記脆弱部を破断し、前記流出状態となった前記水が前記水素発生剤と反応して生成した水素を前記主・副水素排出口を介して放出することにより、前記液体の水素発生ユニット内への浸潤によらず前記水素含有液を生成すべく構成したこと。
(5)前記主水素排出口の開口方向を鉛直方向とし、前記副水素排出口の開口方向を水平方向として互いが異なる開口方向となるように形成したこと。
(6)前記主水素排出口の前記狭窄通路には、前記主水素排出口の前記狭窄通路と連通する前記主収容室の上部側壁を左右側部と底部からなる正面視凹状とし、凹状の前記底部で前記主水素排出口の前記狭窄通路の下端部が連通した逆流防止部を備えること。
(7)前記主収容体の下部側を先端先鋭に形成したこと。
(8)水素発生ユニットの前記主収容体に装着自在なカバー体であり、前記カバー体は、前記カバー体を前記主収容体に装着することで前記主収容体を略被覆すると共に、前記カバー体の外部から機械的なエネルギーとしての外力が付与されても前記非流出状態保持手段が前記非流出状態を保持することができるように外力遮断部を備えたこと。
The hydrogen generation unit according to the present invention is also characterized by the following points.
(2) The sub-accommodating body includes a sub-accommodating chamber that accommodates the hydrogen generating agent, the water, and the non-outflow state holding means, and the main accommodating body includes a main accommodating chamber that accommodates the sub-accommodating body. The non-outflow state holding means is a flexible compartment that hermetically accommodates the water so as to be in the non-outflow state, and the compartment discharges the water contained therein and discharges the water. When the predetermined amount of pressing force for holding the main container with fingers is applied as the energy, the fragile portion is broken, and the water in the outflow state becomes the hydrogen generating agent. It is configured to generate the hydrogen-containing liquid regardless of the infiltration of the liquid into the hydrogen generation unit by discharging the hydrogen generated by the reaction with the secondary discharge means and the main discharge means.
(3) The main discharge means includes a main hydrogen discharge port formed by a tubular constriction passage, and the sub discharge means includes a sub hydrogen discharge port formed by a tubular constriction passage.
(4) The main / sub container is made of a flexible synthetic resin material, the main container communicates with the main hydrogen discharge port, the sub container communicates with the sub hydrogen discharge port, The sub-accommodating chamber further accommodates a penetrating member, the penetrating member has a penetrating projection with a sharp tip, and the sub-accommodating chamber accommodates the penetrating projection opposite to the fragile portion, A predetermined amount of pressing force for holding the main container with fingers is applied as the energy, so that the penetrating protrusion breaks the fragile portion, and the water that has flowed out reacts with the hydrogen generating agent. The generated hydrogen is discharged through the main / sub hydrogen discharge port to generate the hydrogen-containing liquid regardless of the infiltration of the liquid into the hydrogen generation unit.
(5) The opening direction of the main hydrogen discharge port is a vertical direction, and the opening direction of the sub hydrogen discharge port is a horizontal direction.
(6) In the narrowed passage of the main hydrogen discharge port, the upper side wall of the main storage chamber communicating with the narrowed passage of the main hydrogen discharge port is formed in a concave shape when viewed from the front consisting of left and right side portions and a bottom portion. A backflow prevention unit in which a lower end portion of the narrow passage of the main hydrogen discharge port communicates with a bottom portion;
(7) The lower side of the main container is formed with a sharp tip.
(8) A cover body attachable to the main container of the hydrogen generation unit, wherein the cover body substantially covers the main container by attaching the cover body to the main container, and the cover An external force blocking portion is provided so that the non-outflow state holding means can maintain the non-outflow state even when an external force as mechanical energy is applied from the outside of the body.

本発明に係る水素発生ユニットによれば、液体中に投入することにより同液体中に水素を含有させて水素含有液を生成する水素発生ユニットにおいて、同水素発生ユニットは、含水して水素を発生する水素発生剤と、水と、前記水を前記水素発生剤と反応しない非流出状態に保持する非流出状態保持手段と、を水素ガスを外部に放出する孔を有した副放出手段を備えた副収容体に収容し、前記副収容体は、水素ガスを外部に放出する孔を有した主放出手段を備えた主収容体に収容して一体に構成すると共に、前記副収容体を内包した前記主収容体は、前記液体中に遊動自在に投入され、前記非流出状態保持手段は、前記主収容体外から所定量のエネルギーを付与することにより前記非流出状態の前記水を前記水素発生剤と反応可能な流出状態に変化させるものであり、前記エネルギーの付与をトリガーとして、前記流出状態となった前記水を前記水素発生剤と反応させ、前記副収容体内にて生成した水素を前記副放出手段と前記主放出手段を介して放出することにより、前記液体の水素発生ユニット内への浸潤によらず前記水素含有液を生成すべく構成したため、万一、副収容体内から副放出手段を介して反応後の水が流出したとしても、流出した反応後の水は主収容体内に留まるため、反応後の水が水素発生ユニット外の液体中に流出することを防止できる。  According to the hydrogen generation unit of the present invention, in a hydrogen generation unit that generates hydrogen-containing liquid by containing hydrogen in the liquid by introducing it into the liquid, the hydrogen generation unit generates hydrogen by containing water. A sub-release unit having a hole for discharging hydrogen gas to the outside, and a hydrogen generator for water, a non-outflow state holding unit for holding the water in a non-outflow state that does not react with the hydrogen generator The sub container is housed in a main container having a main discharge means having a hole for discharging hydrogen gas to the outside, and is configured integrally with the sub container. The main container is slidably introduced into the liquid, and the non-outflow state holding means applies the predetermined amount of energy from the outside of the main container, thereby allowing the non-outflow state water to flow into the hydrogen generating agent. Spill condition that can react with Using the energy application as a trigger, the water in the spilled state is reacted with the hydrogen generating agent, and the hydrogen produced in the sub-container is produced as the sub-release means and the main release means. Since the hydrogen-containing liquid is generated regardless of the infiltration of the liquid into the hydrogen generation unit, the water after the reaction should be discharged from the sub-container through the sub-release means. Even if it flows out, the water after the reaction that has flowed out remains in the main container, so that it is possible to prevent the water after the reaction from flowing into the liquid outside the hydrogen generation unit.

また、水素発生ユニットの収容体が二重構造となることで、外側に位置する主収容体の表面温度は、水素の生成反応による発熱が内部の副収容体を介して緩和されて伝わるので高温にならず取扱い易く、しかも、主収容体の外表面で接する調製容器中の液体の温度が低くても、副収容体内に収容された水素発生剤の温度低下を防止でき、水素の生成反応を阻害することがない。  In addition, since the hydrogen generating unit container has a double structure, the surface temperature of the outer main container is high because heat generated by the hydrogen generation reaction is mitigated through the internal sub container. It is easy to handle, and even if the temperature of the liquid in the preparation container in contact with the outer surface of the main container is low, the temperature reduction of the hydrogen generating agent stored in the sub container can be prevented, and the hydrogen generation reaction can be prevented. There is no hindrance.

更に、万一、主放出手段を介して調製容器中の液体が内部に侵入したとしても、侵入した液体は副収容体の内部には侵入できず水素発生剤と接することはないので、必要以上の水分が水素発生剤と触れて水素の生成反応を阻害することはない。  Furthermore, even if the liquid in the preparation container enters the inside through the main discharge means, the intruded liquid cannot enter the inside of the sub-container and does not come into contact with the hydrogen generating agent. The water does not come into contact with the hydrogen generator and does not hinder the hydrogen generation reaction.

しかも、二重構造の収容体により、単独の収容体からなる水素発生ユニットに比して、意図せず主収容体外から所定量の外力が付与されても、容易には非流出状態の水が流出状態に変化しないので、使用者の意思に反した水素ガスの発生を可及的に防止できる。  Moreover, even if a predetermined amount of external force is unintentionally applied from outside the main container, the non-outflowing water is easily generated by the double structure container, as compared with a hydrogen generation unit comprising a single container. Since it does not change to the outflow state, the generation of hydrogen gas against the user's intention can be prevented as much as possible.

また、前記副収容体は、前記水素発生剤と前記水と前記非流出状態保持手段とを収容する副収容室を備え、前記主収容体は、前記副収容体を収容する主収容室を備え、前記非流出状態保持手段は、前記水を密閉収容して前記非流出状態とする可撓性の区画室であり、同区画室は、収容していた前記水を吐出して前記流出状態とする脆弱部を有し、前記エネルギーとして前記主収容体を手指で挟持する押圧力が所定量付与されることにより前記脆弱部を破断し、前記流出状態となった前記水が前記水素発生剤と反応して生成した水素を前記副放出手段と前記主放出手段を介して放出することにより、前記液体の水素発生ユニット内への浸潤によらず前記水素含有液を生成すべく構成したことより、水素発生ユニットの外形をなす主収容体を手指で挟持しながら脆弱部を破断する程度に押圧するだけで水を流出状態にできるので極めて簡便に水素の生成反応を開始させることができ、しかも、収容体の内部に注水する作業が不要となる。  The sub-accommodator includes a sub-accommodating chamber that accommodates the hydrogen generating agent, the water, and the non-outflow state holding means, and the main accommodating body includes a main accommodating chamber that accommodates the sub-accommodating body. The non-outflow state holding means is a flexible compartment that hermetically accommodates the water so as to be in the non-outflow state, and the compartment discharges the water contained therein and The fragile portion is broken by applying a predetermined amount of pressing force that sandwiches the main container with fingers as the energy, and the water in the outflow state becomes the hydrogen generating agent. By configuring the hydrogen-containing liquid to be generated regardless of infiltration into the hydrogen generation unit of the liquid by discharging the hydrogen generated by the reaction through the auxiliary discharge means and the main discharge means, The main container that forms the outline of the hydrogen generation unit Pinching while very easily can start the production reaction of hydrogen because it to flow out state of water by simply pressing enough to break the weakened part, moreover, the task of water injection to the interior of the container is not required.

また、前記主放出手段は管状の狭窄通路で形成された主水素排出口を備え、前記副放出手段は管状の狭窄通路で形成された副水素排出口を備えることにより、主・副収容体に別途の部材を使用せずとも主・副収容体の各々に一体の主・副水素排出口を各々形成できるので、水素発生ユニットを安価に製造でき、経費的に有利である。  The main discharge means includes a main hydrogen discharge port formed by a tubular constriction passage, and the sub discharge means includes a sub hydrogen discharge port formed by a tubular constriction passage so that the main / sub container can Since the main and sub hydrogen discharge ports can be formed in each of the main and sub containers without using separate members, the hydrogen generating unit can be manufactured at low cost, which is advantageous in terms of cost.

また、前記主・副収容体は可撓性を有する合成樹脂材からなり、前記主収容体は前記主水素排出口と連通し、前記副収容体は前記副水素排出口と連通し、前記副収容室には更に貫通用部材を収容し、前記貫通用部材は先端先鋭の貫通用突起を有し、前記副収容室には、前記脆弱部に前記貫通用突起を対峙して収容し、前記エネルギーとして前記主収容体を手指で挟持する押圧力が所定量付与されることにより前記貫通用突起が前記脆弱部を破断し、前記流出状態となった前記水が前記水素発生剤と反応して生成した水素を前記主・副水素排出口を介して放出することにより、前記液体の水素発生ユニット内への浸潤によらず前記水素含有液を生成すべく構成したことより、主収容体を手指で挟持して付与する押圧力が弱くても、貫通用部材の貫通用突起により容易に脆弱部を破断させることができるので、少なくとも高齢者など手先の力が弱い者でも容易に水を流出状態にできるので極めて簡便に水素の生成反応を開始させることができる。  The main / sub container is made of a flexible synthetic resin material, the main container is in communication with the main hydrogen discharge port, the sub container is in communication with the sub hydrogen discharge port, The accommodating chamber further accommodates a penetrating member, the penetrating member has a penetrating projection with a sharp tip, and the sub-accommodating chamber accommodates the penetrating projection facing the fragile portion, When a predetermined amount of pressing force for holding the main container with fingers is applied as energy, the penetrating protrusion breaks the fragile portion, and the water that has flowed out reacts with the hydrogen generating agent. Since the generated hydrogen is discharged through the main / sub hydrogen discharge port, the hydrogen containing liquid is generated regardless of the infiltration of the liquid into the hydrogen generation unit. Even if the pressing force applied by pinching with Since it is possible to break easily fragile portion by Spoken projections, it can be started very easily the hydrogen production reaction because the easy water at least those forces of the hand, such as the elderly is weak it to flow out state.

また、前記主水素排出口の開口方向を鉛直方向とし、前記副水素排出口の開口方向を水平方向として互いが異なる開口方向となるように形成したことより、水を流出状態として水素の生成反応が開始した後、万一、水素ガスが水と共に上方に噴出したとしても副水素排出口の開口方向は水平方向であることから反応後の水は副水素排出口から流出し難く、更に、水素発生ユニットを大きく傾けて副水素排出口の開口方向が略鉛直方向となり、副収容体内の反応後の水が副水素排出口から流出したとしても、その際の主水素排出口の開口方向は水平方向であることから、そのまま一気に主収容体の外部に反応後の水流出することを防止できる。  In addition, since the opening direction of the main hydrogen discharge port is a vertical direction and the opening direction of the sub hydrogen discharge port is a horizontal direction, the opening directions are different from each other, so that water is generated in an outflow state to generate hydrogen. In the unlikely event that hydrogen gas spouts upward together with water, the opening direction of the secondary hydrogen discharge port is horizontal, so that the water after reaction hardly flows out from the secondary hydrogen discharge port. Even if the generation unit is tilted greatly, the opening direction of the secondary hydrogen discharge port becomes substantially vertical, and even if water after reaction in the secondary container flows out of the secondary hydrogen discharge port, the opening direction of the main hydrogen discharge port at that time is horizontal. Since it is a direction, it is possible to prevent water after reaction from flowing out of the main container at once.

