JPWO2016152170A1 - 構造管用厚肉鋼板、構造管用厚肉鋼板の製造方法、および構造管 - Google Patents

構造管用厚肉鋼板、構造管用厚肉鋼板の製造方法、および構造管 Download PDF

Info

Publication number
JPWO2016152170A1
JPWO2016152170A1 JP2017507510A JP2017507510A JPWO2016152170A1 JP WO2016152170 A1 JPWO2016152170 A1 JP WO2016152170A1 JP 2017507510 A JP2017507510 A JP 2017507510A JP 2017507510 A JP2017507510 A JP 2017507510A JP WO2016152170 A1 JPWO2016152170 A1 JP WO2016152170A1
Authority
JP
Japan
Prior art keywords
less
steel plate
ferrite
thick steel
structural
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017507510A
Other languages
English (en)
Other versions
JP6256652B2 (ja
Inventor
周作 太田
周作 太田
純二 嶋村
純二 嶋村
石川 信行
信行 石川
遠藤 茂
茂 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JPWO2016152170A1 publication Critical patent/JPWO2016152170A1/ja
Application granted granted Critical
Publication of JP6256652B2 publication Critical patent/JP6256652B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/20Isothermal quenching, e.g. bainitic hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

API X80グレード以上、板厚38mm以上の高強度鋼板であって、多量の合金元素の添加なしで、圧延方向における強度と板厚中心部のシャルピー特性に優れる構造管用厚肉鋼板を提供する。特定の成分組成を有し、フェライトとベイナイトの2相組織からなり、フェライトの面積分率が50%未満であり、かつ、結晶粒径が15μm以下のフェライト粒がフェライト全体に対して80パーセント以上の面積分率を占める、板厚中心部におけるミクロ組織を有し、引張強さが620MPa以上、板厚中心部の−20℃におけるシャルピー吸収エネルギーvE-20℃が100J以上である鋼板である構造管用厚肉鋼板。

Description

本発明は、構造管用厚肉鋼板に関するものであり、特に、本発明は、API X80グレード以上の強度を有するとともに、板厚38mm以上においても板厚中心部のシャルピー特性に優れた構造管用厚肉鋼板に関するものである。
また、本発明は、上記構造管用厚肉鋼板の製造方法、および上記構造管用厚肉鋼板を用いて製造される構造管に関するものである。
海底資源掘削船等による石油やガスの掘削においては、コンダクターケーシング鋼管やライザー鋼管等の構造管が使用される。これらの用途では、近年、圧力上昇による操業効率向上や素材コスト削減の観点から、API(アメリカ石油協会) X80グレード以上の高強度厚肉鋼管に対する要求が高まっている。
また、上述のような構造管は、合金元素量が非常に多い鍛造品(例えばコネクタ等)を円周溶接して用いられることが多い。溶接を行った場合には、溶接に起因する鍛造品の残留応力除去を目的としてPWHT(Post Weld Heat Treatment、溶接後熱処理)が施されるが、熱処理によって強度等の機械的特性の低下が懸念される。そのため、構造管には、PWHT後においても優れた機械的特性、特に掘削時の海底での外圧による破壊防止のため、管の長手方向、すなわち圧延方向に高い強度を維持していることが要求される。
そこで、例えば特許文献1では、0.30〜1.00%のCr、0.005〜0.0030%のTi、および0.060%以下のNbを添加した鋼を熱間圧延した後、加速冷却することによって、PWHTの一種である応力除去(Stress Relief、SR)焼鈍を600℃以上の高温で行った後においても優れた強度を維持することができる高強度ライザー鋼管用鋼板を製造することが提案されている。
また、特許文献2では、溶接鋼管において、母材部と溶接金属の成分組成をそれぞれ特定の範囲とするとともに、両者の降伏強度を551MPa以上としたものが提案されている。特許文献2には、前記溶接鋼管が、溶接部におけるSR前後の靭性に優れることが記載されている。
特開平11−50188号公報 特開2001−158939号公報
しかし、特許文献1に記載の鋼板では、PWHT時にCr炭化物を析出させることによってPWHTによる強度低下を補っているため、多量のCrを添加する必要がある。そのため、素材コストが高いことに加えて、溶接性や靭性の低下が懸念される。
また、特許文献2に記載の鋼管は、シーム溶接金属の特性改善を主眼においており、母材に対しては特段の配慮がなされておらず、PWHTによる母材強度の低下が避けられない。母材強度を確保するには、制御圧延や加速冷却によってPWHT前の強度を高めておく必要がある。
本発明は、上記の実情に鑑み開発されたもので、API X80グレード以上、板厚38mm以上の高強度鋼板であって、多量の合金元素の添加なしで、圧延方向に対して垂直方向における強度と板厚中心部のシャルピー特性に優れる構造管用厚肉鋼板を提供することを目的とする。また、本発明は、上記構造管用厚肉鋼板の製造方法、および上記構造管用厚肉鋼板を用いて製造された構造管を提供することを目的とする。
本発明者らは、板厚38mm以上の厚肉鋼板において、板厚中心部のシャルピー特性と強度とを両立させるために、圧延条件が鋼板のミクロ組織に及ぼす影響について詳細な検討を行った。一般に溶接鋼管用の鋼板や溶接構造用の鋼板は溶接性の観点から化学成分が厳しく制限されるため、X65グレード以上の高強度鋼板は熱間圧延後に加速冷却して製造されている。そのため、鋼板のミクロ組織はベイナイト主体か、ベイナイト中に島状マルテンサイト(Martensite-Austenite constituent、略してMAとも称す)を含んだ組織となるが、板厚が増加するほど、板厚中心部のシャルピー特性の低下は避けられない。そこで、本発明者らは、優れた板厚中心部のシャルピー特性が得られるミクロ組織に関して鋭意研究を行った結果、次の(a)および(b)の知見を得た。
(a)板厚中心部のシャルピー特性向上には、鋼のミクロ組織の微細化が有効であり、そのためには未再結晶域での累積圧下率を高くする必要がある。
(b)一方、冷却開始温度が低くなりすぎてしまうと、フェライト面積分率が50%以上に増加して強度が低下する。そのため、冷却開始温度は高くする必要がある。
以上の知見に基づき、鋼の成分組成とミクロ組織および製造条件について詳細な検討を行い、本発明を完成するに至った。
すなわち、本発明の要旨構成は、次のとおりである。
1.構造管用厚肉鋼板であって、
質量%で、
C :0.030〜0.100%、
Si:0.01〜0.50%、
Mn:1.50〜2.50%、
Al:0.080%以下、
Mo:0.05〜0.50%、
Ti:0.005〜0.025%、
Nb:0.005〜0.080%、
N :0.001〜0.010%、
O :0.0050%以下、
P :0.010%以下、および
S :0.0010%以下、を含有し、
残部Feおよび不可避不純物からなり、かつ
下記(1)式で定義される炭素当量Ceqが0.42以上である成分組成を有し、
フェライトとベイナイトの2相組織からなり、フェライトの面積分率が50%未満であり、かつ、結晶粒径が15μm以下のフェライト粒がフェライト全体に対して80%以上の面積分率を占める、板厚中心部におけるミクロ組織を有し、
引張強さが620MPa以上、板厚中心部の−20℃におけるシャルピー吸収エネルギーvE-20℃が100J以上である、構造管用厚肉鋼板。

