JP2921836B2 - Polymer composite membrane - Google Patents
Polymer composite membraneInfo
- Publication number
- JP2921836B2 JP2921836B2 JP63053291A JP5329188A JP2921836B2 JP 2921836 B2 JP2921836 B2 JP 2921836B2 JP 63053291 A JP63053291 A JP 63053291A JP 5329188 A JP5329188 A JP 5329188A JP 2921836 B2 JP2921836 B2 JP 2921836B2
- Authority
- JP
- Japan
- Prior art keywords
- polymer
- film
- liquid crystal
- solvent
- composite film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/52—Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
- C09K19/54—Additives having no specific mesophase characterised by their chemical composition
- C09K19/542—Macromolecular compounds
- C09K19/544—Macromolecular compounds as dispersing or encapsulating medium around the liquid crystal
Landscapes
- Chemical & Material Sciences (AREA)
- Liquid Crystal (AREA)
- Crystallography & Structural Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Laminated Bodies (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は高分子複合膜に関する。The present invention relates to a polymer composite membrane.
(従来の技術とその課題) 今日、液晶が種々多様な分野で用いられている。液晶
の特徴は光学的異方性と電場、磁場等外場により分子配
列が容易に変化することにある。特に強誘電性液晶では
自発分極と電界との相互作用により生じるトルクが駆動
力となるが、この駆動力が非常に大きく高速表示素子材
料として注目されている。又、染料の中にも通常の電場
や光電場による電気光学効果、更に、非線形光学効果
等、光学特性に優れるものがある。これら機能性を有す
る低分子の液晶や染料は、多様な分子設計の可能性と多
彩な光学特性を有するが、流動性を有しており構造の固
定に問題がある。(Prior art and its problems) Today, liquid crystals are used in various fields. A characteristic of liquid crystals is that the molecular arrangement is easily changed by optical anisotropy and external fields such as electric and magnetic fields. In particular, in a ferroelectric liquid crystal, a torque generated by an interaction between spontaneous polarization and an electric field serves as a driving force, and the driving force is extremely large, and is attracting attention as a high-speed display element material. Also, some dyes have excellent optical characteristics such as an electro-optical effect due to a normal electric or photoelectric field and a non-linear optical effect. These functional low-molecular liquid crystals and dyes have various molecular design possibilities and various optical characteristics, but have fluidity and have a problem in fixing the structure.
従来の光学表示素子においては、液晶等の機能性低分
子を2枚のガラス板間に挟むことにより機能性低分子の
固定が行われていた。しかしながら、ガラス板を用いた
のでは、柔軟性、軽量化、広面積化という面で問題が生
じることになる。このため、一般に柔軟、軽量、且つ広
面積化が容易である高分子を用いて、機能性高分子を固
定する方法が考えられている。高分子のうち、強誘電性
高分子は高誘電率、高速スイッチング、圧電性、焦電
性、電歪といった優れた電気特性を有する。よって、共
に機能性を有する低分子物質と高分子を複合化して得ら
れる液晶及び又は染料と高分子との複合膜は出発物質の
有する電気光学効果や非線形光学効果のほかに多様な機
能が付与されることが期待できスイッチ、メモリー等の
光学素子や(半導体レーザーの)第二高調波発生、光双
安定メモリー、光プロセッシングといったデバイス等の
多種多様な工業材料として有望視されている。従来公知
の液晶と高分子との複合膜を得る方法としては以下の二
つの方法を挙げることができる。In a conventional optical display device, functional low molecules such as liquid crystal are fixed between two glass plates to fix the functional low molecules. However, using a glass plate causes problems in terms of flexibility, weight reduction, and area increase. For this reason, a method of fixing a functional polymer using a polymer that is flexible, lightweight, and easy to increase in area is generally considered. Among polymers, ferroelectric polymers have excellent electrical properties such as high dielectric constant, high-speed switching, piezoelectricity, pyroelectricity, and electrostriction. Therefore, a liquid crystal and / or a composite film of a dye and a polymer obtained by compounding a low-molecular substance and a polymer, which have both functions, have various functions in addition to the electro-optic effect and the nonlinear optical effect of the starting material. It is promising as a wide variety of industrial materials such as devices such as optical elements such as switches and memories, second harmonic generation (of semiconductor lasers), optical bistable memories, and optical processing. Conventionally known methods for obtaining a composite film of liquid crystal and a polymer include the following two methods.
(1)液晶と高分子との混合溶液から、常法(溶媒蒸発
法)によりキャスト製膜する方法、即ち、ポリ塩化ビニ
ル又はポリカーボネート等の高分子とN−(4−エトキ
シベンジリデン)−4′−ブチルアニリン、ブチル−4
−(4−エトキシフェノキシカルボニル)フェニル−カ
ルボナート等の液晶を共通溶媒に溶解し、その混合溶液
をシャーレに均一に流延させ、溶媒を蒸発させて製膜す
る方法と、 (2)水面展開法、即ち、液晶、高分子混合溶液を水面
に槽璧を介して滴下し、自己拡散により得られた複合超
薄膜を数十枚積層して製膜する方法である。(1) A method of casting a mixed solution of a liquid crystal and a polymer by a conventional method (solvent evaporation method), that is, a method of forming a polymer such as polyvinyl chloride or polycarbonate and N- (4-ethoxybenzylidene) -4 '. -Butylaniline, butyl-4
A method of dissolving a liquid crystal such as-(4-ethoxyphenoxycarbonyl) phenyl-carbonate in a common solvent, uniformly casting the mixed solution in a Petri dish, and evaporating the solvent to form a film; That is, a liquid crystal / polymer mixed solution is dropped on a water surface through a tank wall, and several tens of composite ultrathin films obtained by self-diffusion are laminated to form a film.
しかしながら、この様にして作製された液晶、染料等
の機能性低分子と高分子との複合膜の特性は必ずしも満
足のいくものではなかった。However, the characteristics of the composite film of a polymer and a functional low-molecular compound such as a liquid crystal and a dye prepared as described above are not always satisfactory.
(課題を解決するための手段) 上述の様な従来技術の抱えていた課題は、液晶、染料
等を連続した分散相として多孔質高分子中に分散させ、
形成された高分子複合膜により解決される。(Means for Solving the Problems) The problem of the prior art as described above is that a liquid crystal, a dye, and the like are dispersed in a porous polymer as a continuous dispersed phase.
The problem is solved by the formed polymer composite film.
このような、高分子複合膜は一例として次の方法によ
り作製される。水とアルコールを含む高分子溶液から溶
媒を蒸発させることにより連続した空孔を有する多孔質
高分子膜を得、この多孔質高分子膜の空孔に液晶、染料
等機能性低分子を充填することにより分散相が形成さ
れ、高分子複合膜が得られる。Such a polymer composite film is produced, for example, by the following method. A porous polymer film having continuous pores is obtained by evaporating the solvent from a polymer solution containing water and alcohol, and the pores of the porous polymer film are filled with functional low molecules such as liquid crystals and dyes. As a result, a dispersed phase is formed, and a polymer composite film is obtained.
本発明における分散相は、液晶や染料を単独又は液晶
と染料の混合物を高分子マトリックス中に均一に分散さ
せたもので、従来の公知なキャスト法で得られた不均一
分散系と異なる。The dispersed phase in the present invention is obtained by uniformly dispersing a liquid crystal or a dye alone or a mixture of a liquid crystal and a dye in a polymer matrix, and is different from a heterogeneous dispersion system obtained by a conventionally known casting method.
(作 用) エチルアルコールと水はエチルアルコール分子間の水
素結合により、その3分子が環状にクラスターを形成し
更にこのクラスター3個が会合し、その中に1個のヒド
ロニウムイオンを取り込んだ包接化合物を形成してお
り、この包接化合物が水分子と水素結合している。この
ため高分子を良溶媒に溶かした溶液中に一定量のアルコ
ール水を分散させた溶液中のアルコール水は溶媒の蒸発
と共に界面張力により均一な球状粒子となり溶媒が蒸発
した後、多孔質構造を形成する。その後100℃以上で乾
熱乾燥することによってアルコール水が完全に蒸発し、
互いの孔がチャンネルで結ばれた構造の多孔質膜が得ら
れることを見いだした。またエチルアルコールは親水性
を有することから、高分子を良溶媒に溶かした溶液中に
一定量のアルコールを均一拡散させた後、多湿な環境下
で溶媒を蒸発させた場合も同様に多孔質膜がえられる。
本発明の高分子複合膜は製膜の際、室温より少し高い温
度で製膜すれば製膜時の収縮によりお互いの分散相は細
いチャンネルで結ばれた構造となる。(Effect) Ethyl alcohol and water form a cyclic cluster of three molecules due to hydrogen bonds between ethyl alcohol molecules, and these three clusters are further associated with each other to incorporate one hydronium ion. An inclusion compound is formed, and this inclusion compound is hydrogen-bonded to a water molecule. For this reason, alcohol water in a solution in which a certain amount of alcohol water is dispersed in a solution in which a polymer is dissolved in a good solvent becomes uniform spherical particles due to interfacial tension as the solvent evaporates, and the solvent evaporates. Form. After that, the alcoholic water is completely evaporated by dry heat drying at 100 ° C or higher,
It has been found that a porous membrane having a structure in which pores are connected by a channel can be obtained. In addition, since ethyl alcohol has hydrophilicity, a porous membrane is also used when a certain amount of alcohol is uniformly diffused in a solution of a polymer dissolved in a good solvent and then the solvent is evaporated in a humid environment. Can be obtained.
If the polymer composite film of the present invention is formed at a temperature slightly higher than room temperature during film formation, the dispersed phase of each other is connected by thin channels due to shrinkage during film formation.
更に本発明について詳細に説明する。 Further, the present invention will be described in detail.
本発明においては(1)高分子をその良溶媒に溶解し
た後、一定量のアルコールと水を添加し、十分混合した
後フラットシャーレに流延し、溶媒蒸発させ多孔質膜を
得るか(2)、(1)法において一定量のアルコールを
添加し十分混合した後、フラットシャーレに流延し、予
め湿度調整された容器(デシケーター、クロマト展開槽
等)中で溶媒蒸発させ、多孔質膜をえる。上記によって
得られた多孔質膜に減圧乾熱機中で液晶(及び又は染
料)を充填した後、電極を付けて試料とすることができ
る。In the present invention, (1) after dissolving a polymer in a good solvent, adding a certain amount of alcohol and water, mixing well, casting the mixture on a flat petri dish, and evaporating the solvent to obtain a porous membrane (2). ), After adding a certain amount of alcohol and thoroughly mixing in the method (1), casting the mixture on a flat petri dish and evaporating the solvent in a container (desiccator, chromatograph developing tank, etc.) whose humidity has been adjusted in advance, and the porous membrane is removed. I can. After the porous film obtained as described above is filled with a liquid crystal (and / or dye) in a reduced-pressure dryer, a sample can be obtained by attaching electrodes.
本発明において利用しうる高分子としては、液晶、染
料等の機能性低分子と複合膜を形成しうるものであれば
何れの高分子も使用できる。高分子としてはポリエチレ
ン、ポリ酢酸ビニル、ポリアクリロニトリル、ポリ塩化
ビニル、ポリフッ化ビニル等ビニル化合物及びビニル化
合物の付加重合体、ポリ塩化ビニリデン、ポリフッ化ビ
ニリデン、シアン化ビニリデン、フッ化ビニリデン/ト
リフルオロエチレン共重合体、フッ化ビニリデン/テト
ラフルオロエチレン共重合体、シアン化ビニリデン/酢
酸ビニル共重合体等ビニル化合物又はフッソ系化合物の
共重合体、ポリトリフルオロエチレン、ポリテトラフル
オロエチレン、ポリヘキサフルオロプロピレン等フッ素
を含む化合物、ナイロン6、ナイロン66等ポリアミド、
ポリイミド、ポリウレタン、ポリペプチド、ポリエチレ
ンテレフタレート等ポリエステル、ポリカーボネート、
ポリオキシメチレン、ポリエチレンオキシド、ポリプロ
ピレンオキシド等ポリエーテルを挙げることができる。
該高分子は市販のものを単独で利用できるが、種種の高
分子を組合せた混合系として使うこともできる。この場
合、お互いのポリマーは相溶性が良く、製膜性に優れる
のみならず得られた複合膜の諸特性、即ち化学的安定
性、耐候性、耐衝撃性(熱的、機械的)等使用目的を考
慮し、組み合わせて用いることが望ましい。As the polymer that can be used in the present invention, any polymer can be used as long as it can form a composite film with functional low molecules such as liquid crystals and dyes. Examples of the polymer include polyethylene, polyvinyl acetate, polyacrylonitrile, polyvinyl chloride, polyvinyl compounds such as polyvinyl fluoride, and addition polymers of vinyl compounds, polyvinylidene chloride, polyvinylidene fluoride, vinylidene cyanide, vinylidene fluoride / trifluoroethylene. Copolymers, vinylidene fluoride / tetrafluoroethylene copolymers, vinylidene cyanide / vinyl acetate copolymers, and other vinyl compound or fluorine compound copolymers, polytrifluoroethylene, polytetrafluoroethylene, polyhexafluoropropylene Compounds containing fluorine, polyamides such as nylon 6, nylon 66, etc.
Polyimide, polyurethane, polypeptide, polyester such as polyethylene terephthalate, polycarbonate,
Examples include polyethers such as polyoxymethylene, polyethylene oxide, and polypropylene oxide.
As the polymer, a commercially available polymer can be used alone, but it can also be used as a mixed system in which various polymers are combined. In this case, the polymers are compatible with each other, and not only have excellent film forming properties, but also use various properties of the obtained composite film, such as chemical stability, weather resistance, impact resistance (thermal and mechanical). It is desirable to use them in combination in consideration of the purpose.
又高分子を溶解させるには良溶媒がよく、高分子によ
って異なる。例を挙げればポリ塩化ビニルはテトラヒド
ロフラン、シクロヘキサノン、メチルエチルケトン、ジ
メチルホルムアミド等、ポリ酢酸ビニルはクロロホル
ム、メタノール、アセトン、酢酸ブチル等、ポリエチレ
ンオキシドはベンゼン、ジメチルホルムアミド等が、又
フッ化ビニリデン、シアン化ビニリデン及びその共重合
体はアセトン、メチルエチルケトン、シクロヘキサノン
等ケトン類、酢酸メチル、アクリル酸メチル等エステル
類、エチレンオキシド、プロピレンオキシド、テトラヒ
ドロフラン、ジオキサン等環状エーテル、nブチルアミ
ン等アミン類、ジメチルホルムアミド、ジメチルアセト
アミド等アミド類を挙げることができるう。又、上記溶
媒の添加量は高分子に対して任意の量でよいが製膜性を
考慮し20−0.5%溶液であることが望ましい。A good solvent is good for dissolving the polymer, and differs depending on the polymer. For example, polyvinyl chloride is tetrahydrofuran, cyclohexanone, methyl ethyl ketone, dimethylformamide, etc., polyvinyl acetate is chloroform, methanol, acetone, butyl acetate, etc., polyethylene oxide is benzene, dimethylformamide, etc., and vinylidene fluoride, vinylidene cyanide And copolymers thereof include ketones such as acetone, methyl ethyl ketone and cyclohexanone, esters such as methyl acetate and methyl acrylate, cyclic ethers such as ethylene oxide, propylene oxide, tetrahydrofuran and dioxane, amines such as n-butylamine, amides such as dimethylformamide and dimethylacetamide. Kind. The amount of the solvent to be added may be any amount relative to the polymer, but is preferably a 20-0.5% solution in view of film forming properties.
本発明において利用しうる液晶としては、液晶/高分
子複合膜を形成しうるものであれば何れの液晶も使用で
きる。例を挙げればp−アゾキシアニソール、ノナン酸
コレステリル、4−メトキシベンジリデン−4′−n−
ブチルアニリン、4−メトキシ−4′−ブチルアゾキシ
−ベンゼン、4,4′−ジメトキシアゾベンゼン、p−ア
ゾキシアニソール、4−シアノ−4′−n−ペンチルビ
フェニル、p−2メトキシブチル−p′−シアノビフェ
ニル等ネマチック液晶、テレフタル−ビス−ブチルアニ
リン、N−(4−シアノベンジリデン)−4′−n−オ
クチルオキシアニリン、ドデシルオキシアゾベンゼン、
p−(p′−フェニルベンザルアミノ)安息香酸エチ
ル、4−ヘプチルオキシベンジリデン−4′−ペンチル
アニリン、4−ブチルオキシベンザル−4−エチルアニ
リン、4−(4′−フェニルベンジリデンアミノ)−n
−ブチルシンナメート、4−(4′−デシルオキシベン
ジリデンアミノ)2−メチルブチルシンナメート、4−
(n−ヘキシルオキシ)フェニルオキシ−4″−(2−
メチルブチル)ビフェニル−4′−カルボキシレート、
ZLI−3489等スメクチック液晶、ノナン酸コレステリ
ル、(−)−2−メチル−p−(p′−メトキシベンジ
リデンアミノ)ケイヒ酸、コレステリルミリステート、
コレステロールのハロゲン化物、エステル等コレステリ
ック液晶、ヘキサブトキシトリフェニレン等ディスコチ
ック液晶が挙げられる。この場合、上記の液晶は単独で
利用できるが相転移温度、温度範囲、化学的安定性、製
膜性等ベースとなる液晶の性能向上を目的とし複数のも
のを混合し利用することもできる。As the liquid crystal that can be used in the present invention, any liquid crystal that can form a liquid crystal / polymer composite film can be used. For example, p-azoxyanisole, cholesteryl nonanoate, 4-methoxybenzylidene-4'-n-
Butylaniline, 4-methoxy-4'-butylazoxy-benzene, 4,4'-dimethoxyazobenzene, p-azoxyanisole, 4-cyano-4'-n-pentylbiphenyl, p-2methoxybutyl-p'-cyano Nematic liquid crystal such as biphenyl, terephthal-bis-butylaniline, N- (4-cyanobenzylidene) -4'-n-octyloxyaniline, dodecyloxyazobenzene,
Ethyl p- (p'-phenylbenzalamino) benzoate, 4-heptyloxybenzylidene-4'-pentylaniline, 4-butyloxybenzal-4-ethylaniline, 4- (4'-phenylbenzylideneamino)- n
-Butylcinnamate, 4- (4'-decyloxybenzylideneamino) 2-methylbutylcinnamate, 4-
(N-hexyloxy) phenyloxy-4 ″-(2-
Methylbutyl) biphenyl-4'-carboxylate,
Smectic liquid crystal such as ZLI-3489, cholesteryl nonanoate, (−)-2-methyl-p- (p′-methoxybenzylideneamino) cinnamic acid, cholesteryl myristate,
Cholesteric liquid crystals such as halides and esters of cholesterol and discotic liquid crystals such as hexabutoxytriphenylene are exemplified. In this case, the above liquid crystal can be used alone, but a plurality of liquid crystals can be mixed and used for the purpose of improving the performance of the base liquid crystal such as a phase transition temperature, a temperature range, a chemical stability and a film forming property.
本発明において利用しうる染料(含顔料)として従
来、液晶に混和し、染料の光吸収異方性に利用されてい
るアゾ系、アントラキノン系、テトラジン系、クマリン
系二色性染料等、非線形光学特性を有する4−ジメチル
アミノ−4′−ニトロスチルベン、o−(m−p−)ニ
トロアニリン、2−メチル−4−ニトロアニリン、メロ
シアニン等、及びビス(1−チオ−2−フェノレート)
ニッケル−テトラブチルアンモニウム、ビス(1−チオ
−2−ナフトレート)ニッケル−テトラブチルアンモニ
ウム、ビス(1,2,3,4−テトラクロロ−5,6−ジチオフェ
ノレート)ニッケル(II)テトラ−n−ブチルアンモニ
ウム等近赤外吸収色素が挙げられる。Non-linear optics such as azo-based, anthraquinone-based, tetrazine-based, and coumarin-based dichroic dyes which are conventionally mixed with liquid crystals and used for the light absorption anisotropy of the dyes as dyes (pigment-containing) usable in the present invention. 4-dimethylamino-4'-nitrostilbene, o- (mp-) nitroaniline, 2-methyl-4-nitroaniline, merocyanine, etc. having properties, and bis (1-thio-2-phenolate)
Nickel-tetrabutylammonium, bis (1-thio-2-naphtholate) nickel-tetrabutylammonium, bis (1,2,3,4-tetrachloro-5,6-dithiophenolate) nickel (II) tetra-n And near-infrared absorbing dyes such as -butylammonium.
本発明において用いるアルコールとしてはメタノー
ル、エタノール等低級一価アルコールが好ましい。上記
アルコールの添加量は任意の量でよいが高分子が沈澱し
てこない範囲で、共通溶媒に対して5−30%であること
が好ましい。この場合、上記のアルコールに所望に応じ
てベンゼン、トルエン、キシレン等の炭化水素などの補
助添加成分を加えることもできる。As the alcohol used in the present invention, lower monohydric alcohols such as methanol and ethanol are preferable. The amount of the alcohol to be added may be an arbitrary amount, but is preferably 5 to 30% with respect to the common solvent within a range where the polymer does not precipitate. In this case, if necessary, auxiliary additives such as hydrocarbons such as benzene, toluene and xylene can be added to the alcohol.
本発明において用いる水は純水が好ましい。上記にお
いてアルコールに対する水の添加量は高分子が沈澱して
こない範囲であれば任意の量でよいがアルコールに対し
て5−50%であることが好ましい。又別法として、高分
子を良溶媒に溶かした溶液中に一定量のアルコールを均
一拡散させた後、多湿な環境下で溶媒を蒸発させ多孔質
高分子膜を得る場合、環境の相対湿度は溶媒の種類によ
って異なるが60−100%、好ましくは75−95%である。The water used in the present invention is preferably pure water. In the above, the amount of water added to the alcohol may be any amount as long as the polymer does not precipitate, but is preferably 5 to 50% based on the alcohol. Alternatively, after uniformly diffusing a certain amount of alcohol in a solution of a polymer dissolved in a good solvent, and then evaporating the solvent in a humid environment to obtain a porous polymer film, the relative humidity of the environment is Although it depends on the type of the solvent, it is 60-100%, preferably 75-95%.
本発明の多孔質高分子膜は、アルコール水が成膜時迄
高分子溶液中に均一に微小液滴として存在しているため
出来上がった多孔質膜の分散相の孔の径、分布状態が均
一である。また分散相が形成される空孔部分がアルコー
ルによって形成されるため成膜阻害をうけず機械的強
度、寸法安定性が大きく改善されている。このような特
徴は本多孔質複合膜を工業材料として利用する上で重要
である。In the porous polymer membrane of the present invention, since the alcohol water is uniformly present as fine droplets in the polymer solution until the time of film formation, the diameter and distribution of the pores of the dispersed phase of the resulting porous membrane are uniform. It is. In addition, since the pores in which the dispersed phase is formed are formed by alcohol, the mechanical strength and dimensional stability are greatly improved without being hindered by film formation. Such features are important in using the present porous composite membrane as an industrial material.
(実施例) 次に本発明を実施例により更に詳細に説明する。EXAMPLES Next, the present invention will be described in more detail with reference to examples.
実施例1 フッ化ビニリデン−トリフルオロエチレン共重合体
〔フッ化ビニリデン65%、ダイキン工業(株)製〕7.5
部をテトラヒドロフラン溶媒100部に溶解した後、エチ
ルアルコール10部を混合させた後、フラットシャーレに
流延させ相対湿度80%に調湿したクロマト展開槽中で溶
媒蒸発させ製膜した。その後、減圧乾熱器中で100℃、
8時間熱処理し、キャスト膜を得た。この膜のSEM像か
ら得られた膜は孔径4−5μmの多孔質高分子であるこ
とがわかった。この多孔質膜に100℃、減圧乾熱器中で
4−(4′nデシルオキシベンジリデンアミノ)2−メ
チルブチルシンナメート(DOBAMBC)2.5部を含浸、充填
した後、電極を付けて供試体とした。供試体について誘
電率の温度依存性を測定し、出発物質として使用したフ
ッ化ビニリデン−トリフルオロエチレン共重合体、液晶
DOBAMBCと比較した。昇温過程における線形誘電率ε3
と3次の非線形誘電率ε3の温度分散を第1図および第
2図に示す( は複合膜に対応し、○はフッ化ビニリデン−トリフルオ
ロエチレン共重合体に対応し、●はDOBAMBCに対応す
る)。DOBAMBCとフッ化ビニリデン−トリフルオロエチ
レン共重合体は相溶性がないので、複合膜の誘電特性に
は、両相の特性が独立に反映され各々の相転移点におけ
るε1、ε3のジャンプが複合膜においてもみられる。
第1図において、液晶/高分子複合膜のピークはDOBA
MBC結晶相からSm*相への転移点(76℃)に、のピー
クはフッ化ビニリデン−トリフルオロエチレン共重合体
のキュリー点、95℃に、付近の誘電体の増加はDOBAMB
CのSmA相からアイソトロピックへの相転移(117℃)に
対応している。ここで複合膜の誘電率がDOBAMBC、フッ
化ビニリデン−トリフルオロエチレン共重合体のそれよ
りも高い値を示し、この系において相乗的な複合が実現
していることは注目される。またDOBAMBCの転移点にお
けるεのジャンプもDOBAMBC単体に較べ複合膜のほうが
大きく、液晶の分極反転がより容易に制御できることが
わかる。比較のためにDOBAMBC、フッ化ビニリデン−ト
リフルオロエチレン共重合体をテトラヒドロフランを共
通溶媒とし常法によりキャスト製膜したものは膜の一方
にDOBAMBCリッチな、一方にフッ化ビニリデン−トリフ
ルオロエチレン共重合体リッチな層が形成され不均一な
膜となった。この不均一複合膜の誘電率は両相の誘電率
の間にありごく常識的な複合がおきていることがわかっ
た。Example 1 Vinylidene fluoride-trifluoroethylene copolymer [vinylidene fluoride 65%, manufactured by Daikin Industries, Ltd.] 7.5
The resulting solution was dissolved in 100 parts of a tetrahydrofuran solvent, mixed with 10 parts of ethyl alcohol, and then cast on a flat petri dish to evaporate the solvent in a chromatographic developing tank adjusted to a relative humidity of 80% to form a film. Then, in a vacuum oven at 100 ° C,
Heat treatment was performed for 8 hours to obtain a cast film. The film obtained from the SEM image of this film was found to be a porous polymer having a pore size of 4-5 μm. The porous membrane was impregnated with 2.5 parts of 4- (4'n-decyloxybenzylideneamino) 2-methylbutylcinnamate (DOBAMBC) at 100 ° C. in a vacuum oven, filled with electrodes, attached with electrodes, and did. The temperature dependence of the dielectric constant of the specimen was measured, and the vinylidene fluoride-trifluoroethylene copolymer used as a starting material, a liquid crystal
Compared to DOBAMBC. Linear permittivity ε 3 during heating process
FIG. 1 and FIG. 2 show the temperature dispersion of the third-order nonlinear dielectric constant ε 3 and Corresponds to the composite membrane, ○ corresponds to vinylidene fluoride-trifluoroethylene copolymer, and ● corresponds to DOBAMBC). Since DOBAMBC and vinylidene fluoride-trifluoroethylene copolymer are incompatible, the dielectric properties of the composite film reflect the properties of both phases independently, and the jumps of ε 1 and ε 3 at each phase transition point are generated. It is also found in composite membranes.
In FIG. 1, the peak of the liquid crystal / polymer composite film is DOBA
At the transition point (76 ° C) from the MBC crystal phase to the Sm * phase, the peak is at the Curie point of the vinylidene fluoride-trifluoroethylene copolymer, at 95 ° C, and the increase in the dielectric near is DOBAMB
It corresponds to the phase transition from SmA phase of C to isotropic (117 ° C). Here, the dielectric constant of the composite film is higher than that of DOBAMBC and vinylidene fluoride-trifluoroethylene copolymer, and it is noted that synergistic composite is realized in this system. Also, the jump of ε at the transition point of DOBAMBC is larger in the composite film than in the DOBAMBC alone, which indicates that the polarization reversal of the liquid crystal can be more easily controlled. For comparison, a DOBAMBC-vinylidene fluoride-trifluoroethylene copolymer obtained by casting a film using a common method using tetrahydrofuran as a common solvent is DOBAMBC-rich on one side and vinylidene fluoride-trifluoroethylene copolymer on one side. A layer rich in coalescence was formed, resulting in a non-uniform film. It was found that the dielectric constant of the heterogeneous composite film was between the dielectric constants of the two phases, and that a very common compound occurred.
実施例2 フッ化ビニリデン−トリフルオロエチレン共重合体7
部とメタクリル酸メチル3部の混合物をメチルエチルケ
トン溶媒100部に溶解した後、メチルアルコール20部、
純水3部を添加し、フラットシャーレに流延し、ゆっく
り溶媒蒸発させキャスト膜を得た。膜のSEM像から、得
られた膜は孔径約5μmの多孔質膜でお互いの孔は細い
チャンネルで結ばれ連続相を形成していることが分かっ
た。この膜に80℃、減圧乾熱器中で液晶ZLI−3489(メ
ルク社製)を含浸、充填し複合膜をえた。この複合膜を
再び120℃に加熱したところZLI−3489が膜表面ににじみ
出た。このことはフッ化ビニリデン−トリフルオロエチ
レンとメタクリル酸メチル マトリックスが形成する連
続した空孔を連続相ドメインとして液晶、ZLI−3489が
しみだしてくるためで、SEM像の結果とよく一致してい
る。この現象は液晶、ZLI−3489のコレステリック相か
ら等方相への転移点87℃以上でみられる。Example 2 Vinylidene fluoride-trifluoroethylene copolymer 7
After dissolving a mixture of 3 parts of methyl methacrylate and 3 parts of methyl methacrylate in 100 parts of methyl ethyl ketone solvent, 20 parts of methyl alcohol,
Pure water (3 parts) was added, the mixture was cast on a flat petri dish, and the solvent was slowly evaporated to obtain a cast film. From the SEM image of the film, it was found that the obtained film was a porous film having a pore size of about 5 μm, and the pores were connected by narrow channels to form a continuous phase. This film was impregnated and filled with a liquid crystal ZLI-3489 (manufactured by Merck) at 80 ° C. in a vacuum dryer to obtain a composite film. When this composite film was heated again to 120 ° C., ZLI-3489 oozed out on the film surface. This is because the liquid crystal, ZLI-3489, seeps through continuous voids formed by the vinylidene fluoride-trifluoroethylene and methyl methacrylate matrix as a continuous phase domain, and is in good agreement with the SEM image results. . This phenomenon is observed at a transition point of the liquid crystal, ZLI-3489, from the cholesteric phase to the isotropic phase of 87 ° C. or higher.
実施例3 フッ化ビニリデン−トリフルオロエチレン共重合体7.
5部をテトラヒドロフラン溶媒100部に溶解した後、エチ
ルアルコール10部、純水3部を添加、十分混合した後フ
ラットシャーレに流延し、溶媒蒸発法によって製膜した
後、減圧乾燥器中で100℃、6時間熱処理し、空孔径約
8μmで、お互いの孔は細いチャンネルで結ばれ連続相
を形成しているキャスト膜を得た。この膜に90℃、減圧
乾燥器中で液晶、ZLI−3489、2.5部を含浸、充填し複合
膜を得、電極を付けて供試体とし、誘電率の温度依存性
を測定した。比較の為にフッ化ビニリデン−トリフルオ
ロエチレン共重合体7.5部と液晶、ZLI−3489、2.5部を
共通溶媒、テラヒドロフラン100部に溶解させ常法によ
りキャスト製膜したものについても同様の実験を行っ
た。線形誘電率ε1の温度分散を第3図に示す。第3図
において−20〜60℃の領域のピークは液晶ZLI−3489の
強誘電相に、70℃付近のピークはフッ化ビニリデン−ト
リフルオロエチレン共重合体のキュリー点に対応してい
る。この二種類のチャートの違いからわかるように多孔
質膜に液晶を充填した複合膜(曲線a)は液晶の強誘電
相における誘電率のジャンプが常法(曲線b)で得たそ
れよりもずっと大きく、液晶の分極反転がより容易に制
御できることがわかる。Example 3 Vinylidene fluoride-trifluoroethylene copolymer 7.
After 5 parts were dissolved in 100 parts of tetrahydrofuran solvent, 10 parts of ethyl alcohol and 3 parts of pure water were added, mixed well, cast on a flat petri dish, and formed into a film by a solvent evaporation method. A heat treatment was performed at 6 ° C. for 6 hours to obtain a cast film having a pore diameter of about 8 μm, the pores of which were connected by thin channels to form a continuous phase. This film was impregnated and filled with 2.5 parts of liquid crystal and ZLI-3489 in a vacuum dryer at 90 ° C. to obtain a composite film, which was provided with electrodes to prepare a test sample, and the temperature dependence of the dielectric constant was measured. For comparison, a similar experiment was conducted using 7.5 parts of vinylidene fluoride-trifluoroethylene copolymer and 2.5 parts of liquid crystal and ZLI-3489 in a common solvent, 100 parts of terahydrofuran, and casting by a conventional method. Was done. The temperature distribution of the linear dielectric constant epsilon 1 shown in Figure 3. In FIG. 3, the peak in the range of −20 to 60 ° C. corresponds to the ferroelectric phase of the liquid crystal ZLI-3489, and the peak near 70 ° C. corresponds to the Curie point of the vinylidene fluoride-trifluoroethylene copolymer. As can be seen from the difference between the two charts, the composite film in which the porous film is filled with liquid crystal (curve a) has a jump in the dielectric constant in the ferroelectric phase of the liquid crystal much longer than that obtained by the ordinary method (curve b). It is clear that the polarization reversal of the liquid crystal can be more easily controlled.
実施例4 実施例3においてZLI−3489のかわりにo−ニトロア
ニリン0.5gをエチルアルコール0.5ccに溶解してZLI−34
89 2.0gと混合した混合物を用いた以外は実施例3と同
様に処理し、高分子に液晶/染料混合物を微小な球状分
散体として複合した複合膜を得た。Example 4 In Example 3, 0.5 g of o-nitroaniline was dissolved in 0.5 cc of ethyl alcohol in place of ZLI-3489 to obtain ZLI-34.
Except for using a mixture mixed with 2.0 g of 89, the same treatment as in Example 3 was performed to obtain a composite film in which a polymer was mixed with a liquid crystal / dye mixture as a fine spherical dispersion.
(発明の効果) 以上詳細に説明した如く、本発明によって得られる高
分子複合膜は、分極反転特性を容易に制御することがで
きる。又、共に機能性を有する低分子と高分子を複合す
ることにより両相の機能性の相乗効果が現われるような
性能も得られる。このように本発明によって得られる複
合膜は多孔質高分子膜の空孔の形状、分散状態、低分子
物質と高分子の界面効果等の相互作用によって誘電率等
電気特性、非線形光学効果、複屈折等光学特性が著しく
改善されている。(Effects of the Invention) As described above in detail, the polymer composite film obtained by the present invention can easily control the domain inversion characteristics. In addition, by combining a low-molecular compound and a high-molecular compound, both of which have functional properties, a performance can be obtained such that a synergistic effect of the functionality of both phases appears. As described above, the composite film obtained by the present invention can be used for the electric properties such as the dielectric constant, the nonlinear optical effect, Optical properties such as refraction are significantly improved.
第1図は実施例1において得られた本発明の複合膜およ
び出発物質としてのフッ化ビニリデン−トリフルオロエ
チレン共重合体およびDOBAMBCの線形誘電率の温度分散
を示したグラフである。 記号: 複合膜、○フッ化ビニリデン−トリフルオロエチレン、
●DOBAMBC。 第2図は実施例1において得られた本発明の複合膜およ
び出発物質としてのフッ化ビニリデン−トリフルオロエ
チレン共重合体およびDOBAMBCの非線形誘電率の温度分
散を示したグラフ、 第3図は実施例3において得られた本発明の複合膜及び
常法によって得られた複合膜の線形誘電率を示したグラ
フである。 記号:a−本発明の複合膜、b−常法で得た複合膜。FIG. 1 is a graph showing the temperature dispersion of the linear dielectric constant of the composite membrane of the present invention obtained in Example 1, the vinylidene fluoride-trifluoroethylene copolymer as a starting material, and DOBAMBC. symbol: Composite membrane, o vinylidene fluoride-trifluoroethylene,
● DOBAMBC. FIG. 2 is a graph showing the temperature dispersion of the nonlinear dielectric constant of the composite membrane of the present invention obtained in Example 1, the vinylidene fluoride-trifluoroethylene copolymer as a starting material and DOBAMBC, and FIG. 4 is a graph showing the linear dielectric constant of the composite film of the present invention obtained in Example 3 and the composite film obtained by a conventional method. Symbol: a-composite membrane of the present invention, b-composite membrane obtained by conventional method.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−271233(JP,A) 特開 平1−230693(JP,A) 特開 昭63−124024(JP,A) 特許2700656(JP,B2) (58)調査した分野(Int.Cl.6,DB名) G02F 1/1333 G02F 1/137 ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-63-271233 (JP, A) JP-A-1-230693 (JP, A) JP-A-63-124024 (JP, A) Patent 2700656 (JP, A B2) (58) Field surveyed (Int.Cl. 6 , DB name) G02F 1/1333 G02F 1/137
Claims (5)
高分子膜と、この高分子膜の空孔に物質が充填されて形
成された連続した分散相とを有していることを特徴とす
る高分子複合膜。1. A porous polymer film comprising a polymer excluding an acrylic resin, and a continuous dispersed phase formed by filling the pores of the polymer film with a substance. Polymer composite membrane.
請求項(1)記載の高分子複合膜。2. The polymer composite film according to claim 1, wherein said dispersed phase is a liquid crystal.
請求項(1)記載の高分子複合膜。3. The polymer composite film according to claim 1, wherein said dispersed phase is a dye.
とを特徴とする請求項(1)記載の高分子複合膜。4. The polymer composite film according to claim 1, wherein said dispersed phase is a mixture of liquid crystal and dye.
むアクリル樹脂を除く高分子溶液から溶媒を蒸発させて
形成された多孔質高分子膜の空孔に物質が充填されて形
成されていることを特徴とする請求項(1)記載の高分
子複合膜。5. The porous polymer film formed by evaporating a solvent from a polymer solution excluding an acrylic resin containing water and alcohol, and filling the pores of the porous polymer film with a substance. The polymer composite membrane according to claim 1, wherein
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63053291A JP2921836B2 (en) | 1988-03-07 | 1988-03-07 | Polymer composite membrane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63053291A JP2921836B2 (en) | 1988-03-07 | 1988-03-07 | Polymer composite membrane |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01225924A JPH01225924A (en) | 1989-09-08 |
JP2921836B2 true JP2921836B2 (en) | 1999-07-19 |
Family
ID=12938620
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63053291A Expired - Lifetime JP2921836B2 (en) | 1988-03-07 | 1988-03-07 | Polymer composite membrane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2921836B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69319951T2 (en) * | 1992-04-02 | 1999-02-11 | Canon K.K., Tokio/Tokyo | Liquid crystal device and display device and display method using the same |
EP0724174A4 (en) * | 1994-07-15 | 1998-12-09 | Matsushita Electric Ind Co Ltd | Head-up display apparatus, liquid crystal display panel and production method thereof |
WO2016121651A1 (en) * | 2015-01-27 | 2016-08-04 | 国立研究開発法人産業技術総合研究所 | Photosensitive composite material, method for producing same, and method for using photosensitive composite material film |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2700656B2 (en) | 1988-03-07 | 1998-01-21 | 理化学研究所 | Fixed membrane |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63124024A (en) * | 1986-11-14 | 1988-05-27 | Fuji Photo Film Co Ltd | Light valve comprising dispersed liquid crystal |
-
1988
- 1988-03-07 JP JP63053291A patent/JP2921836B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2700656B2 (en) | 1988-03-07 | 1998-01-21 | 理化学研究所 | Fixed membrane |
Also Published As
Publication number | Publication date |
---|---|
JPH01225924A (en) | 1989-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Patel et al. | A reliable method of alignment for smectic liquid crystals | |
EP0156726B1 (en) | Process for the preparation of a smectic c-chiral ferroelectric liquid crystal, liquid crystal and display device using the same. | |
US5238636A (en) | Processes for producing porous polymer films and composite films | |
Itoh et al. | Devil’s staircase between antiferroelectric SCA* and ferroelectric SC* phases in liquid crystals observed in free-standingfilms under temperature gradients | |
JP2921836B2 (en) | Polymer composite membrane | |
Maekawa et al. | Gyroid nanostructured soft membranes formed by controlling the degree of crosslinking polymerization of bicontinuous cubic liquid-crystalline monomers | |
Urayama et al. | Volume transition of nematic gels in nematogenic solvents | |
JPH0769544B2 (en) | Composition for coating liquid crystal element and liquid crystal element alignment film | |
JP2700656B2 (en) | Fixed membrane | |
Hikmet | Anisotropic networks and gels formed by photopolymerisation in the ferroelectric state | |
WO1989008679A1 (en) | Process for producing porous polymer membrane and composite polymer membrane | |
JP2562973B2 (en) | Method for producing porous polymer membrane and polymer composite membrane | |
Karapinar et al. | Polymer dispersed ferroelectric liquid crystal films with high electro-optic quality | |
US6181407B1 (en) | Electro-optical material having a lamellar liquid crystal structure | |
Mori et al. | Heterogeneous network polymers: 7. Cholesteric liquid crystal structure of poly (glutamic acid) fixed by crosslinking | |
Kim et al. | Effect of copolymer composition on the domain morphology and electrooptic properties of polymer dispersed liquid crystals | |
JP2925783B2 (en) | Uniform electrorheological fluid | |
Urayama | Stimulus–Responsive Nematic Gels | |
Myrvold | The relationship between the physical properties of the alignment layer and the quality of SSFLC cells | |
JPS6337187A (en) | Liquid crystal display device | |
JPH0553153A (en) | Liquid crystal display element | |
JP2959635B2 (en) | Compensator for liquid crystal display element and method of manufacturing the same | |
Brás et al. | Dielectric relaxation studies and electro‐optical measurements in poly (triethylene glycol dimethacrylate)/nematic E7 composites exhibiting an anchoring breaking transition | |
Jungnickel | PVDF and its blends | |
Manaila-Maximean et al. | Phase transition investigations in polymer/liquid crystal composite materials |