JPWO2017002520A1 - Battery charger for power tool battery pack - Google Patents

Battery charger for power tool battery pack Download PDF

Info

Publication number
JPWO2017002520A1
JPWO2017002520A1 JP2017526236A JP2017526236A JPWO2017002520A1 JP WO2017002520 A1 JPWO2017002520 A1 JP WO2017002520A1 JP 2017526236 A JP2017526236 A JP 2017526236A JP 2017526236 A JP2017526236 A JP 2017526236A JP WO2017002520 A1 JPWO2017002520 A1 JP WO2017002520A1
Authority
JP
Japan
Prior art keywords
charging
battery
battery pack
current
charging device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017526236A
Other languages
Japanese (ja)
Inventor
荒舘 卓央
卓央 荒舘
政樹 並木
政樹 並木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koki Holdings Co Ltd
Original Assignee
Hitachi Koki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Koki Co Ltd filed Critical Hitachi Koki Co Ltd
Publication of JPWO2017002520A1 publication Critical patent/JPWO2017002520A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • H02J7/0044Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction specially adapted for holding portable devices containing batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • H02J2310/20The network being internal to a load
    • H02J2310/22The load being a portable electronic device
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

高容量の電池パックを短時間で充電可能な充電装置を提供するため、二次電池を備える電池パックを充電可能な充電装置であって、公称容量が5Ah以上の該電池パックを2C以上の充電電流で充電可能に構成されている。In order to provide a charging device capable of charging a high-capacity battery pack in a short time, the charging device can charge a battery pack including a secondary battery, and the battery pack having a nominal capacity of 5 Ah or more is charged to 2 C or more. It is configured to be rechargeable with current.

Description

本発明は、ニッケル・カドミウム電池やニッケル・水素電池、リチウムイオン電池などの二次電池からなる電池パックを充電する充電装置に関する。 The present invention relates to a charging device for charging a battery pack including a secondary battery such as a nickel / cadmium battery, a nickel / hydrogen battery, or a lithium ion battery.

従来、電動工具等の電源として電池パックが用いられ、電池パックは専用の充電装置により充電が行われる。電動工具等に使用される電池パックは、電池容量が大きくまた放電電圧の高いものが使用され、近年、さらなる高容量化が進み、公称容量5Ah以上の高容量の電池パックが登場している。 Conventionally, a battery pack is used as a power source for an electric tool or the like, and the battery pack is charged by a dedicated charging device. Battery packs used for electric tools and the like have a large battery capacity and a high discharge voltage. In recent years, the capacity has further increased, and battery packs with a nominal capacity of 5 Ah or more have appeared.

一方、公称容量5Ah未満の電池パックを充電レート2C以上の充電電流で充電する充電装置として特許文献1に記載の充電装置が知られている。 On the other hand, a charging device described in Patent Document 1 is known as a charging device that charges a battery pack having a nominal capacity of less than 5 Ah with a charging current of a charging rate of 2C or more.

特開2008−104349号公報JP 2008-104349 A

しかしながら、特許文献1に記載の充電装置においては、高容量(5Ah以上)の電池パックを充電することは考慮されていない。また、高容量(5Ah以上)の電池パックを従来の容量(5Ah未満)の電池パックと同程度の充電電流で充電する構成では、高容量の電池パックの充電に長時間を要し、充電時間を短縮することが困難であった。また、高容量の電池パックの公称容量に対して比較的大きな充電電流で充電し、充電時間を短縮する構成も考えられるが、この場合、電池パックに備えられた二次電池の保護のための遮断手段(ヒューズ、サーマルプロテクタ等)によって充電電流が遮断され、充電が中断又は終了してしまい、結果的に充電時間の短縮化が図れないといった問題もあった。 However, in the charging device described in Patent Document 1, charging a battery pack having a high capacity (5 Ah or more) is not considered. In addition, in a configuration in which a high-capacity battery pack (5 Ah or more) is charged with a charging current comparable to that of a conventional battery pack (less than 5 Ah), it takes a long time to charge the high-capacity battery pack, and the charging time It was difficult to shorten. In addition, a configuration in which charging is performed with a relatively large charging current with respect to the nominal capacity of the high-capacity battery pack and the charging time is shortened is also conceivable. In this case, for the protection of the secondary battery provided in the battery pack. There is also a problem that the charging current is interrupted by the interrupting means (fuse, thermal protector, etc.), the charging is interrupted or terminated, and as a result, the charging time cannot be shortened.

そこで本発明は、高容量の電池パックを短時間で充電可能な充電装置を提供することを目的とする。 Accordingly, an object of the present invention is to provide a charging device that can charge a high-capacity battery pack in a short time.

上記課題を解決するために本発明は、二次電池を備える電池パックを充電可能な充電装置であって、公称容量が5Ah以上の該電池パックを2C以上の充電電流で充電可能に構成されたことを特徴とする充電装置を提供する。 In order to solve the above problems, the present invention is a charging device capable of charging a battery pack including a secondary battery, and is configured to be able to charge the battery pack having a nominal capacity of 5 Ah or more with a charging current of 2 C or more. A charging device is provided.

このような構成によると、公称容量が5Ah以上の高容量の電池パックを2C以上の充電電流で充電することができるため、略30分程度という短時間で高容量の電池パックを充電することができる。 According to such a configuration, a high-capacity battery pack with a nominal capacity of 5 Ah or more can be charged with a charging current of 2 C or more, so that a high-capacity battery pack can be charged in a short time of about 30 minutes. it can.

上記課題を解決するために本発明はさらに、二次電池を備える電池パックを充電可能な充電装置であって、公称容量がα(αは、5以上の実数)Ah以上の該電池パックを2αA以上の充電電流で充電可能に構成されたことを特徴とする充電装置を提供する。 In order to solve the above problems, the present invention further provides a charging device capable of charging a battery pack including a secondary battery, wherein the battery pack having a nominal capacity of α (α is a real number of 5 or more) Ah or more is 2αA. Provided is a charging device configured to be able to be charged with the above charging current.

このような構成によると、公称容量がα(αは、5以上の実数)Ah以上の高容量の電池パックを2αA以上の充電電流で充電することができるため、略30分程度という短時間で高容量の電池パックを充電することができる。 According to such a configuration, a high-capacity battery pack having a nominal capacity of α (α is a real number of 5 or more) Ah or more can be charged with a charging current of 2αA or more. A high-capacity battery pack can be charged.

上記構成において、該電池パックは、所定条件を満たしている場合に該二次電池に充電電流が流れることを許容し該所定条件を満たしていない場合に該充電電流を遮断する遮断手段をさらに備え、該電池パックと接続可能な電池接続部と、該電池接続部に接続された該電池パックの該遮断手段の該所定条件を特定し、該所定条件を満たすように充電制御を行う充電制御手段と、を備えることが好ましい。 In the above configuration, the battery pack further includes a blocking unit that allows a charging current to flow through the secondary battery when a predetermined condition is satisfied and blocks the charging current when the predetermined condition is not satisfied. A battery connection portion connectable to the battery pack, and a charge control means for specifying the predetermined condition of the blocking means of the battery pack connected to the battery connection section and performing charge control so as to satisfy the predetermined condition And preferably.

このような構成によると、充電制御手段が遮断手段の所定条件を満たすように充電制御を行うため、遮断手段によって充電電流が遮断されず、充電が中断又は終了することがない。このため、高容量の電池パックに対して比較的大きな充電電流で充電することができ、高容量の電池パックを短時間で充電することができる。 According to such a configuration, the charging control unit performs charging control so that the predetermined condition of the blocking unit is satisfied. Therefore, the charging current is not blocked by the blocking unit, and charging is not interrupted or terminated. For this reason, it is possible to charge a high-capacity battery pack with a relatively large charging current, and it is possible to charge the high-capacity battery pack in a short time.

上記課題を解決するために本発明はさらに、二次電池と、所定条件を満たしている場合に該二次電池に充電電流が流れることを許容し該所定条件を満たしていない場合に該充電電流を遮断する遮断手段と、を備える電池パックを充電可能な充電装置であって、該電池パックと接続可能な電池接続部と、該電池接続部に接続された該電池パックの該遮断手段の該所定条件を特定し、該所定条件を満たすように充電制御を行う充電制御手段と、を備えることを特徴とする充電装置を提供する。 In order to solve the above problems, the present invention further provides a secondary battery and a charging current that is allowed to flow through the secondary battery when a predetermined condition is satisfied and does not satisfy the predetermined condition. A charging device capable of charging a battery pack comprising: a battery connecting portion connectable to the battery pack; and the shutting means of the battery pack connected to the battery connecting portion. There is provided a charging device comprising: charge control means for specifying a predetermined condition and performing charge control so as to satisfy the predetermined condition.

このような構成によると、充電制御手段が遮断手段の所定条件を満たすように充電制御を行うため、遮断手段によって充電電流が遮断されず、充電が中断又は終了することがない。このため、高容量の電池パックに対して比較的大きな充電電流で充電することができ、高容量の電池パックを短時間で充電することができる。 According to such a configuration, the charging control unit performs charging control so that the predetermined condition of the blocking unit is satisfied. Therefore, the charging current is not blocked by the blocking unit, and charging is not interrupted or terminated. For this reason, it is possible to charge a high-capacity battery pack with a relatively large charging current, and it is possible to charge the high-capacity battery pack in a short time.

上記構成において、公称容量が5Ah以上の該電池パックを2C以上の充電電流で充電可能に構成されたことが好ましい。 In the above configuration, it is preferable that the battery pack having a nominal capacity of 5 Ah or more can be charged with a charging current of 2 C or more.

このような構成によると、公称容量が5Ah以上の高容量の電池パックを2C以上の充電電流で充電することができるため、略30分程度という短時間で高容量の電池パックを充電することができる。 According to such a configuration, a high-capacity battery pack with a nominal capacity of 5 Ah or more can be charged with a charging current of 2 C or more, so that a high-capacity battery pack can be charged in a short time of about 30 minutes. it can.

また、公称容量がα(αは、5以上の実数)Ah以上の該電池パックを2αA以上の充電電流で充電可能に構成されたことが好ましい。 Further, it is preferable that the battery pack having a nominal capacity α (α is a real number of 5 or more) Ah or more can be charged with a charging current of 2αA or more.

このような構成によると、公称容量がα(αは、5以上の実数)Ah以上の高容量の電池パックを2αA以上の充電電流で充電することができるため、略30分程度という短時間で高容量の電池パックを充電することができる。 According to such a configuration, a high-capacity battery pack having a nominal capacity of α (α is a real number of 5 or more) Ah or more can be charged with a charging current of 2αA or more. A high-capacity battery pack can be charged.

また、該所定条件は、該充電電流が該二次電池の電池温度と対応する許容最大電流値よりも小さい場合に満たされ、該充電制御手段は、該電池パックの該電池温度を取得する電池温度取得手段と、複数の電流値のうちから一の電流値を設定可能な電流設定手段と、設定された該一の電流値で該電池パックを充電するように充電電流を制御する電流制御手段と、を有し、該電池温度に基づいて、設定可能な該複数の電流値のうちの許容最大電流値よりも小さい電流値の中で最大の電流値で該電池パックを充電するように充電電流を制御することが好ましい。 The predetermined condition is satisfied when the charging current is smaller than an allowable maximum current value corresponding to the battery temperature of the secondary battery, and the charge control means acquires a battery temperature of the battery pack. Temperature acquisition means, current setting means capable of setting one current value from a plurality of current values, and current control means for controlling the charging current so as to charge the battery pack with the set one current value And charging the battery pack with a maximum current value among current values smaller than an allowable maximum current value among the plurality of settable current values based on the battery temperature. It is preferable to control the current.

このような構成によると、電池温度に基づいて、設定可能な複数の電流値のうちの許容最大電流値よりも小さい電流値の中で最大の電流値で電池パックを充電することができる。すなわち、所定条件を満みたす電流値のうちで最大の電流値をもって電池パックを充電することができる。このため、充電時間をより短縮することができる。 According to such a configuration, the battery pack can be charged with the maximum current value among the current values smaller than the allowable maximum current value among the plurality of settable current values based on the battery temperature. That is, the battery pack can be charged with the maximum current value among the current values that satisfy the predetermined condition. For this reason, the charging time can be further shortened.

また、該所定条件における該許容最大電流値は、該電池温度が高くなるに従って、より小さくなり、該充電制御手段は、該電池温度が高くなるに従って、該充電電流をより小さくすることが好ましい。 Further, it is preferable that the allowable maximum current value in the predetermined condition becomes smaller as the battery temperature becomes higher, and the charging control means makes the charging current smaller as the battery temperature becomes higher.

このような構成によると、所定条件、すなわち、遮断手段が有する遮断特性に応じて、充電電流を変更することができため、遮断手段による充電電流の遮断を確実に回避することができる。これにより、充電時間を確実に短縮することができる。 According to such a configuration, the charging current can be changed in accordance with a predetermined condition, that is, the interruption characteristic of the interruption means, so that interruption of the charging current by the interruption means can be reliably avoided. Thereby, charging time can be shortened reliably.

また、該充電制御手段は、第1電流値で充電している場合、該電池温度が第1温度閾値以上となると、該第1電流値よりも小さい第2電流値で充電するように充電電流を制御し、該1温度閾値は、対応する該許容最大電流値が該第1電流値である第1電池温度よりも低いことが好ましい。 In addition, when charging with the first current value, the charging control means is configured to charge with a second current value smaller than the first current value when the battery temperature is equal to or higher than the first temperature threshold. Preferably, the one temperature threshold is lower than the first battery temperature at which the corresponding allowable maximum current value is the first current value.

このような構成によると、遮断手段による充電電流の遮断をより確実に回避することができる。より詳細には、第1電池温度に対応する許容最大電流値は第1電流値であり、第1電流値で充電を行っている場合は、電池温度が第1電池温度に達すると遮断手段によって充電電流は遮断されるが、上記構成により、第1電池温度よりも低い第1温度閾値に電池温度が達すると第1電流値からより小さい第2電流値に変更するため、遮断手段による充電電流の遮断をより確実に回避することができる。 According to such a configuration, the interruption of the charging current by the interruption means can be avoided more reliably. More specifically, the allowable maximum current value corresponding to the first battery temperature is the first current value, and when charging is performed with the first current value, when the battery temperature reaches the first battery temperature, the cutoff means Although the charging current is cut off, the above configuration changes the charging current from the first current value to a smaller second current value when the battery temperature reaches a first temperature threshold lower than the first battery temperature. Can be more reliably avoided.

また、該充電制御手段は、該第2電流値で充電している場合、該電池温度が該第1温度閾値よりも高い第2温度閾値以上となると、該第2電流値よりも小さい第3電流値で充電するように充電電流を制御し、該第2温度閾値は、対応する該許容最大電流値が該第2電流値である第2電池温度よりも低く、且つ、該第1電池温度よりも高いことが好ましい。 Further, in the case where the charging control unit is charged with the second current value, a third value smaller than the second current value is obtained when the battery temperature becomes equal to or higher than a second temperature threshold value higher than the first temperature threshold value. The charging current is controlled to charge at a current value, and the second temperature threshold is lower than the second battery temperature at which the corresponding allowable maximum current value is the second current value, and the first battery temperature Higher than that.

このような構成によると、遮断手段による充電電流の遮断をより確実に回避するとともにより充電時間を短縮することができる。より詳細には、充電電流を第2電流値からより小さい第3電流値に変更するための第2温度閾値は、第2電池温度よりも低いため、遮断手段の動作を確実に回避することができる。さらに、第2温度閾値は、第1電池温度よりも高い値、すなわち、過度に低い値ではない。仮に、第2温度閾値を過度に低い値とした場合、例えば、第1電池温度よりも低い値とした場合には、確実に遮断手段の動作を回避することができるが、充電電流を第2電流値からより小さい第3電流値に変更するタイミングが早まり充電時間を十分に短縮することができない。この点、上記構成のように第2温度閾値を該第1電池温度よりも高くすることで、より小さい電流値への変更タイミングを遅らせることができ、充電時間をより短縮することができる。 According to such a configuration, it is possible to more reliably avoid the interruption of the charging current by the interruption means and further shorten the charging time. More specifically, since the second temperature threshold value for changing the charging current from the second current value to the smaller third current value is lower than the second battery temperature, it is possible to reliably avoid the operation of the cutoff means. it can. Further, the second temperature threshold is not a value higher than the first battery temperature, that is, an excessively low value. If the second temperature threshold is set to an excessively low value, for example, if the second temperature threshold is set to a value lower than the first battery temperature, it is possible to reliably avoid the operation of the cutoff means, but the charging current is set to the second value. The timing for changing from the current value to the smaller third current value is advanced, and the charging time cannot be sufficiently shortened. In this regard, by setting the second temperature threshold higher than the first battery temperature as in the above configuration, the timing for changing to a smaller current value can be delayed, and the charging time can be further shortened.

また、該遮断手段は、サーマルプロテクタであることが好ましい。 Moreover, it is preferable that this interruption | blocking means is a thermal protector.

また、該遮断手段は、ヒューズであることが好ましい。 Moreover, it is preferable that this interruption | blocking means is a fuse.

また、異なる電圧及び異なる公称容量を有する複数の電池パックを択一的に充電可能であって、該公称容量が5Ah未満の電池パックを2C以上の充電電流で充電可能に構成されたことが好ましい。 Further, it is preferable that a plurality of battery packs having different voltages and different nominal capacities can be selectively charged, and a battery pack having a nominal capacity of less than 5 Ah can be charged with a charging current of 2 C or more. .

このような構成によると、5Ah未満の電池パックも急速に充電することができる。 According to such a configuration, a battery pack of less than 5 Ah can be rapidly charged.

上記課題を解決するために本発明はさらに、二次電池を備える電池パックを商用交流電源から直接充電可能な充電装置であって、公称容量が5Ah以上の該電池パックを2C以上且つ3C以下の充電電流で充電可能に構成されたことを特徴とする充電装置を提供する。 In order to solve the above-mentioned problems, the present invention further provides a charging device capable of directly charging a battery pack including a secondary battery from a commercial AC power source, wherein the battery pack having a nominal capacity of 5 Ah or more is 2C or more and 3C or less. Provided is a charging device configured to be able to be charged with a charging current.

上記課題を解決するために本発明はさらに、二次電池を備える電池パックを商用交流電源から直接充電可能な充電装置であって、公称容量がα(αは、5以上の実数)Ah以上の該電池パックを2αA以上且つ3αA以下の充電電流で充電可能に構成されたことを特徴とする充電装置を提供する。 In order to solve the above-mentioned problem, the present invention further provides a charging device capable of directly charging a battery pack including a secondary battery from a commercial AC power source, wherein the nominal capacity is α (α is a real number of 5 or more) Ah or more. Provided is a charging device characterized in that the battery pack can be charged with a charging current of 2αA or more and 3αA or less.

本発明の充電装置によれば、高容量の電池パックを短時間で充電可能となる。 According to the charging device of the present invention, a high-capacity battery pack can be charged in a short time.

本発明の第1の実施の形態による充電装置の外観図。1 is an external view of a charging device according to a first embodiment of the present invention. 図1に示す充電装置の上面図。The top view of the charging device shown in FIG. 図1に示す充電装置の側面図。The side view of the charging device shown in FIG. 図1に示す充電装置のケース内の充電回路部を示す平面図。The top view which shows the charging circuit part in the case of the charging device shown in FIG. 電池パックを充電する図1に示す充電装置の側面図。The side view of the charging device shown in FIG. 1 which charges a battery pack. 図1に示す充電装置内部の放熱部材、充電回路部、第1及び第2ファンを示す斜視図。The perspective view which shows the thermal radiation member, charging circuit part, 1st and 2nd fan inside the charging device shown in FIG. 電池パックを充電する図1に示す充電装置の正面図。The front view of the charging device shown in FIG. 1 which charges a battery pack. 放熱部材と冷却風との関係を説明する図であり、(a)は第2放熱部が無いときの冷却風の流れ、(b)は第2放熱部があるときの冷却風の流れを説明する図。It is a figure explaining the relationship between a heat radiating member and cooling air, (a) is the flow of cooling air when there is no second heat radiating part, (b) is the flow of cooling air when there is a second heat radiating part. To do. 図1に示されている充電装置の電気的構成を示すブロック図を含む回路図であり、電池装着部に電池パックが装着されている状態を示す図。FIG. 2 is a circuit diagram including a block diagram illustrating an electrical configuration of the charging device illustrated in FIG. 1, and illustrates a state where a battery pack is mounted on a battery mounting portion. 図9に示す電池パックが備える第1遮断素子が有する第1遮断特性曲線を示す図。The figure which shows the 1st interruption | blocking characteristic curve which the 1st interruption | blocking element with which the battery pack shown in FIG. 9 is provided has. 図9に示す電池パックが備える第2遮断素子が有する第2遮断特性曲線を示す図。The figure which shows the 2nd interruption | blocking characteristic curve which the 2nd interruption | blocking element with which the battery pack shown in FIG. 9 is provided has. 図9に示す充電装置の充電制御部による充電処理を示すフローチャート。The flowchart which shows the charge process by the charge control part of the charging device shown in FIG. 図9に示す充電装置の充電制御部による充電処理を示すフローチャート。The flowchart which shows the charge process by the charge control part of the charging device shown in FIG. 図9に示す充電装置の充電制御部が電池パックを充電する場合に用いる目標電流値を決定するためのテーブル。The table for determining the target electric current value used when the charge control part of the charging device shown in FIG. 9 charges a battery pack. (a)及び(b)は、図9に示す充電装置の充電制御部による充電制御を行った場合の電池温度、充電電圧、充電電流の時間変化を示すタイムチャート。(c)は、従来の充電装置による充電制御を行った場合の電池温度、充電電圧、充電電流の時間変化を示すタイムチャート。(A) And (b) is a time chart which shows the time change of the battery temperature at the time of performing charge control by the charge control part of the charging device shown in FIG. 9, a charging voltage, and a charging current. (C) is a time chart which shows the time change of the battery temperature at the time of performing charge control by the conventional charging device, a charging voltage, and a charging current. 第1の実施の形態の変形例を示す充電装置の内部を示す平面図。The top view which shows the inside of the charging device which shows the modification of 1st Embodiment. 図16に示す変形例における放熱プレートの斜視図。The perspective view of the heat sink in the modification shown in FIG. 図16に示す放熱プレートと画成される風路との関係を示す斜視図。The perspective view which shows the relationship between the heat sink shown in FIG. 16, and the air path defined. 電池パックを充電するときの図16に示す充電装置内の冷却風の流れを説明する図。The figure explaining the flow of the cooling air in the charging device shown in FIG. 16 when charging a battery pack. 電池パックを充電するときの図16に示す充電装置内の冷却風の流れを説明する図。The figure explaining the flow of the cooling air in the charging device shown in FIG. 16 when charging a battery pack. 本発明の第2の実施の形態による充電装置のケース内の充電回路部を示す平面図。The top view which shows the charging circuit part in the case of the charging device by the 2nd Embodiment of this invention. 図21に示す充電装置の側面図。The side view of the charging device shown in FIG. 第2の実施の形態の変形例を示す上面図。The top view which shows the modification of 2nd Embodiment. 第2の実施の形態の変形例を示す上面図。The top view which shows the modification of 2nd Embodiment. 第2の実施の形態の変形例を示す側面図。The side view which shows the modification of 2nd Embodiment. 第2の実施の形態の変形例を示す側面図。The side view which shows the modification of 2nd Embodiment. 第2の実施の形態の変形例を示す上面図。The top view which shows the modification of 2nd Embodiment. 第2の実施の形態の変形例を示す上面図。The top view which shows the modification of 2nd Embodiment. 本発明の第3の実施の形態による充電装置の平面図。The top view of the charging device by the 3rd Embodiment of this invention. 本発明の第3の実施の形態による充電装置の第1の充電動作を示すフローチャート。The flowchart which shows the 1st charging operation of the charging device by the 3rd Embodiment of this invention. 図29に示す充電装置において第1ファンのみを駆動するときに生じる第1冷却風を説明する図。The figure explaining the 1st cooling air which arises when only a 1st fan is driven in the charging device shown in FIG. 図29に示す充電装置において第2ファンのみを駆動するときに生じる第2冷却風を説明する図。The figure explaining the 2nd cooling air which arises when only the 2nd fan is driven in the charging device shown in FIG. 図29に示す充電装置が電池パックを充電するときにケース内に生じる第1及び第2の冷却風を示す平面図。The top view which shows the 1st and 2nd cooling air which arises in a case when the charging device shown in FIG. 29 charges a battery pack. 本発明の第3の実施の形態による充電装置の第2の充電動作を示すフローチャート。The flowchart which shows the 2nd charging operation of the charging device by the 3rd Embodiment of this invention. 図29に示す充電装置において第1ファンの回転数が第2ファンの回転数よりも大きいときのケース内に流れる冷却風を説明する図。FIG. 30 is a diagram for explaining cooling air flowing in the case when the rotation speed of the first fan is larger than the rotation speed of the second fan in the charging device shown in FIG. 29. 図29に示す充電装置において第2ファンの回転数が第1ファンの回転数よりも大きいときにケース内に生じる冷却風を説明する図。FIG. 30 is a diagram for explaining cooling air generated in the case when the rotation speed of the second fan is larger than the rotation speed of the first fan in the charging device shown in FIG. 29. 本発明の第4の実施の形態による充電装置の内部を示す側面断面図。Side surface sectional drawing which shows the inside of the charging device by the 4th Embodiment of this invention. 図37に示す充電装置の平面図。The top view of the charging device shown in FIG. 本発明の第5の実施の形態による充電装置の平面図。The top view of the charging device by the 5th Embodiment of this invention.

本発明の実施の形態による充電装置を図面を参照して説明する。なお、以下の説明においては、充電装置に電池パックが装着される面が向いている方向を上方向とし、その反対方向を下方向と規定する。また、左右方向及び前後方向については、特段の記載が無い限り、図面に示す方向とする。 A charging apparatus according to an embodiment of the present invention will be described with reference to the drawings. In the following description, the direction in which the surface on which the battery pack is attached to the charging device faces is defined as the upward direction, and the opposite direction is defined as the downward direction. Further, the left-right direction and the front-rear direction are the directions shown in the drawings unless otherwise specified.

本発明の第1の実施の形態による充電装置1は、電池パック3及び33を含む複数種類の電池パック、すなわち、互いに電池種(電池パックの電圧、公称容量)の異なる複数の電池パックを充電可能に構成されている。以下の説明では、充電装置1に電池パック3が装着される場合を主に説明し、適宜、電池パック3の説明と併せて電池パック33についても説明する。 The charging device 1 according to the first embodiment of the present invention charges a plurality of types of battery packs including the battery packs 3 and 33, that is, a plurality of battery packs having different battery types (battery pack voltage and nominal capacity). It is configured to be possible. In the following description, the case where the battery pack 3 is attached to the charging device 1 will be mainly described, and the battery pack 33 will be described together with the description of the battery pack 3 as appropriate.

図1から図5を参照すると、充電装置1は、ケース2の内部に、電池パック3を充電するための充電回路部4と、充電回路部4及び電池パック3を冷却するための複数のファンとなる第1ファン5及び第2ファン6とを備える。 Referring to FIGS. 1 to 5, the charging device 1 includes a case 2 with a charging circuit unit 4 for charging the battery pack 3 and a plurality of fans for cooling the charging circuit unit 4 and the battery pack 3. The first fan 5 and the second fan 6 are provided.

ケース2は、略直方体形状であり、上面21には前方側に電池パック3が充電のために装着される電池装着部7が設けられている。電池装着部7には、電池パック3を充電するための複数の端子70が設けられると共に、電池パック3を冷却するための風が通過する開口71が設けられている。さらに、ケース2は、上面21を囲む4つの側面22、23、24、25と、上面21とは反対側に位置する底面27とを有し、互いに隣接する側面22、23は角部26にて連結されている。また、側面22、24は互いに対向し、側面23、25は互いに対向する。ケース2において、底面27から上面21に向かう方向を充電装置1の上方向、すなわち上面と交差する第1方向とする。 The case 2 has a substantially rectangular parallelepiped shape, and a battery mounting portion 7 on which the battery pack 3 is mounted for charging is provided on the upper surface 21 on the front side. The battery mounting portion 7 is provided with a plurality of terminals 70 for charging the battery pack 3 and an opening 71 through which wind for cooling the battery pack 3 passes. Furthermore, the case 2 has four side surfaces 22, 23, 24, and 25 that surround the upper surface 21, and a bottom surface 27 that is located on the opposite side of the upper surface 21, and the side surfaces 22 and 23 that are adjacent to each other are at the corners 26. Are connected. Further, the side surfaces 22 and 24 face each other, and the side surfaces 23 and 25 face each other. In the case 2, the direction from the bottom surface 27 toward the upper surface 21 is defined as the upper direction of the charging device 1, that is, the first direction intersecting with the upper surface.

第1ファン5は、図4に示すように、ケース2内に、角部26と開口71とに近接するとともに側面22に近接して配置される。第1ファン5は、第1回転軸5aを有する。また、第1ファン5が対向する側面22の部分には、複数の通気窓からなる第1排気口22aが形成される。第1ファン5は、駆動されると、第1回転軸5aの方向に第1冷却風を発生させる。第1冷却風は、第1排気口22aに向かい、第1排気口22aを介してケース2から排気される。 As shown in FIG. 4, the first fan 5 is disposed in the case 2 in the vicinity of the corner portion 26 and the opening 71 and in the vicinity of the side surface 22. The first fan 5 has a first rotating shaft 5a. Moreover, the 1st exhaust port 22a which consists of a some ventilation window is formed in the part of the side surface 22 which the 1st fan 5 opposes. When driven, the first fan 5 generates first cooling air in the direction of the first rotating shaft 5a. The first cooling air flows toward the first exhaust port 22a and is exhausted from the case 2 through the first exhaust port 22a.