また、前記主水素排出口の前記狭窄通路には、前記主水素排出口の前記狭窄通路と連通する前記主収容室の上部側壁を左右側部と底部からなる正面視凹状とし、凹状の前記底部で前記主水素排出口の前記狭窄通路の下端部が連通した逆流防止部を備えることより、万一、水素発生ユニットが大きく傾いて、その際に主収容体内に反応後の水が存在していた場合、反応後の水主水素排出口側に向かって移動したしたとしても、凹状の底部に反応後の水が滞留することは無く、凹状の底部の左右側部のいずれかに反応後の水が滞留することになるため、反応後の水が主収容体の外部の液体中に流出することを防止できる。  Further, the narrowed passage of the main hydrogen discharge port has an upper side wall of the main storage chamber that communicates with the narrowed passage of the main hydrogen discharge port, and has a concave shape when viewed from the front consisting of left and right side portions and a bottom portion. By providing a backflow prevention unit in which the lower end portion of the constriction passage of the main hydrogen discharge port is communicated, the hydrogen generation unit should be greatly inclined, and water after reaction exists in the main container. In this case, even if the water moves toward the water main hydrogen outlet after the reaction, the water after the reaction does not stay in the concave bottom, and after the reaction on either the left or right side of the concave bottom. Since water stays, it is possible to prevent the water after the reaction from flowing out into the liquid outside the main container.

また、前記主収容体の下部側を先端先鋭に形成したことより、水素発生ユニットの上下が明確となり、ペットボトル等の調製容器中の液体に水素発生ユニットを投入する向きを直感的に把握することができる。  In addition, since the lower side of the main container is sharpened at the tip, the top and bottom of the hydrogen generation unit are clarified, and the direction in which the hydrogen generation unit is introduced into the liquid in a preparation container such as a PET bottle is intuitively grasped. be able to.

更に、水素発生ユニットの前記主収容体に装着自在なカバー体であり、前記カバー体は、前記カバー体を前記主収容体に装着することで前記主収容体を略被覆すると共に、前記カバー体の外部から機械的なエネルギーとしての外力が付与されても前記非流出状態保持手段が前記非流出状態を保持することができるように外力遮断部を備えたことより、水素発生ユニットへの意図しない外力の付与により、水が流出状態となって水素の生成反応が開始されてしまうことを防止できる。  Furthermore, the cover body is attachable to the main container of the hydrogen generation unit, and the cover body substantially covers the main container by attaching the cover body to the main container, and the cover body. Since the external force blocking part is provided so that the non-outflow state holding means can maintain the non-outflow state even when an external force as mechanical energy is applied from the outside, the hydrogen generation unit is not intended. By applying the external force, it is possible to prevent water from flowing out and starting a hydrogen generation reaction.

(a)は水素発生ユニットの正面図と上端を示す図であり、(b)は水素発生ユニットの側面図である。(A) is a figure which shows the front view and upper end of a hydrogen generation unit, (b) is a side view of a hydrogen generation unit. 水素発生ユニットの分解図である。It is an exploded view of a hydrogen generation unit. 人手により水を流出状態とする方法を示した説明図である。It is explanatory drawing which showed the method of making water into an effluent state manually. (a)は水が非流出状態である水素発生ユニットを示し、(b)は流出状態の途中を示し、(c)は流出状態の終盤を示す説明図である。(A) shows a hydrogen generation unit in which water is not discharged, (b) shows the middle of the outflow state, and (c) is an explanatory view showing the final stage of the outflow state. (a)は水素発生ユニットを投入する開蓋した調製容器の上部を示し、(b)は水素発生ユニットを投入して閉蓋した調製容器の上部を示した説明図である。(A) is an explanatory view showing the upper part of the preparation container opened and charged with the hydrogen generation unit, and (b) is an explanatory view showing the upper part of the preparation container closed and charged with the hydrogen generation unit. 水素生成中の水素発生ユニットを逆さにした状態を示す説明図である。It is explanatory drawing which shows the state which reversed the hydrogen generating unit in the time of hydrogen production. (a)は区画室と変形例に係る貫通用部材を示した斜視図で、(b)はこれらを対峙してセットした副収容室内での収納状態を示す側面図である。(A) is the perspective view which showed the partition member and the penetration member which concerns on a modification, (b) is a side view which shows the accommodation state in the sub-accommodation chamber set facing these. (a)はカバー体を装着した水素発生ユニットの前方斜視図で、(b)は後方斜視図である。(A) is a front perspective view of a hydrogen generation unit equipped with a cover body, and (b) is a rear perspective view.

本発明は、液体中に投入することにより同液体中に水素を含有させて水素含有液を生成する水素発生ユニットに関するものである。  The present invention relates to a hydrogen generation unit that generates hydrogen-containing liquid by containing hydrogen in the liquid by being charged into the liquid.

そして、本実施形態に係る水素発生ユニットに特徴的には、含水して水素を発生する水素発生剤と、水と、前記水を前記水素発生剤と反応しない非流出状態に保持する非流出状態保持手段と、を水素ガスを外部に放出する孔を有した副放出手段を備えた副収容体に収容し、前記副収容体は、水素ガスを外部に放出する孔を有した主放出手段を備えた主収容体に収容して一体に構成すると共に、前記副収容体を内包した前記主収容体は、前記液体中に遊動自在に投入され、前記非流出状態保持手段は、前記主収容体外から所定量のエネルギーを付与することにより前記非流出状態の前記水を前記水素発生剤と反応可能な流出状態に変化させるものであり、前記エネルギーの付与をトリガーとして、前記流出状態となった前記水を前記水素発生剤と反応させ、前記副収容体内にて生成した水素を前記副放出手段と前記主放出手段を介して放出することにより、前記液体の水素発生ユニット内への浸潤によらず前記水素含有液を生成すべく構成している。  And, the hydrogen generation unit according to the present embodiment is characterized by a hydrogen generating agent that contains water to generate hydrogen, water, and a non-outflow state that holds the water in a non-outflowing state that does not react with the hydrogen generating agent. And holding means are accommodated in a sub-container provided with sub-release means having a hole for releasing hydrogen gas to the outside, and the sub-container comprises main discharge means having a hole for releasing hydrogen gas to the outside. The main container including the sub-accommodating body is integrally inserted and accommodated in the main container, and the non-outflow state holding means is disposed outside the main container. The non-outflowing water is changed to an outflowing state capable of reacting with the hydrogen generating agent by applying a predetermined amount of energy, and the outflowing state is triggered by the application of the energy. Water into the hydrogen generator The hydrogen-containing liquid is generated regardless of the infiltration of the liquid into the hydrogen generation unit by reacting and releasing the hydrogen generated in the sub-container through the sub-release means and the main release means. It is configured accordingly.

ここで、水素を溶解させるための液体は特に限定されるものではないが、水やジュース、お茶等をはじめとする飲料や、注射・点滴等に使用する薬液など、ヒトに拘わらず生体に対して使用する液体物とすることができる。  Here, the liquid for dissolving hydrogen is not particularly limited, but drinks such as water, juice and tea, and chemicals used for injection and infusion, etc. Can be used as a liquid.

また、水素発生剤は水分と接触することにより水素を発生するものであれば特に限定されるものではなく、また、混合物であっても良い。  The hydrogen generating agent is not particularly limited as long as it generates hydrogen when it comes into contact with moisture, and may be a mixture.

水分と接触することにより水素を発生する混合物としては、例えば、水素よりイオン化傾向の高い金属又は金属化合物と、酸やアルカリなどの反応促進剤との混合物を挙げることができる。  Examples of the mixture that generates hydrogen by contact with moisture include a mixture of a metal or metal compound having a higher ionization tendency than hydrogen and a reaction accelerator such as acid or alkali.

また、好適に用いることのできる金属としては、例えば、鉄、アルミニウム、ニッケル、コバルト、亜鉛等を挙げることができ、好適な反応促進剤としては、例えば、各種酸のほか、水酸化カルシウム、酸化カルシウム、陰イオン交換樹脂、焼成カルシウム、酸化マグネシウム、水酸化マグネシウム等を用いることができる。  Examples of the metal that can be suitably used include iron, aluminum, nickel, cobalt, zinc, and the like. Suitable reaction accelerators include, for example, various acids, calcium hydroxide, and oxidation. Calcium, anion exchange resin, calcined calcium, magnesium oxide, magnesium hydroxide and the like can be used.

また、水素発生剤には、実用上必要な水素生成反応を阻害しない範囲において、必要に応じ適宜機能性を有する物質を添加しても良い。例えば、水との接触により吸熱反応を生じるような物質(例えば尿素や、これと同様の効果を生起する食品添加物に該当する物質。)を添加しておくことにより、水素生成反応に伴って発生する熱を抑制することもできる。  In addition, a substance having functionality may be added to the hydrogen generating agent as needed as long as practically necessary hydrogen generation reaction is not hindered. For example, by adding a substance that generates an endothermic reaction when contacted with water (for example, urea or a substance that corresponds to a food additive that produces the same effect), a hydrogen generation reaction is caused. The generated heat can also be suppressed.

更に、水素発生剤は必ずしも不織布等による袋体に収容させて所定箇所に配置することに限定されず、実施形態に応じて所定箇所に直接配置してもよい。  Further, the hydrogen generating agent is not necessarily limited to being accommodated in a bag made of nonwoven fabric or the like and disposed at a predetermined location, and may be directly disposed at a predetermined location according to the embodiment.

水は、水素発生剤から水素を生成可能なものであれば特に限定されるものではなく、例えば、純水や水道水、井戸水等を用いることができる。また、水は、水素含有液が生成不可能な程度に水素の発生を妨げるものでなければよく、何らかの物質が溶存しているものであっても良い。例えば、反応促進剤としての酸を溶存させておき、金属や金属化合物と反応させることで水を供給しつつ水素発生剤を構成して水素を発生させるようにしても良い。  The water is not particularly limited as long as it can generate hydrogen from a hydrogen generator, and for example, pure water, tap water, well water, or the like can be used. Moreover, the water may be water that does not hinder the generation of hydrogen to the extent that a hydrogen-containing liquid cannot be generated, and may be water in which some substance is dissolved. For example, an acid as a reaction accelerator may be dissolved, and a hydrogen generator may be configured to generate hydrogen while supplying water by reacting with a metal or a metal compound.

非流出状態保持手段は、水を水素発生剤(水の添加と同時に水素発生剤を構成する場合には金属や金属化合物)と反応しない非流出状態に保持するための手段である。  The non-outflow state holding means is a means for holding water in a non-outflow state that does not react with the hydrogen generating agent (a metal or a metal compound when the hydrogen generating agent is formed simultaneously with the addition of water).

非流出状態保持手段の一例としては、例えば、水を密閉収容して非流出状態とする可撓性の区画室によるものを挙げることができる。  As an example of the non-outflowing state holding means, for example, there can be mentioned a flexible compartment chamber in which water is hermetically accommodated to be in a non-outflowing state.

そして、区画室には、所定量の外力が付与されることにより収容していた水を吐出して流出状態とする脆弱部を形成しておくことで、使用者が所望の際に水素発生の反応を開始させることができる。  In the compartment, by forming a weakened portion that discharges the water stored by applying a predetermined amount of external force to the outflow state, the user can generate hydrogen when desired. The reaction can be started.

特に、前述の区画室によって非流出状態保持手段を実現した場合には、エネルギーとして外力を加えることにより、水素生成反応のトリガーとして利用することができる。なお、前述の脆弱部はこの外力によって水を吐出可能な程度に形成しておくのは勿論である。  In particular, when the non-outflow state holding means is realized by the aforementioned compartment, it can be used as a trigger for the hydrogen generation reaction by applying an external force as energy. Needless to say, the aforementioned weak portion is formed to such an extent that water can be discharged by this external force.

これら水素発生剤や水、非流出状態保持手段は、主収容体に内包した副収容体に収容されることで水素発生ユニットが形成される。この主・副収容体は、前述の非流出状態保持手段に対して付与されるエネルギーを伝達可能な素材や構造を備えるようにしても良い。  These hydrogen generating agent, water, and non-outflow state holding means are accommodated in a sub-container contained in the main container to form a hydrogen generation unit. The main / sub container may be provided with a material or structure capable of transmitting energy applied to the non-outflow state holding means.

すなわち、前述の区画室によって非流出状態保持手段を実現した場合には、主・副収容体は区画室に外力を伝達可能な部位、例えば指先などで押圧した際に撓むことで主・副収容体の壁部を介して区画室に外力を付与可能な素材や構成を挙げることができる。  That is, when the non-outflow state holding means is realized by the above-described compartment, the main / sub container is bent when pressed by a part capable of transmitting an external force to the compartment, such as a fingertip. The material and the structure which can give external force to a compartment through the wall part of a container can be mentioned.

また、副収容体には、同副収容体内部にて発生した水素を主収容体内へ放出させるための副放出手段として、狭窄通路で形成された副水素排出口を備え、主収容体には、副収容体内部にて発生した水素を主収容体外へ放出させるための主放出手段として、狭窄通路で形成された主水素排出口を備えている。  The sub-container includes a sub-hydrogen discharge port formed by a narrow passage as a sub-release means for releasing hydrogen generated in the sub-container into the main container. The main hydrogen discharge port formed by the constricted passage is provided as main discharge means for discharging the hydrogen generated inside the sub container to the outside of the main container.

この狭窄通路は水素を主収容体内に排出したり、主収容体外に排出するためのものであり、そのために途中で分岐したり、不連続な状態(複数の狭窄通路を備える)で形成されていてもよく、更に、形状が直線であったり曲線であったり等、適宜構成することができる。  This constriction passage is for discharging hydrogen into the main container or out of the main container. For this purpose, the constriction passage is branched in the middle or formed in a discontinuous state (comprising a plurality of constriction passages). Further, it may be appropriately configured such that the shape is a straight line or a curved line.

また主収容体は、水素発生ユニット外の液体が主収容体内へ浸入するのを防止でき、且つ、副収容体内部にて発生した水素を主水素排出口から主収容体外へ放出可能な素材にて形成されていれば良い。  The main container is made of a material that can prevent the liquid outside the hydrogen generating unit from entering the main container and can release the hydrogen generated inside the sub container from the main hydrogen discharge port to the outside of the main container. It is sufficient if it is formed.

また副収容体は、万一、主収容体内に水素発生ユニット外の液体が浸入したとしても副収容体内に該液体が侵入するのを防止でき、且つ、副収容体内部にて発生した水素を副水素排出口から主収容体内へ放出可能な素材にて形成されていれば良い。  In addition, even if the liquid outside the hydrogen generating unit has entered the main container, the sub container can prevent the liquid from entering the sub container, and the hydrogen generated inside the sub container can be prevented. What is necessary is just to be formed with the material which can be discharged | emitted from a subhydrogen discharge port into the main container.

また、さらに望ましくは、主・副収容体は、水素発生剤を構成する成分など、金属イオンや無機化合物、有機質を透過させないものが良い。  More preferably, the main / sub container does not transmit metal ions, inorganic compounds, and organic substances such as components constituting the hydrogen generator.

このような素材としては、例えば、ポリプロピレンやポリエチレン、ポリエステル等の合成樹脂材を挙げることができる。  Examples of such materials include synthetic resin materials such as polypropylene, polyethylene, and polyester.

ところで、放出手段である主・副水素排出口には逆止弁の如き機械的な弁機構を付加することも可能である。すなわち、発生させた水素の内圧により、液体の浸入を阻止する弁機構の付勢力に抗して瞬間的に開放させることにより、水素の気泡を副収容体内から主収容体を介して液体中へ放出することもできる。  By the way, it is possible to add a mechanical valve mechanism such as a check valve to the main / sub hydrogen discharge ports as the discharge means. That is, the internal pressure of the generated hydrogen instantaneously opens against the urging force of the valve mechanism that prevents the liquid from entering, thereby allowing hydrogen bubbles to enter the liquid from the sub container through the main container. It can also be released.

なお、水素発生ユニットには、主収容体を略被覆するカバー体を装着することもできる。カバー体は、水素発生ユニットの運搬時等においてエネルギーとしての外力が意図せず区画室に付与され、水が流出状態となって水素発生剤と反応することを防止する保護部材である。  Note that a cover body that substantially covers the main container can be attached to the hydrogen generation unit. The cover body is a protective member that prevents an external force as energy from being unintentionally applied to the compartment when the hydrogen generating unit is transported and prevents water from flowing out and reacting with the hydrogen generating agent.

このような素材としては、例えば、ポリプロピレンやポリエチレン、ポリエステル、アクリル、ABS樹脂、ポリカーボネート等の合成樹脂材を挙げることができる。  Examples of such materials include synthetic resin materials such as polypropylene, polyethylene, polyester, acrylic, ABS resin, and polycarbonate.

このように、本実施形態に係る水素発生ユニットによれば、従来の水素発生ユニットに比して、水素含有液をより手軽に生成することができる。また、液体の水素発生ユニット内への浸潤によらず水素含有液を生成すべく構成し、しかも、収容体を二重構造としているため、水素発生ユニット内外における液体の流通に伴って水素発生剤の成分からなる副生成物が液体へ漏出するおそれを可及的に抑制することができる。  Thus, according to the hydrogen generation unit according to the present embodiment, it is possible to generate the hydrogen-containing liquid more easily than the conventional hydrogen generation unit. In addition, it is configured to generate a hydrogen-containing liquid regardless of the infiltration of the liquid into the hydrogen generation unit, and since the container has a double structure, the hydrogen generation agent is generated along with the flow of the liquid inside and outside the hydrogen generation unit. It is possible to suppress as much as possible the risk of leakage of the by-product consisting of the above components into the liquid.

以下、本実施形態に係る水素発生ユニットについて、図面を参照しながら説明する。  Hereinafter, the hydrogen generation unit according to the present embodiment will be described with reference to the drawings.

[実施形態]
本発明の実施形態に係る水素発生ユニットAは、図1〜図5に示すように、液体(以下、飲用水とする。)L中に投入することにより同飲用水L中に水素を含有させて水素含有液を生成する水素発生ユニットAにおいて、同水素発生ユニットAは、含水して水素を発生する水素発生剤15と、水14と、水14を水素発生剤15と反応しない非流出状態に保持する非流出状態保持手段と、を水素ガス17を外部に放出する孔を有した副放出手段38を備えた副収容体19に収容し、副収容体19は、水素ガス17を外部に放出する孔を有した主放出手段18を備えた主収容体1に収容して一体に構成すると共に、副収容体19を内包した主収容体1は、飲用水L中に遊動自在に投入され、非流出状態保持手段は、主収容体1外から所定量のエネルギーを付与することにより非流出状態の水14を水素発生剤15と反応可能な流出状態に変化させるものであり、エネルギーの付与をトリガーとして、流出状態となった水14を水素発生剤と反応させ、副収容体19内にて生成した水素を副放出手段38と主放出手段18を介して放出することにより、飲用水Lの水素発生ユニットA内への浸潤によらず水素含有液を生成すべく構成している。
[Embodiment]
As shown in FIGS. 1 to 5, the hydrogen generation unit A according to the embodiment of the present invention causes hydrogen to be contained in the drinking water L by being introduced into the liquid (hereinafter referred to as drinking water) L. In the hydrogen generation unit A that generates a hydrogen-containing liquid, the hydrogen generation unit A includes a hydrogen generating agent 15 that contains water to generate hydrogen, water 14, and a non-outflow state in which the water 14 does not react with the hydrogen generating agent 15. And a non-outflow state holding means for holding the hydrogen gas 17 in a secondary container 19 having a secondary discharge means 38 having a hole for discharging the hydrogen gas 17 to the outside. The main container 1 accommodated in the main container 1 having the main discharge means 18 having a discharge hole and integrally formed and the sub container 19 included therein is slidably inserted into the drinking water L. The non-outflow state holding means is a predetermined amount of energy from outside the main container 1. The non-outflowing water 14 is changed to an outflowing state capable of reacting with the hydrogen generating agent 15 by applying the energy, and the outflowing water 14 reacts with the hydrogen generating agent with the application of energy as a trigger. The hydrogen produced in the secondary container 19 is discharged through the secondary discharge means 38 and the main discharge means 18 to generate a hydrogen-containing liquid regardless of the infiltration of the drinking water L into the hydrogen generation unit A. It is configured as appropriate.

また、副収容体19は、水素発生剤15と水14と非流出状態保持手段とを収容する副収容室25を備え、主収容体1は、副収容体19を収容する主収容室2を備え、非流出状態保持手段は、水14を密閉収容して非流出状態とする可撓性の区画室41であり、同区画室41は、収容していた水14を吐出して流出状態とする脆弱部44を有し、エネルギーとして主収容体1を手指Pで挟持する押圧力が所定量付与されることにより脆弱部44を破断し、流出状態となった水14が水素発生剤15と反応して生成した水素を副放出手段38と主放出手段18を介して放出すべく構成している。  The sub-accommodator 19 includes a sub-accommodation chamber 25 that accommodates the hydrogen generating agent 15, the water 14, and the non-outflow state holding means. The non-outflow state holding means is a flexible compartment 41 that hermetically accommodates the water 14 so as to be in a non-outflow state. The compartment 41 discharges the stored water 14 and is in an outflow state. The fragile portion 44 is broken by applying a predetermined amount of pressing force for sandwiching the main container 1 with fingers P as energy, and the water 14 that has flowed into the outflow state is combined with the hydrogen generating agent 15. The hydrogen generated by the reaction is configured to be discharged through the sub discharge means 38 and the main discharge means 18.

更に、主放出手段18は管状の狭窄通路3で形成された主水素排出口4を備え、副放出手段38は管状の狭窄通路23で形成された副水素排出口24を備えている。  Further, the main discharge means 18 includes a main hydrogen discharge port 4 formed by a tubular constriction passage 3, and the sub discharge means 38 includes a sub hydrogen discharge port 24 formed by a tubular constriction passage 23.

また、主・副収容体1,19は可撓性を有する合成樹脂材からなり、図1(a)、(b)、図2に示すように、主収容体1は主水素排出口4と連通し、副収容体19は副水素排出口24と連通し、副収容室25には更に貫通用部材48を収容し、貫通用部材48は先端先鋭の複数の貫通用突起49a,49b,49cを有し、副収容室25には、脆弱部44に貫通用突起49a,49b,49cを対峙して収容し、図3に示すように、エネルギーとして主収容体1を手指Pで挟持する押圧力が所定量付与されることにより貫通用突起49a,49b,49cが脆弱部44を破断し、図4(b)、(c)に示すように、流出状態となった水14が水素発生剤15と反応して生成した水素を主・副水素排出口4,24を介して放出すべく構成している。  Further, the main / sub-containers 1 and 19 are made of a flexible synthetic resin material. As shown in FIGS. 1A, 1B, and 2, the main container 1 includes a main hydrogen discharge port 4 and The sub-accommodating body 19 communicates with the sub-hydrogen discharge port 24, and the sub-accommodating chamber 25 further accommodates a penetrating member 48. The penetrating member 48 has a plurality of penetrating protrusions 49 a, 49 b, 49 c with sharp tips. In the sub-accommodating chamber 25, the penetrating protrusions 49 a, 49 b, 49 c are accommodated in the fragile portion 44 so as to oppose each other, and as shown in FIG. When a predetermined amount of pressure is applied, the penetrating protrusions 49a, 49b, 49c break the fragile portion 44, and as shown in FIGS. 4 (b) and 4 (c), the water 14 in the outflow state becomes the hydrogen generating agent. Configured to release the hydrogen produced by the reaction with the main and sub hydrogen discharge ports 4 and 24. That.

また、図1(a)、(b)、図2に示すように、主水素排出口4の開口方向を鉛直方向とし、副水素排出口24の開口方向を水平方向として互いが異なる開口方向となるように形成すると共に、主収容体1の下部側10を先端先鋭に形成している。  Further, as shown in FIGS. 1A, 1B, and 2, the opening direction of the main hydrogen discharge port 4 is a vertical direction, and the opening direction of the auxiliary hydrogen discharge port 24 is a horizontal direction. The lower side 10 of the main container 1 is formed with a sharp tip.

また、主水素排出口4の狭窄通路3には、主水素排出口4の狭窄通路3と連通する主収容室2の上部側壁5を左右側部7a,7bと底部8からなる正面視凹状とし、凹状の底部8で主水素排出口4の狭窄通路3の下端部9が連通した逆流防止部6を備えている。  Further, in the narrowed passage 3 of the main hydrogen discharge port 4, the upper side wall 5 of the main storage chamber 2 communicating with the narrowed passage 3 of the main hydrogen discharge port 4 has a concave shape when viewed from the front consisting of the left and right side portions 7 a and 7 b and the bottom portion 8. In addition, a backflow prevention unit 6 is provided in which the bottom end 9 of the constriction passage 3 of the main hydrogen discharge port 4 communicates with the concave bottom 8.

更に、水素発生ユニットAには、図8(a)、(b)に示すように、主収容体1に装着自在なカバー体53を備えることができる。カバー体53は、カバー体53を主収容体1に装着することで主収容体1を略被覆すると共に、カバー体53の外部から機械的なエネルギーとしての外力が付与されても非流出状態保持手段が非流出状態を保持することができるように外力遮断部54を備えている。  Furthermore, the hydrogen generation unit A can be provided with a cover body 53 that can be attached to the main container 1 as shown in FIGS. The cover body 53 substantially covers the main container 1 by attaching the cover body 53 to the main container 1 and maintains a non-outflow state even when an external force is applied as mechanical energy from the outside of the cover body 53. An external force blocking portion 54 is provided so that the means can maintain a non-outflow state.

このように水素発生ユニットAの収容体1,19を二重構造等に構成することで、従来の水素発生ユニットに比して収容体内の水素生成後の副生成物である反応後の水68の飲用水Lへの流出防止を強化した水素発生ユニットAを提供することができる。  Thus, by constructing the containers 1 and 19 of the hydrogen generation unit A in a double structure or the like, the water 68 after reaction, which is a by-product after hydrogen generation in the container, compared to the conventional hydrogen generation unit. It is possible to provide a hydrogen generation unit A that enhances the prevention of outflow to drinking water L.

次に、水素発生ユニットAの各部の具体的な構成について図面を参照しながら詳述する。  Next, a specific configuration of each part of the hydrogen generation unit A will be described in detail with reference to the drawings.

[主収容体]
主収容体1は、図5(b)に示すように、後述する調製容器70の開口部から投入可能な幅員で形成され、図1(a)、(b)、図2に示すように、矩形長方形状で下部側10を先端先鋭に形成した主ケース部1aと、主密閉フィルムシート1bと、で構成され、主ケース部1aは、帯状のプラスチック製シートの正面側を凹状に膨出させ、主放出手段18である狭窄通路3からなる主水素排出口4、逆流防止部6、主収容室2を上部から下部にかけて連通配置し、膨出していない主ケース部1aの偏平状の外縁部を接合部1cとしている。また、主密閉フィルムシート1bは、帯状のフィルムシートを接合部1cに溶着し、膨出させた各部を密閉している。
[Main container]
As shown in FIG. 5 (b), the main container 1 is formed with a width that can be introduced from an opening of a preparation container 70 described later, and as shown in FIGS. 1 (a), (b), and FIG. The main case 1a has a rectangular rectangular shape with a lower end 10 formed sharply at the tip and a main sealing film sheet 1b. The main case 1a bulges the front side of the belt-shaped plastic sheet into a concave shape. The main hydrogen discharge port 4 comprising the constricted passage 3 as the main discharge means 18, the backflow prevention unit 6, and the main storage chamber 2 are arranged in communication from the upper part to the lower part, and the flat outer edge part of the main case part 1 a that does not bulge Is the joint 1c. Moreover, the main sealing film sheet 1b has welded the strip | belt-shaped film sheet to the junction part 1c, and has sealed each part bulged.

主密閉フィルムシート1bは主ケース部1aの正面視の外形と同形状の矩形長方形状で下部側12を先端先鋭に形成しており、主収容体1に溶着することで一体の水素発生ユニットAを構成する。なお、接合部1cへの主密閉フィルムシート1bの接合においては、溶着以外に接着剤による接合であってもよい。  The main hermetic film sheet 1b is a rectangular rectangle having the same shape as the front view of the main case portion 1a, and the lower side 12 is sharpened at the tip. The main hydrogen generating unit A is welded to the main container 1 to be integrated. Configure. In addition, in joining of the main sealing film sheet 1b to the junction part 1c, joining by an adhesive agent other than welding may be sufficient.

主ケース部1aの材質は、耐熱性や耐衝撃性、気密性に優れたプラスチックシート材であるポリプロピレンを用いているが、ポリエチレン等の合成樹脂材を基材とするシート材等、耐熱性を有し、外部の飲用水Lが内部に透過せず、内部の反応水14や反応後の水68が外部に透過しないものであれば特に材質は限定されるものではない。  The main case 1a is made of polypropylene, which is a plastic sheet material excellent in heat resistance, impact resistance, and airtightness. However, the main case portion 1a has heat resistance such as a sheet material based on a synthetic resin material such as polyethylene. The material is not particularly limited as long as the external drinking water L does not permeate into the interior and the internal reaction water 14 and the water 68 after the reaction do not permeate out.

主密閉フィルムシート1bの材質は、透明で耐熱性や耐衝撃性、気密性に優れたプラスチックフィルム材であるポリエステルを用いているが、延伸ポリプロピレン(OPP)やポリエチレン等の合成樹脂材を基材とするフィルム材等、耐熱性を有し、外部の飲用水Lが内部に透過せず、内部の反応水14や反応後の水68が外部に透過しないものであれば特に材質や透明度は限定されるものではない。但し、透明度が高い方が反応水14の流出状態や水素発生体16への接触状態を確認しやすく有利である。  The main sealing film sheet 1b is made of polyester, which is a transparent plastic film material that is transparent and excellent in heat resistance, impact resistance, and airtightness. However, the base material is a synthetic resin material such as expanded polypropylene (OPP) or polyethylene. As long as the film material has heat resistance, external drinking water L does not permeate inside, and internal reaction water 14 or water 68 after reaction does not permeate outside, the material and transparency are particularly limited. Is not to be done. However, higher transparency is advantageous because it is easier to confirm the outflow state of the reaction water 14 and the contact state with the hydrogen generator 16.

主放出手段18である主水素排出口4を形成する狭窄通路3は、主ケース部1aの上端中央部に開口3aを形成し、開口3aから下方の主収容室2にかけて直線的に延設して主収容室2と連通連設している。また、主水素排出口4は断面視略半円状に形成され、外部から飲用水Lが容易に浸入しない小径の開口、例えば略1mm程度の直径で形成し、狭窄通路3自体も同様の断面形状で同様の直径で形成している。  The constricted passage 3 forming the main hydrogen discharge port 4 which is the main discharge means 18 forms an opening 3a at the center of the upper end of the main case portion 1a, and extends linearly from the opening 3a to the main housing chamber 2 below. Are connected to the main containment chamber 2. The main hydrogen discharge port 4 is formed in a substantially semicircular shape when viewed in cross section, is formed with a small-diameter opening through which the drinking water L does not easily enter from the outside, for example, a diameter of about 1 mm, and the narrow passage 3 itself has a similar cross section. It is formed with the same diameter in shape.

なお、主水素排出口4の開口断面積は狭窄通路3の途中の空間断面積よりも大きく形成してもよく、また、主水素排出口4から主収容室2までの経路を曲線的に形成してもよい。また、主水素排出口4から主収容室2までの距離は外部からの飲用水Lの進入や内部の反応水14や反応後の水68の流出を防止する観点から長く形成することが望ましく、本実施形態では略10mmの長さで形成している。更に、狭窄通路3は一箇所であることに限定されない。  The opening cross-sectional area of the main hydrogen discharge port 4 may be formed larger than the space cross-sectional area in the middle of the constricted passage 3, and the path from the main hydrogen discharge port 4 to the main storage chamber 2 is formed in a curve. May be. In addition, the distance from the main hydrogen discharge port 4 to the main storage chamber 2 is desirably long from the viewpoint of preventing the ingress of drinking water L from the outside and the outflow of the reaction water 14 inside and the water 68 after reaction, In this embodiment, it is formed with a length of about 10 mm. Furthermore, the constriction passage 3 is not limited to one location.

また、主収容室2の深さは後述する副収容体19が余裕を持って収容できる程度であればよい。  Moreover, the depth of the main storage chamber 2 should just be a grade which the sub container 19 mentioned later can accommodate with a margin.

主放出手段18である主水素排出口4の狭窄通路3には、主水素排出口4の狭窄通路3と連通する主収容室2の上部側壁5を左右側部7a,7bと底部8からなる正面視凹状とし、凹状の底部8で主水素排出口4の狭窄通路3の下端部9が連通した逆流防止部6を備えている。すなわち、狭窄通路3が主収容室2の内側の一部に延設されている。  In the constriction passage 3 of the main hydrogen discharge port 4 which is the main discharge means 18, the upper side wall 5 of the main storage chamber 2 communicating with the constriction passage 3 of the main hydrogen discharge port 4 is composed of left and right side portions 7 a and 7 b and a bottom portion 8. It has a concave shape when viewed from the front, and is provided with a backflow prevention portion 6 in which a bottom portion 8 of the constricted passage 3 of the main hydrogen discharge port 4 communicates with a concave bottom portion 8. That is, the narrow passage 3 is extended to a part of the inside of the main storage chamber 2.

このように構成することで、図6に示すように、水素発生ユニットAの主水素排出口4が下方に位置しても、内部の反応後の水68が狭窄通路3を通過して主水素排出口4から外部に放出されることを未然に防止することができる。  With this configuration, as shown in FIG. 6, even if the main hydrogen discharge port 4 of the hydrogen generation unit A is positioned below, the water 68 after the reaction inside passes through the constricted passage 3 and passes through the main hydrogen It is possible to prevent the discharge from the discharge port 4 to the outside.

このように形成された主収容室2は、これを囲繞する偏平状の外縁部を接合部1cとして全体を主ケース部1aとし、帯状の主密閉フィルムシート1bを接合部1cに溶着して上述した各部を密閉し主収容体1を構成している。  The main housing chamber 2 formed in this way has a flat outer edge portion surrounding it as a joint portion 1c as a main case portion 1a, and a belt-like main sealed film sheet 1b is welded to the joint portion 1c as described above. The main parts 1 are configured by sealing each part.

[副収容体]
副収容体19は、図1(a)、(b)、図2に示すように、主収容体1の主収容室2に収まる外形に形成され、矩形長方形状で下部側29を先端先鋭に形成した副ケース部19aと、副密閉フィルムシート19bと、で構成され、副ケース部19aは、帯状のプラスチック製シートの正面側を凹状に膨出させ副収容室25とし、水収容室26、移動用通路27、剤収容室28を上部から下部にかけて連通配置している。また、膨出していない副ケース部19aの偏平状の外縁部を接合部19cとし、水収容室26の中途部の左右側壁30a,30bと該部分近傍の接合部19c,19cのみ膨出させて副放出手段38となる狭窄通路23,23を形成している。また、副密閉フィルムシート19bは、帯状のフィルムシートを接合部19cに溶着し、膨出させた各部を密閉している。
[Sub-container]
As shown in FIGS. 1A, 1 </ b> B, and 2, the sub-accommodating body 19 is formed in an outer shape that can be accommodated in the main accommodating chamber 2 of the main accommodating body 1, and has a rectangular rectangular shape with the lower side 29 sharpened at the tip. The sub-case portion 19a and the sub-sealed film sheet 19b are formed, and the sub-case portion 19a bulges the front side of the belt-shaped plastic sheet into a concave shape to form a sub-accommodating chamber 25, a water accommodating chamber 26, The movement passage 27 and the agent storage chamber 28 are arranged in communication from the upper part to the lower part. Further, the flat outer edge portion of the sub case portion 19a that does not bulge is used as a joint portion 19c, and only the left and right side walls 30a, 30b in the middle of the water storage chamber 26 and the joint portions 19c, 19c in the vicinity of the portion are bulged. Constriction passages 23 and 23 are formed as the secondary discharge means 38. In addition, the sub-sealed film sheet 19b seals each of the bulged parts by welding a belt-like film sheet to the joint portion 19c.

また、水収容室26には反応水14を収容した区画室41と貫通用部材48を収容し、剤収容室28には水素発生剤15を内包する水素発生体16を収容している。  The water storage chamber 26 stores a compartment 41 containing the reaction water 14 and a penetrating member 48, and the agent storage chamber 28 stores a hydrogen generator 16 containing the hydrogen generating agent 15.

副密閉フィルムシート19bは副ケース部19aの正面視の外形と同形状の矩形長方形状で下部側31を先端先鋭に形成しており、副ケース部19aに溶着することで一体の副収容体19を構成する。なお、接合部19cへの副密閉フィルムシート19bの接合においては、溶着以外に接着剤による接合であってもよい。  The sub-sealing film sheet 19b has a rectangular rectangular shape that is the same shape as the front view of the sub-case portion 19a, and the lower side 31 is sharpened at the tip. Configure. In addition, in joining of the sub sealing film sheet 19b to the junction part 19c, joining by an adhesive agent other than welding may be sufficient.

副ケース部19aの材質は、耐熱性や耐衝撃性、気密性に優れたプラスチックシート材であるポリプロピレンを用いているが、ポリエチレン等の合成樹脂材を基材とするシート材等、耐熱性を有し、外部の飲用水Lが内部に透過せず、内部の反応水14や反応後の水68が外部に透過しないものであれば特に材質は限定されるものではない。  The material of the sub case portion 19a is polypropylene, which is a plastic sheet material excellent in heat resistance, impact resistance, and airtightness. However, heat resistance such as a sheet material based on a synthetic resin material such as polyethylene is used. The material is not particularly limited as long as the external drinking water L does not permeate into the interior and the internal reaction water 14 and the water 68 after the reaction do not permeate out.

副密閉フィルムシート19bの材質は、透明で耐熱性や耐衝撃性、気密性に優れたプラスチックフィルム材であるポリエステルを用いているが、延伸ポリプロピレン(OPP)やポリエチレン等の合成樹脂材を基材とするフィルム材等、耐熱性を有し、外部の飲用水Lが内部に透過せず、内部の反応水14や反応後の水68が外部に透過しないものであれば特に材質や透明度は限定されるものではない。但し、透明度が高い方が反応水14の流出状態や水素発生体16への接触状態を確認しやすく有利である。  The sub-sealing film sheet 19b is made of polyester, which is a transparent plastic film material that is transparent and has excellent heat resistance, impact resistance, and airtightness. The base material is a synthetic resin material such as expanded polypropylene (OPP) or polyethylene. As long as the film material has heat resistance, external drinking water L does not permeate inside, and internal reaction water 14 or water 68 after reaction does not permeate outside, the material and transparency are particularly limited. Is not to be done. However, higher transparency is advantageous because it is easier to confirm the outflow state of the reaction water 14 and the contact state with the hydrogen generator 16.

なお、副密閉フィルムシート19bは、撥水性水素透過膜であってもよい。この場合、撥水性水素透過膜が副放出手段となるため、副収容体19に狭窄通路23からなる副水素排出口24を形成する必要は無い。また、撥水性水素透過膜は、水素発生ユニットA外の飲用水Lが副収容体19内へ浸入するのを防止でき、且つ、副収容体19内部にて発生した水素を副収容体外へ放出可能な素材にて形成されていれば良い。  The sub-sealed film sheet 19b may be a water repellent hydrogen permeable membrane. In this case, since the water-repellent hydrogen permeable membrane serves as the secondary discharge means, it is not necessary to form the secondary hydrogen discharge port 24 including the narrowed passage 23 in the secondary container 19. In addition, the water-repellent hydrogen permeable membrane can prevent the drinking water L outside the hydrogen generation unit A from entering the sub container 19 and discharges the hydrogen generated inside the sub container 19 to the outside of the sub container. It may be formed of a possible material.

また、さらに望ましくは、撥水性水素透過膜は、水素発生剤15を構成する成分など、金属イオンや無機化合物、有機質を透過させないものが良い。このような素材としては、例えば、防水透湿性素材(液体状の水の透過は阻止しつつも気体状の水を透過させる素材)や、半透膜、逆浸透膜、伸延PTFE等を挙げることができる。  More desirably, the water-repellent hydrogen permeable membrane does not transmit metal ions, inorganic compounds, or organic substances such as components constituting the hydrogen generator 15. Examples of such materials include waterproof and moisture-permeable materials (materials that allow gaseous water to permeate while preventing the passage of liquid water), semipermeable membranes, reverse osmosis membranes, distended PTFE, and the like. Can do.

副放出手段38である副水素排出口24を形成する狭窄通路23は、副ケース部19aの上部側の左右端部となる水収容室26の中途部の接合部19cに開口23a,23aを有し、開口23a,23aから水平方向に直線的に延設して主収容室2と水収容室26とを連通連設している。また、副水素排出口24は断面視略半円状に形成され、外部から飲用水Lが容易に浸入しない小径の開口、例えば略1mm程度の直径で形成し、狭窄通路23自体も同様の断面形状で同様の直径で形成している。  The constriction passage 23 forming the sub hydrogen discharge port 24 which is the sub discharge means 38 has openings 23a and 23a at the joint portion 19c in the middle of the water storage chamber 26 which is the left and right end portions on the upper side of the sub case portion 19a. The main storage chamber 2 and the water storage chamber 26 are communicated with each other by extending linearly from the openings 23a and 23a in the horizontal direction. Further, the sub-hydrogen discharge port 24 is formed in a substantially semicircular shape in cross section, is formed with a small-diameter opening through which the drinking water L does not easily enter from the outside, for example, a diameter of about 1 mm, and the narrow passage 23 itself has a similar cross-section. It is formed with the same diameter in shape.