eq=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5・・・(1)
(ここで、(1)式中の元素記号は、前記鋼板中における各元素の含有量を質量%で表した値を表し、該鋼板中に当該元素が含有されない場合には0とする)
2.さらに、前記成分組成が、質量%で、
V :0.005〜0.100%、を含有する、前記1に記載の構造管用厚肉鋼板。
3.さらに、前記成分組成が、質量%で、
Cu:0.50%以下、
Ni:0.50%以下、
Cr:0.50%以下、
Ca:0.0005〜0.0035%、
REM:0.0005〜0.0100%、および
B :0.0020%以下からなる群より選択される1種または2種以上を含有する、前記1または2に記載の構造管用厚肉鋼板。
4.前記1〜3のいずれか一つに記載の成分組成を有する鋼素材を、加熱温度:1100〜1300℃まで加熱する加熱工程と、
前記加熱工程において加熱された鋼素材を、800℃以下での累積圧下率:70%以上の条件で熱間圧延して鋼板とする熱間圧延工程と、
前記熱間圧延された鋼板を、冷却開始温度:650℃以上、冷却終了温度:400℃未満、平均冷却速度:5℃/s以上の条件で加速冷却する加速冷却工程とを、少なくとも有する、構造管用厚肉鋼板の製造方法。
5.前記加速冷却工程の後、ただちに0.5℃/s以上10℃/s以下の昇温速度で400〜550℃まで再加熱を行う再加熱工程をさらに有する、前記4に記載の構造管用厚肉鋼板の製造方法。
6.前記1〜3のいずれか一項に記載の構造管用厚肉鋼板からなる構造管。
7.前記1〜3のいずれか一つに記載の鋼板を長手方向に筒状に成形した後、突合せ部を内外面からいずれも少なくとも1層ずつ長手方向に溶接して得た構造管。
本発明によれば、API X80グレード以上の高強度鋼板であって、多量の合金元素の添加なしに、圧延方向の高強度を有しながら板厚中心部のシャルピー特性に優れた構造管用厚肉鋼板および前記構造管用厚肉鋼板を用いた構造管を提供することができる。なお、本発明において「厚肉」とは、板厚が38mm以上であることを意味する。
[成分組成]
次に、本発明における各構成要件の限定理由について述べる。
本発明においては、構造管用厚肉鋼板が所定の成分組成を有することが重要である。そこで、まず、本発明において鋼の成分組成を上記のように限定する理由を説明する。なお、成分に関する「%」表示は、特に断らない限り「質量%」を意味するものとする。
C:0.030〜0.100%
Cは、鋼の強度を増加する元素であり、所望の組織を得て、所望の強度、靭性とするためには、C含有量を0.030%以上とする必要がある。一方、C含有量が0.100%を超えると溶接性が劣化し、溶接割れが生じやすくなるとともに、母材靭性およびHAZ靭性が低下する。そのため、C含有量は0.100%以下とする。なお、C含有量は、0.050〜0.080%とすることが好ましい。
Si:0.01〜0.50%
Siは、脱酸材として作用し、さらに固溶強化により鋼材の強度を増加させる元素である。前記効果を得るために、Si含有量を0.01%以上とする。一方、Si含有量が0.50%を超えると、HAZ靭性が著しく劣化する。そのため、Si含有量は0.50%以下とする。なお、Si含有量は0.05〜0.20%とすることが好ましい。
Mn:1.50〜2.50%
Mnは、鋼の焼入れ性を高めるとともに、強度と靭性を向上させる作用を有する元素である。前記効果を得るために、Mn含有量を1.50%以上とする。一方、Mn含有量が2.50%を超えると溶接性が劣化するおそれがある。そのため、Mn含有量は2.50%以下とする。なお、Mn含有量は1.80%〜2.00%とすることが好ましい。
Al:0.080%以下
Alは、製鋼時の脱酸剤として添加される元素である。Al含有量が0.080%を超えると靭性の低下を招くため、Al含有量は0.080%以下とする。なお、Al含有量は0.010〜0.050%とすることが好ましい。
Mo:0.05〜0.50%
Moは、本発明において特に重要な元素であり、熱間圧延後の冷却時におけるパーライト変態を抑制しつつ、Ti、Nb、Vと微細な複合炭化物を形成して鋼板の強度を大きく上昇させる機能を有している。前記効果を得るために、Mo含有量を0.05%以上とする。一方、Mo含有量が0.50%を超えると溶接熱影響部(Heat−Affected Zone、HAZ)靭性の低下を招くため、Mo含有量は0.50%以下とする。
Ti:0.005〜0.025%
Tiは、Moと同様に本発明において特に重要な元素であり、Moと複合析出物を形成して鋼の強度向上に大きく寄与する。前記効果を得るために、Ti含有量を0.005%以上とする。一方、0.025%を超える添加はHAZ靭性および母材靭性の劣化を招く。そのため、Ti含有量は0.025%以下とする。
Nb:0.005〜0.080%