第2ファン6は、図4に示すように、ケース2内に、角部26と開口71とに近接するとともに側面23に近接して配置される。第2ファン6は、第2回転軸6aを有する。また、第2ファン6は、第2回転軸6aの延長方向が第1ファン5の第1回転軸5aの延長方向と交差するように配置される。第2ファン6が対向する側面23の部分には、複数の通気窓からなる第2排気口23aが形成されている。第2ファン6は、駆動されると、第2回転軸6aの方向に第2冷却風を発生させる。第2冷却風は、第2排気口23aに向かい、第2排気口23aを介してケース2から排気される。従って、複数のファン(第1ファン5及び第2ファン6)により充電装置1内の発熱素子の冷却効率を高めることができる。さらに、ファン5及び6をケース2の側面(具体的には側面22及び23)に沿って配置することで基板40のケース2内での設置スペースを確保でき基板40を有効活用することができる。特にケース2の側面を連結する角部近傍に設けることが効果的である。 As shown in FIG. 4, the second fan 6 is disposed in the case 2 in the vicinity of the corner portion 26 and the opening 71 and in the vicinity of the side surface 23. The second fan 6 has a second rotating shaft 6a. The second fan 6 is arranged such that the extending direction of the second rotating shaft 6 a intersects the extending direction of the first rotating shaft 5 a of the first fan 5. A second exhaust port 23 a made up of a plurality of ventilation windows is formed in the portion of the side surface 23 that faces the second fan 6. When driven, the second fan 6 generates second cooling air in the direction of the second rotation shaft 6a. The second cooling air flows toward the second exhaust port 23a and is exhausted from the case 2 through the second exhaust port 23a. Therefore, the cooling efficiency of the heating element in the charging device 1 can be increased by the plurality of fans (the first fan 5 and the second fan 6). Furthermore, by arranging the fans 5 and 6 along the side surfaces of the case 2 (specifically, the side surfaces 22 and 23), it is possible to secure an installation space in the case 2 of the substrate 40 and to effectively use the substrate 40. . In particular, it is effective to provide in the vicinity of the corner portion connecting the side surfaces of the case 2.

ケース2には、側面22と反対側の側面24に、所定範囲に亘って複数の通気窓が吸気口24aとして形成される。従って、第1ファン5及び第2ファン6が駆動されると、吸気口24aから空気がケース2内に取りこまれ、取りこまれた空気は第1及び第2冷却風としてケース2の内部を冷却風路に沿って通過し、第1及び第2排気口22a、23aを介してケース2の外部に排気される。なお、冷却風路の詳細については後述する。 In the case 2, a plurality of ventilation windows are formed as intake ports 24 a over a predetermined range on the side surface 24 opposite to the side surface 22. Therefore, when the first fan 5 and the second fan 6 are driven, air is taken into the case 2 from the intake port 24a, and the taken air passes through the inside of the case 2 as first and second cooling air. It passes along the cooling air passage and is exhausted to the outside of the case 2 through the first and second exhaust ports 22a and 23a. Details of the cooling air passage will be described later.

充電回路部4は、ケース2内で、吸気口24aの近傍に配置された基板40に、主に、ダイオード41と、トランス42と、FET43と、温度検出素子44と、充電制御部45とが実装されて構成される。充電回路部4は、充電制御部45の制御により、例えば商用交流電源Pから供給される電力を用いて端子70を介して電池パック3を充電する。大電流且つ急速充電、いわゆる2C充電のために、単位時間あたり多量の電流を充電回路部4に流すと、ダイオード41、トランス42、FET43は、発熱する傾向がある。これらの部品を発熱から保護して放熱を促すために、ダイオード41及びFET43にそれぞれ放熱部材46、47を取り付けている。 The charging circuit unit 4 includes a diode 40, a transformer 42, an FET 43, a temperature detection element 44, and a charging control unit 45 on a substrate 40 disposed in the vicinity of the air inlet 24a in the case 2. Implemented and configured. The charging circuit unit 4 charges the battery pack 3 through the terminal 70 using, for example, power supplied from the commercial AC power supply P under the control of the charging control unit 45. When a large amount of current per unit time is passed through the charging circuit unit 4 for large current and rapid charging, so-called 2C charging, the diode 41, the transformer 42, and the FET 43 tend to generate heat. In order to protect these components from heat generation and promote heat dissipation, heat dissipation members 46 and 47 are attached to the diode 41 and the FET 43, respectively.

また、ダイオード41、トランス42、及びFET43を、吸気口24a近傍に配置して、吸気口24aからケース2内に導入される空気に直接晒されるようにしている。特に、トランス42を冷却風路の最上流側、すなわち吸気口24aの近傍に配置している。 Further, the diode 41, the transformer 42, and the FET 43 are disposed in the vicinity of the air inlet 24a so as to be directly exposed to the air introduced into the case 2 from the air inlet 24a. In particular, the transformer 42 is arranged on the most upstream side of the cooling air passage, that is, in the vicinity of the intake port 24a.

放熱部材46は、熱伝導率の高い金属から形成され、図5に示すように、基板40から上面21に向けて、すなわち第1方向に延びてダイオード41が固定される板状の第1放熱部46Aと、第1放熱部46Aの先端から上面21と略平行に、放熱部材47に向けて延びる板状の第2放熱部46Bとからなる。第2放熱部46Bが延びる方向は、第1方向に交差する方向、すなわち第2方向である。従って、放熱部材46は、断面の形状が側面視で略L字形状に形成される。 The heat dissipating member 46 is formed of a metal having high thermal conductivity, and as shown in FIG. 5, a plate-shaped first heat dissipating from the substrate 40 toward the upper surface 21, that is, in the first direction, to which the diode 41 is fixed. Part 46A, and a plate-like second heat radiating part 46B extending from the tip of the first heat radiating part 46A to the heat radiating member 47 substantially parallel to the upper surface 21. The direction in which the second heat radiating portion 46B extends is the direction intersecting the first direction, that is, the second direction. Therefore, the heat radiating member 46 has a substantially L-shaped cross section when viewed from the side.

放熱部材47も、同様に、熱伝導率の高い金属から形成され、図5に示すように、基板40から上面21に向けて第1方向に延びてFET43が固定される板状の第1放熱部47Aと、第1放熱部47Aの先端から上面21と略平行に、放熱部材46に向けて第2方向に延びる板状第2放熱部47Bとからなる。従って、放熱部材47は、断面の形状が側面視で略L字形状に形成される。 Similarly, the heat radiating member 47 is formed of a metal having high thermal conductivity, and as shown in FIG. 5, extends in the first direction from the substrate 40 toward the upper surface 21 and the plate-like first heat radiating to which the FET 43 is fixed. 47A, and a plate-like second heat radiating portion 47B extending in the second direction toward the heat radiating member 46 from the front end of the first heat radiating portion 47A substantially parallel to the upper surface 21. Therefore, the heat radiating member 47 has a substantially L-shaped cross section when viewed from the side.

図6に示すように、放熱部材46、47は、基板40に実装されたときに、第1放熱部46Aと第1放熱部47Aとの各々の一端部が互いに離間して吸気口24aの近傍に配置される。また、第2放熱部46B、47Bがトランス42を間に挟むようにトランス42から規格で定まる所定距離を離して配置される。さらに、図5に示されているように、第2放熱部46Bと第2放熱部47Bとは、第1方向において、ダイオード41及びFET43と上面21との間に位置する。なお、放熱部材46の第1及び第2放熱部46A、46Bと、放熱部材47の第1及び第2放熱部47A、47Bとは、トランス42と適切な絶縁距離をとるような寸法に形成されている。 As shown in FIG. 6, when the heat radiating members 46 and 47 are mounted on the substrate 40, one end portions of the first heat radiating portion 46 </ b> A and the first heat radiating portion 47 </ b> A are separated from each other and in the vicinity of the air inlet 24 a. Placed in. Further, the second heat radiating portions 46B and 47B are arranged at a predetermined distance determined by the standard from the transformer 42 so as to sandwich the transformer 42 therebetween. Further, as shown in FIG. 5, the second heat radiating portion 46 </ b> B and the second heat radiating portion 47 </ b> B are located between the diode 41 and the FET 43 and the upper surface 21 in the first direction. The first and second heat radiating portions 46A and 46B of the heat radiating member 46 and the first and second heat radiating portions 47A and 47B of the heat radiating member 47 are formed to have dimensions that allow an appropriate insulation distance from the transformer 42. ing.

また、放熱部材46、47は、基板40に実装されると、基板40とともに、吸気口24aからケース2内に取りこまれた空気の風路を画成すると共に、この風路内にダイオード41、トランス42、及びFET43を含むように配置される。 Further, when the heat radiating members 46 and 47 are mounted on the board 40, together with the board 40, the air passage of the air taken into the case 2 from the intake port 24 a is defined, and the diode 41 is placed in the air path. , The transformer 42, and the FET 43.

温度検出素子44は、例えばサーミスタからなり、ケース2内部の温度を検出する。 The temperature detection element 44 is made of, for example, a thermistor, and detects the temperature inside the case 2.

充電制御部45は、電池パック3の温度をモニタしつつ、充電回路部4による電池パック3の充電を制御すると共に、第1及び第2ファン5、6の回転を制御する。 The charging control unit 45 controls the charging of the battery pack 3 by the charging circuit unit 4 while monitoring the temperature of the battery pack 3 and controls the rotation of the first and second fans 5 and 6.

充電装置1では、図7に示すように電池パック3が電池装着部7に取り付けられると、第1ファン5及び第2ファン6を駆動する。ファンの駆動により、ケース2内に第1冷却風及び第2冷却風を発生させて、吸気口24aから第1排気口22a及び第2排気口23aまでの冷却風路を形成する。 In the charging device 1, when the battery pack 3 is attached to the battery mounting portion 7 as shown in FIG. 7, the first fan 5 and the second fan 6 are driven. By driving the fan, first cooling air and second cooling air are generated in the case 2 to form a cooling air passage from the intake port 24a to the first exhaust port 22a and the second exhaust port 23a.

冷却風路は、吸気口24a近傍においては、放熱部材46、47の第1放熱部46A、47A及び第2放熱部46B、47Bと、基板40とによって、図6に示すように、上面の一部が開口するダクト状に画成される。従って、第1冷却風及び第2冷却風は、第1放熱部46A、47Aの各々の吸気口24aに近い一端部側から、排気口22a、23aに近い他端部側に向けて冷却風路内を進行する。 In the vicinity of the air inlet 24a, the cooling air path is formed on the upper surface of the heat radiating members 46A, 47A and the second heat radiating parts 46B, 47B and the substrate 40 as shown in FIG. The part is defined as a duct having an opening. Accordingly, the first cooling air and the second cooling air flow from the one end side near the intake port 24a of each of the first heat radiating portions 46A and 47A toward the other end side near the exhaust ports 22a and 23a. Proceed inside.

冷却風は、一般に、吸気口24aから排気口22a、23aに向けて最短距離で通過する傾向がある。このため、第2放熱部46Bが設けられていない場合、図8(b)に示すように、冷却風の多くは、放熱部材46の一端部から他端部に向かって流れずに放熱部材46を超えて直接排気口22a、23aに到達する。このため、放熱部材46、47間に配置したダイオード41、トランス42、及びFET43の傍を第1冷却風又は第2冷却風が通過せず、ダイオード41、トランス42、及びFET43を十分に冷却することができないことになる。 The cooling air generally tends to pass through the shortest distance from the intake port 24a toward the exhaust ports 22a and 23a. For this reason, when the second heat radiating portion 46B is not provided, most of the cooling air does not flow from one end portion of the heat radiating member 46 to the other end portion as shown in FIG. And reach the exhaust ports 22a and 23a directly. Therefore, the first cooling air or the second cooling air does not pass through the diode 41, the transformer 42, and the FET 43 disposed between the heat radiation members 46, 47, and the diode 41, the transformer 42, and the FET 43 are sufficiently cooled. It will not be possible.

これに対し、本発明実施の形態では、第1放熱部46A、47Aの各々の先端部から第2方向に延びる第2放熱部46B、47Bによって、図8(a)に示すように、冷却風が、第1放熱部46Aを超えて排気口22a、23aへと流れるのが阻止される。このため、冷却風は、第1放熱部46A、47Aの各々の一端部から他端部側に向けて流れるので、放熱部材46、47間に配置したダイオード41、トランス42、及びFET43の傍を通過して、ダイオード41、トランス42、及びFET43を十分に冷却することができる。 On the other hand, in the embodiment of the present invention, as shown in FIG. 8A, the cooling air is cooled by the second heat radiating portions 46B and 47B extending in the second direction from the respective tip portions of the first heat radiating portions 46A and 47A. However, it is blocked | prevented from flowing through the 1st thermal radiation part 46A to the exhaust ports 22a and 23a. For this reason, the cooling air flows from one end portion of each of the first heat radiating portions 46A and 47A toward the other end portion, so that the diode 41, the transformer 42, and the FET 43 disposed between the heat radiating members 46 and 47 are adjacent to each other. The diode 41, the transformer 42, and the FET 43 can be sufficiently cooled.

なお、図4、5、6に示す放熱部材46、47によって画成される冷却風路内のダイオード41、トランス42、及びFET43の配置は一例であって、第1冷却風及び第2冷却風が素子の傍らを通過するのであれば適宜の配置を取ることができる。また、冷却風は、第1ファン5及び第2ファン6に近接して設けた排気口22a、23aを吸気口とし、吸気口24aを排気口として、これらファン5、6によって空気をケース2内に取りこむ構成としてもよい。但し、この場合には、冷却風を発熱素子に吹き付ける構成となるため、第1ファン5及び第2ファン6によってケース2外に風を排出する構成よりも冷却効果が低くなってしまうが、吸気口24a(排気口として使用)付近では冷却風が集束されるため高い風量で吸気口24a近傍に配置した発熱素子(トランス42等)を冷却することができる。また、第1ファン5及び第2ファン6によって空気と共に粉塵が吸い込まれ排気口(22a、23a)に詰まってしまう可能性がある。従って、第1ファン5及び第2ファン6によってケース2外に風を排出する構成とすることで、発熱素子の冷却効率を高めることができると共に、排気口(22a、23a)の目詰まりを抑制することができる。 The arrangement of the diode 41, the transformer 42, and the FET 43 in the cooling air path defined by the heat dissipating members 46 and 47 shown in FIGS. 4, 5, and 6 is an example, and the first cooling air and the second cooling air are used. If it passes by the side of an element, it can take an appropriate arrangement. Further, the cooling air is supplied to the inside of the case 2 by the fans 5 and 6 using the exhaust ports 22a and 23a provided close to the first fan 5 and the second fan 6 as the intake ports and the intake port 24a as the exhaust ports. It is good also as a structure incorporated in. However, in this case, since the cooling air is blown to the heat generating element, the cooling effect is lower than the structure in which the first fan 5 and the second fan 6 discharge the air outside the case 2. Since the cooling air is focused near the opening 24a (used as an exhaust opening), the heat generating elements (such as the transformer 42) disposed in the vicinity of the intake opening 24a can be cooled with a high air volume. Moreover, dust may be sucked together with air by the first fan 5 and the second fan 6 and may be clogged in the exhaust ports (22a, 23a). Therefore, by adopting a configuration in which the first fan 5 and the second fan 6 discharge the air outside the case 2, the cooling efficiency of the heating element can be increased and clogging of the exhaust ports (22a, 23a) is suppressed. can do.

また、電池パック3を冷却するために、図7に示すダクト90によって、開口71と第1排気口22a及び第2排気口23aとの間にも風路が形成される。ダクト90によって電池パック3の冷却風路と充電装置1の冷却風路とを分けている。すなわち、電池パック3の吸気口から電池パック3内に取り込まれ、開口71を介して充電装置1に取り込まれた空気は、ダクト90の上側を通り第1排気口22a及び第2排気口23aから排出される。一方、吸気口24aから充電装置1に取り込まれた空気はダクト90によって電池パック3側に流れることなくダクト90の下側を通り第1排気口22a及び第2排気口23aから排出される。なお、図5においてダクト90は省略している。 Moreover, in order to cool the battery pack 3, an air path is also formed between the opening 71 and the first exhaust port 22a and the second exhaust port 23a by the duct 90 shown in FIG. The duct 90 separates the cooling air path of the battery pack 3 and the cooling air path of the charging device 1. That is, the air taken into the battery pack 3 from the air inlet of the battery pack 3 and taken into the charging device 1 through the opening 71 passes through the upper side of the duct 90 from the first exhaust port 22a and the second exhaust port 23a. Discharged. On the other hand, the air taken into the charging device 1 from the intake port 24a passes through the lower side of the duct 90 without flowing to the battery pack 3 side through the duct 90 and is discharged from the first exhaust port 22a and the second exhaust port 23a. Note that the duct 90 is omitted in FIG.

ここで、図9を参照しながら、第1の実施の形態による充電装置1及び充電装置1に接続される電池パック3及び33の電気的構成について説明する。電池パック3及び電池パック33は、互いに電池種が異なり、遮断素子、電池組の許容充電電流値及び内部抵抗(公称容量)等が異なるが、基本的構成、充電装置との接続関係及び充電装置1との通信方法等は同一である。このため、電池パック3を例にとって説明し、電池パック33については相違点のみを説明する。図9は、充電装置1、電池パック3及び33の電気的構成を示すブロック図を含む回路図であり、電池装着部7に電池パック3又は33が装着されている状態を示している。 Here, the electrical configuration of the battery pack 3 and 33 connected to the charging device 1 and the charging device 1 according to the first embodiment will be described with reference to FIG. 9. The battery pack 3 and the battery pack 33 are different from each other in battery type and have different cutoff elements, allowable charging current values and internal resistance (nominal capacity) of the battery set, etc., but the basic configuration, the connection relationship with the charging device, and the charging device The communication method with 1 is the same. For this reason, the battery pack 3 will be described as an example, and only the differences with respect to the battery pack 33 will be described. FIG. 9 is a circuit diagram including a block diagram showing an electrical configuration of the charging device 1 and the battery packs 3 and 33, and shows a state where the battery pack 3 or 33 is attached to the battery attachment portion 7.

先に、電池パック3の電気的構成について説明する。電池パック3は、ハンマドリル、携帯用丸鋸等の電動工具に着脱可能に構成され、当該電動工具の駆動用電源として用いられる高容量(公称容量5Ah以上)の電池パックである。図9に示されているように、電池パック3は、電池組3Aと、接続端子部3B、保護IC3Cと、電池側電源回路3Dと、電池温度検出回路3Eと、第1遮断素子3Fと、電池側制御部3Gとを備えている。なお、電池容量は定格容量であってもよい。 First, the electrical configuration of the battery pack 3 will be described. The battery pack 3 is a battery pack having a high capacity (nominal capacity of 5 Ah or more) that is configured to be detachable from a power tool such as a hammer drill or a portable circular saw and used as a power source for driving the power tool. As shown in FIG. 9, the battery pack 3 includes a battery set 3A, a connection terminal portion 3B, a protection IC 3C, a battery-side power supply circuit 3D, a battery temperature detection circuit 3E, a first cutoff element 3F, A battery-side control unit 3G. The battery capacity may be a rated capacity.

電池組3Aは、電池セル3aを直列に4セル接続した構成である。本実施の形態において、例えば、電池セル3aはリチウムイオン電池であり、公称電圧は3.6V、最大充電電圧は4.2Vであり、電池組3Aとしての最大充電電圧は16.8V(4.2V/セル×4セル)である。また、電池組3Aの公称容量は6Ah、許容充電電流値は12A(又は2C)程度であり、電動工具用の駆動電源としては高容量である。なお、許容充電電流値とは、電池組3Aの劣化、故障の虞がなく充電可能な充電電流の最大値であり、12A(2C)は一例に過ぎず、それ以上であってもよい。例えば高性能の電池セルであれば12A(2C)以上の許容充電電流値でもよい。電池セル3aは、本発明における「二次電池」の一例である。 The battery set 3A has a configuration in which four battery cells 3a are connected in series. In the present embodiment, for example, the battery cell 3a is a lithium ion battery, the nominal voltage is 3.6V, the maximum charging voltage is 4.2V, and the maximum charging voltage as the battery set 3A is 16.8V (4. 2V / cell × 4 cells). Further, the battery pack 3A has a nominal capacity of 6Ah and an allowable charging current value of about 12A (or 2C), and has a high capacity as a driving power source for the electric tool. The allowable charging current value is the maximum value of the charging current that can be charged without the risk of deterioration or failure of the battery set 3A, and 12A (2C) is merely an example and may be more than that. For example, in the case of a high-performance battery cell, an allowable charging current value of 12 A (2C) or more may be used. The battery cell 3a is an example of the “secondary battery” in the present invention.

接続端子部3Bは、プラス接続端子3b及びマイナス接続端子3cを有している。プラス接続端子3bは、最も電位の高い電池セル3aのプラス端子に第1遮断素子3Fを介して接続されている。マイナス接続端子3cは、最も電位の低い電池セル3aのマイナス端子に接続されている。電池パック3が充電装置1の電池装着部7に装着された場合、プラス接続端子3b及びマイナス接続端子3cのそれぞれは、充電装置1の複数の端子70のうちの所定の端子に接続され、電池組3Aと充電装置1とが接続される。電池装着部7及び端子70は、本発明における「電池接続部」の一例である。 The connection terminal portion 3B has a positive connection terminal 3b and a negative connection terminal 3c. The positive connection terminal 3b is connected to the positive terminal of the battery cell 3a having the highest potential via the first cutoff element 3F. The minus connection terminal 3c is connected to the minus terminal of the battery cell 3a having the lowest potential. When the battery pack 3 is mounted on the battery mounting portion 7 of the charging device 1, each of the positive connection terminal 3 b and the negative connection terminal 3 c is connected to a predetermined terminal among the plurality of terminals 70 of the charging device 1. The set 3A and the charging device 1 are connected. The battery mounting part 7 and the terminal 70 are examples of the “battery connection part” in the present invention.

保護IC3Cは、4個の電池セル3aのそれぞれの電圧を個別に監視し、その中の一セルでも通常状態ではない状態、例えば、過充電状態や過放電状態となった場合に異常信号を電池側制御部3Gに出力する。電池側電源回路3Dは、電池組3Aの電圧を変圧し、その電力を電池側制御部3Gに供給する回路である。 The protection IC 3C individually monitors the voltage of each of the four battery cells 3a, and even if one of the cells is in a state that is not in a normal state, such as an overcharge state or an overdischarge state, an abnormal signal is sent to the battery. To the side control unit 3G. The battery side power supply circuit 3D is a circuit that transforms the voltage of the battery set 3A and supplies the electric power to the battery side control unit 3G.

電池温度検出回路3Eは、電池組3Aの温度(電池温度)を検出する回路であり、電池組3Aに隣接して設けられた図示せぬサーミスタ等の感温素子を備えている。電池温度検出回路3Eは、サーミスタ等の感温素子を用いて電池温度を検出し、当該検出温度を電圧信号に変換して電池側制御部3Gに出力する。 The battery temperature detection circuit 3E is a circuit that detects the temperature (battery temperature) of the battery set 3A, and includes a temperature sensitive element such as a thermistor (not shown) provided adjacent to the battery set 3A. The battery temperature detection circuit 3E detects a battery temperature using a temperature sensitive element such as a thermistor, converts the detected temperature into a voltage signal, and outputs the voltage signal to the battery side control unit 3G.

第1遮断素子3Fは、電池組3A(電池セル3a)の保護のためにプラス接続端子3bと電池組3Aとの間に設けられた、例えば、サーマルプロテクタ、ヒューズ等である。第1遮断素子3Fは、充電電流を遮断する条件を規定する遮断特性を有しており、当該遮断特性を満たしている場合、電池組3A(電池セル3a)に充電電流が流れることを許容し、当該遮断特性を満たしていない場合に充電電流を遮断する。より具体的には、第1遮断素子3Fは、図10に示されている第1遮断特性曲線A(充電電流−周囲温度カーブ)を有している。第1遮断素子3Fは、本発明における「遮断手段」の一例である。 The first cutoff element 3F is, for example, a thermal protector, a fuse, or the like provided between the positive connection terminal 3b and the battery set 3A for protecting the battery set 3A (battery cell 3a). The first cutoff element 3F has a cutoff characteristic that defines a condition for cutting off the charging current. When the cutoff characteristic is satisfied, the first cutoff element 3F allows the charging current to flow through the battery set 3A (battery cell 3a). The charging current is cut off when the cutoff characteristic is not satisfied. More specifically, the first cutoff element 3F has a first cutoff characteristic curve A (charging current-ambient temperature curve) shown in FIG. The first blocking element 3F is an example of the “blocking unit” in the present invention.

図10は、第1遮断素子3Fが有する第1遮断特性曲線Aを示す図である。第1遮断特性曲線Aは、第1遮断素子3Fが開状態となり充電電流を遮断する状態と第1遮断素子3Fが閉状態で充電電流を許容する状態との境界を示す曲線であり、図10のグラフ上において第1遮断特性曲線Aよりも上の領域は、第1遮断素子3Fが開状態となり充電電流を遮断する領域である、すなわち、遮断特性を満たしていない領域である。なお、図10に示されている周囲温度Ta〜Te及びT1〜T6は、T1<Ta<T2<Tb<T3<Tc<T4<Td<T5<Te<T6を満たしており、充電電流I1〜I5は、I5<I4<I3<I2<I1を満たしている。 FIG. 10 is a diagram illustrating a first cutoff characteristic curve A included in the first cutoff element 3F. The first interruption characteristic curve A is a curve showing a boundary between a state where the first interruption element 3F is in an open state and the charging current is interrupted and a state where the first interruption element 3F is in a closed state and the charging current is allowed. In the graph, the region above the first cutoff characteristic curve A is a region where the first cutoff element 3F is opened and cuts off the charging current, that is, a region that does not satisfy the cutoff characteristic. The ambient temperatures Ta to Te and T1 to T6 shown in FIG. 10 satisfy T1 <Ta <T2 <Tb <T3 <Tc <T4 <Td <T5 <Te <T6, and the charging currents I1 to I5 satisfies I5 <I4 <I3 <I2 <I1.

第1遮断素子3Fの第1遮断特性曲線Aは、充電電流が大きくなるに従って、許容される周囲温度の最高値(許容最高温度)が低くなる、言い換えれば、周囲温度が高くなるに従って、許容される充電電流の最大値(許容最大電流値)が小さくなるように設定されている。 The first cutoff characteristic curve A of the first cutoff element 3F decreases as the charging current increases, and the maximum allowable ambient temperature (allowable maximum temperature) decreases, in other words, as the ambient temperature increases. The maximum charging current (allowable maximum current value) is set to be small.

例えば、充電電流がI4の場合、許容最高温度はTdであり、周囲温度がTdに達するまでは充電電流を流すことが許容され、周囲温度がTd以上となると充電電流は遮断される。言い換えれば、充電電流がI4の場合、許容最高温度はTdであり、周囲温度がTdに達するまでは遮断特性を満たした状態であり、周囲温度がTd以上となると遮断特性を満たしていない状態となる。なお、本実施の形態における遮断特性を満たしている場合は、本発明における「所定条件を満たしている場合」の一例である。 For example, when the charging current is I4, the allowable maximum temperature is Td, and the charging current is allowed to flow until the ambient temperature reaches Td, and when the ambient temperature becomes equal to or higher than Td, the charging current is cut off. In other words, when the charging current is I4, the maximum allowable temperature is Td, and the cutoff characteristic is satisfied until the ambient temperature reaches Td, and when the ambient temperature exceeds Td, the cutoff characteristic is not satisfied. Become. In addition, when the interruption | blocking characteristic in this Embodiment is satisfy | filled, it is an example of "when the predetermined condition is satisfy | filled" in this invention.

一方、充電電流がI4よりも大きいI3の場合、許容最高温度は、充電電流I4の場合のTdよりも低いTcとなり、周囲温度がTc以上となった場合、充電電流は遮断される。また、別の観点で見れば、周囲温度がTcの場合、許容最大電流値はI3であり、充電電流がI3以上となると充電電流は遮断される。一方、周囲温度がTcよりも高いTdとなると、許容最大電流値はI3よりも小さいI4となる。 On the other hand, when the charging current is I3 larger than I4, the allowable maximum temperature is Tc lower than Td in the case of the charging current I4, and when the ambient temperature is equal to or higher than Tc, the charging current is cut off. From another viewpoint, when the ambient temperature is Tc, the allowable maximum current value is I3, and when the charging current becomes I3 or more, the charging current is cut off. On the other hand, when the ambient temperature becomes Td higher than Tc, the allowable maximum current value becomes I4 smaller than I3.