なお、副水素排出口24の開口断面積は狭窄通路23の途中の空間断面積よりも大きく形成してもよく、開口23aから水収容室26までの経路を曲線的に形成してもよい。また、狭窄通路23は左右の二箇所であることに限定されない。また、水収容室26の深さは後述する区画室41と貫通用部材48が収容できる程度であればよい。  In addition, the opening cross-sectional area of the sub-hydrogen discharge port 24 may be formed larger than the space cross-sectional area in the middle of the narrowed passage 23, and the path from the opening 23a to the water storage chamber 26 may be formed in a curve. Further, the constriction passage 23 is not limited to two places on the left and right. Moreover, the depth of the water storage chamber 26 should just be a grade which can accommodate the compartment 41 and the penetration member 48 which are mentioned later.

水収容室26は、長手方向を上下とする有底の矩形箱状に形成し、上述の通り、左右側壁30a,30bの開放端部中央において狭窄通路23,23と連通連設している。また、下部側壁33の開放端部中央において移動用通路27と連通連設している。なお、水収容室26は必ずしも矩形箱状である必要はない。  The water storage chamber 26 is formed in a rectangular box shape with a bottom in the longitudinal direction, and is connected to the narrow passages 23 and 23 at the center of the open ends of the left and right side walls 30a and 30b as described above. Further, the lower side wall 33 communicates with the moving passage 27 at the center of the open end. The water storage chamber 26 does not necessarily have a rectangular box shape.

移動用通路27は、水収容室26と剤収容室28の底部34,36よりも浅く外観視凹状に形成され、下方の剤収容室28にかけて幅狭に短く延設して剤収容室28と連通連設している。なお、移動用通路27の長さや形状は水収容室26から剤収容室28に早く確実に反応水14が移動する形状であればよい。  The movement passage 27 is shallower than the bottoms 34 and 36 of the water storage chamber 26 and the agent storage chamber 28 and is formed in a concave shape in appearance. The transfer passage 27 extends narrowly and shortly toward the lower agent storage chamber 28, and the agent storage chamber 28. There is a continuous connection. The length and shape of the movement passage 27 may be any shape that allows the reaction water 14 to move quickly and reliably from the water storage chamber 26 to the agent storage chamber 28.

剤収容室28は、長手方向を上下とする有底の矩形箱状に形成し、上部側壁37の開放端部中央において移動用通路27と連通連設している。また、剤収容室28は、中央部で折曲した外観視長方形状の水素発生体16を折曲面が剤収容室28の開口から視認できる状態で収容可能な空間とし、収容される水素発生体16を移動し難く形成している。なお、剤収容室28に収容された水素発生体16は、剤収容室28の底部36と移動用通路27の底部35との深さの違いにより、移動用通路27側に移動することはない。  The agent storage chamber 28 is formed in a rectangular box shape with a bottom in the longitudinal direction and communicated with the movement passage 27 at the center of the open end of the upper side wall 37. Further, the agent storage chamber 28 is a space that can accommodate the hydrogen generator 16 having a rectangular shape as viewed from the outside, which is bent at the center, in a state where the folded curved surface can be viewed from the opening of the agent storage chamber 28, and the hydrogen generator to be stored 16 is difficult to move. The hydrogen generator 16 accommodated in the agent accommodating chamber 28 does not move to the moving passage 27 side due to the difference in depth between the bottom portion 36 of the agent accommodating chamber 28 and the bottom portion 35 of the moving passage 27. .

このように形成された水収容室26等の副収容体19は、これらを囲繞する偏平状の外縁部を接合部19cとして全体を副ケース部19aとし、帯状の副密閉フィルムシート19bを接合部19cに溶着して上述した各部を密閉し副収容体19を構成している。  The sub-accommodating body 19 such as the water-accommodating chamber 26 formed in this way has a flat outer edge portion surrounding them as a joint portion 19c as a whole as a sub-case portion 19a, and a belt-like sub-sealed film sheet 19b as a joint portion. Each part mentioned above is welded to 19c and the sub-accommodator 19 is configured.

なお、本実施形態に係る水素発生ユニットAでは、主収容体1の内部に1つの副収容体19を内包した構成を説明しているが、内包する副収容体19の数は本実施形態に限定されるものではなく、また、副収容体19の内部に更に副収容体19を内包してもよい。  In the hydrogen generation unit A according to the present embodiment, a configuration in which one sub container 19 is included in the main container 1 is described. However, the number of sub containers 19 included in the main container 1 is the same as that of the present embodiment. It is not limited, and the secondary container 19 may be further included in the secondary container 19.

そして、密閉される水収容室26と剤収容室28には以下の部材が収容され、水素発生ユニットAが構成される。  And the following members are accommodated in the water accommodating chamber 26 and the agent accommodating chamber 28 which are sealed, and the hydrogen generation unit A is configured.

まず、水収容室26に収容される反応水14を内包する区画室41は、有底の矩形箱状で開放端部全周に接合フランジ部42aを形成した箱体42に、箱体42の開口を被覆する薄膜で矩形フィルム状の脆弱部44の外縁端を接合フランジ部42aに溶着して水密状としている。なお、本実施形態では反応水14を可能な限り無菌状態で区画室41に内包するためにクリーンルーム内での充填を行っている。また、接合フランジ部42aへの脆弱部44の接合においては、溶着以外に接着剤による接合であってもよい。  First, the compartment 41 containing the reaction water 14 accommodated in the water accommodating chamber 26 is a boxed body 42 having a bottomed rectangular box shape and formed with a joint flange portion 42a around the entire open end. A thin film covering the opening is welded at the outer edge of the fragile portion 44 in the form of a rectangular film to the joining flange portion 42a to make it watertight. In the present embodiment, the reaction water 14 is filled in a clean room so as to be contained in the compartment 41 in as sterile a state as possible. Moreover, in joining of the weak part 44 to the joining flange part 42a, joining by an adhesive agent other than welding may be used.

なお、箱体42の材質は、気密性に優れたプラスチックシート材であるポリプロピレンを用いているが、ポリエチレン等の合成樹脂材を基材とするシート材等、内部の反応水14が外部に透過しないものであれば特に材質は限定されるものではない。  The material of the box 42 is polypropylene, which is a plastic sheet material with excellent airtightness. However, the reaction water 14 inside is permeated to the outside, such as a sheet material based on a synthetic resin material such as polyethylene. The material is not particularly limited as long as it is not.

脆弱部44の材質は、透明で気密性に優れたプラスチックフィルム材であるポリエステルを用いているが、延伸ポリプロピレン(OPP)やポリエチレン等の合成樹脂材を基材とするフィルム材等、内部の反応水14が外部に透過せず、破断容易であれば特に材質や透明度は限定されるものではない。  Polyester, which is a transparent and airtight plastic film material, is used as the material of the fragile portion 44, but the internal reaction, such as a film material based on a synthetic resin material such as expanded polypropylene (OPP) or polyethylene, etc. The material and transparency are not particularly limited as long as the water 14 does not penetrate to the outside and is easily broken.

区画室41は水収容室26の底部34に区画室41の底部45を向けて、すなわち、脆弱部44と対向する側を向けて収容される。なお、区画室41は水収容室26内で不必要に移動できない程度の外形であることが望ましい。  The compartment 41 is accommodated with the bottom 45 of the compartment 41 facing the bottom 34 of the water accommodation chamber 26, that is, with the side facing the fragile portion 44 facing. It is desirable that the compartment 41 has an outer shape that cannot be moved unnecessarily in the water storage chamber 26.

反応水14は、水素発生剤15と接触させて水素生成反応を生起させるための水であり、本実施形態においては純水を用いている。また、区画室41内に収容された反応水14は非流出状態に保持されている。  The reaction water 14 is water that is brought into contact with the hydrogen generating agent 15 to cause a hydrogen generation reaction, and pure water is used in the present embodiment. Moreover, the reaction water 14 accommodated in the compartment 41 is kept in a non-outflow state.

また、水収容室26には区画室41と共に貫通用部材48も収容される。貫通用部材48は図1(b)、図2に示すように、箱体42の開口と略同面積で厚め(略0.5mm)の矩形シート状の合成樹脂材で形成され、上下端部側及び中央部に貫通用突起49a,49b,49cを3箇所形成している。貫通用突起49a,49b,49cは2辺が切断され残りの1辺を折曲した先端先鋭の三角形状に形成し、貫通用突起49a,49b,49cを脆弱部44に対峙させた状態で水収容室26に収容している。  The water storage chamber 26 also stores a penetrating member 48 together with the compartment 41. As shown in FIGS. 1B and 2, the penetrating member 48 is formed of a rectangular sheet-like synthetic resin material that is substantially the same area as the opening of the box 42 and is thick (approximately 0.5 mm). Three penetrating protrusions 49a, 49b, and 49c are formed on the side and the center. The penetrating protrusions 49a, 49b, and 49c are formed in a sharp-pointed triangular shape with two sides cut and the remaining one side bent, and the penetrating protrusions 49a, 49b, and 49c are opposed to the fragile portion 44 in the water state. It is stored in the storage chamber 26.

また、貫通用部材48の材質は、耐衝撃性に優れたプラスチックシート材であるポリプロピレンを用いているが、ポリエチレン等の合成樹脂材を基材とするシート材等、材質は特に限定されるものではない。  The material of the penetrating member 48 is polypropylene, which is a plastic sheet material with excellent impact resistance, but the material is particularly limited, such as a sheet material based on a synthetic resin material such as polyethylene. is not.

なお、貫通用部材48は、変形例として図7(a)、(b)に示すような貫通用部材48aであってもよい。具体的には、変形例に係る貫通用部材48aは、中央部に貫通用突起49a,49b,49cを形成した貫通用基部64と、その両端部に載置片65,65を立設してコ字状に形成している。載置片65には、貫通用突起49a,49b,49cの先端部が脆弱部44の直前で保持されるように、区画室41の外縁部をなす接合フランジ部42aが当接載置されるフランジ載置部66を形成している。  Note that the penetrating member 48 may be a penetrating member 48a as shown in FIGS. 7A and 7B as a modification. Specifically, the penetrating member 48a according to the modification includes a penetrating base portion 64 having penetrating protrusions 49a, 49b, and 49c formed in the central portion, and mounting pieces 65 and 65 standing on both ends thereof. It is formed in a U shape. On the mounting piece 65, the joint flange portion 42 a that forms the outer edge of the compartment 41 is placed in contact so that the front ends of the penetrating protrusions 49 a, 49 b, 49 c are held immediately before the fragile portion 44. A flange placement portion 66 is formed.

フランジ載置部66は、各載置片65,65の内側面の中途部において各載置片65,65と直交する段差を形成することで接合フランジ部42aを載置可能な平面が形成される。また、このフランジ載置部66から貫通用基部64に至るまでを内側にテーパー状に形成している。  The flange placement portion 66 is formed with a flat surface on which the joining flange portion 42a can be placed by forming a step perpendicular to each placement piece 65, 65 in the middle portion of the inner surface of each placement piece 65, 65. The Further, a portion from the flange mounting portion 66 to the penetrating base portion 64 is tapered inward.

このように貫通用部材48aを構成することで、所定の外力が貫通用部材48aに付与されるまでは、区画室41の水14を非流出状態に保持でき、貫通用突起49a,49b,49cが意図せず脆弱部44を破断して水14が流出状態となる不具合を防止できる。  By configuring the penetrating member 48a in this manner, the water 14 in the compartment 41 can be held in a non-outflow state until a predetermined external force is applied to the penetrating member 48a, and the penetrating protrusions 49a, 49b, 49c. However, it is possible to prevent a problem that the fragile portion 44 is broken unintentionally and the water 14 flows out.

なお、貫通用部材48,48aや貫通用突起49a,49b,49cの形状、貫通用突起49a,49b,49cの数や位置等は本実施形態に限定されるものではなく、本発明の要旨の範囲内において種々の変形、変更が可能である。  The shapes of the penetrating members 48 and 48a and the penetrating protrusions 49a, 49b, and 49c, the number and positions of the penetrating protrusions 49a, 49b, and 49c are not limited to the present embodiment. Various modifications and changes can be made within the range.

また、水素発生剤15は、透水性を有する不織布により長尺の袋状に形成され、内部に水素発生剤15を収容した水素発生体16として剤収容室28に収容される。水素発生体16は、流出状態となった反応水14と接触することで水素生成反応を行う部位となる。なお、本実施形態において水素発生剤15は、アルミニウムと水酸化カルシウムとを主成分として含有する混合粉末としている。  Further, the hydrogen generating agent 15 is formed in a long bag shape by a non-woven fabric having water permeability, and is stored in the agent storage chamber 28 as a hydrogen generator 16 in which the hydrogen generating agent 15 is stored. The hydrogen generator 16 becomes a part that performs a hydrogen generation reaction by contacting the reaction water 14 that has flowed out. In the present embodiment, the hydrogen generating agent 15 is a mixed powder containing aluminum and calcium hydroxide as main components.

[カバー体]
また、水素発生ユニットAには、図8(a)、(b)に示すようなカバー体53を装着することができる。カバー体53は、カバー体53を主収容体1に装着することで主収容体1を略被覆すると共に、カバー体53の外部から機械的なエネルギーとしての外力が付与されても非流出状態保持手段が非流出状態を保持することができるように外力遮断部54を備えている。
[Cover body]
Further, a cover body 53 as shown in FIGS. 8A and 8B can be attached to the hydrogen generation unit A. The cover body 53 substantially covers the main container 1 by attaching the cover body 53 to the main container 1 and maintains a non-outflow state even when an external force is applied as mechanical energy from the outside of the cover body 53. An external force blocking portion 54 is provided so that the means can maintain a non-outflow state.

具体的には、カバー体53は、区画室41の脆弱部44側、及びその対向側に意図しない外力が付与されないように区画室41を保護するために、主収容体1の所定箇所に外力遮断部54を設け、主収容体1を略被覆する。  Specifically, the cover body 53 has an external force applied to a predetermined portion of the main container 1 in order to protect the compartment 41 from being applied with an unintended external force on the weak portion 44 side of the compartment 41 and on the opposite side thereof. A blocking portion 54 is provided to substantially cover the main container 1.

