JPWO2016198884A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2016198884A5
JPWO2016198884A5 JP2018516642A JP2018516642A JPWO2016198884A5 JP WO2016198884 A5 JPWO2016198884 A5 JP WO2016198884A5 JP 2018516642 A JP2018516642 A JP 2018516642A JP 2018516642 A JP2018516642 A JP 2018516642A JP WO2016198884 A5 JPWO2016198884 A5 JP WO2016198884A5
Authority
JP
Japan
Prior art keywords
core portion
central core
microspheres
unit load
load device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018516642A
Other languages
Japanese (ja)
Other versions
JP2018527265A (en
JP7148132B2 (en
Publication date
Priority claimed from GB1510082.9A external-priority patent/GB2539392B/en
Application filed filed Critical
Publication of JP2018527265A publication Critical patent/JP2018527265A/en
Publication of JPWO2016198884A5 publication Critical patent/JPWO2016198884A5/ja
Application granted granted Critical
Publication of JP7148132B2 publication Critical patent/JP7148132B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

好適には、粒子そのものは、コアの30容量%~74容量%を構成してよく、より好適には、コアの50容量%~70容量%を構成してもよい。コアの強度と重量とのバランスをとるためには、コアの大部分が、マトリックス材料内に保持された粒子から成ることが好適である。 Suitably, the particles themselves may constitute 30% to 74% by volume of the core , more suitably 50% to 70% by volume of the core . In order to balance the strength and weight of the core, it is preferred that the majority of the core consist of particles held within a matrix material.

好適には、パネルの縁部において、粒子が短繊維補強材など他の材料にほぼ置換されるように、コアの構造体を変更することができる。短繊維補強材は、短繊維補強材そのものがコアの0容量%~40容量%を構成し得るように、そのコア中の少なくとも一部、又は全部の粒子を置換することができる。 Advantageously, the structure of the core can be modified so that at the edges of the panel the particles are largely replaced by other materials such as short fiber reinforcement. The short fiber reinforcement can replace at least some or all of the particles in the core such that the short fiber reinforcement itself can constitute 0% to 40% by volume of the core.

複合フォームコア3は、軽量な中空ガラスミクロスフェアを含有するマトリックス材料から製造される。このミクロスフェアの大部分は、40μm以下、好適には9~25μmの範囲の直径及び/又は40MPa超の圧潰強度を有する。複合フォームコア3は、50~70容量のミクロスフェア含み、そのミクロスフェアはエポキシ樹脂マトリックス材料によって囲まれている。 The composite foam core 3 is manufactured from a matrix material containing lightweight hollow glass microspheres. The majority of the microspheres have a diameter of 40 μm or less, preferably in the range of 9-25 μm and/or a crush strength of greater than 40 MPa. The composite foam core 3 contains 50-70% by volume microspheres surrounded by an epoxy resin matrix material.

図4に示すように、一実施形態において、パネルの周縁部における複合フォームの組成は、ミクロスフェアが減少して0%となり、次いで、その複合フォームの最大40容量%を構成する短繊維補強材7によって置換されるものである。このような実施形態は、平均100μmの繊維長を有するミルド炭素繊維補強材を使用するが、短繊維は、炭素繊維、アラミド繊維、玄武岩繊維、及び/又はファイバガラス繊維であってよい。中央パネルコアから周縁部への組成における変更を容易にするために、周縁領域はセル状ハニカムを含有し得る。これは、中央複合フォームコアの残りから、局所的に変更されたコア材料を仕切る。これに代えて、短繊維補強材は中央コア内にのみ配置されることができるか、又はコアと周縁の縁部領域との両方において使用されることができる。 As shown in FIG. 4, in one embodiment, the composition of the composite foam at the perimeter of the panel is reduced to 0% microspheres, followed by short fiber reinforcement comprising up to 40% by volume of the composite foam. It is replaced by material 7. Such embodiments use milled carbon fiber reinforcement with an average fiber length of 100 μm, but the staple fibers may be carbon, aramid, basalt, and/or fiberglass fibers. The peripheral region may contain cellular honeycomb to facilitate changes in composition from the central panel core to the peripheral edge. This partitions the locally modified core material from the rest of the central composite foam core. Alternatively, short fiber reinforcements can be placed only in the central core, or can be used in both the core and the peripheral edge regions.

本発明の他の実施形態では、中央コア構造体の50%超を構成する複合フォームは、少なくてコアの30容量%であり最大で74容量、マイクロメートルスケールのミクロスフェアを含む。このミクロスフェアは、中実又は中空であってよく、ガラス材料、炭素材料、金属材料、ポリマー材料、又はセラミック材料から製造され得る。 In another embodiment of the invention, the composite foam comprising more than 50% of the central core structure comprises at least 30% and at most 74% by volume of the core micrometer-scale microspheres. The microspheres can be solid or hollow and can be made from glass, carbon, metal, polymer, or ceramic materials.

Claims (11)

ベースパネルを有するユニットロードデバイスにおいて、前記ベースパネルは、
繊維補強材料を含む上面層と、
繊維補強材料を含む下面層と、
中央コア部分であって、前記中央コア部分、マトリックス材料において固着された複数のミクロスフェアを含み、そのミクロスフェアは前記中央コア部分の30容量%~74容量%を構成する、中央コア部分と、を含んで成り、
前記上面層と前記下面層とには、前記上面層と前記下面層とを前記中央コア部分に対して固着させる前記マトリックス材料が設けられ、
前記30容量%~74容量%のミクロスフェアは40μm未満の直径を有し、
前記下面層は前記ユニットロードデバイスの底面側に設けられ、
前記中央コア部分は、少なくとも部分的に前記30容量%~74容量%のミクロスフェアで充填されているセル状構造体を含んで成る、ユニットロードデバイス。
A unit load device having a base panel, the base panel comprising:
a top layer comprising a fiber reinforcement material;
a bottom layer comprising a fiber reinforcement material;
A central core portion, said central core portion comprising a plurality of microspheres anchored in a matrix material, said microspheres comprising 30% to 74% by volume of said central core portion. comprising a part and
the top layer and the bottom layer are provided with the matrix material for securing the top layer and the bottom layer to the central core portion;
30% to 74% by volume of the microspheres have a diameter of less than 40 μm;
the bottom layer is provided on the bottom side of the unit load device;
A unit load device, wherein said central core portion comprises a cellular structure at least partially filled with said 30% to 74% by volume microspheres.
前記30容量%~74容量%のミクロスフェアは40MPaの最小圧潰強度を有する、請求項1に記載のユニットロードデバイス。 The unit load device of claim 1, wherein said 30% to 74% by volume microspheres have a minimum crush strength of 40 MPa. 前記上面層及び前記下面層の前記マトリックス材料と、前記上面層及び前記下面層を固着させる前記マトリックス材料と、前記ミクロスフェアを前記中央コア部分に結びつける前記マトリックス材料とは、同じ且つ互いに連続的なものである、請求項1又は2に記載のユニットロードデバイス。 The matrix material of the top layer and the bottom layer, the matrix material bonding the top layer and the bottom layer, and the matrix material binding the microspheres to the central core portion are the same and continuous with each other. 3. A unit load device according to claim 1 or 2, which is a 前記上面層、前記下面層、又はその両方の厚さは、0.2mm~3.5mmである、請求項1~3の何れか一項に記載のユニットロードデバイス。 A unitload device according to any preceding claim, wherein the thickness of the top layer, the bottom layer, or both is between 0.2 mm and 3.5 mm. 前記中央コア部分の密度は、0.5~1.2g/cmである、請求項1~4の何れか一項に記載のユニットロードデバイス。 A unit load device according to any preceding claim, wherein the density of the central core portion is between 0.5 and 1.2 g/cm 3 . 前記中央コア部分と1つ以上の面層との間に障壁層が配置される、請求項1~5の何れか一項に記載のユニットロードデバイス。 A unitload device according to any preceding claim, wherein a barrier layer is disposed between the central core portion and one or more face layers. 前記中央コア部分は複数の異なるミクロスフェアを含み、大きさと、形状と、構造と、材料とから成る群から選択される1つ以上の特性によって前記ミクロスフェアが異なる、請求項1~6の何れか一項に記載のユニットロードデバイス。 7. Any one of claims 1-6, wherein the central core portion comprises a plurality of different microspheres, the microspheres differing by one or more properties selected from the group consisting of size, shape, structure and material. or a unit load device according to paragraph 1. 前記30容量%~74容量%のミクロスフェアは、9μmから25μmの直径を有する、請求項1~7の何れか一項に記載のユニットロードデバイス。 A unitload device according to any one of the preceding claims , wherein said 30% to 74% by volume microspheres have a diameter of 9 µm to 25 µm . 前記中央コア部分の構造体の2つ以上の部分が異なる構造特性を有するように、前記中央コア部分の前記構造体、組成、又はその両方の容量を異ならせる、請求項1~8の何れか一項に記載のユニットロードデバイス。 9. Any of claims 1-8, wherein the structure, composition, or both capacities of the central core portion are varied such that two or more portions of the structure of the central core portion have different structural properties. A unit load device according to paragraph 1. 前記パネルの前記コアの1つ以上の領域は、最大40容量の短繊維補強材を組み込む複合体を含んで成る、請求項9に記載のユニットロードデバイス。 10. A unit load device according to claim 9, wherein one or more regions of the core of the panel comprise a composite incorporating up to 40% by volume of short fiber reinforcement . 前記パネルの周縁部の少なくとも一部が陥没する、又はリップ部分を形成すべく持ち上げられる、請求項1~10の何れか一項に記載のユニットロードデバイス。 A unit load device according to any one of the preceding claims, wherein at least part of the peripheral edge of the panel is recessed or raised to form a lip portion.
JP2018516642A 2015-06-10 2016-06-10 Composite sandwich structure Active JP7148132B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB1510082.9 2015-06-10
GB1510082.9A GB2539392B (en) 2015-06-10 2015-06-10 A composite sandwich structure
PCT/GB2016/051718 WO2016198884A2 (en) 2015-06-10 2016-06-10 A composite sandwich structure