なお、T6は、充電電流が流れていない場合であっても、第1遮断素子3Fが開状態となる周囲温度である。本実施の形態においては、第1遮断素子3Fは、電池組3Aに接触して設置されており、周囲温度は電池温度と略同一となる。このため、第1遮断素子3Fは、充電電流を制限又は遮断する役割だけでなく、電池温度が所定値より高い場合に充電開始できないようにする役割も果たしている。 Note that T6 is the ambient temperature at which the first cutoff element 3F is opened even when no charging current is flowing. In the present embodiment, the first cutoff element 3F is installed in contact with the battery set 3A, and the ambient temperature is substantially the same as the battery temperature. For this reason, the 1st interruption | blocking element 3F has not only the role which restrict | limits or interrupt | blocks a charging current but the role which prevents a charge start, when battery temperature is higher than predetermined value.

電池側制御部3Gは、ROM、RAM、演算機能等を有するマイコンであり、情報通信ポート3Hを備えている。情報通信ポート3Hは、充電装置1に電池パック3が接続された場合に充電装置1の複数の端子70のうちの所定の端子に接続される。電池側制御部3Gと充電装置1との間の通信は、情報通信ポート3Hを介して行われる。 The battery side control unit 3G is a microcomputer having a ROM, a RAM, an arithmetic function, and the like, and includes an information communication port 3H. The information communication port 3 </ b> H is connected to a predetermined terminal among the plurality of terminals 70 of the charging device 1 when the battery pack 3 is connected to the charging device 1. Communication between the battery side control unit 3G and the charging device 1 is performed via the information communication port 3H.

電池側制御部3Gは、充電の際に情報通信ポート3Hから充電装置1に電池種を送信する。電池種は、電池パック3が有する特性による分類であり、充電装置1は、電池側制御部3Gから電池種を受信することによって、充電制御に必要な電池パック3の特性を特定することができる。電池種から特定可能な電池パック3の特性としては、例えば、電池組3Aを構成する電池セル3aのセル数、接続構成(直列数、並列数)、電池セル3aの最大充電電圧、電池組3Aの公称容量、電池パック3の第1遮断素子3Fが有する遮断特性(第1遮断特性曲線A)、電池組3A全体を適正に充電するための目標充電電圧(本実施の形態においては最大充電電圧と同一)、許容充電電流値、充電を終了させる判断基準となる終止電流値等である。本実施の形態において、電池パック3の電池種は、例えば、Cである。また、電池側制御部3Gは、保護IC3Cから異常信号が入力された場合には、充電装置1に情報通信ポート3Hを介して充電停止信号を出力する。 The battery side control unit 3G transmits the battery type from the information communication port 3H to the charging device 1 during charging. The battery type is a classification based on the characteristics of the battery pack 3, and the charging device 1 can specify the characteristics of the battery pack 3 necessary for charge control by receiving the battery type from the battery-side control unit 3G. . The characteristics of the battery pack 3 that can be specified from the battery type include, for example, the number of battery cells 3a constituting the battery set 3A, the connection configuration (the number of series, the number of parallel), the maximum charging voltage of the battery cell 3a, and the battery set 3A. Nominal capacity of the battery pack 3, the cutoff characteristic (first cutoff characteristic curve A) of the first cutoff element 3F of the battery pack 3, the target charging voltage for properly charging the entire battery set 3A (in this embodiment, the maximum charging voltage) ), An allowable charging current value, a termination current value serving as a determination criterion for terminating charging, and the like. In the present embodiment, the battery type of the battery pack 3 is C, for example. Further, when an abnormal signal is input from the protection IC 3C, the battery side control unit 3G outputs a charge stop signal to the charging device 1 via the information communication port 3H.

次に、電池パック3とは電池種の異なる電池パック33について説明する。電池パック33は、電池組3Aとは特性の異なる電池組33Aを備えている。電池組33Aは、電池組3Aと同一の公称容量(6Ah)を有しているが、許容充電電流値は異なっており、例えば、12A(2C)以上である。電池セルのメーカや性能等によって許容充電電流値は異なるため、この電流値に限るものではない。電池パック33は、電池組3Aとは異なる許容充電電流値を有する電池組33Aを備えているため、第1遮断素子3Fとは遮断特性が異なる第2遮断素子33Fを備えている。より具体的には、第2遮断素子33Fは、図11に示されている第2遮断特性曲線Bを有している。なお、本実施の形態において、電池パック33の電池種は、例えば、Dであり、充電装置1は、電池パック33が装着された場合、電池パック33の電池側制御部3Gから電池種としてDを受信することによって、電池パック33の第2遮断素子33Fの遮断特性、すなわち第2遮断特性曲線B、目標充電電圧等を特定することができる。第2遮断素子33Fは、本発明における「遮断手段」の一例である。 Next, a battery pack 33 having a different battery type from the battery pack 3 will be described. The battery pack 33 includes a battery set 33A having characteristics different from those of the battery set 3A. The battery set 33A has the same nominal capacity (6Ah) as the battery set 3A, but the allowable charging current value is different, for example, 12A (2C) or more. Since the allowable charging current value varies depending on the manufacturer and performance of the battery cell, it is not limited to this current value. Since the battery pack 33 includes the battery set 33A having an allowable charging current value different from that of the battery set 3A, the battery pack 33 includes the second cutoff element 33F having a cutoff characteristic different from that of the first cutoff element 3F. More specifically, the second cutoff element 33F has a second cutoff characteristic curve B shown in FIG. In the present embodiment, the battery type of the battery pack 33 is, for example, D. When the battery pack 33 is attached, the charging device 1 receives D as the battery type from the battery side control unit 3G of the battery pack 33. Is received, the cutoff characteristic of the second cutoff element 33F of the battery pack 33, that is, the second cutoff characteristic curve B, the target charging voltage, and the like can be specified. The second blocking element 33F is an example of the “blocking unit” in the present invention.

図11は、第2遮断素子33Fが有する第2遮断特性曲線Bを示す図である。なお、図11に示されている周囲温度T1〜T5及び充電電流I1〜I5は、図10に示されている周囲温度T1〜T5及び充電電流I1〜I5と同一の値であり、周囲温度T5、T6及びTf〜jは、T5<Tf<Tg<Th<Ti<Tj<T6を満たしている。 FIG. 11 is a diagram illustrating a second cutoff characteristic curve B included in the second cutoff element 33F. Note that the ambient temperatures T1 to T5 and the charging currents I1 to I5 shown in FIG. 11 are the same values as the ambient temperatures T1 to T5 and the charging currents I1 to I5 shown in FIG. , T6 and Tf to j satisfy T5 <Tf <Tg <Th <Ti <Tj <T6.

図11に示されているように第2遮断素子33Fの第2遮断特性曲線Bは、図10の第1遮断特性曲線Aと同様に、充電電流が大きくなるに従って、許容最高温度が低くなっている。第2遮断素子33F(第2遮断特性曲線B)においては、充電電流I1〜I5に対応する許容最高温度はそれぞれTf〜Tjであり、Tf〜Tjのうちの最も低い許容最高温度であるTfであっても、T5及び第1遮断素子3F(第1遮断特性曲線A)における充電電流I1〜I5のそれぞれに対応する許容最高温度Ta〜Teよりも高い。 As shown in FIG. 11, in the second cutoff characteristic curve B of the second cutoff element 33F, the allowable maximum temperature decreases as the charging current increases, similarly to the first cutoff characteristic curve A of FIG. Yes. In the second cutoff element 33F (second cutoff characteristic curve B), the allowable maximum temperatures corresponding to the charging currents I1 to I5 are Tf to Tj, respectively, and Tf is the lowest allowable maximum temperature of Tf to Tj. Even if it exists, it is higher than allowable maximum temperature Ta-Te corresponding to each of charging current I1-I5 in T5 and the 1st interruption | blocking element 3F (1st interruption | blocking characteristic curve A).

本実施の形態においては上述したように電池温度は周囲温度と略同一であり、一般に電池温度は、充電電流が大きくなるに従って且つ充電電流が流れている時間が長くなるに従って、高くなる傾向にある。上記に鑑みると、電池パック3の第1遮断素子3Fよりも許容最高温度が高い第2遮断素子33Fを備える電池パック33は、電池パック3と比較してより長時間、より大きな充電電流を流すことができる。例えば、電池パック3と電池パック33とを充電電流I1で充電する場合で比較すると、電池パック3では電池温度(周囲温度)は、Ta(<Tf)までしか許容されないが、電池パック33ではTf(>Ta)まで許容される。このため、周囲温度Taに達した場合、電池パック3では充電電流(I1)は遮断されるが、電池パック33では遮断されず、その後も充電電流を流すことが可能である。このように、電池パック33では充電電流I1を電池パック3よりも長時間流すことが可能である。 In the present embodiment, as described above, the battery temperature is substantially the same as the ambient temperature, and generally the battery temperature tends to increase as the charging current increases and the charging current flows for a longer time. . In view of the above, the battery pack 33 including the second cutoff element 33F having a higher allowable maximum temperature than the first cutoff element 3F of the battery pack 3 causes a larger charging current to flow for a longer time than the battery pack 3. be able to. For example, when battery pack 3 and battery pack 33 are charged with charging current I1, battery temperature (ambient temperature) is only allowed up to Ta (<Tf) in battery pack 3, but Tf is lower in battery pack 33. (> Ta) is allowed. For this reason, when the ambient temperature Ta is reached, the charging current (I1) is cut off in the battery pack 3, but is not cut off in the battery pack 33, and the charging current can flow after that. Thus, in the battery pack 33, the charging current I1 can flow for a longer time than the battery pack 3.

次に、充電装置1の電気的構成について説明をする。図9に示されているように、充電装置1は、電力供給回路48と、補助電源回路53と、スイッチング電源回路54と、充電制御部45と、電圧設定制御回路55と、電流設定回路56と、電流制御回路57と、第1制御信号伝達部61と、第2制御信号伝達部62と、ファン部58と、温度検出素子44と、電圧検出回路59と、表示回路60とを備えており、電池パック3を装着した状態で電池パック3の電池組3A(電池セル3a)を定電流定電圧制御により充電する。 Next, the electrical configuration of the charging device 1 will be described. As shown in FIG. 9, the charging device 1 includes a power supply circuit 48, an auxiliary power supply circuit 53, a switching power supply circuit 54, a charge control unit 45, a voltage setting control circuit 55, and a current setting circuit 56. A current control circuit 57, a first control signal transmission unit 61, a second control signal transmission unit 62, a fan unit 58, a temperature detection element 44, a voltage detection circuit 59, and a display circuit 60. In the state where the battery pack 3 is mounted, the battery set 3A (battery cell 3a) of the battery pack 3 is charged by constant current and constant voltage control.

定電流定電圧制御とは、充電が開始されると目標電流値を設定し、充電電流が目標電流値になるように充電電流を制御しながら充電し(定電流制御)、電池組3A全体の電圧が所定の目標充電電圧に達した後は、充電電圧を当該目標充電電圧に保ちながら充電を継続し(定電圧制御)、定電圧制御下で充電電流が所定の終止電流値以下となった場合に充電を終了させる充電制御である。 The constant current / constant voltage control means setting a target current value when charging is started, charging while controlling the charging current so that the charging current becomes the target current value (constant current control), and charging the entire battery set 3A. After the voltage reaches the predetermined target charging voltage, charging is continued while keeping the charging voltage at the target charging voltage (constant voltage control), and the charging current becomes below the predetermined end current value under constant voltage control. In this case, charging control is performed to end charging.

電力供給回路48は、電池パック3に電力を供給する回路であり、第1整流平滑回路50と、スイッチング回路51と、充電プラスライン48Aと、充電マイナスライン48Bと、第2整流平滑回路52とを備えている。 The power supply circuit 48 is a circuit that supplies power to the battery pack 3, and includes a first rectifying / smoothing circuit 50, a switching circuit 51, a charging plus line 48 </ b> A, a charging minus line 48 </ b> B, and a second rectifying / smoothing circuit 52. It has.

第1整流平滑回路50は、全波整流回路50Aと平滑用コンデンサ50Bとを備えており、商用交流電源Pから供給される交流電圧を全波整流回路50Aで全波整流し、平滑用コンデンサ50Bで平滑して直流電圧を出力する。商用交流電源Pは、例えば、AC100Vの外部電源等である。 The first rectifying / smoothing circuit 50 includes a full-wave rectifying circuit 50A and a smoothing capacitor 50B, and full-wave rectifies the AC voltage supplied from the commercial AC power supply P by the full-wave rectifying circuit 50A, thereby smoothing the capacitor 50B. Smoothes and outputs a DC voltage. The commercial AC power source P is, for example, an AC 100V external power source or the like.

スイッチング回路51は、第1整流平滑回路50に接続されており、トランス42と、FET43と、PWM制御IC51Aとを備えている。PWM制御IC51Aは、FET43の駆動パルス幅を変え、FET43は、当該駆動パルス幅に応じてスイッチングを行い、第1整流平滑回路50からの直流出力をパルス列波形の電圧とする。パルス列波形の電圧はトランス42の一次巻線に印加され、トランス42によって降圧(若しくは昇圧)され第2整流平滑回路52に出力される。 The switching circuit 51 is connected to the first rectifying / smoothing circuit 50, and includes a transformer 42, an FET 43, and a PWM control IC 51A. The PWM control IC 51A changes the drive pulse width of the FET 43, and the FET 43 performs switching according to the drive pulse width, and uses the DC output from the first rectifying and smoothing circuit 50 as the voltage of the pulse train waveform. The voltage of the pulse train waveform is applied to the primary winding of the transformer 42, and is stepped down (or stepped up) by the transformer 42 and output to the second rectifying and smoothing circuit 52.

第2整流平滑回路52は、2個のダイオード41と、平滑用コンデンサ52Aと、放電用抵抗52Bとを備えている。トランス42の二次巻線から得られる出力電圧を整流及び平滑して直流電圧を出力する。当該直流電圧は、電池パック3のプラス接続端子3b及びマイナス接続端子3cのそれぞれと接続される所定の端子(複数の端子70)から出力されるように構成されている。 The second rectifying / smoothing circuit 52 includes two diodes 41, a smoothing capacitor 52A, and a discharging resistor 52B. The output voltage obtained from the secondary winding of the transformer 42 is rectified and smoothed to output a DC voltage. The DC voltage is configured to be output from predetermined terminals (a plurality of terminals 70) connected to the positive connection terminal 3b and the negative connection terminal 3c of the battery pack 3, respectively.

充電プラスライン48A及び充電マイナスライン48Bは、電池パック3を充電する場合に充電電流が流れる電路である。充電プラスライン48Aは、電池パック3が電池装着部7に接続された状態で、プラス接続端子3bに接続される端子70とトランス42の二次巻線の一端とを接続する。充電マイナスライン48Bは、電池パック3が電池装着部7に接続された状態で、マイナス接続端子3cに接続される端子70とトランス42の二次巻線の他端とを接続する。また、充電マイナスライン48B上には、電流検出抵抗48Cが設けられている。 The charging plus line 48 </ b> A and the charging minus line 48 </ b> B are electric paths through which a charging current flows when the battery pack 3 is charged. The charging plus line 48 </ b> A connects the terminal 70 connected to the plus connection terminal 3 b and one end of the secondary winding of the transformer 42 in a state where the battery pack 3 is connected to the battery mounting portion 7. The charge minus line 48B connects the terminal 70 connected to the minus connection terminal 3c and the other end of the secondary winding of the transformer 42 in a state where the battery pack 3 is connected to the battery mounting portion 7. A current detection resistor 48C is provided on the charge minus line 48B.

電流検出抵抗48Cは、電池パック3に流れる充電電流を検出するためのシャント抵抗であって、充電マイナスライン48B上において第2整流平滑回路52とGNDとの間に設けられている。充電電流の検出は、電流検出抵抗48Cの電圧降下分を電流制御回路57で反転増幅し、充電制御部45に入力することで行う。 The current detection resistor 48C is a shunt resistor for detecting a charging current flowing through the battery pack 3, and is provided between the second rectifying / smoothing circuit 52 and GND on the charging minus line 48B. The charge current is detected by inverting and amplifying the voltage drop of the current detection resistor 48C by the current control circuit 57 and inputting it to the charge control unit 45.

補助電源回路53は、充電制御部45、後述のオペアンプ55E、57A等の各種回路に安定化した基準電圧Vccを供給するための定電圧電源回路である。補助電源回路53は、第1整流平滑回路50に接続されており、コイル53a、53b及び53cと、スイッチング素子53Aと、制御素子53Bと、整流ダイオード53Cと、3端子レギュレータ53Dと、発振防止用コンデンサ53E及び53Fと、リセットIC53Gとを備えている。なお、リセットIC53Gは、充電制御部45に対してリセット信号を出力し、充電制御部45をリセットするICである。 The auxiliary power supply circuit 53 is a constant voltage power supply circuit for supplying a stabilized reference voltage Vcc to various circuits such as the charging control unit 45 and operational amplifiers 55E and 57A described later. The auxiliary power supply circuit 53 is connected to the first rectifying / smoothing circuit 50, and includes coils 53a, 53b and 53c, a switching element 53A, a control element 53B, a rectifying diode 53C, a three-terminal regulator 53D, and an oscillation preventive circuit. Capacitors 53E and 53F and a reset IC 53G are provided. The reset IC 53G is an IC that outputs a reset signal to the charge control unit 45 to reset the charge control unit 45.

スイッチング電源回路54は、PWM制御IC51Aに電力を供給する回路であり、コイル54aと、整流ダイオード54bと、平滑コンデンサ54cとを有している。 The switching power supply circuit 54 is a circuit that supplies power to the PWM control IC 51A, and includes a coil 54a, a rectifier diode 54b, and a smoothing capacitor 54c.

充電制御部45は、ROM、RAM、演算部を備えたマイコンであり、A/D入力ポート部45Aと、第1出力ポート部45Bと、第2出力ポート部45Cと、デジタル通信ポート部45Dと、リセットポート部45Eとを備えている。充電制御部45は、A/D入力ポート部45A及びデジタル通信ポート部45Dに入力される各種信号を演算部で処理し、当該処理結果に基づく各種信号を第1出力ポート部45B、第2出力ポート部45C、デジタル通信ポート部45Dから電流設定回路56、ファン部58等に出力して、充電対象となった電池パックの充電を制御する。 The charge control unit 45 is a microcomputer including a ROM, a RAM, and a calculation unit, and includes an A / D input port unit 45A, a first output port unit 45B, a second output port unit 45C, and a digital communication port unit 45D. And a reset port unit 45E. The charging control unit 45 processes various signals input to the A / D input port unit 45A and the digital communication port unit 45D by the calculation unit, and outputs various signals based on the processing result to the first output port unit 45B and the second output. Output from the port unit 45C and the digital communication port unit 45D to the current setting circuit 56, the fan unit 58 and the like to control charging of the battery pack to be charged.

ROMには、充電制御に必要な各種制御プログラム、充電可能な複数種類の電池パックの電池種、当該電池種に対応する特性(上述した遮断特性、目標充電電圧等)、後述の図14に示されているテーブルが記憶されている。充電制御部45は、端子70に接続された電池パックから電池種を受信し、受信した電池種から当該接続された電池パックの特性を特定する。 In the ROM, various control programs necessary for charge control, battery types of a plurality of types of battery packs that can be charged, characteristics corresponding to the battery types (the above-described cutoff characteristics, target charging voltage, etc.), shown in FIG. Stored table is stored. The charge control unit 45 receives the battery type from the battery pack connected to the terminal 70, and specifies the characteristics of the connected battery pack from the received battery type.

A/D入力ポート部45Aは、電流制御回路57、温度検出素子44、電圧検出回路59に接続されている。A/D入力ポート部45Aには、電流制御回路57から充電電流を示す電圧信号、温度検出素子44からは充電回路部4の温度を示す電圧信号、電圧検出回路59からは充電電圧を示す電圧信号が入力される。 The A / D input port unit 45 </ b> A is connected to the current control circuit 57, the temperature detection element 44, and the voltage detection circuit 59. The A / D input port unit 45A has a voltage signal indicating the charging current from the current control circuit 57, a voltage signal indicating the temperature of the charging circuit unit 4 from the temperature detecting element 44, and a voltage indicating the charging voltage from the voltage detecting circuit 59. A signal is input.

第1出力ポート部45Bは、複数のポートを有しており、当該複数のポートのそれぞれは、電流設定回路56又はファン部58に接続されている。充電制御部45は、第1出力ポート部45Bから目標電流値を設定するための信号を電流設定回路56に、第1ファン5及び第2ファン6を制御するためのファン制御信号をファン部58に出力する。 The first output port unit 45B has a plurality of ports, and each of the plurality of ports is connected to the current setting circuit 56 or the fan unit 58. The charge control unit 45 sends a signal for setting a target current value from the first output port unit 45B to the current setting circuit 56 and a fan control signal for controlling the first fan 5 and the second fan 6 to the fan unit 58. Output to.

第2出力ポート部45Cは、複数のポートを有しており、当該複数のポートのそれぞれは、表示回路60又は第2制御信号伝達部62に接続されている。充電制御部45は、第2出力ポート部45Cから表示回路を制御する信号を表示回路60に、充電開始/停止を制御する信号を第2制御信号伝達部62に出力する。 The second output port unit 45C has a plurality of ports, and each of the plurality of ports is connected to the display circuit 60 or the second control signal transmission unit 62. The charging control unit 45 outputs a signal for controlling the display circuit from the second output port unit 45 </ b> C to the display circuit 60 and a signal for controlling charging start / stop to the second control signal transmission unit 62.

デジタル通信ポート部45Dは、電池パック3が電池装着部7に接続された場合に電池パック3の情報通信ポート3Hと接続され、双方向に通信可能に構成されている。充電制御部45は、デジタル通信ポート部45Dを介して、充電制御に必要な電池パック3の情報、すなわち、電池温度、電池種を取得する。リセットポート部45Eは、補助電源回路53と接続されており、リセットIC53Gから出力されるリセット信号を受信する。デジタル通信ポート部45Dは、本発明における「電池温度取得手段」の一例である。 The digital communication port unit 45D is connected to the information communication port 3H of the battery pack 3 when the battery pack 3 is connected to the battery mounting unit 7, and is configured to be capable of bidirectional communication. The charge control unit 45 acquires information on the battery pack 3 necessary for charge control, that is, the battery temperature and the battery type, through the digital communication port unit 45D. The reset port unit 45E is connected to the auxiliary power circuit 53 and receives a reset signal output from the reset IC 53G. The digital communication port unit 45D is an example of the “battery temperature acquisition unit” in the present invention.

電圧設定制御回路55は、目標充電電圧を設定し、充電電圧が目標充電電圧になるように制御する回路である。電圧設定制御回路55は、分圧抵抗55A〜55Dと、オペアンプ55Eと、ダイオード55Fとを備えている。 The voltage setting control circuit 55 is a circuit that sets a target charging voltage and controls the charging voltage to become the target charging voltage. The voltage setting control circuit 55 includes voltage dividing resistors 55A to 55D, an operational amplifier 55E, and a diode 55F.

分圧抵抗55A及び55Bは、充電プラスライン48AとGNDとの間に直列に接続されており、分圧抵抗55A及び55Bの接続点は、オペアンプ55Eの反転入力端子に接続されている。充電プラスライン48Aに現れる充電電圧は、分圧抵抗55A及び55Bによって分圧され、当該分圧値は、比較用電圧値としてオペアンプ55Eの反転入力端子に出力される。 The voltage dividing resistors 55A and 55B are connected in series between the charging plus line 48A and GND, and the connection point of the voltage dividing resistors 55A and 55B is connected to the inverting input terminal of the operational amplifier 55E. The charging voltage appearing on the charging plus line 48A is divided by the voltage dividing resistors 55A and 55B, and the divided value is output to the inverting input terminal of the operational amplifier 55E as a comparison voltage value.

分圧抵抗55C及び55Dは、基準電圧VccとGNDとの間に直列に接続されており、分圧抵抗55C及び55Dの接続点は、オペアンプ55Eの非反転入力端子に接続されている。基準電圧Vccは、分圧抵抗55C及び55Dによって分圧され、当該分圧値は、目標充電電圧を設定するための基準値としてオペアンプ55Eの非反転入力端子に出力される。 The voltage dividing resistors 55C and 55D are connected in series between the reference voltage Vcc and GND, and the connection point of the voltage dividing resistors 55C and 55D is connected to the non-inverting input terminal of the operational amplifier 55E. The reference voltage Vcc is divided by the voltage dividing resistors 55C and 55D, and the divided value is output to the non-inverting input terminal of the operational amplifier 55E as a reference value for setting the target charging voltage.

オペアンプ55Eは、上述の比較用電圧値と基準値とを比較する素子であり、その出力端子は、ダイオード55Fを介して第1制御信号伝達部61に接続されている。 The operational amplifier 55E is an element that compares the above-described comparison voltage value with a reference value, and an output terminal thereof is connected to the first control signal transmission unit 61 via a diode 55F.

電流設定回路56は、目標電流値を選択的に設定する回路であり、分圧抵抗56A〜56Fを備えている。分圧抵抗56A及び56Bは、基準電圧VccとGNDとの間に直列に接続されており、分圧抵抗56C〜56Fは、分圧抵抗56A及び56Bの接続点56aと充電制御部45の第1出力ポート部45Bとの間に並列に接続されている。また、接続点56aは、電流制御回路57に接続されており、接続点56aに現れる電圧(分圧値)は、目標電流値を設定する場合の基準値として電流制御回路57に出力される。本実施の形態においては、分圧抵抗56C〜56Fに第1出力ポート部45Bからロー信号を出力する、又は、出力しないことで、目標電流値をI1〜I5の5種類の電流値から選択的に設定することができる。電流設定回路56は、本発明における「電流設定手段」の一例である。 The current setting circuit 56 is a circuit that selectively sets a target current value, and includes voltage dividing resistors 56A to 56F. The voltage dividing resistors 56A and 56B are connected in series between the reference voltage Vcc and GND, and the voltage dividing resistors 56C to 56F are connected to the connection point 56a of the voltage dividing resistors 56A and 56B and the first of the charge control unit 45. The output port unit 45B is connected in parallel. The connection point 56a is connected to the current control circuit 57, and the voltage (divided voltage value) appearing at the connection point 56a is output to the current control circuit 57 as a reference value for setting the target current value. In the present embodiment, by outputting or not outputting a low signal from the first output port unit 45B to the voltage dividing resistors 56C to 56F, the target current value is selectively selected from five types of current values I1 to I5. Can be set to The current setting circuit 56 is an example of the “current setting means” in the present invention.

詳細には、第1出力ポート部45Bのいずれのポートからもロー信号を出力せず、基準電圧Vccを分圧抵抗56A及び56Bによって分圧した場合の接続点56aに現れる分圧値は、目標電流値をI1に設定する場合の基準値となる。本実施の形態においてI1は、例えば、12Aである。 Specifically, the divided voltage value that appears at the connection point 56a when the low voltage is not output from any port of the first output port section 45B and the reference voltage Vcc is divided by the voltage dividing resistors 56A and 56B is the target value. This is a reference value when the current value is set to I1. In the present embodiment, I1 is, for example, 12A.

また、第1出力ポート部45Bの分圧抵抗56Cと接続されているポートからロー信号を出力し、分圧抵抗56B及び56Cの並列抵抗と分圧抵抗56Aとで基準電圧Vccを分圧した場合の接続点56aに現れる分圧値は、目標電流値をI2に設定する場合の基準値となる。本実施の形態においてI2は、例えば、10Aである。 Further, when a low signal is output from the port connected to the voltage dividing resistor 56C of the first output port section 45B, and the reference voltage Vcc is divided by the parallel resistance of the voltage dividing resistors 56B and 56C and the voltage dividing resistor 56A The divided voltage value appearing at the connection point 56a becomes a reference value when the target current value is set to I2. In the present embodiment, I2 is, for example, 10A.

同様に、第1出力ポート部45Bの分圧抵抗56Dと接続されているポートからロー信号を出力した場合の接続点56aに現れる分圧値は、目標電流値をI3に設定する場合の基準値となり、第1出力ポート部45Bの分圧抵抗56Eと接続されているポートからロー信号を出力した場合の接続点56aに現れる分圧値は、目標電流値をI4に設定する場合の基準値となり、第1出力ポート部45Bの分圧抵抗56Fと接続されているポートからロー信号を出力した場合の接続点56aに現れる分圧値は、目標電流値をI5に設定する場合の基準値となる。本実施の形態においては、例えば、I3は9A、I4は8A、I5は6Aである。 Similarly, the divided value that appears at the connection point 56a when a low signal is output from the port connected to the voltage dividing resistor 56D of the first output port portion 45B is a reference value when the target current value is set to I3. Thus, the divided voltage value that appears at the connection point 56a when a low signal is output from the port connected to the voltage dividing resistor 56E of the first output port section 45B is a reference value when the target current value is set to I4. When the low signal is output from the port connected to the voltage dividing resistor 56F of the first output port section 45B, the divided voltage value that appears at the connection point 56a is a reference value when the target current value is set to I5. . In the present embodiment, for example, I3 is 9A, I4 is 8A, and I5 is 6A.

なお、目標電流値として設定されるI1〜I5は、電池パック3の電池種(公称電圧、セル数等)によって異なる値が設定されるように構成してもよい。言い換えれば、電池パックの種類(電池種)が異なれば、I1、I2、I3、I4及びI5の組み合わせも異なるようにしてもよい。また、分圧抵抗56C〜56Fに接続されている第1出力ポート部45Bの4つのポートのうちの2以上のポートから同時にロー信号を出力するようにしてもよく、この場合には目標電流値として6種類以上を設定することが可能となる。 Note that I1 to I5 set as target current values may be configured so that different values are set depending on the battery type (nominal voltage, number of cells, etc.) of the battery pack 3. In other words, if the types of battery packs (battery types) are different, the combinations of I1, I2, I3, I4, and I5 may be different. Further, a low signal may be output simultaneously from two or more of the four ports of the first output port section 45B connected to the voltage dividing resistors 56C to 56F. In this case, the target current value As a result, it is possible to set six or more types.