Nbは、組織の微細粒化により靭性を向上させる作用を有する元素である。また、Moと共に複合析出物を形成し、強度向上に寄与する。前記効果を得るために、Nb含有量を0.005%以上とする。一方、Nb含有量が0.080%を超えるとHAZ靭性が劣化する。そのため、Nb含有量は0.080%以下とする。
N:0.001〜0.010%
Nは、通常、不可避不純物として鋼中に存在し、Tiが存在しているとTiNを形成する。TiNによるピンニング効果によってオーステナイト粒の粗大化を抑制するために、N含有量は0.001%以上とする。しかし、TiNは、溶接部、特に溶接ボンド近傍で1450℃以上に加熱された領域において分解し、固溶Nを生成する。そのため、N含有量が高すぎると、前記固溶Nの生成に起因する靭性の低下が著しくなる。そのため、N含有量は0.010%以下とする。なお、N含有量は0.002〜0.005%とすることがより好ましい。
O:0.0050%以下、P:0.010%以下、S:0.0010%以下
本発明において、O、P、およびSは不可避不純物であり、これらの元素の含有量の上限を次の通り規定する。Oは、粗大で靭性に悪影響を及ぼす酸素系介在物を形成する。前記介在物の影響を抑制するため、O含有量は0.0050%以下とする。また、Pは、中心偏析して母材の靭性を低下させる性質を持つため、P含有量が高いと母材靭性の低下が問題となる。そのため、P含有量は0.010%以下とする。また、SはMnS系介在物を形成して母材の靭性を低下させる性質を有しているため、S含有量が高いと母材靭性の低下が問題となる。そのため、S含有量は0.0010%以下とする。なお、O含有量は0.0030%以下とすることが好ましく、P含有量は0.008%以下とすることが好ましく、S含有量は0.0008%以下とすることが好ましい。一方、O、P、S含有量の下限については限定されないが、工業的には0%超である。また、過度に含有量を低下させると精錬時間の増加やコストの上昇を招くため、O含有量は0.0005%以上、P含有量は0.001%以上、S含有量は0.0001%以上とすることが好ましい。
また、本発明の構造管用厚肉鋼板は、上記元素に加えて、V:0.005〜0.100%、を、さらに含有することもできる。
V:0.005〜0.100%
Vは、Nbと同様にMoと共に複合析出物を形成し、強度上昇に寄与する。Vを添加する場合、前記効果を得るためにV含有量を0.005%以上とする。一方、V含有量が0.100%を超えるとHAZ靭性が低下するため、Vを添加する場合、V含有量を0.100%以下とする。
また、本発明の構造管用厚肉鋼板は、上記元素に加えて、Cu:0.50%以下、Ni:0.50%以下、Cr:0.50%以下、Ca:0.0005〜0.0035%、REM:0.0005〜0.0100%、およびB:0.0020%以下からなる群より選択される1種または2種以上を、さらに含有することもできる。
Cu:0.50%以下
Cuは、靭性の改善と強度の向上に有効な元素であるが、添加量が多すぎると溶接性が低下する。そのため、Cuを添加する場合、Cu含有量は0.50%以下とする。なお、Cu含有量の下限は特に限定されないが、Cuを添加する場合はCu含有量を0.05%以上とすることが好ましい。
Ni:0.50%以下
Niは、靭性の改善と強度の向上に有効な元素であるが、添加量が多すぎると耐PWHT特性が低下する。そのため、Niを添加する場合、Ni含有量は0.50%以下とする。なお、Ni含有量の下限は特に限定されないが、Niを添加する場合はNi含有量を0.05%以上とすることが好ましい。
Cr:0.50%以下
Crは、Mnと同様に低Cでも十分な強度を得るために有効な元素であるが、過剰の添加は溶接性を低下させる。そのため、Crを添加する場合、Cr含有量を0.50%以下とする。なお、Cr含有量の下限は特に限定されないが、Crを添加する場合はCr含有量を0.05%以上とすることが好ましい。
Ca:0.0005〜0.0035%
Caは、硫化物系介在物の形態制御による靭性向上に有効な元素である。前記効果を得るために、Caを添加する場合、Ca含有量を0.0005%以上とする。一方、0.0035%を超えてCaを添加しても効果が飽和し、むしろ、鋼の清浄度の低下により靭性が低下する。そのため、Caを添加する場合、Ca含有量を0.0035%以下とする。
REM:0.0005〜0.0100%
REM(希土類金属)は、Caと同様に鋼中の硫化物系介在物の形態制御による靱性向上に有効な元素である。前記効果を得るために、REMを添加する場合、REM含有量を0.0005%以上とする。一方、0.0100%を超えて添加しても効果が飽和し、むしろ、鋼の清浄度の低下により靭性を低下させるので、REMを添加する場合、REM含有量を0.0100%以下とする。
B:0.0020%以下