Publications (3)

Publication Number Publication Date
JP2018527265A JP2018527265A (en) 2018-09-20
JPWO2016198884A5 true JPWO2016198884A5 (en) 2022-08-01
JP7148132B2 JP7148132B2 (en) 2022-10-05

Family

ID=53785249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018516642A Active JP7148132B2 (en) 2015-06-10 2016-06-10 Composite sandwich structure

Country Status (10)

Country Link
US (1) US10780678B2 (en)
EP (1) EP3307607A2 (en)
JP (1) JP7148132B2 (en)
CN (1) CN107921725B (en)
AU (1) AU2016275292B2 (en)
CA (1) CA3026980C (en)
GB (1) GB2539392B (en)
SG (1) SG11201811818QA (en)
TW (1) TWI730964B (en)
WO (1) WO2016198884A2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3148693C (en) 2014-06-04 2023-08-15 Sti Holdings, Inc. Composite panel edge treatments and joints and cargo body having same
US9896137B2 (en) * 2016-02-25 2018-02-20 Nexgen Composites Llc Unitary floor
US10315799B2 (en) * 2017-08-31 2019-06-11 Aemerge, LLC Palletized integrated box
US10814581B2 (en) 2018-07-03 2020-10-27 STI Holdings, Iinc. Composite sidewall and cargo body having same
US11136072B2 (en) 2018-08-07 2021-10-05 Sti Holdings, Inc. Cargo body with recessed logistics track
US10889336B2 (en) * 2018-12-17 2021-01-12 Ford Global Technologies, Llc Polymeric vehicle floor
CN112223874A (en) * 2019-08-22 2021-01-15 尹君 Method for producing a continuous three-dimensional reinforcing structure from a microporous material
CN111516761B (en) * 2020-04-20 2022-10-11 重庆长安汽车股份有限公司 Carbon fiber composite material automobile front floor, manufacturing method and automobile
IT202000013177A1 (en) * 2020-06-04 2021-12-04 Andrea Nespoli SANDWICH PANEL USABLE IN THE FURNISHING SECTOR AND METHOD FOR THE PRODUCTION OF SAID PANEL
CN113601693B (en) * 2021-10-11 2021-12-28 佛山市东鹏陶瓷有限公司 Process technology for preparing strengthened and toughened rock plate by layering distribution
JP2023145101A (en) * 2022-03-28 2023-10-11 盟和産業株式会社 Laminated plate

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2153309A1 (en) * 1970-10-30 1972-05-04 Kureha Kagaku Kogyo K.K., Tokio- Sandwich panel and process for its manufacture
US4013810A (en) * 1975-08-22 1977-03-22 The Babcock & Wilcox Company Sandwich panel construction
US4250136A (en) * 1979-10-22 1981-02-10 Composite Technology Corporation Method of forming a composite structure
DE3126242A1 (en) * 1981-07-03 1983-01-20 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Moulding of sandwich construction and semi-finished product for the production thereof
LU87866A1 (en) * 1990-01-04 1991-05-07 Piero Dr Ing Cresti FLOOR FOR VEHICLES AND INDUSTRIAL TRANSPORT CONTAINERS, THERMALLY INSULATED, WITH LAMINATE POLYESTER-FIBER RESIN COATING AND STRUCTURE, AND WITH THE REMOVAL OF NON-HOMOGENEOUS MATERIALS WITH RESINS
US5773121A (en) * 1994-07-29 1998-06-30 Isorca Inc. Syntactic foam core incorporating honeycomb structure for composites
JP2003226268A (en) 2002-02-07 2003-08-12 Toray Ind Inc Truck parts, and manufacturing method thereof
TW200635830A (en) * 2004-12-29 2006-10-16 Hunter Paine Entpr Llc Composite structural material and method of making the same
US20070101679A1 (en) 2005-10-25 2007-05-10 L&L Products, Inc. Panel structure
DE102006056167B4 (en) * 2006-11-28 2011-04-14 Fachhochschule Landshut Lightweight molded part with support core and corresponding manufacturing process
JP2008290441A (en) 2007-04-25 2008-12-04 Sekisui Chem Co Ltd Manufacturing method of sandwich material made of reinforced plastic
WO2009015228A1 (en) 2007-07-23 2009-01-29 Sunrez Corporation Sandwich panel end effectors
US9248958B2 (en) 2011-12-27 2016-02-02 Advanced Composite Structures, Llc Air cargo container
US8776698B2 (en) * 2012-10-08 2014-07-15 Advanced Composite Structures, Llc Composite air cargo pallet

Similar Documents

Publication Publication Date Title
US5460865A (en) Hybrid honeycomb sandwich panel
US5518796A (en) Near-surface enhancement of honeycomb sandwich structures to improve durability using a foaming fiber-filled adhesive
US7048986B2 (en) End gaps of filled honeycomb
JP7148132B2 (en) Composite sandwich structure
JPWO2016198884A5 (en)
Zheng et al. Energy absorption mechanisms of hierarchical woven lattice composites
JP5188953B2 (en) Integrated aircraft structural flooring
RU2405216C2 (en) Layered structure having double order frequency-selective characteristic
CN201371607Y (en) Phenolic foam sandwich fiber three-dimensional enhanced composite material
WO2005108705A3 (en) Reinforced sandwich structure
RU2593770C2 (en) Layered fibrous composites for solving ballistic tasks
EP0624459A2 (en) Near-surface enhancement of honeycomb sandwich structures to improve durability using a hybrid core
CN101469758B (en) FRP reinforced rubber vibration isolator and method of producing the same
CN101469759B (en) Fiber reinforced rubber vibration isolator and method of producing the same
CN101020501A (en) Anti-crash composite structure for aerocraft with controlled warping
US7871055B1 (en) Lightweight composite concrete formwork panel
JPH03162876A (en) Ski
CN202674128U (en) Improved rubber supporting base
WO2013114386A1 (en) 3d fiber composite
CN205185406U (en) Paper wasp nest composite sheet with high heat dissipating and bearing capacity
JP4121911B2 (en) Lattice member and block for earthquake-resistant wall using the same
RU2238472C2 (en) Pipe-jacket of composite materials
RU120390U1 (en) CONSTRUCTION MATERIAL BASED ON SYNTHETIC FOAM
JPH04164467A (en) Core material for ski board
Talukdar et al. Design and analysis of hybrid composite using the finite element method