電流制御回路57は、オペアンプ57A及び57Bと、抵抗57C〜57Gと、ダイオード57Hとを備えている。オペアンプ57Aの出力端子は、充電制御部45のA/D入力ポート部45Aに接続され、反転入力端子は、電流検出抵抗48Cに抵抗57Cを介して接続され、非反転入力端子は、GNDに接続されている。オペアンプ57Bの出力端子は、抵抗57G及びダイオード57Hを介して第1制御信号伝達部61に接続され、反転入力端子は、抵抗57Eを介してオペアンプ57Aの出力端子に接続され、非反転入力端子は、電流設定回路56の接続点56aに接続されている。 The current control circuit 57 includes operational amplifiers 57A and 57B, resistors 57C to 57G, and a diode 57H. The output terminal of the operational amplifier 57A is connected to the A / D input port unit 45A of the charge control unit 45, the inverting input terminal is connected to the current detection resistor 48C via the resistor 57C, and the non-inverting input terminal is connected to GND. Has been. The output terminal of the operational amplifier 57B is connected to the first control signal transmission unit 61 via the resistor 57G and the diode 57H, the inverting input terminal is connected to the output terminal of the operational amplifier 57A via the resistor 57E, and the non-inverting input terminal is The current setting circuit 56 is connected to a connection point 56a.

電流制御回路57は、オペアンプ57Aの反転入力端子に入力された充電電流に対応する比較用電圧をオペアンプ57Aで反転増幅させてオペアンプ57Bの反転入力端子に入力し、当該比較用電圧と電流設定回路56からオペアンプ57Bの非反転入力端子に入力された目標電流値に対応する基準値とを比較し、当該比較結果に応じた電圧信号をオペアンプ57Bの出力端子から出力することで充電電流を制御する。電流制御回路57は、本発明における「電流制御手段」の一例である。また、充電制御部45、電流設定回路56及び電流制御回路57は、本発明における「充電制御手段」の一例である。 The current control circuit 57 inverts and amplifies the comparison voltage corresponding to the charging current input to the inverting input terminal of the operational amplifier 57A by the operational amplifier 57A and inputs the comparison voltage to the inverting input terminal of the operational amplifier 57B. 56 is compared with a reference value corresponding to the target current value input to the non-inverting input terminal of the operational amplifier 57B from 56, and a voltage signal corresponding to the comparison result is output from the output terminal of the operational amplifier 57B to control the charging current. . The current control circuit 57 is an example of the “current control unit” in the present invention. The charging control unit 45, the current setting circuit 56, and the current control circuit 57 are examples of the “charging control unit” in the present invention.

第1制御信号伝達部61は、フォトカプラ61Aを備えている。フォトカプラ61Aは、電圧設定制御回路55及び電流制御回路57に接続されており、電圧設定制御回路55のオペアンプ55Eの出力端子及び電流制御回路57のオペアンプ57Bの出力端子から出力される信号に応じてPWM制御IC51Aに帰還信号を出力する。 The first control signal transmission unit 61 includes a photocoupler 61A. The photocoupler 61A is connected to the voltage setting control circuit 55 and the current control circuit 57, and corresponds to signals output from the output terminal of the operational amplifier 55E of the voltage setting control circuit 55 and the output terminal of the operational amplifier 57B of the current control circuit 57. The feedback signal is output to the PWM control IC 51A.

ファン部58は、第1ファン5と、第2ファン6と、定電圧回路58Aと、第1ファン制御回路5Aと、第2ファン制御回路6Aとを備えている。定電圧回路58Aは、第2整流平滑回路52の出力電圧を変換して第1ファン5及び第2ファン6に供給する回路である。第1ファン制御回路5A及び第2ファン制御回路6Aは、充電制御部45の第1出力ポート部45Bに接続されている。第1出力ポート部45Bから出力されるファン制御信号に応じて、第1ファン制御回路5Aは、第1ファン5の駆動/停止及び風量を制御し、第2ファン制御回路6Aは、第2ファン6の駆動/停止及び風量を制御する。 The fan unit 58 includes a first fan 5, a second fan 6, a constant voltage circuit 58A, a first fan control circuit 5A, and a second fan control circuit 6A. The constant voltage circuit 58 </ b> A is a circuit that converts the output voltage of the second rectifying / smoothing circuit 52 and supplies the converted voltage to the first fan 5 and the second fan 6. The first fan control circuit 5 </ b> A and the second fan control circuit 6 </ b> A are connected to the first output port unit 45 </ b> B of the charging control unit 45. In response to the fan control signal output from the first output port section 45B, the first fan control circuit 5A controls the drive / stop of the first fan 5 and the air volume, and the second fan control circuit 6A includes the second fan. 6 drive / stop and control air volume.

温度検出素子44は、充電制御部45のA/D入力ポート部45Aに接続されており、ケース2内部の温度、すなわち、充電回路部4の温度を検出し、当該検出された温度を示す電圧信号をA/D入力ポート部45Aに出力する。 The temperature detection element 44 is connected to the A / D input port unit 45A of the charge control unit 45, detects the temperature inside the case 2, that is, the temperature of the charging circuit unit 4, and a voltage indicating the detected temperature. The signal is output to the A / D input port unit 45A.

電圧検出回路59は、充電電圧を検出する回路であり、分圧抵抗59A及び59Bを備えている。分圧抵抗59A及び59Bは、充電装置1の充電プラスライン48AとGNDとの間に直列に接続されており、分圧抵抗59A及び59Bの接続点は、充電制御部45のA/D入力ポート部45Aに接続されている。充電プラスライン48Aに現れる充電電圧は、分圧抵抗59A及び59Bによって分圧され、当該分圧値は充電電圧を示す電圧信号として充電制御部45のA/D入力ポート部45Aに入力される。充電制御部45は、当該電圧信号を読み取ることで充電電圧を検出する。 The voltage detection circuit 59 is a circuit that detects a charging voltage, and includes voltage dividing resistors 59A and 59B. The voltage dividing resistors 59A and 59B are connected in series between the charging plus line 48A and GND of the charging device 1, and the connection point of the voltage dividing resistors 59A and 59B is an A / D input port of the charging control unit 45. Connected to the unit 45A. The charging voltage appearing on the charging plus line 48A is divided by the voltage dividing resistors 59A and 59B, and the divided value is input to the A / D input port unit 45A of the charging control unit 45 as a voltage signal indicating the charging voltage. The charging control unit 45 detects the charging voltage by reading the voltage signal.

表示回路60は、充電の状態を表示するための回路であり、LED60Aと、抵抗60B及び60Cを備えている。LED60Aは、抵抗60B及び60Cを介して充電制御部45の第2出力ポート部45Cに接続されている。充電制御部45が第2出力ポート部45Cの抵抗60Bと接続されているポートからハイ信号を出力した場合、LED60Aは赤色に点灯し、第2出力ポート部45Cの抵抗60Cと接続されているポートからハイ信号を出力した場合、LED60Aは緑色に点灯し、第2出力ポート部45Cの抵抗60Bと接続されているポート及び抵抗60Cと接続されているポートの両ポートからハイ信号を出力した場合には、LED60Aは橙色に点灯する。本実施の形態では、充電制御部45は、電池パック3の未接続や充電待機時等の充電を行う前の状態ではLED60Aを赤色に点灯させ、充電中にはLED60Aを橙色に点灯させ、充電終了後にはLED60Aの緑色を点灯させる。 The display circuit 60 is a circuit for displaying the state of charge, and includes an LED 60A and resistors 60B and 60C. The LED 60A is connected to the second output port unit 45C of the charging control unit 45 through resistors 60B and 60C. When the charge control unit 45 outputs a high signal from a port connected to the resistor 60B of the second output port unit 45C, the LED 60A lights in red, and the port connected to the resistor 60C of the second output port unit 45C When a high signal is output from the LED 60A, the LED 60A lights in green, and when a high signal is output from both the port connected to the resistor 60B and the port connected to the resistor 60C of the second output port 45C. LED 60A lights up in orange. In the present embodiment, the charging control unit 45 lights the LED 60A in red before charging when the battery pack 3 is not connected or waiting for charging, and lights the LED 60A in orange during charging to charge the battery. After completion, the green LED 60A is turned on.

第2制御信号伝達部62は、フォトカプラ62A及びFET62Bを備えている。フォトカプラ62Aは、PWM制御IC51Aに起動/停止を制御する信号を伝達する。FET62Bは、フォトカプラ62Aを構成する発光素子とGNDとの間に接続されており、FET62Bのゲートは第2出力ポート部45Cに接続されている。充電制御部45の第2出力ポート部45CのうちのFET62Bに接続されているポートからハイ信号が出力されると、FET62Bがオンし、フォトカプラ62Aがオンする。これにより、PWM制御IC51Aが起動して充電が開始される。また、第2出力ポート部45CのうちFET62Bに接続されるポートからロー信号を出力された場合は、FET62Bがオフし、フォトカプラ62Aがオフする。これによりPWM制御IC51Aが停止し、充電が停止(終了)される。 The second control signal transmission unit 62 includes a photocoupler 62A and an FET 62B. The photocoupler 62A transmits a signal for controlling start / stop to the PWM control IC 51A. The FET 62B is connected between the light emitting element constituting the photocoupler 62A and GND, and the gate of the FET 62B is connected to the second output port portion 45C. When a high signal is output from the port connected to the FET 62B in the second output port 45C of the charge control unit 45, the FET 62B is turned on and the photocoupler 62A is turned on. As a result, the PWM control IC 51A is activated and charging is started. When a low signal is output from the port connected to the FET 62B in the second output port portion 45C, the FET 62B is turned off and the photocoupler 62A is turned off. As a result, the PWM control IC 51A stops and charging is stopped (terminated).

次に、充電装置1の充電制御部45による充電制御について説明する。本実施の形態による充電装置1の充電制御部45は、充電時間の短縮化を目的とした充電制御を行う、特に、高容量(公称容量5Ah以上)の電池パックに対して、2C以上の充電電流で充電する、いわゆる、2C充電を行うことで、充電時間を短縮する制御を行う。 Next, charging control by the charging control unit 45 of the charging device 1 will be described. The charging control unit 45 of the charging device 1 according to the present embodiment performs charging control for the purpose of shortening the charging time, in particular, charging of 2C or more for a battery pack having a high capacity (nominal capacity of 5 Ah or more). Control is performed to shorten the charging time by performing so-called 2C charging, which is performed by charging with current.

従来の充電装置においては、充電時間を短縮すべく、高容量の電池パックを公称容量に対して比較的大きな充電電流(2C以上の充電電流)で充電しようとした場合、充電対象となっている電池パックの遮断素子が短時間で動作し、充電が中断されるため、結果として充電時間が長時間化してしまうという問題があった。 In a conventional charging device, if a high-capacity battery pack is to be charged with a relatively large charging current (charging current of 2 C or more) with respect to the nominal capacity in order to shorten the charging time, it is a charging target. Since the interruption | blocking element of a battery pack operate | moves for a short time and charge is interrupted, there existed a problem that charge time will become long as a result.

上記問題点に鑑みて、本実施の形態では、電池パックの公称容量(5Ah以上)に対して2C以上の充電電流(公称容量が5Ahの場合は10A以上、6Ahの場合は12A以上、すなわち10A以上)で充電を開始するとともに、電池パックが有する遮断素子の遮断特性(遮断特性曲線)を考慮して当該遮断素子が動作しない範囲(遮断特性を満たす範囲、図10及び図11の遮断特性曲線よりも下の領域)において、できるだけ大きな充電電流で充電するように順次、目標電流値を変更しながら充電する制御を行う。また、上記制御に加え、高容量の電池パックの公称容量に対して2C以上の充電電流で充電を開始し、2C以上の充電電流を流しても、充電対象となっている電池パックの遮断素子が動作しない場合は、充電開始から充電電圧が目標充電電圧に達するまで2C以上の充電電流で充電し、充電時間を短縮する制御を行う。なお、充電時間の短縮と充電電流に起因する電池パックの劣化、故障とのバランスを考慮すると、充電電流は2C以上3C以下(又は10A以上15A以下)がより好ましい。但し、上限は3C以下に限るものではなく、電池セルのメーカや性能により異なるため、3C(15A)以上であってもよい。また、充電装置1は5Ah以上の電池パックを2C(10A)以上の充電電流で充電可能に加え、5Ah未満の電池パックについても2C以上の充電電流で充電可能である。従って、従来の電池パックも充電時間を短縮することができる。更に、充電装置1は直列に4セル接続した電池パックだけでなく、異なる電圧(直列に5セル以上、3セル以下)の電池パックも充電可能である。この場合、電圧設定制御回路55は、異なる電圧を有する電池パックに対応できるよう複数の目標充電電圧を設定可能に構成すればよい。 In view of the above problems, in the present embodiment, a charging current of 2 C or more with respect to the nominal capacity (5 Ah or more) of the battery pack (10 A or more when the nominal capacity is 5 Ah, 12 A or more when 6 Ah, that is, 10 A) In the above, charging is started, and in consideration of the breaking characteristics (breaking characteristic curve) of the breaking element of the battery pack, the breaking element does not operate (a range satisfying the breaking characteristics, the breaking characteristic curves in FIGS. 10 and 11). In the lower region), charging is controlled while sequentially changing the target current value so as to charge with as large a charging current as possible. Further, in addition to the above control, charging is started with a charging current of 2C or more with respect to the nominal capacity of the high-capacity battery pack, and even if a charging current of 2C or more flows, the interruption element of the battery pack to be charged When does not operate, the charging is performed with a charging current of 2 C or more from the start of charging until the charging voltage reaches the target charging voltage, and control is performed to shorten the charging time. Note that the charging current is more preferably 2C or more and 3C or less (or 10A or more and 15A or less) in consideration of the balance between the shortening of the charging time and the deterioration and failure of the battery pack due to the charging current. However, the upper limit is not limited to 3C or less, and may be 3C (15A) or more because it varies depending on the manufacturer and performance of the battery cell. The charging device 1 can charge a battery pack of 5 Ah or more with a charging current of 2C (10 A) or more, and can charge a battery pack of less than 5 Ah with a charging current of 2 C or more. Therefore, the conventional battery pack can also shorten the charging time. Furthermore, the charging device 1 can charge not only battery packs connected in series with four cells, but also battery packs with different voltages (5 cells or more and 3 cells or less in series). In this case, the voltage setting control circuit 55 may be configured to be able to set a plurality of target charging voltages so as to be compatible with battery packs having different voltages.

次に、図12乃至図14を参照しながら充電装置1による充電処理の一例について説明する。図12及び図13は、充電装置1の充電制御部45による充電処理を示すフローチャートである。図14は、充電制御部45が電池パック3を充電する場合に用いる目標電流値を決定するためのテーブルである。 Next, an example of the charging process by the charging device 1 will be described with reference to FIGS. 12 to 14. 12 and 13 are flowcharts illustrating the charging process by the charging control unit 45 of the charging device 1. FIG. 14 is a table for determining a target current value used when the charging control unit 45 charges the battery pack 3.

充電装置1を商用交流電源Pに接続すると、図12に示されているように、S1にて、充電制御部45が充電制御を開始し、S2にて、充電待機状態であることを示すため表示回路60を赤色に点灯させる。表示回路60を赤色に点灯させるには、第2出力ポート部45Cの複数のポートのうちの抵抗60Bに接続されているポートからハイ信号を出力し、LED60Aを赤色に点灯させる。 When charging apparatus 1 is connected to commercial AC power supply P, as shown in FIG. 12, charging control unit 45 starts charging control at S1, and indicates that it is in a charging standby state at S2. The display circuit 60 is lit in red. In order to light the display circuit 60 in red, a high signal is output from the port connected to the resistor 60B among the plurality of ports of the second output port portion 45C, and the LED 60A is lighted in red.

S2において、LED60Aを赤色に点灯させた後に、S3にて、電池装着部7(端子70)に電池パックが装着されているか否かを判断する。電池パックが装着されているか否かの判断は、電池パックの電池側制御部3Gと充電制御部45とが情報通信ポート3H及びデジタル通信ポート部45Dを介して通信を行うことによって判別する。電池パックが装着されていない場合(S3:No)、S2に戻る。すなわち、電池パックが装着されるまでS2及びS3を繰り返しながら充電待機状態を維持する。 In S2, after the LED 60A is lit red, it is determined in S3 whether or not a battery pack is attached to the battery attachment portion 7 (terminal 70). Whether or not the battery pack is attached is determined by the battery side control unit 3G and the charge control unit 45 of the battery pack communicating through the information communication port 3H and the digital communication port unit 45D. When the battery pack is not attached (S3: No), the process returns to S2. That is, the charging standby state is maintained while repeating S2 and S3 until the battery pack is mounted.

S3にて、電池装着部7に電池パックが装着されていると判断した場合(S3:Yes)、S4において電池種を判別する。電池種の判別は、電池パックとの通信によって行われる。本実施の形態においては、電池パック3が電池装着部7(端子70)に装着された場合、充電制御部45は、電池種としてCを受信し、電池パック33が装着された場合は、電池種としてDを受信する。なお、本実施の形態においては、電池パックとの通信によって電池種を判別したが、電池パックに電池種判別のための判別抵抗が設けられている場合には、充電装置に当該判別抵抗と接続可能な判別端子を設け、当該判別抵抗の抵抗値を読み取ることで電池種を判別する構成であってもよい。 If it is determined in S3 that the battery pack is mounted on the battery mounting portion 7 (S3: Yes), the battery type is determined in S4. The battery type is determined by communication with the battery pack. In the present embodiment, when the battery pack 3 is attached to the battery attachment portion 7 (terminal 70), the charge control portion 45 receives C as the battery type, and when the battery pack 33 is attached, Receive D as seed. In the present embodiment, the battery type is determined by communication with the battery pack. However, when the battery pack is provided with a determination resistor for determining the battery type, the charging device is connected to the determination resistor. The structure which discriminate | determines a battery type by providing the possible discrimination terminal and reading the resistance value of the said discrimination resistance may be sufficient.

S4にて、電池種を判別した後は、S5において目標電流値をI1に設定し、S6にて、2C以上の充電電流、すなわち、I1で充電を開始する。充電開始は、第2出力ポート部45Cの複数のポートのうちの第2制御信号伝達部62のFET62Bと接続されたポートからハイ信号を出力し、PWM制御IC51Aを稼動状態にすることによって行われる。 After the battery type is determined in S4, the target current value is set to I1 in S5, and charging is started with a charging current of 2C or more, that is, I1 in S6. Charging is started by outputting a high signal from a port connected to the FET 62B of the second control signal transmission unit 62 among the plurality of ports of the second output port unit 45C, and putting the PWM control IC 51A into an operating state. .

S6において充電が開始されると、S7にて、充電中であることを示すため表示回路60を橙色に点灯させる。表示回路60を橙色に点灯させるには、第2出力ポート部45Cの複数のポートのうちの抵抗60Bと接続されているポート及び抵抗60Cと接続されているポートの両ポートからハイ信号を出力し、LED60Aを橙色に点灯させる。 When charging is started in S6, the display circuit 60 is lit in orange to indicate that charging is in progress in S7. In order to light the display circuit 60 in orange, a high signal is output from both the port connected to the resistor 60B and the port connected to the resistor 60C among the plurality of ports of the second output port portion 45C. The LED 60A is lit in orange.

また、S7にて、表示回路60を橙色に点灯させるとともに、S8にて、第1及び第2ファン5、6を駆動させる。第1及び第2ファン5、6の駆動は、第1出力ポート部45Bから第1ファン制御回路5A及び第2ファン制御回路5Bにファン制御信号を出力することで行われる。第1及び第2ファン5、6は、第1及び第2冷却風を発生させ、空気が吸気口24aを介してケース2内に取りこまれる。これにより、第1及び第2排気口22a、23aに向かう充電装置1の冷却風路が形成される。また、開口71から第1及び第2排気口22a、23aに向かう電池パックの冷却風路も形成される。 In S7, the display circuit 60 is lit in orange, and in S8, the first and second fans 5 and 6 are driven. The first and second fans 5 and 6 are driven by outputting fan control signals from the first output port unit 45B to the first fan control circuit 5A and the second fan control circuit 5B. The first and second fans 5 and 6 generate first and second cooling air, and the air is taken into the case 2 through the air inlet 24a. Thereby, the cooling air path of the charging device 1 toward the first and second exhaust ports 22a and 23a is formed. Further, a cooling air passage for the battery pack from the opening 71 toward the first and second exhaust ports 22a and 23a is also formed.

第1及び第2ファン5、6の駆動の後、S9にて、電池種がCであるか否かを判断する。電池種がCである場合(S9:Yes)、充電装置1には電池パック3が接続されていると判断し、S10にて、電池温度(周囲温度)に応じた目標電流値を図14に示されているテーブルに従って再設定(変更)する。なお、電池温度の検出は、電池種の判別と同様に電池パック3との通信によって行われる。 After the first and second fans 5 and 6 are driven, it is determined in S9 whether or not the battery type is C. When the battery type is C (S9: Yes), it is determined that the battery pack 3 is connected to the charging device 1, and in S10, the target current value corresponding to the battery temperature (ambient temperature) is shown in FIG. Reset (change) according to the table shown. The battery temperature is detected by communication with the battery pack 3 in the same manner as the battery type.

図14に示されているテーブルは、第1遮断素子3Fが動作しない範囲内(充電電流を遮断しない範囲内、遮断特性を満たす範囲)において、できるだけ大きな充電電流で充電するために、第1遮断素子3Fが有する遮断特性すなわち第1遮断特性曲線Aを考慮して定められた、電池温度と目標電流値との対応表である。 The table shown in FIG. 14 shows that the first cutoff element 3F is charged in the range in which the first cutoff element 3F does not operate (the range in which the charging current is not cut off, the range in which the cutoff characteristic is satisfied). 6 is a correspondence table between battery temperature and target current value determined in consideration of a cutoff characteristic of the element 3F, that is, a first cutoff characteristic curve A.

図14に示されているように、電池温度(周囲温度)がT1未満の場合は、目標電流値はI1に再設定(変更)される。図10に示されているように、T1は、第1遮断特性曲線Aにおける充電電流I1に対応する許容最高温度Taよりも僅かに低い値である。また、電池温度がT1以上T2未満の場合は、目標電流値はI2に変更される。T2は、第1遮断特性曲線Aにおける充電電流I1に対応する許容最高温度Taと充電電流I2に対応する許容最高温度Tbとの間の温度であり(Ta<T2<Tb)、Tbよりも僅かに低い値である。 As shown in FIG. 14, when the battery temperature (ambient temperature) is lower than T1, the target current value is reset (changed) to I1. As shown in FIG. 10, T1 is a value slightly lower than the allowable maximum temperature Ta corresponding to the charging current I1 in the first cutoff characteristic curve A. When the battery temperature is equal to or higher than T1 and lower than T2, the target current value is changed to I2. T2 is a temperature between the allowable maximum temperature Ta corresponding to the charging current I1 and the allowable maximum temperature Tb corresponding to the charging current I2 in the first cutoff characteristic curve A (Ta <T2 <Tb), which is slightly lower than Tb. The value is very low.

なお、第1遮断特性曲線Aに従うと、電池温度がTaに達するまでは、充電装置1が設定可能な目標電流値のうちの最大の電流値であるI1を目標電流値とすることができるが、充電電流I1が流れている状態で電池温度がT1よりも僅かに上昇しTaに達すると、第1遮断素子3Fが開状態となり充電電流が遮断され充電が中断されてしまうため、電池温度がTaよりも僅かに低いT1に達した時点で目標電流値をI1よりも低いI2に変更することとしている。これにより、第1遮断素子3Fが充電電流を遮断することを確実に回避することができる。 According to the first cutoff characteristic curve A, until the battery temperature reaches Ta, I1 that is the maximum current value that can be set by the charging apparatus 1 can be set as the target current value. When the battery temperature rises slightly higher than T1 and reaches Ta when the charging current I1 is flowing, the first interrupting element 3F is opened, the charging current is interrupted, and the charging is interrupted. The target current value is changed to I2 lower than I1 when T1 slightly lower than Ta is reached. Thereby, it can avoid reliably that the 1st interruption | blocking element 3F interrupts | blocks a charging current.

また、図14に示されているように電池温度がT2以上T3未満の場合は、目標電流値はI3に設定され、T3以上T4未満の場合は、目標電流値はI4に設定され、T4以上の場合は、目標電流値はI5に設定される。上記のT1及びT2が定められた趣旨と同趣旨により、T3は、Tb<T3<Tcを満たすように決定され、T4は、Tc<T4<Tdを満たすように決定され、T5は、Td<T5<Teを満たすように決定されている。T1〜T5を上記のように定め、現在設定されている目標電流値(充電電流)に対応する許容最高温度よりも僅かに低い温度で順次、目標電流値(充電電流)をより小さい値に変更することで、第1遮断素子3Fが動作しない範囲において、できるだけ大きな充電電流で充電することができ、且つ、第1遮断素子3Fが開状態となることを確実に回避し、充電を継続することができる。これにより、高容量の電池パックの充電時間を短縮することがきる。なお、I1は、本発明における「第1電流値」の一例である。また、I1を「第1電流値」とした場合には、I2は、本発明における「第2電流値」の一例、I3は、本発明における「第3電流値」の一例である。また、T1は、本発明における「第1温度閾値」の一例である。また、T1を「第1温度閾値」とした場合には、T2は、本発明における「第2温度閾値」の一例、Taは、本発明における「第1電池温度」の一例、Tbは、本発明における「第2電池温度」の一例である。 As shown in FIG. 14, when the battery temperature is T2 or more and less than T3, the target current value is set to I3. When the battery temperature is T3 or more and less than T4, the target current value is set to I4, and T4 or more. In this case, the target current value is set to I5. T3 and T2 are determined so as to satisfy Tb <T3 <Tc, T4 is determined so as to satisfy Tc <T4 <Td, and T5 is defined as Td < It is determined to satisfy T5 <Te. T1 to T5 are determined as described above, and the target current value (charging current) is sequentially changed to a smaller value at a temperature slightly lower than the allowable maximum temperature corresponding to the currently set target current value (charging current). By doing so, it is possible to charge with as large a charging current as possible within a range in which the first cutoff element 3F does not operate, and to reliably avoid the first cutoff element 3F from being in an open state and continue charging. Can do. Thereby, the charge time of a high capacity | capacitance battery pack can be shortened. I1 is an example of the “first current value” in the present invention. When I1 is a “first current value”, I2 is an example of a “second current value” in the present invention, and I3 is an example of a “third current value” in the present invention. T1 is an example of the “first temperature threshold” in the present invention. When T1 is a “first temperature threshold value”, T2 is an example of the “second temperature threshold value” in the present invention, Ta is an example of the “first battery temperature” in the present invention, and Tb is the present value. It is an example of "second battery temperature" in the invention.

図12に戻り、S10で上述のように目標電流値が再設定(変更)された後は、S11にて、満充電に達したか否かを判別する。満充電の判別は、例えば、リチウムイオン電池を充電する方法として一般的な定電流定電圧制御における定電圧制御下において、充電電流が所定の終止電流値以下にまで降下した時を満充電と判断すればよい。但し、満充電を判別する方法はこれに限るものではない。 Returning to FIG. 12, after the target current value is reset (changed) in S10 as described above, it is determined in S11 whether or not full charge has been reached. Full charge is determined as, for example, when the charge current drops below a predetermined end current value under constant voltage control in constant current constant voltage control, which is a general method for charging a lithium ion battery. do it. However, the method of determining full charge is not limited to this.

満充電であると判断された場合(S11:Yes)、S13にて、充電を終了する。充電停止の処理は、第2出力ポート部45Cの複数のポートのうちのFET62Bに接続されているポートからロー信号を出力し、PWM制御IC51Aを停止することによって行われる。 If it is determined that the battery is fully charged (S11: Yes), charging is terminated in S13. The charging stop process is performed by outputting a low signal from a port connected to the FET 62B among the plurality of ports of the second output port unit 45C and stopping the PWM control IC 51A.

一方、満充電でないと判断された場合(S11:No)、S12にて、電池温度がT5以上であるか否かを判別する。T5は、充電電流I5で充電を行っている状態においては、通常、達することのない、電池組3Aにとっては充電に適しない高い温度であるものとし、電池温度がT5以上の達した場合、充電を停止すべくS13において、充電停止の処理を行う。 On the other hand, when it is determined that the battery is not fully charged (S11: No), it is determined in S12 whether or not the battery temperature is equal to or higher than T5. T5 is a high temperature that is not normally reached in a state where charging is performed with the charging current I5 and is not suitable for charging for the battery set 3A. When the battery temperature reaches T5 or more, charging is performed. In step S13, charging is stopped.

S12において、電池温度がT5以上でないと判断された場合は、S10に戻り、再度、電池温度に応じた目標電流値に変更される。すなわち、S11で満充電であると判断されるか、又は、S12で電池温度がT5以上であると判断されるまで、S9、S10、S11、S12を繰り返しながら、電池温度が設定されている目標電流値に対応する許容最高温度よりも僅かに低い温度に達する毎に、順次、目標電流値が段階的により低い電流値に変更されながら、定電流定電圧制御で電池パック3は充電される。なお、電池温度が降下した場合にも、降下した後の電池温度に応じて目標電流値は変更される。例えば、電池温度がT3以上T4未満の範囲からT2以上T3未満の範囲に降下した場合には、目標電流値はI4からI4よりも大きいI3に変更される。 If it is determined in S12 that the battery temperature is not equal to or higher than T5, the process returns to S10 and is changed again to the target current value corresponding to the battery temperature. That is, the target in which the battery temperature is set while repeating S9, S10, S11, and S12 until it is determined that the battery is fully charged in S11 or the battery temperature is determined to be T5 or higher in S12. Each time the temperature reaches a temperature slightly lower than the allowable maximum temperature corresponding to the current value, the battery pack 3 is charged by the constant current / constant voltage control while the target current value is sequentially changed to a lower current value. Even when the battery temperature drops, the target current value is changed according to the battery temperature after the drop. For example, when the battery temperature falls from a range from T3 to less than T4 to a range from T2 to less than T3, the target current value is changed from I4 to I3 that is larger than I4.

S9に戻り、電池種がCでない、すなわち電池種がDであると判断された場合(S9:No)、電池パック33が充電装置1に装着されていると判断し、S11、S12の処理に進む。すなわち、S10における遮断特性を考慮した目標電流値の変更処理を行わない。これは、電池パック33が備える第2遮断素子33Fにおいては、図11に示されているように、電池温度がTf以下の範囲であれば、充電装置1が設定可能な目標電流値I1〜I5のいずれであっても充電電流を遮断することがなく、第2遮断素子33Fが動作しない範囲において、充電開始から充電電圧が目標充電電圧に達するまで、設定可能な目標電流値のうちの最大の電流値I1で充電可能であり、目標電流値を変更する必要がないからである。 Returning to S9, when it is determined that the battery type is not C, that is, the battery type is D (S9: No), it is determined that the battery pack 33 is attached to the charging device 1, and the processing of S11 and S12 is performed. move on. That is, the target current value changing process in consideration of the cutoff characteristic in S10 is not performed. This is because, in the second cutoff element 33F provided in the battery pack 33, as shown in FIG. 11, the target current values I1 to I5 that can be set by the charging device 1 if the battery temperature is in the range of Tf or less. In any range, the charging current is not cut off, and the maximum of the settable target current values from the start of charging until the charging voltage reaches the target charging voltage within a range where the second cutoff element 33F does not operate. This is because charging is possible with the current value I1, and there is no need to change the target current value.

なお、電池パック33の第2遮断素子33Fは、Tf以下の範囲であれば、充電電流を遮断することはないが、電池パック33の劣化、故障の抑制のため、Tfよりも低いT5以上となった場合(S12:Yes)、充電を終了する。このように、電池パック33が充電装置1に装着された場合には、S9、S11、S12を繰り返しながら電池温度がT5以上とならない限りにおいて、2Cの充電電流すなわちI1で充電開始から充電電圧が目標充電電圧に達するまで充電される。 Note that the second blocking element 33F of the battery pack 33 does not block the charging current as long as it is in the range of Tf or less. If it becomes (S12: Yes), the charging is terminated. As described above, when the battery pack 33 is attached to the charging apparatus 1, the charging voltage from the start of charging at the charging current of 2C, that is, I1, is 1 as long as the battery temperature does not exceed T5 while repeating S9, S11, and S12. The battery is charged until the target charging voltage is reached.

S13で充電終了の処理が行われた後は、図13に示されるように、S14にて、充電終了状態であることを示すため表示回路60を緑色に点灯させる。表示回路60を緑色に点灯させるには、第2出力ポート部45Cの複数のポートのうちの抵抗60Cに接続されているポートからハイ信号を出力し、LED60Aを緑色に点灯させる。 After the charge termination process is performed in S13, as shown in FIG. 13, in S14, the display circuit 60 is lit in green to indicate the charge termination state. In order to light the display circuit 60 in green, a high signal is output from a port connected to the resistor 60C among the plurality of ports of the second output port portion 45C, and the LED 60A is lighted in green.

S14にて、表示回路60を緑色に点灯させた後は、S15にて、電池温度が40度以上であるか否かを判別する。電池温度が40度以上であれば(S15:Yes)、第1及び第2ファンの駆動を継続しながらS15を繰り返し、電池温度が40度未満となるまで、電池パック3の冷却を継続する。 After the display circuit 60 is lit in green at S14, it is determined at S15 whether the battery temperature is 40 degrees or higher. If the battery temperature is 40 ° C or higher (S15: Yes), S15 is repeated while driving the first and second fans, and the cooling of the battery pack 3 is continued until the battery temperature becomes less than 40 ° C.

電池温度が40度未満となった場合、(S15:No)、S16にて、充電回路部4の温度が40度以上であるか否かを判別する。充電回路部4の温度の検出は、温度検出素子44からA/D入力ポート部45Aに出力された充電回路部4の温度を示す電圧信号を読み取ることで行う。充電回路部4の温度が40度以上であれば(S16:Yes)、S15に戻り、S15、S16を繰り返しながら充電回路部4の温度が40度未満となるまで、第1及び第2ファンの駆動を継続して、充電回路部4の冷却を継続する。充電回路部4の温度が40度未満となると(S16:No)、S17にて、第1及び第2ファン5、6の駆動を停止する。 When the battery temperature is less than 40 degrees (S15: No), in S16, it is determined whether or not the temperature of the charging circuit unit 4 is 40 degrees or more. The temperature of the charging circuit unit 4 is detected by reading a voltage signal indicating the temperature of the charging circuit unit 4 output from the temperature detection element 44 to the A / D input port unit 45A. If the temperature of the charging circuit unit 4 is 40 ° C. or more (S16: Yes), the process returns to S15 and repeats S15 and S16 until the temperature of the charging circuit unit 4 becomes less than 40 ° C. The driving is continued and cooling of the charging circuit unit 4 is continued. When the temperature of the charging circuit unit 4 becomes less than 40 degrees (S16: No), the driving of the first and second fans 5 and 6 is stopped in S17.

S6〜13において電池パック3又は33の充電が行われているとき、ケース2内では、吸気口24aから第1及び第2排気口22a、23aに向かう風路が形成される。ダイオード41、トランス42、FET43は、吸気口24aの近傍に配置されているので、吸気口24aから吸い込まれた直後の温められる前の空気を冷却風として冷却されるので、効率良く冷却される。 When the battery pack 3 or 33 is being charged in S6 to S13, an air path is formed in the case 2 from the intake port 24a to the first and second exhaust ports 22a and 23a. Since the diode 41, the transformer 42, and the FET 43 are arranged in the vicinity of the air inlet 24a, the air before being heated immediately after being sucked in from the air inlet 24a is cooled as cooling air, so that it is efficiently cooled.

また、放熱部材46、47が、ダイオード41、トランス42、FET43を風路内に含むように風路を画定するので、冷却が必要なダイオード41、トランス42、FET43を効率的に冷却できる。さらに、ダイオード41とFET43とは放熱部材46、47にそれぞれ取り付けられているので、ダイオード41とFET43とは、放熱部材46、47に沿って流れる冷却風に晒されて効率良く冷却される。さらに、トランス42は放熱部材46、47で画定した風路の最上流側(吸気口24aの近傍)に位置するため、温められる前の空気によって効率良く冷却される。 Moreover, since the heat radiation members 46 and 47 define the air path so that the diode 41, the transformer 42, and the FET 43 are included in the air path, the diode 41, the transformer 42, and the FET 43 that require cooling can be efficiently cooled. Furthermore, since the diode 41 and the FET 43 are respectively attached to the heat radiating members 46 and 47, the diode 41 and the FET 43 are efficiently cooled by being exposed to the cooling air flowing along the heat radiating members 46 and 47. Furthermore, since the transformer 42 is located on the most upstream side of the air passage defined by the heat radiating members 46 and 47 (in the vicinity of the intake port 24a), the transformer 42 is efficiently cooled by the air before being warmed.

充電処理の説明に戻り、S17で第1及び第2ファン5、6の駆動を停止した後は、S18で電池パックが充電装置1から離脱されたか否かを判断する。離脱されていないと判断した場合(S18:No)、S18を繰り返しながら、電池パックが充電装置1から離脱されるまで、充電終了状態を維持する。一方、離脱されたと判断した場合(S18:Yes)、S2に戻り、再度、電池パックが充電装置1に装着されるまで充電待機状態が維持される。このように、本実施の形態の充電装置1によれば、商用交流電源Pから直接、高容量(5Ah以上)の電池パック3又は33を大電流(2C以上又は10A以上)で充電することができ、充電時間を短縮することができる。 Returning to the description of the charging process, after stopping the driving of the first and second fans 5 and 6 in S17, it is determined whether or not the battery pack is detached from the charging device 1 in S18. When it is determined that the battery pack is not detached (S18: No), the charging end state is maintained until the battery pack is detached from the charging device 1 while repeating S18. On the other hand, when it is determined that the battery pack has been detached (S18: Yes), the process returns to S2, and the charging standby state is maintained until the battery pack is attached to the charging device 1 again. Thus, according to the charging device 1 of the present embodiment, the battery pack 3 or 33 having a high capacity (5 Ah or more) can be directly charged from the commercial AC power source P with a large current (2 C or more or 10 A or more). And the charging time can be shortened.

次に、図15(a)及び(b)を参照しながら、上記の充電処理を行った場合の、電池パック3及び33の電池温度、充電電圧、充電電流の時間変化について説明する。図15(a)及び(b)は、充電装置1による充電制御を行った場合の電池温度、充電電圧、充電電流の時間変化を示すタイムチャートである。 Next, with reference to FIGS. 15 (a) and 15 (b), time variations of the battery temperature, the charging voltage, and the charging current of the battery packs 3 and 33 when the above charging process is performed will be described. FIGS. 15A and 15B are time charts showing changes over time in battery temperature, charging voltage, and charging current when charging control by the charging device 1 is performed.

図15(a)に示されているように、本実施の形態による充電装置1で電池パック3を充電した場合、時刻t0にて、充電制御部45によって目標電流値がI1(本実施の形態においては、12A)、すなわち、電池パック3の公称容量6Ahに対して2Cの充電電流に設定され(S5に相当)、充電電流I1で充電が開始される(S6に相当)。充電が開始されると、電池パック3は、定電流制御にて、充電電流がI1に維持された状態で、充電される(S9、S10、S11及びS12の繰り返しに相当)。時刻t0以降、充電に伴い、電池温度及び充電電圧は上昇していき、時刻t1にて、電池温度がT1に達する。 As shown in FIG. 15A, when the battery pack 3 is charged by the charging device 1 according to the present embodiment, the target current value is set to I1 (this embodiment) by the charging control unit 45 at time t0. 12A), that is, a charging current of 2C is set for the nominal capacity 6Ah of the battery pack 3 (corresponding to S5), and charging is started with the charging current I1 (corresponding to S6). When charging is started, the battery pack 3 is charged in a state where the charging current is maintained at I1 by constant current control (corresponding to repetition of S9, S10, S11, and S12). After the time t0, the battery temperature and the charging voltage increase with the charging, and the battery temperature reaches T1 at the time t1.

時刻t1にて、電池温度がT1に達すると、充電制御部45によって目標電流値はI1からI2に変更(再設定)され、充電電流はI1からI2に降下する(S10に相当)。充電電流がI2に降下した後は、定電流制御にて充電電流はI2に維持された状態で、充電が継続される(S9、S10、S11及びS12の繰り返しに相当)。充電電圧は、時刻t1にて、充電電流の降下に伴い一度降下するが、時刻t1以降は充電継続に伴い再び上昇する。また、電池温度は、時刻t1以降、上昇していき、時刻t2にて、T2に達する。 When the battery temperature reaches T1 at time t1, the charging control unit 45 changes (resets) the target current value from I1 to I2, and the charging current drops from I1 to I2 (corresponding to S10). After the charging current drops to I2, charging is continued in a state where the charging current is maintained at I2 by constant current control (corresponding to repetition of S9, S10, S11 and S12). The charging voltage once decreases as the charging current decreases at time t1, but increases again as charging continues after time t1. Further, the battery temperature rises after time t1, and reaches T2 at time t2.

時刻t2にて、電池温度がT2に達すると、充電制御部45によって目標電流値はI2からI3に変更(再設定)され、充電電流はI2からI3に降下する(S10に相当)。充電電流がI3に降下した後は、定電流制御にて充電電流はI3に維持された状態で、充電が継続される(S9、S10、S11及びS12の繰り返しに相当)。充電電圧は、時刻t2にて、充電電流の降下に伴い再び降下するが、時刻t2以降は充電継続に伴いさらに上昇する。また、電池温度は、時刻t2以降、さらに上昇していき、時刻t3にて、T3に達する。 When the battery temperature reaches T2 at time t2, the charge control unit 45 changes (resets) the target current value from I2 to I3, and the charging current drops from I2 to I3 (corresponding to S10). After the charging current drops to I3, charging is continued in a state where the charging current is maintained at I3 by constant current control (corresponding to repetition of S9, S10, S11, and S12). The charging voltage decreases again as the charging current decreases at time t2, but increases further as charging continues after time t2. Further, the battery temperature further increases after time t2, and reaches T3 at time t3.

時刻t3にて、電池温度がT3に達すると、充電制御部45によって目標電流値はI3からI4に変更(再設定)され、充電電流はI3からI4に降下する(S10に相当)。充電電流がI4に降下した後は、定電流制御にて充電電流はI4に維持された状態で、充電が継続される(S9、S10、S11及びS12の繰り返しに相当)。充電電圧は、時刻t3にて、充電電流の降下に伴い再び降下するが、時刻t3以降は充電継続に伴いさらに上昇していき、時刻t5にて、所定の目標充電電圧に達する。充電電圧が目標充電電圧に達すると、充電制御部45によって定電圧制御に移行され、時刻t5以降、充電電圧は目標充電電圧に維持された状態で充電が継続される(S9、S10、S11及びS12の繰り返しに相当)。一方、電池温度は、時刻t3以降、さらに上昇していくが、時刻t5においては、目標電流値の変更に用いられる次の温度閾値であるT4には達していない。 When the battery temperature reaches T3 at time t3, the target current value is changed (reset) from I3 to I4 by the charging control unit 45, and the charging current drops from I3 to I4 (corresponding to S10). After the charging current drops to I4, charging is continued in a state where the charging current is maintained at I4 by constant current control (corresponding to repetition of S9, S10, S11, and S12). The charging voltage decreases again as the charging current decreases at time t3, but further increases as charging continues after time t3, and reaches a predetermined target charging voltage at time t5. When the charging voltage reaches the target charging voltage, the charging control unit 45 shifts to constant voltage control, and after time t5, charging is continued in a state where the charging voltage is maintained at the target charging voltage (S9, S10, S11 and Equivalent to repetition of S12). On the other hand, the battery temperature further increases after time t3, but does not reach T4, which is the next temperature threshold used for changing the target current value, at time t5.

定電圧制御に移行された時刻t5以降、充電電圧が目標充電電圧に維持された状態で充電が継続されるが、充電電流は低下していくとともに、電池温度も充電電流の低下及び第1ファン5及び第2ファン6の駆動に起因して低下していく(S9、S10、S11及びS12の繰り返しに相当)。その後、時刻t7にて、充電電流が所定の終止電流値以下となると、充電制御部45によって満充電であると判断され(S10:Yesに相当)、充電は終了される(S13に相当)。なお、図15(a)では充電電圧(電池電圧)とは無関係に電池温度が所定値に達した時点で充電電流を切り替えている。 After the time t5 when the control is shifted to the constant voltage control, the charging is continued in a state where the charging voltage is maintained at the target charging voltage. However, the charging current is decreased and the battery temperature is decreased and the first fan is also decreased. 5 and the second fan 6 decrease (corresponding to repetition of S9, S10, S11, and S12). Thereafter, when the charging current becomes equal to or less than the predetermined end current value at time t7, the charging control unit 45 determines that the charging is full (S10: equivalent to Yes), and the charging is terminated (corresponding to S13). In FIG. 15A, the charging current is switched when the battery temperature reaches a predetermined value regardless of the charging voltage (battery voltage).

図15(b)に示されているように、本実施の形態による充電装置1で電池パック33を充電した場合、時刻t0にて、充電制御部45によって目標電流値がI1(本実施の形態においては、12A)、すなわち、電池パック33の公称容量6Ahに対して2Cの充電電流に設定され(S5に相当)、充電電流I1で充電が開始される(S6に相当)。電池パック33が充電される場合、電池パック3が充電される場合とは異なり、電池温度に応じた目標電流値の変更は行われず(S9:No、S10の処理は行わない)、充電開始から充電電圧が目標充電電圧に達するまで(定電流制御の間)、常に、充電電流はI1に維持された状態で充電される(S9、S11及びS12の繰り返しに相当)。これは上述したように、電池パック3及び33はともに公称容量6Ahであるが、許容充電電流値が互いに異なり、且つ、遮断特性の異なる遮断素子を有しているためである。電池温度及び充電電圧は共に、時刻t0以降、充電に伴って上昇していき、時刻t4にて、所定の目標充電電圧に達する。 As shown in FIG. 15B, when the battery pack 33 is charged by the charging apparatus 1 according to the present embodiment, the target current value is set to I1 (this embodiment) by the charging control unit 45 at time t0. 12A), that is, a charging current of 2C is set for the nominal capacity 6Ah of the battery pack 33 (corresponding to S5), and charging is started with the charging current I1 (corresponding to S6). When the battery pack 33 is charged, unlike the case where the battery pack 3 is charged, the target current value is not changed according to the battery temperature (S9: No, the process of S10 is not performed), and from the start of charging. Until the charging voltage reaches the target charging voltage (during constant current control), charging is always performed while the charging current is maintained at I1 (corresponding to repetition of S9, S11, and S12). This is because, as described above, the battery packs 3 and 33 both have a nominal capacity of 6 Ah, but have breaker elements with different allowable charge current values and different breakage characteristics. Both the battery temperature and the charging voltage increase with charging after time t0, and reach a predetermined target charging voltage at time t4.

充電電圧が目標充電電圧に達した時刻t4以降、充電電圧が目標充電電圧に維持された状態で充電が継続されるが、充電電流は低下していくとともに、電池温度も充電電流の低下及び第1ファン5及び第2ファン6の駆動に起因して低下していく(S9、S11及びS12の繰り返しに相当)。その後、時刻t6にて、充電電流が所定の終止電流値以下となると、充電制御部45によって満充電であると判断され(S10:Yesに相当)、充電は終了される(S13に相当)。 After time t4 when the charging voltage reaches the target charging voltage, charging is continued in a state where the charging voltage is maintained at the target charging voltage. However, as the charging current decreases, the battery temperature also decreases and the charging current decreases. It decreases due to the driving of the first fan 5 and the second fan 6 (corresponding to the repetition of S9, S11 and S12). Thereafter, when the charging current becomes equal to or lower than the predetermined end current value at time t6, the charging control unit 45 determines that the charging is fully charged (corresponding to S10: Yes), and the charging is terminated (corresponding to S13).

このように、電池パック33の充電は、充電開始から定電圧制御に移行するまで2Cの充電電流で行われるため、電池パック33の充電終了は、電池パック3の充電終了時刻t7よりも早い時刻の時刻t6となっている。なお、本実施の形態においては、時刻t0〜時刻t6までの時間、すなわち充電装置1による電池パック33の充電時間は略30分であり、時刻t0〜時刻t7までの時間、すなわち、充電装置1による電池パック3の充電時間は略40分である。 As described above, since the charging of the battery pack 33 is performed with the charging current of 2C from the start of charging to the shift to the constant voltage control, the charging end of the battery pack 33 is earlier than the charging end time t7 of the battery pack 3. At time t6. In the present embodiment, the time from time t0 to time t6, that is, the charging time of battery pack 33 by charging device 1 is approximately 30 minutes, and the time from time t0 to time t7, that is, charging device 1 The charging time of the battery pack 3 is approximately 40 minutes.

ここで、従来の充電装置による充電制御を行った場合の電池パックの電池温度、充電電圧、充電電流の時間変化について説明する。図15(c)は、従来の充電装置による充電制御を行った場合の電池温度、充電電圧、充電電流の時間変化を示すタイムチャートである。 Here, the time change of the battery temperature, the charging voltage, and the charging current of the battery pack when the charging control by the conventional charging device is performed will be described. FIG. 15C is a time chart showing changes over time in battery temperature, charging voltage, and charging current when charging control is performed by a conventional charging device.

図15(c)に示されているように、従来の充電装置においては、本実施の形態で行っている充電対象となった電池パックの遮断素子が有する遮断特性(遮断特性曲線)を考慮した充電電流の切替制御を行っていない(図12のS10に相当する処理を行っていない)。また、従来の充電装置においては、充電電流を2C以上で充電すると遮断素子が短時間で動作し、充電が中断又は終了してしまうため、充電電流を2C未満としている。すなわち、従来の充電装置においては遮断素子が動作しないように充電電流を8Aとしている。図15(c)は、従来の充電装置を用いて、本実施の形態の電池パック3及び33と同一の公称容量の電池パックを、例示的に8A(2C未満の充電電流)で充電する場合を示している。 As shown in FIG. 15 (c), in the conventional charging apparatus, the interruption characteristic (interruption characteristic curve) of the interruption element of the battery pack that is the object of charging performed in the present embodiment is considered. The charging current switching control is not performed (the processing corresponding to S10 in FIG. 12 is not performed). Further, in the conventional charging device, when the charging current is charged at 2C or more, the interruption element operates in a short time, and the charging is interrupted or terminated, so the charging current is set to less than 2C. That is, in the conventional charging device, the charging current is set to 8 A so that the interruption element does not operate. FIG. 15C shows a case in which a battery pack having the same nominal capacity as the battery packs 3 and 33 of the present embodiment is charged at 8 A (charge current of less than 2 C) by using a conventional charging device. Is shown.

従来の充電装置においては、時刻t0で充電が開始されると、目標充電電圧に達する時刻はt7、充電終了時刻はt8であり、充電時間は略45分である。充電装置1と従来の充電装置とを同一容量の電池パックに対する充電時間で比較すると、充電装置1で電池パック33を充電する場合は略30分、充電装置1で電池パック3を充電する場合は略40分、従来の充電装置における充電時間は略45分である。このように、充電装置1による電池パック3の充電時間及び電池パック33の充電時間はともに、従来の充電装置における充電時間よりも短くなっている。 In the conventional charging device, when charging is started at time t0, the time to reach the target charging voltage is t7, the charging end time is t8, and the charging time is approximately 45 minutes. When the charging device 1 and the conventional charging device are compared with the charging time for a battery pack of the same capacity, the charging device 1 charges the battery pack 33 approximately 30 minutes, and the charging device 1 charges the battery pack 3 About 40 minutes, the charging time in the conventional charging device is about 45 minutes. Thus, the charging time of the battery pack 3 by the charging device 1 and the charging time of the battery pack 33 are both shorter than the charging time in the conventional charging device.

このように、本発明の第1の実施の形態における充電装置1は、電池セル3aを有する電池組3Aを備える電池パック3を商用交流電源Pから直接充電可能であり、公称容量が6Ah(5Ah以上)の電池パック3を2Cの充電電流(好ましくは2C以上3C以下の充電電流)で充電可能に構成されている。言い換えれば、公称容量がα(αは、5以上の実数)Ah以上の該電池パックを2αA以上の充電電流(好ましくは2α以上3α以下の充電電流)で充電可能に構成されている。このため、略30分程度という短時間で高容量の電池パックを充電することができる。 As described above, the charging device 1 according to the first embodiment of the present invention can directly charge the battery pack 3 including the battery set 3A having the battery cells 3a from the commercial AC power source P, and has a nominal capacity of 6 Ah (5 Ah). The battery pack 3 described above is configured to be able to be charged with a charging current of 2C (preferably a charging current of 2C or more and 3C or less). In other words, the battery pack having a nominal capacity α (α is a real number of 5 or more) Ah or more can be charged with a charging current of 2αA or more (preferably a charging current of 2α or more and 3α or less). For this reason, a high-capacity battery pack can be charged in a short time of about 30 minutes.

また、充電装置1は、遮断特性を満たしている場合、電池セル3aに充電電流が流れることを許容し、遮断特性を満たしていない場合、充電電流を遮断する第1遮断素子3F(第2遮断素子33F)を備える電池パック3(電池パック33)を充電可能である。さらに、電池パック3(電池パック33)と接続可能な複数の端子70と、第1遮断素子3F(第2遮断素子33F)の遮断特性すなわち、第1遮断特性曲線A(第2遮断特性曲線B)を特定し、遮断特性を満たすように充電制御を行う充電制御部45を備えている。このため、第1遮断素子3F(第2遮断素子33F)によって充電電流が遮断されず、充電が中断又は終了することがない。これにより、高容量の電池パック3(電池パック33)に対して2Cの充電電流で充電することができ、高容量の電池パック3(電池パック33)を短時間で充電することができる。 Further, the charging device 1 allows the charging current to flow through the battery cell 3a when the interruption characteristic is satisfied, and the first interruption element 3F (second interruption element) that interrupts the charging current when the interruption characteristic is not satisfied. The battery pack 3 (battery pack 33) including the element 33F) can be charged. Further, the plurality of terminals 70 that can be connected to the battery pack 3 (battery pack 33) and the cutoff characteristics of the first cutoff element 3F (second cutoff element 33F), that is, the first cutoff characteristic curve A (second cutoff characteristic curve B). ) And a charge control unit 45 that performs charge control so as to satisfy the cutoff characteristic. For this reason, the charging current is not cut off by the first cutoff element 3F (second cutoff element 33F), and charging is not interrupted or terminated. Thereby, the high-capacity battery pack 3 (battery pack 33) can be charged with a charging current of 2C, and the high-capacity battery pack 3 (battery pack 33) can be charged in a short time.

また、本実施の形態では、電池パック3(電池パック33)の遮断特性は、充電電流が電池セル3aの電池温度と対応する許容最大電流値よりも小さい場合に満たされ、充電装置1は、電池パック3(電池パック33)の電池温度を取得する充電制御部45と、複数の電流値(I1〜I5)のうちから一の電流値を設定可能な電流設定回路56と、設定された当該一の電流値で電池パック3(電池パック33)を充電するように充電電流を制御する電流制御回路57と、を有しており、充電制御部45は、電池温度に基づいて、設定可能なI1〜I5のうちで電池温度に対応する許容最大電流値よりも小さい電流値の中で最大の電流値で電池パック3(電パック33)を充電するように充電電流を制御している。なお、本実施の形態においては、図12に示されているS9:Noの場合、すなわち、充電対象が電池パック33の場合は、遮断特性に応じた充電電流の切替制御(S10)を行っていないが、電池パック33に対して当該充電電流の切替制御(S10)を行ってもよい。 In the present embodiment, the interruption characteristic of the battery pack 3 (battery pack 33) is satisfied when the charging current is smaller than the allowable maximum current value corresponding to the battery temperature of the battery cell 3a. The charge control unit 45 that acquires the battery temperature of the battery pack 3 (battery pack 33), the current setting circuit 56 that can set one current value among a plurality of current values (I1 to I5), and the set current And a current control circuit 57 that controls the charging current so as to charge the battery pack 3 (battery pack 33) with a single current value. The charging control unit 45 can be set based on the battery temperature. The charging current is controlled so that the battery pack 3 (electric pack 33) is charged with the maximum current value among the current values smaller than the allowable maximum current value corresponding to the battery temperature among I1 to I5. In the present embodiment, when S9: No shown in FIG. 12, that is, when the charging target is the battery pack 33, the charging current switching control (S10) according to the cutoff characteristic is performed. However, the charging current switching control (S10) may be performed on the battery pack 33.

上記構成によると、例えば、設定可能な複数の電流値(I1〜I5)のうちの許容最大電流値よりも小さい電流値が、I2〜I5である場合には、I2〜I5の中で最大の電流値I2で電池パック3(電池パック33)を充電することができる。このため、充電時間をより短縮することができる。 According to the above configuration, for example, when the current value smaller than the allowable maximum current value among the plurality of settable current values (I1 to I5) is I2 to I5, the maximum value among I2 to I5 Battery pack 3 (battery pack 33) can be charged with current value I2. For this reason, the charging time can be further shortened.

また、本実施の形態では、電池パック3(電池パック33)の遮断特性における許容最大電流値は、電池温度が高くなるに従って、より小さくなっており、充電制御部45は、電池温度が高くなるに従って、該充電電流をより小さくする。すなわち、充電装置1では、第1遮断素子3F(第2遮断素子33F)が有する遮断特性に応じて、充電電流を変更することができため、第1遮断素子3F(第2遮断素子33F)による充電電流の遮断を確実に回避することができる。これにより、充電時間を確実に短縮することができる。 Further, in the present embodiment, the allowable maximum current value in the cutoff characteristic of battery pack 3 (battery pack 33) is smaller as the battery temperature is higher, and charge control unit 45 has a higher battery temperature. Accordingly, the charging current is further reduced. That is, in the charging device 1, the charging current can be changed according to the cutoff characteristic of the first cutoff element 3 </ b> F (second cutoff element 33 </ b> F), and thus the first cutoff element 3 </ b> F (second cutoff element 33 </ b> F) is used. It is possible to reliably avoid interruption of the charging current. Thereby, charging time can be shortened reliably.

また、本実施の形態では、充電制御部45は、I1で充電している場合、電池温度がT1以上となると、I1よりも小さいI2で充電するように充電電流を制御している。さらに、T1は、対応する許容最大電流値がI1である電池温度すなわちTaよりも低く設定されている。これにより、第1遮断素子3F(第2遮断素子33F)による充電電流の遮断をより確実に回避することができる。 In the present embodiment, when charging is performed with I1, the charging control unit 45 controls the charging current so that charging is performed with I2 smaller than I1 when the battery temperature becomes T1 or higher. Further, T1 is set to be lower than the battery temperature at which the corresponding allowable maximum current value is I1, that is, Ta. Thereby, interruption of the charging current by the first interruption element 3F (second interruption element 33F) can be avoided more reliably.

より詳細には、Taに対応する許容最大電流値はI1であり、I1で充電を行っている場合は、電池温度がTaに達すると第1遮断素子3Fによって充電電流は遮断されるが、上記構成により、Taよりも低いT1に電池温度が達するとI1からより小さいI2に変更するため、遮断素子による充電電流の遮断をより確実に回避することができる。 More specifically, the allowable maximum current value corresponding to Ta is I1, and when charging is performed at I1, the charging current is cut off by the first cutoff element 3F when the battery temperature reaches Ta. According to the configuration, when the battery temperature reaches T1 lower than Ta, the charging current is changed from I1 to a smaller I2, so that it is possible to more reliably avoid interruption of the charging current by the interruption element.

また、本実施の形態では、充電制御部45は、I2で充電している場合、電池温度がT1よりも高いT2以上となると、I2よりも小さいI3で充電するように充電電流を制御している。さらに、T2は、対応する許容最大電流値がI2である電池温度すなわちTbよりも低く、且つ、T2よりも高く設定されている。これにより、第1遮断素子3Fによる充電電流の遮断をより確実に回避するとともにより充電時間を短縮することができる。 Further, in the present embodiment, the charging control unit 45 controls the charging current so as to charge with I3 smaller than I2 when the battery temperature becomes T2 higher than T1 when charging with I2. Yes. Further, T2 is set lower than the battery temperature, that is, Tb corresponding to the maximum allowable current value I2, and higher than T2. As a result, it is possible to more reliably avoid interruption of the charging current by the first interruption element 3F and further shorten the charging time.

より詳細には、充電電流をI2からより小さいI3に変更するための温度閾値であるT2は、Tbよりも低いため、第1遮断素子3Fの動作を確実に回避することができる。さらに、T2は、Taよりも高い値、すなわち、過度に低い値ではない。仮に、T2を過度に低い値とした場合、例えば、Taよりも低い値とした場合には、確実に第1遮断素子3Fの動作を回避することができるが、充電電流をI2からより小さいI3に変更するタイミングが早まり充電時間を十分に短縮することができない。この点、本実施の形態のようにT2をTaよりも高くすることで、より小さい電流値への変更タイミングを遅らせることができ、充電時間をより短縮することができる。また、充電装置1は、異なる電圧及び異なる公称容量を有する複数の電池パックを択一的に充電可能であるため、1つの充電装置1を準備しておけば複数の電池パックを充電でき、複数の充電装置を準備する必要がない。さらに、公称容量が5Ah未満の電池パックを2C以上の充電電流で充電可能であるため、低容量(5Ah未満)の電池パックの充電時間も短縮することができる。 More specifically, since the temperature threshold T2 for changing the charging current from I2 to a smaller I3 is lower than Tb, the operation of the first cutoff element 3F can be surely avoided. Furthermore, T2 is not higher than Ta, that is, not too low. If T2 is set to an excessively low value, for example, a value lower than Ta, the operation of the first cutoff element 3F can be reliably avoided, but the charging current is reduced from I2 to I3 smaller than I2. The timing to change to is advanced and the charging time cannot be shortened sufficiently. In this regard, by setting T2 higher than Ta as in the present embodiment, the timing for changing to a smaller current value can be delayed, and the charging time can be further shortened. Moreover, since the charging device 1 can alternatively charge a plurality of battery packs having different voltages and different nominal capacities, a plurality of battery packs can be charged by preparing one charging device 1. There is no need to prepare a charging device. Furthermore, since a battery pack with a nominal capacity of less than 5 Ah can be charged with a charging current of 2 C or more, the charging time of a battery pack with a low capacity (less than 5 Ah) can also be shortened.

次に、第1の実施の形態の変形例を図16から図20を参照して説明する。 Next, a modification of the first embodiment will be described with reference to FIGS.

この変形例の充電装置1においては、放熱部材46、47に代わりに放熱プレート80を使用する。なお、他の構成は第1の実施の形態と同じであるため、その説明は省略する。 In the charging device 1 of this modification, a heat radiating plate 80 is used instead of the heat radiating members 46 and 47. Since other configurations are the same as those of the first embodiment, description thereof is omitted.

放熱プレート80は、吸気口24aから取りこまれた空気の冷却風としての風路を画成し、排気口22a、23aへと向けて導くものである。 The heat radiating plate 80 defines an air path as cooling air of the air taken in from the intake port 24a and guides it toward the exhaust ports 22a and 23a.

放熱プレート80は、図16に示すように、充電装置1のケース2内に取り付けられたときに、図16から図18に示すように、ダイオード41、トランス42、FET43などの発熱素子を覆う大きさ及び形状を有して、ケース2の上面21と、ダイオード41、トランス42及びFET43との間に配置される。 As shown in FIG. 16, the heat radiating plate 80 is large enough to cover the heat generating elements such as the diode 41, the transformer 42, and the FET 43, as shown in FIGS. 16 to 18, when attached to the case 2 of the charging device 1. It is arranged between the upper surface 21 of the case 2 and the diode 41, the transformer 42, and the FET 43.

放熱プレート80は、ダイオード41、トランス42、FET43の各々と対応する位置に、各素子の外形に対応した形状の開口81、82、83、84、85が形成される。さらに、各開口81、82、83、84、85の縁部近傍から基板40に向けてリブ81A、82A、83A、84A、85Aが形成されている。例えば、トランス42対して形成された開口82と、そのリブ82Aとによって、トランス42の基板側から開口82に達するトランス42用の風路が画成される。同様に、ダイオード41と開口81とリブ81Aとによって、ダイオード41用の風路が画成され、FET43を始めとする発熱素子に対して風路が画成される。 In the heat dissipation plate 80, openings 81, 82, 83, 84, and 85 having shapes corresponding to the outer shapes of the respective elements are formed at positions corresponding to the diode 41, the transformer 42, and the FET 43, respectively. Further, ribs 81A, 82A, 83A, 84A, and 85A are formed from the vicinity of the edge portions of the openings 81, 82, 83, 84, and 85 toward the substrate 40. For example, the air passage for the transformer 42 reaching the opening 82 from the substrate side of the transformer 42 is defined by the opening 82 formed with respect to the transformer 42 and the rib 82A. Similarly, an air path for the diode 41 is defined by the diode 41, the opening 81, and the rib 81A, and an air path is defined for the heating elements such as the FET 43.

従って、放熱プレート80がケース2内に取り付けられたときに、開口81、82、83、84、85が各々の周縁部に設けられたリブ81A、82A、83A、84A、85Aと共に、対応する発熱素子の周囲を若干の間隙を介して包囲する。すなわち、発熱素子は各リブ81A〜85Aによってその周囲を取り囲まれている。 Therefore, when the heat radiating plate 80 is mounted in the case 2, the openings 81, 82, 83, 84, 85 together with the ribs 81 </ b> A, 82 </ b> A, 83 </ b> A, 84 </ b> A, 85 </ b> A provided at the respective peripheral portions, The periphery of the element is surrounded by a slight gap. That is, the heating element is surrounded by the ribs 81A to 85A.

このため、ファン5、6が駆動されると、図18から図20に示すように、吸気口24aから、対応する発熱素子の周囲に形成される風路及び開口を介して、排気口22a、23aに至る冷却風路が形成される。この冷却風路の中を第1冷却風及び第2冷却風が通過して、発熱素子であるダイオード41、トランス42、FET43の各々を冷却する。各発熱素子の近傍においては、発熱素子の側面と対応するリブとの間に風路が画成されて冷却風が発熱素子の側面に沿って開口に向けて流れる。そして、開口を通過した冷却風は、放熱プレート80に沿って排気口22a、23aに向けて流れてケース2外に排気される。従って、リブによって冷却風が発熱素子の周囲に集中するように構成されているため、発熱素子は効率良く冷却され、充電装置1全体の温度上昇が抑制される。 For this reason, when the fans 5 and 6 are driven, as shown in FIGS. 18 to 20, the exhaust ports 22a and 22a are formed from the intake ports 24a through the air passages and openings formed around the corresponding heating elements. A cooling air passage reaching 23a is formed. The first cooling air and the second cooling air pass through the cooling air passage, and each of the diode 41, the transformer 42, and the FET 43, which are heat generating elements, is cooled. In the vicinity of each heating element, an air path is defined between the side surface of the heating element and the corresponding rib, and the cooling air flows toward the opening along the side surface of the heating element. The cooling air that has passed through the opening flows toward the exhaust ports 22a and 23a along the heat radiating plate 80 and is exhausted outside the case 2. Therefore, since the cooling air is configured to be concentrated around the heating elements by the ribs, the heating elements are efficiently cooled, and the temperature rise of the entire charging device 1 is suppressed.

次に、本発明の第2の実施の形態を図21及び図22を参照して説明する。 Next, a second embodiment of the present invention will be described with reference to FIGS.

図21を参照すると、充電装置1は、ケース102の内部に、電池パック3を充電するための充電回路部104と、充電回路部104及び電池パック3を冷却するための第1ファン105及び第2ファン106とを備える。 Referring to FIG. 21, the charging device 1 includes a charging circuit unit 104 for charging the battery pack 3, a first fan 105 for cooling the charging circuit unit 104 and the battery pack 3, 2 fans 106.

ケース102は、略直方体形状であり、上面121には前方側に電池パック3が充電のために装着される電池装着部107が設けられている。電池装着部107には、電池パック3を充電するための複数の端子170が設けられると共に、電池パック3を冷却するための風が通過する開口171が設けられている。さらに、ケース102は、上面121を囲む4つの側面122、123、124、125を有し、互いに隣接する側面122、123は角部126にて連結されている。また、側面122、124は互いに対向し、側面123、125は互いに対向する。 The case 102 has a substantially rectangular parallelepiped shape, and the upper surface 121 is provided with a battery mounting portion 107 on the front side where the battery pack 3 is mounted for charging. The battery mounting portion 107 is provided with a plurality of terminals 170 for charging the battery pack 3 and an opening 171 through which air for cooling the battery pack 3 passes. Further, the case 102 has four side surfaces 122, 123, 124, and 125 that surround the upper surface 121, and the side surfaces 122 and 123 that are adjacent to each other are connected to each other by a corner portion 126. The side surfaces 122 and 124 face each other, and the side surfaces 123 and 125 face each other.

第1ファン105は、ケース102内に、角部126と開口171とに近接するとともに側面122に対向して近接配置される。第1ファン105は、駆動されると、回転軸方向Xに第1冷却風を発生させる。第1ファン105が対向する側面122の部分には、複数の通気窓からなる第1排気口122aが形成されている。第1ファン105は、駆動されると、吸気口124aから空気を取りこんで第1排気口122aに向かう第1冷却風を発生させる。第1冷却風は、第1排気口122aを介してケース102から排気される。 The first fan 105 is disposed in the case 102 so as to be close to the corner portion 126 and the opening 171 and to face the side surface 122. When driven, the first fan 105 generates first cooling air in the rotation axis direction X. A first exhaust port 122a made up of a plurality of ventilation windows is formed in a portion of the side surface 122 where the first fan 105 faces. When driven, the first fan 105 takes in air from the intake port 124a and generates first cooling air toward the first exhaust port 122a. The first cooling air is exhausted from the case 102 through the first exhaust port 122a.

第2ファン106は、ケース102内に、角部126と開口171とに近接するとともに側面123に対向して近接配置される。第2ファン106は、駆動されると回転軸方向Yに第2冷却風を発生させる。このとき、第2ファン106は、回転軸方向Yが第1ファン105の回転軸方向Xと交差するように配置される。第2ファン106が対向する側面123の部分には、複数の通気窓からなる第2排気口123aが形成されている。第2ファン106は、駆動されると、吸気口124aから空気を取りこんで、第2排気口123aに向かう第2冷却風を発生させる。第2冷却風は、第2排気口123aを介してケース102から排気される。 The second fan 106 is disposed in the case 102 so as to be close to the corner 126 and the opening 171 and to face the side surface 123. When driven, the second fan 106 generates second cooling air in the rotation axis direction Y. At this time, the second fan 106 is disposed such that the rotation axis direction Y intersects the rotation axis direction X of the first fan 105. A second exhaust port 123a including a plurality of ventilation windows is formed in a portion of the side surface 123 that the second fan 106 faces. When driven, the second fan 106 takes in air from the intake port 124a and generates second cooling air toward the second exhaust port 123a. The second cooling air is exhausted from the case 102 through the second exhaust port 123a.

吸気口124aは、ケース102の側面124の所定範囲に亘って複数の通気窓として形成されている。従って、第1及び第2ファン105、106が駆動されると、吸気口124aを介してケース102への吸気が行われる。 The air inlet 124 a is formed as a plurality of ventilation windows over a predetermined range of the side surface 124 of the case 102. Therefore, when the first and second fans 105 and 106 are driven, air is sucked into the case 102 through the air inlet 124a.

充電回路部104は、基板140に、主に、ダイオード141と、トランス142と、FET143と、温度検出素子144と、充電制御部45とが実装され、例えば商用交流電源から供給される電力を用いて端子170を介して電池パック3を充電する。急速充電のために、単位時間あたり多量の電流を充電回路部104に流すと、ダイオード141、トランス142、FET143は、発熱する傾向があり、いわゆる発熱素子となる。これらの部品を発熱から保護して放熱させるために、例えば、ダイオード141及びFET143にはそれぞれ放熱部材146、147が取り付けられている。 In the charging circuit unit 104, a diode 141, a transformer 142, an FET 143, a temperature detection element 144, and a charging control unit 45 are mounted on a substrate 140. For example, the charging circuit unit 104 uses power supplied from a commercial AC power supply. The battery pack 3 is charged via the terminal 170. When a large amount of current per unit time is passed through the charging circuit unit 104 for rapid charging, the diode 141, the transformer 142, and the FET 143 tend to generate heat and become so-called heating elements. In order to protect these components from heat generation and dissipate heat, for example, the heat radiation members 146 and 147 are attached to the diode 141 and the FET 143, respectively.

ダイオード141、トランス142、及びFET143は、吸気口124a近傍に配置されて、吸気口124aからケース102内に導入される空気に直接晒されるようになっている。 The diode 141, the transformer 142, and the FET 143 are disposed in the vicinity of the air inlet 124a, and are directly exposed to the air introduced into the case 102 from the air inlet 124a.

ケース102は、開口171を上面121に、第1排気口122a、第2排気口123a、及び吸気口124aを側面に有する。ケース102内の空気の流れは、主に、開口171と第1排気口122a及び第2排気口123aとの間と、吸気口124aと第1排気口122a及び第2排気口123aとの間と、に形成される。放熱部材146、147は、吸気口124aと第1排気口122a及び第2排気口123aとの間に形成される風路内に、ダイオード141、トランス142及びFET143の少なくとも1つ、好ましくは全てを含むように、各々の形状と、ケース102内における位置とが設定される。また、放熱部材146、147に対して、ダイオード141及びFET143は、ケース102内でのダイオード141及びFET143の第1及び第2冷却風による冷却を可能とするように取り付けられている。なお、放熱部材146、147はそれぞれ、第2放熱部を有していない。 The case 102 has an opening 171 on the upper surface 121, and a first exhaust port 122a, a second exhaust port 123a, and an intake port 124a on the side surface. The flow of air in the case 102 is mainly between the opening 171 and the first exhaust port 122a and the second exhaust port 123a, and between the intake port 124a and the first exhaust port 122a and the second exhaust port 123a. , Formed. The heat dissipating members 146 and 147 are disposed in the air path formed between the air inlet 124a and the first air outlet 122a and the second air outlet 123a, and at least one of the diode 141, the transformer 142, and the FET 143, preferably all of them. Each shape and a position in the case 102 are set so as to include them. Further, the diode 141 and the FET 143 are attached to the heat radiating members 146 and 147 so that the diode 141 and the FET 143 in the case 102 can be cooled by the first and second cooling air. Note that each of the heat dissipation members 146 and 147 does not have the second heat dissipation portion.

温度検出素子144は、例えばサーミスタからなり、ケース102内部の温度を検出する。 The temperature detection element 144 is made of, for example, a thermistor, and detects the temperature inside the case 102.

充電制御部45は、電池パック3の温度をモニタしつつ、充電回路部104による電池パック3の充電を制御すると共に、第1及び第2ファン105、106の回転を制御する。 The charging control unit 45 controls the charging of the battery pack 3 by the charging circuit unit 104 while monitoring the temperature of the battery pack 3, and controls the rotation of the first and second fans 105 and 106.

電池パック3の充電が行われているとき、ケース102内では、2つのファン105、106が駆動しているので、吸気口124aからケース2内に取りこまれた冷却風は、ダイオード41、トランス42、FET43の傍を通過することによりこれらの発熱素子を冷却し、排気口122a、123aより排気される。従って、ダイオード41、トランス42、FET43の温度上昇を防いで、充電装置100を効率良く冷却できる。 When the battery pack 3 is being charged, since the two fans 105 and 106 are driven in the case 102, the cooling air taken into the case 2 from the intake port 124a is transmitted to the diode 41, the transformer 42, these heater elements are cooled by passing by the side of the FET 43 and exhausted from the exhaust ports 122a and 123a. Therefore, the temperature rise of the diode 41, the transformer 42, and the FET 43 can be prevented, and the charging device 100 can be efficiently cooled.

また、放熱部材146、147が、ダイオード141、トランス142、FET143を囲むように風路を画定して、第1冷却風及び第2冷却風は、主に放熱部材146、147の吸気口に近い一端部側から他端部側に向けて流れていくので、冷却が必要なダイオード141、トランス142、FET143を効率的に冷却できる。さらに、ダイオード141とFET143とは放熱部材146、147にそれぞれ取り付けられているので、ダイオード141とFET143とは、放熱部材146、147に沿って流れる冷却風に晒されて効率良く冷却される。 Further, the heat radiation members 146 and 147 define an air path so as to surround the diode 141, the transformer 142, and the FET 143, and the first cooling air and the second cooling air are mainly close to the intake ports of the heat radiation members 146 and 147. Since it flows from one end side toward the other end side, the diode 141, the transformer 142, and the FET 143 that need to be cooled can be efficiently cooled. Further, since the diode 141 and the FET 143 are respectively attached to the heat radiating members 146 and 147, the diode 141 and the FET 143 are efficiently cooled by being exposed to the cooling air flowing along the heat radiating members 146 and 147.

さらに、第1ファン105及び第2ファン106が、各々の回転軸方向が交差するように配置されると共に、ケース102の角部126に設けられているために、充電回路部104のための領域をケース102内に大きく取ることができる。また、冷却風の通過領域を広く取ることができる。 Further, since the first fan 105 and the second fan 106 are arranged so that the respective rotation axis directions intersect with each other and are provided at the corners 126 of the case 102, the area for the charging circuit unit 104 is provided. Can be made large in the case 102. Moreover, the passage area of the cooling air can be widened.

さらに、ダイオード141、トランス142、FET143は、吸気口124aの近傍に配置されているので、吸気口124aから吸い込まれた直後の温められる前の空気を冷却風として冷却されるので、効率良く冷却される。なお、冷却風の流れを逆にしてもよい。すなわち、排気口122a及び123aを吸気口として空気を吸いこみ、吸気口124aを排気口として空気を排出するように構成してもよい。 Furthermore, since the diode 141, the transformer 142, and the FET 143 are arranged in the vicinity of the air inlet 124a, the air before being heated immediately after being sucked in from the air inlet 124a is cooled as cooling air, so that it is efficiently cooled. The Note that the flow of the cooling air may be reversed. In other words, air may be sucked using the exhaust ports 122a and 123a as the intake port, and air may be discharged using the intake port 124a as the exhaust port.

次に、第2の実施の形態の変形例について図23から図28を参照して以下に説明する。 Next, a modification of the second embodiment will be described below with reference to FIGS.

図23は、第1ファン105及び第2ファン106を、直方体形状のケース102の側面123に近接して並置した充電装置100Aを示す。吸気口124aは、側面123と対向する側面125に形成される。なお、他の構成要素は、第2の実施の形態のものと同一であるため、その詳細な説明は省略する。第1ファン105及び第2ファン106が駆動されると、吸気口124aから排気口122a、123aに向けて第1冷却風及び第2冷却風が流れて、その風路中に配置されたダイオード141、トランス142、FET143を冷却する。すなわち、放熱部材146、147が吸気口124aから排気口122a、123aに向けて(図中前後方向)冷却風を案内するように延びて配置され、放熱部材146、147の間にトランス142を配置している。ケース102内に2つのファン105、106を設けることによって、風量を増やすとともに冷却風の通過領域を増やして発熱素子141、142、143、さらには充電装置100Aの冷却効果を高めることができる。 FIG. 23 shows a charging device 100 </ b> A in which the first fan 105 and the second fan 106 are juxtaposed close to the side surface 123 of the rectangular parallelepiped case 102. The air inlet 124 a is formed on the side surface 125 facing the side surface 123. The other components are the same as those in the second embodiment, and thus detailed description thereof is omitted. When the first fan 105 and the second fan 106 are driven, the first cooling air and the second cooling air flow from the intake port 124a toward the exhaust ports 122a and 123a, and the diode 141 disposed in the air path. The transformer 142 and the FET 143 are cooled. That is, the heat radiating members 146 and 147 are arranged so as to guide the cooling air from the intake port 124a toward the exhaust ports 122a and 123a (front and rear direction in the figure), and the transformer 142 is arranged between the heat radiating members 146 and 147. doing. By providing the two fans 105 and 106 in the case 102, it is possible to increase the air volume and increase the cooling air passage area, thereby enhancing the cooling effect of the heating elements 141, 142, and 143 and further the charging device 100A.

図24は、第1ファン105及び第2ファン106を、ケース102の側面122に近接して並置した充電装置100Bを示す。吸気口124aは、側面122と対向する側面124に形成される。なお、他の構成要素は、第2の実施の形態のものと同一であるため、その詳細な説明は省略する。第1ファン105及び第2ファン106が駆動されると、吸気口124aから排気口122a、123aに向けて第1冷却風及び第2冷却風が流れて、その風路中に配置されたダイオード141、トランス142、FET143を冷却する。すなわち、放熱部材146、147が吸気口124aから排気口122a、123aに向けて(図中左右方向)冷却風を案内するように延びて配置され、放熱部材146,147の間にトランス142を配置している。ケース2内に2つのファン105、106を設けることによって、風量を増やすとともに冷却風の通過領域を増やして発熱素子141、142、143、さらには充電装置100Aの冷却効果を高めることができる。なお、冷却風の流れを逆にしてもよい。すなわち、排気口122a及び123aを吸気口として空気を吸いこみ、吸気口124aを排気口として空気を排出するように構成してもよい。 FIG. 24 shows a charging device 100 </ b> B in which the first fan 105 and the second fan 106 are juxtaposed close to the side surface 122 of the case 102. The air inlet 124 a is formed on the side surface 124 that faces the side surface 122. The other components are the same as those in the second embodiment, and thus detailed description thereof is omitted. When the first fan 105 and the second fan 106 are driven, the first cooling air and the second cooling air flow from the intake port 124a toward the exhaust ports 122a and 123a, and the diode 141 disposed in the air path. The transformer 142 and the FET 143 are cooled. That is, the heat dissipating members 146 and 147 are arranged so as to guide the cooling air from the intake port 124a toward the exhaust ports 122a and 123a (left and right in the figure), and the transformer 142 is disposed between the heat dissipating members 146 and 147. doing. By providing the two fans 105 and 106 in the case 2, it is possible to increase the air volume and increase the cooling air passage area, thereby enhancing the cooling effect of the heating elements 141, 142, and 143 and the charging device 100A. Note that the flow of the cooling air may be reversed. In other words, air may be sucked using the exhaust ports 122a and 123a as the intake port, and air may be discharged using the intake port 124a as the exhaust port.

図25は、第1ファン105及び第2ファン106を、ケース102の側面125に近接して上下方向に並置した充電装置100Cを示す。ファン105、106の近傍の側面125に排気口がそれぞれ形成され、側面125に対向する側面123に吸気口が形成される。なお、他の構成要素は、第2の実施の形態のものと同一であるため、その詳細な説明は省略する。第1ファン105及び第2ファン106が駆動されると、吸気口から排気口に向けて第1冷却風及び第2冷却風が流れて、その風路中に配置されたダイオード141、トランス142、FET143を冷却する。ケース2内に2つのファン105、106を設けることによって、風量を増やして発熱素子141、142、143、さらには充電装置100Aの冷却効果を高めることができる。ここで、図25では、放熱部材146、147を吸気口124aから排気口122a、123aに向かう冷却風路を遮るように配置しているが、図23のように冷却風を案内するように放熱部材146、147を配置すれば、冷却効果を高めることができる。その際、放熱部材146、147の間で吸気口124aに近接してトランス142を配置すれば、ダイオード141、FET143に加えトランス142の冷却効果を高めることができる。また、冷却風の流れを逆にしてもよい。すなわち、排気口122a及び123aを吸気口として空気を吸いこみ、吸気口124aを排気口として空気を排出するように構成してもよい。 FIG. 25 shows a charging device 100 </ b> C in which the first fan 105 and the second fan 106 are juxtaposed in the vertical direction close to the side surface 125 of the case 102. Exhaust ports are respectively formed on the side surfaces 125 in the vicinity of the fans 105 and 106, and intake ports are formed on the side surfaces 123 facing the side surfaces 125. The other components are the same as those in the second embodiment, and thus detailed description thereof is omitted. When the first fan 105 and the second fan 106 are driven, the first cooling air and the second cooling air flow from the intake port toward the exhaust port, and the diode 141, the transformer 142, The FET 143 is cooled. By providing the two fans 105 and 106 in the case 2, it is possible to increase the air volume and enhance the cooling effect of the heating elements 141, 142, and 143, and further the charging device 100A. In FIG. 25, the heat dissipating members 146 and 147 are arranged so as to block the cooling air path from the air inlet 124a to the air outlets 122a and 123a. However, the heat radiating is performed so as to guide the cooling air as shown in FIG. If the members 146 and 147 are arranged, the cooling effect can be enhanced. At this time, if the transformer 142 is disposed between the heat radiation members 146 and 147 in the vicinity of the air inlet 124a, the cooling effect of the transformer 142 in addition to the diode 141 and the FET 143 can be enhanced. Further, the flow of the cooling air may be reversed. In other words, air may be sucked using the exhaust ports 122a and 123a as the intake port, and air may be discharged using the intake port 124a as the exhaust port.

図26は、第1ファン105及び第2ファン106を、ケース102の上面121において電池装着部107から外れた位置に近接して並置した充電装置100Dを示す。ファン105、106の近傍の上面121に吸気口がそれぞれ形成され、側面123に排気口が形成される。なお、他の構成要素は、第2の実施の形態のものと同一であるため、その詳細な説明は省略する。第1ファン105及び第2ファン106が駆動されると、吸気口から排気口に向けて第1冷却風及び第2冷却風が流れて、その風路中に配置されたダイオード141、トランス142、FET143を冷却する。ケース2内に2つのファン105、106を設けることによって、風量を増やして発熱素子141、142、143、さらには充電装置100Aの冷却効果を高めることができる。また、2つのファン105及び106を上面121に沿って配置したため、基板140の配置スペースを確保することができる。また、2つのファン105及び106を上面121且つ側面122又は124に沿って配置することもできる。なお、図25と同様、冷却風路に沿って放熱部材146、147を配置すれば一層冷却効果を高めることができる。また、冷却風の流れを逆にしてもよい。すなわち、ファン近傍の上面に排気口を形成し、側面123の排気口123aを吸気口として空気を吸いこむように構成してもよい。 FIG. 26 shows a charging device 100 </ b> D in which the first fan 105 and the second fan 106 are juxtaposed in the vicinity of the position removed from the battery mounting portion 107 on the upper surface 121 of the case 102. An intake port is formed on the upper surface 121 in the vicinity of the fans 105 and 106, and an exhaust port is formed on the side surface 123. The other components are the same as those in the second embodiment, and thus detailed description thereof is omitted. When the first fan 105 and the second fan 106 are driven, the first cooling air and the second cooling air flow from the intake port toward the exhaust port, and the diode 141, the transformer 142, The FET 143 is cooled. By providing the two fans 105 and 106 in the case 2, it is possible to increase the air volume and enhance the cooling effect of the heating elements 141, 142, and 143, and further the charging device 100A. Further, since the two fans 105 and 106 are arranged along the upper surface 121, the arrangement space of the substrate 140 can be secured. Also, the two fans 105 and 106 can be arranged along the upper surface 121 and the side surfaces 122 or 124. As in FIG. 25, the cooling effect can be further enhanced by disposing the heat dissipating members 146 and 147 along the cooling air passage. Further, the flow of the cooling air may be reversed. That is, an exhaust port may be formed on the upper surface in the vicinity of the fan, and air may be sucked by using the exhaust port 123a of the side surface 123 as the intake port.

図27は、第1ファン105を側面125近傍に、第2ファン106を側面123近傍に配置した充電装置100Eを示す。すなわち、充電回路部104を挟んで両側に互いに離して第1ファン105と第2ファン106を配置した。吸気口は、側面125に形成され、排気口は側面123に形成される。なお、他の構成要素は、第2の実施の形態のものと同一であるため、その詳細な説明は省略する。第1ファン105及び第2ファン106が駆動されると、吸気口から排気口に向けて第1冷却風及び第2冷却風が流れて、その風路中に配置されたダイオード141、トランス142、FET143を冷却する。ケース102内に2つのファン105、106を設け、一方を吸気用、他方を排気用に駆動することによって、ケース2内を流れる冷却風の風量を増やして発熱素子141、142、143、さらには充電装置100Aの冷却効果を高めることができる。 FIG. 27 shows a charging device 100E in which the first fan 105 is disposed near the side surface 125 and the second fan 106 is disposed near the side surface 123. That is, the first fan 105 and the second fan 106 are arranged on both sides of the charging circuit unit 104 so as to be separated from each other. The intake port is formed on the side surface 125, and the exhaust port is formed on the side surface 123. The other components are the same as those in the second embodiment, and thus detailed description thereof is omitted. When the first fan 105 and the second fan 106 are driven, the first cooling air and the second cooling air flow from the intake port toward the exhaust port, and the diode 141, the transformer 142, The FET 143 is cooled. By providing two fans 105 and 106 in the case 102 and driving one for intake and the other for exhaust, the amount of cooling air flowing in the case 2 is increased and the heating elements 141, 142, 143, The cooling effect of the charging device 100A can be enhanced.

図28は、第1ファン105を側面124と側面125との角部近傍に、第2ファン106を角部126近傍に配置した充電装置100Fを示す。すなわち、充電回路部104を挟んで両側に互いに離して第1ファン105と第2ファン106を配置した。吸気口は、側面125に形成され、排気口は側面123に形成される。なお、他の構成要素は、第2の実施の形態のものと同一であるため、その詳細な説明は省略する。第1ファン105及び第2ファン106が駆動されると、吸気口から排気口に向けて第1冷却風及び第2冷却風が流れて、その風路中に配置されたダイオード141、トランス142、FET143を冷却する。ケース102内に2つのファン105、106を対角方向の両端に設けて、一方を吸気用、他方を排気用に駆動することによって、ケース2内を流れる冷却風の風路の距離を長く取ることによって発熱素子141、142、143、さらには充電装置100Fの冷却効果を高めることができる。なお、冷却風路(図中の矢印)に沿って放熱部材146、147を配置すれば一層冷却効果を高めることができる。また、冷却風の流れを逆にしてもよい。すなわち、側面123側から空気を吸いこみ、側面125側から空気を排出するように構成してもよい。 FIG. 28 shows a charging device 100 </ b> F in which the first fan 105 is disposed near the corners of the side surface 124 and the side surface 125, and the second fan 106 is disposed near the corner portion 126. That is, the first fan 105 and the second fan 106 are arranged on both sides of the charging circuit unit 104 so as to be separated from each other. The intake port is formed on the side surface 125, and the exhaust port is formed on the side surface 123. The other components are the same as those in the second embodiment, and thus detailed description thereof is omitted. When the first fan 105 and the second fan 106 are driven, the first cooling air and the second cooling air flow from the intake port toward the exhaust port, and the diode 141, the transformer 142, The FET 143 is cooled. Two fans 105 and 106 are provided at opposite ends in the diagonal direction in the case 102, and one is driven for intake and the other is driven for exhaust, thereby increasing the distance of the air path of the cooling air flowing through the case 2. As a result, the cooling effect of the heating elements 141, 142, 143, and the charging device 100F can be enhanced. Note that the cooling effect can be further enhanced by disposing the heat dissipating members 146 and 147 along the cooling air passages (arrows in the figure). Further, the flow of the cooling air may be reversed. That is, air may be sucked in from the side surface 123 side and air may be discharged from the side surface 125 side.

次に、第3の実施の形態である充電装置200について図29を参照して以下に説明する。充電装置200については、第1の実施の形態と同じ部材については同一の参照符号を付し、異なる部分を中心に以下に説明する。 Next, a charging apparatus 200 according to a third embodiment will be described below with reference to FIG. Regarding the charging device 200, the same members as those in the first embodiment are denoted by the same reference numerals, and different parts will be mainly described below.

図29を参照すると、充電装置200は、ケース202の内部に、電池パック3を充電するための充電回路部204と、充電回路部204及び電池パック3を冷却するための第1ファン205及び第2ファン206とを備える。 Referring to FIG. 29, the charging device 200 includes a charging circuit unit 204 for charging the battery pack 3, a first fan 205 and a first fan 205 for cooling the charging circuit unit 204 and the battery pack 3 in the case 202. 2 fans 206.

ケース202は、略直方体形状であり、上面221には前方側に電池パック3が充電のために装着される電池装着部207が設けられている。電池装着部207には、電池パック3を充電するための複数の端子270が設けられると共に、電池パック3を冷却するための風が通過する開口271が設けられている。さらに、ケース202は、上面221を囲む4つの側面222、223、224、225を有し、互いに隣接する側面222、223は角部226にて連結されている。 The case 202 has a substantially rectangular parallelepiped shape, and a battery mounting portion 207 to which the battery pack 3 is mounted for charging is provided on the upper surface 221 on the front side. The battery mounting unit 207 is provided with a plurality of terminals 270 for charging the battery pack 3 and an opening 271 through which air for cooling the battery pack 3 passes. Further, the case 202 has four side surfaces 222, 223, 224, and 225 that surround the upper surface 221, and the side surfaces 222 and 223 that are adjacent to each other are connected by a corner portion 226.

第1ファン205は、ケース202内に、角部226と開口271とに近接するとともに側面222に対向して配置される。第1ファン205が対向する側面222の部分には、複数の通気窓からなる第1通気口222aが形成されている。第1ファン205は、駆動されると、第1通気口222aから空気を吸い込み、回転軸方向Xを送風方向とする第1冷却風を発生させる。 The first fan 205 is disposed in the case 202 so as to be close to the corner portion 226 and the opening 271 and to face the side surface 222. A first ventilation hole 222a formed of a plurality of ventilation windows is formed in a portion of the side surface 222 facing the first fan 205. When driven, the first fan 205 sucks air from the first vent hole 222a and generates first cooling air with the rotation axis direction X as the blowing direction.

第2ファン206は、ケース202内に、角部226と開口271とに近接するとともに側面223に対向して配置される。第2ファン206が対向する側面223の部分には、複数の通気窓からなる第2通気口223aが形成されている。第2ファン206は、駆動されると、第2通気口223aから空気を吸い込み、回転軸方向Yを送風方向として第2冷却風を発生させる。また、第2ファン106は、回転軸方向Yが第1ファン5の回転軸方向Xと交差するように配置される。 The second fan 206 is disposed in the case 202 so as to be close to the corner portion 226 and the opening 271 and to face the side surface 223. A second ventilation port 223a formed of a plurality of ventilation windows is formed in a portion of the side surface 223 facing the second fan 206. When driven, the second fan 206 sucks air from the second vent 223a and generates second cooling air with the rotation axis direction Y as the blowing direction. The second fan 106 is arranged such that the rotation axis direction Y intersects the rotation axis direction X of the first fan 5.

第1通気口222a及び第2通気口223aは、電池パック3の充電中は、ケース202の内部に空気を取りこむ吸気口として機能する。 The first vent 222a and the second vent 223a function as an inlet for taking air into the case 202 while the battery pack 3 is being charged.

さらに、ケース202の側面224には、所定範囲に亘って複数の排気窓が排気口224aとして形成され、第1及び第2ファン205、206の駆動により、排気口224aを介して第1及び第2冷却風のケース202への排気が行われる。 Further, a plurality of exhaust windows are formed as exhaust ports 224a over a predetermined range on the side surface 224 of the case 202, and the first and second fans 224a are driven by the first and second fans 205 and 206 through the exhaust ports 224a. 2 Exhaust of cooling air to the case 202 is performed.

充電回路部204は、基板240に、主に、ダイオード241と、トランス242と、FET243と、温度検出素子244と、充電制御部45とが実装され、例えば商用交流電源から供給される電力を用いて端子270を介して電池パック3を充電する。急速充電のために、単位時間あたり多量の電流を充電回路部204に流すと、ダイオード241、トランス242、FET243は、発熱する傾向があり、いわゆる発熱素子となる。これらの部品を発熱から保護して放熱させるために、例えば、ダイオード241及びFET243にはそれぞれ放熱部材246、247が取り付けられている。 The charging circuit unit 204 is mainly mounted with a diode 241, a transformer 242, an FET 243, a temperature detection element 244, and a charging control unit 45 on a substrate 240, and uses, for example, power supplied from a commercial AC power supply. The battery pack 3 is charged via the terminal 270. When a large amount of current per unit time is passed through the charging circuit unit 204 for rapid charging, the diode 241, the transformer 242, and the FET 243 tend to generate heat, and become so-called heating elements. In order to protect these components from heat generation and dissipate heat, for example, heat dissipating members 246 and 247 are attached to the diode 241 and the FET 243, respectively.

ダイオード241、トランス242、及びFET243は、排気口224a近傍に配置されて、排気口224aからケース202外に排気される第1及び第2冷却風に直接晒されるようになっている。 The diode 241, the transformer 242, and the FET 243 are disposed in the vicinity of the exhaust port 224a and are directly exposed to the first and second cooling air exhausted from the exhaust port 224a to the outside of the case 202.

ケース202は、開口271を上面221に、第1通気口222a、第2通気口223a、及び排気口224aを側面に有する。ケース202内の空気の流れは、主に、第1及び第2ファン205、206と開口271との間と、第1通気口222a及び第2通気口223aと排気口224aとの間と、に形成される。放熱部材246、247は、特に、第1通気口222a及び第2通気口223aと排気口224aとの間に風路を形成する。そして、その風路内に、ダイオード241、トランス242及びFET243の少なくとも1つ、好ましくは全てを含むように、各々の形状と、ケース202内における位置とが設定される。また、放熱部材246、247に対して、ダイオード241及びFET243は、ケース202内でのダイオード241及びFET243の第1及び第2冷却風による冷却を可能とするように取り付けられている。 The case 202 has an opening 271 on the upper surface 221 and a first ventilation port 222a, a second ventilation port 223a, and an exhaust port 224a on the side surface. The air flow in the case 202 is mainly between the first and second fans 205 and 206 and the opening 271 and between the first and second vent holes 222a and 223a and the exhaust port 224a. It is formed. In particular, the heat radiating members 246 and 247 form an air path between the first vent 222a and the second vent 223a and the exhaust port 224a. Each shape and a position in the case 202 are set so that at least one, preferably all, of the diode 241, the transformer 242, and the FET 243 are included in the air path. Further, the diode 241 and the FET 243 are attached to the heat dissipating members 246 and 247 so that the diode 241 and the FET 243 in the case 202 can be cooled by the first and second cooling air.

温度検出素子244は、例えばサーミスタからなり、ケース202内部の温度を検出する。 The temperature detection element 244 is made of, for example, a thermistor, and detects the temperature inside the case 202.

充電制御部45は、電池パック3の温度をモニタしつつ、充電回路部204による電池パック3の充電を制御すると共に、第1及び第2ファン205、206の回転を制御する。 The charging control unit 45 controls the charging of the battery pack 3 by the charging circuit unit 204 while monitoring the temperature of the battery pack 3, and controls the rotation of the first and second fans 205 and 206.

次に、充電装置200の第1の動作について図30を参照しながら説明する。 Next, a first operation of the charging apparatus 200 will be described with reference to FIG.

充電装置200が例えば商用電源に接続されると、充電制御部45は、S111にて、電池装着部207に電池パック3が装着されているか否かを判断する。電池パック3が装着されている場合(S111:Yes)、S112にて、5秒間、第1ファン205をオンにして駆動し、且つ第2ファン206のオフ状態を維持する。このとき、図31に示すように、第1ファン205の駆動及び第2ファン206のオフにより、第1通気口222aから吸い込まれた空気は、第1ファン205から、第1冷却風として第2通気口223aと排気口224aとに向けて送風される。第2通気口223aに向かう第1冷却風は、第2通気口223aよりケース202外部に排気され、第2通気口223aに付着した埃などをケース202外部に吹き飛ばす。 When the charging device 200 is connected to, for example, a commercial power source, the charging control unit 45 determines whether or not the battery pack 3 is mounted on the battery mounting unit 207 in S111. If the battery pack 3 is mounted (S111: Yes), the first fan 205 is turned on for 5 seconds and the second fan 206 is kept off in S112. At this time, as shown in FIG. 31, the air sucked from the first vent 222 a by the driving of the first fan 205 and the turning off of the second fan 206 becomes the second cooling air from the first fan 205 as the first cooling air. The air is blown toward the vent 223a and the exhaust port 224a. The first cooling air directed toward the second vent 223a is exhausted from the second vent 223a to the outside of the case 202, and dust and the like attached to the second vent 223a is blown out of the case 202.

次に、S113に進み、5秒間、第1ファン205をオフにして停止させ、且つ第2ファン206をオンにして駆動させる。このとき、図32に示すように、第1ファン205のオフ及び第2ファン206の駆動により、第2通気口223aから吸い込まれた空気は、第2ファン206から、第2冷却風として第1通気口222aと排気口224aとに向けて送風される。第1通気口222aに向かう第2冷却風は、第1通気口222aよりケース202外部に排気され、第1通気口222aに付着した埃などをケース202外部に吹き飛ばす。 In step S113, the first fan 205 is turned off and stopped for 5 seconds, and the second fan 206 is turned on and driven. At this time, as shown in FIG. 32, the air sucked from the second vent 223a by the first fan 205 being turned off and the second fan 206 being driven becomes the first cooling air from the second fan 206 as the first cooling air. The air is blown toward the vent 222a and the exhaust 224a. The second cooling air directed toward the first vent 222a is exhausted from the first vent 222a to the outside of the case 202, and dust and the like attached to the first vent 222a are blown out of the case 202.

なお、S112、S113における時間は、本実施の形態ではそれぞれ5秒間としたが、この時間に限定されること無く、適宜の長さの時間とすることができる。 Although the time in S112 and S113 is 5 seconds in this embodiment, the time is not limited to this time, and may be an appropriate length of time.

次に、S114に進み、電池パック3の充電を開始すると共に、S115にて第1及び第2ファン205、206を共にオンにする。第1及び第2ファン205、206は、図33に示すように、第1及び第2冷却風を発生させるので、空気が第1通気口222a、223aを介してケース202内に取りこまれて排気口224aに向かう風路が形成される。また、第1通気口222a、223aから開口271に向かう風路も形成される。 In step S114, charging of the battery pack 3 is started, and in step S115, both the first and second fans 205 and 206 are turned on. As shown in FIG. 33, the first and second fans 205 and 206 generate the first and second cooling air, so that the air is taken into the case 202 through the first vent holes 222a and 223a. An air path toward the exhaust port 224a is formed. In addition, an air path from the first ventilation holes 222a and 223a toward the opening 271 is also formed.

S116にて、電池パック3の充電が完了すると、充電制御部45は、S117にて電池パック3の温度が40度以上であるか否かを確認する。電池パック3の温度が40度以上であれば(S117:Yes)、第1及び第2ファン205、206の駆動を継続して(S118)電池パック3の冷却を継続する。 When charging of the battery pack 3 is completed in S116, the charging control unit 45 confirms whether or not the temperature of the battery pack 3 is 40 degrees or higher in S117. If the temperature of the battery pack 3 is 40 ° C. or higher (S117: Yes), the first and second fans 205 and 206 are continuously driven (S118), and the cooling of the battery pack 3 is continued.

電池パック3の温度が40度未満であれば(S117:No)、充電回路部204の温度が40度以上であるか否かを確認する(S119)。充電回路部204の温度が40度以上であれば(S119:Yes)、第1及び第2ファン205、206の駆動を継続して(S120)充電回路部204の冷却を継続する。充電回路部204の温度が40度未満であれば(S119:No)、第1及び第2ファン205、206の駆動を停止する(S121)。 If the temperature of the battery pack 3 is less than 40 degrees (S117: No), it is confirmed whether the temperature of the charging circuit unit 204 is 40 degrees or more (S119). If the temperature of the charging circuit unit 204 is 40 ° C. or more (S119: Yes), the first and second fans 205 and 206 are continuously driven (S120), and the charging circuit unit 204 is continuously cooled. If the temperature of the charging circuit unit 204 is less than 40 degrees (S119: No), the driving of the first and second fans 205 and 206 is stopped (S121).

一方、S111にて、電池パック3が装着されていない場合(S111:No)、S122にて、5秒間、第1ファン205をオンにして駆動し、且つ第2ファン206のオフ状態を維持する。このとき、図31に示すように、第1ファン205の駆動及び第2ファン206のオフにより、第1通気口222aから吸い込まれた空気は、第1冷却風として第1ファン205から、第2通気口223aと排気口224aとに向けて送風される。第2通気口223aに向かう第1冷却風は、第2通気口223aよりケース202外部に排気され、第2通気口223aに付着した埃などをケース202外部に吹き飛ばす。 On the other hand, when the battery pack 3 is not attached in S111 (S111: No), in S122, the first fan 205 is turned on for 5 seconds, and the second fan 206 is maintained in the off state. . At this time, as shown in FIG. 31, when the first fan 205 is driven and the second fan 206 is turned off, the air sucked from the first vent 222a is supplied as the first cooling air from the first fan 205 to the second air. The air is blown toward the vent 223a and the exhaust port 224a. The first cooling air directed toward the second vent 223a is exhausted from the second vent 223a to the outside of the case 202, and dust and the like attached to the second vent 223a is blown out of the case 202.

次に、S123に進み、5秒間、第1ファン205をオフにして停止させ、且つ第2ファン206をオンにして駆動させる。このとき、図32に示すように、第1ファン205のオフ及び第2ファン206の駆動により、第2通気口223aから吸い込まれた空気は、第2冷却風として第2ファン206から、第1通気口222aと排気口224aとに向けて送風される。第1通気口222aに向かう第2冷却風は、第1通気口222aよりケース202外部に排気され、第1通気口222aに付着した埃などをケース202外部に吹き飛ばす。 Next, in S123, the first fan 205 is turned off and stopped for 5 seconds, and the second fan 206 is turned on and driven. At this time, as shown in FIG. 32, the air sucked from the second vent 223a by the first fan 205 being turned off and the second fan 206 being driven is supplied from the second fan 206 as the second cooling air. The air is blown toward the vent 222a and the exhaust 224a. The second cooling air directed toward the first vent 222a is exhausted from the first vent 222a to the outside of the case 202, and dust and the like attached to the first vent 222a are blown out of the case 202.

なお、S122、S123における時間は、本実施の形態ではそれぞれ5秒間としたが、この時間に限定されること無く、適宜の長さの時間とすることができる。 Note that the time in S122 and S123 is 5 seconds in this embodiment, but the time is not limited to this time, and may be an appropriate length of time.

次に、S124に進み、第1ファン205、206の各々を停止させる。次に、S125に進み、充電装置200は、電池パック3が装着されるまでS125で待機する。 Next, it progresses to S124 and each of the 1st fans 205 and 206 is stopped. Next, it progresses to S125 and the charging device 200 waits in S125 until the battery pack 3 is mounted | worn.

第2の実施の形態に係る充電装置200では、電池パック3の充電中は吸気口として使用されるケース202の第1通気口222a及び第2通気口223aが、S113、112では、ケース202の外部に空気を排気する排気口として機能するため、排気により、第1通気口222a及び第2通気口223aに付着した埃などを第1通気口222a及び第2通気口223aから除去することが可能となる。 In the charging device 200 according to the second embodiment, the first vent 222a and the second vent 223a of the case 202 that are used as the inlet during charging of the battery pack 3 are the same as those of the case 202 in S113 and 112, respectively. Since it functions as an exhaust port for exhausting air to the outside, it is possible to remove dust and the like adhering to the first vent 222a and the second vent 223a from the first vent 222a and the second vent 223a by exhaust. It becomes.

また、発熱素子となるダイオード241、トランス242、FET243は、排気口224aの近傍に設けられている。第1及び第2冷却風は、ケース外への排気のため排気口224aに集束されるので、比較的高い風量によってダイオード241、トランス242、FET243が冷却されるため、効率良くダイオード241、トランス242、FET243を冷却できる。 Further, the diode 241, the transformer 242, and the FET 243 serving as heating elements are provided in the vicinity of the exhaust port 224a. Since the first and second cooling airs are focused on the exhaust port 224a for exhausting out of the case, the diode 241, the transformer 242, and the FET 243 are cooled by a relatively high air volume, so that the diodes 241, 242 are efficiently used. FET 243 can be cooled.

また、第1ファン205と第2ファン206とは、各々の送風方向が交差するようにケース202内に配置されるため、第1及び第2冷却風によるケース202内の冷却領域を広くすることができる。従って、充電中の電池パック3のみならず、ダイオード241、トランス242、FET243などの、ケース202内の発熱素子を中心とする各種電子部品を適宜冷却して発熱より保護することができる。 Moreover, since the 1st fan 205 and the 2nd fan 206 are arrange | positioned in the case 202 so that each ventilation direction may cross | intersect, it enlarges the cooling area | region in the case 202 by the 1st and 2nd cooling air. Can do. Therefore, not only the battery pack 3 being charged, but also various electronic components such as the diode 241, the transformer 242, and the FET 243 centering on the heat generating elements in the case 202 can be appropriately cooled to be protected from heat generation.

次に、充電装置200の第2の動作について図34を参照しながら説明する。 Next, the second operation of the charging apparatus 200 will be described with reference to FIG.

充電装置200が例えば商用電源に接続されると、S31にて、電池装着部7に電池パック3が装着されているか否かを判断する。電池パック3が装着されている場合(S31:Yes)、充電制御部45は、S32に進み、電池パック3の充電を開始する。同時に、S33にて、第1ファン205をオンにして電池パック3の充電中と同じ100%の回転数での駆動を開始する。このとき、第2ファン206もオンにして駆動させるが、電池パック3の充電中を100%とするとその20%の回転数で5秒間駆動させる。このとき、図35に示すように、第2ファン206の駆動により第2通気口223aから空気は吸い込まれるが、第1ファン205の回転数が第2ファン206の回転数よりも高いために、第1ファン205によって生じた第1冷却風の一部が、第2通気口223aを介してケース202外に排気される。このため、第1冷却風の一部により、第2通気口223aに付着した埃などがケース202外部に吹き飛ばされる。 When the charging device 200 is connected to, for example, a commercial power source, in S31, it is determined whether or not the battery pack 3 is attached to the battery attachment portion 7. When the battery pack 3 is attached (S31: Yes), the charging control unit 45 proceeds to S32 and starts charging the battery pack 3. At the same time, in S33, the first fan 205 is turned on to start driving at the same 100% rotational speed as during charging of the battery pack 3. At this time, the second fan 206 is also turned on and driven. If the charging of the battery pack 3 is 100%, the second fan 206 is driven at a rotation speed of 20% for 5 seconds. At this time, as shown in FIG. 35, the air is sucked from the second vent 223a by the driving of the second fan 206, but the rotational speed of the first fan 205 is higher than the rotational speed of the second fan 206. A portion of the first cooling air generated by the first fan 205 is exhausted out of the case 202 through the second vent 223a. For this reason, dust or the like adhering to the second vent 223a is blown out of the case 202 by a part of the first cooling air.

次に、S34に進み、第2ファン206を電池パック3の充電中と同じ100%の回転数での駆動を開始する。このとき、第1ファン205は、電池パック3の充電中を100%とするとその20%の回転数で5秒間駆動させる。このとき、図36に示すように、第1ファン205の駆動により第1通気口222aから空気は吸い込まれるが、第2ファン206の回転数が第1ファン205の回転数よりも高いために、第2ファン206によって生じた第2冷却風の一部が、第1通気口222aを介してケース202外に排気される。このため、第2冷却風の一部により、第1通気口222aに付着した埃などがケース202外部に吹き飛ばされる。 Next, in S34, the second fan 206 is started to be driven at the same 100% rotational speed as during charging of the battery pack 3. At this time, the first fan 205 is driven for 5 seconds at a rotation speed of 20% assuming that charging of the battery pack 3 is 100%. At this time, as shown in FIG. 36, the air is sucked from the first vent 222a by driving the first fan 205, but the rotational speed of the second fan 206 is higher than the rotational speed of the first fan 205. A part of the second cooling air generated by the second fan 206 is exhausted out of the case 202 through the first vent 222a. For this reason, dust or the like attached to the first vent 222a is blown out of the case 202 by a part of the second cooling air.

なお、S33、S34における時間は、本実施の形態ではそれぞれ5秒間としたが、この時間に限定されること無く、適宜の長さの時間とすることができる。また、S33、S34における第2ファン206、第1ファン205の回転数を20%としたが、これに限定されず、第2通気口223a又は第1通気口222aから冷却風の排気を可能とする適宜の割合が選択される。 Although the time in S33 and S34 is 5 seconds in this embodiment, the time is not limited to this time, and can be an appropriate length of time. In addition, although the rotation speed of the second fan 206 and the first fan 205 in S33 and S34 is 20%, the present invention is not limited to this, and cooling air can be exhausted from the second vent 223a or the first vent 222a. An appropriate ratio is selected.

次に、S35に進み、第1及び第2ファン205、206を共に100%の駆動状態にして、第1及び第2冷却風を発生させる。第1及び第2冷却風によって、充電中の電池パック3を冷却すると共に、ケース内のダイオード241と、トランス242と、FET243などの発熱素子を冷却して、これらの発熱素子を熱から保護する。 Next, in S35, the first and second fans 205 and 206 are both driven to 100% to generate the first and second cooling air. The battery pack 3 being charged is cooled by the first and second cooling airs, and the heating elements such as the diode 241, the transformer 242, and the FET 243 in the case are cooled to protect these heating elements from heat. .

S36にて、電池パック3の充電が完了すると、充電制御部45は、S37にて電池パック3の温度が40度以上であるか否かを確認する。電池パック3の温度が40度以上であれば(S37:Yes)、第1及び第2ファン205、206の駆動を継続して(S38)電池パック3の冷却を継続する。 When the charging of the battery pack 3 is completed in S36, the charging control unit 45 confirms whether or not the temperature of the battery pack 3 is 40 degrees or higher in S37. If the temperature of the battery pack 3 is 40 degrees or more (S37: Yes), the first and second fans 205 and 206 are continuously driven (S38), and the cooling of the battery pack 3 is continued.

電池パック3の温度が40度未満であれば(S37:No)、充電回路部204の温度が40度以上であるか否かを確認する(S39)。充電回路部204の温度が40度以上であれば(S39:Yes)、第1及び第2ファン205、206の駆動を継続して(S40)充電回路部204の冷却を継続する。充電回路部204の温度が40度未満であれば(S39:No)、第1及び第2ファン205、206の駆動を停止する(S41)。 If the temperature of the battery pack 3 is less than 40 degrees (S37: No), it is confirmed whether or not the temperature of the charging circuit unit 204 is 40 degrees or more (S39). If the temperature of the charging circuit unit 204 is 40 ° C. or higher (S39: Yes), the driving of the first and second fans 205 and 206 is continued (S40), and the cooling of the charging circuit unit 204 is continued. If the temperature of the charging circuit unit 204 is less than 40 degrees (S39: No), the driving of the first and second fans 205 and 206 is stopped (S41).

一方、S31にて、電池パック3が装着されていない場合(S31:No)、S42にて、5秒間、第1ファン205をオンにして駆動し、且つ第2ファン206のオフ状態を維持する。このとき、第1ファン205の駆動及び第2ファン206のオフにより、第1通気口222aから吸い込まれた空気は、第1冷却風として第1ファン205から、第2通気口223aと排気口224aとに向けて送風される。第2通気口223aに向かう第1冷却風は、第2通気口223aよりケース202外部に排気され、第2通気口223aに付着した埃などをケース202外部に吹き飛ばす。 On the other hand, if the battery pack 3 is not attached at S31 (S31: No), the first fan 205 is turned on for 5 seconds and the second fan 206 is kept off at S42. . At this time, when the first fan 205 is driven and the second fan 206 is turned off, the air sucked from the first vent 222a becomes the first cooling air from the first fan 205 to the second vent 223a and the exhaust port 224a. It is blown toward and. The first cooling air directed toward the second vent 223a is exhausted from the second vent 223a to the outside of the case 202, and dust and the like attached to the second vent 223a is blown out of the case 202.

次に、S43に進み、5秒間、第1ファン205をオフにして停止させ、且つ第2ファン206をオンにして駆動させる。このとき、第1ファン205のオフ及び第2ファン206の駆動により、第2通気口223aから吸い込まれた空気は、第2冷却風として第2ファン206から、第1通気口222aと排気口224aとに向けて送風される。第1通気口222aに向かう第2冷却風は、第1通気口222aよりケース202外部に排気され、第1通気口222aに付着した埃などをケース202外部に吹き飛ばす。 Next, in S43, the first fan 205 is turned off and stopped for 5 seconds, and the second fan 206 is turned on and driven. At this time, when the first fan 205 is turned off and the second fan 206 is driven, the air sucked from the second vent 223a becomes the second cooling air from the second fan 206 to the first vent 222a and the exhaust vent 224a. It is blown toward and. The second cooling air directed toward the first vent 222a is exhausted from the first vent 222a to the outside of the case 202, and dust and the like attached to the first vent 222a are blown out of the case 202.

次に、S44に進み、第1ファン205、206の各々を停止させる。次に、S45に進み、充電装置200は、電池パック3が装着されるまでS45で待機する。S45で電池パック3の装着が検出されたときはS31に戻る。 Next, it progresses to S44 and each of the 1st fans 205 and 206 is stopped. Next, it progresses to S45 and the charging device 200 waits in S45 until the battery pack 3 is mounted | worn. When the attachment of the battery pack 3 is detected in S45, the process returns to S31.

第2の実施の形態に係る充電装置200の第2の動作では、電池パック3の充電開始と同時に、第1及び第2ファン205、206のうち、一方のファンの回転数を他方のファンの回転数よりも大きくすることによって、回転数の小さいファンに対応する通気口から回転数の高いファンによって発生された冷却風を排気させることによって、回転数の小さいファンに対応する通気口に付着した埃などをケース202外部に吹き飛ばしている。次に、ファンの回転数を第1ファン205と第2ファン206とで逆にすることによって、もう一方の通気口に付着した埃などをケース202外部に吹き飛ばしている。従って、電池パック3の充電中に生じる第1及び第2通気口の目詰まりを解消することができる。 In the second operation of the charging device 200 according to the second embodiment, at the same time as the charging of the battery pack 3 is started, the rotational speed of one of the first and second fans 205 and 206 is set to the value of the other fan. By making it larger than the number of revolutions, the cooling air generated by the fan with the high number of revolutions is exhausted from the vents corresponding to the fans with the small number of revolutions, and thereby the air attached to the vents corresponding to the fan with the small number of revolutions. Dust and the like are blown out of the case 202. Next, the first fan 205 and the second fan 206 are rotated at opposite speeds, so that dust or the like adhering to the other vent is blown out of the case 202. Therefore, clogging of the first and second vents that occur during charging of the battery pack 3 can be eliminated.

また、発熱素子となるダイオード241、トランス242、FET243は、排気口224aの近傍に設けられている。第1及び第2冷却風は、ケース外への排気のため排気口224aに集束されるので、比較的高い風量によってダイオード241、トランス242、FET243が冷却されるため、効率良くダイオード241、トランス242、FET243を冷却できる。 Further, the diode 241, the transformer 242, and the FET 243 serving as heating elements are provided in the vicinity of the exhaust port 224a. Since the first and second cooling airs are focused on the exhaust port 224a for exhausting out of the case, the diode 241, the transformer 242, and the FET 243 are cooled by a relatively high air volume, so that the diodes 241, 242 are efficiently used. FET 243 can be cooled.

さらに、第1ファン205と第2ファン206とは、各々の送風方向が交差するようにケース202内に配置されるため、2つのファンの送風方向を互いに平行となるように配置するよりも、第1及び第2冷却風によるケース202内の冷却領域を広くすることができる。従って、充電中の電池パック3のみならず、ダイオード241、トランス242、FET243などの、ケース202内の発熱素子を中心とする各種電子部品を適宜冷却して発熱より保護することができる。 Furthermore, since the 1st fan 205 and the 2nd fan 206 are arrange | positioned in the case 202 so that each ventilation direction may cross | intersect, rather than arrange | positioning so that the ventilation direction of two fans may become mutually parallel. The cooling area in the case 202 by the first and second cooling air can be widened. Therefore, not only the battery pack 3 being charged, but also various electronic components such as the diode 241, the transformer 242, and the FET 243 centering on the heat generating elements in the case 202 can be appropriately cooled to be protected from heat generation.

なお、上記実施の形態では、第1通気口222aと第2通気口223aとは、角部226によって分離される構成をとっている。しかしながら、他の実施の形態では、側面222、223に亘り連続して第1通気口222aと第2通気口223aとが形成されていても良い。同様に、第1通気口222aと第2通気口223aとは、角部226によって分離される構成をとっている。しかしながら、他の実施の形態では、側面222、223に亘り連続して第1通気口222aと第2通気口223aとが形成されていても良い。 In the above embodiment, the first vent 222a and the second vent 223a are separated by the corner 226. However, in other embodiments, the first vent 222a and the second vent 223a may be formed continuously over the side surfaces 222, 223. Similarly, the first vent 222a and the second vent 223a are separated by a corner 226. However, in other embodiments, the first vent 222a and the second vent 223a may be formed continuously over the side surfaces 222, 223.

本発明による充電装置は、上述した実施の形態に限定されず、特許請求の範囲に記載された発明の要旨の範囲内で種々の変更が可能である。 The charging device according to the present invention is not limited to the above-described embodiments, and various modifications are possible within the scope of the gist of the invention described in the claims.

例えば、冷却風の風路を図37及び図38に示すように構成してもよい。第4の実施の形態の充電装置1においては、冷却風の風路を第1の実施の形態の放熱プレート80に代わり、放熱部材46、47と共にケース2と一体的に形成されたプレート300を使用する。なお、他の構成は第1の実施の形態と同じであるため、その説明は省略する。 For example, the air path of the cooling air may be configured as shown in FIGS. In the charging apparatus 1 of the fourth embodiment, the plate 300 formed integrally with the case 2 together with the heat radiating members 46 and 47 is used instead of the heat radiating plate 80 of the first embodiment instead of the cooling air flow path. use. Since other configurations are the same as those of the first embodiment, description thereof is omitted.

プレート300は、放熱部材46及び47と共に、吸気口24aから取りこまれた空気の冷却風としての風路を画成し、排気口22a、23aへと向けて導くものである。 The plate 300, together with the heat radiating members 46 and 47, defines an air path as cooling air for the air taken in from the intake port 24a and guides it toward the exhaust ports 22a and 23a.

プレート300は、図37に示すように、充電装置1のケース2内において、ケース上面側の内周面にケース2と一体又は別体で設けられている。ケース2と別体とした場合には、図示しないねじ等によりケース2の内周面に固定されている。充電装置1を組み立てた状態において、プレート300は、ダイオード41、トランス42、FET43などの発熱素子を覆うように、すなわち放熱部材46及び47で形成された風路を覆うように、それら発熱素子の上方に位置し、放熱部材46及び47の長手方向に沿った大きさ及び形状を有する。プレート300はケース2の上面21と、ダイオード41、トランス42及びFET43との間に配置される。 As shown in FIG. 37, the plate 300 is provided integrally or separately with the case 2 on the inner peripheral surface on the case upper surface side in the case 2 of the charging device 1. When separate from the case 2, it is fixed to the inner peripheral surface of the case 2 with screws (not shown) or the like. In the assembled state of the charging device 1, the plate 300 covers the heat generating elements such as the diode 41, the transformer 42, and the FET 43, that is, covers the air path formed by the heat radiating members 46 and 47. It is located above and has a size and shape along the longitudinal direction of the heat dissipating members 46 and 47. The plate 300 is disposed between the upper surface 21 of the case 2 and the diode 41, the transformer 42, and the FET 43.

第1の実施の形態ではトランス42の上方は開口していたが、本実施の形態ではプレート300によってトランス42を覆っている。そのため、トランス42の冷却効率を高めることができる。 In the first embodiment, the upper portion of the transformer 42 is open, but in this embodiment, the plate 42 covers the transformer 42. Therefore, the cooling efficiency of the transformer 42 can be increased.

従って、ファン5、6が駆動されると、図38に示すように、吸気口24aから、放熱部材46、47及びプレート300によって形成された風路を介して、排気口22a及び23aに至る冷却風路が形成される。この冷却風路の中を第1冷却風及び第2冷却風が通過して、発熱素子であるダイオード41、トランス42、FET43の各々を冷却する。各発熱素子の上方は、プレート300によって発熱素子が覆われているため、冷却風は確実に発熱素子の周囲を通り、発熱素子は効率良く冷却され、充電装置1全体の温度上昇が抑制される。 Therefore, when the fans 5 and 6 are driven, as shown in FIG. 38, the cooling from the intake port 24a to the exhaust ports 22a and 23a through the air passage formed by the heat radiating members 46 and 47 and the plate 300 is performed. An air path is formed. The first cooling air and the second cooling air pass through the cooling air passage, and each of the diode 41, the transformer 42, and the FET 43, which are heat generating elements, is cooled. Since the heating element is covered with the plate 300 above each heating element, the cooling air surely passes around the heating element, the heating element is efficiently cooled, and the temperature rise of the entire charging device 1 is suppressed. .

また、上述した実施の形態ではファンを複数(2つ)設けることで電池パックや発熱素子を冷却する構成とした。しかしながら、公称容量5Ah以上の電池パックを2C以上又は10A以上の充電電流で充電した際に、電池パックや発熱素子を冷却するために十分な風量であれば、ファンは複数でもよいし1つだけでもよい。 In the above-described embodiment, the battery pack and the heating element are cooled by providing a plurality (two) of fans. However, when a battery pack having a nominal capacity of 5 Ah or more is charged with a charging current of 2 C or more or 10 A or more, a plurality of fans or only one fan may be used as long as the air volume is sufficient to cool the battery pack and the heating element. But you can.

第5の本実施の形態では、図39に示すように、単一のファン6を用いた構成とした。なお、ファンの配置場所は、図4のファン5の位置、図27、28のファン105、106の位置等、どの位置でもよい。 In the fifth embodiment, as shown in FIG. 39, a single fan 6 is used. The fan may be arranged at any position such as the position of the fan 5 in FIG. 4 or the positions of the fans 105 and 106 in FIGS.

電池パックを10A以上の充電電流で充電する場合、単一のファン6によるケース2内の風量を13.0m^3/hr(一時間当たり13立方メートル)以上、好ましくは13.5m^3/hr以上とすることで発熱素子の発熱を抑えながら充電することが可能である。その際、風圧は0.0015Pa以上が好ましい。また、図4等のように複数のファンによってケース2内の発生する風量を13.0m^3/hr以上としてもよい。 従って、電池パックを10A以上の充電電流で充電する場合、ケース2内の風量を13m^3/hr以上とすることができれば、単一のファンでもよい。 When charging the battery pack with a charging current of 10 A or more, the air flow in the case 2 by the single fan 6 is 13.0 m ^ 3 / hr (13 cubic meters per hour) or more, preferably 13.5 m ^ 3 / hr With the above configuration, charging can be performed while suppressing heat generation of the heat generating element. At that time, the wind pressure is preferably 0.0015 Pa or more. Further, as shown in FIG. 4 and the like, the air volume generated in the case 2 by a plurality of fans may be 13.0 m ^ 3 / hr or more. Therefore, when the battery pack is charged with a charging current of 10 A or more, a single fan may be used as long as the air volume in the case 2 can be 13 m ^ 3 / hr or more.

1,100,200…充電装置、2,102,202…ケース、3,33…電池パック、3a…電池セル、3F…第1遮断素子、4,104,204…充電回路部、5,105,205…第1ファン、6,106,206…第2ファン、7…電池装着部、22a,122a…第1排気口、23a,123a…第2排気口、222a…第1通気口、223a…第2通気口、33F…第2遮断素子、41,141,241…ダイオード、42,142,242…トランス、43,143,243…FET、45…充電制御部、46,47…放熱部材、46A,47A…第1放熱部、46B,47B…第2放熱部、56…電流設定回路、57…電流制御回路、70…端子 DESCRIPTION OF SYMBOLS 1,100,200 ... Charging device, 2,102,202 ... Case, 3,33 ... Battery pack, 3a ... Battery cell, 3F ... First interruption | blocking element, 4,104,204 ... Charging circuit part, 5,105, 205 ... 1st fan, 6, 106, 206 ... 2nd fan, 7 ... Battery mounting part, 22a, 122a ... 1st exhaust port, 23a, 123a ... 2nd exhaust port, 222a ... 1st ventilation port, 223a ... 1st 2 vents, 33F ... second blocking element, 41,141,241 ... diode, 42,142,242 ... transformer, 43,143,243 ... FET, 45 ... charge control unit, 46,47 ... radiating member, 46A, 47A ... 1st heat radiation part, 46B, 47B ... 2nd heat radiation part, 56 ... Current setting circuit, 57 ... Current control circuit, 70 ... Terminal

本発明は、ニッケル・カドミウム電池やニッケル・水素電池、リチウムイオン電池などの二次電池からなる電動工具用の電池パックを充電する電動工具用電池パックの充電装置に関する。 The present invention relates to a battery pack charging device for a power tool that charges a battery pack for a power tool composed of a secondary battery such as a nickel / cadmium battery, a nickel / hydrogen battery, or a lithium ion battery.

上記課題を解決するために本発明は、二次電池を備える電動工具用の電池パックを充電可能な電動工具用電池パックの充電装置であって、公称容量が5Ah以上の該電池パックを2C以上の充電電流で充電可能に構成されたことを特徴とする電動工具用電池パックの充電装置を提供する。 In order to solve the above problems, the present invention provides a battery pack charging device for a power tool that can charge a battery pack for a power tool including a secondary battery, and the battery pack having a nominal capacity of 5 Ah or more is 2 C or more. Provided is a battery pack charging device for an electric tool , characterized in that it can be charged with a charging current of.

上記課題を解決するために本発明はさらに、二次電池を備える電動工具用の電池パックを充電可能な電動工具用電池パックの充電装置であって、公称容量がα(αは、5以上の実数)Ah以上の該電池パックを2αA以上の充電電流で充電可能に構成されたことを特徴とする電動工具用電池パックの充電装置を提供する。 In order to solve the above problems, the present invention further provides a battery pack charging device for a power tool that can charge a battery pack for a power tool including a secondary battery, wherein the nominal capacity is α (α is 5 or more). (Real number) A battery pack charging device for an electric tool , characterized in that the battery pack of Ah or more can be charged with a charging current of 2αA or more.

上記課題を解決するために本発明はさらに、二次電池と、所定条件を満たしている場合に該二次電池に充電電流が流れることを許容し該所定条件を満たしていない場合に該充電電流を遮断する遮断手段と、を備える電動工具用の電池パックを充電可能な電動工具用電池パックの充電装置であって、該電池パックと接続可能な電池接続部と、該電池接続部に接続された該電池パックの該遮断手段の該所定条件を特定し、該所定条件を満たすように充電制御を行う充電制御手段と、を備えることを特徴とする電動工具用電池パックの充電装置を提供する。 In order to solve the above problems, the present invention further provides a secondary battery and a charging current that is allowed to flow through the secondary battery when a predetermined condition is satisfied and does not satisfy the predetermined condition. A battery pack charging device for a power tool capable of charging a battery pack for a power tool, comprising: a battery connecting portion connectable to the battery pack; and a battery connecting portion connected to the battery connecting portion. A battery pack charging device for a power tool , comprising: charge control means for specifying the predetermined condition of the blocking means of the battery pack and performing charge control so as to satisfy the predetermined condition. .

上記課題を解決するために本発明はさらに、二次電池を備える電動工具用の電池パックを商用交流電源から直接充電可能な電動工具用電池パックの充電装置であって、公称容量が5Ah以上の該電池パックを2C以上且つ3C以下の充電電流で充電可能に構成されたことを特徴とする電動工具用電池パックの充電装置を提供する。 In order to solve the above-mentioned problem, the present invention further provides a battery pack for a power tool that can directly charge a battery pack for a power tool including a secondary battery from a commercial AC power source, and has a nominal capacity of 5 Ah or more. Provided is a battery pack charging device for an electric tool , characterized in that the battery pack can be charged with a charging current of 2C or more and 3C or less.

上記課題を解決するために本発明はさらに、二次電池を備える電動工具用の電池パックを商用交流電源から直接充電可能な電動工具用電池パックの充電装置であって、公称容量がα(αは、5以上の実数)Ah以上の該電池パックを2αA以上且つ3αA以下の充電電流で充電可能に構成されたことを特徴とする電動工具用電池パックの充電装置を提供する。 In order to solve the above-mentioned problems, the present invention further provides a battery pack charging device for a power tool that can directly charge a battery pack for a power tool including a secondary battery from a commercial AC power source, and has a nominal capacity of α (α Provides a battery pack charging device for a power tool , characterized in that the battery pack can be charged with a charging current of 2αA or more and 3αA or less.

Claims (15)

二次電池を備える電池パックを充電可能な充電装置であって、
公称容量が5Ah以上の該電池パックを2C以上の充電電流で充電可能に構成されたことを特徴とする充電装置。
A charging device capable of charging a battery pack including a secondary battery,
A charging device configured to be able to charge the battery pack having a nominal capacity of 5 Ah or more with a charging current of 2 C or more.
二次電池を備える電池パックを充電可能な充電装置であって、
公称容量がα(αは、5以上の実数)Ah以上の該電池パックを2αA以上の充電電流で充電可能に構成されたことを特徴とする充電装置。
A charging device capable of charging a battery pack including a secondary battery,
A charging device characterized in that the battery pack having a nominal capacity α (α is a real number of 5 or more) Ah or more can be charged with a charging current of 2αA or more.
該電池パックは、所定条件を満たしている場合に該二次電池に充電電流が流れることを許容し該所定条件を満たしていない場合に該充電電流を遮断する遮断手段をさらに備え、
該電池パックと接続可能な電池接続部と、
該電池接続部に接続された該電池パックの該遮断手段の該所定条件を特定し、該所定条件を満たすように充電制御を行う充電制御手段と、
を備えることを特徴とする請求項1又は2に記載の充電装置。
The battery pack further includes a blocking unit that allows a charging current to flow through the secondary battery when a predetermined condition is satisfied, and blocks the charging current when the predetermined condition is not satisfied,
A battery connecting portion connectable to the battery pack;
Charging control means for specifying the predetermined condition of the blocking means of the battery pack connected to the battery connecting portion and performing charge control so as to satisfy the predetermined condition;
The charging device according to claim 1, further comprising:
二次電池と、所定条件を満たしている場合に該二次電池に充電電流が流れることを許容し該所定条件を満たしていない場合に該充電電流を遮断する遮断手段と、を備える電池パックを充電可能な充電装置であって、
該電池パックと接続可能な電池接続部と、
該電池接続部に接続された該電池パックの該遮断手段の該所定条件を特定し、該所定条件を満たすように充電制御を行う充電制御手段と、
を備えることを特徴とする充電装置。
A battery pack comprising: a secondary battery; and a blocking means that allows a charging current to flow through the secondary battery when the predetermined condition is satisfied and blocks the charging current when the predetermined condition is not satisfied. A rechargeable charging device,
A battery connecting portion connectable to the battery pack;
Charging control means for specifying the predetermined condition of the blocking means of the battery pack connected to the battery connecting portion and performing charge control so as to satisfy the predetermined condition;
A charging device comprising:
公称容量が5Ah以上の該電池パックを2C以上の充電電流で充電可能に構成されたことを特徴とする請求項4に記載の充電装置。 The charging device according to claim 4, wherein the battery pack having a nominal capacity of 5 Ah or more is configured to be charged with a charging current of 2 C or more. 公称容量がα(αは、5以上の実数)Ah以上の該電池パックを2αA以上の充電電流で充電可能に構成されたことを特徴とする請求項4に記載の充電装置。 5. The charging device according to claim 4, wherein the battery pack having a nominal capacity of α (α is a real number of 5 or more) Ah or more can be charged with a charging current of 2αA or more. 該所定条件は、該充電電流が該二次電池の電池温度と対応する許容最大電流値よりも小さい場合に満たされ、
該充電制御手段は、
該電池パックの該電池温度を取得する電池温度取得手段と、
複数の電流値のうちから一の電流値を設定可能な電流設定手段と、
設定された該一の電流値で該電池パックを充電するように充電電流を制御する電流制御手段と、
を有し、
該電池温度に基づいて、設定可能な該複数の電流値のうちの許容最大電流値よりも小さい電流値の中で最大の電流値で該電池パックを充電するように充電電流を制御することを特徴とする請求項3〜6のいずれか1項に記載の充電装置。
The predetermined condition is satisfied when the charging current is smaller than an allowable maximum current value corresponding to the battery temperature of the secondary battery,
The charge control means includes
Battery temperature acquisition means for acquiring the battery temperature of the battery pack;
Current setting means capable of setting one current value from a plurality of current values;
Current control means for controlling a charging current so as to charge the battery pack with the set one current value;
Have
Based on the battery temperature, the charging current is controlled so as to charge the battery pack with a maximum current value among current values smaller than an allowable maximum current value among the settable current values. The charging device according to any one of claims 3 to 6, characterized in that:
該所定条件における該許容最大電流値は、該電池温度が高くなるに従って、より小さくなり、
該充電制御手段は、該電池温度が高くなるに従って、該充電電流をより小さくすることを特徴とする請求項7に記載の充電装置。
The allowable maximum current value in the predetermined condition becomes smaller as the battery temperature becomes higher,
8. The charging apparatus according to claim 7, wherein the charging control unit reduces the charging current as the battery temperature increases.
該充電制御手段は、第1電流値で充電している場合、該電池温度が第1温度閾値以上となると、該第1電流値よりも小さい第2電流値で充電するように充電電流を制御し、
該1温度閾値は、対応する該許容最大電流値が該第1電流値である第1電池温度よりも低いことを特徴とする請求項7又は8に記載の充電装置。
The charging control means controls the charging current so that charging is performed at a second current value smaller than the first current value when the battery temperature is equal to or higher than the first temperature threshold when charging is performed at the first current value. And
9. The charging device according to claim 7, wherein the one temperature threshold is lower than a first battery temperature at which the corresponding maximum allowable current value is the first current value.
該充電制御手段は、該第2電流値で充電している場合、該電池温度が該第1温度閾値よりも高い第2温度閾値以上となると、該第2電流値よりも小さい第3電流値で充電するように充電電流を制御し、
該第2温度閾値は、対応する該許容最大電流値が該第2電流値である第2電池温度よりも低く、且つ、該第1電池温度よりも高いことを特徴とする請求項9に記載の充電装置。
In the case where the charging control unit is charged with the second current value, a third current value smaller than the second current value when the battery temperature is equal to or higher than a second temperature threshold value higher than the first temperature threshold value. Control the charging current to charge with,
10. The second temperature threshold value according to claim 9, wherein the corresponding maximum allowable current value is lower than the second battery temperature, which is the second current value, and higher than the first battery temperature. Charging device.
該遮断手段は、サーマルプロテクタであることを特徴とする請求項3〜10のいずれか1項に記載の充電装置。 The charging device according to any one of claims 3 to 10, wherein the blocking means is a thermal protector. 該遮断手段は、ヒューズであることを特徴とする請求項3〜11のいずれか1項に記載の充電装置。 The charging device according to claim 3, wherein the blocking means is a fuse. 異なる電圧及び異なる公称容量を有する複数の電池パックを択一的に充電可能であって、
該公称容量が5Ah未満の電池パックを2C以上の充電電流で充電可能に構成されたことを特徴とする請求項1〜12のいずれか1項に記載の充電装置。
A plurality of battery packs having different voltages and different nominal capacities can be alternatively charged,
The charging device according to claim 1, wherein the battery pack having a nominal capacity of less than 5 Ah is configured to be charged with a charging current of 2 C or more.
二次電池を備える電池パックを商用交流電源から直接充電可能な充電装置であって、
公称容量が5Ah以上の該電池パックを2C以上且つ3C以下の充電電流で充電可能に構成されたことを特徴とする充電装置。
A charging device capable of directly charging a battery pack including a secondary battery from a commercial AC power source,
A charging device configured to be able to charge the battery pack having a nominal capacity of 5 Ah or more with a charging current of 2C or more and 3C or less.
二次電池を備える電池パックを商用交流電源から直接充電可能な充電装置であって、
公称容量がα(αは、5以上の実数)Ah以上の該電池パックを2αA以上且つ3αA以下の充電電流で充電可能に構成されたことを特徴とする充電装置。
A charging device capable of directly charging a battery pack including a secondary battery from a commercial AC power source,
A charging device, wherein the battery pack having a nominal capacity α (α is a real number of 5 or more) Ah or more can be charged with a charging current of 2αA or more and 3αA or less.
JP2017526236A 2015-06-30 2016-06-02 Battery charger for power tool battery pack Pending JPWO2017002520A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015132220 2015-06-30
JP2015132220 2015-06-30
PCT/JP2016/066416 WO2017002520A1 (en) 2015-06-30 2016-06-02 Charging device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019089752A Division JP6699078B2 (en) 2015-06-30 2019-05-10 Battery charger for power tools

Publications (1)

Publication Number Publication Date
JPWO2017002520A1 true JPWO2017002520A1 (en) 2018-04-12

Family

ID=57609290

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017526236A Pending JPWO2017002520A1 (en) 2015-06-30 2016-06-02 Battery charger for power tool battery pack
JP2019089752A Active JP6699078B2 (en) 2015-06-30 2019-05-10 Battery charger for power tools

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2019089752A Active JP6699078B2 (en) 2015-06-30 2019-05-10 Battery charger for power tools

Country Status (3)

Country Link
JP (2) JPWO2017002520A1 (en)
DE (1) DE212016000134U1 (en)
WO (1) WO2017002520A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7088758B2 (en) * 2018-06-26 2022-06-21 株式会社マキタ Rechargeable cleaner
JP7024682B2 (en) * 2018-10-18 2022-02-24 株式会社オートネットワーク技術研究所 Power distribution device, power distribution method and computer program
JP7561522B2 (en) 2020-06-02 2024-10-04 株式会社Subaru Secondary battery charging control device
CN113949114A (en) * 2020-07-16 2022-01-18 上海汽车集团股份有限公司 Vehicle and charging control method and device for vehicle
CN112636430A (en) * 2020-12-24 2021-04-09 格力博(江苏)股份有限公司 Charging device, charging system and charging device control method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001286068A (en) * 2000-03-30 2001-10-12 Sanyo Electric Co Ltd Battery pack
JP2007157417A (en) * 2005-12-02 2007-06-21 Furukawa Battery Co Ltd:The Charge control method of nickel cadmium storage battery
JP2008104349A (en) * 1999-02-26 2008-05-01 Hitachi Koki Co Ltd Charging device
JP2009077550A (en) * 2007-09-21 2009-04-09 Toshiba Plant Systems & Services Corp Fast battery charger
WO2011161865A1 (en) * 2010-06-25 2011-12-29 パナソニック株式会社 Lithium-ion secondary-battery charging method and charging system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014166116A (en) * 2013-02-27 2014-09-08 Noritz Corp Power converter
JP6195107B2 (en) * 2013-07-12 2017-09-13 日立工機株式会社 Charger
JP5777024B2 (en) * 2014-04-28 2015-09-09 日立工機株式会社 Electric tool

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008104349A (en) * 1999-02-26 2008-05-01 Hitachi Koki Co Ltd Charging device
JP2001286068A (en) * 2000-03-30 2001-10-12 Sanyo Electric Co Ltd Battery pack
JP2007157417A (en) * 2005-12-02 2007-06-21 Furukawa Battery Co Ltd:The Charge control method of nickel cadmium storage battery
JP2009077550A (en) * 2007-09-21 2009-04-09 Toshiba Plant Systems & Services Corp Fast battery charger
WO2011161865A1 (en) * 2010-06-25 2011-12-29 パナソニック株式会社 Lithium-ion secondary-battery charging method and charging system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
わずか30分で充電できる6000MAHモバイルバッテリ「LUMOPACK」−ガジェットの購入なら海外通販のR, JPN6016026544, 2 June 2015 (2015-06-02), pages 全文、全図, ISSN: 0003975060 *

Also Published As

Publication number Publication date
JP6699078B2 (en) 2020-05-27
DE212016000134U1 (en) 2018-02-07
JP2019165626A (en) 2019-09-26
WO2017002520A1 (en) 2017-01-05

Similar Documents

Publication Publication Date Title
JP6399479B2 (en) Charger
JP6699078B2 (en) Battery charger for power tools
JP4618561B2 (en) Battery charger
US10103558B2 (en) Charger, charging system and power tool with battery pack
US20060001404A1 (en) Battery pack for hand-held electric machine tools
US20170331302A1 (en) Charging device
CN108352715B (en) Charging device
JP5892370B2 (en) Charger and power supply system
JP6040743B2 (en) Charger
US20090146614A1 (en) Protection Methods, Protection Circuits and Protection Devices for Secondary Batteries, a Power Tool, Charger and Battery Pack Adapted to Provide Protection Against Fault Conditions in the Battery Pack
JP2007006628A (en) Battery charger and electric power tool set therewith
WO2015075914A1 (en) Charging device
TWI326146B (en) Lithium battery pack
WO2018212075A1 (en) Charger for charging battery pack of electrically powered tool
JP6743443B2 (en) Battery pack and power tool
JP2016192353A (en) Battery pack
WO2020187321A1 (en) Power supply device
JP2003143766A (en) Charging apparatus
JP2015049999A (en) Cooling apparatus and power supply apparatus
JP2015198491A (en) Charger
JP2013158142A (en) Charger and charging system
JP7072479B2 (en) Battery pack
JP2012005288A (en) Charger
JP2015211607A (en) Charger
JP4730671B2 (en) Charger

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171225

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180614

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181011

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190212