Bは、オーステナイト粒界に偏析し、フェライト変態を抑制することで、特にHAZの強度低下防止に寄与する。しかし、0.0020%を超えて添加してもその効果は飽和するため、Bを添加する場合、B含有量は0.0020%以下とする。なお、B含有量の下限は特に限定されないが、Bを添加する場合はB含有量を0.0002%以上とすることが好ましい。
本発明の構造管用厚肉鋼板は、以上の成分と、残部Feおよび不可避不純物とからなる。なお、「残部Feおよび不可避不純物からなる」とは、本発明の作用・効果を損なわない限りにおいて、不可避不純物をはじめ、他の微量元素を含有するものが本発明の範囲に含まれることを意味する。
本発明においては、鋼に含まれる元素がそれぞれ上記条件を満たすことに加えて、下記(1)式で定義される炭素当量Ceqを0.42以上とすることが重要である。
eq=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5・・・(1)
(ここで、(1)式中の元素記号は、前記鋼板中における各元素の含有量を質量%で表した値を表し、該鋼板中に当該元素が含有されない場合には0とする)
上記Ceqは、鋼に添加される元素の影響を炭素量に換算して表したものであり、母材強度と相関があるため、強度の指標として一般的に用いられる。本発明では、API X80グレード以上の高い強度を得るために、Ceqを0.42以上とする。なお、Ceqは、0.43以上とすることが好ましい。一方、Ceqの上限については特に限定されないが、0.50以下とすることが好ましい。
[板厚中心部におけるミクロ組織]
次に、本発明における鋼の組織の限定理由について説明する。
本発明においては、鋼板が、フェライトとベイナイトの2相組織からなり、フェライトの面積分率が50%未満であり、かつ、結晶粒径が15μm以下のフェライト粒がフェライト全体に対して80%以上の面積分率を占める、板厚中心部におけるミクロ組織を有することが重要である。ミクロ組織をこのように制御することにより、API X80グレードの高強度を達成しつつ、板厚中心部でのシャルピー特性を確保することが可能である。なお、本発明が対象とする、板厚38mm以上の厚肉鋼板においては、板厚中心部におけるミクロ組織が前記条件を満たしていれば、鋼板の板厚方向のほぼ全域において前記条件を満たすミクロ組織を有することになり、本願の効果を発現することができる。
ここで、「フェライトとベイナイトの2相組織」とは、実質的にフェライトとベイナイトのみからなる組織を意味するが、本発明の作用・効果を損なわない限りにおいて、他の組織を含有するものも本発明の範囲に含まれる。具体的には、鋼のミクロ組織に占めるフェライトとベイナイトの面積分率の合計が、90%以上であることが好ましく、95%以上であることがより好ましい。一方、フェライトとベイナイトの面積分率の合計は高い方が望ましいため、上限は特に限定されず、100%であってよい。
フェライトとベイナイト以外の組織は少ないほどよいが、フェライトとベイナイトの面積率が十分に高ければ、残部の組織の影響はほぼ無視できるため、フェライトおよびベイナイト以外の組織の1種または2種以上を、合計面積率で10%以下含むことは許容される。これらのフェライト以外の組織は、合計面積率で5%以下であることが好ましい。残部組織の例としては、パーライト、セメンタイト、マルテンサイト、島状マルテンサイト等が挙げられる。
また、板厚中心におけるミクロ組織に占めるフェライトの面積分率は、50%未満とする必要がある。フェライトの面積分率は、40%以下とすることが好ましい。一方、フェライトの面積分率の下限は特に限定されないが、5%以上とすることが好ましい。
さらに、鋼板板厚中心部でのシャルピー特性を確保するためには、板厚中心において、結晶粒径が15μm以下のフェライト粒がフェライト全体に対して80%以上の面積分率を占める必要がある。結晶粒径が15μm以下のフェライト粒の面積分率は高いほうが望ましいため、上限は特に限定されず、100%であってよい。
なお、フェライトとベイナイトの面積分率およびフェライトの結晶粒径は、板厚中心部(板厚の1/2の位置)から採取した試料を鏡面研磨し、ナイタール腐食した面について、走査型電子顕微鏡(倍率1000倍)でランダムに5視野以上観察を行って同定すればよい。本発明において、結晶粒径は円相当半径として求めた値を用いることとする。
[機械的特性]
本発明の構造管用厚肉鋼板は、引張強さが620MPa以上、かつ板厚中心部の−20℃におけるシャルピー吸収エネルギーvE-20℃が100J以上という機械的特性を有している。ここで、引張強さおよびシャルピー吸収エネルギーは、実施例に記載の方法で測定することができる。なお、引張強さの上限は特に限定されないが、たとえば、X80グレードならば825MPa以下、X100グレードならば990MPa以下である。同様に、vE-20℃の上限も特に限定されないが、通常は500J以下である。
[鋼板の製造方法]
次に、本発明の鋼板の製造方法について説明する。なお、以下の説明において、特に断らない限り、温度は鋼板の板厚方向の平均温度とする。鋼板の板厚方向の平均温度は、板厚、表面温度および冷却条件等から、シミュレーション計算等により求められる。例えば、差分法を用い、板厚方向の温度分布を計算することにより、鋼板の板厚方向の平均温度が求められる。
本発明の構造管用厚肉鋼板は、上記成分組成を有する鋼素材を、次の(1)〜(3)の工程で順次処理することによって製造できる。また、さらに任意に(4)の工程を行うこともできる。
(1)上記鋼素材を加熱温度:1100〜1300℃まで加熱する加熱工程、
(2)前記加熱工程において加熱された鋼素材を、800℃以下での累積圧下率:70%以上の条件で熱間圧延して鋼板とする熱間圧延工程、
(3)前記熱間圧延された鋼板を、冷却開始温度:650℃以上、冷却終了温度:400℃未満、平均冷却速度:5℃/s以上の条件で加速冷却する加速冷却工程、および
(4)前記加速冷却工程の後、ただちに0.5℃/s以上10℃/s以下の昇温速度で400〜550℃まで再加熱を行う再加熱工程。
上記各工程は、具体的には以下に述べるように行うことができる。
[鋼素材]
上記鋼素材は、常法にしたがって溶製することができる。鋼素材の製造方法は特に限定されないが、連続鋳造法によって製造することが好ましい。
[加熱工程]
上記鋼素材は、圧延に先立って加熱される。その際の加熱温度は、1100〜1300℃とする。加熱温度を1100℃以上とすることにより鋼素材中の炭化物を固溶して、目標とする強度を確保することができる。なお、前記加熱温度は、1120℃以上であることが好ましい。一方、加熱温度が1300℃を超えるとオーステナイト粒が粗大化し、最終的な鋼組織も粗大化して靭性が劣化するので、加熱温度は1300℃以下とする。なお、前記加熱温度は、1250℃以下とすることが好ましい。
[熱間圧延工程]
次に、上記加熱工程において加熱された鋼素材を圧延する。その際、800℃以下における累積圧下率が70%未満であると、圧延後の鋼板板厚中心部におけるミクロ組織を最適化できず、シャルピー特性を確保できない。そのため、800℃以下での累積圧下率を70%以上とする。なお、800℃以下での累積圧下率の上限は特に限定されないが、通常は、90%以下である。圧延終了温度は、特に限定されないが、800℃以下における累積圧下率を上記の通りに確保する観点から780℃以下であることが好ましく、760℃以下であることがさらに好ましい。また、冷却開始温度を後述の通りに確保する観点から、圧延終了温度を700℃以上とすることが好ましく、720℃以上とすることがさらに好ましい。
[加速冷却工程]
熱間圧延工程終了後、該熱間圧延工程で得られた鋼板を加速冷却する。その際、加速冷却の開始温度が650℃未満であると、フェライトが50%以上に増加し、強度低下が大きい。そのため、冷却開始温度は650℃以上とする。なお、冷却開始温度は、所定量のフェライト分率を確保する観点から680℃以上とすることが好ましい。一方、冷却開始温度の上限は、特に限定されないが、780℃以下とすることが好ましい。
また、冷却終了温度が高すぎるとベイナイトへの変態が十分に進まず、パーライトまたは島状マルテンサイトが多量に生成し、靭性に悪影響を及ぼすおそれがあるため、冷却終了温度は400℃未満とする。なお、冷却終了温度の下限は特に限定されないが、200℃以上とすることが好ましい。
また、冷却速度が小さすぎるとベイナイトへの変態が十分に進まず、パーライトが多量に生成し、靭性に悪影響を及ぼすおそれがあるため、平均冷却速度は5℃/s以上とする。なお、平均冷却速度の上限は特に限定されないが、25℃/s以下とすることが好ましい。
[再加熱工程]
上記加速冷却終了後、再加熱を行ってもよい。加速冷却終了温度が低く、マルテンサイトなどベイナイト以外の低温変態組織が多量に生成した場合でも、再加熱を実施して焼きもどし処理をすれば、所定の靭性を確保することができる。再加熱を行う場合、加速冷却工程の後、ただちに0.5℃/s以上10℃/s以下の昇温速度で400〜550℃まで再加熱を行う。ここで、「加速冷却後ただちに」とは、加速冷却終了後、120秒以内に0.5℃/s以上10℃/s以下の昇温速度での再加熱を開始することをいう。
以上の工程により、API X80グレード以上の高い強度を有し、板厚中心部のシャルピー特性に優れた構造管用厚肉鋼板を製造することができる。なお、上述した通り本発明の構造管用厚肉鋼板は38mm以上の板厚を有するものとする。板厚の上限は特に限定されないが、板厚が60mmを超えると、本発明の製造条件を満足させることが難しくなる可能性があるので、板厚は60mm以下とすることが好ましい。
[鋼管]
上記のようにして得られた鋼板を素材として用いて、鋼管を製造することができる。前記鋼管は、例えば、上記構造管用厚肉鋼板が長手方向に筒状に成形され、突き合わせ部が溶接された構造管とすることができる。鋼管の製造方法としては、特に限定されることなく、任意の方法を用いることができる。例えば、鋼板を常法に従ってUプレスおよびOプレスで鋼板長手方向に筒状とした後、突き合わせ部をシーム溶接してUOE鋼管とすることができる。前記シーム溶接は、仮付溶接後、内面、外面を1層ずつサブマージアーク溶接で行うことが好ましい。サブマージアーク溶接に用いられるフラックスは特に制限はなく、溶融型フラックスであっても焼成型フラックスであってもかまわない。シーム溶接を行った後、溶接残留応力の除去と鋼管真円度の向上のため、拡管を実施する。拡管工程において拡管率(拡管前の管の外径に対する拡管前後の外径変化量の比)は、通常、0.3%〜1.5%の範囲で実施される。真円度改善効果と拡管装置に要求される能力とのバランスの観点から、拡管率は0.5%〜1.2%の範囲であることが好ましい。上述のUOEプロセスの代わりに、鋼板に三点曲げを繰り返すことにより逐次成形するプレスペンド法により、ほぼ円形の断面形状を有する鋼管を製造した後に、上述のUOEプロセスと同様にシーム溶接を実施してもよい。プレスペンド法の場合も、UOEプロセスの場合と同様、シーム溶接を行った後、拡管を行ってもよい。拡管工程において拡管率(拡管前の管の外径に対する拡管前後の外径変化量の比)は、通常、0.3%〜1.5%の範囲で実施される。真円度改善効果と拡管装置に要求される能力とのバランスの観点から、拡管率は0.5%〜1.2%の範囲であることが好ましい。また、必要に応じ、溶接前の予熱や溶接後の熱処理を行うこともできる。
表1に示す成分組成(残部はFeおよび不可避的不純物)の鋼を溶製し、連続鋳造法によりスラブとした。得られたスラブを素材として使用し、表2に示す条件で板厚38〜51mmの厚肉鋼板を製造した。得られた鋼板のそれぞれについて、以下に述べる方法により、ミクロ組織に占めるフェライトとベイナイトの面積分率と機械的特性を評価した。評価結果を表3に示す。
フェライトとベイナイトの面積分率は、板厚中心位置から採取した試料を鏡面研磨し、ナイタール腐食した面について、走査型電子顕微鏡(倍率1000倍)でランダムに5視野以上観察を行って評価した。
機械的特性のうち、0.5%耐力(YS)と引張強さ(TS)は、得られた厚肉鋼板から圧延垂直方向の全厚試験片を採取し、JIS Z 2241(1998)の規定に準拠して引張試験を実施して測定した。
機械的特性のうち、シャルピー特性については、板厚中心部より、圧延方向を長手方向とする2mmVノッチシャルピー試験片を各3本ずつ採取し、各試験片について−20℃でシャルピー衝撃試験により吸収エネルギー(vE-20℃)を測定し、それらの平均値を求めた。
また、溶接熱影響部(HAZ)靭性を評価するために、再現熱サイクル装置によって入熱40kJ/cm〜100kJ/cmに相当する熱履歴を加えた試験片を作製し、得られた試験片を用いてシャルピー衝撃試験を行った。上述した−20℃におけるシャルピー吸収エネルギーの評価と同様の方法で測定を行い、得られた−20℃でのシャルピー吸収エネルギーが100J以上の物を良好(○)、100J未満のものを不良(×)とした。
さらに、耐PWHT特性を評価するために、ガス雰囲気炉を用いて各鋼板のPWHT処理を行った。このときの熱処理条件は600℃で2時間とし、その後、鋼板を炉から取り出し、空冷によって室温まで冷却した。得られたPWHT処理後の鋼板それぞれについて、上述のPWHT前の測定と同様の方法で0.5%YS、TS、およびvE-20℃を測定した。
表3に示したように、本発明の条件を満たす発明例(No.1〜7)は、PWTH前と後のいずれにおいても優れた機械的特性を備えていた。一方、本発明の条件を満たさない比較例(No.8〜18)においては、PWTH前と後の一方または両方において機械的特性が劣っていた。例えば、No.8〜12は、鋼の成分組成が本発明の条件を満たしているが、母材の強度やシャルピー特性が劣っている。そのうちNo.9は、800℃以下における累積圧下率が低いため、結晶粒径が15μm以下のフェライトの面積分率が低くなり、その結果、シャルピー特性が低下したものと考えられる。また、No.10は、鋼板ミクロ組織中のフェライト面積分率が50%を超えており、その結果、母材強度が低下したと考えられる。No.13〜18は鋼の化学成分が本発明の範囲外であるため、十分な母材強度、シャルピー特性、HAZ靭性の少なくとも一つが劣っていた。
Figure 2016152170
Figure 2016152170
Figure 2016152170
本発明によれば、API X80グレード以上、板厚38mm以上の高強度鋼板であって、多量の合金元素の添加なしに、圧延方向の高強度を有しながら板厚中心部のシャルピー特性に優れた構造管用厚肉鋼板および前記構造管用厚肉鋼板を用いた構造管を提供することができる。前記構造管は、PWHT後においても優れた機械的特性を維持しているため、コンダクターケーシング鋼管やライザー鋼管等の構造管として極めて有用である。

Claims (7)

  1. 構造管用厚肉鋼板であって、
    質量%で、
    C :0.030〜0.100%、
    Si:0.01〜0.50%、
    Mn:1.50〜2.50%、
    Al:0.080%以下、
    Mo:0.05〜0.50%、
    Ti:0.005〜0.025%、
    Nb:0.005〜0.080%、
    N :0.001〜0.010%、
    O :0.0050%以下、
    P :0.010%以下、および
    S :0.0010%以下、を含有し、
    残部Feおよび不可避不純物からなり、かつ
    下記(1)式で定義される炭素当量Ceqが0.42以上である成分組成を有し、
    フェライトとベイナイトの2相組織からなり、フェライトの面積分率が50%未満であり、かつ、結晶粒径が15μm以下のフェライト粒がフェライト全体に対して80パーセント以上の面積分率を占める、板厚中心部におけるミクロ組織を有し、
    引張強さが620MPa以上、板厚中心部の−20℃におけるシャルピー吸収エネルギーvE-20℃が100J以上である、構造管用厚肉鋼板。

    eq=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5・・・(1)
    (ここで、(1)式中の元素記号は、前記鋼板中における各元素の含有量を質量%で表した値を表し、該鋼板中に当該元素が含有されない場合には0とする)
  2. さらに、前記成分組成が、質量%で、
    V :0.005〜0.100%、を含有する、請求項1に記載の構造管用厚肉鋼板。
  3. さらに、前記成分組成が、質量%で、
    Cu:0.50%以下、
    Ni:0.50%以下、
    Cr:0.50%以下、
    Ca:0.0005〜0.0035%、
    REM:0.0005〜0.0100%、および
    B :0.0020%以下からなる群より選択される1種または2種以上を含有する、請求項1または2に記載の構造管用厚肉鋼板。
  4. 請求項1〜3のいずれか一項に記載の成分組成を有する鋼素材を、加熱温度:1100〜1300℃まで加熱する加熱工程と、
    前記加熱工程において加熱された鋼素材を、800℃以下での累積圧下率:70%以上の条件で熱間圧延して鋼板とする熱間圧延工程と、
    前記熱間圧延された鋼板を、冷却開始温度:650℃以上、冷却終了温度:400℃未満、平均冷却速度:5℃/s以上の条件で加速冷却する加速冷却工程とを、少なくとも有する、構造管用厚肉鋼板の製造方法。
  5. 前記加速冷却工程の後、ただちに0.5℃/s以上10℃/s以下の昇温速度で400〜550℃まで再加熱を行う再加熱工程をさらに有する、請求項4に記載の構造管用厚肉鋼板の製造方法。
  6. 請求項1〜3のいずれか一項に記載の構造管用厚肉鋼板からなる構造管。
  7. 請求項1〜3のいずれか一項に記載の構造管用厚肉鋼板を長手方向に筒状に成形した後、突合せ部を内外面からいずれも少なくとも1層ずつ長手方向に溶接して得た構造管。
JP2017507510A 2015-03-26 2016-03-25 構造管用厚肉鋼板、構造管用厚肉鋼板の製造方法、および構造管 Active JP6256652B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015001750 2015-03-26
JPPCT/JP2015/001750 2015-03-26
PCT/JP2016/001763 WO2016152170A1 (ja) 2015-03-26 2016-03-25 構造管用厚肉鋼板、構造管用厚肉鋼板の製造方法、および構造管

Publications (2)

Publication Number Publication Date
JPWO2016152170A1 true JPWO2016152170A1 (ja) 2017-06-22
JP6256652B2 JP6256652B2 (ja) 2018-01-10

Family

ID=56978030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017507510A Active JP6256652B2 (ja) 2015-03-26 2016-03-25 構造管用厚肉鋼板、構造管用厚肉鋼板の製造方法、および構造管

Country Status (8)

Country Link
US (1) US11555233B2 (ja)
EP (1) EP3276024B1 (ja)
JP (1) JP6256652B2 (ja)
KR (1) KR102119561B1 (ja)
CN (1) CN107406946B (ja)
CA (1) CA2980247C (ja)
RU (1) RU2677554C1 (ja)
WO (1) WO2016152170A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6245352B2 (ja) * 2014-03-31 2017-12-13 Jfeスチール株式会社 高張力鋼板およびその製造方法
EP3276032B1 (en) 2015-03-27 2019-05-08 JFE Steel Corporation High-strength steel, production method therefor, steel pipe, and production method therefor
KR101988771B1 (ko) * 2017-12-22 2019-09-30 주식회사 포스코 수소유기균열 저항성 및 길이방향 강도 균일성이 우수한 강판 및 그 제조방법
WO2020039979A1 (ja) * 2018-08-23 2020-02-27 Jfeスチール株式会社 熱延鋼板およびその製造方法
CN109112402B (zh) * 2018-09-04 2020-10-27 鞍钢股份有限公司 Vc纳米颗粒强化x80塑性管用钢板及其制造方法
JP7216902B2 (ja) * 2018-10-10 2023-02-02 日本製鉄株式会社 油井用電縫鋼管およびその製造方法
JP7200588B2 (ja) * 2018-10-11 2023-01-10 日本製鉄株式会社 油井用電縫鋼管およびその製造方法
KR102610377B1 (ko) * 2019-02-20 2023-12-06 제이에프이 스틸 가부시키가이샤 각형 강관 및 그 제조 방법, 그리고 건축 구조물
US20220220574A1 (en) * 2019-03-28 2022-07-14 Jfe Steel Corporation Steel material for line pipes, method for producing the same, line pipe, and method for producing the line pipe
RU2709071C1 (ru) * 2019-09-30 2019-12-13 Акционерное общество "Выксунский металлургический завод" (АО "ВМЗ") Способ производства толстолистового проката с повышенной деформационной способностью (варианты)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014043627A (ja) * 2012-08-28 2014-03-13 Nippon Steel & Sumitomo Metal ポリオレフィン被覆uoe鋼管及びその製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1146784A (zh) 1995-01-26 1997-04-02 新日本制铁株式会社 低温韧性优良的可焊性高强度钢
RU2136775C1 (ru) 1995-01-26 1999-09-10 Ниппон Стил Корпорейшн Высокопрочная свариваемая сталь и ее варианты
JPH10237583A (ja) * 1997-02-27 1998-09-08 Sumitomo Metal Ind Ltd 高張力鋼およびその製造方法
JP3558198B2 (ja) 1997-08-05 2004-08-25 住友金属工業株式会社 高温sr特性に優れた高強度ライザー鋼管
JP2001158939A (ja) 1999-12-03 2001-06-12 Nkk Corp 耐sr特性に優れた高強度高靭性鋼管
JP3869747B2 (ja) * 2002-04-09 2007-01-17 新日本製鐵株式会社 変形性能に優れた高強度鋼板、高強度鋼管および製造方法
JP4205922B2 (ja) * 2002-10-10 2009-01-07 新日本製鐵株式会社 変形性能および低温靱性ならびにhaz靱性に優れた高強度鋼管およびその製造方法
JP4696615B2 (ja) 2005-03-17 2011-06-08 住友金属工業株式会社 高張力鋼板、溶接鋼管及びそれらの製造方法
CN100513611C (zh) 2005-03-31 2009-07-15 杰富意钢铁株式会社 高强度厚钢板及其制造方法、以及高强度钢管
JP4997805B2 (ja) 2005-03-31 2012-08-08 Jfeスチール株式会社 高強度厚鋼板およびその製造方法、ならびに高強度鋼管
JP4510680B2 (ja) * 2005-04-01 2010-07-28 新日本製鐵株式会社 時効後の変形特性に優れたパイプライン用高強度鋼管およびその製造方法
BRPI0617763A2 (pt) 2005-10-24 2011-08-02 Exxonmobil Upstream Res Co aço de fase dupla de resistência elevada com razão de deformação baixa, alta dureza e capacidade de fundição superior
JP4977876B2 (ja) * 2007-03-30 2012-07-18 Jfeスチール株式会社 母材および溶接部靱性に優れた超高強度高変形能溶接鋼管の製造方法
JP5217556B2 (ja) * 2007-08-08 2013-06-19 Jfeスチール株式会社 耐座屈性能及び溶接熱影響部靭性に優れた低温用高強度鋼管およびその製造方法
CN102666898A (zh) 2009-11-25 2012-09-12 杰富意钢铁株式会社 高压缩强度优异的管线管用焊接钢管及其制造方法
JP5516785B2 (ja) 2012-03-29 2014-06-11 Jfeスチール株式会社 低降伏比高強度鋼板およびその製造方法並びにそれを用いた高強度溶接鋼管
CA2980424C (en) * 2015-03-26 2020-03-10 Jfe Steel Corporation Thick steel plate for structural pipes or tubes, method of producing thick steel plate for structural pipes or tubes, and structural pipes and tubes

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014043627A (ja) * 2012-08-28 2014-03-13 Nippon Steel & Sumitomo Metal ポリオレフィン被覆uoe鋼管及びその製造方法

Also Published As

Publication number Publication date
EP3276024A4 (en) 2018-01-31
KR20170128570A (ko) 2017-11-22
CN107406946A (zh) 2017-11-28
US20180320257A9 (en) 2018-11-08
CN107406946B (zh) 2020-01-24
RU2677554C1 (ru) 2019-01-17
CA2980247A1 (en) 2016-09-29
CA2980247C (en) 2021-06-22
KR102119561B1 (ko) 2020-06-05
JP6256652B2 (ja) 2018-01-10
EP3276024A1 (en) 2018-01-31
US20180105907A1 (en) 2018-04-19
EP3276024B1 (en) 2020-06-17
WO2016152170A1 (ja) 2016-09-29
US11555233B2 (en) 2023-01-17

Similar Documents

Publication Publication Date Title
JP6256652B2 (ja) 構造管用厚肉鋼板、構造管用厚肉鋼板の製造方法、および構造管
JP6256654B2 (ja) 構造管用厚肉鋼板、構造管用厚肉鋼板の製造方法、および構造管
JP5516784B2 (ja) 低降伏比高強度鋼板およびその製造方法並びにそれを用いた高強度溶接鋼管
JP5516785B2 (ja) 低降伏比高強度鋼板およびその製造方法並びにそれを用いた高強度溶接鋼管
JP6256653B2 (ja) 構造管用鋼板、構造管用鋼板の製造方法、および構造管
JP2011094230A (ja) 低降伏比高強度高一様伸び鋼板及びその製造方法
JP2013204103A (ja) 耐座屈性能に優れた低温用高強度溶接鋼管とその製造方法および耐座屈性能に優れた低温用高強度溶接鋼管用鋼板の製造方法
JP6256655B2 (ja) 構造管用鋼板、構造管用鋼板の製造方法、および構造管
JP2015189984A (ja) 低降伏比高強度高靭性鋼板、低降伏比高強度高靭性鋼板の製造方法および鋼管

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171120

R150 Certificate of patent or registration of utility model

Ref document number: 6256652

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250