JPWO2016121651A1 - PHOTOSENSITIVE COMPOSITE MATERIAL AND METHOD FOR PRODUCING THE SAME - Google Patents

PHOTOSENSITIVE COMPOSITE MATERIAL AND METHOD FOR PRODUCING THE SAME Download PDF

Info

Publication number
JPWO2016121651A1
JPWO2016121651A1 JP2016571995A JP2016571995A JPWO2016121651A1 JP WO2016121651 A1 JPWO2016121651 A1 JP WO2016121651A1 JP 2016571995 A JP2016571995 A JP 2016571995A JP 2016571995 A JP2016571995 A JP 2016571995A JP WO2016121651 A1 JPWO2016121651 A1 JP WO2016121651A1
Authority
JP
Japan
Prior art keywords
composite material
light
photosensitive composite
compound
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016571995A
Other languages
Japanese (ja)
Other versions
JP6449340B2 (en
Inventor
貴広 山本
貴広 山本
友紀 川田
友紀 川田
秀元 木原
秀元 木原
直文 永
直文 永
陸央 長谷川
陸央 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Publication of JPWO2016121651A1 publication Critical patent/JPWO2016121651A1/en
Application granted granted Critical
Publication of JP6449340B2 publication Critical patent/JP6449340B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/10Adhesives in the form of films or foils without carriers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/22Compounds containing nitrogen bound to another nitrogen atom
    • C08K5/23Azo-compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesive Tapes (AREA)

Abstract

粘接着剤として繰返し使用できる材料を提供する。光感応性複合材料は、高分子化合物と、液晶化合物と、光応答性化合物とを含有する。光応答性化合物は、紫外光と可視光の照射によって分子形状が可逆的に変化する。光感応性複合材料は、紫外光照射によってガラス転移温度が降下し、紫外光照射によって降下したガラス転移温度が可視光照射によって上昇する。高分子化合物の質量が光感応性複合材料全体の質量の40%〜60%であり、液晶化合物の質量と光応答性化合物の質量の和に対する光応答性化合物の質量が2%〜100%であることが好ましい。光応答性化合物として、アゾベンゼン誘導体が使用できる。A material that can be used repeatedly as an adhesive is provided. The photosensitive composite material contains a polymer compound, a liquid crystal compound, and a photoresponsive compound. The photoresponsive compound reversibly changes its molecular shape upon irradiation with ultraviolet light and visible light. In the photosensitive composite material, the glass transition temperature is lowered by ultraviolet light irradiation, and the glass transition temperature lowered by the ultraviolet light irradiation is increased by visible light irradiation. The mass of the polymer compound is 40% to 60% of the total mass of the photosensitive composite material, and the mass of the photoresponsive compound relative to the sum of the mass of the liquid crystal compound and the mass of the photoresponsive compound is 2% to 100%. Preferably there is. An azobenzene derivative can be used as the photoresponsive compound.

Description

本発明は、粘接着フィルム、自己修復塗料、および自己修復フィルムなどの用途に適した光感応性複合材料に関するものである。   The present invention relates to a light-sensitive composite material suitable for uses such as an adhesive film, a self-healing paint, and a self-healing film.

2つの物体を接着する粘着剤は、流動しないことが大きな特徴の1つである。このため、粘着剤を用いれば鉛直面や天井面に物体を接着できる。しかしながら、粘着剤は軟らかい材料から構成されているため、硬い材料から構成されている接着剤と比べると、せん断方向の力に対する強度が劣ることが多い。このような技術的背景から、従来の粘着剤の欠点を補うために、貼付時には粘着剤の簡便性を有し、貼付後に熱や光の作用により硬化して接着剤となるいわゆる「粘接着剤」が接着剤の理想形として注目されている。   One of the major features of the adhesive that bonds two objects is that they do not flow. For this reason, if an adhesive is used, an object can be adhere | attached on a vertical surface or a ceiling surface. However, since the pressure-sensitive adhesive is made of a soft material, the strength against the force in the shearing direction is often inferior to an adhesive made of a hard material. From such a technical background, in order to make up for the drawbacks of conventional pressure-sensitive adhesives, the adhesive has the convenience of sticking at the time of sticking and is cured by the action of heat or light after sticking to become an adhesive. "Agent" is attracting attention as an ideal form of adhesive.

粘接着剤用の熱硬化型組成物としては、1分子中に2以上のエポキシ基を有するエポキシ樹脂と、硬化剤として特定の固体状トリアジン誘導体と、イオン性液体とを含む組成物が知られている(特許文献1)。また、粘接着剤用の光硬化型組成物としては、マレイミド基およびエチレン性不飽和基を含有する化合物と、エチレン性不飽和基を含有する化合物と、光重合開始剤とを含む組成物が知られている(特許文献2)。これらの材料は、いずれも粘接着剤として良好な特性を発揮するが、熱や光の作用により粘接着剤を一度硬化させると、被着体同士が剥離した後に粘接着剤として再使用できないという課題があった。   As a thermosetting composition for an adhesive, a composition containing an epoxy resin having two or more epoxy groups in one molecule, a specific solid triazine derivative as a curing agent, and an ionic liquid is known. (Patent Document 1). Moreover, as a photocurable composition for adhesives, a composition containing a compound containing a maleimide group and an ethylenically unsaturated group, a compound containing an ethylenically unsaturated group, and a photopolymerization initiator. Is known (Patent Document 2). These materials all exhibit good properties as an adhesive, but once the adhesive is cured by the action of heat or light, the adherends are peeled off and then reused as an adhesive. There was a problem that it could not be used.

特開2012−229371号公報JP 2012-229371 A 特開2009−127023号公報JP 2009-127023 A

本発明は、材料の硬さを可逆的に変えることによって、粘接着剤として繰返し使用できる光感応性複合材料を提供することを目的とする。   An object of the present invention is to provide a photosensitive composite material that can be repeatedly used as an adhesive by reversibly changing the hardness of the material.

本発明者は、高分子化合物と、液晶化合物と、光応答性化合物とを含有する光感応性複合材料に異なる波長の光を照射することによってガラス転移温度が変化し、この光感応性複合材料の硬さを可逆的に変えられることを見出した。光感応性複合材料のガラス転移温度の変化は、光照射による光応答性材料の分子形状の変化に伴うものである。光感応性複合材料の硬さが可逆的に変化するので、この光感応性複合材料は、粘着と接着の機能を備え、かつ繰返し使用できる。   The present inventor changed the glass transition temperature by irradiating light-sensitive composite materials containing a polymer compound, a liquid crystal compound, and a photo-responsive compound with light of different wavelengths, and this photo-sensitive composite material. It was found that the hardness of can be reversibly changed. The change in the glass transition temperature of the photosensitive composite material is accompanied by the change in the molecular shape of the photoresponsive material due to light irradiation. Since the hardness of the light-sensitive composite material reversibly changes, the light-sensitive composite material has a function of adhesion and adhesion and can be used repeatedly.

本発明の光感応性複合材料は、高分子化合物と、高分子化合物中に粒状で分散している液晶化合物と、異なる波長の光の照射によって分子形状が可逆的に変化する光応答性化合物とを含有する。本発明の光感応性複合材料において、高分子化合物の溶解度パラメーターと液晶化合物の溶解度パラメーターとの差が10以内であることが好ましい。また、本発明の光感応性複合材料において、光応答性化合物がアゾベンゼン誘導体であってもよい。また、本発明の光感応性複合材料において、高分子化合物の質量が全体の質量の40%〜60%であることが好ましい。   The photosensitive composite material of the present invention includes a polymer compound, a liquid crystal compound dispersed in a granular form in the polymer compound, a photoresponsive compound whose molecular shape is reversibly changed by irradiation with light of different wavelengths, and Containing. In the light-sensitive composite material of the present invention, the difference between the solubility parameter of the polymer compound and the solubility parameter of the liquid crystal compound is preferably 10 or less. In the light-sensitive composite material of the present invention, the photoresponsive compound may be an azobenzene derivative. In the photosensitive composite material of the present invention, the mass of the polymer compound is preferably 40% to 60% of the total mass.

本発明の光感応性複合材料において、液晶化合物の質量と光応答性化合物の質量の和に対する光応答性化合物の質量が2%〜100%であることが好ましい。また、本発明の光感応性複合材料において、異なる波長の光が紫外光と可視光であり、紫外光照射によってガラス転移温度が降下し、紫外光照射によって降下したガラス転移温度が可視光照射によって上昇することが好ましい。   In the photosensitive composite material of the present invention, the mass of the photoresponsive compound relative to the sum of the mass of the liquid crystal compound and the mass of the photoresponsive compound is preferably 2% to 100%. Further, in the light-sensitive composite material of the present invention, light of different wavelengths is ultraviolet light and visible light, the glass transition temperature is lowered by ultraviolet light irradiation, and the glass transition temperature lowered by ultraviolet light irradiation is reduced by visible light irradiation. It is preferable to rise.

本発明の光感応性複合材料フィルムは、本発明の光感応性複合材料をフィルム状に成形したものである。本発明の光感応性複合材料フィルムは、装飾品を爪に貼り付けるための接着フィルムとして使用できる。   The photosensitive composite material film of the present invention is obtained by forming the photosensitive composite material of the present invention into a film shape. The photosensitive composite material film of the present invention can be used as an adhesive film for attaching a decorative article to a nail.

本発明の光感応性複合材料の製造方法は、高分子化合物と、高分子化合物中に粒状で分散している液晶化合物と、異なる波長の光の照射によって分子形状が可逆的に変化する光応答性化合物とを含有する光感応性複合材料の製造方法であって、高分子化合物と、液晶化合物と、光応答性化合物とを揮発性の有機溶媒に溶解する溶解工程と、溶解工程の後、有機溶媒を除去する溶媒除去工程とを有する。   The method for producing a photosensitive composite material of the present invention includes a polymer compound, a liquid crystal compound dispersed in a granular form in the polymer compound, and an optical response in which the molecular shape reversibly changes by irradiation with light of different wavelengths. A method for producing a light-sensitive composite material containing a photosensitive compound, wherein a polymer compound, a liquid crystal compound, and a photoresponsive compound are dissolved in a volatile organic solvent, and after the dissolution step, A solvent removal step of removing the organic solvent.

本発明の光感応性複合材料の損傷部位または切断部位の修復方法は、高分子化合物と、高分子化合物中に粒状で分散している液晶化合物と、紫外光と可視光の照射によって分子形状が可逆的に変化する光応答性化合物とを含有する光感応性複合材料の損傷部位または切断部位の修復方法であって、光感応性複合材料の損傷部位または切断部位に紫外光を照射して、損傷部位を軟化または切断部位を粘着させる復元工程と、復元工程の後、損傷部位または切断部位に可視光を照射して、損傷部位または切断部位を硬化させる硬化工程とを有する。   The method for repairing damaged or cut sites of the photosensitive composite material according to the present invention comprises a polymer compound, a liquid crystal compound dispersed in a granular form in the polymer compound, and a molecular shape by irradiation with ultraviolet light and visible light. A method for repairing a damaged or cut site of a photosensitive composite material comprising a photoreactive compound that reversibly changes, wherein the damaged or cut site of the photosensitive composite material is irradiated with ultraviolet light, It has a restoration process for softening the damaged site or sticking the cut site, and a curing step for irradiating the damaged site or the cut site with visible light and curing the damaged site or the cut site after the restoration step.

本発明の光感応性複合材料フィルムの使用方法は、高分子化合物と、高分子化合物中に粒状で分散している液晶化合物と、紫外光と可視光の照射によって分子形状が可逆的に変化する光応答性化合物とを含有する光感応性複合材料フィルムの使用方法であって、光感応性複合材料フィルムに紫外光を照射して、光感応性複合材料フィルムを軟化させる軟化工程と、軟化した光感応性複合材料フィルムを、被接着物に押し付ける押圧工程と、被接着物に押し付けられた光感応性複合材料フィルムに接着物を貼り付ける貼付工程と、貼付工程の後、光感応性複合材料フィルムに可視光を照射して、光感応性複合材料フィルムを硬化させる硬化工程とを有する。   The method of using the light-sensitive composite film of the present invention is such that the molecular shape is reversibly changed by irradiation with ultraviolet light and visible light, a polymer compound, a liquid crystal compound dispersed in a granular form in the polymer compound, and ultraviolet light and visible light. A method for using a light-sensitive composite film containing a photoresponsive compound, wherein the light-sensitive composite film is softened by irradiating the light-sensitive composite film with ultraviolet light and softening the light-sensitive composite film. Pressing process for pressing the photosensitive composite material film against the object to be adhered, a pasting process for pasting the adhesive onto the light sensitive composite film pressed against the object to be adhered, and a photosensitive composite material after the pasting process A curing step of irradiating the film with visible light to cure the photosensitive composite material film.

本発明によれば、粘接着剤として繰返し使用できる光感応性複合材料が得られる。   According to the present invention, a photosensitive composite material that can be used repeatedly as an adhesive is obtained.

光感応性複合材料1の動的粘弾性測定結果を示すグラフ。The graph which shows the dynamic viscoelasticity measurement result of the photosensitive composite material 1. FIG. 光感応性複合材料1を用いて作製したフィルムの画像。The image of the film produced using the photosensitive composite material 1. FIG. 光感応性複合材料1の引張せん断試験結果を示すグラフ。The graph which shows the tensile shear test result of the photosensitive composite material 1. FIG. 光感応性複合材料1の自己修復の様子を示す画像。The image which shows the mode of the self-repair of the photosensitive composite material 1. FIG. 光感応性複合材料1の凹み修復特性の評価結果を示すグラフ。The graph which shows the evaluation result of the dent repair characteristic of the photosensitive composite material 1. FIG. 光感応性複合材料2の動的粘弾性測定結果を示すグラフ。The graph which shows the dynamic-viscoelasticity measurement result of the photosensitive composite material 2. FIG. 光感応性複合材料2を用いて作製したフィルムの画像。The image of the film produced using the photosensitive composite material 2. FIG. 光感応性複合材料2の引張せん断試験結果を示すグラフ。The graph which shows the tensile shear test result of the photosensitive composite material 2. FIG. 光感応性複合材料3の動的粘弾性測定結果を示すグラフ。The graph which shows the dynamic viscoelasticity measurement result of the photosensitive composite material 3. FIG. 光感応性複合材料3を用いて作製したフィルムの画像。The image of the film produced using the photosensitive composite material 3. FIG. 光感応性複合材料3の引張せん断試験結果を示すグラフ。The graph which shows the tensile shear test result of the photosensitive composite material 3. FIG. 人工爪の表面に光感応性複合材料3のフィルムを設けたときの画像。An image when a film of the photosensitive composite material 3 is provided on the surface of the artificial nail. 人工爪の表面に設けた光感応性複合材料3のフィルムに装飾品を貼り付けたときの画像。An image when an ornament is pasted on the film of the photosensitive composite material 3 provided on the surface of the artificial nail.

本発明の光感応性複合材料は、高分子化合物と、液晶化合物と、光応答性化合物とを含有している。液晶化合物は、高分子化合物中に粒状で分散している。すなわち、光感応性複合材料中で高分子化合物がスポンジ状構造を形成し、この構造の空孔に液晶化合物が存在している。光応答性化合物は、異なる波長の光の照射によって分子形状が可逆的に変化する。本発明の光感応性複合材料に光を照射すると、光応答性化合物の分子形状が変化し、これに伴って光感応性複合材料のガラス転移温度が変化する。   The photosensitive composite material of the present invention contains a polymer compound, a liquid crystal compound, and a photoresponsive compound. The liquid crystal compound is dispersed in a granular form in the polymer compound. That is, the polymer compound forms a sponge-like structure in the photosensitive composite material, and the liquid crystal compound is present in the pores of this structure. The photoresponsive compound reversibly changes its molecular shape when irradiated with light of different wavelengths. When the light-sensitive composite material of the present invention is irradiated with light, the molecular shape of the photoresponsive compound changes, and the glass transition temperature of the light-sensitive composite material changes accordingly.

したがって、例えば、室温で硬い光感応性複合材料に、波長Aの光を照射することによって光感応性複合材料のガラス転移温度が降下し室温で柔らかくなれば、粘着性を示す。そして、この柔らかい状態の光感応性複合材料を介して被着物同士を粘着させた後に、波長Aと異なる波長Bの光を照射することによって光感応性複合材料のガラス転移温度が上昇し室温で硬くなれば、被着物同士が接着した状態となる。   Therefore, for example, if light sensitive composite material that is hard at room temperature is irradiated with light of wavelength A, the glass transition temperature of the light sensitive composite material is lowered and becomes soft at room temperature. And after adhering adherends through this soft photosensitive composite material, the glass transition temperature of the photosensitive composite material rises by irradiating light of a wavelength B different from the wavelength A, and at room temperature. If it becomes hard, it will be in the state which adherends adhered.

その後、再び光感応性複合材料に波長Aの光を照射することによって光感応性複合材料が柔らかくなり、被着物同士を剥離できる。このように、本発明の光感応性複合材料では、波長Aと波長Bの光の照射によって、室温で柔らかい状態と硬い状態とを可逆的に変えられる。したがって、本発明の光感応性複合材料は、粘接着剤として繰返し使用できる。また、本発明の光感応性複合材料は、高分子化合物を含むためフィルム状に成形できる。フィルムへの成形方法については後述する。   Thereafter, the light-sensitive composite material is softened by irradiating the light-sensitive composite material with light of wavelength A, and the adherends can be peeled off. As described above, in the photosensitive composite material of the present invention, the soft state and the hard state can be reversibly changed at room temperature by irradiation with light of wavelength A and wavelength B. Therefore, the photosensitive composite material of the present invention can be repeatedly used as an adhesive. Moreover, since the photosensitive composite material of this invention contains a high molecular compound, it can be shape | molded in a film form. A method for forming the film will be described later.

本発明では、高分子化合物として一般的な高分子化合物を使用することができる。具体的には、アクリル系ポリマー、メタクリル系ポリマー、スチレン系ポリマー、オレフィン系ポリマー、ビニル系ポリマーなどである。これらの高分子化合物は、単独で使用してもよいし、2種類以上を併用してもよい。また、上記高分子化合物が化学的に架橋された架橋高分子化合物も使用することができる。本発明では、高分子化合物の重量平均分子量が20000以上であることが好ましい。高分子化合物の重量平均分子量が低過ぎると、高分子化合物同士の良好な絡み合いが起きず、粘着性と接着性が低下するからである。   In the present invention, a general polymer compound can be used as the polymer compound. Specific examples include acrylic polymers, methacrylic polymers, styrene polymers, olefin polymers, vinyl polymers, and the like. These polymer compounds may be used alone or in combination of two or more. A crosslinked polymer compound obtained by chemically crosslinking the polymer compound can also be used. In the present invention, the polymer compound preferably has a weight average molecular weight of 20000 or more. This is because when the weight average molecular weight of the polymer compound is too low, good entanglement between the polymer compounds does not occur and the tackiness and adhesiveness are lowered.

また、本発明では、高分子化合物の質量が光感応性複合材料全体の質量の40%〜90%であることが好ましく、40%〜60%であることがより好ましい。なお、本願で2つの数値の間に「〜」を記載して数値範囲を表す場合には、これらの2つの数値も数値範囲に含まれるものとする。光感応性複合材料中の高分子化合物の質量が少な過ぎると、光感応性複合材料中で高分子化合物と液晶化合物が分離しやすくなり、接着力が低下する。一方、光感応性複合材料中の高分子化合物の質量が多過ぎると、光感応性複合材料に光照射してもガラス転移温度があまり変化しないので、良好な粘着状態を得ることが難しい。   In the present invention, the mass of the polymer compound is preferably 40% to 90%, more preferably 40% to 60% of the total mass of the photosensitive composite material. In the present application, when “˜” is described between two numerical values to represent a numerical range, these two numerical values are also included in the numerical range. When the mass of the polymer compound in the photosensitive composite material is too small, the polymer compound and the liquid crystal compound are easily separated in the photosensitive composite material, and the adhesive force is reduced. On the other hand, if the mass of the polymer compound in the light-sensitive composite material is too large, the glass transition temperature does not change much even when the light-sensitive composite material is irradiated with light, so that it is difficult to obtain a good adhesive state.

本発明では、液晶化合物として一般的な液晶化合物を1種類または2種類以上使用することができる。液晶化合物は高分子化合物の可塑剤として機能しており、高分子化合物との組み合わせにより最適な液晶化合物が選択される。また、液晶化合物が高分子化合物中に粒状で分散しているため、光感応性複合材料中で高分子鎖同士が絡み合う。したがって、光感応性複合材料の硬さの指標である貯蔵弾性率G’が10Paオーダー以上となり、この光感応性複合材料は接着性が優れている。In the present invention, one or more common liquid crystal compounds can be used as the liquid crystal compound. The liquid crystal compound functions as a plasticizer for the polymer compound, and an optimal liquid crystal compound is selected depending on the combination with the polymer compound. In addition, since the liquid crystal compound is dispersed in a granular form in the polymer compound, the polymer chains are entangled in the photosensitive composite material. Therefore, the storage elastic modulus G ′, which is an index of the hardness of the photosensitive composite material, is on the order of 10 5 Pa or more, and this photosensitive composite material is excellent in adhesiveness.

一方、反対に高分子化合物が液晶化合物中に粒状で含まれる場合には、高分子鎖同士の絡み合いがなく、光感応性複合材料のG’は最高でも10Paオーダーである。このため、高分子化合物が液晶化合物中に粒状で含まれる光感応性複合材料は接着性が劣る。液晶化合物は室温で液晶相を示すことが好ましい。また、液晶化合物の質量が光感応性複合材料全体の10%〜60%であることが好ましく、40%〜60%であることがより好ましい。本発明で使用できる液晶化合物として、4−シアノ−4’−ペンチルビフェニルが挙げられる。On the other hand, when the polymer compound is included in the liquid crystal compound in a granular form, there is no entanglement between the polymer chains, and G ′ of the photosensitive composite material is on the order of 10 4 Pa at the maximum. For this reason, the photosensitive composite material in which the polymer compound is contained in a granular form in the liquid crystal compound has poor adhesion. The liquid crystal compound preferably exhibits a liquid crystal phase at room temperature. Further, the mass of the liquid crystal compound is preferably 10% to 60%, more preferably 40% to 60% of the entire photosensitive composite material. An example of a liquid crystal compound that can be used in the present invention is 4-cyano-4′-pentylbiphenyl.

光感応性複合材料中の液晶化合物の質量が多過ぎると、光感応性複合材料中で高分子化合物と液晶化合物が分離しやすくなり、接着力が低下する。一方、光感応性複合材料中の質量が少な過ぎると、光感応性複合材料に光照射してもガラス転移温度があまり降下せず、光感応性複合材料の硬さがあまり変化しない。このため、良好な粘着状態を得ることが難しい。   When the mass of the liquid crystal compound in the light sensitive composite material is too large, the polymer compound and the liquid crystal compound are easily separated in the light sensitive composite material, and the adhesive force is reduced. On the other hand, if the mass in the light-sensitive composite material is too small, the glass transition temperature does not drop much even when the light-sensitive composite material is irradiated with light, and the hardness of the light-sensitive composite material does not change much. For this reason, it is difficult to obtain a good adhesion state.

高分子化合物と液晶化合物の好適な組み合わせは、高分子化合物と可塑剤との相溶性評価に使用される溶解度パラメーターを用いて決定することができる。通常、高分子化合物と可塑剤の溶解度パラメーターの値が近いほど両者は混合しやすく、溶解度パラメーターの値が離れるほど両者は混合しにくいことが知られている。本発明の光感応性複合材料に用いる高分子化合物と液晶化合物の組み合わせでは、両者の溶解度パラメーターの値の差が10以内であることが好ましく、5以内であることがより好ましく、2以内であることがさらに好ましい。   A suitable combination of the polymer compound and the liquid crystal compound can be determined using the solubility parameter used for the compatibility evaluation between the polymer compound and the plasticizer. In general, it is known that the closer the solubility parameter values of the polymer compound and the plasticizer are, the easier they are to mix, and the farther the solubility parameter value is, the harder they are to mix. In the combination of the polymer compound and the liquid crystal compound used in the light-sensitive composite material of the present invention, the difference in solubility parameter between the two is preferably 10 or less, more preferably 5 or less, and 2 or less. More preferably.

例えば、高分子化合物であるポリメタクリル酸メチルの溶解度パラメーターは9.1〜9.5で、液晶化合物である4−シアノ−4’−ペンチルビフェニルの溶解度パラメーターは10.95であり、その差は1.45〜1.85となる。このため、高分子化合物としてポリメタクリル酸メチルを、液晶化合物として4−シアノ−4’−ペンチルビフェニルをそれぞれ用いた光感応性複合材料は、高分子化合物と液晶化合物とが混合しやすいため接着力が優れている。   For example, the solubility parameter of polymethyl methacrylate, which is a polymer compound, is 9.1 to 9.5, and the solubility parameter of 4-cyano-4′-pentylbiphenyl, which is a liquid crystal compound, is 10.95. 1.45 to 1.85. For this reason, the photosensitive composite material using polymethyl methacrylate as the polymer compound and 4-cyano-4′-pentylbiphenyl as the liquid crystal compound is easy to mix with the polymer compound and the liquid crystal compound, and thus has an adhesive force. Is excellent.

光応答性化合物は、光の吸収によって分子形状が変化して、つまり光異性化反応によって、極性や分子サイズが大きく変化したり、液晶化合物の相構造を液晶相から等方相に変化させたりすることができる化合物である。具体的には、光応答性化合物としてアゾベンゼン誘導体が挙げられる。光感応性複合材料に光を照射すると光応答性化合物の分子形状等が変化し、これに伴って光感応性複合材料のガラス転移温度が変化する。また、光応答性化合物は、液晶化合物に溶解することが好ましい。光応答性化合物と液晶化合物が均一に混合することによって、光感応性複合材料に光を照射したときに液晶化合物の相構造が変化しやすくなり、光感応性複合材料のガラス転移温度の変化が大きくなるからである。   The photoresponsive compound changes its molecular shape due to light absorption, that is, the photoisomerization reaction significantly changes the polarity and molecular size, or changes the phase structure of the liquid crystal compound from the liquid crystal phase to the isotropic phase. It is a compound that can be. Specifically, an azobenzene derivative is mentioned as a photoresponsive compound. When the light-sensitive composite material is irradiated with light, the molecular shape or the like of the photoresponsive compound changes, and the glass transition temperature of the light-sensitive composite material changes accordingly. The photoresponsive compound is preferably dissolved in the liquid crystal compound. By uniformly mixing the light-responsive compound and the liquid crystal compound, the phase structure of the liquid crystal compound is likely to change when the light-sensitive composite material is irradiated with light, and the glass transition temperature of the light-sensitive composite material changes. Because it grows.

光感応性複合材料の硬さを可逆的に変化させる手段として光を用いることは、熱を用いることに比べて、省エネルギー・高生産性の観点から圧倒的に有利である。照射光の波長は、光応答性化合物に応じて紫外光、可視光、近赤外光等の中から適宜選択される。この中でも、波長254nm〜1064nmの光が好ましく、波長365nm〜632nmの光がより好ましい。波長254nm〜1064nmの光は、市販されている一般的な光源から照射でき、波長365nm〜632nmの光は、より汎用性の高い光源、例えば、水銀ランプ光源、アルゴンイオンレーザー光源、またはヘリウム−ネオンレーザー光源から照射できるからである。   The use of light as a means for reversibly changing the hardness of the photosensitive composite material is overwhelmingly advantageous from the viewpoint of energy saving and high productivity as compared to using heat. The wavelength of the irradiation light is appropriately selected from ultraviolet light, visible light, near infrared light, and the like according to the photoresponsive compound. Among these, light with a wavelength of 254 nm to 1064 nm is preferable, and light with a wavelength of 365 nm to 632 nm is more preferable. Light having a wavelength of 254 nm to 1064 nm can be irradiated from a commercially available general light source, and light having a wavelength of 365 nm to 632 nm is a more versatile light source such as a mercury lamp light source, an argon ion laser light source, or helium-neon. It is because it can irradiate from a laser light source.

実用上の観点から、紫外光と可視光の照射によって光応答性化合物の分子形状が可逆的に変化することが好ましい。すなわち、例えば、紫外光照射によってガラス転移温度が降下し、紫外光照射によって降下したガラス転移温度が可視光照射によって上昇することが好ましい。照射光の強度は光感応性複合材料中の光応答性化合物の含有量に応じて適宜選択されるが、0.2mW/cm以上であることが好ましい。照射光の強度が小さ過ぎると、光応答性化合物の光異性化反応を十分に誘起できないからである。一方、高分子化合物、液晶化合物、または光応答性化合物を著しく劣化、分解等させない限り、照射光の強度の上限は特に制限がない。しかし、実用上の観点から0.2mW/cm〜200mW/cmが好ましく、1mW/cm〜200mW/cmがより好ましい。From a practical viewpoint, it is preferable that the molecular shape of the photoresponsive compound is reversibly changed by irradiation with ultraviolet light and visible light. That is, for example, it is preferable that the glass transition temperature is lowered by ultraviolet light irradiation, and the glass transition temperature lowered by ultraviolet light irradiation is increased by visible light irradiation. The intensity of the irradiation light is appropriately selected according to the content of the photoresponsive compound in the photosensitive composite material, but is preferably 0.2 mW / cm 2 or more. This is because if the intensity of the irradiation light is too small, the photoisomerization reaction of the photoresponsive compound cannot be sufficiently induced. On the other hand, unless the polymer compound, the liquid crystal compound, or the photoresponsive compound is significantly deteriorated or decomposed, the upper limit of the intensity of irradiation light is not particularly limited. However, from a practical viewpoint, 0.2 mW / cm 2 to 200 mW / cm 2 is preferable, and 1 mW / cm 2 to 200 mW / cm 2 is more preferable.

液晶化合物の質量と光応答性化合物の質量の和に対する光応答性化合物の質量は2%〜100%であることが好ましい。液晶化合物の質量と光応答性化合物の質量の和に対する光応答性化合物の質量が少な過ぎると、光感応性複合材料の光異性化反応によるガラス転移点の変化が充分に起こらず、光感応性複合材料の硬さがあまり変化しない。このため、良好な粘着状態を得ることが難しい。なお、光応答性化合物が室温で液晶性を示す場合には、光応答性化合物は液晶化合物としても使用できる。すなわち、液晶化合物と光応答性化合物の混合物に代えて光応答性化合物のみを用いてもよい。液晶化合物の質量と光応答性化合物の質量の和に対する光応答性化合物の質量が100%とは、このように光応答性化合物が室温で液晶性を示し、光応答性化合物のみを用いる場合である。   The mass of the photoresponsive compound with respect to the sum of the mass of the liquid crystal compound and the mass of the photoresponsive compound is preferably 2% to 100%. If the mass of the photoresponsive compound relative to the sum of the mass of the liquid crystal compound and the photoresponsive compound is too small, the glass transition point due to the photoisomerization reaction of the photosensitive composite material does not sufficiently change, and the photosensitivity The hardness of the composite material does not change much. For this reason, it is difficult to obtain a good adhesion state. In addition, when a photoresponsive compound shows liquid crystallinity at room temperature, a photoresponsive compound can also be used as a liquid crystal compound. That is, only the photoresponsive compound may be used in place of the mixture of the liquid crystal compound and the photoresponsive compound. The mass of the photoresponsive compound with respect to the sum of the mass of the liquid crystal compound and the photoresponsive compound is 100% when the photoresponsive compound exhibits liquid crystallinity at room temperature and only the photoresponsive compound is used. is there.

本発明の光感応性複合材料の製造方法は、高分子化合物と、液晶化合物と、光応答性化合物とを揮発性の有機溶媒に溶解する溶解工程と、その後、有機溶媒を除去する溶媒除去工程とを備えている。光感応性複合材料中の高分子化合物の質量割合が多くなると粘性が高くなり、高分子化合物、液晶化合物、および光応答性化合物を単純に混合しても、均一な光感応性複合材料を得るのが難しい。そこで、アセトン等の揮発性の有機溶媒に高分子化合物、液晶化合物、および光応答性化合物を予め溶解させた均一溶液を作製しておき、その後、加熱・減圧下で揮発性の有機溶媒を除去することにより、均一な光感応性複合材料が製造できる。   The method for producing a photosensitive composite material according to the present invention includes a dissolution step of dissolving a polymer compound, a liquid crystal compound, and a photoresponsive compound in a volatile organic solvent, and then a solvent removal step of removing the organic solvent. And. When the mass ratio of the polymer compound in the light-sensitive composite material increases, the viscosity increases, and even if the polymer compound, liquid crystal compound, and photoresponsive compound are simply mixed, a uniform light-sensitive composite material is obtained. It is difficult. Therefore, a uniform solution is prepared in which a polymer compound, a liquid crystal compound, and a photoresponsive compound are previously dissolved in a volatile organic solvent such as acetone, and then the volatile organic solvent is removed under heating and reduced pressure. By doing so, a uniform light-sensitive composite material can be manufactured.

高分子化合物と、液晶化合物と、紫外光と可視光の照射によって分子形状が可逆的に変化する光応答性化合物とを含有する光感応性複合材料は、紫外光照射によって導かれる軟らかい状態を利用することにより、損傷部位や切断部位の自己修復も可能である。すなわち、本発明の光感応性複合材料の損傷部位または切断部位の修復方法は、復元工程と、その後の硬化工程とを備えている。   Photosensitive composite materials containing a polymer compound, a liquid crystal compound, and a photoresponsive compound whose molecular shape reversibly changes upon irradiation with ultraviolet light and visible light use a soft state guided by ultraviolet light irradiation. By doing so, it is possible to self-repair a damaged site or a cut site. That is, the method for repairing a damaged site or a cut site of the photosensitive composite material of the present invention includes a restoration step and a subsequent curing step.

復元工程では、この光感応性複合材料の損傷部位または切断部位に紫外光を照射して、損傷部位を軟化または切断部位を粘着させる。硬化工程では、損傷部位または切断部位に可視光を照射して、損傷部位または切断部位を硬化させる。なお、光感応性複合材料の周囲の可視光によっても損傷部位または切断部位が硬化するので、復元工程の後、損傷部位または切断部位に能動的に可視光を照射しないで放置しても自己修復する。このため、この光感応性複合材料は、自己修復塗料や自己修復フィルムなどに適用できる。   In the restoration process, the damaged site or the cut site of the photosensitive composite material is irradiated with ultraviolet light to soften the damaged site or to adhere the cut site. In the curing step, the damaged site or the cut site is irradiated with visible light to cure the damaged site or the cut site. In addition, the damaged site or the cut site is cured by visible light around the photosensitive composite material. Therefore, after the restoration process, the damaged site or the cut site is self-repaired even if it is left without actively irradiating visible light. To do. For this reason, this photosensitive composite material can be applied to self-repairing paints and self-repairing films.

本発明の光感応性複合材料は、前述の復元工程と硬化工程による損傷部位や切断部位の自己修復のほか、凹みの自然復元も可能である。高分子化合物と、液晶化合物と、光応答性化合物の組成を調整し、複合材料中において高分子化合物のガラス状態とゴム状態を共存させると、ゴム状態にある高分子化合物の弾性により、材料表面に生じた凹みが自然に復元される。   The light-sensitive composite material of the present invention can naturally restore the dents in addition to the self-healing of damaged sites and cut sites by the above-described restoration process and curing process. When the composition of the polymer compound, liquid crystal compound, and photoresponsive compound is adjusted and the glassy state and the rubbery state of the polymer compound coexist in the composite material, the surface of the material is affected by the elasticity of the polymer compound in the rubbery state. The dent produced in is restored naturally.

高分子化合物と、液晶化合物と、紫外光と可視光の照射によって分子形状が可逆的に変化する光応答性化合物とを含有する光感応性複合材料フィルムは、粘接着剤として好適に使用できる。この光感応性複合材料フィルムでは、紫外光照射よって導かれる軟らかい状態に基づく粘着性は、光応答性材料の分子形状が紫外光照射前の形状に戻るまで(例えば、室温・暗所であれば約24時間)保持される。このため、この光感応性複合材料フィルムは、すぐに硬化する接着剤と比べて、被着体の接着箇所の位置決めが行いやすい。   A photosensitive composite film containing a polymer compound, a liquid crystal compound, and a photoresponsive compound whose molecular shape reversibly changes by irradiation with ultraviolet light and visible light can be suitably used as an adhesive. . In this photosensitive composite material film, the adhesiveness based on the soft state induced by ultraviolet light irradiation is sufficient until the molecular shape of the photoresponsive material returns to the shape before ultraviolet light irradiation (for example, at room temperature in a dark place). About 24 hours). For this reason, this photosensitive composite material film is easy to position the adherend on the adherend as compared with an adhesive that hardens immediately.

また、この光感応性複合材料フィルムでは、紫外光照射によって導かれた軟らかい状態を可視光照射により紫外光照射前の硬い状態に戻すことができるため、接着性を発揮させることができる。なお、この光感応性複合材料フィルムの軟らかい状態は、紫外光照射のほか、この光感応性複合材料フィルムのガラス転移温度以上に加熱することによっても導くことができる。この光感応性複合材料フィルムは、光感応性複合材料が軟らかい状態で圧力を均一に加えることによって、任意の厚さで得られる。この光感応性複合材料フィルムは、集光した紫外光や可視光を使用することにより、任意の場所において、任意のサイズで、粘着性や接着性を発揮させることができる。硬い状態の光感応性複合材料フィルムは粘着性を示さないため、誤粘着防止層が不要であり、保存や取扱いが容易となる。   Moreover, in this photosensitive composite material film, since the soft state induced | guided | derived by ultraviolet light irradiation can be returned to the hard state before ultraviolet light irradiation by visible light irradiation, adhesiveness can be exhibited. The soft state of the light-sensitive composite material film can be derived not only by irradiation with ultraviolet light but also by heating to a temperature higher than the glass transition temperature of the light-sensitive composite material film. This light-sensitive composite film can be obtained in an arbitrary thickness by uniformly applying pressure while the light-sensitive composite material is soft. This photosensitive composite material film can exhibit tackiness and adhesiveness at an arbitrary size and an arbitrary size by using condensed ultraviolet light or visible light. Since the light-sensitive composite film in a hard state does not exhibit adhesiveness, a false adhesion prevention layer is unnecessary, and storage and handling are easy.

すなわち、本発明の光感応性複合材料フィルムの使用方法は、軟化工程と、押圧工程と、貼付工程と、硬化工程とを備えている。軟化工程では、この光感応性複合材料フィルムに紫外光を照射して、光感応性複合材料フィルムを軟化させる。押圧工程では、軟化した光感応性複合材料フィルムを、被接着物に押し付ける。貼付工程では、被接着物に押し付けられた光感応性複合材料フィルムに接着物を貼り付ける。貼付工程の後の硬化工程では、光感応性複合材料フィルムに可視光を照射して、光感応性複合材料フィルムを硬化させる。   That is, the usage method of the photosensitive composite material film of this invention is equipped with the softening process, the press process, the sticking process, and the hardening process. In the softening step, the photosensitive composite material film is irradiated with ultraviolet light to soften the photosensitive composite material film. In the pressing step, the softened photosensitive composite material film is pressed against the adherend. In the attaching step, the adhesive is attached to the photosensitive composite material film pressed against the adherend. In the curing step after the pasting step, the photosensitive composite material film is irradiated with visible light to cure the photosensitive composite material film.

以下、実施例により本発明を更に詳細に説明する。本発明の内容はこの実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. The content of the present invention is not limited to this embodiment.

(光感応性複合材料1の調製)
高分子化合物であるポリメタクリル酸メチル(和光純薬工業株式会社製、138−02735、重量平均分子量は約10万)0.40g、液晶化合物である4−シアノ−4’−ペンチルビフェニル(メルク・ジャパン株式会社製、K−15)0.57g、光応答性化合物である4−ブチル−4’−メトキシアゾベンゼン0.030gをアセトン10mLに溶解し、40℃で撹拌して均一な溶液とした後、60℃でアセトンを減圧留去して光感応性複合材料1を調製した。光感応性複合材料1には、ポリメタクリル酸メチルが40質量%、4−シアノ−4’−ペンチルビフェニルが57質量%、4−ブチル−4’−メトキシアゾベンゼンが3質量%含まれている。
(Preparation of photosensitive composite material 1)
Polymethyl methacrylate, a polymer compound (manufactured by Wako Pure Chemical Industries, Ltd., 138-02735, weight average molecular weight is approximately 100,000), 0.40 g, liquid crystal compound, 4-cyano-4′-pentylbiphenyl (Merck Japan Co., Ltd., K-15) 0.57 g, photoresponsive compound 4-butyl-4′-methoxyazobenzene 0.030 g was dissolved in 10 mL of acetone and stirred at 40 ° C. to obtain a uniform solution. Acetone was distilled off under reduced pressure at 60 ° C. to prepare a photosensitive composite material 1. The photosensitive composite material 1 contains 40% by mass of polymethyl methacrylate, 57% by mass of 4-cyano-4′-pentylbiphenyl, and 3% by mass of 4-butyl-4′-methoxyazobenzene.

なお、4−ブチル−4’−メトキシアゾベンゼンは下記手順で合成した。まず、4−ブチルアニリン10gと2規定塩酸100mLをビーカーに入れた。つぎに、亜硝酸ナトリウム5.5gを水50mLに溶解した溶液を、温度を0℃に維持しながらこのビーカーにゆっくりと加え、さらに温度0℃で1時間撹拌した。そして、水酸化ナトリウム9.0gとフェノール9.5gを水90mLに溶解した溶液を、このビーカーに少量ずつ滴下し、温度0℃で2時間撹拌した後、さらに室温で2時間撹拌した。その後、2規定塩酸を用いて、このビーカー内の溶液のpHを2にした。つぎに、このビーカー内の沈殿物をろ取して酢酸エチルに溶解した。   4-Butyl-4'-methoxyazobenzene was synthesized by the following procedure. First, 10 g of 4-butylaniline and 100 mL of 2N hydrochloric acid were placed in a beaker. Next, a solution obtained by dissolving 5.5 g of sodium nitrite in 50 mL of water was slowly added to this beaker while maintaining the temperature at 0 ° C., and further stirred at a temperature of 0 ° C. for 1 hour. A solution prepared by dissolving 9.0 g of sodium hydroxide and 9.5 g of phenol in 90 mL of water was dropped into this beaker little by little, and the mixture was stirred at a temperature of 0 ° C. for 2 hours, and further stirred at room temperature for 2 hours. Thereafter, the pH of the solution in the beaker was set to 2 using 2N hydrochloric acid. Next, the precipitate in the beaker was collected by filtration and dissolved in ethyl acetate.

そして、この酢酸エチル溶液を硫酸マグネシウムで脱水した後、酢酸エチルを減圧留去し、ヘキサンを用いた再結晶によって中間体である4−ブチル−4’−ヒドロキシアゾベンゼンの結晶12.0gを得た。その後、この中間体6.0g、炭酸ナトリウム3.83g、ヨウ化メチル5.1g、およびアセトン50mLをなす型フラスコに入れて、加熱還流下で6時間撹拌した。つぎに、沈殿物をろ取し、減圧乾燥して粗生成物を得た。そして、クロロホルムを用いたカラムクロマトグラフィーによりこの粗生成物を精製した後、メタノールと水の混合液を用いて再結晶して4−ブチル−4’−メトキシアゾベンゼン2.4gを得た。   And after dehydrating this ethyl acetate solution with magnesium sulfate, ethyl acetate was distilled off under reduced pressure, and 12.0 g of crystals of 4-butyl-4′-hydroxyazobenzene as an intermediate were obtained by recrystallization using hexane. . Then, it put into the type | mold flask which made this intermediate body 6.0g, sodium carbonate 3.83g, methyl iodide 5.1g, and acetone 50mL, and stirred under heating-refluxing for 6 hours. Next, the precipitate was collected by filtration and dried under reduced pressure to obtain a crude product. The crude product was purified by column chromatography using chloroform and recrystallized using a mixed solution of methanol and water to obtain 2.4 g of 4-butyl-4'-methoxyazobenzene.

(動的粘弾性測定)
図1は光感応性複合材料1の動的粘弾性測定結果を示している。光感応性複合材料1を動的粘弾性測定装置(アントンパールジャパン社、MCR302)に設置し、直径8mmのパラレルプレートを用い、ギャップ500μm、温度25℃、歪み0.1%、周波数1.0Hzの条件で動的粘弾性を評価した。ガラス転移温度は38.3℃であり、硬さの指標となる貯蔵弾性率G’および損失弾性率G”は、それぞれ2.4×10Paおよび4.0×10Paであった。つぎに、光感応性複合材料1に波長365nmの紫外光を照射しながら測定したところ、ガラス転移温度が21.6℃、貯蔵弾性率G’が3.8×10Pa、損失弾性率G” が2.3×10Paとなり(総照射エネルギー78J/cm)、光感応性複合材料1のガラス転移温度が変化して軟らかくなることを確認した。
(Dynamic viscoelasticity measurement)
FIG. 1 shows the dynamic viscoelasticity measurement result of the photosensitive composite material 1. The photosensitive composite material 1 is installed in a dynamic viscoelasticity measuring apparatus (Anton Paar Japan Co., Ltd., MCR302), using a parallel plate with a diameter of 8 mm, a gap of 500 μm, a temperature of 25 ° C., a strain of 0.1%, and a frequency of 1.0 Hz. The dynamic viscoelasticity was evaluated under the following conditions. The glass transition temperature was 38.3 ° C., and the storage elastic modulus G ′ and the loss elastic modulus G ″ as indices of hardness were 2.4 × 10 5 Pa and 4.0 × 10 5 Pa, respectively. Next, when the photosensitive composite material 1 was measured while being irradiated with ultraviolet light having a wavelength of 365 nm, the glass transition temperature was 21.6 ° C., the storage elastic modulus G ′ was 3.8 × 10 4 Pa, and the loss elastic modulus G. ”Became 2.3 × 10 4 Pa (total irradiation energy 78 J / cm 2 ), and it was confirmed that the glass transition temperature of the photosensitive composite material 1 changed and became soft.

さらに、この紫外光照射後の軟らかい状態の光感応性複合材料1に、波長450nmの可視光を照射しながら測定したところ、貯蔵弾性率G’が1.2×10Pa、損失弾性率G”が1.2×10Paと硬くなった(総照射エネルギー108J/cm)。この結果から、紫外光および可視光の照射により、光感応性複合材料1の硬さを可逆的に制御できることが確認できた。Further, when the light-sensitive composite material 1 in the soft state after irradiation with ultraviolet light was measured while being irradiated with visible light having a wavelength of 450 nm, the storage elastic modulus G ′ was 1.2 × 10 5 Pa and the loss elastic modulus G "Became 1.2 × 10 5 Pa (total irradiation energy 108 J / cm 2 ). From this result, the hardness of the photosensitive composite material 1 was reversibly controlled by irradiation with ultraviolet light and visible light. I was able to confirm that

(光感応性複合材料1のフィルムの作製)
以下の手順で光感応性複合材料1を用いてフィルムを作製した。まず、光感応性複合材料1と厚さ0.12mmのステンレスフィルムスペーサーをスライドガラス上に設置した後、光感応性複合材料1を60℃に加熱して軟らかい状態にした。つぎに、この軟らかい光感応性複合材料1とステンレスフィルムスペーサーの上から他のスライドガラスを設置し、光感応性複合材料1とステンレスフィルムスペーサーを2枚のスライドガラスで挟んで均一に圧力を加えた。そして、光感応性複合材料1を室温まで冷却した後、スライドガラスから光感応性複合材料1を剥離して、光感応性複合材料フィルムを得た。図2は、光感応性複合材料1を用いて作製したフィルムの外観を示している。
(Production of film of photosensitive composite material 1)
A film was prepared using the photosensitive composite material 1 in the following procedure. First, the photosensitive composite material 1 and a stainless steel film spacer having a thickness of 0.12 mm were placed on a slide glass, and then the photosensitive composite material 1 was heated to 60 ° C. to be in a soft state. Next, another glass slide is placed on the soft light-sensitive composite material 1 and the stainless steel film spacer, and the light-sensitive composite material 1 and the stainless steel film spacer are sandwiched between the two glass slides to apply pressure evenly. It was. And after cooling the photosensitive composite material 1 to room temperature, the photosensitive composite material 1 was peeled from the slide glass, and the photosensitive composite material film was obtained. FIG. 2 shows the appearance of a film produced using the photosensitive composite material 1.

(引張せん断強度測定)
図3は、光感応性複合材料1の引張せん断試験の結果を示している。厚さ0.08mmのポリエチレンフィルムスペーサーを用いて、上記手順と同様にして光感応性複合材料1のフィルムを作製した。つぎに、このフィルムを2枚のガラス基板で挟み、60℃で3分間加熱した後、室温に冷却して接着面積1cmの試料Aを作製した。試料Aを引張試験機(ORIENTEC社、TENSILON)に設置し、温度24.4℃、毎秒8.3μmの引張速度で、接着状態の試料Aの引張せん断強度を評価した。図3の「Initial」に示すように、試料Aの引張せん断強度は0.30MPaであった。
(Tensile shear strength measurement)
FIG. 3 shows the result of the tensile shear test of the photosensitive composite material 1. Using a polyethylene film spacer having a thickness of 0.08 mm, a film of photosensitive composite material 1 was produced in the same manner as described above. Next, the film was sandwiched between two glass substrates, heated at 60 ° C. for 3 minutes, and then cooled to room temperature to prepare Sample A having an adhesion area of 1 cm 2 . Sample A was installed in a tensile tester (ORIENTEC, TENSILON), and the tensile shear strength of the sample A in the bonded state was evaluated at a temperature of 24.4 ° C. and a tensile speed of 8.3 μm per second. As shown in “Initial” in FIG. 3, the tensile shear strength of Sample A was 0.30 MPa.

一方、別途作製した面積1cm、厚さ0.08mmの光感応性複合材料1のフィルムをガラス基板上に載せ、25℃で、波長365nm、照射エネルギー54J/cmの紫外光を照射した。そして、25℃で他のガラス基板を押し付けて粘着させた試料Bについて、上記と同様にして引張せん断強度を測定した。図3の「UV」に示すように、粘着状態の試料Bの引張せん断強度は0.01MPaであった。On the other hand, a separately prepared film of photosensitive composite material 1 having an area of 1 cm 2 and a thickness of 0.08 mm was placed on a glass substrate, and irradiated with ultraviolet light having a wavelength of 365 nm and an irradiation energy of 54 J / cm 2 at 25 ° C. And about the sample B which pressed and adhered another glass substrate at 25 degreeC, it carried out similarly to the above, and measured the tensile shear strength. As shown by “UV” in FIG. 3, the tensile shear strength of the sample B in an adhesive state was 0.01 MPa.

また、さらに別途作製した面積1cm、厚さ0.08mmの光感応性複合材料1のフィルムをガラス基板上に載せ、25℃で、波長365nm、照射エネルギー54J/cmの紫外光を照射した後、25℃で他のガラス基板を押し付けて粘着させ、さらに、25℃で、波長450nm、照射エネルギー45J/cmの可視光を照射して、接着面積1cmの接着状態の試料Cを作製した。上記と同様にして試料Cの引張せん断強度を測定したところ、図3の「Visible」に示すように、0.10MPaであった。以上より、光感応性複合材料1に紫外光と可視光を照射することにより、接着状態と粘着状態を可逆的に制御することができた。Further, a separately prepared film of photosensitive composite material 1 having an area of 1 cm 2 and a thickness of 0.08 mm was placed on a glass substrate, and irradiated with ultraviolet light having a wavelength of 365 nm and an irradiation energy of 54 J / cm 2 at 25 ° C. Then, another glass substrate was pressed and adhered at 25 ° C., and further, visible light having a wavelength of 450 nm and an irradiation energy of 45 J / cm 2 was irradiated at 25 ° C. to produce a sample C in an adhesive state with an adhesion area of 1 cm 2. did. When the tensile shear strength of Sample C was measured in the same manner as described above, it was 0.10 MPa as indicated by “Visible” in FIG. From the above, it was possible to reversibly control the adhesive state and the adhesive state by irradiating the photosensitive composite material 1 with ultraviolet light and visible light.

(光感応性複合材料1の自己修復)
図4は、光感応性複合材料1の自己修復の様子を示している。まず、厚さ1mmのガラススペーサーを用い、上記手順と同様にして、縦9mm×横5mm×厚さ1mmの光感応性複合材料1のフィルムを作製した。つぎに、カッターナイフを用いてこのフィルムを中央で二つに切断した。その後、切断した小片同士を接触させて、波長365nm、照射エネルギー60J/cmの紫外光をこの接触部に照射したところ、小片の切断面が自己修復されて一体化することを確認した。
(Self-healing of light-sensitive composite material 1)
FIG. 4 shows how the photosensitive composite material 1 is self-repaired. First, using a glass spacer having a thickness of 1 mm, a film of the photosensitive composite material 1 having a length of 9 mm, a width of 5 mm, and a thickness of 1 mm was produced in the same manner as described above. Next, this film was cut into two at the center using a cutter knife. Thereafter, the cut pieces were brought into contact with each other and irradiated with ultraviolet light having a wavelength of 365 nm and an irradiation energy of 60 J / cm 2 , and it was confirmed that the cut surfaces of the pieces were self-repaired and integrated.

(凹みの自然復元に用いる光感応性複合材料1の試験片の作製)
以下の手順で光感応性複合材料1を用いて試験片を作製した。まず、光感応性複合材料1と厚さ1mmのガラススペーサーをスライドガラス上に設置した。その後、光感応性複合材料を60℃に加熱して軟らかい状態にした。つぎに、この軟らかい光感応性複合材料1とガラススペーサーの上から他のスライドガラスを設置し、光感応性複合材料1とスライドガラスを2枚のスライドガラスで挟んで均一に圧力を加えた。そして、光感応性複合材料1を室温まで冷却した後、スライドガラスから光感応性複合材料1を剥離して、光感応性複合材料フィルムを得た。得られたフィルムをカッターナイフで半径4mmの円形に切断し、歪み修復特性試験の試験片を得た。
(Production of test piece of photosensitive composite material 1 used for natural restoration of dents)
A test piece was prepared using the photosensitive composite material 1 in the following procedure. First, the photosensitive composite material 1 and a glass spacer having a thickness of 1 mm were placed on a slide glass. Thereafter, the photosensitive composite material was heated to 60 ° C. to make it soft. Next, another glass slide was placed on the soft light-sensitive composite material 1 and the glass spacer, and the light-sensitive composite material 1 and the glass slide were sandwiched between two glass slides, and pressure was applied uniformly. And after cooling the photosensitive composite material 1 to room temperature, the photosensitive composite material 1 was peeled from the slide glass, and the photosensitive composite material film was obtained. The obtained film was cut into a circle having a radius of 4 mm with a cutter knife to obtain a test piece for a strain repair property test.

(光感応性複合材料1の凹み修復特性)
図5は、動的粘弾性測定装置(アントンパールジャパン社、MCR302)を用いて、光感応性複合材料1の凹み修復特性を評価した結果を示している。試験片を動的粘弾性測定装置に設置し、接触面積が0.05cmであるマイナスドライバー型の治具を用い、温度25℃、歪み0%、周波数0Hzの条件でマイナスドライバー型治具の先端と装置測定面とのギャップを狭めていき、ギャップ値が0.9mmとなるまで光感応性複合材料1に変形を加えた(test1)。図5のtest1に示すように、マイナスドライバー型治具が光感応性複合材料1と接触し、応力が発生するギャップの値は1.8mmであった。
(Recess repair characteristics of photosensitive composite material 1)
FIG. 5 shows the results of evaluating the dent repair characteristics of the photosensitive composite material 1 using a dynamic viscoelasticity measuring apparatus (Anton Paar Japan, MCR302). Place the test piece on the dynamic viscoelasticity measuring device, and use a minus driver type jig with a contact area of 0.05 cm 2 , and use a minus driver type jig under conditions of temperature 25 ° C., strain 0%, frequency 0 Hz. The gap between the tip and the apparatus measurement surface was narrowed, and the photosensitive composite material 1 was deformed until the gap value became 0.9 mm (test 1). As shown in test 1 of FIG. 5, the value of the gap at which the flat screwdriver jig comes into contact with the photosensitive composite material 1 and stress is generated was 1.8 mm.

そこから、ギャップをさらに狭めていくと、材料表面に凹みが生じ、応力は直線的に増加した。ギャップ値が0.9mmとなった後、ギャップを広げていくと、応力は減少し、ギャップ値が約1.5mmのところで、治具は光感応性複合材料1から離れた。上記test1を実施して、30分間、試料を放置した後に上記と同様の測定(test2)を行った。図5のtest2に示すように、治具が光感応性複合材料と接触し、応力が発生するギャップ値はtest1の時と同じ1.8mmであった。これは、マイナスドライバー型治具を押し込むことにより生じた凹みが、30分間で元の状態に復元したことを示しており、光感応性複合材料1の表面に生じた凹みが自然復元されることを確認した。   From there, as the gap was further narrowed, the material surface was dented and the stress increased linearly. When the gap was widened after the gap value became 0.9 mm, the stress decreased, and the jig was separated from the photosensitive composite material 1 when the gap value was about 1.5 mm. After performing the test 1 and leaving the sample for 30 minutes, the same measurement (test 2) as described above was performed. As shown in test 2 of FIG. 5, the gap value at which the jig was brought into contact with the photosensitive composite material and the stress was generated was 1.8 mm, which was the same as in test 1. This indicates that the dent produced by pushing in the flat-blade screwdriver jig has been restored to its original state in 30 minutes, and the dent produced on the surface of the photosensitive composite material 1 is naturally restored. It was confirmed.

(光感応性複合材料2の調製)
ポリメタクリル酸メチル、4−シアノ−4’−ペンチルビフェニル、および4−ブチル−4’−メトキシアゾベンゼンの質量を、それぞれ0.50g、0.475g、および0.025gに変更した点を除いて、実施例1と同様にして光感応性複合材料2を調製した。光感応性複合材料2には、ポリメタクリル酸メチルが50質量%、4−シアノ−4’−ペンチルビフェニルが47.5質量%、4−ブチル−4’−メトキシアゾベンゼンが2.5質量%含まれている。
(Preparation of photosensitive composite material 2)
Except for changing the weight of polymethyl methacrylate, 4-cyano-4'-pentylbiphenyl, and 4-butyl-4'-methoxyazobenzene to 0.50 g, 0.475 g, and 0.025 g, respectively, Photosensitive composite material 2 was prepared in the same manner as in Example 1. The photosensitive composite material 2 contains 50% by mass of polymethyl methacrylate, 47.5% by mass of 4-cyano-4′-pentylbiphenyl, and 2.5% by mass of 4-butyl-4′-methoxyazobenzene. It is.

(動的粘弾性測定)
実施例1と同様にして光感応性複合材料2の動的粘弾性を評価した。図6は光感応性複合材料2の動的粘弾性測定結果を示している。光感応性複合材料2のガラス転移温度は38.3℃で、貯蔵弾性率G’は7.4×10Paで、損失弾性率G”は1.3×10Paであった。つぎに、波長365nmの紫外光を光感応性複合材料2に照射しながら測定したところ、貯蔵弾性率G’が3.4×10Pa、損失弾性率G” が4.8×10Paとなり(総照射エネルギー90J/cm)、光感応性複合材料2が軟らかくなることを確認した。
(Dynamic viscoelasticity measurement)
The dynamic viscoelasticity of the photosensitive composite material 2 was evaluated in the same manner as in Example 1. FIG. 6 shows the dynamic viscoelasticity measurement result of the photosensitive composite material 2. The photosensitive composite material 2 had a glass transition temperature of 38.3 ° C., a storage elastic modulus G ′ of 7.4 × 10 5 Pa, and a loss elastic modulus G ″ of 1.3 × 10 6 Pa. In addition, when the photosensitive composite material 2 was irradiated with ultraviolet light having a wavelength of 365 nm, the storage elastic modulus G ′ was 3.4 × 10 5 Pa and the loss elastic modulus G ″ was 4.8 × 10 5 Pa. (Total irradiation energy 90 J / cm 2 ), it was confirmed that the photosensitive composite material 2 became soft.

さらに、この紫外光照射後の軟らかい状態の光感応性複合材料2に、波長450nmの可視光を照射しながら測定したところ、ガラス転移温度が28.2℃、貯蔵弾性率G’が4.5×10Pa、損失弾性率G”が7.0×10Paとなり(総照射エネルギー63J/cm)、光感応性複合材料2は硬くなった。この結果から、紫外光および可視光の照射により、光感応性複合材料2の硬さを可逆的に制御できることが確認できた。Further, when the light-sensitive composite material 2 in the soft state after the ultraviolet light irradiation was measured while being irradiated with visible light having a wavelength of 450 nm, the glass transition temperature was 28.2 ° C. and the storage elastic modulus G ′ was 4.5. × 10 5 Pa, loss elastic modulus G ″ was 7.0 × 10 5 Pa (total irradiation energy 63 J / cm 2 ), and the photosensitive composite material 2 became hard. From this result, ultraviolet light and visible light It was confirmed that the hardness of the photosensitive composite material 2 can be reversibly controlled by irradiation.

(光感応性複合材料2のフィルムの作製)
以下の手順で光感応性複合材料2を用いてフィルムを作製した。まず、光感応性複合材料2と厚さ0.05mmのポリエチレンフィルムスペーサーをスライドガラス上に設置した後、光感応性複合材料2を60℃に加熱して軟らかい状態にした。つぎに、軟らかい光感応性複合材料2とポリエチレンフィルムスペーサーの上から他のスライドガラスを設置し、光感応性複合材料1とポリエチレンフィルムスペーサーを2枚のスライドガラスで挟んで均一に圧力を加えた。そして、光感応性複合材料2を室温まで冷却した後、スライドガラスから光感応性複合材料2を剥離して、光感応性複合材料フィルムを得た。図7は、光感応性複合材料2を用いて作製したフィルムの外観を示している。
(Production of film of photosensitive composite material 2)
A film was prepared using the photosensitive composite material 2 in the following procedure. First, after the photosensitive composite material 2 and a polyethylene film spacer having a thickness of 0.05 mm were placed on a slide glass, the photosensitive composite material 2 was heated to 60 ° C. to be in a soft state. Next, another glass slide was placed on the soft light-sensitive composite material 2 and the polyethylene film spacer, and the pressure-sensitive composite material 1 and the polyethylene film spacer were sandwiched between the two glass slides, and pressure was applied uniformly. . And after cooling the photosensitive composite material 2 to room temperature, the photosensitive composite material 2 was peeled from the slide glass, and the photosensitive composite material film was obtained. FIG. 7 shows the appearance of a film produced using the photosensitive composite material 2.

(引張せん断強度測定)
図8は、光感応性複合材料2の引張せん断試験の結果を示している。厚さ0.12mmのポリエチレンフィルムスペーサーを用いて、上記手順と同様にして光感応性複合材料2のフィルムを作製した。つぎに、このフィルムを2枚のガラス基板で挟み、60℃で3分間加熱した後、室温に冷却して接着面積0.25cmの試料Dを作製した。試料Dについて、実施例1と同様にして引張せん断強度を評価した。図8の「Initial」に示すように、試料Dの引張せん断強度は0.57MPaであった。
(Tensile shear strength measurement)
FIG. 8 shows the result of the tensile shear test of the photosensitive composite material 2. Using a polyethylene film spacer having a thickness of 0.12 mm, a film of photosensitive composite material 2 was produced in the same manner as described above. Next, this film was sandwiched between two glass substrates, heated at 60 ° C. for 3 minutes, and then cooled to room temperature to prepare Sample D having an adhesion area of 0.25 cm 2 . Sample D was evaluated for tensile shear strength in the same manner as in Example 1. As shown in “Initial” in FIG. 8, the tensile shear strength of Sample D was 0.57 MPa.

一方、別途作製した面積0.25cm、厚さ0.12mmの光感応性複合材料2のフィルムをガラス基板上に載せ、25℃で、波長365nm、照射エネルギー54J/cmの紫外光を照射した。そして、25℃で他のガラス基板を押し付けて粘着させた試料Eについて、上記と同様にして引張せん断強度を測定した。図8の「UV」に示すように、粘着状態の試料Eの引張せん断強度は0.26MPaであった。On the other hand, a separately prepared film of photosensitive composite material 2 having an area of 0.25 cm 2 and a thickness of 0.12 mm is placed on a glass substrate, and irradiated at 25 ° C. with ultraviolet light having a wavelength of 365 nm and an irradiation energy of 54 J / cm 2. did. And about the sample E which pressed and adhered another glass substrate at 25 degreeC, it carried out similarly to the above, and measured the tensile shear strength. As shown in “UV” in FIG. 8, the tensile shear strength of the sample E in an adhesive state was 0.26 MPa.

また、さらに別途作製した面積0.25cm、厚さ0.12mmの光感応性複合材料2のフィルムをガラス基板上に載せ、25℃で、波長365nm、照射エネルギー54J/cmの紫外光を照射した後、25℃で他のガラス基板を押し付けて粘着させ、さらに、25℃で、波長450nm、照射エネルギー45J/cmの可視光を照射して、接着面積0.25cmの接着状態の試料Fを作製した。上記と同様にして試料Fの引張せん断強度を測定したところ、図8の「Visible」に示すように、0.44MPaであった。以上より、光感応性複合材料2に紫外光と可視光を照射することにより、接着状態と粘着状態を可逆的に制御することができた。Further, a separately prepared film of photosensitive composite material 2 having an area of 0.25 cm 2 and a thickness of 0.12 mm is placed on a glass substrate, and ultraviolet light having a wavelength of 365 nm and an irradiation energy of 54 J / cm 2 is applied at 25 ° C. After irradiation, another glass substrate was pressed and adhered at 25 ° C., and further, irradiated with visible light having a wavelength of 450 nm and an irradiation energy of 45 J / cm 2 at 25 ° C., and an adhesion state of 0.25 cm 2 was obtained. Sample F was prepared. When the tensile shear strength of Sample F was measured in the same manner as described above, it was 0.44 MPa as indicated by “Visible” in FIG. From the above, it was possible to reversibly control the adhesive state and the adhesive state by irradiating the photosensitive composite material 2 with ultraviolet light and visible light.

(光感応性複合材料3の調製)
ポリメタクリル酸メチル、4−シアノ−4’−ペンチルビフェニル、および4−ブチル−4’−メトキシアゾベンゼンの質量を、それぞれ0.60g、0.38g、および0.020gに変更した点を除いて、実施例1と同様にして光感応性複合材料3を調製した。光感応性複合材料3には、ポリメタクリル酸メチルが60質量%、4−シアノ−4’−ペンチルビフェニルが38質量%、4−ブチル−4’−メトキシアゾベンゼンが2質量%含まれている。
(Preparation of photosensitive composite material 3)
Except for changing the weight of polymethyl methacrylate, 4-cyano-4′-pentylbiphenyl, and 4-butyl-4′-methoxyazobenzene to 0.60 g, 0.38 g, and 0.020 g, respectively, A photosensitive composite material 3 was prepared in the same manner as in Example 1. The photosensitive composite material 3 contains 60% by mass of polymethyl methacrylate, 38% by mass of 4-cyano-4′-pentylbiphenyl, and 2% by mass of 4-butyl-4′-methoxyazobenzene.

(動的粘弾性測定)
実施例1と同様にして光感応性複合材料3の動的粘弾性を評価した。図9は光感応性複合材料3の動的粘弾性測定結果を示している。調製直後の光感応性複合材料3の貯蔵弾性率G’は1.9×10Paで、損失弾性率G”は3.2×10Paであった。つぎに、波長365nmの紫外光を光感応性複合材料3に照射しながら測定したところ、貯蔵弾性率G’が1.0×10Pa、損失弾性率G” が1.9×10Paとなり(総照射エネルギー63J/cm)、光感応性複合材料3が軟らかくなることを確認した。
(Dynamic viscoelasticity measurement)
The dynamic viscoelasticity of the photosensitive composite material 3 was evaluated in the same manner as in Example 1. FIG. 9 shows the dynamic viscoelasticity measurement result of the photosensitive composite material 3. The storage elastic modulus G ′ of the light-sensitive composite material 3 immediately after preparation was 1.9 × 10 6 Pa and the loss elastic modulus G ″ was 3.2 × 10 6 Pa. Next, ultraviolet light having a wavelength of 365 nm Was measured while irradiating the photosensitive composite material 3, and the storage elastic modulus G ′ was 1.0 × 10 6 Pa and the loss elastic modulus G ″ was 1.9 × 10 6 Pa (total irradiation energy 63 J / cm 2 ) It was confirmed that the photosensitive composite material 3 became soft.

さらに、この紫外光照射後の軟らかい状態の光感応性複合材料3に、波長450nmの可視光を照射しながら測定したところ、貯蔵弾性率G’が1.5×10Pa、損失弾性率G”が2.7×10Paと硬くなった(総照射エネルギー54J/cm)。この結果から、紫外光および可視光の照射により、光感応性複合材料3の硬さを可逆的に制御できることが確認できた。Furthermore, when the light-sensitive composite material 3 in a soft state after irradiation with ultraviolet light was measured while being irradiated with visible light having a wavelength of 450 nm, the storage elastic modulus G ′ was 1.5 × 10 6 Pa and the loss elastic modulus G ”Became hard at 2.7 × 10 6 Pa (total irradiation energy 54 J / cm 2 ). From this result, the hardness of the photosensitive composite material 3 was reversibly controlled by irradiation with ultraviolet light and visible light. I was able to confirm that it was possible.

(光感応性複合材料3のフィルムの作製)
実施例2と同様の手順で光感応性複合材料3を用いてフィルムを作製した。この結果、透明なフィルムが得られた。図10は、光感応性複合材料3を用いて作製したフィルムの外観を示している。このフィルムの光透過率は、可視光領域のうち波長550nm〜800nmの範囲で90%以上の高い値を示した。
(Production of film of photosensitive composite material 3)
A film was prepared using the photosensitive composite material 3 in the same procedure as in Example 2. As a result, a transparent film was obtained. FIG. 10 shows the appearance of a film produced using the photosensitive composite material 3. The light transmittance of this film showed a high value of 90% or more in the wavelength range of 550 nm to 800 nm in the visible light region.

(引張せん断強度測定)
図11は、光感応性複合材料3の引張せん断試験の結果を示している。厚さ0.25mmのポリエチレンフィルムスペーサーを用いて、上記手順と同様にして光感応性複合材料3のフィルムを作製した。つぎに、このフィルムを2枚のガラス基板で挟み、60℃で3分間加熱した後、室温に冷却して接着面積0.25cmの試料Gを作製した。試料Gについて、実施例1と同様にして引張せん断強度を評価した。図11の「Initial」に示すように、試料Gの引張せん断強度は1.63MPaであった。
(Tensile shear strength measurement)
FIG. 11 shows the result of the tensile shear test of the photosensitive composite material 3. Using a polyethylene film spacer having a thickness of 0.25 mm, a film of photosensitive composite material 3 was produced in the same manner as described above. Next, this film was sandwiched between two glass substrates, heated at 60 ° C. for 3 minutes, and then cooled to room temperature to prepare a sample G having an adhesion area of 0.25 cm 2 . For sample G, the tensile shear strength was evaluated in the same manner as in Example 1. As shown in “Initial” in FIG. 11, the tensile shear strength of the sample G was 1.63 MPa.

一方、別途作製した面積0.25cm、厚さ0.25mmの光感応性複合材料3のフィルムをガラス基板上に載せ、25℃で、波長365nm、照射エネルギー54J/cmの紫外光を照射した。そして、25℃で他のガラス基板を押し付けて粘着させた試料Hについて、上記と同様にして引張せん断強度を測定した。図11の「UV」に示すように、粘着状態の試料Hの引張せん断強度は0.30MPaであった。On the other hand, a separately prepared film of photosensitive composite material 3 having an area of 0.25 cm 2 and a thickness of 0.25 mm is placed on a glass substrate, and irradiated at 25 ° C. with ultraviolet light having a wavelength of 365 nm and an irradiation energy of 54 J / cm 2. did. And about the sample H which pressed and adhered another glass substrate at 25 degreeC, it carried out similarly to the above, and measured the tensile shear strength. As shown in “UV” in FIG. 11, the tensile shear strength of the adhesive sample H was 0.30 MPa.

また、さらに別途作製した面積0.25cm、厚さ0.25mmの光感応性複合材料3のフィルムをガラス基板上に載せ、25℃で、波長365nm、照射エネルギー54J/cmの紫外光を照射した後、25℃で他のガラス基板を押し付けて粘着させ、さらに、25℃で、波長450nm、照射エネルギー45J/cmの可視光を照射して、接着面積0.25cmの接着状態の試料Iを作製した。上記と同様にして試料Iの引張せん断強度を測定したところ、図11の「Visible」に示すように、0.99MPaであった。以上より、光感応性複合材料3に紫外光と可視光を照射することにより、接着状態と粘着状態を可逆的に制御することができた。Further, a separately prepared film of photosensitive composite material 3 having an area of 0.25 cm 2 and a thickness of 0.25 mm is placed on a glass substrate, and ultraviolet light having a wavelength of 365 nm and an irradiation energy of 54 J / cm 2 is applied at 25 ° C. After irradiation, another glass substrate was pressed and adhered at 25 ° C., and further, irradiated with visible light having a wavelength of 450 nm and an irradiation energy of 45 J / cm 2 at 25 ° C., and an adhesion state of 0.25 cm 2 was obtained. Sample I was prepared. When the tensile shear strength of Sample I was measured in the same manner as described above, it was 0.99 MPa as indicated by “Visible” in FIG. From the above, it was possible to reversibly control the adhesive state and the adhesive state by irradiating the photosensitive composite material 3 with ultraviolet light and visible light.

(人工爪への転写とネイルパーツの貼付)
まず、厚さ0.05mmの光感応性複合材料3のフィルムをスライドガラス上で作製した。つぎに、スライドガラスからこのフィルムを剥離し、市販のメタクリル樹脂製の人工爪の上に密着させ、人工爪の形に合わせて整形した。そして、25℃で、波長365nm、光強度150mW/cmの紫外光をこのフィルムに300秒間照射し(照射エネルギーは45J/cm)、人工爪表面に光感応性複合材料3のフィルムを転写した。人工爪表面に転写された光感応性複合材料3のフィルムを図12に示す。
(Transfer to artificial nail and stick nail parts)
First, a film of photosensitive composite material 3 having a thickness of 0.05 mm was produced on a slide glass. Next, the film was peeled off from the slide glass, adhered onto a commercially available artificial nail made of methacrylic resin, and shaped according to the shape of the artificial nail. Then, at 25 ° C., ultraviolet light having a wavelength of 365 nm and a light intensity of 150 mW / cm 2 is irradiated on the film for 300 seconds (irradiation energy is 45 J / cm 2 ), and the film of the photosensitive composite material 3 is transferred onto the artificial nail surface. did. The film of the photosensitive composite material 3 transferred to the artificial nail surface is shown in FIG.

つぎに、このフィルムに紫外光をさらに300秒間照射して(照射エネルギーは45J/cm)このフィルムを軟らかくし、ネイルパーツである市販のアクリル樹脂製ストーン6個をこのフィルム押し付けて粘着させた。そして、25℃で、波長450nm、光強度100mW/cmの可視光をこのフィルムに300秒間照射し(照射エネルギーは30J/cm)、このフィルムを硬化させて接着状態にし、ネイルパーツを貼り付けた。このようにして、光感応性複合材料3のフィルムを介して、人工爪にネイルパーツを貼り付けた状態を図13に示す。Next, the film was further irradiated with ultraviolet light for 300 seconds (irradiation energy was 45 J / cm 2 ) to soften the film, and six commercially available acrylic resin stones, which are nail parts, were pressed and adhered. . The film was irradiated with visible light having a wavelength of 450 nm and a light intensity of 100 mW / cm 2 at 25 ° C. for 300 seconds (irradiation energy was 30 J / cm 2 ), the film was cured to be in an adhesive state, and a nail part was attached. I attached. Thus, the state which affixed the nail part to the artificial nail via the film of the photosensitive composite material 3 is shown in FIG.

この状態でネイルパーツに1MPaの応力を印加することによって、光感応性複合材料3のフィルムからネイルパーツを脱離することができた。また、この状態でフィルム全体に波長365nm、光強度150mW/cmの紫外光を300秒間照射して(照射エネルギーは45J/cm)フィルムを軟化させることによっても、ネイルパーツをフィルムから脱離することができた。In this state, the nail part was able to be detached from the film of the photosensitive composite material 3 by applying a stress of 1 MPa to the nail part. In this state, the entire film is irradiated with ultraviolet light having a wavelength of 365 nm and a light intensity of 150 mW / cm 2 for 300 seconds (irradiation energy is 45 J / cm 2 ) to soften the film. We were able to.

本発明の光感応性複合材料は、釣り用疑似餌、建築、輸送機械、エレクトロニクス、医療、宇宙などの広範な分野における粘接着や塗装等に使用できる。また、本発明の光感応性複合材料から構成されるシートやフィルムは、ネイルアート用粘接着剤などの化粧品等に使用できる。   The light-sensitive composite material of the present invention can be used for adhesive bonding and painting in a wide range of fields such as artificial bait for fishing, construction, transport machinery, electronics, medicine, and space. Moreover, the sheet | seat and film comprised from the photosensitive composite material of this invention can be used for cosmetics, such as an adhesive agent for nail art.

Claims (11)

高分子化合物と、
前記高分子化合物中に粒状で分散している液晶化合物と、
異なる波長の光の照射によって分子形状が可逆的に変化する光応答性化合物と、
を含有する光感応性複合材料。
A polymer compound;
A liquid crystal compound dispersed in a granular form in the polymer compound;
A photoresponsive compound whose molecular shape reversibly changes by irradiation with light of different wavelengths;
A light sensitive composite material.
請求項1において、
前記高分子化合物の溶解度パラメーターと前記液晶化合物の溶解度パラメーターとの差が10以内である光感応性複合材料。
In claim 1,
A photosensitive composite material in which a difference between a solubility parameter of the polymer compound and a solubility parameter of the liquid crystal compound is 10 or less.
請求項1または2において、
前記光応答性化合物がアゾベンゼン誘導体である光感応性複合材料。
In claim 1 or 2,
A photosensitive composite material in which the photoresponsive compound is an azobenzene derivative.
請求項1から3のいずれかにおいて、
前記高分子化合物の質量が全体の質量の40%〜60%である光感応性複合材料。
In any one of Claim 1 to 3,
A photosensitive composite material in which the mass of the polymer compound is 40% to 60% of the total mass.
請求項1から4のいずれかにおいて、
前記液晶化合物の質量と前記光応答性化合物の質量の和に対する前記光応答性化合物の質量が2%〜100%である光感応性複合材料。
In any one of Claim 1-4,
The photosensitive composite material whose mass of the said photoresponsive compound with respect to the sum of the mass of the said liquid crystal compound and the mass of the said photoresponsive compound is 2%-100%.
請求項1から5のいずれかにおいて、
前記異なる波長の光が紫外光と可視光であり、
紫外光照射によってガラス転移温度が降下し、紫外光照射によって降下したガラス転移温度が可視光照射によって上昇する光感応性複合材料。
In any one of Claim 1 to 5,
The light of different wavelengths is ultraviolet light and visible light,
Photosensitive composite material in which the glass transition temperature is lowered by ultraviolet light irradiation, and the glass transition temperature lowered by ultraviolet light irradiation is increased by visible light irradiation.
請求項1から6のいずれかの光感応性複合材料をフィルム状に成形した光感応性複合材料フィルム。   A photosensitive composite material film obtained by forming the photosensitive composite material according to claim 1 into a film. 請求項7において、
装飾品を爪に貼り付けるための接着フィルムである光感応性複合材料フィルム。
In claim 7,
A light-sensitive composite film that is an adhesive film for attaching decorative items to nails.
高分子化合物と、前記高分子化合物中に粒状で分散している液晶化合物と、異なる波長の光の照射によって分子形状が可逆的に変化する光応答性化合物とを含有する光感応性複合材料の製造方法であって、
前記高分子化合物と、前記液晶化合物と、前記光応答性化合物とを揮発性の有機溶媒に溶解する溶解工程と、
前記溶解工程の後、前記有機溶媒を除去する溶媒除去工程と、
を有する光感応性複合材料の製造方法。
A photosensitive composite material comprising a polymer compound, a liquid crystal compound dispersed in a granular form in the polymer compound, and a photoresponsive compound whose molecular shape reversibly changes upon irradiation with light of different wavelengths. A manufacturing method comprising:
A dissolving step of dissolving the polymer compound, the liquid crystal compound, and the photoresponsive compound in a volatile organic solvent;
After the dissolving step, a solvent removing step for removing the organic solvent;
A method for producing a photosensitive composite material comprising:
高分子化合物と、前記高分子化合物中に粒状で分散している液晶化合物と、紫外光と可視光の照射によって分子形状が可逆的に変化する光応答性化合物とを含有する光感応性複合材料の損傷部位または切断部位の修復方法であって、
前記光感応性複合材料の損傷部位または切断部位に紫外光を照射して、前記損傷部位を軟化または前記切断部位を粘着させる復元工程と、
前記復元工程の後、前記損傷部位または前記切断部位に可視光を照射して、前記損傷部位または前記切断部位を硬化させる硬化工程と、
を有する光感応性複合材料の損傷部位または切断部位の修復方法。
Photosensitive composite material comprising a polymer compound, a liquid crystal compound dispersed in a granular form in the polymer compound, and a photoresponsive compound whose molecular shape reversibly changes upon irradiation with ultraviolet light and visible light A method for repairing a damaged or cut site of
A restoration step of irradiating the damaged site or the cut site of the photosensitive composite material with ultraviolet light to soften the damaged site or to adhere the cut site;
After the restoration step, a curing step of irradiating the damaged site or the cut site with visible light to cure the damaged site or the cut site;
A method for repairing a damaged site or a cut site of a photosensitive composite material comprising:
高分子化合物と、前記高分子化合物中に粒状で分散している液晶化合物と、紫外光と可視光の照射によって分子形状が可逆的に変化する光応答性化合物とを含有する光感応性複合材料フィルムの使用方法であって、
前記光感応性複合材料フィルムに紫外光を照射して、前記光感応性複合材料フィルムを軟化させる軟化工程と、
軟化した前記光感応性複合材料フィルムを、被接着物に押し付ける押圧工程と、
前記被接着物に押し付けられた前記光感応性複合材料フィルムに接着物を貼り付ける貼付工程と、
前記貼付工程の後、前記光感応性複合材料フィルムに可視光を照射して、前記光感応性複合材料フィルムを硬化させる硬化工程と、
を有する光感応性複合材料フィルムの使用方法。
Photosensitive composite material comprising a polymer compound, a liquid crystal compound dispersed in a granular form in the polymer compound, and a photoresponsive compound whose molecular shape reversibly changes upon irradiation with ultraviolet light and visible light How to use the film,
Irradiating the light-sensitive composite film with ultraviolet light to soften the light-sensitive composite film; and
A pressing step of pressing the softened photosensitive composite material film against an adherend;
An attaching step of attaching an adhesive to the light-sensitive composite film pressed against the adherend;
After the attaching step, a curing step of irradiating the light-sensitive composite material film with visible light to cure the light-sensitive composite material film;
Use of a light-sensitive composite film having
JP2016571995A 2015-01-27 2016-01-22 PHOTOSENSITIVE COMPOSITE MATERIAL, PROCESS FOR PRODUCING THE SAME, AND METHOD OF USING PHOTOSENSITIVE COMPOSITE FILM Active JP6449340B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2015013499 2015-01-27
JP2015013499 2015-01-27
JP2015129091 2015-06-26
JP2015129091 2015-06-26
PCT/JP2016/051877 WO2016121651A1 (en) 2015-01-27 2016-01-22 Photosensitive composite material, method for producing same, and method for using photosensitive composite material film

Publications (2)

Publication Number Publication Date
JPWO2016121651A1 true JPWO2016121651A1 (en) 2017-08-03
JP6449340B2 JP6449340B2 (en) 2019-01-09

Family

ID=56543264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016571995A Active JP6449340B2 (en) 2015-01-27 2016-01-22 PHOTOSENSITIVE COMPOSITE MATERIAL, PROCESS FOR PRODUCING THE SAME, AND METHOD OF USING PHOTOSENSITIVE COMPOSITE FILM

Country Status (4)

Country Link
JP (1) JP6449340B2 (en)
KR (1) KR101958583B1 (en)
CN (1) CN107075263B (en)
WO (1) WO2016121651A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6950914B2 (en) * 2016-09-20 2021-10-13 国立研究開発法人産業技術総合研究所 Light receiving response device
JP6961226B2 (en) * 2017-01-23 2021-11-05 国立研究開発法人産業技術総合研究所 Hardness modifiers for polymer compounds and photosensitive composite materials
CN109666438B (en) * 2018-12-21 2020-09-01 广州市白云化工实业有限公司 Photo-responsive adhesive and preparation method thereof
CN109652000B (en) * 2018-12-21 2021-08-31 广州市白云化工实业有限公司 Novel electronic printed circuit board coating adhesive and preparation method thereof
JP7129729B2 (en) * 2019-04-19 2022-09-02 国立研究開発法人産業技術総合研究所 Photoresponsive polyvinyl ether compound and photoreversible adhesive
JP6959960B2 (en) * 2019-06-21 2021-11-05 国立研究開発法人産業技術総合研究所 How to use release agents for polymer compounds, adhesive materials and adhesive materials
CN112048279B (en) * 2020-09-11 2022-04-26 为远材料科技(辽宁)有限责任公司 Light-release adhesive, preparation method thereof and graphene transfer method
CN113912543B (en) * 2021-10-11 2022-12-23 上海交通大学 Pyrazolyl azoaniline-based light-operated small-molecule adhesive

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001242319A (en) * 2000-02-29 2001-09-07 Fuji Photo Film Co Ltd Optical film, polarizing plate and liquid crystal display device
JP2002169016A (en) * 2000-11-30 2002-06-14 Fuji Photo Film Co Ltd Optical film, polarizing element, method for producing the same, polarizing plate and liquid crystal display
JP2002179682A (en) * 2000-12-15 2002-06-26 Fuji Photo Film Co Ltd Optically active compound, photoreactive chiral agent, liquid crystal composition, liquid crystal color filter, optical film and recording medium, method for changing helical structure of liquid crystal and method for fixing helical structure of liquid crystal
JP2002309103A (en) * 2001-04-13 2002-10-23 Fuji Photo Film Co Ltd Liquid crystalline composition, color filter, and liquid crystal display device
JP2005281504A (en) * 2004-03-30 2005-10-13 Takashi Kato Photoresponsive liquid crystal composition
JP2008020538A (en) * 2006-07-11 2008-01-31 Fuji Xerox Co Ltd Hologram recording material, hologram recording medium and method therefor
JP2009298885A (en) * 2008-06-11 2009-12-24 National Institute Of Advanced Industrial & Technology Photoresponsive liquid crystal material
JP2011256155A (en) * 2010-05-10 2011-12-22 National Institute Of Advanced Industrial Science & Technology Photoresponsive liquid crystal compound
WO2013081155A1 (en) * 2011-12-01 2013-06-06 独立行政法人産業技術総合研究所 Photosensitive azobenzene derivative
JP2013144769A (en) * 2011-05-27 2013-07-25 National Institute Of Advanced Industrial Science & Technology Self repair material, using method of self repair material, and gel material
WO2013168712A1 (en) * 2012-05-07 2013-11-14 独立行政法人産業技術総合研究所 Light-responsive adhesive agent
WO2015022895A1 (en) * 2013-08-14 2015-02-19 国立大学法人東京工業大学 Photo-alignment material and photo-alignment method
JP2016124886A (en) * 2014-12-26 2016-07-11 国立研究開発法人産業技術総合研究所 Composite material, composition for composite material, production method of composite material, and use method of composite material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2921836B2 (en) * 1988-03-07 1999-07-19 理化学研究所 Polymer composite membrane
US20030137633A1 (en) * 2000-01-27 2003-07-24 Yoji Ito Sheet polarizer on which light-scattering polarizing element and light-absorption polarizing element are provided in multiyear
JP4183950B2 (en) * 2002-02-21 2008-11-19 隆史 加藤 Photoresponsive liquid crystal composition, information recording medium, and information recording method
JP5151419B2 (en) 2007-11-28 2013-02-27 東亞合成株式会社 Photocurable composition for producing photocurable adhesive and photocurable adhesive sheet
JP5652617B2 (en) 2011-04-27 2015-01-14 大日本印刷株式会社 Thermosetting adhesive composition, adhesive sheet, and method for producing adhesive sheet
JP6621230B2 (en) * 2014-05-16 2019-12-18 国立研究開発法人産業技術総合研究所 Gel material, method for producing gel material, and method for using gel material

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001242319A (en) * 2000-02-29 2001-09-07 Fuji Photo Film Co Ltd Optical film, polarizing plate and liquid crystal display device
JP2002169016A (en) * 2000-11-30 2002-06-14 Fuji Photo Film Co Ltd Optical film, polarizing element, method for producing the same, polarizing plate and liquid crystal display
JP2002179682A (en) * 2000-12-15 2002-06-26 Fuji Photo Film Co Ltd Optically active compound, photoreactive chiral agent, liquid crystal composition, liquid crystal color filter, optical film and recording medium, method for changing helical structure of liquid crystal and method for fixing helical structure of liquid crystal
JP2002309103A (en) * 2001-04-13 2002-10-23 Fuji Photo Film Co Ltd Liquid crystalline composition, color filter, and liquid crystal display device
JP2005281504A (en) * 2004-03-30 2005-10-13 Takashi Kato Photoresponsive liquid crystal composition
JP2008020538A (en) * 2006-07-11 2008-01-31 Fuji Xerox Co Ltd Hologram recording material, hologram recording medium and method therefor
JP2009298885A (en) * 2008-06-11 2009-12-24 National Institute Of Advanced Industrial & Technology Photoresponsive liquid crystal material
JP2011256155A (en) * 2010-05-10 2011-12-22 National Institute Of Advanced Industrial Science & Technology Photoresponsive liquid crystal compound
JP2013144769A (en) * 2011-05-27 2013-07-25 National Institute Of Advanced Industrial Science & Technology Self repair material, using method of self repair material, and gel material
WO2013081155A1 (en) * 2011-12-01 2013-06-06 独立行政法人産業技術総合研究所 Photosensitive azobenzene derivative
WO2013168712A1 (en) * 2012-05-07 2013-11-14 独立行政法人産業技術総合研究所 Light-responsive adhesive agent
WO2015022895A1 (en) * 2013-08-14 2015-02-19 国立大学法人東京工業大学 Photo-alignment material and photo-alignment method
JP2016124886A (en) * 2014-12-26 2016-07-11 国立研究開発法人産業技術総合研究所 Composite material, composition for composite material, production method of composite material, and use method of composite material

Also Published As

Publication number Publication date
CN107075263A (en) 2017-08-18
JP6449340B2 (en) 2019-01-09
CN107075263B (en) 2020-06-30
KR20170049552A (en) 2017-05-10
KR101958583B1 (en) 2019-03-14
WO2016121651A1 (en) 2016-08-04

Similar Documents

Publication Publication Date Title
JP6449340B2 (en) PHOTOSENSITIVE COMPOSITE MATERIAL, PROCESS FOR PRODUCING THE SAME, AND METHOD OF USING PHOTOSENSITIVE COMPOSITE FILM
Michal et al. Stimuli-responsive reversible two-level adhesion from a structurally dynamic shape-memory polymer
CN104419331B (en) Photocurable adhesive agent composition, polarizer and its manufacturing method, optical component and liquid crystal display device
TWI663436B (en) Optical film with adhesive, manufacturing method thereof, and manufacturing method of image display device
JP6810054B2 (en) UV curable adhesive based on acrylic polymer
TWI460245B (en) An adhesive composition and a method using its temporary fixing member
JP6188716B2 (en) Adhesive tape composition and adhesive tape produced from the composition
CN102869736B (en) Adhesive composite
JP2013542455A5 (en)
TWI753461B (en) Release agent for polymer compound, adhesive material, and method of using the adhesive material
Czech et al. Development of solvent-free acrylic pressure-sensitive adhesives
JP2018524426A5 (en)
JP2010275373A (en) Active energy ray-curable type composition for optical film or sheet and active energy ray-curable type adhesive film or sheet
TW201105762A (en) Adhesive sheet for securing mold in position, adhesive tape for securing mold in position, and method for fabricating microstructure
JP2006299017A (en) Uv ray-curable adhesive composition and adhesive sheet using the same
JP6693089B2 (en) Transfer laminate and optical element manufacturing method
CN106896551B (en) Method for manufacturing image display device
JP2007518855A (en) ORIENTED ACRYLATE PSA, METHOD FOR PRODUCTION AND USE THEREOF
Zhang et al. Light-switchable adhesion of azobenzene-containing siloxane-based tough adhesive
Czech Development of solvent-free pressure-sensitive adhesive acrylics
TW201527469A (en) Radical curable adhesive composition, polarizing plate and optical member comprising the same
JP2020500986A (en) Liquid adhesive composition, adhesive sheet and adhesive method
JP2017511836A (en) Adhesive coated thermosensitive polymer substrate, process for its production and use thereof
TWI696637B (en) Water-absorbing polymer sheet
JP2010077384A (en) Curable composition, and film laminate

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170322

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170322

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20170310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181205

R150 Certificate of patent or registration of utility model

Ref document number: 6449340

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250