カバー体53は、有底の矩形箱状に形成した区画室保護部55と、区画室保護部55の底部56から外方に突出した主水素排出口保護部57と、で構成している。区画室保護部55は、外力遮断部54として、主収容体1の主ケース部1aの表側面を略被覆する第一外力遮断壁58と、主収容体1の主密閉フィルムシート1bの表側面を略被覆する第二外力遮断壁60と、を対向して備えている。  The cover body 53 includes a compartment protection part 55 formed in a rectangular box shape with a bottom, and a main hydrogen discharge port protection part 57 protruding outward from the bottom part 56 of the compartment protection part 55. The compartment protection unit 55 includes, as the external force blocking unit 54, a first external force blocking wall 58 that substantially covers the front side surface of the main case 1 a of the main container 1, and the front side surface of the main sealed film sheet 1 b of the main container 1. And a second external force blocking wall 60 that substantially covers the surface.

第一外力遮断壁58と第二外力遮断壁60は、少なくとも区画室41に外力が付与されない程度の厚みと剛性で形成しており、特に該遮断壁58,60に孔等を穿設する必要はないが、本実施形態に係る第一外力遮断壁58では手指Pが入らない程度の傾倒したH字型の孔59を穿設し、第二外力遮断壁60では左右に台形状の孔61,61を穿設している。  The first external force blocking wall 58 and the second external force blocking wall 60 are formed with a thickness and rigidity at least so that no external force is applied to the compartment 41, and it is particularly necessary to drill holes or the like in the blocking walls 58 and 60. However, the first external force blocking wall 58 according to the present embodiment has an H-shaped hole 59 tilted so as not to enter the finger P, and the second external force blocking wall 60 has a trapezoidal hole 61 on the left and right. , 61 are drilled.

また、主水素排出口保護部57は主水素排出口4を被覆自在に形成している。なお、本実施形態に係る主水素排出口保護部57では、主水素排出口保護部57側の第二外力遮断壁60に開口62を設けているが、開口62の有無は問わない。  Further, the main hydrogen discharge port protecting portion 57 forms the main hydrogen discharge port 4 so as to be covered. In addition, in the main hydrogen discharge port protection part 57 according to the present embodiment, the opening 62 is provided in the second external force blocking wall 60 on the main hydrogen discharge port protection part 57 side, but the presence or absence of the opening 62 does not matter.

[使用方法]
以上、説明したように本実施形態に係る水素発生ユニットAは構成されている。従って、水素ガス17の発生手順としては、まず、図3、図4(a)に示すように、主水素排出口4を上方とした状態で主収容体1の主密閉フィルムシート1bを手指Pで押圧し、副収容体19の水収容室26を被覆している副密閉フィルムシート19bを介して貫通用部材48に外力が伝わることで、貫通用突起49が区画室41の脆弱部44を破断させ、破断孔50から反応水14を流出させる。
[how to use]
As described above, the hydrogen generation unit A according to this embodiment is configured. Therefore, as a generation procedure of the hydrogen gas 17, first, as shown in FIGS. 3 and 4A, the main sealed film sheet 1b of the main container 1 is moved to the finger P with the main hydrogen discharge port 4 facing upward. When the external force is transmitted to the penetrating member 48 via the sub-sealing film sheet 19b covering the water housing chamber 26 of the sub-container 19, the penetrating protrusion 49 causes the fragile portion 44 of the partition chamber 41 to pass through. The reaction water 14 is caused to flow out from the fracture hole 50.

具体的には、区画室41と貫通用部材48からなる非流出状態保持手段を収容した水収容室26は、主ケース部1aを密封する主密閉フィルムシート1bを外方から手指Pにより押圧することで、副ケース部19aを密封する副密閉フィルムシート19bが押され、貫通用突起49が脆弱部44に向かい破断させて破断孔50を現出させ、区画室41に内包された反応水14を破断孔50から流出状態とさせる。すなわち、手指Pによる外力をエネルギーとし、これをトリガーとして反応水14を非流出状態から流出状態へと変化させる。  Specifically, the water storage chamber 26 that stores the non-outflow state holding means including the partition chamber 41 and the penetrating member 48 presses the main sealing film sheet 1b that seals the main case portion 1a with fingers P from the outside. Thus, the sub-sealing film sheet 19b that seals the sub-case portion 19a is pushed, the penetrating protrusion 49 is broken toward the fragile portion 44 to reveal the fracture hole 50, and the reaction water 14 contained in the compartment 41 is obtained. Is caused to flow out of the fracture hole 50. That is, the external force by the finger P is used as energy, and this is used as a trigger to change the reaction water 14 from the non-outflow state to the outflow state.

区画室41から流出した反応水14は、図4(b)、(c)に示すように重力により移動用通路27から剤収容室28へと流れ込み、水素発生体16の表皮を形成する不織布を介して内部の水素発生剤15と接触し、水素生成反応により水素を生起させる。発生した水素ガス17は、不織布を透過して剤収容室28から移動用通路27へと上昇し、更に、水収容室26から狭窄通路23,23を介して副水素排出口24から主収容室2へと流通する。  As shown in FIGS. 4B and 4C, the reaction water 14 flowing out of the compartment 41 flows into the agent storage chamber 28 from the movement passage 27 by gravity, and a non-woven fabric that forms the skin of the hydrogen generator 16 is formed. Through contact with the internal hydrogen generator 15 to generate hydrogen by a hydrogen generation reaction. The generated hydrogen gas 17 passes through the nonwoven fabric and rises from the agent storage chamber 28 to the movement passage 27, and from the water storage chamber 26 through the narrow passages 23, 23 to the main storage chamber from the auxiliary hydrogen discharge port 24. 2 is distributed.

また、主収容室2の水素ガス17は上昇し、主収容体1の上部に形成された狭窄通路3を介して主水素排出口4から外部へと放出される。  Further, the hydrogen gas 17 in the main storage chamber 2 rises and is discharged to the outside from the main hydrogen discharge port 4 through the narrowed passage 3 formed in the upper part of the main storage body 1.

よって、脆弱部44の破断により破断孔50から反応水14を流出させた後は、図5(a)、(b)に示すように調製容器70内に収容した所定液体としての飲用水L中に水素発生ユニットAを投入することで、飲用水L中に水素を含有させて水素含有液を調製することができる。  Therefore, after the reaction water 14 has flowed out of the break hole 50 due to the breakage of the fragile portion 44, as shown in FIGS. 5 (a) and 5 (b), in the drinking water L as a predetermined liquid stored in the preparation container 70 By introducing the hydrogen generating unit A into the potable water L, the hydrogen-containing liquid can be prepared by containing hydrogen in the drinking water L.

調製容器70は、炭酸水等を市販する際に用いられるような耐圧性を有する500ml容量のペットボトル容器であり、中空状の容器本体70aと、同容器本体70aの上部開口に螺合して気密密閉するスクリューキャップ70bとで構成している。なお、本実施形態では容器としてペットボトル(ポリエチレンテレフタレート製容器)を用いているがこれに限定されるものではなく、ガラスやアルミ素材にて形成された容器を用いても良い。  The preparation container 70 is a 500 ml capacity PET bottle container having pressure resistance as used in the market of carbonated water or the like, and is screwed into the hollow container body 70a and the upper opening of the container body 70a. The screw cap 70b is hermetically sealed. In the present embodiment, a PET bottle (polyethylene terephthalate container) is used as a container, but the present invention is not limited to this, and a container formed of glass or aluminum material may be used.

調製容器70内には飲用水Lをボトルネック部近傍(調製容器70の内容積の50分の48〜250分の249)まで収容して液相部とする一方、その上部を気溜まり部71として気相部を形成している。  In the preparation container 70, the potable water L is accommodated up to the vicinity of the bottleneck part (249/48 to 250/250 of the internal volume of the preparation container 70) to be a liquid phase part, while the upper part is a reservoir part 71. As a gas phase part is formed.

具体的には、水素発生ユニットAの主水素排出口4の開口3aを上方とした状態で、飲用水Lが充填された調製容器70の開口部から飲用水L中に浸漬させ、図5(b)に示すようにスクリューキャップ70bにより閉蓋すれば、主水素排出口4の開口3aを上方としたまま水素ガス17を放出する。  Specifically, in the state where the opening 3a of the main hydrogen discharge port 4 of the hydrogen generation unit A is set to the upper side, it is immersed in the drinking water L from the opening of the preparation container 70 filled with the drinking water L, and FIG. If the screw cap 70b is closed as shown in b), the hydrogen gas 17 is released with the opening 3a of the main hydrogen discharge port 4 kept upward.

なお、水素発生ユニットAの長さは、投入する調製容器70の胴部の内径よりも長く形成することで、水素発生ユニットAが調製容器70内で反転したり横になってしまうことを防止できる。しかも、水素発生ユニットAは、主収容室2や副収容室25の水収容室26や剤収容室28の空間、及び該空間に充密する水素ガス17により飲用水L中で浮揚するように構成している。  The length of the hydrogen generation unit A is formed longer than the inner diameter of the body portion of the preparation container 70 to be charged, thereby preventing the hydrogen generation unit A from being inverted or lying down in the preparation container 70. it can. In addition, the hydrogen generation unit A floats in the drinking water L by the water gas storage chamber 26 and the agent storage chamber 28 in the main storage chamber 2 and the sub-accommodation chamber 25 and the hydrogen gas 17 that is packed in the space. It is composed.

放出された水素ガス17は、調製容器70の気溜まり部71を拡張しながら充満し、調製容器70の内圧の上昇と共に飲用水L中に溶存して水素含有液が調製される。  The released hydrogen gas 17 is filled while expanding the reservoir 71 of the preparation container 70, and dissolved in the drinking water L as the internal pressure of the preparation container 70 rises to prepare a hydrogen-containing liquid.

なお、本実施形態に係る水素発生ユニットAは、脆弱部44の破断により反応水14を流出させた後は、10〜15分程度で水素の生成反応が終了するように構成しており、水素含有液の調製後すぐに飲用したい場合には、調製容器の略中央部を把持して手首を中心に左右に略180°、略30秒間すばやく振って攪拌することで略5.0ppmの水素含有液を生成することができる。  The hydrogen generation unit A according to this embodiment is configured so that the hydrogen generation reaction is completed in about 10 to 15 minutes after the reaction water 14 is caused to flow out due to the breakage of the fragile portion 44. If you want to drink immediately after the preparation of the liquid, it contains approximately 5.0 ppm of hydrogen by grasping the approximate center of the preparation container and shaking it approximately 180 ° left and right around the wrist for approximately 30 seconds and stirring. A liquid can be produced.

また、水素の生成反応が終了した後、冷蔵庫で24時間程度静置させ、上述のように攪拌すれば略7.0ppmの水素含有液を生成することができるように構成している。  In addition, after the hydrogen generation reaction is completed, it is allowed to stand in a refrigerator for about 24 hours, and if it is stirred as described above, a hydrogen-containing liquid of about 7.0 ppm can be generated.

飲用時には、スクリューキャップ70bを開蓋すれば調製容器70の開口部近傍に水素発生ユニットAの上端部が現出しているので、水素発生ユニットAを容易に抜去して飲用することができる。  At the time of drinking, if the screw cap 70b is opened, the upper end portion of the hydrogen generating unit A appears in the vicinity of the opening of the preparation container 70, so that the hydrogen generating unit A can be easily removed and drunk.

ここで、水素発生ユニットAの好適な容積(収容体1内部に飲用水Lが浸入しないことを前提とする)について説明する。一般的に飲用水Lが充填された調製容器70内には上述の通り気溜まり部71が存在する。この気溜まり部71は、水素の生成において水素の含有濃度を低下させる要因となるため、水素発生ユニットAを投入してスクリューキャップ70bで閉蓋した際にはできるだけ気溜まり部71が存在しないことが望ましい。  Here, a suitable volume of the hydrogen generation unit A (assuming that the drinking water L does not enter the container 1) will be described. In general, the reservoir 71 is present in the preparation container 70 filled with the drinking water L as described above. Since the gas reservoir 71 is a factor for reducing the hydrogen concentration in the production of hydrogen, the gas reservoir 71 should not exist as much as possible when the hydrogen generation unit A is inserted and the screw cap 70b is closed. Is desirable.

従って、水素発生ユニットAの容積は、水素発生ユニットA投入前の初期的な気溜まり部71の容積と近似したものであるか、それ以上であることが望まれるため、本実施形態に係る水素発生ユニットAにおいてもそのような容積となるように形成し、図5(b)に示すように気溜まり部71がほとんど存在しないように構成している。  Accordingly, the volume of the hydrogen generation unit A is desired to be close to or larger than the initial volume of the gas reservoir 71 before the hydrogen generation unit A is charged. The generating unit A is also formed so as to have such a volume, and is configured so that the air reservoir 71 hardly exists as shown in FIG.

なお、気溜まり部71を最小とする方法としては、生体に無害な材質からなる矩形ブロック状、あるいはビーズ状等のスペーサー部材を別途、調製容器70内に投入することによっても可能である。  As a method for minimizing the air reservoir 71, a spacer member made of a material that is harmless to the living body, such as a rectangular block shape or a bead shape, may be separately introduced into the preparation container 70.

以上、説明したように本実施形態に係る水素発生ユニットAは構成されており、飲用水L中に投入することにより同飲用水L中に水素を含有させて水素含有液を生成する水素発生ユニットAにおいて、同水素発生ユニットAは、含水して水素を発生する水素発生剤15と、水14と、前記水14を前記水素発生剤15と反応しない非流出状態に保持する非流出状態保持手段と、を水素ガス17を外部に放出する孔を有した副放出手段38を備えた副収容体19に収容し、前記副収容体19は、水素ガス17を外部に放出する孔を有した主放出手段18を備えた主収容体1に収容して一体に構成すると共に、前記副収容体19を内包した前記主収容体1は、前記飲用水L中に遊動自在に投入され、前記非流出状態保持手段は、前記主収容体1外から所定量のエネルギーを付与することにより前記非流出状態の前記水14を前記水素発生剤15と反応可能な流出状態に変化させるものであり、前記エネルギーの付与をトリガーとして、前記流出状態となった前記水14を前記水素発生剤15と反応させ、前記副収容体19内にて生成した水素を前記副放出手段38と前記主放出手段18を介して放出することにより、前記飲用水Lの水素発生ユニットA内への浸潤によらず前記水素含有液を生成すべく構成したため、万一、副収容体19内から副放出手段38を介して反応後の水68が流出したとしても、流出した反応後の水68は主収容体1内に留まるため、反応後の水68が水素発生ユニットA外の飲用水L中に流出することを防止できる。  As described above, the hydrogen generation unit A according to the present embodiment is configured as described above, and the hydrogen generation unit generates hydrogen-containing liquid by containing hydrogen in the drinking water L by introducing it into the drinking water L. In A, the hydrogen generation unit A includes a hydrogen generating agent 15 that contains water to generate hydrogen, water 14, and non-outflow state holding means for holding the water 14 in a non-outflowing state that does not react with the hydrogen generating agent 15. Are accommodated in a sub-accommodating body 19 having a sub-releasing means 38 having a hole for releasing the hydrogen gas 17 to the outside, and the sub-accommodating body 19 has a main having a hole for releasing the hydrogen gas 17 to the outside. The main container 1 that is housed and integrally formed in the main container 1 having the discharge means 18 and that includes the auxiliary container 19 is slidably inserted into the drinking water L, and the non-outflow The state holding means is outside the main container 1 The water 14 in the non-outflow state is changed to an outflow state capable of reacting with the hydrogen generating agent 15 by applying a predetermined amount of energy, and the outflow state is triggered by the application of the energy. Further, the water 14 is reacted with the hydrogen generating agent 15, and the hydrogen generated in the sub container 19 is discharged through the sub discharge means 38 and the main discharge means 18, whereby the drinking water L Since the hydrogen-containing liquid is generated regardless of the infiltration into the hydrogen generation unit A, even if the water 68 after the reaction flows out from the sub-container 19 through the sub-release means 38, Since the water 68 after the reaction stays in the main container 1, the water 68 after the reaction can be prevented from flowing into the drinking water L outside the hydrogen generation unit A.

また、水素発生ユニットAの収容体1,19が二重構造等となることで、外側に位置する主収容体1の表面温度は、水素の生成反応による発熱が内部の副収容体19を介して緩和されて伝わるので高温にならず取扱い易く、しかも、主収容体1の外表面で接する調製容器70中の飲用水Lの温度が低くても、副収容体19内に収容された水素発生剤15の温度低下を防止でき、水素の生成反応を阻害することがない。  Further, since the housings 1 and 19 of the hydrogen generation unit A have a double structure or the like, the surface temperature of the main housing 1 located on the outside is such that the heat generated by the hydrogen generation reaction passes through the internal sub-housing 19. Generation of hydrogen contained in the sub container 19 even when the temperature of the drinking water L in the preparation container 70 in contact with the outer surface of the main container 1 is low. The temperature drop of the agent 15 can be prevented and the hydrogen generation reaction is not hindered.

更に、万一、主放出手段18を介して調製容器70中の飲用水Lが内部に侵入したとしても、侵入した飲用水Lは副収容体19の内部には侵入できず水素発生剤15と接することはないので、必要以上の水分が水素発生剤15と触れて水素の生成反応を阻害することはない。  Furthermore, even if the potable water L in the preparation container 70 enters the inside through the main discharge means 18, the penetrating potable water L cannot enter the sub container 19 and the hydrogen generating agent 15. Since they do not come into contact with each other, more water than necessary does not interfere with the hydrogen generation reaction by touching the hydrogen generator 15.

しかも、二重構造の収容体1,19により、単独の収容体からなる水素発生ユニットに比して、意図せず主収容体1外から所定量の外力が付与されても、容易には非流出状態の水14が流出状態に変化しないので、使用者の意思に反した水素ガスの発生を可及的に防止できる。  In addition, the double-structured containers 1 and 19 are not easily affected even when a predetermined amount of external force is applied from the outside of the main container 1 unintentionally as compared to a hydrogen generating unit composed of a single container. Since the outflowing water 14 does not change into the outflowing state, generation of hydrogen gas against the user's intention can be prevented as much as possible.

また、前記副収容体19は、前記水素発生剤15と前記水14と前記非流出状態保持手段とを収容する副収容室25を備え、前記主収容体1は、前記副収容体19を収容する主収容室2を備え、前記非流出状態保持手段は、前記水14を密閉収容して前記非流出状態とする可撓性の区画室41であり、同区画室41は、収容していた前記水14を吐出して前記流出状態とする脆弱部44を有し、前記エネルギーとして前記主収容体1を手指Pで挟持する押圧力が所定量付与されることにより前記脆弱部44を破断し、前記流出状態となった前記水14が前記水素発生剤15と反応して生成した水素を前記副放出手段38と前記主放出手段18を介して放出することにより、前記飲用水Lの水素発生ユニットA内への浸潤によらず前記水素含有液を生成すべく構成したことより、水素発生ユニットAの外形をなす主収容体1を手指Pで挟持しながら脆弱部44を破断する程度に押圧するだけで水14を流出状態にできるので極めて簡便に水素の生成反応を開始させることができ、しかも、収容体の内部に注水する作業が不要となる。  The sub-accommodating body 19 includes a sub-accommodating chamber 25 that accommodates the hydrogen generating agent 15, the water 14, and the non-outflow state holding means, and the main accommodating body 1 accommodates the sub-accommodating body 19. The non-outflow state holding means is a flexible compartment 41 that hermetically accommodates the water 14 to make the non-outflow state, and the compartment 41 was accommodated. It has the weak part 44 which discharges the said water 14, and makes it the said outflow state, The said weak part 44 is fractured | ruptured by giving the pressing force which clamps the said main container 1 with the finger P as said energy. The hydrogen 14 generated by the reaction of the water 14 in the spilled state with the hydrogen generating agent 15 is released through the sub-release means 38 and the main discharge means 18 to generate hydrogen in the drinking water L. Regardless of infiltration into unit A, the hydrogen content Since the main container 1 forming the outer shape of the hydrogen generation unit A is held between the fingers P, the water 14 can be made to flow out simply by pressing it to the extent that the fragile portion 44 is broken. In addition, the hydrogen production reaction can be started, and the work of pouring water into the container is not necessary.

また、前記主放出手段18は管状の狭窄通路3で形成された主水素排出口4を備え、前記副放出手段38は管状の狭窄通路23で形成された副水素排出口24を備えることにより、主・副収容体1,19に別途の部材を使用せずとも主・副収容体1,19の各々に一体の主・副水素排出口4,24を各々形成できるので、水素発生ユニットAを安価に製造でき、経費的に有利である。  The main discharge means 18 includes a main hydrogen discharge port 4 formed by a tubular constriction passage 3, and the sub discharge means 38 includes a sub hydrogen discharge port 24 formed by a tubular constriction passage 23. Since the main and sub hydrogen discharge ports 4 and 24 can be formed in each of the main and sub containers 1 and 19 without using separate members for the main and sub containers 1 and 19, the hydrogen generation unit A can be It can be manufactured inexpensively and is advantageous in terms of cost.

また、前記主・副収容体1,19は可撓性を有する合成樹脂材からなり、前記主収容体1は前記主水素排出口4と連通し、前記副収容体19は前記副水素排出口24と連通し、前記副収容室25には更に貫通用部材48を収容し、前記貫通用部材48は先端先鋭の貫通用突起49a,49b,49cを有し、前記副収容室25には、前記脆弱部44に前記貫通用突起49a,49b,49cを対峙して収容し、前記エネルギーとして前記主収容体1を手指Pで挟持する押圧力が所定量付与されることにより前記貫通用突起49a,49b,49cが前記脆弱部44を破断し、前記流出状態となった前記水14が前記水素発生剤15と反応して生成した水素を前記主・副水素排出口4,24を介して放出することにより、前記飲用水Lの水素発生ユニットA内への浸潤によらず前記水素含有液を生成すべく構成したことより、主収容体1を手指Pで挟持して付与する押圧力が弱くても、貫通用部材48の貫通用突起49a,49b,49cにより容易に脆弱部44を破断させることができるので、少なくとも高齢者など手先の力が弱い者でも容易に水14を流出状態にできるので極めて簡便に水素の生成反応を開始させることができる。  The main / sub-containers 1 and 19 are made of a synthetic resin material having flexibility, the main container 1 communicates with the main hydrogen discharge port 4, and the sub-container 19 includes the sub-hydrogen discharge port. 24, the sub-accommodating chamber 25 further accommodates a penetrating member 48. The penetrating member 48 has penetrating protrusions 49a, 49b, 49c having sharp tips, and the sub-accommodating chamber 25 includes The penetrating protrusions 49a, 49b, 49c are accommodated in the fragile portion 44, and a predetermined amount of pressing force for clamping the main container 1 with fingers P is applied as the energy. , 49b, 49c breaks the fragile portion 44, and the water 14 in the outflow state reacts with the hydrogen generating agent 15 to release the hydrogen generated through the main / sub hydrogen discharge ports 4, 24. To generate hydrogen from the drinking water L. Since the hydrogen-containing liquid is generated regardless of the infiltration into the unit A, the penetrating protrusion of the penetrating member 48 can be obtained even if the pressing force applied by holding the main container 1 with fingers P is weak. Since the weak part 44 can be easily broken by 49a, 49b, 49c, even at least a person with weak hand strength, such as an elderly person, can easily make the water 14 flow out, so that the hydrogen generation reaction can be started very easily. be able to.

また、前記主水素排出口4の開口方向を鉛直方向とし、前記副水素排出口24の開口方向を水平方向として互いが異なる開口方向となるように形成したことより、水14を流出状態として水素の生成反応が開始した後、万一、水素ガス17が反応後の水68と共に上方に噴出したとしても副水素排出口24の開口方向は水平方向であることから反応後の水68が副水素排出口24から流出し難く、更に、水素発生ユニットAを大きく傾けて副水素排出口24の開口方向が略鉛直方向となり、副収容体19内の反応後の水68が副水素排出口24から流出したとしても、その際の主水素排出口4の開口方向は水平方向であることから、そのまま一気に主収容体1の外部に反応後の水68が流出することを防止できる。  Further, since the opening direction of the main hydrogen discharge port 4 is a vertical direction and the opening direction of the sub-hydrogen discharge port 24 is a horizontal direction, the opening directions are different from each other. Even if the hydrogen gas 17 is spouted upward together with the water 68 after the reaction after the start of the production reaction, the opening direction of the secondary hydrogen discharge port 24 is the horizontal direction. Further, the hydrogen generation unit A is not easily flown out, and the opening direction of the sub-hydrogen discharge port 24 is substantially vertical, so that the water 68 after the reaction in the sub-container 19 is discharged from the sub-hydrogen discharge port 24. Even if it flows out, since the opening direction of the main hydrogen discharge port 4 at that time is the horizontal direction, it is possible to prevent the water 68 after reaction from flowing out of the main container 1 as it is.

また、前記主水素排出口4の前記狭窄通路3には、前記主水素排出口4の前記狭窄通路3と連通する前記主収容室2の上部側壁5を左右側部7a,7bと底部8からなる正面視凹状とし、凹状の前記底部8で前記主水素排出口4の前記狭窄通路3の下端部9が連通した逆流防止部6を備えることより、万一、水素発生ユニットAが大きく傾いて、その際に主収容体1内に反応後の水68が存在していた場合、反応後の水68が主水素排出口4側に向かって移動したしたとしても、凹状の底部8に反応後の水68が滞留することは無く、凹状の底部8の左右側部7a,7bのいずれかに反応後の水68が滞留することになるため、反応後の水68が主収容体1の外部の飲用水L中に流出することを防止できる。  Further, in the narrow passage 3 of the main hydrogen discharge port 4, the upper side wall 5 of the main storage chamber 2 communicating with the narrow passage 3 of the main hydrogen discharge port 4 extends from the left and right side portions 7 a and 7 b and the bottom portion 8. The hydrogen generation unit A is greatly inclined by the provision of the backflow prevention portion 6 that is concave in front view and includes the bottom portion 8 that is concave and communicates with the lower end portion 9 of the constriction passage 3 of the main hydrogen discharge port 4. In this case, when the water 68 after the reaction exists in the main container 1, even if the water 68 after the reaction moves toward the main hydrogen discharge port 4 side, Water 68 does not stay, and the water 68 after reaction stays in either of the left and right side portions 7a, 7b of the concave bottom portion 8. Therefore, the water 68 after reaction is outside the main container 1. Can be prevented from flowing into the drinking water L.

また、前記主収容体1の下部側10を先端先鋭に形成したことより、水素発生ユニットAの上下が明確となり、ペットボトル等の調製容器70中の飲用水Lに水素発生ユニットAを投入する向きを直感的に把握することができる。  In addition, since the lower side 10 of the main container 1 is formed to have a sharp tip, the upper and lower sides of the hydrogen generation unit A become clear, and the hydrogen generation unit A is introduced into the drinking water L in the preparation container 70 such as a PET bottle. The direction can be grasped intuitively.

更に、水素発生ユニットAの前記主収容体1に装着自在なカバー体53であり、前記カバー体53は、前記カバー体53を前記主収容体1に装着することで前記主収容体1を略被覆すると共に、前記カバー体53の外部から機械的なエネルギーとしての外力が付与されても前記非流出状態保持手段が前記非流出状態を保持することができるように外力遮断部54を備えたことより、水素発生ユニットAへの意図しない外力の付与により、水14が流出状態となって水素の生成反応が開始されてしまうことを防止できる。  Furthermore, the cover body 53 is attachable to the main container 1 of the hydrogen generation unit A, and the cover body 53 is configured by attaching the cover body 53 to the main container 1 so that the main container 1 is substantially omitted. In addition, the external force blocking portion 54 is provided so that the non-outflow state holding means can maintain the non-outflow state even when an external force as mechanical energy is applied from the outside of the cover body 53. Thus, by applying an unintended external force to the hydrogen generation unit A, it is possible to prevent the water 14 from flowing out and starting a hydrogen generation reaction.

最後に、上述した実施形態の説明は本発明の一例であり、本発明は上述の実施形態に限定されることはない。このため、上述した実施形態以外であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能であることは勿論である。  Finally, the description of the above-described embodiment is an example of the present invention, and the present invention is not limited to the above-described embodiment. For this reason, it is a matter of course that various modifications can be made in accordance with the design and the like as long as they do not depart from the technical idea according to the present invention, even if other than the above-described embodiment.

A 水素発生ユニット
L 液体(飲用水)
P 手指
1 主収容体
2 主収容室
3 狭窄通路
4 主水素排出口
5 上部側壁
6 逆流防止部
7a 左側部
7b 右側部
8 底部
9 下端部
10 下部側
14 水
15 水素発生剤
17 水素ガス
18 主放出手段
19 副収容体
23 狭窄通路
24 副水素排出口
25 副収容室
38 副放出手段
41 区画室
44 脆弱部
48 貫通用部材
48a 貫通用部材
49a 貫通用突起
49b 貫通用突起
49c 貫通用突起
53 カバー体
54 外力遮断部
A Hydrogen generation unit L Liquid (drinking water)
P Finger 1 Main container 2 Main container 3 Constriction passage 4 Main hydrogen outlet 5 Upper side wall 6 Backflow prevention part 7a Left side part 7b Right side part 8 Bottom part 9 Lower end part 10 Lower side part 14 Water 15 Hydrogen generator 17 Hydrogen gas 18 Main Release means 19 Sub-container 23 Narrow passage 24 Sub-hydrogen discharge port 25 Sub-accommodation chamber 38 Sub-release means 41 Compartment chamber 44 Fragile portion 48 Penetration member 48a Penetration member 49a Penetration projection 49b Penetration projection 49c Penetration projection 53 Cover Body 54 External force blocking part

Claims (8)

液体中に投入することにより同液体中に水素を含有させて水素含有液を生成する水素発生ユニットにおいて、
同水素発生ユニットは、
含水して水素を発生する水素発生剤と、
水と、
前記水を前記水素発生剤と反応しない非流出状態に保持する非流出状態保持手段と、を水素ガスを外部に放出する孔を有した副放出手段を備えた副収容体に収容し、
前記副収容体は、水素ガスを外部に放出する孔を有した主放出手段を備えた主収容体に収容して一体に構成すると共に、
前記副収容体を内包した前記主収容体は、前記液体中に遊動自在に投入され、
前記非流出状態保持手段は、前記主収容体外から所定量のエネルギーを付与することにより前記非流出状態の前記水を前記水素発生剤と反応可能な流出状態に変化させるものであり、
前記エネルギーの付与をトリガーとして、前記流出状態となった前記水を前記水素発生剤と反応させ、前記副収容体内にて生成した水素を前記副放出手段と前記主放出手段を介して放出することにより、前記液体の水素発生ユニット内への浸潤によらず前記水素含有液を生成すべく構成したことを特徴とする水素発生ユニット。
In a hydrogen generation unit that generates hydrogen-containing liquid by containing hydrogen in the liquid by introducing into the liquid,
The hydrogen generation unit
A hydrogen generator that contains water to generate hydrogen;
water and,
Storing the water in a non-outflow state retaining means that retains the water in a non-outflow state that does not react with the hydrogen generating agent, and storing the water in a sub-container including a sub-release means having a hole for discharging hydrogen gas to the outside;
The sub-housing is housed in a main housing provided with a main discharge means having a hole for releasing hydrogen gas to the outside, and is configured integrally.
The main container containing the sub container is slidably inserted into the liquid,
The non-outflow state holding means changes the water in the non-outflow state to an outflow state capable of reacting with the hydrogen generating agent by applying a predetermined amount of energy from outside the main container.
Using the energy application as a trigger, the water in the spilled state is reacted with the hydrogen generating agent, and the hydrogen generated in the sub-container is released through the sub-release means and the main release means. Thus, the hydrogen generation unit is configured to generate the hydrogen-containing liquid regardless of infiltration of the liquid into the hydrogen generation unit.
前記副収容体は、前記水素発生剤と前記水と前記非流出状態保持手段とを収容する副収容室を備え、
前記主収容体は、前記副収容体を収容する主収容室を備え、
前記非流出状態保持手段は、前記水を密閉収容して前記非流出状態とする可撓性の区画室であり、同区画室は、収容していた前記水を吐出して前記流出状態とする脆弱部を有し、
前記エネルギーとして前記主収容体を手指で挟持する押圧力が所定量付与されることにより前記脆弱部を破断し、前記流出状態となった前記水が前記水素発生剤と反応して生成した水素を前記副放出手段と前記主放出手段を介して放出することにより、前記液体の水素発生ユニット内への浸潤によらず前記水素含有液を生成すべく構成したことを特徴とする請求項1に記載の水素発生ユニット。
The sub-accommodator comprises a sub-accommodation chamber that accommodates the hydrogen generating agent, the water, and the non-outflow state holding means,
The main housing includes a main housing chamber that houses the sub-housing,
The non-outflow state holding means is a flexible compartment that hermetically accommodates the water to make the non-outflow state, and the compartment discharges the water that has been contained into the outflow state. Has a vulnerable part,
As the energy, a predetermined amount of pressing force for holding the main container with fingers is applied to break the fragile portion, and the water generated by the reaction of the water in the outflow state with the hydrogen generator. The structure according to claim 1, wherein the hydrogen-containing liquid is generated regardless of infiltration of the liquid into the hydrogen generation unit by discharging through the auxiliary discharge means and the main discharge means. Hydrogen generation unit.
前記主放出手段は管状の狭窄通路で形成された主水素排出口を備え、
前記副放出手段は管状の狭窄通路で形成された副水素排出口を備えることを特徴とする請求項1又は請求項2に記載の水素発生ユニット。
The main discharge means comprises a main hydrogen discharge port formed by a tubular constricted passage,
3. The hydrogen generation unit according to claim 1, wherein the secondary discharge means includes a secondary hydrogen discharge port formed by a tubular narrow passage. 4.
前記主・副収容体は可撓性を有する合成樹脂材からなり、
前記主収容体は前記主水素排出口と連通し、
前記副収容体は前記副水素排出口と連通し、前記副収容室には更に貫通用部材を収容し、
前記貫通用部材は先端先鋭の貫通用突起を有し、
前記副収容室には、前記脆弱部に前記貫通用突起を対峙して収容し、
前記エネルギーとして前記主収容体を手指で挟持する押圧力が所定量付与されることにより前記貫通用突起が前記脆弱部を破断し、前記流出状態となった前記水が前記水素発生剤と反応して生成した水素を前記主・副水素排出口を介して放出することにより、前記液体の水素発生ユニット内への浸潤によらず前記水素含有液を生成すべく構成したことを特徴とする請求項3に記載の水素発生ユニット。
The main / sub container is made of a flexible synthetic resin material,
The main container communicates with the main hydrogen outlet;
The sub-accommodator communicates with the sub-hydrogen outlet, and the sub-accommodating chamber further accommodates a penetrating member,
The penetrating member has a penetrating protrusion with a sharp tip;
In the sub-accommodating chamber, the penetrating protrusion is opposed to and accommodated in the fragile portion,
A predetermined amount of pressing force for holding the main container with fingers is applied as the energy, so that the penetrating protrusion breaks the fragile portion, and the water that has flowed out reacts with the hydrogen generating agent. The hydrogen-containing liquid is configured to be generated regardless of infiltration of the liquid into the hydrogen generation unit by discharging the hydrogen generated through the main / sub hydrogen discharge port. 3. The hydrogen generation unit according to 3.
前記主水素排出口の開口方向を鉛直方向とし、前記副水素排出口の開口方向を水平方向として互いが異なる開口方向となるように形成したことを特徴とする請求項3又は請求項4に記載の水素発生ユニット。  The opening direction of the main hydrogen discharge port is defined as a vertical direction, and the opening direction of the sub hydrogen discharge port is defined as a horizontal direction so that the opening directions are different from each other. Hydrogen generation unit. 前記主水素排出口の前記狭窄通路には、前記主水素排出口の前記狭窄通路と連通する前記主収容室の上部側壁を左右側部と底部からなる正面視凹状とし、凹状の前記底部で前記主水素排出口の前記狭窄通路の下端部が連通した逆流防止部を備えることを特徴とする請求項3乃至請求項5のいずれか1項に記載の水素発生ユニット。  In the narrowed passage of the main hydrogen discharge port, the upper side wall of the main storage chamber communicating with the narrowed passage of the main hydrogen discharge port has a concave shape when viewed from the front consisting of left and right side portions and a bottom portion, and the concave bottom portion The hydrogen generation unit according to any one of claims 3 to 5, further comprising a backflow prevention unit that communicates with a lower end portion of the narrow passage of the main hydrogen discharge port. 前記主収容体の下部側を先端先鋭に形成したことを特徴とする請求項1乃至請求項6のいずれか1項に記載の水素発生ユニット。  The hydrogen generation unit according to any one of claims 1 to 6, wherein a lower end side of the main container is formed with a sharp tip. 請求項1乃至請求項7のいずれか1項に記載の水素発生ユニットの前記主収容体に装着自在なカバー体であり、
前記カバー体は、前記カバー体を前記主収容体に装着することで前記主収容体を略被覆すると共に、前記カバー体の外部から機械的なエネルギーとしての外力が付与されても前記非流出状態保持手段が前記非流出状態を保持することができるように外力遮断部を備えたことを特徴とする水素発生ユニットのカバー体。
A cover body that is attachable to the main container of the hydrogen generation unit according to any one of claims 1 to 7,
The cover body substantially covers the main container by attaching the cover body to the main container, and the non-outflow state even when an external force as mechanical energy is applied from the outside of the cover body A cover body for a hydrogen generation unit, characterized in that an external force blocking portion is provided so that the holding means can hold the non-outflow state.
JP2017544169A 2015-10-09 2015-10-09 Hydrogen generation unit Expired - Fee Related JP6648879B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/078832 WO2017061056A1 (en) 2015-10-09 2015-10-09 Hydrogen generation unit

Publications (2)

Publication Number Publication Date
JPWO2017061056A1 true JPWO2017061056A1 (en) 2018-07-26
JP6648879B2 JP6648879B2 (en) 2020-02-14

Family

ID=58488317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017544169A Expired - Fee Related JP6648879B2 (en) 2015-10-09 2015-10-09 Hydrogen generation unit

Country Status (3)

Country Link
JP (1) JP6648879B2 (en)
TW (1) TW201733902A (en)
WO (1) WO2017061056A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7054500B2 (en) 2017-06-09 2022-04-14 J.E.A株式会社 Hydrogen gas generator
WO2019045048A1 (en) * 2017-09-01 2019-03-07 協同組合企業情報センター Hydrogen gas inhalation device, cartridge for housing hydrogen gas generating material, and hydrogen gas generating material
CN110500092A (en) * 2019-03-27 2019-11-26 徐州和润起重设备技术有限公司 A kind of fluting manipulator
CN113755869B (en) * 2021-08-26 2022-10-11 未来健康生命科技(深圳)有限公司 Household distributed hydrogen machine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6028182B2 (en) * 2012-07-06 2016-11-16 株式会社光未来 Hydrogen gas sealing bag and method for dissolving hydrogen gas
WO2015011846A1 (en) * 2013-07-26 2015-01-29 Takehara Takashi Hydrogen generator, and hydrogen generation container
JP5613853B1 (en) * 2014-04-11 2014-10-29 五十嵐 秀夫 Portable hydrogen water generating apparatus and hydrogen gas generating member used in the apparatus
JP5818186B1 (en) * 2014-04-11 2015-11-18 エコモ・インターナショナル株式会社 Hydrogen generation unit
WO2015156415A1 (en) * 2014-04-11 2015-10-15 エコモ・インターナショナル株式会社 Hydrogen generation unit
JP5777791B1 (en) * 2014-12-11 2015-09-09 富士産業株式会社 Hydrogen water production equipment

Also Published As

Publication number Publication date
WO2017061056A1 (en) 2017-04-13
JP6648879B2 (en) 2020-02-14
TW201733902A (en) 2017-10-01

Similar Documents

Publication Publication Date Title
JP5871218B1 (en) Hydrogen generation unit
WO2017061056A1 (en) Hydrogen generation unit
JP5888634B2 (en) Hydrogen generation unit
US7465428B2 (en) Method and apparatus for controlled production of a gas
EP3031745B1 (en) Beverage-containing pouch container
US20150344204A1 (en) Ingredient dispensing container cap with drink through passage
US20200325045A1 (en) Hydrogen gas generating body
WO2015156415A1 (en) Hydrogen generation unit
US20070160506A1 (en) Method and apparatus for controlled production of a gas
EP2159165A1 (en) Apparatus for thermal conditioning a product
CA2596247A1 (en) Method and apparatus for controlled production of a gas
JP2009161212A (en) Plastic bag-like container
JP2016043110A (en) Hydrogen water impregnated material receiver and hydrogen water impregnated material receiver set
JP2018001041A (en) Hydrogen generation unit
JP3686930B2 (en) Heating unit and heating container
WO2006004322A1 (en) Disposable food heating pouch having water discharge/inflow prevention structure
KR20160133398A (en) Medical container
JP2018001040A (en) Hydrogen generation unit
JP2019189320A (en) Drinking water container
JPH11253526A (en) Sealing member, substance deterioration preventive structure using the same, and container for transfusion
IT1212026B (en) Single-use, self-heating container

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190716

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200106

R150 Certificate of patent or registration of utility model

Ref document number: 6648879

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees