JP6648879B2 - Hydrogen generation unit - Google Patents

Hydrogen generation unit Download PDF

Info

Publication number
JP6648879B2
JP6648879B2 JP2017544169A JP2017544169A JP6648879B2 JP 6648879 B2 JP6648879 B2 JP 6648879B2 JP 2017544169 A JP2017544169 A JP 2017544169A JP 2017544169 A JP2017544169 A JP 2017544169A JP 6648879 B2 JP6648879 B2 JP 6648879B2
Authority
JP
Japan
Prior art keywords
hydrogen
main
sub
water
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2017544169A
Other languages
Japanese (ja)
Other versions
JPWO2017061056A1 (en
Inventor
和久 福岡
和久 福岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ECOMO INTERNATIONAL CO., LTD.
Original Assignee
ECOMO INTERNATIONAL CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ECOMO INTERNATIONAL CO., LTD. filed Critical ECOMO INTERNATIONAL CO., LTD.
Publication of JPWO2017061056A1 publication Critical patent/JPWO2017061056A1/en
Application granted granted Critical
Publication of JP6648879B2 publication Critical patent/JP6648879B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/08Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents with metals
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Description

本発明は、液体中に水素を含有させて水素含有液を生成する水素発生ユニットに関する。  The present invention relates to a hydrogen generation unit that generates hydrogen-containing liquid by containing hydrogen in liquid.

我々が日常的に摂取する水は、健康の基礎作りとして極めて重要な役割を果たしており、人々の間で健康志向が高まる中、飲用水への注目が更に高まっている。  The water we consume on a daily basis plays an extremely important role in laying the foundation for health, and with increasing health consciousness among people, the focus on drinking water is increasing.

従来より、このようなニーズに合致するような飲用水は種々提案されており、例えば、飲用水中に酸素を多量に溶存させた酸素水や、水素を溶存させた水素水が知られている。  Conventionally, various types of drinking water that meet such needs have been proposed, for example, oxygen water in which a large amount of oxygen is dissolved in drinking water and hydrogen water in which hydrogen is dissolved are known. .

特に、分子状水素を含有させた水素水は、生体内酸化ストレスの低下や、血中LDLの増加抑制など、健康に寄与する報告が種々なされている。  In particular, there have been various reports that hydrogen water containing molecular hydrogen contributes to health, such as reduction of oxidative stress in a living body and suppression of increase in blood LDL.

このような水素水は、水中に水素を溶存させることで生成されるのであるが、水素の入手や純粋な水素を水中に溶解させることは一般には困難である。  Such hydrogen water is generated by dissolving hydrogen in water, but it is generally difficult to obtain hydrogen or dissolve pure hydrogen in water.

また、水中に溶存させた水素は、水素透過性の極めて低い容器を用いない限り時間と共に徐々に抜けてしまうため、水素水の調製後できるだけ速やかに飲用に供するのが望ましい。  In addition, hydrogen dissolved in water gradually escapes with time unless a container having extremely low hydrogen permeability is used. Therefore, it is desirable to supply hydrogen as quickly as possible after preparation of hydrogen water.

そこで、一般家庭などにおいても手軽に水素水を調製できるよう、数cm程度の有底筒状容器の内部に水素発生剤を封入した水素添加器具が提案されている(例えば、特許文献1参照。)。  Therefore, a hydrogenation device in which a hydrogen generating agent is sealed in a bottomed cylindrical container of about several cm so that hydrogen water can be easily prepared even in ordinary households has been proposed (for example, see Patent Document 1). ).

このような水素添加器具によれば、水を収容したペットボトル等の容器内に投入して密閉することで、水中に水素を含有させて水素水を生成できるとしている。  According to such a hydrogenation device, it is described that hydrogen water can be generated by containing hydrogen in water by putting it into a container such as a PET bottle containing water and sealing it.

ところが、特許文献1に係る従来の水素添加器具は、水素発生剤を防湿包装袋から取出し、この水素発生剤を別途密閉容器に挿入し、さらに水素発生剤と反応させるための水を所定量添加して閉蓋するという作業が必要となる。  However, in the conventional hydrogenation device according to Patent Document 1, the hydrogen generator is taken out of the moisture-proof packaging bag, the hydrogen generator is separately inserted into a closed container, and a predetermined amount of water for reacting with the hydrogen generator is added. And then close the lid.

このような煩雑な作業は、特に高齢者など手先の細かな作業が不得手な者にとっては困難であり、より手軽に水素水を生成できる手段が望まれていたところ、本願発明者が既に発明し出願している特許文献2や特許文献3に係る水素発生ユニットでは、含水して水素を発生する水素発生剤と、水と、水を水素発生剤と反応しない非流出状態に保持する非流出状態保持手段と、を水素ガスを外部に放出する孔を有した放出手段を備えた収容体に収容して構成すると共に、非流出状態保持手段は、収容体外から所定量のエネルギーを付与することにより非流出状態の水を水素発生剤と反応可能な流出状態に変化させるものであり、エネルギーの付与をトリガーとして、流出状態となった水を水素発生剤と反応させ、収容体内にて生成した水素を放出手段を介して放出することにより、液体(以下、飲用水と同義とする。)の水素発生ユニット内への浸潤によらず水素含有液を生成すべく構成した水素発生ユニットを見出している。  Such complicated work is difficult especially for elderly people who are not good at detailed work such as the elderly, and a means for easily generating hydrogen water was desired. In the hydrogen generation units according to Patent Documents 2 and 3, which have been filed, a hydrogen generating agent that generates hydrogen by containing water, water, and a non-outflow liquid that maintains water in a non-outflow state that does not react with the hydrogen generating agent. The state holding means and the container are provided in a container provided with a discharging means having a hole for discharging hydrogen gas to the outside, and the non-outflow state holding means applies a predetermined amount of energy from outside the container. Changes the water in a non-outflow state into an outflow state capable of reacting with the hydrogen generating agent, and the water in the outflow state is reacted with the hydrogen generating agent, triggered by the application of energy, and is generated in the container. Release hydrogen By releasing via means, liquid (hereinafter referred to. As drinking water synonymous) have found a structure hydrogen generating unit to produce a hydrogen-containing liquid regardless of the invasion of the hydrogen generating unit of.

すなわち、水素発生ユニットを防湿包装袋から取出した後は、収容体の外部から手指で挟持する押圧力により水を流出状態として水素の発生を開始させ、キャップを有するペットボトル等の調製容器中の飲用水に水素発生ユニットを投入して閉蓋するだけで水素を含有させた水素含有液を生成でき、従来の水素添加器具に比して、水素含有液をより手軽に生成可能な水素発生ユニットを提供することができるものである。  That is, after taking out the hydrogen generation unit from the moisture-proof packaging bag, the generation of hydrogen is started by causing water to flow out by a pressing force that is pinched by a finger from the outside of the container, and generation of hydrogen is started in a preparation container such as a PET bottle having a cap. A hydrogen-generating unit that can generate a hydrogen-containing liquid containing hydrogen simply by putting the hydrogen-generating unit into drinking water and closing the lid, making it easier to generate a hydrogen-containing liquid than conventional hydrogenation equipment Can be provided.

特開2012−020962号公報JP 2012-020962 A 特願2015−000740Japanese Patent Application No. 2015-000740 特願2015−081949Japanese Patent Application No. 2005-081949

上記特許文献2、3に係る水素発生ユニットは、少なくとも高齢者など手先の細かな作業が不得手な者であっても水素含有液を手軽に得られる点で非常に優れており、水素含有液の世界的な普及には欠かすことができない技術である。  The hydrogen generation units according to Patent Literatures 2 and 3 are very excellent in that a hydrogen-containing liquid can be easily obtained even by a person who is at least inexperienced in detailed work such as the elderly. It is a technology that is indispensable for the global spread of.

しかしながら、特許文献2に係る水素発生ユニットでは、水素ガスの放出手段として加工が難しく高価な半透膜等の部材を用いる必要があり、多くの一般消費者に安価に提供するには他の技術分野も含めた更なる技術開発の進展を待つ必要がある。  However, in the hydrogen generation unit according to Patent Document 2, it is necessary to use a member such as a semipermeable membrane which is difficult to process and is expensive as a means for releasing hydrogen gas. It is necessary to wait for further technological development including the field.

また、特許文献2に係る水素発生ユニットは、水素排出口を形成する狭窄通路を備えた合成樹脂材からなる収容体を用いることで一般消費者に安価に提供することができる。また、本願発明者による数多くの実験から、水素の生成後に収容体内部に残る反応済みの水を含む副生成物が水素排出口から調製容器中の飲用水(以下、液体と同義とする。)に流出しないことが確認されており、水素発生ユニットの使用者が予期せぬ使用方法を実施した場合であっても、逆流防止部やトラップ室等の形成により飲用水への流出防止を図っている。  Further, the hydrogen generation unit according to Patent Document 2 can be provided to general consumers at low cost by using a container made of a synthetic resin material having a narrowed passage forming a hydrogen discharge port. Also, from numerous experiments conducted by the inventor of the present application, by-products including reacted water remaining inside the container after the generation of hydrogen have been discharged from the hydrogen outlet into drinking water in the preparation container (hereinafter, synonymous with liquid). Even if the user of the hydrogen generation unit performs an unexpected use, it is necessary to prevent leakage to drinking water by forming a backflow prevention part and a trap chamber. I have.

しかしながら、水素排出口は機械的な狭窄通路であることから、水素発生ユニットの使用者による予期せぬ使用方法を実施した場合にまで飲用水への流出防止を完全に図ることができるか否かについては疑問があった。  However, since the hydrogen outlet is a mechanical constricted passage, it is possible to completely prevent the outflow to drinking water even when the user of the hydrogen generating unit performs an unexpected use method. I had a question about

このような事情に鑑みて本願本発明は、従来の水素発生ユニットに比して収容体内の水素生成後の副生成物の飲用水への流出防止を強化した水素発生ユニットを提供する。  In view of such circumstances, the present invention provides a hydrogen generation unit in which prevention of outflow of by-products after generation of hydrogen in a container into drinking water is enhanced as compared with a conventional hydrogen generation unit.

上記従来の課題を解決するために、本発明に係る水素発生ユニットでは、
(1)液体中に投入することにより同液体中に水素を含有させて水素含有液を生成する水素発生ユニットにおいて、同水素発生ユニットは、含水して水素を発生する水素発生剤と、水と、前記水を前記水素発生剤と反応しない非流出状態に保持する非流出状態保持手段と、を水素ガスを外部に放出する孔を有した副放出手段を備えた副収容体に収容し、前記副収容体は、水素ガスを外部に放出する孔を有した主放出手段を備えた主収容体に収容して一体に構成すると共に、前記副収容体を内包した前記主収容体は、前記液体中に遊動自在に投入され、前記非流出状態保持手段は、前記主収容体外から所定量の機械的なエネルギーとしての外力を付与することにより前記非流出状態の前記水を前記水素発生剤と反応可能な流出状態に変化させるものであり、前記外力の付与をトリガーとして、前記流出状態となった前記水を前記水素発生剤と反応させ、前記副収容体内にて生成した水素を前記副放出手段と前記主放出手段を介して放出することにより、前記液体の水素発生ユニット内への浸潤によらず前記水素含有液を生成すべく構成した。
In order to solve the above conventional problems, in the hydrogen generation unit according to the present invention,
(1) A hydrogen generating unit that generates hydrogen-containing liquid by introducing hydrogen into the liquid by being injected into the liquid, the hydrogen generating unit includes: a hydrogen generating agent that generates hydrogen by containing water; A non-outflow state holding unit for holding the water in a non-outflow state that does not react with the hydrogen generating agent, and a sub-container having a sub-release unit having a hole for releasing hydrogen gas to the outside, The sub-container is housed and integrally formed in a main container having a main discharge means having a hole for discharging hydrogen gas to the outside, and the main container including the sub-container is provided with the liquid The non-outflow state holding means reacts the water in the non-outflow state with the hydrogen generating agent by applying a predetermined amount of external force from outside the main container as mechanical energy. Change to a possible spill state And than, as a trigger the application of the external force, the said water became outflow state is reacted with the hydrogen generating agent, the hydrogen produced by said sub-container body through said main discharge means and the secondary discharge means By discharging, the hydrogen-containing liquid is generated without depending on infiltration of the liquid into the hydrogen generation unit.

また、本発明に係る水素発生ユニットでは、以下の点にも特徴を有する。
(2)前記副収容体は、前記水素発生剤と前記水と前記非流出状態保持手段とを収容する副収容室を備え、前記主収容体は、前記副収容体を収容する主収容室を備え、前記非流出状態保持手段は、前記水を密閉収容して前記非流出状態とする可撓性の区画室であり、同区画室は、収容していた前記水を吐出して前記流出状態とする脆弱部を有し、前記外力として前記主収容体を手指で挟持する押圧力が所定量付与されることにより前記脆弱部を破断し、前記流出状態となった前記水が前記水素発生剤と反応して生成した水素を前記副放出手段と前記主放出手段を介して放出することにより、前記液体の水素発生ユニット内への浸潤によらず前記水素含有液を生成すべく構成したこと。
(3)前記主放出手段は管状の狭窄通路で形成された主水素排出口を備え、前記副放出手段は管状の狭窄通路で形成された副水素排出口を備えること。
(4)前記主・副収容体は可撓性を有する合成樹脂材からなり、前記主収容体は前記主水素排出口と連通し、前記副収容体は前記副水素排出口と連通し、前記副収容室には更に貫通用部材を収容し、前記貫通用部材は先端先鋭の貫通用突起を有し、前記副収容室には、前記脆弱部に前記貫通用突起を対峙して収容し、前記外力として前記主収容体を手指で挟持する押圧力が所定量付与されることにより前記貫通用突起が前記脆弱部を破断し、前記流出状態となった前記水が前記水素発生剤と反応して生成した水素を前記主・副水素排出口を介して放出することにより、前記液体の水素発生ユニット内への浸潤によらず前記水素含有液を生成すべく構成したこと。
(5)前記主水素排出口の開口方向を鉛直方向とし、前記副水素排出口の開口方向を水平方向として互いが異なる開口方向となるように形成したこと。
(6)前記主水素排出口の前記狭窄通路には、前記主水素排出口の前記狭窄通路と連通する前記主収容室の上部側壁を左右側部と底部からなる正面視凹状とし、凹状の前記底部で前記主水素排出口の前記狭窄通路の下端部が連通した逆流防止部を備えること。
(7)前記主収容体の下部側を先端先鋭に形成したこと。
(8)水素発生ユニットの前記主収容体に装着自在なカバー体であり、前記カバー体は、前記カバー体を前記主収容体に装着することで前記主収容体を略被覆すると共に、前記カバー体の外部から機械的なエネルギーとしての外力が付与されても前記非流出状態保持手段が前記非流出状態を保持することができるように外力遮断部を備えた水素発生ユニットのカバー体を備えること
In addition, the hydrogen generation unit according to the present invention has the following features.
(2) The sub-accommodating body includes a sub-accommodating chamber for accommodating the hydrogen generating agent, the water, and the non-outflow state holding unit, and the main accommodating body includes a main accommodating chamber for accommodating the sub-accommodating body. The non-outflow state holding means is a flexible compartment that hermetically accommodates the water so as to be in the non-outflow state, and the compartment discharges the stored water to produce the outflow state. The weak force is applied, and a predetermined amount of pressing force for holding the main container with fingers is applied as the external force to break the weak portion, and the water that has flowed out is the hydrogen generating agent. Discharging the hydrogen generated by the reaction through the sub-release means and the main release means, thereby generating the hydrogen-containing liquid regardless of infiltration of the liquid into the hydrogen generation unit.
(3) The main discharge means has a main hydrogen discharge port formed by a tubular constricted passage, and the sub discharge means has a secondary hydrogen discharge port formed by a tubular constricted passage.
(4) the main and sub-containers are made of a flexible synthetic resin material, the main container communicates with the main hydrogen outlet, the sub-container communicates with the sub-hydrogen outlet, The sub-accommodation chamber further accommodates a penetrating member, the penetrating member has a penetrating projection with a sharp tip, and the sub-accommodating chamber accommodates the penetrating projection opposite to the fragile portion, By applying a predetermined amount of pressing force for holding the main container with fingers as the external force , the penetration projection breaks the fragile portion, and the water that has flowed out reacts with the hydrogen generating agent. Discharging the generated hydrogen through the main and sub-hydrogen discharge ports to generate the hydrogen-containing liquid regardless of the infiltration of the liquid into the hydrogen generation unit.
(5) The opening direction of the main hydrogen outlet is a vertical direction, and the opening direction of the secondary hydrogen outlet is a horizontal direction.
(6) In the constricted passage of the main hydrogen outlet, an upper side wall of the main storage chamber communicating with the constricted passage of the main hydrogen outlet has a concave shape in a front view including right and left side portions and a bottom portion. A backflow prevention portion is provided at a bottom portion where a lower end portion of the constricted passage of the main hydrogen discharge port communicates.
(7) The lower portion of the main container is formed to have a sharp tip.
(8) A cover body that can be attached to the main container of the hydrogen generation unit, and the cover body covers the main container substantially by attaching the cover body to the main container. a cover member for hydrogen generation unit with an external force blocking part so that it can bodies from outside mechanical said non outflow state holding means even if an external force is applied as an energy of holding the non-outflow state That .

本発明に係る水素発生ユニットによれば、液体中に投入することにより同液体中に水素を含有させて水素含有液を生成する水素発生ユニットにおいて、同水素発生ユニットは、含水して水素を発生する水素発生剤と、水と、前記水を前記水素発生剤と反応しない非流出状態に保持する非流出状態保持手段と、を水素ガスを外部に放出する孔を有した副放出手段を備えた副収容体に収容し、前記副収容体は、水素ガスを外部に放出する孔を有した主放出手段を備えた主収容体に収容して一体に構成すると共に、前記副収容体を内包した前記主収容体は、前記液体中に遊動自在に投入され、前記非流出状態保持手段は、前記主収容体外から所定量の機械的なエネルギーとしての外力を付与することにより前記非流出状態の前記水を前記水素発生剤と反応可能な流出状態に変化させるものであり、前記外力の付与をトリガーとして、前記流出状態となった前記水を前記水素発生剤と反応させ、前記副収容体内にて生成した水素を前記副放出手段と前記主放出手段を介して放出することにより、前記液体の水素発生ユニット内への浸潤によらず前記水素含有液を生成すべく構成したため、万一、副収容体内から副放出手段を介して反応後の水が流出したとしても、流出した反応後の水は主収容体内に留まるため、反応後の水が水素発生ユニット外の液体中に流出することを防止できる。 According to the hydrogen generation unit according to the present invention, in the hydrogen generation unit that contains a liquid by introducing hydrogen into the liquid to generate a hydrogen-containing liquid, the hydrogen generation unit generates water by containing water A hydrogen generating agent, water, and a non-outflow state holding unit that holds the water in a non-outflow state that does not react with the hydrogen generating agent, and a secondary release unit that has a hole that releases hydrogen gas to the outside. The sub-container is housed in the sub-container, and the sub-container is housed and integrally formed in a main container having a main discharge unit having a hole for releasing hydrogen gas to the outside, and the sub-container is included therein. The main container is movably charged into the liquid, and the non-outflow state holding unit applies the external force as a predetermined amount of mechanical energy from outside the main container to thereby maintain the non-outflow state. Water to the hydrogen generator The reaction is intended to be changed to allow outflow state, as a trigger the application of the external force, the said water became outflow state is reacted with the hydrogen generating agent, produced hydrogen the secondary discharge at the sub-container body By discharging the liquid through the means and the main discharge means, the hydrogen-containing liquid is generated regardless of the infiltration of the liquid into the hydrogen generation unit. Even if the post-reaction water flows out, the post-reaction water stays in the main container, so that the post-reaction water can be prevented from flowing into the liquid outside the hydrogen generation unit.

また、水素発生ユニットの収容体が二重構造となることで、外側に位置する主収容体の表面温度は、水素の生成反応による発熱が内部の副収容体を介して緩和されて伝わるので高温にならず取扱い易く、しかも、主収容体の外表面で接する調製容器中の液体の温度が低くても、副収容体内に収容された水素発生剤の温度低下を防止でき、水素の生成反応を阻害することがない。  In addition, since the housing of the hydrogen generation unit has a double structure, the surface temperature of the outer main housing is high because the heat generated by the hydrogen generation reaction is reduced and transmitted through the internal sub-housing. It is easy to handle, and even if the temperature of the liquid in the preparation container that is in contact with the outer surface of the main container is low, it is possible to prevent the temperature of the hydrogen generator contained in the sub-container from lowering, and to reduce the hydrogen generation reaction. Does not inhibit.

更に、万一、主放出手段を介して調製容器中の液体が内部に侵入したとしても、侵入した液体は副収容体の内部には侵入できず水素発生剤と接することはないので、必要以上の水分が水素発生剤と触れて水素の生成反応を阻害することはない。  Furthermore, even if the liquid in the preparation container enters the interior via the main release means, the intruded liquid cannot enter the interior of the sub-container and does not come into contact with the hydrogen generating agent. Does not interfere with the hydrogen generation reaction by contact with the hydrogen generating agent.

しかも、二重構造の収容体により、単独の収容体からなる水素発生ユニットに比して、意図せず主収容体外から所定量の外力が付与されても、容易には非流出状態の水が流出状態に変化しないので、使用者の意思に反した水素ガスの発生を可及的に防止できる。  In addition, compared to the hydrogen generating unit having a single container, even if a predetermined amount of external force is applied unintentionally from the outside of the main container, the water in the non-outflow state can be easily provided by the double-structured container. Since it does not change to the outflow state, generation of hydrogen gas contrary to the user's intention can be prevented as much as possible.

また、前記副収容体は、前記水素発生剤と前記水と前記非流出状態保持手段とを収容する副収容室を備え、前記主収容体は、前記副収容体を収容する主収容室を備え、前記非流出状態保持手段は、前記水を密閉収容して前記非流出状態とする可撓性の区画室であり、同区画室は、収容していた前記水を吐出して前記流出状態とする脆弱部を有し、前記外力として前記主収容体を手指で挟持する押圧力が所定量付与されることにより前記脆弱部を破断し、前記流出状態となった前記水が前記水素発生剤と反応して生成した水素を前記副放出手段と前記主放出手段を介して放出することにより、前記液体の水素発生ユニット内への浸潤によらず前記水素含有液を生成すべく構成したことより、水素発生ユニットの外形をなす主収容体を手指で挟持しながら脆弱部を破断する程度に押圧するだけで水を流出状態にできるので極めて簡便に水素の生成反応を開始させることができ、しかも、収容体の内部に注水する作業が不要となる。 The sub-container includes a sub-container for accommodating the hydrogen generating agent, the water, and the non-outflow state holding unit, and the main container includes a main accommodating chamber for accommodating the sub-container. The non-outflow state holding means is a flexible compartment that hermetically accommodates the water to be in the non-outflow state, and the compartment is configured to discharge the stored water and perform the outflow state. Having a weakened portion, a predetermined amount of pressing force for pinching the main container with fingers is applied as the external force to break the weakened portion, and the water that has flowed out has the hydrogen generating agent and By discharging the hydrogen generated by the reaction through the sub-release means and the main release means, the hydrogen-containing liquid is configured to be generated regardless of infiltration of the liquid into the hydrogen generation unit, Hold the main container, which is the outer shape of the hydrogen generation unit, with your fingers While very easily can start the production reaction of hydrogen because it to flow out state of water by simply pressing enough to break the weakened part, moreover, the task of water injection to the interior of the container is not required.

また、前記主放出手段は管状の狭窄通路で形成された主水素排出口を備え、前記副放出手段は管状の狭窄通路で形成された副水素排出口を備えることにより、主・副収容体に別途の部材を使用せずとも主・副収容体の各々に一体の主・副水素排出口を各々形成できるので、水素発生ユニットを安価に製造でき、経費的に有利である。  Further, the main discharge means includes a main hydrogen discharge port formed by a tubular constricted passage, and the sub discharge means includes a sub hydrogen discharge port formed by a tubular constricted passage. Since the main and sub-hydrogen discharge ports can be respectively formed in each of the main and sub-containers without using a separate member, the hydrogen generation unit can be manufactured at low cost, which is advantageous in cost.

また、前記主・副収容体は可撓性を有する合成樹脂材からなり、前記主収容体は前記主水素排出口と連通し、前記副収容体は前記副水素排出口と連通し、前記副収容室には更に貫通用部材を収容し、前記貫通用部材は先端先鋭の貫通用突起を有し、前記副収容室には、前記脆弱部に前記貫通用突起を対峙して収容し、前記外力として前記主収容体を手指で挟持する押圧力が所定量付与されることにより前記貫通用突起が前記脆弱部を破断し、前記流出状態となった前記水が前記水素発生剤と反応して生成した水素を前記主・副水素排出口を介して放出することにより、前記液体の水素発生ユニット内への浸潤によらず前記水素含有液を生成すべく構成したことより、主収容体を手指で挟持して付与する押圧力が弱くても、貫通用部材の貫通用突起により容易に脆弱部を破断させることができるので、少なくとも高齢者など手先の力が弱い者でも容易に水を流出状態にできるので極めて簡便に水素の生成反応を開始させることができる。 The main and sub-containers are made of a flexible synthetic resin material, the main container communicates with the main hydrogen outlet, the sub-container communicates with the sub-hydrogen outlet, and the sub-container communicates with the sub-hydrogen outlet. The accommodating chamber further accommodates a penetrating member, the penetrating member has a penetrating projection with a sharp tip, and the sub-accommodating chamber accommodates the penetrating projection facing the weak portion, By applying a predetermined amount of pressing force for holding the main container with fingers as an external force , the penetration projection breaks the fragile portion, and the water that has flowed out reacts with the hydrogen generating agent. By discharging the generated hydrogen through the main and sub-hydrogen outlets to generate the hydrogen-containing liquid irrespective of the infiltration of the liquid into the hydrogen generation unit, the main container is manually operated. Even if the pressing force applied by pinching is weak, Since it is possible to break easily fragile portion by force, it is possible to start the very simply the hydrogen production reaction because the easy water at least those forces of the hand, such as the elderly is low can the outflow state.

また、前記主水素排出口の開口方向を鉛直方向とし、前記副水素排出口の開口方向を水平方向として互いが異なる開口方向となるように形成したことより、水を流出状態として水素の生成反応が開始した後、万一、水素ガスが水と共に上方に噴出したとしても副水素排出口の開口方向は水平方向であることから反応後の水は副水素排出口から流出し難く、更に、水素発生ユニットを大きく傾けて副水素排出口の開口方向が略鉛直方向となり、副収容体内の反応後の水が副水素排出口から流出したとしても、その際の主水素排出口の開口方向は水平方向であることから、そのまま一気に主収容体の外部に反応後の水流出することを防止できる。  Further, since the opening direction of the main hydrogen discharge port is set to be a vertical direction, and the opening direction of the sub-hydrogen discharge port is set to be a horizontal direction, the opening directions are different from each other. After the start of the reaction, even if hydrogen gas spouts upward together with the water, the opening direction of the secondary hydrogen outlet is horizontal, so that the water after the reaction is unlikely to flow out of the secondary hydrogen outlet. Even if the generating unit is tilted greatly and the opening direction of the sub-hydrogen outlet is almost vertical, even if the water after reaction in the sub-container flows out of the sub-hydrogen outlet, the opening direction of the main hydrogen outlet at that time is horizontal. Since it is the direction, it is possible to prevent the water after the reaction from flowing out of the main container at once.

また、前記主水素排出口の前記狭窄通路には、前記主水素排出口の前記狭窄通路と連通する前記主収容室の上部側壁を左右側部と底部からなる正面視凹状とし、凹状の前記底部で前記主水素排出口の前記狭窄通路の下端部が連通した逆流防止部を備えることより、万一、水素発生ユニットが大きく傾いて、その際に主収容体内に反応後の水が存在していた場合、反応後の水主水素排出口側に向かって移動したしたとしても、凹状の底部に反応後の水が滞留することは無く、凹状の底部の左右側部のいずれかに反応後の水が滞留することになるため、反応後の水が主収容体の外部の液体中に流出することを防止できる。  Further, the narrowed passage of the main hydrogen outlet has an upper side wall of the main storage chamber communicating with the narrowed passage of the main hydrogen outlet formed into a concave shape in a front view including right and left side portions and a bottom portion, and the concave bottom portion. By providing a backflow prevention part in which the lower end of the narrowed passage of the main hydrogen discharge port communicates, the hydrogen generation unit is greatly inclined, and at that time, water after reaction exists in the main container. In the case of the reaction, even if it moves toward the water main hydrogen outlet side after the reaction, the water after the reaction does not stay at the concave bottom, and the water after the reaction is transferred to one of the left and right sides of the concave bottom. Since the water stays, the water after the reaction can be prevented from flowing out into the liquid outside the main container.

また、前記主収容体の下部側を先端先鋭に形成したことより、水素発生ユニットの上下が明確となり、ペットボトル等の調製容器中の液体に水素発生ユニットを投入する向きを直感的に把握することができる。  In addition, since the lower side of the main container is formed to have a sharp tip, the upper and lower sides of the hydrogen generation unit become clear, and the direction in which the hydrogen generation unit is charged into a liquid in a preparation container such as a PET bottle can be intuitively grasped. be able to.

更に、水素発生ユニットの前記主収容体に装着自在なカバー体であり、前記カバー体は、前記カバー体を前記主収容体に装着することで前記主収容体を略被覆すると共に、前記カバー体の外部から機械的なエネルギーとしての外力が付与されても前記非流出状態保持手段が前記非流出状態を保持することができるように外力遮断部を備えた水素発生ユニットのカバー体を、備えることより、水素発生ユニットへの意図しない外力の付与により、水が流出状態となって水素の生成反応が開始されてしまうことを防止できる。 Further, the cover body is a cover body that can be mounted on the main housing body of the hydrogen generation unit, and the cover body covers the main housing body by attaching the cover body to the main housing body, and the cover body A cover body of a hydrogen generating unit having an external force blocking portion so that the non-outflow state holding means can maintain the non-outflow state even when an external force as mechanical energy is applied from outside. Thus, it is possible to prevent the water from flowing out due to an unintended external force applied to the hydrogen generation unit and starting the hydrogen generation reaction.

(a)は水素発生ユニットの正面図と上端を示す図であり、(b)は水素発生ユニットの側面図である。(A) is a figure which shows the front view and upper end of a hydrogen generation unit, (b) is a side view of a hydrogen generation unit. 水素発生ユニットの分解図である。It is an exploded view of a hydrogen generation unit. 人手により水を流出状態とする方法を示した説明図である。It is explanatory drawing which showed the method of making water flow out by hand. (a)は水が非流出状態である水素発生ユニットを示し、(b)は流出状態の途中を示し、(c)は流出状態の終盤を示す説明図である。(A) is a diagram showing a hydrogen generating unit in which water is in a non-outflow state, (b) is a middle part of the outflow state, and (c) is an explanatory diagram showing a final stage of the outflow state. (a)は水素発生ユニットを投入する開蓋した調製容器の上部を示し、(b)は水素発生ユニットを投入して閉蓋した調製容器の上部を示した説明図である。(A) is an explanatory view showing the upper portion of the opened preparation container into which the hydrogen generating unit is charged, and (b) is an explanatory diagram showing the upper portion of the closed preparation container into which the hydrogen generating unit is charged. 水素生成中の水素発生ユニットを逆さにした状態を示す説明図である。It is explanatory drawing which shows the state which inverted the hydrogen generation unit during hydrogen generation. (a)は区画室と変形例に係る貫通用部材を示した斜視図で、(b)はこれらを対峙してセットした副収容室内での収納状態を示す側面図である。(A) is a perspective view showing a compartment and a penetrating member according to a modified example, and (b) is a side view showing a housed state in a sub-housing where these are set facing each other. (a)はカバー体を装着した水素発生ユニットの前方斜視図で、(b)は後方斜視図である。(A) is a front perspective view of the hydrogen generation unit to which the cover body is attached, and (b) is a rear perspective view.

本発明は、液体中に投入することにより同液体中に水素を含有させて水素含有液を生成する水素発生ユニットに関するものである。  TECHNICAL FIELD The present invention relates to a hydrogen generating unit that generates hydrogen-containing liquid by introducing hydrogen into the liquid by introducing the liquid into the liquid.

そして、本実施形態に係る水素発生ユニットに特徴的には、含水して水素を発生する水素発生剤と、水と、前記水を前記水素発生剤と反応しない非流出状態に保持する非流出状態保持手段と、を水素ガスを外部に放出する孔を有した副放出手段を備えた副収容体に収容し、前記副収容体は、水素ガスを外部に放出する孔を有した主放出手段を備えた主収容体に収容して一体に構成すると共に、前記副収容体を内包した前記主収容体は、前記液体中に遊動自在に投入され、前記非流出状態保持手段は、前記主収容体外から所定量のエネルギーを付与することにより前記非流出状態の前記水を前記水素発生剤と反応可能な流出状態に変化させるものであり、前記エネルギーの付与をトリガーとして、前記流出状態となった前記水を前記水素発生剤と反応させ、前記副収容体内にて生成した水素を前記副放出手段と前記主放出手段を介して放出することにより、前記液体の水素発生ユニット内への浸潤によらず前記水素含有液を生成すべく構成している。  The hydrogen generating unit according to the present embodiment is characterized by a hydrogen generating agent that generates hydrogen by containing water, water, and a non-outflow state in which the water is kept in a non-outflow state that does not react with the hydrogen generating agent. Holding means and a sub-container having a sub-discharge means having a hole for discharging hydrogen gas to the outside, wherein the sub-container has a main discharge means having a hole for discharging hydrogen gas to the outside. The main container including the sub-container is housed in the main container, and the main container including the sub-container is movably loaded into the liquid. By applying a predetermined amount of energy from the water in the non-outflow state is changed to an outflow state capable of reacting with the hydrogen generating agent, the application of the energy as a trigger, the outflow state Water to the hydrogen generator Reacting and releasing the hydrogen generated in the sub-container via the sub-release means and the main release means, thereby generating the hydrogen-containing liquid regardless of the infiltration of the liquid into the hydrogen generation unit. It is configured as follows.

ここで、水素を溶解させるための液体は特に限定されるものではないが、水やジュース、お茶等をはじめとする飲料や、注射・点滴等に使用する薬液など、ヒトに拘わらず生体に対して使用する液体物とすることができる。  Here, the liquid for dissolving the hydrogen is not particularly limited, but is not limited to humans, such as water, juice, beverages such as tea, and drug solutions used for injections and infusions. Liquid material to be used.

また、水素発生剤は水分と接触することにより水素を発生するものであれば特に限定されるものではなく、また、混合物であっても良い。  The hydrogen generating agent is not particularly limited as long as it generates hydrogen by contact with moisture, and may be a mixture.

水分と接触することにより水素を発生する混合物としては、例えば、水素よりイオン化傾向の高い金属又は金属化合物と、酸やアルカリなどの反応促進剤との混合物を挙げることができる。  Examples of the mixture that generates hydrogen by contact with water include a mixture of a metal or a metal compound having a higher ionization tendency than hydrogen and a reaction accelerator such as an acid or an alkali.

また、好適に用いることのできる金属としては、例えば、鉄、アルミニウム、ニッケル、コバルト、亜鉛等を挙げることができ、好適な反応促進剤としては、例えば、各種酸のほか、水酸化カルシウム、酸化カルシウム、陰イオン交換樹脂、焼成カルシウム、酸化マグネシウム、水酸化マグネシウム等を用いることができる。  Examples of the metal that can be preferably used include, for example, iron, aluminum, nickel, cobalt, and zinc. Suitable reaction accelerators include, for example, various acids, calcium hydroxide, and oxides. Calcium, anion exchange resin, calcined calcium, magnesium oxide, magnesium hydroxide and the like can be used.

また、水素発生剤には、実用上必要な水素生成反応を阻害しない範囲において、必要に応じ適宜機能性を有する物質を添加しても良い。例えば、水との接触により吸熱反応を生じるような物質(例えば尿素や、これと同様の効果を生起する食品添加物に該当する物質。)を添加しておくことにより、水素生成反応に伴って発生する熱を抑制することもできる。  Further, a substance having appropriate functionality may be added to the hydrogen generating agent as needed as long as the hydrogen generating reaction necessary for practical use is not hindered. For example, by adding a substance that causes an endothermic reaction upon contact with water (for example, urea or a substance corresponding to a food additive that produces the same effect as above), a hydrogen-producing reaction is caused. The generated heat can also be suppressed.

更に、水素発生剤は必ずしも不織布等による袋体に収容させて所定箇所に配置することに限定されず、実施形態に応じて所定箇所に直接配置してもよい。  Furthermore, the hydrogen generating agent is not necessarily limited to being housed in a bag made of nonwoven fabric or the like and arranged at a predetermined location, and may be directly arranged at a predetermined location according to the embodiment.

水は、水素発生剤から水素を生成可能なものであれば特に限定されるものではなく、例えば、純水や水道水、井戸水等を用いることができる。また、水は、水素含有液が生成不可能な程度に水素の発生を妨げるものでなければよく、何らかの物質が溶存しているものであっても良い。例えば、反応促進剤としての酸を溶存させておき、金属や金属化合物と反応させることで水を供給しつつ水素発生剤を構成して水素を発生させるようにしても良い。  The water is not particularly limited as long as it can generate hydrogen from the hydrogen generator. For example, pure water, tap water, well water, and the like can be used. In addition, the water does not have to prevent generation of hydrogen to such an extent that a hydrogen-containing liquid cannot be generated, and may be a substance in which some substance is dissolved. For example, an acid as a reaction accelerator may be dissolved and reacted with a metal or a metal compound to supply water and constitute a hydrogen generator to generate hydrogen.

非流出状態保持手段は、水を水素発生剤(水の添加と同時に水素発生剤を構成する場合には金属や金属化合物)と反応しない非流出状態に保持するための手段である。  The non-outflow state holding means is means for holding water in a non-outflow state in which it does not react with the hydrogen generating agent (a metal or a metal compound when the hydrogen generating agent is formed simultaneously with the addition of water).

非流出状態保持手段の一例としては、例えば、水を密閉収容して非流出状態とする可撓性の区画室によるものを挙げることができる。  As an example of the non-outflow state holding means, for example, there can be cited a flexible compartment which stores water in a closed state by hermetically containing water.

そして、区画室には、所定量の外力が付与されることにより収容していた水を吐出して流出状態とする脆弱部を形成しておくことで、使用者が所望の際に水素発生の反応を開始させることができる。  By forming a fragile portion in the compartment to discharge and discharge the water contained by applying a predetermined amount of external force, the user can generate hydrogen when desired. The reaction can be started.

特に、前述の区画室によって非流出状態保持手段を実現した場合には、エネルギーとして外力を加えることにより、水素生成反応のトリガーとして利用することができる。なお、前述の脆弱部はこの外力によって水を吐出可能な程度に形成しておくのは勿論である。  In particular, when the non-outflow state holding means is realized by the above-mentioned compartment, it can be used as a trigger of a hydrogen generation reaction by applying an external force as energy. It is needless to say that the above-mentioned fragile portion is formed to such an extent that water can be discharged by the external force.

これら水素発生剤や水、非流出状態保持手段は、主収容体に内包した副収容体に収容されることで水素発生ユニットが形成される。この主・副収容体は、前述の非流出状態保持手段に対して付与されるエネルギーを伝達可能な素材や構造を備えるようにしても良い。  These hydrogen generating agent, water, and non-outflow state holding means are housed in a sub-container included in the main container to form a hydrogen generating unit. The main and sub-containers may be provided with a material or a structure capable of transmitting the energy applied to the non-outflow state holding means.

すなわち、前述の区画室によって非流出状態保持手段を実現した場合には、主・副収容体は区画室に外力を伝達可能な部位、例えば指先などで押圧した際に撓むことで主・副収容体の壁部を介して区画室に外力を付与可能な素材や構成を挙げることができる。  That is, when the non-outflow state holding means is realized by the above-described compartment, the main and sub-containers are bent when pressed by a portion capable of transmitting an external force to the compartment, for example, a fingertip or the like. Materials and configurations that can apply an external force to the compartment via the wall of the container can be used.

また、副収容体には、同副収容体内部にて発生した水素を主収容体内へ放出させるための副放出手段として、狭窄通路で形成された副水素排出口を備え、主収容体には、副収容体内部にて発生した水素を主収容体外へ放出させるための主放出手段として、狭窄通路で形成された主水素排出口を備えている。  Further, the sub-container has a sub-hydrogen outlet formed by a narrow passage as a sub-release means for releasing hydrogen generated inside the sub-container into the main container, and the main container has A main hydrogen discharge port formed by a constricted passage is provided as a main discharge means for discharging hydrogen generated inside the sub-container outside the main container.

この狭窄通路は水素を主収容体内に排出したり、主収容体外に排出するためのものであり、そのために途中で分岐したり、不連続な状態(複数の狭窄通路を備える)で形成されていてもよく、更に、形状が直線であったり曲線であったり等、適宜構成することができる。  The constricted passage is for discharging hydrogen into and out of the main container, and for that purpose, is branched in the middle or formed in a discontinuous state (including a plurality of constricted passages). Alternatively, the shape may be appropriately configured such as a straight line or a curved line.

また主収容体は、水素発生ユニット外の液体が主収容体内へ浸入するのを防止でき、且つ、副収容体内部にて発生した水素を主水素排出口から主収容体外へ放出可能な素材にて形成されていれば良い。  In addition, the main container is made of a material that can prevent liquid outside the hydrogen generating unit from entering the main container and can release hydrogen generated inside the sub-container from the main hydrogen outlet to the outside of the main container. What is necessary is just to be formed.

また副収容体は、万一、主収容体内に水素発生ユニット外の液体が浸入したとしても副収容体内に該液体が侵入するのを防止でき、且つ、副収容体内部にて発生した水素を副水素排出口から主収容体内へ放出可能な素材にて形成されていれば良い。  In addition, the sub-container can prevent the liquid from entering the sub-container even if the liquid outside the hydrogen generating unit intrudes into the main container, and removes the hydrogen generated inside the sub-container. What is necessary is just to be formed with the material which can be discharged | emitted from a sub-hydrogen discharge port into a main housing.

また、さらに望ましくは、主・副収容体は、水素発生剤を構成する成分など、金属イオンや無機化合物、有機質を透過させないものが良い。  More preferably, the main and sub-containers are not permeable to metal ions, inorganic compounds, and organic substances, such as components constituting a hydrogen generating agent.

このような素材としては、例えば、ポリプロピレンやポリエチレン、ポリエステル等の合成樹脂材を挙げることができる。  Examples of such a material include synthetic resin materials such as polypropylene, polyethylene, and polyester.

ところで、放出手段である主・副水素排出口には逆止弁の如き機械的な弁機構を付加することも可能である。すなわち、発生させた水素の内圧により、液体の浸入を阻止する弁機構の付勢力に抗して瞬間的に開放させることにより、水素の気泡を副収容体内から主収容体を介して液体中へ放出することもできる。  By the way, it is also possible to add a mechanical valve mechanism such as a check valve to the main / sub hydrogen outlets which are the discharging means. In other words, by the internal pressure of the generated hydrogen, the bubbles of hydrogen are instantaneously opened against the urging force of the valve mechanism for preventing the intrusion of the liquid into the liquid from the sub-container through the main container. It can also be released.

なお、水素発生ユニットには、主収容体を略被覆するカバー体を装着することもできる。カバー体は、水素発生ユニットの運搬時等においてエネルギーとしての外力が意図せず区画室に付与され、水が流出状態となって水素発生剤と反応することを防止する保護部材である。  Note that a cover that substantially covers the main container may be attached to the hydrogen generation unit. The cover body is a protection member that prevents external force as energy from being intentionally applied to the compartment when the hydrogen generating unit is transported, and prevents water from flowing out and reacting with the hydrogen generating agent.

このような素材としては、例えば、ポリプロピレンやポリエチレン、ポリエステル、アクリル、ABS樹脂、ポリカーボネート等の合成樹脂材を挙げることができる。  Examples of such a material include synthetic resin materials such as polypropylene, polyethylene, polyester, acrylic, ABS resin, and polycarbonate.

このように、本実施形態に係る水素発生ユニットによれば、従来の水素発生ユニットに比して、水素含有液をより手軽に生成することができる。また、液体の水素発生ユニット内への浸潤によらず水素含有液を生成すべく構成し、しかも、収容体を二重構造としているため、水素発生ユニット内外における液体の流通に伴って水素発生剤の成分からなる副生成物が液体へ漏出するおそれを可及的に抑制することができる。  As described above, according to the hydrogen generation unit according to the present embodiment, the hydrogen-containing liquid can be more easily generated as compared with the conventional hydrogen generation unit. In addition, since the liquid is configured to generate a hydrogen-containing liquid without infiltrating the liquid into the hydrogen generating unit, and the container has a double structure, the hydrogen generating agent is generated along with the flow of the liquid inside and outside the hydrogen generating unit. The possibility that the by-product composed of the above-mentioned component leaks into the liquid can be suppressed as much as possible.

以下、本実施形態に係る水素発生ユニットについて、図面を参照しながら説明する。  Hereinafter, the hydrogen generation unit according to the present embodiment will be described with reference to the drawings.

[実施形態]
本発明の実施形態に係る水素発生ユニットAは、図1〜図5に示すように、液体(以下、飲用水とする。)L中に投入することにより同飲用水L中に水素を含有させて水素含有液を生成する水素発生ユニットAにおいて、同水素発生ユニットAは、含水して水素を発生する水素発生剤15と、水14と、水14を水素発生剤15と反応しない非流出状態に保持する非流出状態保持手段と、を水素ガス17を外部に放出する孔を有した副放出手段38を備えた副収容体19に収容し、副収容体19は、水素ガス17を外部に放出する孔を有した主放出手段18を備えた主収容体1に収容して一体に構成すると共に、副収容体19を内包した主収容体1は、飲用水L中に遊動自在に投入され、非流出状態保持手段は、主収容体1外から所定量のエネルギーを付与することにより非流出状態の水14を水素発生剤15と反応可能な流出状態に変化させるものであり、エネルギーの付与をトリガーとして、流出状態となった水14を水素発生剤と反応させ、副収容体19内にて生成した水素を副放出手段38と主放出手段18を介して放出することにより、飲用水Lの水素発生ユニットA内への浸潤によらず水素含有液を生成すべく構成している。
[Embodiment]
The hydrogen generating unit A according to the embodiment of the present invention causes hydrogen to be contained in the drinking water L by being introduced into a liquid (hereinafter, referred to as drinking water) L as shown in FIGS. In the hydrogen generating unit A that generates a hydrogen-containing liquid, the hydrogen generating unit A includes a hydrogen generating agent 15 that generates hydrogen by containing water, water 14, and a non-outflow state in which the water 14 does not react with the hydrogen generating agent 15. And the non-outflow state holding means for holding the hydrogen gas 17 to the outside is provided in a sub-container 19 provided with a sub-discharge means 38 having a hole for discharging the hydrogen gas 17 to the outside. The main container 1 including the main container 1 having the main discharging means 18 having a hole for discharging and being integrally formed, and the main container 1 including the sub-container 19 is movably loaded into the drinking water L. The non-outflow state holding means is provided with a predetermined amount of air from outside the main container 1. By applying energy, the water 14 in the non-outflow state is changed to an outflow state capable of reacting with the hydrogen generating agent 15, and the water 14 in the outflow state is reacted with the hydrogen generating agent by the application of energy as a trigger. By causing the hydrogen generated in the sub-container 19 to be released through the sub-release means 38 and the main release means 18, a hydrogen-containing liquid is generated regardless of the infiltration of the drinking water L into the hydrogen generation unit A. It is configured to

また、副収容体19は、水素発生剤15と水14と非流出状態保持手段とを収容する副収容室25を備え、主収容体1は、副収容体19を収容する主収容室2を備え、非流出状態保持手段は、水14を密閉収容して非流出状態とする可撓性の区画室41であり、同区画室41は、収容していた水14を吐出して流出状態とする脆弱部44を有し、エネルギーとして主収容体1を手指Pで挟持する押圧力が所定量付与されることにより脆弱部44を破断し、流出状態となった水14が水素発生剤15と反応して生成した水素を副放出手段38と主放出手段18を介して放出すべく構成している。  The sub-housing 19 includes a sub-housing 25 for accommodating the hydrogen generating agent 15, the water 14, and the non-outflow state holding means, and the main housing 1 includes a main housing 2 for housing the sub-housing 19. The non-outflow state holding means is a flexible compartment 41 that hermetically accommodates the water 14 to make it in a non-outflow state, and the compartment 41 discharges the stored water 14 to be in an outflow state. The water 14 that has a weakened portion 44 that breaks the weakened portion 44 by applying a predetermined amount of pressing force for sandwiching the main container 1 with the finger P as energy, The hydrogen generated by the reaction is released through the sub-release means 38 and the main release means 18.

更に、主放出手段18は管状の狭窄通路3で形成された主水素排出口4を備え、副放出手段38は管状の狭窄通路23で形成された副水素排出口24を備えている。  Further, the main discharge means 18 has a main hydrogen discharge port 4 formed by a tubular constricted passage 3, and the sub discharge means 38 has a secondary hydrogen discharge port 24 formed by a tubular constricted passage 23.

また、主・副収容体1,19は可撓性を有する合成樹脂材からなり、図1(a)、(b)、図2に示すように、主収容体1は主水素排出口4と連通し、副収容体19は副水素排出口24と連通し、副収容室25には更に貫通用部材48を収容し、貫通用部材48は先端先鋭の複数の貫通用突起49a,49b,49cを有し、副収容室25には、脆弱部44に貫通用突起49a,49b,49cを対峙して収容し、図3に示すように、エネルギーとして主収容体1を手指Pで挟持する押圧力が所定量付与されることにより貫通用突起49a,49b,49cが脆弱部44を破断し、図4(b)、(c)に示すように、流出状態となった水14が水素発生剤15と反応して生成した水素を主・副水素排出口4,24を介して放出すべく構成している。  The main and sub-containers 1 and 19 are made of a synthetic resin material having flexibility. As shown in FIGS. 1 (a), 1 (b) and 2, the main container 1 is The sub-accommodation body 19 communicates with the sub-hydrogen outlet 24, and the sub-accommodation chamber 25 further accommodates a penetrating member 48. The penetrating member 48 has a plurality of sharp penetrating projections 49a, 49b, 49c. In the sub-accommodation chamber 25, the penetration projections 49a, 49b, and 49c are accommodated in the fragile portion 44 so as to face each other, and as shown in FIG. When a predetermined amount of pressure is applied, the protrusions for penetration 49a, 49b, and 49c break the fragile portion 44, and as shown in FIGS. 15 is configured to release hydrogen produced by reacting with 15 through the main / sub hydrogen outlets 4 and 24. That.

また、図1(a)、(b)、図2に示すように、主水素排出口4の開口方向を鉛直方向とし、副水素排出口24の開口方向を水平方向として互いが異なる開口方向となるように形成すると共に、主収容体1の下部側10を先端先鋭に形成している。  Further, as shown in FIGS. 1A, 1B and 2, the opening direction of the main hydrogen outlet 4 is set to the vertical direction, and the opening direction of the sub-hydrogen outlet 24 is set to the horizontal direction. And the lower side 10 of the main container 1 is formed with a sharp tip.

また、主水素排出口4の狭窄通路3には、主水素排出口4の狭窄通路3と連通する主収容室2の上部側壁5を左右側部7a,7bと底部8からなる正面視凹状とし、凹状の底部8で主水素排出口4の狭窄通路3の下端部9が連通した逆流防止部6を備えている。  In the constriction passage 3 of the main hydrogen discharge port 4, the upper side wall 5 of the main storage chamber 2 communicating with the constriction passage 3 of the main hydrogen discharge port 4 has a concave shape in front view including left and right side parts 7a, 7b and a bottom part 8. A backflow prevention portion 6 having a concave bottom portion 8 and a lower end portion 9 of the constriction passage 3 of the main hydrogen outlet 4 communicating with the bottom portion 8.

更に、水素発生ユニットAには、図8(a)、(b)に示すように、主収容体1に装着自在なカバー体53を備えることができる。カバー体53は、カバー体53を主収容体1に装着することで主収容体1を略被覆すると共に、カバー体53の外部から機械的なエネルギーとしての外力が付与されても非流出状態保持手段が非流出状態を保持することができるように外力遮断部54を備えている。  Further, as shown in FIGS. 8A and 8B, the hydrogen generation unit A can be provided with a cover 53 that can be attached to the main container 1. The cover 53 substantially covers the main container 1 by attaching the cover 53 to the main container 1, and maintains a non-outflow state even when external force as mechanical energy is applied from outside the cover 53. An external force blocking portion 54 is provided so that the means can maintain the non-outflow state.

このように水素発生ユニットAの収容体1,19を二重構造等に構成することで、従来の水素発生ユニットに比して収容体内の水素生成後の副生成物である反応後の水68の飲用水Lへの流出防止を強化した水素発生ユニットAを提供することができる。  By configuring the containers 1 and 19 of the hydrogen generation unit A in a double structure or the like in this manner, compared with the conventional hydrogen generation unit, the reacted water 68 which is a by-product of hydrogen generation in the container is generated. Hydrogen generation unit A in which prevention of outflow into drinking water L is enhanced.

次に、水素発生ユニットAの各部の具体的な構成について図面を参照しながら詳述する。  Next, a specific configuration of each part of the hydrogen generation unit A will be described in detail with reference to the drawings.

[主収容体]
主収容体1は、図5(b)に示すように、後述する調製容器70の開口部から投入可能な幅員で形成され、図1(a)、(b)、図2に示すように、矩形長方形状で下部側10を先端先鋭に形成した主ケース部1aと、主密閉フィルムシート1bと、で構成され、主ケース部1aは、帯状のプラスチック製シートの正面側を凹状に膨出させ、主放出手段18である狭窄通路3からなる主水素排出口4、逆流防止部6、主収容室2を上部から下部にかけて連通配置し、膨出していない主ケース部1aの偏平状の外縁部を接合部1cとしている。また、主密閉フィルムシート1bは、帯状のフィルムシートを接合部1cに溶着し、膨出させた各部を密閉している。
[Main container]
As shown in FIG. 5 (b), the main container 1 is formed with a width that can be put in from an opening of a preparation container 70 described later, and as shown in FIGS. 1 (a), (b) and FIG. The main case 1a has a rectangular shape and a lower side 10 formed with a sharpened tip, and a main sealing film sheet 1b. The main case 1a is formed by expanding the front side of a belt-shaped plastic sheet into a concave shape. The main discharge means 18, the main hydrogen discharge port 4 comprising the constricted passage 3, the backflow prevention part 6, and the main storage chamber 2 are arranged to communicate from the upper part to the lower part, and the flat outer edge of the main case part 1a which does not bulge. Are the joints 1c. The main sealing film sheet 1b is obtained by welding a band-shaped film sheet to the joining portion 1c and sealing the expanded portions.

主密閉フィルムシート1bは主ケース部1aの正面視の外形と同形状の矩形長方形状で下部側12を先端先鋭に形成しており、主収容体1に溶着することで一体の水素発生ユニットAを構成する。なお、接合部1cへの主密閉フィルムシート1bの接合においては、溶着以外に接着剤による接合であってもよい。  The main sealing film sheet 1b has the same rectangular shape as the outer shape of the main case portion 1a when viewed from the front, and has a lower side 12 formed with a sharpened tip, and is welded to the main container 1 to form an integral hydrogen generation unit A. Is configured. In addition, in joining the main sealing film sheet 1b to the joining portion 1c, joining with an adhesive may be used instead of welding.

主ケース部1aの材質は、耐熱性や耐衝撃性、気密性に優れたプラスチックシート材であるポリプロピレンを用いているが、ポリエチレン等の合成樹脂材を基材とするシート材等、耐熱性を有し、外部の飲用水Lが内部に透過せず、内部の反応水14や反応後の水68が外部に透過しないものであれば特に材質は限定されるものではない。  The material of the main case portion 1a is polypropylene, which is a plastic sheet material having excellent heat resistance, impact resistance, and airtightness. The material is not particularly limited as long as it has such that the outside drinking water L does not permeate inside and the inside reaction water 14 and the water 68 after the reaction do not permeate outside.

主密閉フィルムシート1bの材質は、透明で耐熱性や耐衝撃性、気密性に優れたプラスチックフィルム材であるポリエステルを用いているが、延伸ポリプロピレン(OPP)やポリエチレン等の合成樹脂材を基材とするフィルム材等、耐熱性を有し、外部の飲用水Lが内部に透過せず、内部の反応水14や反応後の水68が外部に透過しないものであれば特に材質や透明度は限定されるものではない。但し、透明度が高い方が反応水14の流出状態や水素発生体16への接触状態を確認しやすく有利である。  The material of the main sealing film sheet 1b is made of polyester which is a plastic film material which is transparent and excellent in heat resistance, impact resistance and airtightness, and is made of a synthetic resin material such as expanded polypropylene (OPP) or polyethylene. The material and the transparency are limited as long as it has heat resistance such as a film material to be used, and does not allow the external drinking water L to permeate into the inside, and does not allow the internal reaction water 14 and the reacted water 68 to permeate to the outside. It is not something to be done. However, the higher the transparency, the easier it is to check the outflow state of the reaction water 14 and the state of contact with the hydrogen generator 16, which is advantageous.

主放出手段18である主水素排出口4を形成する狭窄通路3は、主ケース部1aの上端中央部に開口3aを形成し、開口3aから下方の主収容室2にかけて直線的に延設して主収容室2と連通連設している。また、主水素排出口4は断面視略半円状に形成され、外部から飲用水Lが容易に浸入しない小径の開口、例えば略1mm程度の直径で形成し、狭窄通路3自体も同様の断面形状で同様の直径で形成している。  The constricted passage 3 forming the main hydrogen discharge port 4 as the main discharge means 18 has an opening 3a formed at the center of the upper end of the main case portion 1a, and extends linearly from the opening 3a to the lower main storage chamber 2. The main storage chamber 2 is in communication with the main storage chamber 2. The main hydrogen outlet 4 is formed in a substantially semicircular shape in cross section, and has a small-diameter opening through which the drinking water L does not easily enter from outside, for example, a diameter of about 1 mm. It is formed with the same diameter in shape.

なお、主水素排出口4の開口断面積は狭窄通路3の途中の空間断面積よりも大きく形成してもよく、また、主水素排出口4から主収容室2までの経路を曲線的に形成してもよい。また、主水素排出口4から主収容室2までの距離は外部からの飲用水Lの進入や内部の反応水14や反応後の水68の流出を防止する観点から長く形成することが望ましく、本実施形態では略10mmの長さで形成している。更に、狭窄通路3は一箇所であることに限定されない。  The opening cross-sectional area of the main hydrogen outlet 4 may be formed larger than the space cross-sectional area in the middle of the narrow passage 3, and the path from the main hydrogen outlet 4 to the main storage chamber 2 is formed in a curved line. May be. Further, the distance from the main hydrogen outlet 4 to the main storage chamber 2 is desirably formed long from the viewpoint of preventing the entrance of the drinking water L from the outside and the outflow of the reaction water 14 and the water 68 after the reaction, In this embodiment, it is formed with a length of about 10 mm. Furthermore, the stenosis passage 3 is not limited to one location.

また、主収容室2の深さは後述する副収容体19が余裕を持って収容できる程度であればよい。  Further, the depth of the main storage chamber 2 may be any depth as long as a sub-container 19 described later can be stored with a margin.

主放出手段18である主水素排出口4の狭窄通路3には、主水素排出口4の狭窄通路3と連通する主収容室2の上部側壁5を左右側部7a,7bと底部8からなる正面視凹状とし、凹状の底部8で主水素排出口4の狭窄通路3の下端部9が連通した逆流防止部6を備えている。すなわち、狭窄通路3が主収容室2の内側の一部に延設されている。  In the narrow passage 3 of the main hydrogen outlet 4 which is the main discharge means 18, the upper side wall 5 of the main storage chamber 2 communicating with the narrow passage 3 of the main hydrogen outlet 4 includes left and right side parts 7 a and 7 b and a bottom part 8. A backflow prevention portion 6 is formed in a concave shape when viewed from the front, and has a concave bottom portion 8 and a lower end portion 9 of the narrowed passage 3 of the main hydrogen discharge port 4 communicating with the bottom portion 8. That is, the stenosis passage 3 extends to a part inside the main storage chamber 2.

このように構成することで、図6に示すように、水素発生ユニットAの主水素排出口4が下方に位置しても、内部の反応後の水68が狭窄通路3を通過して主水素排出口4から外部に放出されることを未然に防止することができる。  With this configuration, as shown in FIG. 6, even if the main hydrogen outlet 4 of the hydrogen generation unit A is located at a lower position, the water 68 after the reaction inside passes through the narrow passage 3 and the main hydrogen is discharged. It can be prevented from being discharged from the outlet 4 to the outside.

このように形成された主収容室2は、これを囲繞する偏平状の外縁部を接合部1cとして全体を主ケース部1aとし、帯状の主密閉フィルムシート1bを接合部1cに溶着して上述した各部を密閉し主収容体1を構成している。  The main accommodating chamber 2 thus formed has a flat outer edge surrounding it as a joining portion 1c and the entire main casing portion 1a, and a belt-shaped main sealing film sheet 1b is welded to the joining portion 1c. The main components 1 are configured by sealing the respective components.

[副収容体]
副収容体19は、図1(a)、(b)、図2に示すように、主収容体1の主収容室2に収まる外形に形成され、矩形長方形状で下部側29を先端先鋭に形成した副ケース部19aと、副密閉フィルムシート19bと、で構成され、副ケース部19aは、帯状のプラスチック製シートの正面側を凹状に膨出させ副収容室25とし、水収容室26、移動用通路27、剤収容室28を上部から下部にかけて連通配置している。また、膨出していない副ケース部19aの偏平状の外縁部を接合部19cとし、水収容室26の中途部の左右側壁30a,30bと該部分近傍の接合部19c,19cのみ膨出させて副放出手段38となる狭窄通路23,23を形成している。また、副密閉フィルムシート19bは、帯状のフィルムシートを接合部19cに溶着し、膨出させた各部を密閉している。
[Secondary container]
As shown in FIGS. 1A, 1B and 2, the sub-housing 19 is formed to have an outer shape that fits in the main housing chamber 2 of the main housing 1, and has a rectangular rectangular shape with a lower end 29 having a sharp tip. The sub-case part 19a is formed of a formed sub-case part 19a and a sub-sealed film sheet 19b. The sub-case part 19a bulges the front side of the band-shaped plastic sheet into a concave shape to form a sub-storage chamber 25, The transfer passage 27 and the agent storage chamber 28 are communicated from the upper part to the lower part. Further, the flat outer edge of the sub case portion 19a that is not bulged is used as a bonding portion 19c, and only the right and left side walls 30a and 30b in the middle of the water storage chamber 26 and the bonding portions 19c and 19c near the portion are bulged. The constriction passages 23, 23 serving as the auxiliary release means 38 are formed. In addition, the sub-sealing film sheet 19b is obtained by welding a belt-like film sheet to the joining portion 19c and sealing each swelled portion.

また、水収容室26には反応水14を収容した区画室41と貫通用部材48を収容し、剤収容室28には水素発生剤15を内包する水素発生体16を収容している。  Further, the water chamber 26 accommodates the compartment 41 accommodating the reaction water 14 and the penetrating member 48, and the agent accommodating chamber 28 accommodates the hydrogen generator 16 containing the hydrogen generating agent 15.

副密閉フィルムシート19bは副ケース部19aの正面視の外形と同形状の矩形長方形状で下部側31を先端先鋭に形成しており、副ケース部19aに溶着することで一体の副収容体19を構成する。なお、接合部19cへの副密閉フィルムシート19bの接合においては、溶着以外に接着剤による接合であってもよい。  The sub-sealing film sheet 19b has the same rectangular shape as the outer shape of the sub-case portion 19a when viewed from the front, and the lower side 31 is sharply formed at the tip, and is welded to the sub-case portion 19a to form the integral sub-container 19. Is configured. In addition, in joining the sub-sealing film sheet 19b to the joining portion 19c, joining with an adhesive may be used instead of welding.

副ケース部19aの材質は、耐熱性や耐衝撃性、気密性に優れたプラスチックシート材であるポリプロピレンを用いているが、ポリエチレン等の合成樹脂材を基材とするシート材等、耐熱性を有し、外部の飲用水Lが内部に透過せず、内部の反応水14や反応後の水68が外部に透過しないものであれば特に材質は限定されるものではない。  The material of the sub-case portion 19a is polypropylene, which is a plastic sheet material excellent in heat resistance, impact resistance, and airtightness. The material is not particularly limited as long as it has such that the outside drinking water L does not permeate inside and the inside reaction water 14 and the water 68 after the reaction do not permeate outside.

副密閉フィルムシート19bの材質は、透明で耐熱性や耐衝撃性、気密性に優れたプラスチックフィルム材であるポリエステルを用いているが、延伸ポリプロピレン(OPP)やポリエチレン等の合成樹脂材を基材とするフィルム材等、耐熱性を有し、外部の飲用水Lが内部に透過せず、内部の反応水14や反応後の水68が外部に透過しないものであれば特に材質や透明度は限定されるものではない。但し、透明度が高い方が反応水14の流出状態や水素発生体16への接触状態を確認しやすく有利である。  The material of the sub-sealing film sheet 19b is polyester, which is a plastic film material which is transparent and excellent in heat resistance, impact resistance, and airtightness, and is made of a synthetic resin material such as expanded polypropylene (OPP) or polyethylene. The material and the transparency are limited as long as it has heat resistance such as a film material to be used, and does not allow the external drinking water L to permeate into the inside, and does not allow the internal reaction water 14 and the reacted water 68 to permeate to the outside. It is not something to be done. However, the higher the transparency, the easier it is to check the outflow state of the reaction water 14 and the state of contact with the hydrogen generator 16, which is advantageous.

なお、副密閉フィルムシート19bは、撥水性水素透過膜であってもよい。この場合、撥水性水素透過膜が副放出手段となるため、副収容体19に狭窄通路23からなる副水素排出口24を形成する必要は無い。また、撥水性水素透過膜は、水素発生ユニットA外の飲用水Lが副収容体19内へ浸入するのを防止でき、且つ、副収容体19内部にて発生した水素を副収容体外へ放出可能な素材にて形成されていれば良い。  The sub-sealing film sheet 19b may be a water-repellent hydrogen permeable film. In this case, since the water-repellent hydrogen permeable film serves as the sub-release means, it is not necessary to form the sub-hydrogen discharge port 24 composed of the narrow passage 23 in the sub-container 19. Further, the water-repellent hydrogen permeable membrane can prevent the drinking water L outside the hydrogen generation unit A from entering the inside of the sub-container 19 and discharge the hydrogen generated inside the sub-container 19 to the outside of the sub-container. What is necessary is just to be formed with a possible material.

また、さらに望ましくは、撥水性水素透過膜は、水素発生剤15を構成する成分など、金属イオンや無機化合物、有機質を透過させないものが良い。このような素材としては、例えば、防水透湿性素材(液体状の水の透過は阻止しつつも気体状の水を透過させる素材)や、半透膜、逆浸透膜、伸延PTFE等を挙げることができる。  More desirably, the water-repellent hydrogen permeable film does not allow metal ions, inorganic compounds, and organic substances to permeate, such as a component constituting the hydrogen generating agent 15. Examples of such a material include a waterproof and moisture-permeable material (a material that allows gaseous water to permeate while preventing liquid water from permeating), a semipermeable membrane, a reverse osmosis membrane, and expanded PTFE. Can be.

副放出手段38である副水素排出口24を形成する狭窄通路23は、副ケース部19aの上部側の左右端部となる水収容室26の中途部の接合部19cに開口23a,23aを有し、開口23a,23aから水平方向に直線的に延設して主収容室2と水収容室26とを連通連設している。また、副水素排出口24は断面視略半円状に形成され、外部から飲用水Lが容易に浸入しない小径の開口、例えば略1mm程度の直径で形成し、狭窄通路23自体も同様の断面形状で同様の直径で形成している。  The constriction passage 23 forming the sub-hydrogen discharge port 24 serving as the sub-discharge means 38 has openings 23a and 23a at a junction 19c in the middle of the water storage chamber 26 at the left and right ends on the upper side of the sub-case 19a. The main storage chamber 2 and the water storage chamber 26 communicate with each other by extending linearly in the horizontal direction from the openings 23a, 23a. The secondary hydrogen outlet 24 is formed in a substantially semicircular shape in cross section, and is formed with a small-diameter opening through which the drinking water L does not easily enter from outside, for example, a diameter of about 1 mm. It is formed with the same diameter in shape.

なお、副水素排出口24の開口断面積は狭窄通路23の途中の空間断面積よりも大きく形成してもよく、開口23aから水収容室26までの経路を曲線的に形成してもよい。また、狭窄通路23は左右の二箇所であることに限定されない。また、水収容室26の深さは後述する区画室41と貫通用部材48が収容できる程度であればよい。  The opening cross-sectional area of the sub-hydrogen outlet 24 may be larger than the space cross-sectional area in the middle of the narrow passage 23, and the path from the opening 23a to the water storage chamber 26 may be formed in a curved line. Further, the stenosis passage 23 is not limited to two places on the left and right. Further, the depth of the water storage chamber 26 may be such that the partition chamber 41 and the penetrating member 48 described later can be stored.

水収容室26は、長手方向を上下とする有底の矩形箱状に形成し、上述の通り、左右側壁30a,30bの開放端部中央において狭窄通路23,23と連通連設している。また、下部側壁33の開放端部中央において移動用通路27と連通連設している。なお、水収容室26は必ずしも矩形箱状である必要はない。  The water accommodating chamber 26 is formed in a rectangular box shape with a bottom in the longitudinal direction, and communicates with the narrow passages 23 at the centers of the open ends of the left and right side walls 30a and 30b as described above. The lower side wall 33 communicates with the movement passage 27 at the center of the open end. In addition, the water storage room 26 does not necessarily need to be a rectangular box shape.

移動用通路27は、水収容室26と剤収容室28の底部34,36よりも浅く外観視凹状に形成され、下方の剤収容室28にかけて幅狭に短く延設して剤収容室28と連通連設している。なお、移動用通路27の長さや形状は水収容室26から剤収容室28に早く確実に反応水14が移動する形状であればよい。  The transfer passage 27 is formed to be shallower than the bottoms 34 and 36 of the water storage chamber 26 and the agent storage chamber 28 and has a concave shape when viewed from the outside. Communication is established. The length and shape of the transfer passage 27 may be any shape as long as the reaction water 14 can be quickly and reliably moved from the water storage chamber 26 to the agent storage chamber 28.

剤収容室28は、長手方向を上下とする有底の矩形箱状に形成し、上部側壁37の開放端部中央において移動用通路27と連通連設している。また、剤収容室28は、中央部で折曲した外観視長方形状の水素発生体16を折曲面が剤収容室28の開口から視認できる状態で収容可能な空間とし、収容される水素発生体16を移動し難く形成している。なお、剤収容室28に収容された水素発生体16は、剤収容室28の底部36と移動用通路27の底部35との深さの違いにより、移動用通路27側に移動することはない。  The agent storage chamber 28 is formed in the shape of a rectangular box with a bottom in the longitudinal direction, and communicates with the movement passage 27 at the center of the open end of the upper side wall 37. Further, the agent storage chamber 28 is a space in which the hydrogen generator 16 having a rectangular shape in appearance and bent at the center portion can be accommodated in a state where the bent surface can be visually recognized from the opening of the agent storage chamber 28. 16 is formed so as to be difficult to move. The hydrogen generator 16 accommodated in the agent accommodating chamber 28 does not move toward the moving passage 27 due to a difference in depth between the bottom 36 of the agent accommodating chamber 28 and the bottom 35 of the moving passage 27. .

このように形成された水収容室26等の副収容体19は、これらを囲繞する偏平状の外縁部を接合部19cとして全体を副ケース部19aとし、帯状の副密閉フィルムシート19bを接合部19cに溶着して上述した各部を密閉し副収容体19を構成している。  The sub-containers 19 such as the water storage chamber 26 formed as described above have a flat outer edge surrounding them as a joint 19c, the whole as a sub-case 19a, and a band-shaped sub-sealed film sheet 19b as a joint. The sub-container 19 is formed by sealing the above-mentioned parts by welding to the sub-container 19c.

なお、本実施形態に係る水素発生ユニットAでは、主収容体1の内部に1つの副収容体19を内包した構成を説明しているが、内包する副収容体19の数は本実施形態に限定されるものではなく、また、副収容体19の内部に更に副収容体19を内包してもよい。  Note that, in the hydrogen generation unit A according to the present embodiment, the configuration in which one sub-container 19 is included in the main container 1 has been described. The present invention is not limited thereto, and the sub-container 19 may further include the sub-container 19.

そして、密閉される水収容室26と剤収容室28には以下の部材が収容され、水素発生ユニットAが構成される。  The following members are accommodated in the water accommodating chamber 26 and the agent accommodating chamber 28 which are hermetically sealed, and the hydrogen generating unit A is configured.

まず、水収容室26に収容される反応水14を内包する区画室41は、有底の矩形箱状で開放端部全周に接合フランジ部42aを形成した箱体42に、箱体42の開口を被覆する薄膜で矩形フィルム状の脆弱部44の外縁端を接合フランジ部42aに溶着して水密状としている。なお、本実施形態では反応水14を可能な限り無菌状態で区画室41に内包するためにクリーンルーム内での充填を行っている。また、接合フランジ部42aへの脆弱部44の接合においては、溶着以外に接着剤による接合であってもよい。  First, the compartment 41 containing the reaction water 14 accommodated in the water accommodating chamber 26 has a bottomed rectangular box-like shape having a joining flange portion 42a formed on the entire periphery of the open end. The outer edge of the rectangular film-shaped fragile portion 44 covering the opening is welded to the joining flange portion 42a to make it watertight. Note that, in the present embodiment, the reaction water 14 is filled in the clean room so as to be contained in the compartment 41 as aseptically as possible. Further, in joining the fragile portion 44 to the joining flange portion 42a, joining with an adhesive may be used instead of welding.

なお、箱体42の材質は、気密性に優れたプラスチックシート材であるポリプロピレンを用いているが、ポリエチレン等の合成樹脂材を基材とするシート材等、内部の反応水14が外部に透過しないものであれば特に材質は限定されるものではない。  The box 42 is made of polypropylene, which is a plastic sheet material having excellent airtightness. However, the internal reaction water 14 permeates to the outside such as a sheet material made of a synthetic resin material such as polyethylene. The material is not particularly limited as long as the material is not used.

脆弱部44の材質は、透明で気密性に優れたプラスチックフィルム材であるポリエステルを用いているが、延伸ポリプロピレン(OPP)やポリエチレン等の合成樹脂材を基材とするフィルム材等、内部の反応水14が外部に透過せず、破断容易であれば特に材質や透明度は限定されるものではない。  The material of the fragile portion 44 is polyester, which is a plastic film material that is transparent and excellent in airtightness. However, internal reaction such as a film material based on a synthetic resin material such as expanded polypropylene (OPP) or polyethylene is used. The material and transparency are not particularly limited as long as the water 14 does not permeate outside and is easily broken.

区画室41は水収容室26の底部34に区画室41の底部45を向けて、すなわち、脆弱部44と対向する側を向けて収容される。なお、区画室41は水収容室26内で不必要に移動できない程度の外形であることが望ましい。  The compartment 41 is accommodated with the bottom 45 of the compartment 41 facing the bottom 34 of the water storage chamber 26, that is, with the side facing the fragile portion 44 facing. It is desirable that the compartment 41 has such an outer shape that it cannot be moved unnecessarily in the water storage chamber 26.

反応水14は、水素発生剤15と接触させて水素生成反応を生起させるための水であり、本実施形態においては純水を用いている。また、区画室41内に収容された反応水14は非流出状態に保持されている。  The reaction water 14 is water for causing a hydrogen generation reaction by being brought into contact with the hydrogen generating agent 15, and in the present embodiment, pure water is used. Further, the reaction water 14 accommodated in the compartment 41 is kept in a non-outflow state.

また、水収容室26には区画室41と共に貫通用部材48も収容される。貫通用部材48は図1(b)、図2に示すように、箱体42の開口と略同面積で厚め(略0.5mm)の矩形シート状の合成樹脂材で形成され、上下端部側及び中央部に貫通用突起49a,49b,49cを3箇所形成している。貫通用突起49a,49b,49cは2辺が切断され残りの1辺を折曲した先端先鋭の三角形状に形成し、貫通用突起49a,49b,49cを脆弱部44に対峙させた状態で水収容室26に収容している。  In addition, the penetration member 48 is accommodated in the water accommodation room 26 together with the compartment 41. As shown in FIGS. 1B and 2, the penetrating member 48 is formed of a thick (substantially 0.5 mm) rectangular sheet-shaped synthetic resin material having substantially the same area as the opening of the box 42, and upper and lower ends thereof. Penetration projections 49a, 49b, 49c are formed at three places on the side and the center. The penetrating projections 49a, 49b, and 49c are formed in a triangular shape having two sharp edges and the remaining one bent, and the penetrating projections 49a, 49b, and 49c face the fragile portion 44. It is accommodated in the accommodation room 26.

また、貫通用部材48の材質は、耐衝撃性に優れたプラスチックシート材であるポリプロピレンを用いているが、ポリエチレン等の合成樹脂材を基材とするシート材等、材質は特に限定されるものではない。  The material of the penetrating member 48 is polypropylene, which is a plastic sheet material having excellent impact resistance, but the material is not particularly limited, such as a sheet material based on a synthetic resin material such as polyethylene. is not.

なお、貫通用部材48は、変形例として図7(a)、(b)に示すような貫通用部材48aであってもよい。具体的には、変形例に係る貫通用部材48aは、中央部に貫通用突起49a,49b,49cを形成した貫通用基部64と、その両端部に載置片65,65を立設してコ字状に形成している。載置片65には、貫通用突起49a,49b,49cの先端部が脆弱部44の直前で保持されるように、区画室41の外縁部をなす接合フランジ部42aが当接載置されるフランジ載置部66を形成している。  The penetrating member 48 may be a penetrating member 48a as shown in FIGS. 7A and 7B as a modified example. Specifically, the penetrating member 48a according to the modified example has a penetrating base 64 having a penetrating projection 49a, 49b, 49c formed at the center, and mounting pieces 65, 65 standing upright at both ends. It is formed in a U-shape. The joining flange portion 42a forming the outer edge of the compartment 41 is abutted on the mounting piece 65 so that the distal ends of the projections 49a, 49b, 49c are held immediately before the weak portion 44. A flange mounting portion 66 is formed.

フランジ載置部66は、各載置片65,65の内側面の中途部において各載置片65,65と直交する段差を形成することで接合フランジ部42aを載置可能な平面が形成される。また、このフランジ載置部66から貫通用基部64に至るまでを内側にテーパー状に形成している。  The flange mounting portion 66 forms a step perpendicular to each of the mounting pieces 65, 65 in the middle of the inner surface of each of the mounting pieces 65, 65, thereby forming a plane on which the joining flange portion 42 a can be mounted. You. A portion from the flange mounting portion 66 to the penetration base portion 64 is tapered inward.

このように貫通用部材48aを構成することで、所定の外力が貫通用部材48aに付与されるまでは、区画室41の水14を非流出状態に保持でき、貫通用突起49a,49b,49cが意図せず脆弱部44を破断して水14が流出状態となる不具合を防止できる。  By configuring the penetrating member 48a in this manner, the water 14 in the compartment 41 can be held in a non-outflow state until a predetermined external force is applied to the penetrating member 48a, and the penetrating projections 49a, 49b, 49c are provided. However, it is possible to prevent a disadvantage that the fragile portion 44 is unintentionally broken and the water 14 flows out.

なお、貫通用部材48,48aや貫通用突起49a,49b,49cの形状、貫通用突起49a,49b,49cの数や位置等は本実施形態に限定されるものではなく、本発明の要旨の範囲内において種々の変形、変更が可能である。  Note that the shapes of the penetrating members 48, 48a and the penetrating projections 49a, 49b, 49c, the number and positions of the penetrating projections 49a, 49b, 49c are not limited to the present embodiment, and are not essential to the present invention. Various modifications and changes are possible within the scope.

また、水素発生剤15は、透水性を有する不織布により長尺の袋状に形成され、内部に水素発生剤15を収容した水素発生体16として剤収容室28に収容される。水素発生体16は、流出状態となった反応水14と接触することで水素生成反応を行う部位となる。なお、本実施形態において水素発生剤15は、アルミニウムと水酸化カルシウムとを主成分として含有する混合粉末としている。  The hydrogen generating agent 15 is formed in a long bag shape from a nonwoven fabric having water permeability, and is housed in the agent housing chamber 28 as the hydrogen generator 16 in which the hydrogen generating agent 15 is housed. The hydrogen generator 16 serves as a site for performing a hydrogen generation reaction by contacting the outflowing reaction water 14. In the present embodiment, the hydrogen generating agent 15 is a mixed powder containing aluminum and calcium hydroxide as main components.

[カバー体]
また、水素発生ユニットAには、図8(a)、(b)に示すようなカバー体53を装着することができる。カバー体53は、カバー体53を主収容体1に装着することで主収容体1を略被覆すると共に、カバー体53の外部から機械的なエネルギーとしての外力が付与されても非流出状態保持手段が非流出状態を保持することができるように外力遮断部54を備えている。
[Cover body]
Also, a cover 53 as shown in FIGS. 8A and 8B can be attached to the hydrogen generation unit A. The cover 53 substantially covers the main container 1 by attaching the cover 53 to the main container 1, and maintains a non-outflow state even when external force as mechanical energy is applied from outside the cover 53. An external force blocking portion 54 is provided so that the means can maintain the non-outflow state.

具体的には、カバー体53は、区画室41の脆弱部44側、及びその対向側に意図しない外力が付与されないように区画室41を保護するために、主収容体1の所定箇所に外力遮断部54を設け、主収容体1を略被覆する。  Specifically, in order to protect the compartment 41 so that an unintended external force is not applied to the fragile portion 44 side of the compartment 41 and the opposite side thereof, an external force is applied to a predetermined portion of the main container 1. The blocking portion 54 is provided to substantially cover the main container 1.

カバー体53は、有底の矩形箱状に形成した区画室保護部55と、区画室保護部55の底部56から外方に突出した主水素排出口保護部57と、で構成している。区画室保護部55は、外力遮断部54として、主収容体1の主ケース部1aの表側面を略被覆する第一外力遮断壁58と、主収容体1の主密閉フィルムシート1bの表側面を略被覆する第二外力遮断壁60と、を対向して備えている。  The cover 53 includes a compartment protection part 55 formed in a rectangular box shape with a bottom, and a main hydrogen outlet protection part 57 protruding outward from the bottom 56 of the compartment protection part 55. The compartment protection part 55 is, as the external force blocking part 54, a first external force blocking wall 58 that substantially covers the front surface of the main case part 1 a of the main container 1, and the front surface of the main sealing film sheet 1 b of the main container 1. And a second external force blocking wall 60 that substantially covers the outer wall.

第一外力遮断壁58と第二外力遮断壁60は、少なくとも区画室41に外力が付与されない程度の厚みと剛性で形成しており、特に該遮断壁58,60に孔等を穿設する必要はないが、本実施形態に係る第一外力遮断壁58では手指Pが入らない程度の傾倒したH字型の孔59を穿設し、第二外力遮断壁60では左右に台形状の孔61,61を穿設している。  The first external force blocking wall 58 and the second external force blocking wall 60 are formed with a thickness and rigidity at least so that no external force is applied to the compartment 41, and it is particularly necessary to form holes or the like in the blocking walls 58, 60. However, the first external force blocking wall 58 according to the present embodiment is provided with an inclined H-shaped hole 59 that does not allow a finger P to enter, and the second external force blocking wall 60 has trapezoidal holes 61 on the left and right. , 61 are drilled.

また、主水素排出口保護部57は主水素排出口4を被覆自在に形成している。なお、本実施形態に係る主水素排出口保護部57では、主水素排出口保護部57側の第二外力遮断壁60に開口62を設けているが、開口62の有無は問わない。  Further, the main hydrogen outlet protecting portion 57 is formed so as to cover the main hydrogen outlet 4 freely. In addition, in the main hydrogen outlet protecting portion 57 according to the present embodiment, the opening 62 is provided in the second external force blocking wall 60 on the main hydrogen outlet protecting portion 57 side, but the presence or absence of the opening 62 does not matter.

[使用方法]
以上、説明したように本実施形態に係る水素発生ユニットAは構成されている。従って、水素ガス17の発生手順としては、まず、図3、図4(a)に示すように、主水素排出口4を上方とした状態で主収容体1の主密閉フィルムシート1bを手指Pで押圧し、副収容体19の水収容室26を被覆している副密閉フィルムシート19bを介して貫通用部材48に外力が伝わることで、貫通用突起49が区画室41の脆弱部44を破断させ、破断孔50から反応水14を流出させる。
[how to use]
As described above, the hydrogen generation unit A according to the present embodiment is configured. Therefore, as a generation procedure of the hydrogen gas 17, first, as shown in FIG. 3 and FIG. 4A, the main sealing film sheet 1b of the main container 1 is put on the finger P with the main hydrogen discharge port 4 upward. When the external force is transmitted to the penetrating member 48 via the sub-sealing film sheet 19b covering the water storage chamber 26 of the sub-container 19, the penetrating projection 49 causes the weak portion 44 of the compartment 41 to move. The rupture is performed, and the reaction water 14 flows out of the rupture hole 50.

具体的には、区画室41と貫通用部材48からなる非流出状態保持手段を収容した水収容室26は、主ケース部1aを密封する主密閉フィルムシート1bを外方から手指Pにより押圧することで、副ケース部19aを密封する副密閉フィルムシート19bが押され、貫通用突起49が脆弱部44に向かい破断させて破断孔50を現出させ、区画室41に内包された反応水14を破断孔50から流出状態とさせる。すなわち、手指Pによる外力をエネルギーとし、これをトリガーとして反応水14を非流出状態から流出状態へと変化させる。  Specifically, the water containing chamber 26 containing the non-outflow state holding means including the compartment 41 and the penetrating member 48 presses the main sealing film sheet 1b for sealing the main case portion 1a from outside with the finger P. As a result, the sub-sealing film sheet 19b that seals the sub-case portion 19a is pushed, and the projection 49 for penetration breaks toward the weak portion 44 to reveal the rupture hole 50, and the reaction water 14 contained in the compartment 41 is contained. From the breaking hole 50. That is, the external force generated by the finger P is used as energy, and the energy is used as a trigger to change the reaction water 14 from the non-outflow state to the outflow state.

区画室41から流出した反応水14は、図4(b)、(c)に示すように重力により移動用通路27から剤収容室28へと流れ込み、水素発生体16の表皮を形成する不織布を介して内部の水素発生剤15と接触し、水素生成反応により水素を生起させる。発生した水素ガス17は、不織布を透過して剤収容室28から移動用通路27へと上昇し、更に、水収容室26から狭窄通路23,23を介して副水素排出口24から主収容室2へと流通する。  The reaction water 14 flowing out of the compartment 41 flows from the transfer passage 27 into the agent accommodating chamber 28 by gravity as shown in FIGS. 4B and 4C, and the non-woven fabric forming the skin of the hydrogen generator 16 is removed. Through the hydrogen generator 15 to generate hydrogen by a hydrogen generation reaction. The generated hydrogen gas 17 passes through the nonwoven fabric and rises from the agent storage chamber 28 to the transfer passage 27, and further from the water storage chamber 26 through the constriction passages 23, 23 to the main hydrogen storage chamber 24 through the secondary hydrogen discharge port 24. Distribute to 2.

また、主収容室2の水素ガス17は上昇し、主収容体1の上部に形成された狭窄通路3を介して主水素排出口4から外部へと放出される。  Further, the hydrogen gas 17 in the main storage chamber 2 rises and is discharged from the main hydrogen discharge port 4 to the outside via the narrow passage 3 formed in the upper part of the main storage body 1.

よって、脆弱部44の破断により破断孔50から反応水14を流出させた後は、図5(a)、(b)に示すように調製容器70内に収容した所定液体としての飲用水L中に水素発生ユニットAを投入することで、飲用水L中に水素を含有させて水素含有液を調製することができる。  Therefore, after the reaction water 14 flows out of the rupture hole 50 due to the rupture of the fragile portion 44, the potable water L as a predetermined liquid contained in the preparation container 70 as shown in FIGS. The hydrogen-containing liquid can be prepared by adding hydrogen to the drinking water L by charging the hydrogen generating unit A into the water.

調製容器70は、炭酸水等を市販する際に用いられるような耐圧性を有する500ml容量のペットボトル容器であり、中空状の容器本体70aと、同容器本体70aの上部開口に螺合して気密密閉するスクリューキャップ70bとで構成している。なお、本実施形態では容器としてペットボトル(ポリエチレンテレフタレート製容器)を用いているがこれに限定されるものではなく、ガラスやアルミ素材にて形成された容器を用いても良い。  The preparation container 70 is a plastic bottle container having a pressure resistance of 500 ml and having a pressure resistance such as that used when commercializing carbonated water or the like, and is screwed into a hollow container main body 70a and an upper opening of the container main body 70a. And a screw cap 70b for hermetically sealing. In this embodiment, a PET bottle (a container made of polyethylene terephthalate) is used as a container, but the present invention is not limited to this, and a container formed of glass or an aluminum material may be used.

調製容器70内には飲用水Lをボトルネック部近傍(調製容器70の内容積の50分の48〜250分の249)まで収容して液相部とする一方、その上部を気溜まり部71として気相部を形成している。  In the preparation container 70, the drinking water L is stored up to the vicinity of the bottleneck portion (48/50 to 249/250 of the internal volume of the preparation container 70) to form a liquid phase portion, while the upper portion thereof is a gas reservoir 71. As a gas phase portion.

具体的には、水素発生ユニットAの主水素排出口4の開口3aを上方とした状態で、飲用水Lが充填された調製容器70の開口部から飲用水L中に浸漬させ、図5(b)に示すようにスクリューキャップ70bにより閉蓋すれば、主水素排出口4の開口3aを上方としたまま水素ガス17を放出する。  Specifically, with the opening 3a of the main hydrogen discharge port 4 of the hydrogen generating unit A facing upward, it is immersed in the drinking water L from the opening of the preparation container 70 filled with the drinking water L, and FIG. When the cover is closed by the screw cap 70b as shown in b), the hydrogen gas 17 is discharged while the opening 3a of the main hydrogen discharge port 4 is kept upward.

なお、水素発生ユニットAの長さは、投入する調製容器70の胴部の内径よりも長く形成することで、水素発生ユニットAが調製容器70内で反転したり横になってしまうことを防止できる。しかも、水素発生ユニットAは、主収容室2や副収容室25の水収容室26や剤収容室28の空間、及び該空間に充密する水素ガス17により飲用水L中で浮揚するように構成している。  The length of the hydrogen generation unit A is formed longer than the inner diameter of the body of the preparation container 70 to be charged, thereby preventing the hydrogen generation unit A from turning over or lying down inside the preparation container 70. it can. Moreover, the hydrogen generation unit A floats in the drinking water L by the space of the water storage room 26 and the agent storage room 28 of the main storage room 2 and the auxiliary storage room 25, and the hydrogen gas 17 filling the space. Make up.

放出された水素ガス17は、調製容器70の気溜まり部71を拡張しながら充満し、調製容器70の内圧の上昇と共に飲用水L中に溶存して水素含有液が調製される。  The released hydrogen gas 17 fills the gas reservoir 71 of the preparation container 70 while expanding, and dissolves in the drinking water L as the internal pressure of the preparation container 70 increases, to prepare a hydrogen-containing liquid.

なお、本実施形態に係る水素発生ユニットAは、脆弱部44の破断により反応水14を流出させた後は、10〜15分程度で水素の生成反応が終了するように構成しており、水素含有液の調製後すぐに飲用したい場合には、調製容器の略中央部を把持して手首を中心に左右に略180°、略30秒間すばやく振って攪拌することで略5.0ppmの水素含有液を生成することができる。  Note that the hydrogen generation unit A according to the present embodiment is configured such that after the reaction water 14 flows out due to the breakage of the fragile portion 44, the hydrogen generation reaction is completed in about 10 to 15 minutes. If you want to drink immediately after preparation of the liquid content, hold the approximate center of the preparation container and quickly shake it about 180 ° to the right and left around the wrist for about 30 seconds to stir, so that it contains about 5.0 ppm of hydrogen. A liquid can be produced.

また、水素の生成反応が終了した後、冷蔵庫で24時間程度静置させ、上述のように攪拌すれば略7.0ppmの水素含有液を生成することができるように構成している。  Further, after the hydrogen generation reaction is completed, the mixture is allowed to stand still in a refrigerator for about 24 hours, and a hydrogen-containing liquid of approximately 7.0 ppm can be generated by stirring as described above.

飲用時には、スクリューキャップ70bを開蓋すれば調製容器70の開口部近傍に水素発生ユニットAの上端部が現出しているので、水素発生ユニットAを容易に抜去して飲用することができる。  At the time of drinking, when the screw cap 70b is opened, the upper end of the hydrogen generating unit A is exposed near the opening of the preparation container 70, so that the hydrogen generating unit A can be easily removed and drunk.

ここで、水素発生ユニットAの好適な容積(収容体1内部に飲用水Lが浸入しないことを前提とする)について説明する。一般的に飲用水Lが充填された調製容器70内には上述の通り気溜まり部71が存在する。この気溜まり部71は、水素の生成において水素の含有濃度を低下させる要因となるため、水素発生ユニットAを投入してスクリューキャップ70bで閉蓋した際にはできるだけ気溜まり部71が存在しないことが望ましい。  Here, a suitable volume of the hydrogen generation unit A (assuming that the drinking water L does not enter the container 1) will be described. Generally, the stagnant portion 71 exists in the preparation container 70 filled with the drinking water L as described above. Since the stagnant portion 71 causes a reduction in the hydrogen content concentration in the generation of hydrogen, when the hydrogen generating unit A is charged and closed with the screw cap 70b, the stagnant portion 71 should not exist as much as possible. Is desirable.

従って、水素発生ユニットAの容積は、水素発生ユニットA投入前の初期的な気溜まり部71の容積と近似したものであるか、それ以上であることが望まれるため、本実施形態に係る水素発生ユニットAにおいてもそのような容積となるように形成し、図5(b)に示すように気溜まり部71がほとんど存在しないように構成している。  Therefore, it is desirable that the volume of the hydrogen generation unit A is close to or larger than the volume of the initial reservoir 71 before the hydrogen generation unit A is charged. The generation unit A is also formed so as to have such a volume, and is configured so that the air pocket 71 hardly exists as shown in FIG. 5B.

なお、気溜まり部71を最小とする方法としては、生体に無害な材質からなる矩形ブロック状、あるいはビーズ状等のスペーサー部材を別途、調製容器70内に投入することによっても可能である。  In addition, as a method of minimizing the stagnant portion 71, a spacer member in a rectangular block shape or a bead shape made of a material harmless to a living body can be separately charged into the preparation container 70.

以上、説明したように本実施形態に係る水素発生ユニットAは構成されており、飲用水L中に投入することにより同飲用水L中に水素を含有させて水素含有液を生成する水素発生ユニットAにおいて、同水素発生ユニットAは、含水して水素を発生する水素発生剤15と、水14と、前記水14を前記水素発生剤15と反応しない非流出状態に保持する非流出状態保持手段と、を水素ガス17を外部に放出する孔を有した副放出手段38を備えた副収容体19に収容し、前記副収容体19は、水素ガス17を外部に放出する孔を有した主放出手段18を備えた主収容体1に収容して一体に構成すると共に、前記副収容体19を内包した前記主収容体1は、前記飲用水L中に遊動自在に投入され、前記非流出状態保持手段は、前記主収容体1外から所定量のエネルギーを付与することにより前記非流出状態の前記水14を前記水素発生剤15と反応可能な流出状態に変化させるものであり、前記エネルギーの付与をトリガーとして、前記流出状態となった前記水14を前記水素発生剤15と反応させ、前記副収容体19内にて生成した水素を前記副放出手段38と前記主放出手段18を介して放出することにより、前記飲用水Lの水素発生ユニットA内への浸潤によらず前記水素含有液を生成すべく構成したため、万一、副収容体19内から副放出手段38を介して反応後の水68が流出したとしても、流出した反応後の水68は主収容体1内に留まるため、反応後の水68が水素発生ユニットA外の飲用水L中に流出することを防止できる。  As described above, the hydrogen generation unit A according to the present embodiment is configured, and the hydrogen generation unit is configured to contain the hydrogen in the drinking water L to generate a hydrogen-containing liquid by being charged into the drinking water L. A, the hydrogen generating unit A includes a hydrogen generating agent 15 that generates hydrogen by containing water, water 14, and a non-outflow state holding unit that holds the water 14 in a non-outflow state that does not react with the hydrogen generating agent 15. Are stored in a sub-container 19 provided with a sub-discharge means 38 having a hole for releasing the hydrogen gas 17 to the outside, and the sub-container 19 has a main hole having a hole for discharging the hydrogen gas 17 to the outside. The main container 1, which is housed in the main container 1 provided with the discharging means 18 and is integrally formed, and which contains the sub-container 19, is movably loaded into the drinking water L, and The state holding means is provided outside the main container 1. By applying a predetermined amount of energy, the water 14 in the non-outflow state is changed to an outflow state capable of reacting with the hydrogen generating agent 15, and the outflow state is triggered by the application of the energy. By reacting the water 14 with the hydrogen generating agent 15 and releasing the hydrogen generated in the sub-container 19 through the sub-release means 38 and the main release means 18, the water 14 Since the hydrogen-containing liquid is generated without being infiltrated into the hydrogen generating unit A, even if the reacted water 68 flows out of the sub-container 19 through the sub-discharging means 38, the outflow occurs. Since the reacted water 68 stays in the main container 1, it is possible to prevent the reacted water 68 from flowing out into the drinking water L outside the hydrogen generation unit A.

また、水素発生ユニットAの収容体1,19が二重構造等となることで、外側に位置する主収容体1の表面温度は、水素の生成反応による発熱が内部の副収容体19を介して緩和されて伝わるので高温にならず取扱い易く、しかも、主収容体1の外表面で接する調製容器70中の飲用水Lの温度が低くても、副収容体19内に収容された水素発生剤15の温度低下を防止でき、水素の生成反応を阻害することがない。  In addition, since the housings 1 and 19 of the hydrogen generation unit A have a double structure or the like, the surface temperature of the main housing 1 located on the outside is increased by the heat generated by the hydrogen generation reaction via the internal sub-housing 19. The temperature of the drinking water L in the preparation container 70 in contact with the outer surface of the main container 1 is low even if the temperature of the drinking water L is low. The temperature of the agent 15 can be prevented from lowering, and the production reaction of hydrogen is not hindered.

更に、万一、主放出手段18を介して調製容器70中の飲用水Lが内部に侵入したとしても、侵入した飲用水Lは副収容体19の内部には侵入できず水素発生剤15と接することはないので、必要以上の水分が水素発生剤15と触れて水素の生成反応を阻害することはない。  Furthermore, even if the drinking water L in the preparation container 70 intrudes into the inside via the main discharging means 18, the invading drinking water L cannot enter the inside of the sub-container 19 and the hydrogen generator 15 Since they do not come into contact with each other, there is no possibility that excessive moisture contacts the hydrogen generating agent 15 and hinders the hydrogen generation reaction.

しかも、二重構造の収容体1,19により、単独の収容体からなる水素発生ユニットに比して、意図せず主収容体1外から所定量の外力が付与されても、容易には非流出状態の水14が流出状態に変化しないので、使用者の意思に反した水素ガスの発生を可及的に防止できる。  Moreover, even if a predetermined amount of external force is applied from the outside of the main container 1 unintentionally by the double-structured containers 1 and 19, as compared with the hydrogen generating unit composed of a single container, it is not easily achieved. Since the water 14 in the outflow state does not change to the outflow state, generation of hydrogen gas contrary to the user's intention can be prevented as much as possible.

また、前記副収容体19は、前記水素発生剤15と前記水14と前記非流出状態保持手段とを収容する副収容室25を備え、前記主収容体1は、前記副収容体19を収容する主収容室2を備え、前記非流出状態保持手段は、前記水14を密閉収容して前記非流出状態とする可撓性の区画室41であり、同区画室41は、収容していた前記水14を吐出して前記流出状態とする脆弱部44を有し、前記エネルギーとして前記主収容体1を手指Pで挟持する押圧力が所定量付与されることにより前記脆弱部44を破断し、前記流出状態となった前記水14が前記水素発生剤15と反応して生成した水素を前記副放出手段38と前記主放出手段18を介して放出することにより、前記飲用水Lの水素発生ユニットA内への浸潤によらず前記水素含有液を生成すべく構成したことより、水素発生ユニットAの外形をなす主収容体1を手指Pで挟持しながら脆弱部44を破断する程度に押圧するだけで水14を流出状態にできるので極めて簡便に水素の生成反応を開始させることができ、しかも、収容体の内部に注水する作業が不要となる。  Further, the sub-container 19 includes a sub-container chamber 25 for storing the hydrogen generating agent 15, the water 14, and the non-outflow state holding means, and the main container 1 stores the sub-container 19 therein. And the non-outflow state holding means is a flexible compartment 41 that hermetically accommodates the water 14 so as to be in the non-outflow state. A fragile portion 44 that discharges the water 14 to be in the outflow state is provided, and the fragile portion 44 is broken by applying a predetermined amount of pressing force for holding the main container 1 between the fingers P as the energy. The hydrogen generated in the drinking water L is released by releasing the hydrogen generated by reacting the outflowing water 14 with the hydrogen generating agent 15 through the sub-release means 38 and the main release means 18. Hydrogen content regardless of infiltration into unit A , The water 14 can be made to flow out only by pressing the fragile portion 44 to the extent that the fragile portion 44 is broken while holding the main container 1 forming the outer shape of the hydrogen generating unit A with the fingers P, which is extremely simple. Can start the hydrogen generation reaction, and the operation of injecting water into the container becomes unnecessary.

また、前記主放出手段18は管状の狭窄通路3で形成された主水素排出口4を備え、前記副放出手段38は管状の狭窄通路23で形成された副水素排出口24を備えることにより、主・副収容体1,19に別途の部材を使用せずとも主・副収容体1,19の各々に一体の主・副水素排出口4,24を各々形成できるので、水素発生ユニットAを安価に製造でき、経費的に有利である。  The main discharge means 18 has a main hydrogen discharge port 4 formed by a tubular narrow passage 3, and the sub-discharge means 38 has a secondary hydrogen discharge port 24 formed by a tubular narrow passage 23. Since the main and sub-hydrogen outlets 4 and 24 can be formed respectively in the main and sub-containers 1 and 19 without using a separate member for the main and sub-containers 1 and 19, the hydrogen generation unit A can be used. It can be manufactured at low cost and is cost effective.

また、前記主・副収容体1,19は可撓性を有する合成樹脂材からなり、前記主収容体1は前記主水素排出口4と連通し、前記副収容体19は前記副水素排出口24と連通し、前記副収容室25には更に貫通用部材48を収容し、前記貫通用部材48は先端先鋭の貫通用突起49a,49b,49cを有し、前記副収容室25には、前記脆弱部44に前記貫通用突起49a,49b,49cを対峙して収容し、前記エネルギーとして前記主収容体1を手指Pで挟持する押圧力が所定量付与されることにより前記貫通用突起49a,49b,49cが前記脆弱部44を破断し、前記流出状態となった前記水14が前記水素発生剤15と反応して生成した水素を前記主・副水素排出口4,24を介して放出することにより、前記飲用水Lの水素発生ユニットA内への浸潤によらず前記水素含有液を生成すべく構成したことより、主収容体1を手指Pで挟持して付与する押圧力が弱くても、貫通用部材48の貫通用突起49a,49b,49cにより容易に脆弱部44を破断させることができるので、少なくとも高齢者など手先の力が弱い者でも容易に水14を流出状態にできるので極めて簡便に水素の生成反応を開始させることができる。  The main and sub-containers 1 and 19 are made of a flexible synthetic resin material, the main container 1 communicates with the main hydrogen outlet 4, and the sub-container 19 is connected to the sub-hydrogen outlet. 24, the sub-accommodation chamber 25 further accommodates a penetrating member 48, and the penetrating member 48 has penetrating projections 49a, 49b, 49c with sharp tips. The penetrating projections 49a, 49b, and 49c are accommodated in the fragile portion 44 so as to face each other, and a predetermined amount of pressing force for clamping the main container 1 with a finger P is applied as the energy. , 49b, 49c break the fragile portion 44 and release the hydrogen generated by the outflowing water 14 reacting with the hydrogen generating agent 15 through the main / sub hydrogen outlets 4, 24. By doing so, the generation of hydrogen from the drinking water L Since the hydrogen-containing liquid is generated without depending on the infiltration into the unit A, even if the pressing force applied by pinching the main container 1 with the finger P is weak, the penetrating protrusion of the penetrating member 48 is used. Since the fragile portion 44 can be easily broken by 49a, 49b, and 49c, the water 14 can be easily made to flow out even at least by a person with weak hand, such as the elderly, so that the hydrogen generation reaction can be started very easily. be able to.

また、前記主水素排出口4の開口方向を鉛直方向とし、前記副水素排出口24の開口方向を水平方向として互いが異なる開口方向となるように形成したことより、水14を流出状態として水素の生成反応が開始した後、万一、水素ガス17が反応後の水68と共に上方に噴出したとしても副水素排出口24の開口方向は水平方向であることから反応後の水68が副水素排出口24から流出し難く、更に、水素発生ユニットAを大きく傾けて副水素排出口24の開口方向が略鉛直方向となり、副収容体19内の反応後の水68が副水素排出口24から流出したとしても、その際の主水素排出口4の開口方向は水平方向であることから、そのまま一気に主収容体1の外部に反応後の水68が流出することを防止できる。  Further, since the opening direction of the main hydrogen discharge port 4 is set to be a vertical direction and the opening direction of the sub-hydrogen discharge port 24 is set to be a horizontal direction, the opening directions are different from each other. Even if the hydrogen gas 17 spouts upward together with the water 68 after the reaction after the generation reaction of the hydrogen starts, since the opening direction of the sub-hydrogen discharge port 24 is horizontal, the water 68 after the reaction It is difficult to flow out from the discharge port 24, and further, the hydrogen generation unit A is greatly inclined, so that the opening direction of the sub-hydrogen discharge port 24 becomes substantially vertical, and the water 68 after the reaction in the sub-container 19 is discharged from the sub-hydrogen discharge port 24. Even if it flows out, since the opening direction of the main hydrogen discharge port 4 at that time is horizontal, it is possible to prevent the water 68 after the reaction from flowing out of the main container 1 at once.

また、前記主水素排出口4の前記狭窄通路3には、前記主水素排出口4の前記狭窄通路3と連通する前記主収容室2の上部側壁5を左右側部7a,7bと底部8からなる正面視凹状とし、凹状の前記底部8で前記主水素排出口4の前記狭窄通路3の下端部9が連通した逆流防止部6を備えることより、万一、水素発生ユニットAが大きく傾いて、その際に主収容体1内に反応後の水68が存在していた場合、反応後の水68が主水素排出口4側に向かって移動したしたとしても、凹状の底部8に反応後の水68が滞留することは無く、凹状の底部8の左右側部7a,7bのいずれかに反応後の水68が滞留することになるため、反応後の水68が主収容体1の外部の飲用水L中に流出することを防止できる。  The upper side wall 5 of the main storage chamber 2 communicating with the narrowed passage 3 of the main hydrogen outlet 4 is connected to the narrowed passage 3 of the main hydrogen outlet 4 from the right and left side portions 7a and 7b and the bottom portion 8. The hydrogen generating unit A is greatly inclined by providing the backflow preventing portion 6 having a concave shape in a front view and having the concave bottom portion 8 communicating with the lower end portion 9 of the narrowed passage 3 of the main hydrogen discharge port 4. If water 68 after the reaction is present in the main container 1 at that time, even if the water 68 after the reaction moves toward the main hydrogen discharge port 4 side, the water 68 after the reaction is formed on the concave bottom 8. Water 68 does not stay, and the water 68 after the reaction stays in one of the left and right sides 7a and 7b of the concave bottom portion 8. Therefore, the water 68 after the reaction is outside the main container 1. Out of the drinking water L can be prevented.

また、前記主収容体1の下部側10を先端先鋭に形成したことより、水素発生ユニットAの上下が明確となり、ペットボトル等の調製容器70中の飲用水Lに水素発生ユニットAを投入する向きを直感的に把握することができる。  Further, since the lower side 10 of the main container 1 is formed to have a sharp tip, the upper and lower sides of the hydrogen generating unit A become clear, and the hydrogen generating unit A is put into the drinking water L in the preparation container 70 such as a PET bottle. The direction can be grasped intuitively.

更に、水素発生ユニットAの前記主収容体1に装着自在なカバー体53であり、前記カバー体53は、前記カバー体53を前記主収容体1に装着することで前記主収容体1を略被覆すると共に、前記カバー体53の外部から機械的なエネルギーとしての外力が付与されても前記非流出状態保持手段が前記非流出状態を保持することができるように外力遮断部54を備えたことより、水素発生ユニットAへの意図しない外力の付与により、水14が流出状態となって水素の生成反応が開始されてしまうことを防止できる。  Further, the cover 53 is a cover 53 that can be attached to the main container 1 of the hydrogen generation unit A. The cover 53 is attached to the main container 1 to substantially cover the main container 1. In addition to covering, even when an external force as mechanical energy is applied from the outside of the cover body 53, the non-outflow state holding means is provided with an external force blocking portion 54 so that the non-outflow state can be maintained. Thus, it is possible to prevent the water 14 from flowing out due to an unintended external force applied to the hydrogen generation unit A and starting the hydrogen generation reaction.

最後に、上述した実施形態の説明は本発明の一例であり、本発明は上述の実施形態に限定されることはない。このため、上述した実施形態以外であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能であることは勿論である。  Lastly, the description of the above embodiment is an example of the present invention, and the present invention is not limited to the above embodiment. For this reason, it goes without saying that various changes can be made according to the design and the like, even in the embodiments other than the above-described embodiments, as long as they do not depart from the technical idea of the present invention.

A 水素発生ユニット
L 液体(飲用水)
P 手指
1 主収容体
2 主収容室
3 狭窄通路
4 主水素排出口
5 上部側壁
6 逆流防止部
7a 左側部
7b 右側部
8 底部
9 下端部
10 下部側
14 水
15 水素発生剤
17 水素ガス
18 主放出手段
19 副収容体
23 狭窄通路
24 副水素排出口
25 副収容室
38 副放出手段
41 区画室
44 脆弱部
48 貫通用部材
48a 貫通用部材
49a 貫通用突起
49b 貫通用突起
49c 貫通用突起
53 カバー体
54 外力遮断部
A Hydrogen generation unit L Liquid (potable water)
P Hand 1 Main housing 2 Main housing 3 Narrow passage 4 Main hydrogen outlet 5 Upper side wall 6 Backflow prevention part 7a Left side 7b Right side 8 Bottom 9 Lower end 10 Lower side 14 Water 15 Hydrogen generator 17 Hydrogen gas 18 Main Discharge unit 19 Sub-container 23 Narrow passage 24 Sub-hydrogen outlet 25 Sub-container 38 Sub-discharge unit 41 Partition chamber 44 Weak part 48 Penetrating member 48 a Penetrating member 49 a Penetrating projection 49 b Penetrating projection 49 c Penetrating projection 53 Cover Body 54 External force cutoff

Claims (8)

液体中に投入することにより同液体中に水素を含有させて水素含有液を生成する水素発生ユニットにおいて、
同水素発生ユニットは、
含水して水素を発生する水素発生剤と、
水と、
前記水を前記水素発生剤と反応しない非流出状態に保持する非流出状態保持手段と、を水素ガスを外部に放出する孔を有した副放出手段を備えた副収容体に収容し、
前記副収容体は、水素ガスを外部に放出する孔を有した主放出手段を備えた主収容体に収容して一体に構成すると共に、
前記副収容体を内包した前記主収容体は、前記液体中に遊動自在に投入され、
前記非流出状態保持手段は、前記主収容体外から所定量の機械的なエネルギーとしての外力を付与することにより前記非流出状態の前記水を前記水素発生剤と反応可能な流出状態に変化させるものであり、
前記外力の付与をトリガーとして、前記流出状態となった前記水を前記水素発生剤と反応させ、前記副収容体内にて生成した水素を前記副放出手段と前記主放出手段を介して放出することにより、前記液体の水素発生ユニット内への浸潤によらず前記水素含有液を生成すべく構成したことを特徴とする水素発生ユニット。
In a hydrogen generating unit that generates hydrogen-containing liquid by introducing hydrogen into the liquid by being injected into the liquid,
The hydrogen generation unit
A hydrogen generator that generates hydrogen by containing water,
water and,
Non-outflow state holding means for holding the water in a non-outflow state that does not react with the hydrogen generating agent, and containing the water in a sub-container provided with sub-release means having holes for releasing hydrogen gas to the outside,
The sub-container is housed in a main container having a main discharge unit having a hole for discharging hydrogen gas to the outside, and is integrally formed.
The main container including the sub-container is movably loaded into the liquid,
The non-outflow state holding means changes the water in the non-outflow state to an outflow state capable of reacting with the hydrogen generating agent by applying a predetermined amount of external force as mechanical energy from outside the main container. And
Using the application of the external force as a trigger, causing the water in the outflow state to react with the hydrogen generating agent, and releasing hydrogen generated in the sub-container via the sub-release means and the main release means. The hydrogen generating unit is configured to generate the hydrogen-containing liquid regardless of the infiltration of the liquid into the hydrogen generating unit.
前記副収容体は、前記水素発生剤と前記水と前記非流出状態保持手段とを収容する副収容室を備え、
前記主収容体は、前記副収容体を収容する主収容室を備え、
前記非流出状態保持手段は、前記水を密閉収容して前記非流出状態とする可撓性の区画室であり、同区画室は、収容していた前記水を吐出して前記流出状態とする脆弱部を有し、
前記外力として前記主収容体を手指で挟持する押圧力が所定量付与されることにより前記脆弱部を破断し、前記流出状態となった前記水が前記水素発生剤と反応して生成した水素を前記副放出手段と前記主放出手段を介して放出することにより、前記液体の水素発生ユニット内への浸潤によらず前記水素含有液を生成すべく構成したことを特徴とする請求項1に記載の水素発生ユニット。
The sub-accommodating body includes a sub-accommodation chamber that accommodates the hydrogen generating agent, the water, and the non-outflow state holding unit,
The main container includes a main storage chamber that stores the sub-container,
The non-outflow state holding means is a flexible compartment that hermetically accommodates the water and makes the non-outflow state, and the compartment discharges the stored water to make the outflow state. Has vulnerable parts,
By applying a predetermined amount of pressing force for holding the main container with fingers as the external force , the fragile portion is broken, and the water in the outflow state reacts with the hydrogen generating agent to generate hydrogen. 2. The hydrogen-containing liquid is generated by discharging through the sub-discharge unit and the main discharge unit, regardless of infiltration of the liquid into the hydrogen generation unit. Hydrogen generation unit.
前記主放出手段は管状の狭窄通路で形成された主水素排出口を備え、
前記副放出手段は管状の狭窄通路で形成された副水素排出口を備えることを特徴とする請求項1又は請求項2に記載の水素発生ユニット。
The main discharge means includes a main hydrogen outlet formed by a tubular constricted passage;
3. The hydrogen generation unit according to claim 1, wherein the sub-discharge means includes a sub-hydrogen discharge port formed by a tubular narrow passage.
前記主・副収容体は可撓性を有する合成樹脂材からなり、
前記主収容体は前記主水素排出口と連通し、
前記副収容体は前記副水素排出口と連通し、前記副収容室には更に貫通用部材を収容し、
前記貫通用部材は先端先鋭の貫通用突起を有し、
前記副収容室には、前記脆弱部に前記貫通用突起を対峙して収容し、
前記外力として前記主収容体を手指で挟持する押圧力が所定量付与されることにより前記貫通用突起が前記脆弱部を破断し、前記流出状態となった前記水が前記水素発生剤と反応して生成した水素を前記主・副水素排出口を介して放出することにより、前記液体の水素発生ユニット内への浸潤によらず前記水素含有液を生成すべく構成したことを特徴とする請求項3に記載の水素発生ユニット。
The main and sub-containers are made of a flexible synthetic resin material,
The main container communicates with the main hydrogen outlet,
The sub-accommodation body communicates with the sub-hydrogen outlet, and further accommodates a penetrating member in the sub-accommodation chamber.
The penetrating member has a penetrating projection with a sharp tip,
In the sub-accommodation chamber, the penetration projection is accommodated in the fragile portion so as to face each other,
By applying a predetermined amount of pressing force for holding the main container with fingers as the external force , the penetration projection breaks the fragile portion, and the water that has flowed out reacts with the hydrogen generating agent. Discharging the hydrogen generated through the main / sub hydrogen outlets to generate the hydrogen-containing liquid regardless of infiltration of the liquid into the hydrogen generation unit. 4. The hydrogen generation unit according to 3.
前記主水素排出口の開口方向を鉛直方向とし、前記副水素排出口の開口方向を水平方向として互いが異なる開口方向となるように形成したことを特徴とする請求項3又は請求項
4に記載の水素発生ユニット。
The opening direction of the main hydrogen outlet is a vertical direction, and the opening direction of the sub-hydrogen outlet is horizontal so that the opening directions are different from each other. Hydrogen generation unit.
前記主水素排出口の前記狭窄通路には、前記主水素排出口の前記狭窄通路と連通する前記主収容室の上部側壁を左右側部と底部からなる正面視凹状とし、凹状の前記底部で前記主水素排出口の前記狭窄通路の下端部が連通した逆流防止部を備えることを特徴とする請求項3乃至請求項5のいずれか1項に記載の水素発生ユニット。   In the narrowed passage of the main hydrogen outlet, the upper side wall of the main storage chamber communicating with the narrowed passage of the main hydrogen outlet has a concave shape in a front view including left and right sides and a bottom, and the concave bottom has The hydrogen generation unit according to any one of claims 3 to 5, further comprising a backflow prevention unit that communicates with a lower end of the narrowed passage of the main hydrogen outlet. 前記主収容体の下部側を先端先鋭に形成したことを特徴とする請求項1乃至請求項6のいずれか1項に記載の水素発生ユニット。   The hydrogen generating unit according to any one of claims 1 to 6, wherein a lower portion of the main container is formed to have a sharp tip. 請求項1乃至請求項7のいずれか1項に記載の水素発生ユニットの前記主収容体に装着自在なカバー体であり、
前記カバー体は、前記カバー体を前記主収容体に装着することで前記主収容体を略被覆すると共に、前記カバー体の外部から機械的なエネルギーとしての外力が付与されても前記非流出状態保持手段が前記非流出状態を保持することができるように外力遮断部を備えた水素発生ユニットのカバー体を、備えることを特徴とする請求項1乃至請求項7のいずれか1項に記載の水素発生ユニット
A cover body attachable to the main container of the hydrogen generation unit according to any one of claims 1 to 7,
The cover body substantially covers the main housing body by attaching the cover body to the main housing body, and the non-outflow state even when external force as mechanical energy is applied from the outside of the cover body. according to any one of claims 1 to 7 holding means, characterized in that the cover of the hydrogen generation unit with an external force blocking part so as to be able to hold the non-spill condition, comprising Hydrogen generation unit .
JP2017544169A 2015-10-09 2015-10-09 Hydrogen generation unit Expired - Fee Related JP6648879B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/078832 WO2017061056A1 (en) 2015-10-09 2015-10-09 Hydrogen generation unit

Publications (2)

Publication Number Publication Date
JPWO2017061056A1 JPWO2017061056A1 (en) 2018-07-26
JP6648879B2 true JP6648879B2 (en) 2020-02-14

Family

ID=58488317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017544169A Expired - Fee Related JP6648879B2 (en) 2015-10-09 2015-10-09 Hydrogen generation unit

Country Status (3)

Country Link
JP (1) JP6648879B2 (en)
TW (1) TW201733902A (en)
WO (1) WO2017061056A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7054500B2 (en) 2017-06-09 2022-04-14 J.E.A株式会社 Hydrogen gas generator
WO2019045048A1 (en) * 2017-09-01 2019-03-07 協同組合企業情報センター Hydrogen gas inhalation device, cartridge for housing hydrogen gas generating material, and hydrogen gas generating material
CN110500092A (en) * 2019-03-27 2019-11-26 徐州和润起重设备技术有限公司 A kind of fluting manipulator
CN113755869B (en) * 2021-08-26 2022-10-11 未来健康生命科技(深圳)有限公司 Household distributed hydrogen machine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6028182B2 (en) * 2012-07-06 2016-11-16 株式会社光未来 Hydrogen gas sealing bag and method for dissolving hydrogen gas
JP6330156B2 (en) * 2013-07-26 2018-05-30 隆 竹原 Hydrogen generator and hydrogen generation vessel
JP5818186B1 (en) * 2014-04-11 2015-11-18 エコモ・インターナショナル株式会社 Hydrogen generation unit
WO2015156415A1 (en) * 2014-04-11 2015-10-15 エコモ・インターナショナル株式会社 Hydrogen generation unit
JP5613853B1 (en) * 2014-04-11 2014-10-29 五十嵐 秀夫 Portable hydrogen water generating apparatus and hydrogen gas generating member used in the apparatus
JP5777791B1 (en) * 2014-12-11 2015-09-09 富士産業株式会社 Hydrogen water production equipment

Also Published As

Publication number Publication date
WO2017061056A1 (en) 2017-04-13
TW201733902A (en) 2017-10-01
JPWO2017061056A1 (en) 2018-07-26

Similar Documents

Publication Publication Date Title
JP5871218B1 (en) Hydrogen generation unit
JP6648879B2 (en) Hydrogen generation unit
JP5888634B2 (en) Hydrogen generation unit
US7465428B2 (en) Method and apparatus for controlled production of a gas
EP3031745B1 (en) Beverage-containing pouch container
WO2015156415A1 (en) Hydrogen generation unit
US20200325045A1 (en) Hydrogen gas generating body
JP2015030479A (en) Hydrogen water generation cap
JP6786094B2 (en) Hydrogen generation unit
JP4594178B2 (en) Multi-chamber container
JP2009082352A (en) Medical container, medical container package filled with medicine, and vitamin d-containing medicine stabilizing storage method
JP5467465B2 (en) Air freshener container
JP2016043110A (en) Hydrogen water impregnated material receiver and hydrogen water impregnated material receiver set
JP2018202378A (en) Hydrogen gas generating apparatus
WO2019181670A1 (en) Hydrogen gas generator
JP2018001040A (en) Hydrogen generation unit
JP2018177284A (en) Hydrogen generation unit
JPH11253526A (en) Sealing member, substance deterioration preventive structure using the same, and container for transfusion
JPS62182075A (en) Heating vessel for food and drink

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190716

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200106

R150 Certificate of patent or registration of utility model

Ref document number: 6648879

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees