JPWO2016121107A1 - Air conditioning management device - Google Patents

Air conditioning management device Download PDF

Info

Publication number
JPWO2016121107A1
JPWO2016121107A1 JP2016554291A JP2016554291A JPWO2016121107A1 JP WO2016121107 A1 JPWO2016121107 A1 JP WO2016121107A1 JP 2016554291 A JP2016554291 A JP 2016554291A JP 2016554291 A JP2016554291 A JP 2016554291A JP WO2016121107 A1 JPWO2016121107 A1 JP WO2016121107A1
Authority
JP
Japan
Prior art keywords
heat
air conditioning
amount
air
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016554291A
Other languages
Japanese (ja)
Other versions
JP6073001B2 (en
Inventor
洋助 小川
洋助 小川
公美雄 斎藤
公美雄 斎藤
孝夫 今井
孝夫 今井
勘司 大西
勘司 大西
森 一之
一之 森
隆也 山本
隆也 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Application granted granted Critical
Publication of JP6073001B2 publication Critical patent/JP6073001B2/en
Publication of JPWO2016121107A1 publication Critical patent/JPWO2016121107A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Central Air Conditioning (AREA)
  • Ventilation (AREA)

Abstract

機械設備(11)、照明設備(12)および空調設備を含む設備を有し、作業員(15)が入退室する工場(10)と、工場(10)内が目標温度となるように空調設備を制御する空調管理装置(20)と、を備える空調管理システムで、空調管理装置(20)は、気象データと生産計画情報とを用いて工場(10)内で発生する熱負荷を予測する熱負荷予測部(25)と、熱負荷に基づいて空調設備の運転計画を作成する運転計画部(26)と、運転計画にしたがって空調設備の運転を制御する制御指令部(27)と、を備え、運転計画部(26)は、熱負荷に対して、工場(10)内に設定される温度および湿度と空調設備の動作モデルとに基づいて、2次計画法を用いて空調管理システム全体での消費エネルギを、個々の空調設備を定格運転した場合の消費エネルギの総和に対して最小化するように運転計画を立てる。A plant (10) having facilities including a mechanical facility (11), a lighting facility (12), and an air conditioner, and an air conditioner so that a worker (15) enters and leaves the room and the factory (10) has a target temperature. An air conditioning management system comprising an air conditioning management device (20) that controls the heat, and the air conditioning management device (20) uses the weather data and the production plan information to predict the heat load generated in the factory (10). A load prediction unit (25); an operation plan unit (26) that creates an operation plan of the air conditioning equipment based on the thermal load; and a control command unit (27) that controls the operation of the air conditioning facility according to the operation plan. The operation planning unit (26) uses the secondary planning method based on the temperature and humidity set in the factory (10) and the operation model of the air conditioning equipment for the heat load. Energy consumption of individual air conditioning equipment Make a driving plan to minimize with respect to the total sum of the energy consumed when driving.

Description

この発明は、工場内での空調管理を行う空調管理システムに関するものである。   The present invention relates to an air conditioning management system that performs air conditioning management in a factory.

従来、製品の生産が行われる工場での需要エネルギ量の最適化を図るエネルギ需要最適化システムが提案されている(たとえば、特許文献1参照)。ここでは、過去の外気情報および生産量と消費エネルギとの相関関係を求め、相関関係から当日の外気情報と生産量に対応する消費エネルギが求められ、この消費エネルギに基づいて製品の生産計画を修正する。   Conventionally, an energy demand optimization system that optimizes the amount of demand energy in a factory where products are produced has been proposed (for example, see Patent Document 1). Here, the correlation between past outside air information and production volume and energy consumption is obtained, and the energy consumption corresponding to the outside air information and production volume on the day is obtained from the correlation, and the production plan of the product is determined based on this energy consumption. Correct it.

特開2004−151830号公報JP 2004-151830 A

しかしながら、特許文献1における当日の外気情報は、過去の似たような外気情報の日における消費エネルギを求めるために使用されるものであり、生産にあたって必要なエネルギを算出するのに用いられるものではない。また、特許文献1は、生産計画を修正するためのものであり、工場に設けられる空調設備の運転を制御するためのものではない。すなわち、特許文献1には、工場で生じる熱量を予測し、エネルギ効率を考慮して各空調設備の運転計画を作成することについては開示されていない。   However, the outdoor air information on that day in Patent Document 1 is used for obtaining energy consumption on the day of similar outdoor air information in the past, and is not used for calculating energy required for production. Absent. Patent Document 1 is for correcting a production plan, and is not for controlling the operation of an air conditioning facility provided in a factory. That is, Patent Document 1 does not disclose that the amount of heat generated in a factory is predicted and an operation plan for each air conditioning facility is created in consideration of energy efficiency.

この発明は上記に鑑みてなされたもので、空調設備が設置される工場で生じる熱量を生産計画にしたがって予測し、エネルギ効率を考慮して各空調設備の運転計画を作成し、これに基づいて工場における空調管理を行う空調管理システムを得ることを目的とする。   The present invention has been made in view of the above, and predicts the amount of heat generated in a factory where air conditioning equipment is installed according to the production plan, creates an operation plan for each air conditioning equipment in consideration of energy efficiency, and based on this The purpose is to obtain an air conditioning management system for air conditioning management in factories.

上記目的を達成するため、この発明にかかる空調管理システムは、稼働する機械設備、照明設備および空調設備を含む設備を有し、作業員が入退室する工場と、前記工場内が目標温度となるように前記空調設備を制御する空調管理装置と、を備える空調管理システムにおいて、前記空調管理装置は、生産計画情報を用いて算出される前記工場内で発生する発生熱量と、気象データを用いて算出される前記工場内に侵入する侵入熱量と、を含む熱負荷を単位時間ごとに予測する熱負荷予測部と、前記熱負荷に基づいて前記空調設備の運転計画を単位時間ごとに作成する運転計画部と、前記運転計画にしたがって前記空調設備の運転を制御する制御指令部と、を備え、前記運転計画部は、前記熱負荷に対して、前記工場内に設定される温度および湿度と前記空調設備の動作モデルとに基づいて、2次計画法を用いて当該空調管理システム全体での消費エネルギを、個々の前記空調設備を定格運転した場合の消費エネルギの総和に対して最小化するように前記運転計画を立てることを特徴とする。   In order to achieve the above object, an air conditioning management system according to the present invention has equipment including operating mechanical equipment, lighting equipment, and air conditioning equipment, and a factory in which an operator enters and leaves, and the inside of the factory is a target temperature. In the air conditioning management system comprising the air conditioning management device for controlling the air conditioning equipment as described above, the air conditioning management device uses the amount of heat generated in the factory calculated using production plan information, and weather data A heat load predicting unit that predicts a heat load including the calculated amount of intrusion heat entering the factory every unit time, and an operation that creates an operation plan of the air conditioning equipment based on the heat load per unit time A planning unit, and a control command unit that controls the operation of the air conditioning equipment according to the operation plan, and the operation planning unit includes a temperature set in the factory with respect to the thermal load, and The energy consumption of the entire air conditioning management system using the quadratic programming method, based on the operation model of the air conditioning equipment and the total energy consumption when the individual air conditioning equipment is rated. The operation plan is made so that

この発明によれば、空調設備が設置される工場で生じる熱量を生産計画にしたがって予測し、エネルギ効率を考慮して各空調設備の運転計画を作成し、これに基づいて工場における空調管理を行うことができるという効果を有する。   According to this invention, the amount of heat generated in the factory where the air conditioning equipment is installed is predicted according to the production plan, the operation plan of each air conditioning equipment is created in consideration of energy efficiency, and the air conditioning management in the factory is performed based on this. It has the effect of being able to.

関連技術の構成を模式的に示すブロック図Block diagram schematically showing the configuration of related technology 実施の形態1による空調管理システムの模式的構成の一例を示すブロック図The block diagram which shows an example of the typical structure of the air-conditioning management system by Embodiment 1 実施の形態1による空調管理装置の構成の一例を処理の流れとともに示す図The figure which shows an example of a structure of the air-conditioning management apparatus by Embodiment 1 with the flow of a process 実施の形態1による照明の発熱モデルの概要を示す図The figure which shows the outline | summary of the heat_generation | fever model of illumination by Embodiment 1 実施の形態1による搬送用電動機部の発熱モデルの概要を示す図The figure which shows the outline | summary of the heat_generation | fever model of the electric motor part for conveyance by Embodiment 1 実施の形態1による電気ヒータ部の発熱モデルの概要を示す図The figure which shows the outline | summary of the heat_generation | fever model of the electric heater part by Embodiment 1 実施の形態1による炉送風機部の発熱モデルの概要を示す図The figure which shows the outline | summary of the heat_generation | fever model of the furnace air blower part by Embodiment 1 実施の形態1によるリフロー炉の発熱モデルの概要を示す図The figure which shows the outline | summary of the heat generation model of the reflow furnace by Embodiment 1. 実施の形態1による作業員の発熱モデルの概要を示す図The figure which shows the outline | summary of the heat generation model of the worker by Embodiment 1. 実施の形態1による工場内を複数の空調ゾーンに区画した場合の照明、機械および作業員の配置情報の一例を模式的に示す図The figure which shows typically an example of the arrangement | positioning information of illumination, a machine, and a worker at the time of dividing the factory by Embodiment 1 into several air-conditioning zone 実施の形態1による空調ゾーンごとの発熱モデル対応情報の一例を示す図The figure which shows an example of the heat_generation | fever model corresponding information for every air-conditioning zone by Embodiment 1 実施の形態1による単位時間ごとの発熱量と空調除去熱量の予測値の一覧の一例を示す図The figure which shows an example of the list of the predicted value of the emitted-heat amount per unit time and air-conditioning removal calorie | heat amount by Embodiment 1 実施の形態1による単位時間ごとの各構成要素の発熱量と空調除去熱量の予測値をグラフ表示した図The figure which displayed the predicted value of the emitted-heat amount of each component for every unit time and air-conditioning removal calorie | heat amount for Embodiment 1 by the graph 実施の形態1による工場における空調設備と外調機の構成の一例を模式的に示す図The figure which shows typically an example of the structure of the air conditioner in the factory by Embodiment 1, and an external air conditioner 実施の形態1による空調機、熱源機および外調機の運転計画出力項目の一例を示す図The figure which shows an example of the operation plan output item of the air conditioner by the Embodiment 1, a heat source machine, and an external air conditioner. 実施の形態1による熱源機の媒体の出力特性曲線の一例を示す図The figure which shows an example of the output characteristic curve of the medium of the heat-source apparatus by Embodiment 1 実施の形態1による空調管理処理の手順の一例を示すフローチャートThe flowchart which shows an example of the procedure of the air-conditioning management process by Embodiment 1. 実施の形態1による機械がリフロー炉の場合の運転状況の一例を示す図The figure which shows an example of the operating condition in case the machine by Embodiment 1 is a reflow furnace. 実施の形態2による空調管理装置の機能構成を模式的に示すブロック図The block diagram which shows typically the functional structure of the air-conditioning management apparatus by Embodiment 2. FIG. 実施の形態3による工場内の機械設備における単位時間当たりの生産個数と内部発熱量との関係の一例を模式的に示す図The figure which shows typically an example of the relationship between the number of production per unit time in the machine equipment in a factory by Embodiment 3, and internal calorific value. 実施の形態4による空調管理システムの構成の一例を模式的に示す図The figure which shows typically an example of a structure of the air-conditioning management system by Embodiment 4. 実施の形態4による機械設備の構成の一例を示す図The figure which shows an example of a structure of the mechanical installation by Embodiment 4. 生産量−発熱量対応情報の一例を示す図The figure which shows an example of production amount-calorific value correspondence information 実施の形態5による空調管理システムの構成の一例を模式的に示す図The figure which shows typically an example of a structure of the air-conditioning management system by Embodiment 5.

以下に添付図面を参照して、この発明の実施の形態にかかる空調管理システムを詳細に説明する。なお、これらの実施の形態によりこの発明が限定されるものではない。また、以下では、最初に出願人による関連出願とその課題について説明し、その後にこの発明の実施の形態について説明する。   Hereinafter, an air conditioning management system according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings. Note that the present invention is not limited to these embodiments. Also, in the following, related applications by the applicant and their problems will be described first, and then embodiments of the present invention will be described.

図1は、関連技術の構成を模式的に示すブロック図であり、(a)は第1関連技術による空調システム制御装置の構成の一例を模式的に示すブロック図であり、(b)は、第2関連技術による2次計画問題計算装置の構成の一例を模式的に示すブロック図である。   FIG. 1 is a block diagram schematically showing the configuration of the related technology, (a) is a block diagram schematically showing an example of the configuration of the air conditioning system control device according to the first related technology, and (b) It is a block diagram which shows typically an example of a structure of the secondary planning problem calculation apparatus by a 2nd related technique.

第1関連技術として、特開2011−214794号公報に記載された空調システム制御装置がある。この空調システム制御装置700は、図1(a)に示されるように、外部から空調機運転データを取得する空調機運転データ取得部701と、気象データを取得する気象データ取得部702と、熱伝導方程式に基づく汎用的な建物モデル703aを有し、建物モデル703aの物理パラメータを学習により求めるパラメータ学習部703と、物理パラメータと建物モデル703aとに基づき熱負荷を予測する熱負荷予測部704と、予測熱負荷に基づき各空調機の運転スケジュールを決定するスケジュール作成部705と、運転スケジュールを各空調機に送信する運転スケジュール出力部706と、を備えている。   As a 1st related technique, there exists an air-conditioning system control apparatus described in Unexamined-Japanese-Patent No. 2011-214794. As shown in FIG. 1A, the air conditioning system control apparatus 700 includes an air conditioner operation data acquisition unit 701 that acquires air conditioner operation data from the outside, a weather data acquisition unit 702 that acquires weather data, and a heat A parameter learning unit 703 that has a general-purpose building model 703a based on the conduction equation and obtains physical parameters of the building model 703a by learning; a thermal load prediction unit 704 that predicts a thermal load based on the physical parameters and the building model 703a; And a schedule creation unit 705 that determines an operation schedule of each air conditioner based on the predicted heat load, and an operation schedule output unit 706 that transmits the operation schedule to each air conditioner.

ここで、1台以上の空調機が許容可能である。また、空調機は、室外機および室内機から構成されるビル用マルチエアコン、パッケージエアコン、ルームエアコンまたは吸収冷凍機などの大型熱源機であってもよい。   Here, one or more air conditioners are acceptable. The air conditioner may be a large heat source machine such as a building multi-air conditioner, a packaged air conditioner, a room air conditioner, or an absorption chiller composed of an outdoor unit and an indoor unit.

この空調システムの制御装置では、物理式に則って空調負荷を予測する建物モデルを実現する。また、建物モデルにより予測した空調負荷を入力変数として、空調システムを構成する空調機の総所要動力を最小とする空調システムの運転状態を決定する。そして、決定された目標値にしたがって各空調機を制御し、複数の空調対象空間の空調を効率的に行うとともに省エネルギ化が実現される。   The control device of this air conditioning system realizes a building model that predicts the air conditioning load according to a physical equation. Further, the air conditioning load predicted by the building model is used as an input variable to determine the operating state of the air conditioning system that minimizes the total required power of the air conditioners constituting the air conditioning system. And each air conditioner is controlled according to the determined target value, air-conditioning of several air-conditioning object space is performed efficiently, and energy saving is implement | achieved.

第2関連技術として、特開2010−79323号公報に記載された2次計画問題計算装置がある。この2次計画問題計算装置800は、図1(b)に示されるように、制御変数および制約式群のラグランジュ乗数群である変数の初期値を求めて変数記憶手段801に記憶する初期化手段802と、2次計画問題の最適性条件乖離量であるミスマッチ量を算出するミスマッチ量算出手段803と、ミスマッチ量が減少するように変数の修正方向および修正量を求める修正量算出手段804と、修正量算出手段804で算出した変数の修正方向および修正量を記憶する修正量記憶手段805と、修正量が第一閾値以下の制御変数または制御変数のスラック変数に対応する変数記憶手段801に固定フラグを設定する固定変数設定手段806と、固定フラグを有さない変数について修正方向および修正量によって変数記憶手段801の数値を更新する変数修正手段807と、収束判断して変数記憶手段801に記憶された制御変数の値を出力する繰返手段810と、を備えている。   As a second related technique, there is a quadratic programming problem calculation apparatus described in Japanese Patent Application Laid-Open No. 2010-79323. As shown in FIG. 1B, the secondary programming problem calculation apparatus 800 obtains initial values of variables that are Lagrange multiplier groups of control variables and constraint equation groups, and stores them in the variable storage means 801. 802, a mismatch amount calculation unit 803 that calculates a mismatch amount that is an optimality condition divergence amount of the quadratic programming problem, a correction amount calculation unit 804 that calculates a variable correction direction and a correction amount so that the mismatch amount decreases, The correction amount storage means 805 for storing the correction direction and the correction amount of the variable calculated by the correction amount calculation means 804, and the variable storage means 801 corresponding to the control variable or the slack variable of the control variable whose correction amount is the first threshold value or less are fixed. Fixed variable setting means 806 for setting the flag, and updating the numerical value of the variable storage means 801 with the correction direction and the correction amount for the variable having no fixed flag That the variable correcting means 807, the repeating unit 810 to output the value of the stored control variables in the variable storage unit 801 and convergence determination, and a.

空調システムは、様々な効率特性を有する空調設備を組合せて構成される。各空調設備の熱交換能力は、外気温度および湿度、あるいは熱交換器内を循環する熱媒の温度および流量などの使用条件の影響を受けて変化する多変数システムである。これらの空調設備の使用条件を考慮して空調システム全体の消費エネルギが最小となる最適解を求める手段として、第2関連技術の2次計画問題計算装置は有効である。   The air conditioning system is configured by combining air conditioning equipment having various efficiency characteristics. The heat exchange capacity of each air conditioning facility is a multivariable system that changes under the influence of use conditions such as the outside air temperature and humidity, or the temperature and flow rate of the heat medium circulating in the heat exchanger. The secondary planning problem calculation apparatus of the second related technology is effective as a means for obtaining an optimal solution that minimizes the energy consumption of the entire air conditioning system in consideration of the use conditions of these air conditioning facilities.

一般的に工場においては建物内の居住者のために新鮮な外気を取り込む必要が有るが、第1関連技術では、取込んだ外気の熱量が考慮されていないため、建物全体の熱負荷量を予測することは難しい。また、事務所ビルにおける空調負荷の変動パターンは、居住者、照明、OA(Office Automation)機器および気象条件よって、毎日ほぼ一定の傾向を示す。一方、工場における空調負荷の変動パターンは、生産計画情報に基づいて大きく変動する。さらに、工場では生産計画に基づいて生産が完了したゾーンでも、指定の温度を維持するために空調設備が稼働し不要な電力を消費する場合があり、ゾーン毎に指定温度を変更する省エネルギが要求されている。しかし、第1関連技術では、工場での空調システムの制御まで対応していない。そこで、第2関連技術を用いて、第1関連技術を工場での空調システムの制御へ適用できるようにした実施の形態について以下で説明する。   Generally, in factories, it is necessary to take in fresh outside air for the residents in the building. However, in the first related technology, the amount of heat in the outside air that has been taken into It is difficult to predict. Moreover, the fluctuation pattern of the air conditioning load in an office building tends to be almost constant every day depending on residents, lighting, OA (Office Automation) equipment, and weather conditions. On the other hand, the variation pattern of the air conditioning load in the factory varies greatly based on the production plan information. Furthermore, even in a zone where production is completed based on the production plan in the factory, the air conditioning equipment may operate to maintain the specified temperature and consume unnecessary power, and energy saving is possible by changing the specified temperature for each zone. It is requested. However, the first related technology does not support control of an air conditioning system in a factory. Therefore, an embodiment in which the first related technology can be applied to control of an air conditioning system in a factory using the second related technology will be described below.

実施の形態1.
図2は、実施の形態1による空調管理システムの模式的構成の一例を示すブロック図である。空調管理システムは、製品を製造し、空調設備を有する工場10と、工場10での空調設備を管理する空調管理装置20と、を備える。
Embodiment 1 FIG.
FIG. 2 is a block diagram illustrating an example of a schematic configuration of the air conditioning management system according to the first embodiment. The air conditioning management system includes a factory 10 that manufactures products and has air conditioning equipment, and an air conditioning management apparatus 20 that manages the air conditioning equipment in the factory 10.

工場10は、生産計画にしたがって加工または組み立てなどを行う機械設備11を動作させながら製品を製造する施設である。工場10は、半導体装置を製造する装置を備えるクリーンルーム、旋盤もしくはマシニングセンタなどの工作機械、レーザ加工装置または放電加工装置などの装置を用いて材料を加工する工場、あるいはプログラマブルコントローラを用いて機械設備を制御しながら製品を組み立てる工場などが例示される。図1では、工場10として、クリーンルーム10Aと、展示室と事務室とを有する組立室10Bと、が示されている。   The factory 10 is a facility that manufactures products while operating mechanical equipment 11 that performs processing or assembly according to a production plan. The factory 10 is a clean room equipped with a device for manufacturing a semiconductor device, a machine tool such as a lathe or machining center, a factory that processes materials using a device such as a laser machining device or an electric discharge machining device, or a mechanical controller using a programmable controller. Examples include factories that assemble products while controlling. In FIG. 1, a clean room 10 </ b> A and an assembly room 10 </ b> B having an exhibition room and an office are shown as the factory 10.

工場10は、加工または組み立てなどを行う機械設備11と、工場10内の照明設備12と、工場10内の温度および湿度などの室内環境が予め定められた範囲に収まるように制御する空調設備と、を有する。空調設備は、機械設備11が配置される工場10内で発生する熱量を除去して工場10内を設定温度および設定湿度となるように調整する空調機13と、工場10内の設定温度および設定湿度となるように工場10内に外気を導入する外調機14と、を備える。外調機14は、熱源機141a,141bと、ポンプ142と、熱交換器143と、を有する。   The factory 10 includes mechanical equipment 11 that performs processing or assembly, lighting equipment 12 in the factory 10, and air conditioning equipment that controls the indoor environment such as temperature and humidity in the factory 10 to be within a predetermined range. Have. The air conditioner includes an air conditioner 13 that removes the amount of heat generated in the factory 10 in which the mechanical equipment 11 is arranged and adjusts the factory 10 so as to have a set temperature and a set humidity, and a set temperature and a set value in the factory 10. And an external air conditioner 14 for introducing outside air into the factory 10 so as to be in humidity. The external air conditioner 14 includes heat source devices 141a and 141b, a pump 142, and a heat exchanger 143.

図3は、実施の形態1による空調管理装置の構成の一例を処理の流れとともに示す図である。空調管理装置20は、気象データ取得部21と、空調機特性データ取得部22と、生産計画情報取得部23と、データ記憶部24と、熱負荷予測部25と、運転計画部26と、制御指令部27と、を備える。   FIG. 3 is a diagram illustrating an example of the configuration of the air-conditioning management apparatus according to Embodiment 1 together with the flow of processing. The air conditioning management device 20 includes a weather data acquisition unit 21, an air conditioner characteristic data acquisition unit 22, a production plan information acquisition unit 23, a data storage unit 24, a thermal load prediction unit 25, an operation planning unit 26, and a control. And a command unit 27.

気象データ取得部21は、工場が設置されている地域の空調管理を行う日の単位時間ごとの気象データを、ネットワークを介して取得する。気象データとして、30分ごとの日射量、外気温湿度などを挙げることができる。気象データは、気象データ配信会社から取得される。   The meteorological data acquisition unit 21 acquires meteorological data for each unit time of the day when air conditioning management is performed in the area where the factory is installed, via the network. As weather data, the amount of solar radiation every 30 minutes, outside temperature humidity, etc. can be mentioned. The weather data is obtained from a weather data distribution company.

空調機特性データ取得部22は、制御対象の工場10で使用される空調機の特性情報である。空調機特性データは、各空調機の消費電力と供給熱量との関係を含む情報である。また、空調機が供給する熱量、すなわち空調機が除去する熱量を計算する必要がある場合には、空調機特性データは、各室外機の運転周波数、蒸発温度、凝縮温度と供給熱量および消費電力との関係を含む。   The air conditioner characteristic data acquisition unit 22 is characteristic information of the air conditioner used in the factory 10 to be controlled. The air conditioner characteristic data is information including the relationship between the power consumption of each air conditioner and the amount of heat supplied. In addition, when it is necessary to calculate the amount of heat supplied by the air conditioner, that is, the amount of heat removed by the air conditioner, the air conditioner characteristic data includes the operating frequency, evaporation temperature, condensation temperature, supply heat amount and power consumption of each outdoor unit. Including the relationship.

生産計画情報取得部23は、工場10における生産計画情報を取得する。生産計画情報は、工場10内で稼働させる機械設備11の数、稼働させる時間および条件、工場10内で点灯させる照明設備12の数、点灯時間、並びに工場10内に入室する作業員15の数、入室時間などを含むものである。また、以下に示す例では、工場10内が複数の空調ゾーンAから空調ゾーンCに区画されている場合を示す。空調ゾーンは、空調設備で温度と湿度とを調整可能な範囲である。生産計画情報では、各機械設備11、照明設備12および作業員15がどの空調ゾーンに存在するかを区分けすることが可能である。また、作業員15については、工場10内のどのエリアに何時に存在するか、または工場10内の人が存在しないエリアと時間などについてさらに詳細な情報を規定していてもよい。   The production plan information acquisition unit 23 acquires production plan information in the factory 10. The production plan information includes the number of machine facilities 11 to be operated in the factory 10, the time and conditions for operation, the number of lighting facilities 12 to be lit in the factory 10, the lighting time, and the number of workers 15 entering the factory 10. , Including entry time. Moreover, in the example shown below, the case where the inside of the factory 10 is divided into the air-conditioning zone C from the several air-conditioning zone A is shown. The air conditioning zone is a range in which the temperature and humidity can be adjusted by the air conditioning equipment. In the production plan information, it is possible to classify in which air-conditioning zone each mechanical equipment 11, lighting equipment 12, and worker 15 are present. Further, for the worker 15, more detailed information may be defined regarding which area in the factory 10 is located at what time, or the area and time in which no person in the factory 10 exists.

データ記憶部24は、気象データ取得部21および空調機特性データ取得部22を介して取得したデータを保存する。   The data storage unit 24 stores data acquired via the weather data acquisition unit 21 and the air conditioner characteristic data acquisition unit 22.

熱負荷予測部25は、空調機特性データと、気象データと、生産計画情報と、を入力データとして、工場10内の発熱体についての動作モデルと、建物の熱モデルと、を用いて、単位時間ごとの各空調ゾーン内で発生する熱量と各空調ゾーン内に流入する熱量を算出する。生産計画情報では、時間によって動かす機械設備11の種類または数が異なるので、これらによって機械発熱量も変化する。また、時間によって日射量、外気温、外気湿度が異なるので、これによっても工場10内に流入する熱量が異なってくる。そのため、算出は、単位時間ごとに行うことが望ましい。単位時間は、30分、1時間などである。また、熱量の算出は、1日単位または気象データが取得可能な時間まで行うことが望ましい。そして、熱負荷予測部25は、算出した各空調ゾーン内に流入する熱量と各空調ゾーンで発生する熱量を単位時間ごとに合計した各空調ゾーンの空調除去熱量を求める。   The thermal load predicting unit 25 uses air conditioner characteristic data, meteorological data, and production plan information as input data and an operation model for a heating element in the factory 10 and a building heat model. The amount of heat generated in each air conditioning zone and the amount of heat flowing into each air conditioning zone are calculated. In the production plan information, the type or number of the machine equipment 11 to be moved varies depending on the time, so that the amount of heat generated by the machine also changes. In addition, since the amount of solar radiation, the outside air temperature, and the outside air humidity differ depending on the time, the amount of heat flowing into the factory 10 also varies depending on this. Therefore, it is desirable to perform the calculation every unit time. The unit time is 30 minutes, 1 hour, or the like. Moreover, it is desirable to calculate the amount of heat until the time when the weather data can be acquired in units of one day. Then, the heat load predicting unit 25 obtains the air conditioning removal heat amount of each air conditioning zone obtained by summing the calculated heat amount flowing into each air conditioning zone and the heat amount generated in each air conditioning zone per unit time.

熱負荷予測部25は、発熱量予測部251と、侵入熱予測部252と、除去熱量予測部253と、を有する。発熱量予測部251は、生産計画情報に基づいて、単位時間当たりの各空調ゾーン内での発熱量を予測する。侵入熱予測部252は、単位時間当たりの各空調ゾーン内に侵入する侵入熱を予測する。除去熱量予測部253は、空調機の設定温湿度に基づいて、単位時間当たりの各空調ゾーン内での除去熱量を予測する。また、発熱量予測部251、侵入熱予測部252および除去熱量予測部253は、生産計画情報が工場10内を複数の空調ゾーンに分割していない場合には、工場10全体を一つの空調ゾーンとして単位時間当たりの発熱量、侵入熱および除去熱量を予測する。   The heat load prediction unit 25 includes a heat generation amount prediction unit 251, an intrusion heat prediction unit 252, and a removal heat amount prediction unit 253. The heat generation amount prediction unit 251 predicts the heat generation amount in each air conditioning zone per unit time based on the production plan information. The intrusion heat prediction unit 252 predicts the intrusion heat that enters the air conditioning zones per unit time. The removal heat quantity prediction unit 253 predicts the removal heat quantity in each air conditioning zone per unit time based on the set temperature and humidity of the air conditioner. In addition, when the production plan information does not divide the factory 10 into a plurality of air conditioning zones, the heat generation amount prediction unit 251, the intrusion heat prediction unit 252 and the removal heat amount prediction unit 253 divide the entire factory 10 into one air conditioning zone. As a prediction, heat generation amount per unit time, intrusion heat and removal heat amount are predicted.

発熱量予測部251は、図3に示されるように、工場10内に存在し、熱を発するものについての動作モデルを用いて発熱量を算出するものである。工場10内で熱を発するものとして、照明設備12、機械設備11および作業員15などを例示することができる。以下においては、照明設備12を照明12と称し、機械設備11を機械11と称する。生産計画情報には、機械11の稼働状態、照明12の点灯状態または作業員15の配置状態が単位時間ごとに時系列で規定される。そのため、生産計画情報と連携して単位時間ごとの発熱量を予測することができる。   As shown in FIG. 3, the heat generation amount prediction unit 251 calculates a heat generation amount using an operation model for a device that exists in the factory 10 and generates heat. Illuminating equipment 12, mechanical equipment 11, worker 15 and the like can be exemplified as those that generate heat in factory 10. Hereinafter, the lighting equipment 12 is referred to as the lighting 12, and the mechanical equipment 11 is referred to as the machine 11. In the production plan information, the operating state of the machine 11, the lighting state of the lighting 12, or the arrangement state of the worker 15 is defined in time series for each unit time. Therefore, the calorific value per unit time can be predicted in cooperation with the production plan information.

図4は、実施の形態1による照明の発熱モデルの概要を示す図である。照明12の発熱モデルは、照明12についての生産計画情報を入力とし、照明の定格電力を予め決められた定数とし、照明発熱量を出力とする関数である。照明12についての生産計画情報は、生産計画情報に規定されている単位時間ごとの照明12のオンまたはオフの指示である。この照明発熱モデルは、次式(1)の関数で表すことができる。ただし、照明12がONの場合の生産計画情報を「1」とし、照明12がOFFの場合の生産計画情報を「0」とする。
照明発熱量=生産計画情報(時間、ONまたはOFF)×照明個数×照明定格電力 ・・・(1)
FIG. 4 is a diagram illustrating an outline of a heat generation model of illumination according to the first embodiment. The heat generation model of the illumination 12 is a function having the production plan information about the illumination 12 as input, the rated power of the illumination as a predetermined constant, and the illumination heat generation amount as output. The production plan information for the illumination 12 is an instruction to turn on or off the illumination 12 for each unit time defined in the production plan information. This illumination heat generation model can be expressed by a function of the following equation (1). However, the production plan information when the illumination 12 is ON is “1”, and the production plan information when the illumination 12 is OFF is “0”.
Lighting calorific value = production plan information (time, ON or OFF) x number of lights x lighting rated power (1)

工場10内で使用される機械11は、旋盤、レーザ加工機、成膜装置、エッチング装置、リフロー炉、ベルトコンベアなど多数存在する。ここでは、リフロー炉の場合を例に挙げて機械の発熱量を算出する例を説明する。リフロー炉は、発熱する部品で考えると、搬送用電動機部と、電気ヒータ部と、炉送風機部と、から構成される。そこで、これらの各構成部品についてモデル化し、これらのモデルを組み合わせたものがリフロー炉の発熱量となる。   There are many machines 11 used in the factory 10, such as a lathe, a laser processing machine, a film forming apparatus, an etching apparatus, a reflow furnace, and a belt conveyor. Here, an example of calculating the calorific value of the machine will be described by taking the case of a reflow furnace as an example. The reflow furnace is composed of an electric motor part for conveyance, an electric heater part, and a furnace blower part, considering the components that generate heat. Therefore, each of these component parts is modeled, and a combination of these models is the amount of heat generated in the reflow furnace.

図5は、実施の形態1による搬送用電動機部の発熱モデルの概要を示す図である。搬送用電動機部の発熱モデルは、搬送用電動機部についての生産計画情報を入力とし、搬送用電動機部の定格電力と、負荷率と、電動機効率と、を予め決められた定数とし、搬送用電動機部の発熱量を出力とする関数である。搬送用電動機部についての生産計画情報は、生産計画情報に規定されている単位時間ごとのリフロー炉の搬送用電動機部の搬送速度である。この搬送用電動機部の発熱モデルは、次式(2)の関数で表すことができる。
搬送用電動機発熱量=生産計画情報(時間、速度)×電動機定格電力×負荷率×(1―電動機効率) ・・・(2)
FIG. 5 is a diagram illustrating an outline of a heat generation model of the electric motor unit for conveyance according to the first embodiment. The heat generation model of the transfer motor unit is input with the production plan information for the transfer motor unit, and the rated power, load factor, and motor efficiency of the transfer motor unit are set as predetermined constants. It is a function which makes the calorific value of a part output. The production plan information for the transfer motor unit is the transfer speed of the transfer motor unit of the reflow furnace per unit time defined in the production plan information. The heat generation model of the conveying motor unit can be expressed by a function of the following equation (2).
Conveyor motor heating value = production plan information (time, speed) x motor rated power x load factor x (1-motor efficiency) (2)

図6は、実施の形態1による電気ヒータ部の発熱モデルの概要を示す図である。電気ヒータ部の発熱モデルは、電気ヒータ部についての生産計画情報を入力とし、電気ヒータ部の定格電力と、負荷率と、ヒータ効率と、を予め決められた定数とし、電気ヒータ部の発熱量を出力とする関数である。電気ヒータ部についての生産計画情報は、生産計画情報に規定されている単位時間ごとのリフロー炉の電気ヒータ部の温度である。この電気ヒータ部の発熱モデルは、次式(3)の関数で表すことができる。
電気ヒータ発熱量=生産計画情報(時間、温度)×電気ヒータ定格電力×負荷率×(1―電気ヒータ効率) ・・・(3)
FIG. 6 is a diagram showing an outline of a heat generation model of the electric heater unit according to the first embodiment. The heat generation model of the electric heater unit receives the production plan information for the electric heater unit, sets the rated power, load factor, and heater efficiency of the electric heater unit to predetermined constants, and the amount of heat generated by the electric heater unit. Is a function that outputs. The production plan information for the electric heater unit is the temperature of the electric heater unit of the reflow furnace per unit time defined in the production plan information. This heat generation model of the electric heater part can be expressed by a function of the following equation (3).
Electric heater calorific value = production plan information (time, temperature) x electric heater rated power x load factor x (1-electric heater efficiency) (3)

図7は、実施の形態1による炉送風機部の発熱モデルの概要を示す図である。炉送風機部の発熱モデルは、炉送風機部についての生産計画情報を入力とし、空気風量と、全圧と、係数と、ファン効率と、を予め決められた定数とし、炉送風機部の発熱量を出力とする関数である。炉送風機部についての生産計画情報は、生産計画情報に規定されている単位時間ごとのリフロー炉の炉送風機部の風量である。この炉送風機部の発熱モデルは、次式(4)の関数で表すことができる。
炉送風機発熱量=生産計画情報(時間、風量)×(空気風量×全圧)/(9.8×6120×ファン効率) ・・・(4)
FIG. 7 is a diagram showing an outline of a heat generation model of the furnace blower unit according to the first embodiment. The heat generation model of the furnace blower section takes the production plan information about the furnace blower section as input, the air volume, total pressure, coefficient, and fan efficiency as predetermined constants, and the heat generation amount of the furnace blower section This is the output function. The production plan information for the furnace blower section is the air volume of the furnace blower section of the reflow furnace for each unit time defined in the production plan information. The heat generation model of the furnace blower unit can be expressed by a function of the following equation (4).
Furnace blower heat generation = production plan information (time, air volume) × (air air volume × total pressure) / (9.8 × 6120 × fan efficiency) (4)

図8は、実施の形態1によるリフロー炉の発熱モデルの概要を示す図である。リフロー炉の発熱モデルは、図5から図7に示される搬送用電動機部の発熱モデルと、電気ヒータ部の発熱モデルと、炉送風機部の発熱モデルと、を足し合わせた構造を有する。具体的には、生産計画情報を、搬送用電動機部の発熱モデルと電気ヒータ部の発熱モデルと炉送風機部の発熱モデルの共通の入力とする。搬送用電動機部の発熱モデルと電気ヒータ部の発熱モデルと炉送風機部の発熱モデルのそれぞれの出力は加算され、加算したものがリフロー炉モデルの出力であるリフロー炉発熱量となる。   FIG. 8 is a diagram showing an outline of a heat generation model of the reflow furnace according to the first embodiment. The heat generation model of the reflow furnace has a structure in which the heat generation model of the transfer motor section shown in FIGS. 5 to 7, the heat generation model of the electric heater section, and the heat generation model of the furnace blower section are added together. Specifically, the production plan information is used as a common input for the heat generation model of the transfer motor section, the heat generation model of the electric heater section, and the heat generation model of the furnace blower section. The outputs of the heat generation model of the transfer motor section, the heat generation model of the electric heater section, and the heat generation model of the furnace blower section are added, and the sum is the reflow furnace heat generation amount that is the output of the reflow furnace model.

図9は、実施の形態1による作業員の発熱モデルの概要を示す図である。作業員15の発熱モデルは、作業員15についての生産計画情報を入力とし、人体発熱量を予め決められた定数とし、作業員15の発熱量を出力とする関数である。作業員15についての生産計画情報は、生産計画情報に規定されている単位時間ごとの作業員15の人数である。この作業員15の発熱量モデルは、次式(5)の関数で表すことができる。
作業員発熱量=生産計画情報(時間、人数)×人体発熱量 ・・・(5)
FIG. 9 is a diagram showing an outline of a worker heat generation model according to the first embodiment. The heat generation model of the worker 15 is a function having the production plan information about the worker 15 as input, the human body heat generation amount as a predetermined constant, and the heat generation amount of the worker 15 as output. The production plan information for the worker 15 is the number of workers 15 per unit time defined in the production plan information. The calorific value model of the worker 15 can be expressed by a function of the following equation (5).
Worker calorific value = production plan information (time, number of people) x human body calorific value (5)

なお、作業員15の発熱モデルは生産計画情報に基づいて工場10内に何人居るかなどだけであったが、さらに工場10内での作業員の位置情報を用いて、より詳細な作業員15の発生熱量を算出するようにしてもよい。たとえば、作業員15の作業位置、行動範囲などの位置情報をパターン化することで、複数の空調ゾーン間を作業員15が移動する場合などで、各空調ゾーンでの作業員15の発熱量をより正確に推定することができる。   Note that the heat generation model of the worker 15 is only how many people are in the factory 10 based on the production plan information, but more detailed worker 15 is used by using the position information of the worker in the factory 10. The amount of generated heat may be calculated. For example, when the worker 15 moves between a plurality of air-conditioning zones by patterning position information such as the work position and action range of the worker 15, the amount of heat generated by the worker 15 in each air-conditioning zone can be reduced. It can be estimated more accurately.

これらのモデルは、モデルの対象の特性が異なるものごとに設定される。照明12の発熱モデルの場合には、照明12の定格電力が異なるものごとに設定される。機械11の発熱モデルも同様である。   These models are set for each of the models with different characteristics. In the case of the heat generation model of the illumination 12, the rated power of the illumination 12 is set for each different one. The same applies to the heat generation model of the machine 11.

図10は、実施の形態1による工場内を複数の空調ゾーンに区画した場合の照明、機械および作業員の配置情報の一例を模式的に示す図である。この図に示されるように、工場10内に3つの空調機14Aから空調機14Cが配置され、それぞれの空調機14Aから空調機14Cで空調制御できる領域が空調ゾーンAから空調ゾーンCとなる。各空調ゾーンAから空調ゾーンCには、図に示されるように照明と機械と作業員とが配置されている。このように、工場10内が複数の空調ゾーンAから空調ゾーンCに分かれている場合には、照明発熱量、機械発熱量、作業員発熱量はそれぞれ空調ゾーンAから空調ゾーンCごとに求められる。このとき、各空調ゾーンAから空調ゾーンCに存在する照明、機械および作業員を含む空調ゾーンAから空調ゾーンCごとの発熱モデル対応情報を用いて、空調ゾーンAから空調ゾーンCごとの発熱量を求める。   FIG. 10 is a diagram schematically illustrating an example of lighting, machine, and worker arrangement information when the factory according to Embodiment 1 is partitioned into a plurality of air conditioning zones. As shown in this figure, three air conditioners 14A to 14C are arranged in the factory 10, and an area in which air conditioning can be controlled by each of the air conditioners 14A to 14C is an air conditioning zone A to an air conditioning zone C. In each air-conditioning zone A to air-conditioning zone C, illumination, machines, and workers are arranged as shown in the figure. Thus, when the factory 10 is divided into a plurality of air conditioning zones A to C, the heating heat generation amount, the mechanical heat generation amount, and the worker heat generation amount are obtained for each air conditioning zone C from the air conditioning zone A. . At this time, using the heat generation model correspondence information for each air-conditioning zone C from the air-conditioning zone A including the lighting, machinery, and workers present in each air-conditioning zone A to the air-conditioning zone C, the heat generation amount for each air-conditioning zone C from the air-conditioning zone A Ask for.

図11は、実施の形態1による空調ゾーンごとの発熱モデル対応情報の一例を示す図である。空調ゾーンごとの発熱モデル対応情報は、空調ゾーンごとに、この空調ゾーンに含まれる照明12の照明モデルと、機械11の機械モデルと、作業員15の作業員モデルおよび人数と、が規定されている。図11の空調ゾーンごとの発熱モデル対応情報は、図10の照明、機械および作業員の配置情報に基づいて作成されたものである。そして、空調ゾーンAから空調ゾーンCごとに求められた発熱量の合計が空調ゾーン発熱量となる。発熱量予測部251は、第1関連技術の熱負荷予測部において、工場特有の生産計画に基づいた空調ゾーンごとの発熱量を予測できるようにしたものである。   FIG. 11 is a diagram illustrating an example of heat generation model correspondence information for each air-conditioning zone according to Embodiment 1. In the heat generation model correspondence information for each air conditioning zone, the lighting model of the lighting 12 included in the air conditioning zone, the machine model of the machine 11, the worker model and the number of workers 15 are defined for each air conditioning zone. Yes. The heat generation model correspondence information for each air conditioning zone in FIG. 11 is created based on the lighting, machine, and worker arrangement information in FIG. And the total calorific value calculated | required for every air-conditioning zone C from the air-conditioning zone A turns into an air-conditioning zone calorific value. The heat generation amount prediction unit 251 is configured to be able to predict the heat generation amount for each air conditioning zone based on the factory-specific production plan in the heat load prediction unit of the first related technology.

侵入熱予測部252は、図3に示されるように、建物の熱モデルと気象データとを用いて、単位時間当たりの工場建物の各空調ゾーン内に侵入する熱量である空調ゾーン侵入熱量を算出するものである。建物の熱モデルは、建物の壁体、屋根、ガラスなどから侵入する熱量を、外気温および日射量などの気象データを用いて計算するための関数である。建物の熱モデルとして、外気温、日射量、作業員15、機械11および照明12などの発生熱量と、設定室温に対する空調機13の処理熱量の実測値と、から熱伝達率と熱容量とを含む建物熱特性を推定し、この熱伝達率と熱容量とを用いて、建物の外部から内部に侵入する熱量を推定する関数が作成される。   As shown in FIG. 3, the intrusion heat prediction unit 252 calculates an air-conditioning zone intrusion heat amount that is an amount of heat entering the air-conditioning zone of the factory building per unit time using the building heat model and weather data. To do. The thermal model of a building is a function for calculating the amount of heat entering from a building wall, roof, glass, and the like using weather data such as outside air temperature and solar radiation. The building heat model includes the heat transfer rate and heat capacity from the outside air temperature, the amount of solar radiation, the amount of heat generated by the worker 15, the machine 11 and the lighting 12, and the measured value of the heat treatment by the air conditioner 13 for the set room temperature. A function is estimated that estimates the heat characteristics of the building and uses this heat transfer coefficient and heat capacity to estimate the amount of heat that enters the building from the outside.

除去熱量予測部253は、図3に示されるように、発熱量予測部251で算出された発熱量と、侵入熱予測部252で算出された侵入熱と、工場10内の各空調ゾーンに設定された温湿度と、を用いて各空調ゾーンの単位時間当たりの除去熱量を算出する。以下では、空調ゾーンの除去熱量を空調ゾーン除去熱量という。設定温湿度と除去熱量は運転計画部26に出力される。   As shown in FIG. 3, the heat removal amount prediction unit 253 sets the heat generation amount calculated by the heat generation amount prediction unit 251, the intrusion heat calculated by the intrusion heat prediction unit 252, and each air conditioning zone in the factory 10. The amount of heat removed per unit time in each air-conditioning zone is calculated using the temperature and humidity. Hereinafter, the amount of heat removed from the air conditioning zone is referred to as the amount of heat removed from the air conditioning zone. The set temperature and humidity and the amount of heat to be removed are output to the operation planning unit 26.

図12は、実施の形態1による単位時間ごとの発熱量と空調除去熱量の予測値の一覧の一例を示す図である。ここでは、図10のように区画した複数の空調ゾーンAから空調ゾーンCについて単位時間ごとの発熱量と空調除去熱量の予測値が算出されている。時間は、予測の対象となる時間帯を示すものである。この時間帯の長さは、単位時間であり、この例では1時間である。各空調ゾーンAから空調ゾーンCについて、単位時間ごとに、上記した発熱量予測部251で予測された照明発熱量、機械発生熱量および作業員発熱量と、侵入熱予測部252で予測された侵入熱量と、除去熱量予測部253で予測された空調除去熱量の値が示されている。この例では、空調ゾーン内に存在するすべての機械の機械発生熱量を1つにまとめて表示しているが、より詳しく制御を行うためには、機械11ごとに機械発生熱量を表示することが望ましい。また、熱負荷予測部25は、各動作モデルを用いて算出した発生熱量と侵入熱量と空調除去熱量とをテーブル形式で表示しているが、図示しない表示部にグラフ表示させるようにしてもよい。   FIG. 12 is a diagram illustrating an example of a list of predicted values of the heat generation amount and the air conditioning removal heat amount per unit time according to the first embodiment. Here, predicted values of the heat generation amount and the air conditioning removal heat amount per unit time are calculated for the air conditioning zone C from the plurality of air conditioning zones A partitioned as shown in FIG. The time indicates a time zone to be predicted. The length of this time zone is a unit time, which is 1 hour in this example. For each air-conditioning zone A to air-conditioning zone C, the lighting heat generation amount, machine heat generation amount and worker heat generation amount predicted by the heat generation amount prediction unit 251 described above, and the intrusion predicted by the intrusion heat prediction unit 252 for each unit time The amount of heat and the value of the air conditioning removal heat amount predicted by the removal heat amount prediction unit 253 are shown. In this example, the machine-generated heat amounts of all the machines existing in the air-conditioning zone are collectively displayed. However, in order to perform more detailed control, the machine-generated heat amounts can be displayed for each machine 11. desirable. Further, the heat load prediction unit 25 displays the generated heat amount, the intrusion heat amount, and the air conditioning removal heat amount calculated using each operation model in a table format, but may be displayed in a graph on a display unit (not shown). .

図13は、実施の形態1による単位時間ごとの各構成要素の発熱量と空調除去熱量の予測値をグラフ表示した図である。ここでは、機械発生熱量を3つの種類の機械(1)から(3)に分けて表示している。これらの図で、横軸は時間であり、縦軸は発熱量または除去熱量を示している。この例でも、空調ゾーンAから空調ゾーンCごとに発熱量と空調除去熱量の予測値のグラフが作成されている。図13で、グラフG1は照明発熱量の時間変化を示す図であり、グラフG2からグラフG4はそれぞれ機械(1)から(3)の機械発熱量の時間変化を示す図であり、グラフG5は作業員発熱量の時間変化を示す図であり、グラフG6は侵入熱量の時間変化を示す図であり、グラフG7は空調除去熱量の時間変化を示す図である。   FIG. 13 is a diagram in which the calorific value of each component and the predicted value of the air conditioning removal calorie per unit time according to the first embodiment are displayed in a graph. Here, the amount of heat generated by the machine is divided into three types of machines (1) to (3) and displayed. In these figures, the horizontal axis represents time, and the vertical axis represents the amount of heat generated or the amount of heat removed. Also in this example, a graph of predicted values of the heat generation amount and the air conditioning removal heat amount is created for each air conditioning zone C from the air conditioning zone A. In FIG. 13, a graph G1 is a diagram showing a temporal change in the amount of heat generated by the illumination, a graph G2 to a graph G4 are diagrams showing a time change in the mechanical calorific value of each of the machines (1) to (3), and a graph G5 is a graph It is a figure which shows the time change of a worker's calorie | heat amount, The graph G6 is a figure which shows the time change of an intrusion heat amount, The graph G7 is a figure which shows the time change of an air-conditioning removal heat amount.

図13のグラフG6に示されるように建物に侵入する熱量は、朝から13時前後にかけて上昇し、そこから夕方にかけて減少する。これは、太陽からの日射量と外気温によるものである。また、図13のグラフG2からG4に示されるように、機械(1)、(3)は、9時から使用可能な状態にするために、電源が9時前から投入されている一方、機械(2)は、機械(1)、(3)で処理されたものを処理する機械設備であり、9時からの電源投入でもよい。このように、生産計画にしたがって処理を行うことで、機械設備によって電源投入の開始時刻が異なることになる。また、12時から13時の間は、作業員15が昼休みとなるので、機械設備も休止状態になり、一時的に発生熱量が減少している。ただし、13時から再び作業が始まること、また機械設備の電源をすべて落としてしまうと再稼働させるまでに時間がかかってしまうので、休止状態にしてもよい部分のみ休止状態としている。   As shown in the graph G6 of FIG. 13, the amount of heat entering the building increases from morning until around 13:00 and decreases from there until evening. This is due to the amount of solar radiation from the sun and the outside air temperature. Further, as shown in the graphs G2 to G4 in FIG. 13, the machines (1) and (3) are turned on before 9 o'clock in order to make them usable from 9 o'clock. (2) is a machine facility for processing the machine (1) and (3) and may be turned on at 9 o'clock. Thus, by performing processing according to the production plan, the power-on start time varies depending on the mechanical equipment. In addition, since the worker 15 has a lunch break from 12:00 to 13:00, the mechanical equipment is also in a dormant state, and the amount of generated heat is temporarily reduced. However, since the work starts again from 13:00, and it takes time until the machine is restarted when all the power of the mechanical equipment is turned off, only the portions that may be put into a dormant state are in the dormant state.

図13のグラフG1,G5に示されるように、照明発熱量と作業員発熱量は、作業員15が工場10内に存在する9時から12時と13時から20時くらいまでの間に主に発生している。また、12時から13時は、作業員15の昼休みであるので、この間は、作業員15は工場10内に存在しないので、発生熱量は0になる。また、この時の照明12もほとんど消灯されるため、発生熱量は0に近い数値となる。   As shown in the graphs G1 and G5 in FIG. 13, the heating heat generation amount and the worker heat generation amount are mainly between 9:00 to 12:00 and 13:00 to 20:00 when the worker 15 exists in the factory 10. Has occurred. Further, since 12:00 to 13:00 is a lunch break for the worker 15, the worker 15 does not exist in the factory 10 during this period, so the amount of generated heat becomes zero. Moreover, since the illumination 12 at this time is also almost turned off, the amount of generated heat is a value close to zero.

図13のグラフG7は、図13のグラフG1からグラフG6の各発生熱量を全部加算したものであり、総発生熱量を示している。つまり、この総発生熱量は、空調設備で除去しなければならない熱量であり、空調除去熱量となる。空調除去熱量は、空調設備への熱負荷の需要を与えるものでもあるので、空調熱負荷需要ともいう。   A graph G7 in FIG. 13 is obtained by adding all the generated heat amounts of the graph G1 to the graph G6 in FIG. 13 and shows the total generated heat amount. In other words, the total amount of generated heat is the amount of heat that must be removed by the air conditioning equipment, and is the amount of heat removed from the air conditioning. The amount of heat removed from the air conditioning is also referred to as a demand for air conditioning heat load because it also gives a demand for heat load on the air conditioning equipment.

運転計画部26は、熱負荷予測部25で予測された空調除去熱量を、工場に設置された空調機13と外調機14とを用いて除去するための運転計画を立てる。運転計画は、空調ゾーンごとに立てられる。図14は、実施の形態1による工場における空調設備と外調機の構成の一例を模式的に示す図である。この例では、空調設備は、空調機13と、熱源機141と、ポンプ142と、外調機14と、を有する。   The operation planning unit 26 makes an operation plan for removing the air conditioning removal heat amount predicted by the heat load prediction unit 25 using the air conditioner 13 and the external air conditioner 14 installed in the factory. An operation plan is made for each air conditioning zone. FIG. 14 is a diagram schematically illustrating an example of the configuration of the air conditioning equipment and the external air conditioner in the factory according to the first embodiment. In this example, the air conditioning facility includes an air conditioner 13, a heat source device 141, a pump 142, and an external air conditioner 14.

空調機13は、工場10内の空気を吸い込み、空調除去熱量を除去するように吸い込んだ空気の温度と湿度を調整した後、再び工場10内に戻すものである。空調機13として、パッケージエアコンなどを例示することができる。空調機13は、工場10内で発生する熱量、すなわち空調除去熱量を除去する空調設備である。   The air conditioner 13 sucks air in the factory 10 and adjusts the temperature and humidity of the sucked air so as to remove the air-conditioning removal heat amount, and then returns the air to the factory 10 again. An example of the air conditioner 13 is a packaged air conditioner. The air conditioner 13 is an air conditioning facility that removes the amount of heat generated in the factory 10, that is, the amount of heat removed from the air conditioning.

熱源機141は、工場10外の空気を加熱または冷却する際の熱源であり、水などの媒体を加熱または冷却し、熱交換器143との間で循環させる。熱源機141として、冷却用熱源機141aと加熱用熱源機141bが設置される。これは、冷却用熱源機141aで工場10外の空気の湿度を除湿した後、加熱用熱源機141bで除湿した空気を予め定められた温度に加熱するためである。ポンプ142は、熱源機141と外調機14との間で媒体を流すのに使用される。外調機14は、工場10外の空気を、熱源機141から送られる媒体で予め定められた温度に冷却または加熱する熱交換器143と、予め定められた温度にされた空気を工場10内に送り込むファン144と、を有する。熱交換器143は、工場10外の空気を予め定められた湿度にする機能も有する。このように、外調機14は、熱源機141を用いて外気を工場10内の設定温度および設定湿度にして、工場10内に供給する空調設備である。   The heat source device 141 is a heat source when heating or cooling the air outside the factory 10, and heats or cools a medium such as water and circulates between the heat exchanger 143. As the heat source 141, a cooling heat source 141a and a heating heat source 141b are installed. This is because the air dehumidified by the heating heat source 141b is heated to a predetermined temperature after the humidity of the air outside the factory 10 is dehumidified by the cooling heat source 141a. The pump 142 is used to flow the medium between the heat source device 141 and the external conditioner 14. The external air conditioner 14 includes a heat exchanger 143 that cools or heats air outside the factory 10 to a predetermined temperature with a medium sent from the heat source apparatus 141, and air that has been set to a predetermined temperature inside the factory 10. And a fan 144 for feeding to the fan. The heat exchanger 143 also has a function of setting the air outside the factory 10 to a predetermined humidity. Thus, the external air conditioner 14 is an air conditioning facility that supplies the outside air to the factory 10 by using the heat source apparatus 141 to change the outside air to the set temperature and the set humidity in the factory 10.

運転計画部26では、第1関連技術の運転計画部において、熱源機141をモデル化した熱源機モデルと、外調機14をモデル化した外調機モデルと、空調機13をモデル化した空調機モデルと、から第2関連技術を用いて空調システム全体で最適な省エネルギ運転になるように空調機13、冷却用熱源機141a、加熱用熱源機141b、および外調機14の運転計画を作成する。この運転計画部26は、第1関連技術のスケジュール作成部に対応するものであり、また第2関連技術の2次計画問題計算装置に該当するものである。つまり、運転計画部26では、2次計画法を用いて熱源機141、外調機14および空調機13の運転計画を作成する。このとき、空調システム全体で最適な省エネルギ運転となるように熱源機141、外調機14、空調機13の運転計画を作成する。   In the operation planning unit 26, in the operation planning unit of the first related technology, a heat source model that models the heat source unit 141, an external conditioner model that models the external conditioner 14, and an air conditioner that models the air conditioner 13 The operation plan of the air conditioner 13, the heat source device for cooling 141a, the heat source device for heating 141b, and the external air conditioner 14 so as to achieve the optimum energy saving operation for the entire air conditioning system using the second related technology. create. The operation planning unit 26 corresponds to the schedule creation unit of the first related technology and corresponds to the secondary planning problem calculation apparatus of the second related technology. That is, the operation plan unit 26 creates an operation plan for the heat source device 141, the external air conditioner 14, and the air conditioner 13 using the secondary planning method. At this time, an operation plan for the heat source device 141, the external air conditioner 14, and the air conditioner 13 is created so as to achieve an optimum energy saving operation in the entire air conditioning system.

運転計画は、各空調ゾーン内の空調設備を動作させるための運転パラメータを単位時間ごとに示したものである。図15は、実施の形態1による空調機、熱源機および外調機の運転計画出力項目の一例を示す図である。空調機モデルは、運転計画出力項目として、運転または停止と、温度設定と、送風能力設定と、を出力する。送風能力設定は、風量であり、風量は圧縮機周波数fによって変化する。冷却用熱源機モデルは、運転計画出力項目として、運転または停止と、冷水温度設定と、を出力する。加熱用熱源機モデルは、運転計画出力項目として、運転または停止と、温水温度設定と、を出力する。外調機モデルは、運転計画出力項目として、運転または停止と、給気温度設定と、給気湿度設定と、を出力する。   The operation plan shows operation parameters for operating the air conditioning equipment in each air conditioning zone per unit time. FIG. 15 is a diagram illustrating an example of operation plan output items of the air conditioner, the heat source unit, and the external air conditioner according to the first embodiment. The air conditioner model outputs operation or stop, temperature setting, and blowing capacity setting as operation plan output items. The air blowing capacity setting is the air volume, and the air volume varies depending on the compressor frequency f. The cooling heat source machine model outputs operation or stop and cold water temperature setting as operation plan output items. The heating heat source unit model outputs operation or stop and hot water temperature setting as operation plan output items. The external air conditioner model outputs operation or stop, supply air temperature setting, and supply air humidity setting as operation plan output items.

ここで、予測された空調除去熱量と外調機の給気温度および湿度条件に対応して熱源機141の冷水および温水の送水温度設定を最適化する場合について説明する。上記したように、工場10内には、機械11、照明12、作業員15などの発熱体が存在する。また、工場10内には、新鮮な外気を送り込むことが求められる。そこで、外気の温度および湿度を有効活用することによって、大幅な省エネルギを実現することができる。   Here, the case where the water supply temperature setting of the cold water and the hot water of the heat source unit 141 is optimized in accordance with the predicted amount of heat removed from the air conditioning, the supply temperature of the external air conditioner, and the humidity condition will be described. As described above, heating elements such as the machine 11, the lighting 12, and the worker 15 exist in the factory 10. In addition, it is required to send fresh outside air into the factory 10. Therefore, significant energy saving can be realized by effectively utilizing the temperature and humidity of the outside air.

空調機13と、外調機14および熱源機141と、を組み合わせた空調システムでは、初めにベースとなる外調機14および熱源機141の省エネルギとなる最適運転計画を計算する。これは、工場10内または各空調ゾーンの温度と湿度が設定値となり、かつ消費電力が最小となるように冷却用熱源機141aと加熱用熱源機141bの出力温度を決定するものである。   In the air conditioning system in which the air conditioner 13, the external air conditioner 14, and the heat source apparatus 141 are combined, first, an optimum operation plan that saves energy of the external air conditioner 14 and the heat source apparatus 141 serving as a base is calculated. This is to determine the output temperatures of the cooling heat source 141a and the heating heat source 141b so that the temperature and humidity in the factory 10 or each air-conditioning zone become set values and power consumption is minimized.

図16は、実施の形態1による熱源機の媒体の出力特性曲線の一例を示す図であり、(a)は冷水出力特性曲線を示し、(b)は温水出力特性曲線を示す。これらの図で、横軸は、媒体の出力温度であり、縦軸はそれぞれ冷却用熱源機モデルと加熱用熱源機モデルの効率を表す成績係数COPである。一般的に、冷却用熱源機モデルと冷水の出力温度との関係は、図16(a)のように表され、加熱用熱源機モデルの効率を表す成績係数COPと温水の出力温度との関係は、図16(b)のように表される。   FIG. 16 is a diagram illustrating an example of an output characteristic curve of a medium of the heat source apparatus according to the first embodiment, where (a) illustrates a cold water output characteristic curve and (b) illustrates a hot water output characteristic curve. In these diagrams, the horizontal axis represents the output temperature of the medium, and the vertical axis represents the coefficient of performance COP representing the efficiency of the cooling heat source unit model and the heating heat source unit model, respectively. In general, the relationship between the cooling heat source machine model and the output temperature of the cold water is expressed as shown in FIG. 16A, and the relationship between the coefficient of performance COP representing the efficiency of the heating heat source machine model and the output temperature of the hot water. Is expressed as shown in FIG.

また、熱源機141の成績係数COPは、熱源機141の出力をR[W]とし、入力エネルギをER[W]とすると、次式(6)で示される。そして、(6)式より熱源機141の出力R[W]は、次式(7)のように変換できる。
COP=R/ER ・・・(6)
R=COP×ER ・・・(7)
The coefficient of performance COP of the heat source device 141 is expressed by the following equation (6), where R [W] is the output of the heat source device 141 and ER [W] is the input energy. Then, the output R [W] of the heat source device 141 can be converted as in the following equation (7) from the equation (6).
COP = R / ER (6)
R = COP × ER (7)

ここで、熱源機141の成績係数COPは、外気温度をTa[K]とし、aを係数とし、cを定数とすると、次式(8)で示される。
COP(Ta)=a×Ta+c ・・・(8)
Here, the coefficient of performance COP of the heat source unit 141 is expressed by the following equation (8), where the outside air temperature is Ta [K], a is a coefficient, and c is a constant.
COP (Ta) = a × Ta + c (8)

以上より、時刻tと外気温度Ta[K]とを考慮した熱源機j号機の出力R(j,t)[W]は、次式(9)のように表される。ただし、jは自然数である。
R(j,t)=COP(Ta)×ER(j,t) ・・・(9)
As described above, the output R (j, t) [W] of the heat source machine j considering the time t and the outside air temperature Ta [K] is expressed as the following equation (9). However, j is a natural number.
R (j, t) = COP (Ta) × ER (j, t) (9)

また、熱源機141の出力R[W]は、循環する水の温度と流量によって、次式(10)のように表される。ただし、CPは水の比熱であり、4.218J/(Kg・K)であり、ρは密度[Kg/m3]であり、Tinは熱源機戻り温度[K]であり、Toutは熱源機送水温度[K]であり、Rfは熱源機送水流量[m3/s]である。
R=CP×ρ×(Tin-Tout)×Rf ・・・(10)
Further, the output R [W] of the heat source device 141 is expressed by the following equation (10) depending on the temperature and flow rate of the circulating water. Where CP is the specific heat of water, 4.218 J / (Kg · K), ρ is the density [Kg / m 3 ], Tin is the heat source return temperature [K], and Tout is the heat source machine. The water supply temperature [K], and Rf is the heat source machine water supply flow rate [m 3 / s].
R = CP × ρ × (Tin-Tout) × Rf (10)

時刻tを考慮した熱源機j号機の出力R(j,t)[W]は、(10)式から次式(11)のように表される。
R(j,t)=CP×ρ×(Tin(j,t)-Tout(j,t))×Rf(j,t) ・・・(11)
The output R (j, t) [W] of the heat source machine j considering the time t is expressed by the following equation (11) from the equation (10).
R (j, t) = CP × ρ × (Tin (j, t) −Tout (j, t)) × Rf (j, t) (11)

また、(9)式と(11)式とから入力エネルギER[W]は、次式(12)のように表される。
ER(j,t)=R(j,t)/COP(Ta)
=(CP×ρ×(Tin(j,t)-Tout(j,t))×Rf(j,t))/COP(Ta) ・・・(12)
Further, from the equations (9) and (11), the input energy ER [W] is expressed as the following equation (12).
ER (j, t) = R (j, t) / COP (Ta)
= (CP × ρ × (Tin (j, t) -Tout (j, t)) × Rf (j, t)) / COP (Ta) (12)

なお、入力エネルギER[W]の計算式については、(12)式ではなく、次式(13)の回帰式でも表すこともできる。ただし、a1からa9は熱源機の特性式の係数であり、たとえば国土交通省が提供している空調設備シュミレーションツール(LCEMツール)によって算出することができる。
ER(j,t)=a1×Ta+a2×Tout(j,t)+a3×Tin(j,t)+a4×Rf(j,t)+a5×Ta×Rf(j,t)+a6×Tout(j,t)×Rf(j,t)+a7×Tin(j,t)×Rf(j,t)+a8×Rf(j,t)2+a9 ・・・(13)
Note that the calculation formula of the input energy ER [W] can be expressed not by the equation (12) but also by the regression equation of the following equation (13). However, a1 to a9 are coefficients of the characteristic formula of the heat source device, and can be calculated by, for example, an air conditioning facility simulation tool (LCEM tool) provided by the Ministry of Land, Infrastructure, Transport and Tourism.
ER (j, t) = a1 × Ta + a2 × Tout (j, t) + a3 × Tin (j, t) + a4 × Rf (j, t) + a5 × Ta × Rf (j, t) + a6 × Tout (j, t) × Rf (j, t) + a7 × Tin (j, t) × Rf (j, t) + a8 × Rf (j, t) 2 + a9 (13)

なお、2つのER(j,t)の計算式である(12)式と(13)式とは、得られる入力条件によって使い分けられる。   Note that the formulas (12) and (13), which are the calculation formulas for the two ER (j, t), are properly used depending on the obtained input conditions.

ここで、熱源水のポンプ消費電力Pp[W]は、次式(14)のように表される。ただし、a10からa11はポンプ固有の係数である。
Pp(j,t)=a10×Rf(j,t)+a11 ・・・(14)
Here, the pump power consumption Pp [W] of the heat source water is expressed by the following equation (14). However, a10 to a11 are coefficients specific to the pump.
Pp (j, t) = a10 × Rf (j, t) + a11 (14)

つぎに、熱需給バランスについて考える。すなわち、予測される熱負荷需要予測値に対して必要とされる熱源機出力R[W]の関係は次式(15)以下のように表される。
熱負荷需要予測値-ΣR(j,t)=0 ・・・(15)
Next, let us consider the heat supply-demand balance. That is, the relationship of the heat source machine output R [W] required for the predicted heat load demand prediction value is expressed as the following equation (15).
Thermal load demand forecast value -ΣR (j, t) = 0 (15)

また、2次計画法で計算するための評価関数である目的関数を求める。時刻tにおける空調システム全体の熱源機141の入力エネルギER[W]と熱源水のポンプ消費電力Pp[W]の合計、および電力量単価CDから、電力費用f(x)を次式(16)のように求める。そして、この電力費用f(x)を最小化させる次式(17)が、目的関数となる。
f(x)={ΣER(j,t)+ΣPp(j,t)}×CD ・・・(16)
minf(x)={ΣER(j,t)+ΣPp(j,t)}×CD ・・・(17)
In addition, an objective function which is an evaluation function for calculation by quadratic programming is obtained. From the sum of the input energy ER [W] of the heat source unit 141 of the entire air conditioning system at time t and the pump power consumption Pp [W] of the heat source water and the power unit price CD, the power cost f (x) is expressed by the following equation (16). Seek like. Then, the following equation (17) that minimizes the power cost f (x) is an objective function.
f (x) = {ΣER (j, t) + ΣPp (j, t)} × CD (16)
minf (x) = {ΣER (j, t) + ΣPp (j, t)} × CD (17)

2次計画法で計算するための制御変数としては、(12)式および(13)式で示されるER(j,t)の式に含まれる熱源機送水温度Tout[K]、熱源機戻り温度Tin[K]および熱源機送水流量Rf[m3/s]と、(17)式に含まれるポンプ消費電力Pp[W]となる。As control variables for calculation by quadratic programming, the heat source water supply temperature Tout [K] and the heat source return temperature included in the equations of ER (j, t) expressed by the equations (12) and (13) Tin [K] and the heat source water supply flow rate Rf [m 3 / s] and the pump power consumption Pp [W] included in the equation (17).

2次計画法で計算するための制約条件式としては、熱源機j号機における出力R(j)[W]、送水温度Tout[K]および送水流量Rf[m3/s]となる。熱源機j号機における出力R(j)[W]、送水温度Tout[K]および送水流量Rf[m3/s]は、それぞれ次式(18)から(20)に示されるように上限および下限があり、これらの範囲が制約条件式となる。
R(j)min≦R(j)≦ R(j)max ・・・(18)
Tout(j)min≦Tout(j)≦Tout(j)max ・・・(19)
Rf(j)min≦Rf(j)≦Rf(j)max ・・・(20)
The constraint equation for calculation by the quadratic programming method is the output R (j) [W], the water supply temperature Tout [K], and the water supply flow rate Rf [m 3 / s] in the heat source machine j. The output R (j) [W], the water supply temperature Tout [K] and the water supply flow rate Rf [m 3 / s] in the heat source machine j are the upper and lower limits as shown in the following equations (18) to (20), respectively. These ranges are constraint equations.
R (j) min ≦ R (j) ≦ R (j) max (18)
Tout (j) min ≦ Tout (j) ≦ Tout (j) max (19)
Rf (j) min ≦ Rf (j) ≦ Rf (j) max (20)

以上において、たとえば(15)式を制約式とし、(18)から(20)式を制約条件式として、二次計画法を使用して(17)式を目的関数として電力費用f(x)が最小となるように冷却用熱源機141aと加熱用熱源機141bの出力温度が運転パラメータとして決定される。なお、ここで、最小とは、空調機13、熱源機141および外調機14が定格値運転を行う場合の消費エネルギ量、すなわち電力量の総和に対して、実際に運転させる空調機13、熱源機141、外調機14の消費エネルギ量を最小化することをいう。   In the above, for example, the power cost f (x) is obtained by using the quadratic programming method and the equation (17) as an objective function using the equation (15) as the constraint equation, the equations (18) to (20) as the constraint equation. The output temperatures of the cooling heat source unit 141a and the heating heat source unit 141b are determined as operating parameters so as to be minimized. Here, the term “minimum” means that the air conditioner 13 that is actually operated with respect to the amount of energy consumed when the air conditioner 13, the heat source device 141, and the external air conditioner 14 perform the rated value operation, that is, the total amount of electric power, This means minimizing the amount of energy consumed by the heat source device 141 and the external air conditioner 14.

制御指令部27は、運転計画部26によって算出された空調設備の運転パラメータに基づいて、工場10に設けられる空調機13、熱源機141および外調機14を含む空調設備の運転制御を行う。この制御指令部27による運転制御によって、図12と図13に示される空調除去熱量を除去することができ、工場10内の温度を設定温度に保つことが可能になる。   The control command unit 27 controls the operation of the air conditioning equipment including the air conditioner 13, the heat source device 141, and the external air conditioner 14 provided in the factory 10 based on the operation parameters of the air conditioning equipment calculated by the operation planning unit 26. By the operation control by the control command unit 27, the air conditioning removal heat amount shown in FIGS. 12 and 13 can be removed, and the temperature in the factory 10 can be kept at the set temperature.

つぎに、空調管理装置20における処理について説明する。図17は、実施の形態1による空調管理処理の手順の一例を示すフローチャートである。なお、ここでは、ユーザによって工場10についての照明12、機械11および作業員15の配置情報と空調ゾーンごとの発熱モデル対応情報と建物の熱モデルが既に作成されている状態にあるものとする。まず、空調機特性データ取得部22は、空調機特性データを読み込み、データ記憶部24に記憶する(ステップS11)。また、気象データ取得部21は、空調管理を行う日の気象データを、ネットワークを介して取得し、データ記憶部24に記憶する(ステップS12)。さらに、生産計画情報取得部23は、空調管理を行う日の生産計画情報を取得する(ステップS13)。   Next, processing in the air conditioning management device 20 will be described. FIG. 17 is a flowchart illustrating an example of a procedure of air conditioning management processing according to the first embodiment. Here, it is assumed that the arrangement information of the lighting 12, the machine 11, and the worker 15 about the factory 10, the heat generation model correspondence information for each air conditioning zone, and the building heat model have already been created by the user. First, the air conditioner characteristic data acquisition unit 22 reads the air conditioner characteristic data and stores it in the data storage unit 24 (step S11). Moreover, the weather data acquisition part 21 acquires the weather data of the day which performs air-conditioning management via a network, and memorize | stores it in the data storage part 24 (step S12). Furthermore, the production plan information acquisition unit 23 acquires the production plan information on the day when air conditioning management is performed (step S13).

ついで、熱負荷予測部25は、ある時間における工場10内の各空調ゾーンでの発熱量を、単位時間ごとに算出する(ステップS14)。これは、上記したように空調ゾーンごとの発熱モデル対応情報を用いて、単位時間ごとに空調ゾーン発熱量を算出する。また、熱負荷予測部25は、ある時間における工場10内の各空調ゾーンへの侵入熱を、単位時間ごとに算出する(ステップS15)。これは、上記したように建物の熱モデルと気象データとを用いて算出する。さらに、熱負荷予測部25は、算出した発熱量と侵入熱と、工場10内に設定された温湿度とを用いて、工場10内の各空調ゾーンでの空調除去熱量を単位時間ごとに算出する(ステップS16)。   Next, the thermal load predicting unit 25 calculates the amount of heat generated in each air conditioning zone in the factory 10 at a certain time for each unit time (step S14). As described above, the heat generation amount corresponding to each air conditioning zone is used to calculate the heat generation amount of the air conditioning zone per unit time. Further, the thermal load predicting unit 25 calculates intrusion heat into each air conditioning zone in the factory 10 at a certain time for each unit time (step S15). This is calculated using the building thermal model and weather data as described above. Furthermore, the heat load predicting unit 25 calculates the air-conditioning removal heat amount in each air-conditioning zone in the factory 10 for each unit time using the calculated heat generation amount, intrusion heat, and the temperature and humidity set in the factory 10. (Step S16).

ついで、運転計画部26は、2次計画法を用いて、各空調ゾーンの空調設備の運転パラメータを算出する(ステップS17)。たとえば、各時間における空調除去熱量を除去することができ、かつ空調設備での消費電力を最小とすることができる熱源機141へ流入する媒体の温度と熱源機141から流出する媒体の温度とを含む空調設備の運転パラメータを求める。   Next, the operation planning unit 26 calculates the operation parameters of the air conditioning equipment in each air conditioning zone using the secondary planning method (step S17). For example, the temperature of the medium flowing into the heat source unit 141 and the temperature of the medium flowing out of the heat source unit 141 that can remove the amount of heat removed from the air conditioning at each time and can minimize the power consumption in the air conditioning facility. Obtain the operating parameters of the air conditioning equipment.

そして、制御指令部27は、算出した空調設備の運転パラメータを用いて、工場10の空調設備を制御する(ステップS18)。以上によって、空調管理処理が終了する。   And the control instruction | command part 27 controls the air conditioning equipment of the factory 10 using the calculated operation parameter of the air conditioning equipment (step S18). Thus, the air conditioning management process ends.

なお、熱負荷予測部25は、生産計画情報を入力として、機械の発熱モデルから各機械11の発生熱量を予測しているが、個々の機械11の特性を考慮して発生熱量を予測してもよい。図18は、実施の形態1による機械がリフロー炉の場合の運転状況の一例を示す図であり、(a)は、リフロー炉の様子を模式的に示す断面図であり、(b)は機械特性を考慮しない場合の炉内の温度とベルトコンベアの運転状態の一例を示す図であり、(c)は機械特性を考慮した場合の炉内の温度とベルトコンベアの運転状態の一例を示す図である。   The thermal load predicting unit 25 uses the production plan information as an input to predict the heat generation amount of each machine 11 from the heat generation model of the machine. However, the heat load prediction unit 25 predicts the heat generation amount considering the characteristics of the individual machines 11. Also good. FIG. 18 is a diagram illustrating an example of an operation situation when the machine according to the first embodiment is a reflow furnace, (a) is a cross-sectional view schematically showing the state of the reflow furnace, and (b) is a machine. It is a figure which shows an example of the temperature in a furnace when not considering a characteristic, and the driving | running state of a belt conveyor, (c) is a figure which shows an example of the operating temperature of a furnace and a belt conveyor when considering a mechanical characteristic. It is.

リフロー炉200は、予め定められた方向に製品を搬送するベルトコンベア201と、ベルトコンベア201上の製品210を加熱する加熱部202と、ベルトコンベア201を覆うように設けられる断熱材203と、を有する。加熱部202への電力が供給されることによって断熱材203で囲まれた領域が加熱される。そして、製品210に乗せられたはんだがリフローされることになる。   The reflow furnace 200 includes a belt conveyor 201 that conveys products in a predetermined direction, a heating unit 202 that heats products 210 on the belt conveyor 201, and a heat insulating material 203 that is provided so as to cover the belt conveyor 201. Have. By supplying electric power to the heating unit 202, the region surrounded by the heat insulating material 203 is heated. Then, the solder placed on the product 210 is reflowed.

図18(b)に示されるように、加熱部202によって炉内の温度を200℃にする場合、炉内の温度はいきなり200℃にはならない。このため、前もって加熱部202に電力を供給し、製品210の生産が始まる9時に炉内の温度が200℃になるようにする。工場10が昼休みとなる12時から13時の間では、リフロー炉200の電源を切ってしまうと、リフロー炉200内の温度が低下するが、13時には再び200℃にしなければならず、200℃になるまでの時間が周囲の温度との関係で予測できない。このため、昼休みの間でも加熱部202は運転状態にしていた。   As shown in FIG. 18B, when the temperature in the furnace is set to 200 ° C. by the heating unit 202, the temperature in the furnace does not suddenly reach 200 ° C. For this reason, electric power is supplied to the heating unit 202 in advance so that the temperature in the furnace becomes 200 ° C. at 9 o'clock when the production of the product 210 starts. Between 12 o'clock and 13 o'clock when the factory 10 is in the lunch break, if the power of the reflow furnace 200 is turned off, the temperature in the reflow furnace 200 decreases, but at 13 o'clock, it must be again 200 ° C and becomes 200 ° C. Is not predictable due to the ambient temperature. For this reason, the heating unit 202 was in an operating state even during the lunch break.

一方、図18(c)に示されるように、室温がわかれば、加熱部202への電力の供給をやめた後の炉内の温度の下がり、また13時までに200℃にするためにいつ加熱部202への電力の供給を開始すればよいのかを計算によって求めることが可能になる。このようにして、昼休み中における機械設備11の電力の供給を必要最小限にすることで、1日全体として見た場合の工場10の消費電力を削減することができる。   On the other hand, as shown in FIG. 18 (c), when the room temperature is known, the temperature in the furnace decreases after the supply of power to the heating unit 202 is stopped, and when the temperature is raised to 200 ° C. by 13:00. It is possible to determine by calculation whether the supply of power to the unit 202 should be started. In this way, the power consumption of the factory 10 when viewed as a whole can be reduced by minimizing the supply of power to the mechanical equipment 11 during the lunch break.

機械において熱変換を行う乾燥炉、リフロー炉などでは、運転における必要熱量は次式(21)で表される。
機械必要熱量={加熱対象物容積[Vol]×加熱対象物比熱[j/deg・kg]×(機械装置目標温度―室温)}×安全率+(機械装置目標温度―室温)×機械装置断熱係数 ・・・(21)
In a drying furnace, a reflow furnace, or the like that performs heat conversion in a machine, the amount of heat required for operation is expressed by the following equation (21).
Necessary heat quantity of machine = {Volume of heating object [Vol] x Specific heat of heating object [j / deg · kg] x (Mechanical device target temperature-Room temperature)} x Safety factor + (Mechanical device target temperature-Room temperature) x Mechanical equipment insulation Coefficient (21)

生産計画情報より機械設備11ごとの加熱対象物の材質(金属、ベークライトなど)、体積、数量を取得し、上記(21)式に入力することで、立ち上げ時から連続運転時を経てクールダウン運転時までに必要な入力エネルギ量と、装置から漏洩する内部発熱負荷量と、を推定することができる。このように機械設備11ごとの立ち上げパターンがモデル化されることで、機械設備11の発生熱量の推定に、立ち上げパターンを効率的に使用することができる。   By acquiring the material (metal, bakelite, etc.), volume, and quantity of the heating object for each machine equipment 11 from the production plan information and entering it into the above equation (21), it cools down from the start-up through the continuous operation It is possible to estimate the amount of input energy required before operation and the amount of internal heat generation load that leaks from the apparatus. In this way, the startup pattern for each mechanical facility 11 is modeled, so that the startup pattern can be efficiently used for estimating the amount of heat generated by the mechanical facility 11.

実施の形態1では、熱負荷予測部25で、工場10の建物の熱モデルと、熱を発生する工場10内に配置される機械11、照明12および作業員15の熱モデルと、を用いて、気象データと生産計画情報と空調機特性データとを入力として、工場10内で空調設備を用いて除去すべき単位時間当たりの熱量である空調除去熱量を1日の期間で算出した。これによって、工場10内で除去すべき熱量を正確に予測することができ、この予測に基づいて空調設備の制御を行うことができるという効果を有する。   In the first embodiment, the thermal load prediction unit 25 uses the thermal model of the building of the factory 10 and the thermal model of the machine 11, the lighting 12 and the worker 15 arranged in the factory 10 that generates heat. The weather data, production plan information, and air conditioner characteristic data were input, and the air conditioning removal heat quantity, which is the heat quantity per unit time to be removed using the air conditioning equipment in the factory 10, was calculated over a period of one day. As a result, the amount of heat to be removed in the factory 10 can be accurately predicted, and the air conditioning equipment can be controlled based on this prediction.

また、運転計画部26は、熱負荷予測部25で予測した単位時間ごとの空調除去熱量を、空調システム全体の熱源機141の出力と等しくした状態で、空調システム全体での熱源機141の入力エネルギと、空調システム全体での熱源水ポンプ消費電力との合計に電力量単価を乗じた電力費用が最小となるように、二次計画法を用いて冷却用熱源機141aと加熱用熱源機141bの出力温度を含む空調設備の運転パラメータを算出した。そして、制御指令部27は、空調設備の運転パラメータに基づいて空調設備を制御する。これによって、工場10内の温度を目標温度に精密に維持することができるという効果を有する。   In addition, the operation planning unit 26 inputs the heat source unit 141 in the entire air conditioning system in a state where the amount of air conditioning removal heat per unit time predicted by the thermal load prediction unit 25 is equal to the output of the heat source unit 141 in the entire air conditioning system. The heat source unit for cooling 141a and the heat source unit for heating 141b are used by the quadratic programming method so that the power cost obtained by multiplying the sum of the energy and the power consumption of the heat source water pump in the entire air conditioning system by the unit price of electric power is minimized. The operating parameters of the air conditioning equipment including the output temperature were calculated. Then, the control command unit 27 controls the air conditioning equipment based on the operation parameters of the air conditioning equipment. As a result, the temperature in the factory 10 can be precisely maintained at the target temperature.

室内の温度を計測し、この設定温度からのずれを検出して空調設備をフィードバック制御するという従来の方法では、温度を検出してから設定温度に達するまでに15分以上の時間を要していた。しかし、実施の形態1の方法では、フィードバック制御ではなく、予め発生する熱量を予測し、これを除去するように制御しているので、各時間における工場10内の温度を設定温度に高精度で設定することが可能になる。さらに、従来では、最大負荷条件で空調設備の定格能力を決定していたため、軽負荷時ではエネルギ効率が低下していたが、実施の形態1では、軽負荷時でもエネルギ効率を低下させることがない。   In the conventional method of measuring the indoor temperature and detecting the deviation from the set temperature to feedback control the air conditioning equipment, it takes more than 15 minutes to reach the set temperature after the temperature is detected. It was. However, in the method according to the first embodiment, instead of feedback control, the amount of heat generated in advance is predicted and controlled so as to be removed, so the temperature in the factory 10 at each time is set to the set temperature with high accuracy. It becomes possible to set. Furthermore, conventionally, since the rated capacity of the air conditioning equipment is determined under the maximum load condition, the energy efficiency is reduced at light loads. However, in Embodiment 1, the energy efficiency can be reduced even at light loads. Absent.

実施の形態2.
実施の形態1で説明したように、1日の気象情報と生産計画情報とを入力データとして、工場の熱モデルを用いて1日の各時間における空調除去熱量を算出しているので、従来の方法に比してばらつきの少ない温湿度制御を行うことができる。従来では、上記したように15分以上の遅れを有するフィードバック制御によって工場などの建物内の空調制御を行っていたため、温度制御が難しく、工場10内の設定温度として23℃±2℃のような誤差範囲を大きく持たせる形で設定温度を設定していた。実施の形態2では、外気温度によって、工場10内の設定温度を変更する方法について説明する。
Embodiment 2. FIG.
As described in the first embodiment, since the daily weather information and the production plan information are used as input data, the amount of heat removed from the air conditioning at each hour of the day is calculated using the factory heat model. Temperature and humidity control can be performed with less variation than the method. Conventionally, air conditioning control in a building such as a factory has been performed by feedback control having a delay of 15 minutes or more as described above, so temperature control is difficult, and the set temperature in the factory 10 is 23 ° C. ± 2 ° C. The set temperature was set in such a way as to give a large error range. In the second embodiment, a method for changing the set temperature in the factory 10 according to the outside air temperature will be described.

図19は、実施の形態2による空調管理装置の機能構成を模式的に示すブロック図である。この空調管理装置20は、熱負荷予測部25に外気処理量予測部254をさらに備える。外気処理量予測部254は、工場10内に存在する作業員15の数と、強制的に作動する排気ファンの排気量と、に基づいて単位時間ごとに工場10内に導入する外気処理量を予測する。強制的に作動する排気ファンは、高い温度で運転が行われる機械11などに設けられる。工場10内に存在する作業員15と、強制的に作動する排気ファンによる排気量と、は、生産計画情報から取得することができる情報である。   FIG. 19 is a block diagram schematically illustrating a functional configuration of the air conditioning management device according to the second embodiment. The air conditioning management device 20 further includes an outside air processing amount prediction unit 254 in the heat load prediction unit 25. The outside air processing amount prediction unit 254 determines the amount of outside air to be introduced into the factory 10 per unit time based on the number of workers 15 existing in the factory 10 and the exhaust amount of exhaust fans that are forcibly operated. Predict. The exhaust fan that is forcibly operated is provided in the machine 11 that is operated at a high temperature. The worker 15 existing in the factory 10 and the exhaust amount by the exhaust fan that is forcibly operated are information that can be acquired from the production plan information.

運転計画部26は、熱負荷予測部25で算出された外気処理量に対して、外調機14と熱源機141とを組み合わせた空調システムの消費電力を、2次計画法により消費電力最小化条件で解く。その結果、運転計画部26は、室内環境条件範囲内に対しての外調機14の給気温度と給気湿度の設定値とを空調設備の運転パラメータとして算出する。   The operation planning unit 26 minimizes the power consumption of the air conditioning system in which the external air conditioner 14 and the heat source unit 141 are combined with the outside air processing amount calculated by the heat load prediction unit 25 by the secondary planning method. Solve with conditions. As a result, the operation planning unit 26 calculates the supply air temperature and supply air humidity set values of the external air conditioner 14 within the indoor environmental condition range as operation parameters of the air conditioning equipment.

制御指令部27は、運転計画部26で求められた給気温度と給気湿度を外調機14に設定する。なお、実施の形態1で説明したものと同一の構成要素には同一の符号を付してその説明を省略している。また、実施の形態2による空調管理装置の処理手順は、実施の形態1で説明したものと同様であるので、その説明を省略する。   The control command unit 27 sets the supply air temperature and supply air humidity obtained by the operation planning unit 26 in the external air conditioner 14. In addition, the same code | symbol is attached | subjected to the component same as what was demonstrated in Embodiment 1, and the description is abbreviate | omitted. Further, the processing procedure of the air conditioning management apparatus according to the second embodiment is the same as that described in the first embodiment, and thus the description thereof is omitted.

ここで、実施の形態2による運転計画部26での空調設備の運転パラメータの算出例について説明する。予測された熱負荷需要の外気処理量に対して、熱源機141と外調機14の消費電力を2次計画法によって消費電力最小化条件で解くことで、室内環境条件範囲内に対しての外調機14の給気温度および給気湿度の設定値を求めることができる。   Here, an example of calculating the operation parameters of the air conditioning equipment in the operation planning unit 26 according to the second embodiment will be described. By solving the power consumption of the heat source device 141 and the external air conditioner 14 with the power consumption minimization condition by the quadratic programming method with respect to the predicted outside air processing amount of the predicted heat load demand, The set values of the supply air temperature and supply air humidity of the external air conditioner 14 can be obtained.

まず、熱交換器特性モデルQHによって熱交換量を求める。外調機14の冷水熱交換器143は、冷却用熱源機141aから供給される冷水を接続し、外調機14のファン144で取込んだ外気と熱交換する。また、外調機14の温水熱交換器143は、加熱用熱源機141bから供給される温水を接続し、外調機14のファン144で取込んだ外気と熱交換する。   First, the heat exchange amount is obtained by the heat exchanger characteristic model QH. The chilled water heat exchanger 143 of the external air conditioner 14 connects the cold water supplied from the cooling heat source device 141 a and exchanges heat with the outside air taken in by the fan 144 of the external air conditioner 14. Moreover, the hot water heat exchanger 143 of the external air conditioner 14 connects the hot water supplied from the heating heat source device 141b, and exchanges heat with the outside air taken in by the fan 144 of the external air conditioner 14.

時刻tにおける熱交換器j号機の外気エンタルピ量eiにおける熱交換器特性モデルの熱量QH(j,t)は、次式(22)で示される。また、外気エンタルピ量eiは、次式(23)で示される。ただし、Tainは熱交換器入口の空気温度[K]であり、Taoutは熱交換器出口の空気温度[K]であり、Wは水流量[m3/s]であり、wは空気流量[m3/s]であり、cpは空気の比熱であり、1.006J/(Kg・K)である。
QH(j,t)=W(j,t)×Cp(j,t)×(Tin(j,t)-Tout(j,t))
=w(j,t)×cp(j,t)×(Taout(j,t)-Tain(j,t)) ・・・(22)
ei=w(j,t)×cp(j,t)×(Taout(j,t)-Tain(j,t)) ・・・(23)
The amount of heat QH (j, t) of the heat exchanger characteristic model at the outside air enthalpy amount ei of the heat exchanger j at time t is expressed by the following equation (22). The outside air enthalpy amount ei is expressed by the following equation (23). Where Tain is the air temperature [K] at the heat exchanger inlet, Taout is the air temperature [K] at the heat exchanger outlet, W is the water flow rate [m 3 / s], and w is the air flow rate [K]. m 3 / s], and cp is the specific heat of air, which is 1.006 J / (Kg · K).
QH (j, t) = W (j, t) × Cp (j, t) × (Tin (j, t) -Tout (j, t))
= w (j, t) × cp (j, t) × (Taout (j, t) -Tain (j, t)) (22)
ei = w (j, t) × cp (j, t) × (Taout (j, t) −Tain (j, t)) (23)

熱交換器の熱交換率HXRは、制御条件により以下のように分類される。
<温度だけを制御する場合>
温度だけを制御する場合には、熱交換器の熱交換率HXRは次式(24)のように示される。ただし、露点温度にならないものとする。
HXR×W(j,t)×Cp(j,t)×(Tin(j,t)-Tout(j,t))
=w(j,t)×cp(j,t)×(Taout(j,t)-Tain(j,t)) ・・・(24)
The heat exchange rate HXR of the heat exchanger is classified as follows according to the control conditions.
<When controlling temperature only>
In the case of controlling only the temperature, the heat exchange rate HXR of the heat exchanger is represented by the following equation (24). However, the dew point temperature will not be reached.
HXR × W (j, t) × Cp (j, t) × (Tin (j, t) -Tout (j, t))
= w (j, t) × cp (j, t) × (Taout (j, t) -Tain (j, t)) (24)

<温湿度を制御する場合>
温度と湿度を制御する場合には、熱交換器の熱交換率HXRは次式(25)のように示される。ただし、Denvは外気の空気密度[kg/m3]であり、Dsupは供給空気の密度[kg/m3]であり、Eenvは外気の比エンタルピ[KJ/(kg・K)]であり、Esupは供給空気の比エンタルピ[KJ/(kg・K)]である。
HXR×W(j,t)×Cp(j,t)×(Tin(j,t)-Tout(j,t))
=w(j,t)×(Denv(t)×Eenv(t)-Dsup(j,t)×Esup(j,t)) ・・・(25)
<When controlling temperature and humidity>
When controlling the temperature and humidity, the heat exchange rate HXR of the heat exchanger is expressed by the following equation (25). However, Denv is the air density [kg / m 3 ] of the outside air, Dsup is the density of the supply air [kg / m 3 ], Eenv is the specific enthalpy [KJ / (kg · K)] of the outside air, Esup is the specific enthalpy of supply air [KJ / (kg · K)].
HXR × W (j, t) × Cp (j, t) × (Tin (j, t) -Tout (j, t))
= w (j, t) × (Denv (t) × Eenv (t) -Dsup (j, t) × Esup (j, t)) (25)

また、ファン144の時刻tにおける消費電力量Fp(t)[W]は、次式(26)のように表される。ただし、a12,a13はファン144の消費電力特性の係数とする。
Fp(t)=a12×w(j,t)+a13 ・・・(26)
Further, the power consumption amount Fp (t) [W] at the time t of the fan 144 is expressed by the following equation (26). However, a12 and a13 are coefficients of power consumption characteristics of the fan 144.
Fp (t) = a12 × w (j, t) + a13 (26)

つぎに、熱需給バランスについて考える。予測される熱負荷需要に対して必要とされる熱交換器特性モデルの熱量QH[W]の関係は、次式(27)のように表される。
熱負荷需要予測値−QH(j,t)=0 ・・・(27)
Next, let us consider the heat supply-demand balance. The relationship between the heat quantity QH [W] of the heat exchanger characteristic model required for the predicted heat load demand is expressed as the following equation (27).
Thermal load demand forecast value -QH (j, t) = 0 (27)

また、2次計画法で計算するための評価関数である目的関数を求める。時刻tにおける熱交換器特性モデルの熱量QH[W]とファン144の消費電力Fp(t)[W]および電力量単価CDから、電力費用f(x)を次式(28)のように求める。そして、この電力費用f(x)を最小化させる次式(29)が、目的関数となる。
f(x)={ΣQH(j,t)+ΣFp(j,t)}×CD ・・・(28)
minf(x)={ΣQH(j,t)+ΣFp(j,t)}×CD ・・・(29)
In addition, an objective function which is an evaluation function for calculation by quadratic programming is obtained. From the heat quantity QH [W] of the heat exchanger characteristic model at time t, the power consumption Fp (t) [W] of the fan 144, and the power unit price CD, the power cost f (x) is obtained as in the following equation (28). . Then, the following equation (29) that minimizes the power cost f (x) is an objective function.
f (x) = {ΣQH (j, t) + ΣFp (j, t)} × CD (28)
minf (x) = {ΣQH (j, t) + ΣFp (j, t)} × CD (29)

2次計画法で計算するための制御変数としては、(22)式で示されるQH(j,t)の式に含まれる熱源機戻り温度Tin[K]、熱源機送水温度Tout[K]、ファン144の空気流量w[m3/s]、およびファン144の消費電力Fp[W]となる。As control variables for calculation by the quadratic programming method, the heat source unit return temperature Tin [K], the heat source unit water supply temperature Tout [K] included in the equation of QH (j, t) represented by the equation (22), The air flow rate w [m 3 / s] of the fan 144 and the power consumption Fp [W] of the fan 144 are obtained.

2次計画法で計算するための制約条件式としては、熱交換器特性モデルの出力である熱量QH[W]、熱源機送水温度Tout[K]、水流量W[m3/s]および空気流量w[m3/s]となる。熱交換器特性モデルの熱量QH[W]、熱源機送水温度Tout[K]、水流量W[m3/s]および空気流量w[m3/s]は、それぞれ次式(30)から(33)に示されるように上限および下限があり、これらの範囲が制約条件式となる。
QH(j)min≦QH(j)≦QH(j)max ・・・(30)
Tout(j)min≦Tout(j)≦Tout(j)max ・・・(31)
W(j)min≦W(j)≦W(j)max ・・・(32)
w(j)min≦w(j)≦w(j)max ・・・(33)
As a constraint condition equation for calculation by the quadratic programming method, heat quantity QH [W], which is an output of the heat exchanger characteristic model, heat source water supply temperature Tout [K], water flow rate W [m 3 / s], and air The flow rate becomes w [m 3 / s]. The heat quantity QH [W], the heat source water supply temperature Tout [K], the water flow rate W [m 3 / s] and the air flow rate w [m 3 / s] in the heat exchanger characteristic model are expressed by the following formula (30): As shown in 33), there are upper and lower limits, and these ranges are constraint equations.
QH (j) min ≦ QH (j) ≦ QH (j) max (30)
Tout (j) min ≦ Tout (j) ≦ Tout (j) max (31)
W (j) min ≦ W (j) ≦ W (j) max (32)
w (j) min ≦ w (j) ≦ w (j) max (33)

運転計画部26は、予測された熱負荷需要の外気処理量に対して、熱源機141と外調機14の消費電力を2次計画法によって消費電力最小化条件で解くことで、室内環境条件範囲内に対しての外調機14の給気温度および湿度の設定値を求める。具体的には、たとえば(27)式を制約式とし、(30)から(33)式を制約条件式として、二次計画法を使用して(29)式を目的関数として電力費用f(x)が最小となるように外調機14の給気温度および湿度が運転パラメータとして決定される。そして、このようにして求められた運転パラメータによって、バラツキの少ない温度および湿度の制御が可能となる。そのため、外気温度によって設定温度21℃から25℃の範囲で、また外気湿度によって設定湿度40%から60%の範囲で、熱源機141と外調機14のエネルギ消費量を最小に抑えることができる。   The operation planning unit 26 solves the power consumption of the heat source device 141 and the external air conditioner 14 with the power consumption minimization condition by the second-order programming method with respect to the predicted outside air processing amount of the heat load demand. The set values of the supply temperature and humidity of the external air conditioner 14 within the range are obtained. Specifically, for example, equation (27) is a constraint equation, equations (30) to (33) are constraint conditions, and quadratic programming is used, and equation (29) is used as an objective function to calculate power cost f (x ) Is determined as operating parameters such that the supply air temperature and humidity of the external air conditioner 14 are minimized. The temperature and humidity can be controlled with little variation by the operation parameters thus obtained. Therefore, the energy consumption of the heat source device 141 and the external air conditioner 14 can be minimized in the range of the set temperature 21 ° C. to 25 ° C. depending on the outside air temperature and in the range of the set humidity 40% to 60% depending on the outside air humidity. .

実施の形態2では、工場10内での作業員15の数と排気ファンの排気量とを用いて単位時間ごとの外気処理量を予測し、予測された熱負荷需要が熱交換器熱量と等しくなる条件で、2次計画法を用いて、熱交換器熱量とファンの消費電力との和が最小となるように、外調機14の給気温度と給気湿度とを求める。そして、求めた給気温度と給気湿度を用いて外調機14の運転を行う。これによって、バラつきの少ない温度と湿度の制御が可能になるという効果を有する。また、外気を工場10内に導入する際に、工場10内に導入する空気の温度と、導入する前までの工場10内の温度との差が小さくなるので、空調管理システムで消費される電力を抑えることができるという効果を有する。   In the second embodiment, the outside air processing amount per unit time is predicted using the number of workers 15 in the factory 10 and the exhaust fan exhaust amount, and the predicted heat load demand is equal to the heat exchanger heat amount. Under such conditions, the air supply temperature and the air supply humidity of the external air conditioner 14 are obtained using the quadratic programming method so that the sum of the heat quantity of the heat exchanger and the power consumption of the fan is minimized. Then, the external air conditioner 14 is operated using the obtained supply air temperature and supply air humidity. As a result, the temperature and humidity can be controlled with little variation. In addition, when the outside air is introduced into the factory 10, the difference between the temperature of the air introduced into the factory 10 and the temperature inside the factory 10 before the introduction is reduced, so that the power consumed by the air conditioning management system It has the effect that can be suppressed.

実施の形態3.
実施の形態1では、機械設備の動作モデルを用いて発生熱量を算出していた。機械設備の発生熱量は、空調熱負荷に占める割合が大きく、また変動幅も大きい。そこで、実施の形態3では、機械設備の発生熱量の予測をさらに精度よく行うことができる方法について説明する。
Embodiment 3 FIG.
In the first embodiment, the amount of generated heat is calculated using an operation model of mechanical equipment. The amount of heat generated by mechanical equipment accounts for a large proportion of the air conditioning heat load, and the fluctuation range is also large. Therefore, in the third embodiment, a method capable of predicting the amount of heat generated by mechanical equipment with higher accuracy will be described.

図20は、実施の形態3による工場内の機械設備における単位時間当たりの生産個数と内部発熱量との関係の一例を模式的に示す図である。ここでは、単位時間当たりの生産個数がa,b,cのときのそれぞれの内部発熱量A,B,Cを予め算出し、これらのデータから生産個数に対する内部発熱量の関係を示す曲線L1を作成したものであり、図中実線で示されている。なお、図中の点線で示される曲線L2は、実際の単位時間当たりの生産個数に対する内部発熱量を示している。曲線L1,L2は、生産量−発熱量対応情報である。曲線L1では、単位時間当たりの生産個数が0からaの範囲では、発熱量が0からAに単調増加する直線で示され、aからbの範囲では一定値Aであり、bからcの範囲では一定値Bであり、c以降の範囲では一定値Cである。そして、この曲線L1は、実際の曲線L2に近似している。   FIG. 20 is a diagram schematically showing an example of the relationship between the number of products produced per unit time and the internal heating value in the machine equipment in the factory according to the third embodiment. Here, internal calorific values A, B, and C when the number of productions per unit time are a, b, and c are calculated in advance, and a curve L1 indicating the relationship of the internal calorific value with respect to the production number is calculated from these data. It was created and is shown as a solid line in the figure. Note that a curve L2 indicated by a dotted line in the figure indicates the internal heat generation amount with respect to the actual number of production per unit time. Curves L1 and L2 are production amount-heat generation amount correspondence information. In the curve L1, when the number of produced units per unit time is in the range of 0 to a, the calorific value is shown as a straight line that monotonously increases from 0 to A, in the range of a to b is a constant value A, and in the range of b to c Is a constant value B, and is a constant value C in the range after c. The curve L1 approximates the actual curve L2.

発熱量予測部251は、機械設備11の発生熱に関しては生産計画情報から得られる時間当たりの生産個数から、図20に示されるような情報を用いて機械設備11の内部発熱量を算出する。なお、上記した説明では、単位時間当たりの生産個数としているが、機械の稼働率としてもよい。また、図20では、3点を計測して曲線L1を作成しているが、計測する点数を多くすることで、曲線L1の実際の曲線L2からのずれの度合いが小さくなるので、より精密な機械設備11の発熱量の予測を行うことが可能になる。   The heat generation amount prediction unit 251 calculates the internal heat generation amount of the mechanical equipment 11 using information as shown in FIG. 20 from the number of production per hour obtained from the production plan information regarding the generated heat of the mechanical equipment 11. In the above description, the number of production per unit time is used, but it may be the operating rate of the machine. Further, in FIG. 20, the curve L1 is created by measuring three points, but by increasing the number of points to be measured, the degree of deviation of the curve L1 from the actual curve L2 is reduced, so that more precise It is possible to predict the heat generation amount of the mechanical equipment 11.

実施の形態3では、単位時間当たりの生産個数または機械の稼働率と機械設備11の発熱量との間の相関関係を予め求め、この関係から、生産計画情報から得られる時間当たりの生産個数または機械の稼働率に対応する機械発熱量を求めた。これによって、機械設備11の発熱量をさらに精密に推定することができるという効果を有する。   In the third embodiment, a correlation between the number of units produced per unit time or the operation rate of the machine and the calorific value of the machine equipment 11 is obtained in advance, and from this relationship, the number of units produced per hour obtained from the production plan information or The calorific value corresponding to the machine operation rate was obtained. As a result, the amount of heat generated by the mechanical equipment 11 can be estimated more precisely.

実施の形態4.
実施の形態4では、単位時間当たりの生産個数または機械の稼働率と機械設備の発熱量との相関関係を生成することができる空調管理システムについて説明する。
Embodiment 4 FIG.
In the fourth embodiment, an air conditioning management system capable of generating a correlation between the number of units produced per unit time or the operation rate of a machine and the amount of heat generated by machine equipment will be described.

図21は、実施の形態4による空調管理システムの構成の一例を模式的に示す図である。空調管理システムは、実施の形態1の構成に、単位時間当たりの生産量と機械設備11の発熱量との対応関係を示す生産量−発熱量対応情報を各機械設備11から取得する生産量−発熱量対応情報取得部255をさらに備える。生産量−発熱量対応情報取得部255は、取得した生産量−発熱量対応情報を対応する機械設備11の動作モデルと対応付けてデータ記憶部24に格納する。なお、実施の形態1で説明した構成要素と同一の構成要素には同一の符号を付して、その説明を省略する。   FIG. 21 is a diagram schematically illustrating an example of a configuration of an air conditioning management system according to the fourth embodiment. In the configuration of the first embodiment, the air-conditioning management system has the production amount indicating the correspondence between the production amount per unit time and the heat generation amount of the mechanical equipment 11 -the production amount for acquiring the heat generation correspondence information from each mechanical equipment 11- A calorific value correspondence information acquisition unit 255 is further provided. The production amount-heat generation amount correspondence information acquisition unit 255 stores the acquired production amount-heat generation amount correspondence information in the data storage unit 24 in association with the operation model of the corresponding mechanical equipment 11. In addition, the same code | symbol is attached | subjected to the component same as the component demonstrated in Embodiment 1, and the description is abbreviate | omitted.

図22は、実施の形態4による機械設備の構成の一例を示す図である。この図に示されるように、機械設備11は、制御対象である機械111と、機械111を制御する制御装置112と、制御装置112での制御の状態を表示する表示器113と、機械設備11での消費電力をモニタする消費電力計測装置である電力モニタ114と、が通信ケーブル115を介して接続された構成を有する。そして、電力モニタ114は、図示しない空調管理システムと通信ケーブルを介して接続される。   FIG. 22 is a diagram illustrating an example of a configuration of mechanical equipment according to the fourth embodiment. As shown in this figure, the machine equipment 11 includes a machine 111 to be controlled, a control device 112 that controls the machine 111, a display 113 that displays a control state of the control device 112, and the machine equipment 11. And a power monitor 114 that is a power consumption measuring device that monitors the power consumption in the network is connected via a communication cable 115. The power monitor 114 is connected to an air conditioning management system (not shown) via a communication cable.

図23は、生産量−発熱量対応情報の一例を示す図である。電力モニタで取得した図23に示される情報が空調管理システムの生産量−発熱量対応情報取得部255で取得される。各機械設備11の消費電力は発熱量と等しくなるので、この関係を用いて、空調管理装置20の発熱量予測部251は実施の形態3の場合に比してよりきめ細かい発熱量を取得することができる。   FIG. 23 is a diagram illustrating an example of the production amount-heat generation amount correspondence information. The information shown in FIG. 23 acquired by the power monitor is acquired by the production amount-heat generation amount correspondence information acquisition unit 255 of the air conditioning management system. Since the power consumption of each mechanical equipment 11 is equal to the heat generation amount, the heat generation amount prediction unit 251 of the air conditioning management device 20 acquires a finer heat generation amount than in the case of the third embodiment using this relationship. Can do.

実施の形態4では、工場10内の機械設備11に電力モニタ114を設け、各機械設備11の単位時間当たりの生産個数または稼働率と消費電力との関係を生産量−発熱量対応情報として蓄積し、これを空調管理装置20で取得し、機械設備11の発熱量を求める際に使用するようにした。これによって、各機械設備11の発熱量について実施の形態3の場合に比してより正確な値を求めることができ、工場10内の空調管理をより正確に行うことができるという効果を有する。   In the fourth embodiment, the power monitor 114 is provided in the mechanical equipment 11 in the factory 10 and the relationship between the number of units produced per unit time or the operation rate and the power consumption is accumulated as production quantity-heat generation correspondence information. And this was acquired with the air-conditioning management apparatus 20, and it was made to use when calculating | requiring the calorific value of the mechanical installation 11. FIG. As a result, a more accurate value can be obtained for the calorific value of each mechanical facility 11 than in the case of the third embodiment, and air conditioning management in the factory 10 can be performed more accurately.

なお、上記の説明では、生産量−発熱量対応情報取得部255を実施の形態1の構成に対して付した場合を説明したが、実施の形態2の構成に対して付してもよい。   In the above description, the case where the production amount-heat generation amount correspondence information acquisition unit 255 is attached to the configuration of the first embodiment has been described. However, the production amount / heat generation amount correspondence information acquisition unit 255 may be attached to the configuration of the second embodiment.

実施の形態5.
実施の形態5では、定期的に空調管理システムの動作状態を記録しておき、正常時の動作状態と比較することで、空調管理システムに異常がないかを判定する場合を説明する。
Embodiment 5. FIG.
In the fifth embodiment, a case will be described in which the operation state of the air conditioning management system is recorded periodically and compared with the normal operation state to determine whether there is an abnormality in the air conditioning management system.

図24は、実施の形態5による空調管理システムの構成の一例を模式的に示す図である。空調管理システムは、実施の形態1の構成に、動作状態取得部256と、動作状態格納部257と、予防保全部258と、をさらに備える。   FIG. 24 is a diagram schematically illustrating an example of a configuration of an air conditioning management system according to the fifth embodiment. The air conditioning management system further includes an operation state acquisition unit 256, an operation state storage unit 257, and a preventive maintenance unit 258 in the configuration of the first embodiment.

動作状態取得部256は、生産計画に対応した設備稼働情報の運転データ、生産量に対応した空調原単位および各動作モデルから得られる推定情報を含む動作状態値をある時間間隔で記録する。設備稼働情報として、熱源機141、空調設備、機械設備11などを挙げることができる。運転データとして、消費電力、単位時間当たりの起動回数、設備プロセス値などを挙げることができる。推定情報として、機器運転効率、発生熱量などを挙げることができる。動作状態格納部257は、動作状態取得部256で取得した動作状態値を格納する。   The operation state acquisition unit 256 records operation state values including operation data of facility operation information corresponding to a production plan, an air conditioning unit corresponding to a production amount, and estimated information obtained from each operation model at certain time intervals. Examples of the facility operation information include a heat source device 141, an air conditioning facility, and a mechanical facility 11. The operation data can include power consumption, the number of activations per unit time, equipment process values, and the like. As the estimation information, device operation efficiency, generated heat amount and the like can be mentioned. The operation state storage unit 257 stores the operation state value acquired by the operation state acquisition unit 256.

予防保全部258は、正常動作時の基準となる動作状態値と、取得した動作状態値とを比較し、異常の有無を判定する。具体的には、予防保全部258は、基準となる動作状態値からの判定対象の動作状態値の乖離量が予め設定された閾値を外れている場合に、ユーザに対して警告のメッセージを通知する処理などを行う。なお、予防保全処理は、毎回行われる必要はなく、1日に1回または1週間に1回など定期的に行われればよい。また、動作状態取得部256による運転データは、熱負荷予測部25による空調熱負荷の予測期間よりも短いことが望ましい。   The preventive maintenance unit 258 compares an operation state value serving as a reference during normal operation with the acquired operation state value, and determines whether there is an abnormality. Specifically, the preventive maintenance unit 258 notifies the user of a warning message when the deviation amount of the operation state value to be determined from the reference operation state value is outside a preset threshold value. Perform processing to do. The preventive maintenance process does not need to be performed every time, and may be performed periodically such as once a day or once a week. Moreover, it is desirable that the operation data by the operation state acquisition unit 256 is shorter than the prediction period of the air conditioning heat load by the heat load prediction unit 25.

機械設備11の消費電力は、機械設備11を使い続けると大きくなる傾向がある。そのため、乖離量が予め設定された値を超えた場合には、機械設備11が寿命に近いことを示していることになるので、ユーザに対して通知を行う。そして、ユーザは、通知に基づいて、機械設備11の部品の交換などの処理を行う。なお、実施の形態1で説明した構成要素と同一の構成要素には同一の符号を付して、その説明を省略する。   The power consumption of the mechanical equipment 11 tends to increase as the mechanical equipment 11 continues to be used. For this reason, when the amount of deviation exceeds a preset value, it indicates that the mechanical equipment 11 is near the end of its life, so a notification is given to the user. Then, the user performs processing such as replacement of parts of the mechanical equipment 11 based on the notification. In addition, the same code | symbol is attached | subjected to the component same as the component demonstrated in Embodiment 1, and the description is abbreviate | omitted.

実施の形態5では、空調管理システムでの動作状態値を記録し、予め定められた期間ごとに基準の動作状態値と比較して異常がないかを判断するようにした。これによって、判断結果を経年変化に伴う設備故障、劣化の予防保全に活用することができるという効果を有する。   In the fifth embodiment, the operation state value in the air conditioning management system is recorded, and it is determined whether there is an abnormality in comparison with the reference operation state value for each predetermined period. As a result, the determination result can be used for preventive maintenance of equipment failure and deterioration accompanying secular change.

以上のように、この発明にかかる空調管理システムは、製品を生産する工場における空調管理に有用である。   As described above, the air conditioning management system according to the present invention is useful for air conditioning management in a factory that produces products.

10 工場、10A クリーンルーム、10B 組立室、11 機械設備、12 照明設備、13 空調機、14 外調機、14A,14B,14C 空調機、15 作業員、20 空調管理装置、21 気象データ取得部、22 空調機特性データ取得部、23 生産計画情報取得部、24 データ記憶部、25 熱負荷予測部、26 運転計画部、27 制御指令部、111 機械、112 制御装置、113 表示器、114 電力モニタ、115 通信ケーブル、141 熱源機、141a 冷却用熱源機、141b 加熱用熱源機、142 ポンプ、143 熱交換器、144 ファン、200 リフロー炉、201 ベルトコンベア、202 加熱部、203 断熱材、210 製品、251 発熱量予測部、252 侵入熱予測部、253 除去熱量予測部、254 外気処理量予測部、255 生産量−発熱量対応情報取得部、256 動作状態取得部、257 動作状態格納部、258 予防保全部、700 空調システム制御装置、701 空調機運転データ取得部、702 気象データ取得部、703 パラメータ学習部、703a 建物モデル、704 熱負荷予測部、705 スケジュール作成部、706 運転スケジュール出力部、800 2次計画問題計算装置、801 変数記憶手段、802 初期化手段、803 ミスマッチ量算出手段、804 修正量算出手段、805 修正量記憶手段、806 固定変数設定手段、807 変数修正手段、810 繰返手段。   10 factories, 10A clean room, 10B assembly room, 11 mechanical equipment, 12 lighting equipment, 13 air conditioner, 14 air conditioner, 14A, 14B, 14C air conditioner, 15 workers, 20 air conditioning management device, 21 meteorological data acquisition unit, 22 air conditioner characteristic data acquisition unit, 23 production plan information acquisition unit, 24 data storage unit, 25 thermal load prediction unit, 26 operation planning unit, 27 control command unit, 111 machine, 112 control device, 113 display, 114 power monitor , 115 Communication cable, 141 Heat source machine, 141a Heat source machine for cooling, 141b Heat source machine for heating, 142 Pump, 143 Heat exchanger, 144 Fan, 200 Reflow furnace, 201 Belt conveyor, 202 Heating unit, 203 Heat insulation material, 210 Products 251 Heat generation amount prediction unit 252 Intrusion heat prediction unit 253 Removal heat amount prediction Unit, 254 outside air processing amount prediction unit, 255 production amount-heat generation amount correspondence information acquisition unit, 256 operation state acquisition unit, 257 operation state storage unit, 258 preventive maintenance unit, 700 air conditioning system control device, 701 air conditioner operation data acquisition unit 702 Meteorological data acquisition unit 703 Parameter learning unit 703a Building model 704 Thermal load prediction unit 705 Schedule creation unit 706 Operation schedule output unit 800 Secondary planning problem calculation device 801 Variable storage unit 802 Initialization unit , 803 Mismatch amount calculation means, 804 Correction amount calculation means, 805 Correction amount storage means, 806 Fixed variable setting means, 807 Variable correction means, 810 Repeat means.

上記目的を達成するため、この発明にかかる空調管理装置は、工場内の発熱体の発熱量を関数化した発熱体の動作モデルと、生産計画情報で規定される前記発熱体の動作状態と、を用いて単位時間ごとの発生熱量を予測する第1処理と、前記工場を構成する建物の熱伝達率と熱容量とを含む関数化された建物の熱モデルと、気象データと、を用いて単位時間ごとの侵入熱量を予測する第2処理と、前記工場内に設定された温度および湿度と、単位時間ごとの前記発生熱量および前記侵入熱量と、を用いて空調設備で除去する単位時間ごとの除去熱量を予測する第3処理と、を実行する熱負荷予測部と、前記単位時間ごとの除去熱量を前記空調設備で除去するための前記空調設備の運転計画を単位時間ごとに作成する運転計画部と、前記運転計画にしたがって前記空調設備の運転を制御する制御指令部と、を備え、前記運転計画部は、前記単位時間ごとの除去熱量と、前記工場内に設定される温度および湿度と前記空調設備の動作モデルとに基づいて、前記空調設備全体での消費エネルギを最小化する前記単位時間ごとの除去熱量を除去する前記運転計画を立て、前記生産計画情報は、前記工場内で稼働させる機械設備の数、稼働させる時間を含むことを特徴とする。 In order to achieve the above object, an air conditioning management device according to the present invention includes an operation model of a heating element that is a function of the amount of heat generated by a heating element in a factory, and an operation state of the heating element defined by production plan information, Unit using a first process for predicting the amount of heat generated per unit time by using a heat function of a building including a heat transfer coefficient and a heat capacity of the building constituting the factory, and meteorological data. The second process for predicting the amount of intrusion heat per hour, the temperature and humidity set in the factory, the generated heat amount and the intrusion heat amount per unit time, and the unit time to be removed by the air conditioning equipment A heat load predicting unit that executes a third process for predicting the amount of heat to be removed, and an operation plan for creating an operation plan for the air conditioning equipment for removing the amount of heat removed per unit time by the air conditioning equipment per unit time And the operation meter Wherein the control command section for controlling the operation of air conditioning equipment, wherein the operation plan unit has a quantity of heat removed per unit time, the temperature and humidity are set in said plant the air conditioning operation model according to based on the bets, the energy consumption in the entire air conditioning plant erected the operation plan of removing the quantity of heat removed per unit time for minimization, the production plan information, the number of mechanical equipment to run in said plant , Characterized in that it includes operating time .

空調機特性データ取得部22は、制御対象の工場10で使用される空調機の特性情報である空調機特性データを読み込む。空調機特性データは、各空調機の消費電力と供給熱量との関係を含む情報である。また、空調機が供給する熱量、すなわち空調機が除去する熱量を計算する必要がある場合には、空調機特性データは、各室外機の運転周波数、蒸発温度、凝縮温度と供給熱量および消費電力との関係を含む。 The air conditioner characteristic data acquisition unit 22 reads air conditioner characteristic data that is characteristic information of the air conditioner used in the factory 10 to be controlled. The air conditioner characteristic data is information including the relationship between the power consumption of each air conditioner and the amount of heat supplied. In addition, when it is necessary to calculate the amount of heat supplied by the air conditioner, that is, the amount of heat removed by the air conditioner, the air conditioner characteristic data includes the operating frequency, evaporation temperature, condensation temperature, supply heat amount and power consumption of each outdoor unit. Including the relationship.

なお、入力エネルギER[W]の計算式については、(12)式ではなく、次式(13)の回帰式でも表すこともできる。ただし、a1からa9は熱源機の特性式の係数であり、たとえば国土交通省が提供している空調設備シミュレーションツール(LCEMツール)によって算出することができる。
ER(j,t)=a1×Ta+a2×Tout(j,t)+a3×Tin(j,t)+a4×Rf(j,t)+a5×Ta×Rf(j,t)+a6×Tout(j,t)×Rf(j,t)+a7×Tin(j,t)×Rf(j,t)+a8×Rf(j,t)2+a9 ・・・(13)
Note that the calculation formula of the input energy ER [W] can be expressed not by the equation (12) but also by the regression equation of the following equation (13). However, a1 to a9 are coefficients of the characteristic formula of the heat source unit, and can be calculated by, for example, an air conditioning facility simulation tool (LCEM tool) provided by the Ministry of Land, Infrastructure, Transport and Tourism.
ER (j, t) = a1 × Ta + a2 × Tout (j, t) + a3 × Tin (j, t) + a4 × Rf (j, t) + a5 × Ta × Rf (j, t) + a6 × Tout (j, t) × Rf (j, t) + a7 × Tin (j, t) × Rf (j, t) + a8 × Rf (j, t) 2 + a9 (13)

以上において、たとえば(15)式を制約式とし、(18)から(20)式を制約条件式として、次計画法を使用して(17)式を目的関数として電力費用f(x)が最小となるように冷却用熱源機141aと加熱用熱源機141bの出力温度が運転パラメータとして決定される。なお、ここで、最小とは、空調機13、熱源機141および外調機14が定格値運転を行う場合の消費エネルギ量、すなわち電力量の総和に対して、実際に運転させる空調機13、熱源機141、外調機14の消費エネルギ量を最小化することをいう。 In the above, for example (15) and constraint from (18) to (20) as a constraint condition expression using the quadratic programming (17) Power costs f (x) as the objective function of formula The output temperatures of the cooling heat source unit 141a and the heating heat source unit 141b are determined as operating parameters so as to be minimized. Here, the term “minimum” means that the air conditioner 13 that is actually operated with respect to the amount of energy consumed when the air conditioner 13, the heat source device 141, and the external air conditioner 14 perform the rated value operation, that is, the total amount of electric power, This means minimizing the amount of energy consumed by the heat source device 141 and the external air conditioner 14.

また、運転計画部26は、熱負荷予測部25で予測した単位時間ごとの空調除去熱量を、空調システム全体の熱源機141の出力と等しくした状態で、空調システム全体での熱源機141の入力エネルギと、空調システム全体での熱源水ポンプ消費電力との合計に電力量単価を乗じた電力費用が最小となるように、次計画法を用いて冷却用熱源機141aと加熱用熱源機141bの出力温度を含む空調設備の運転パラメータを算出した。そして、制御指令部27は、空調設備の運転パラメータに基づいて空調設備を制御する。これによって、工場10内の温度を目標温度に精密に維持することができるという効果を有する。 In addition, the operation planning unit 26 inputs the heat source unit 141 in the entire air conditioning system in a state where the amount of air conditioning removal heat per unit time predicted by the thermal load prediction unit 25 is equal to the output of the heat source unit 141 in the entire air conditioning system. energy and, as the power cost by multiplying the electric energy unit price to the sum of the heat source water pump power consumption in the entire air conditioning system is minimized, heating heat source device 141b and the cooling heat source apparatus 141a using a quadratic programming The operating parameters of the air conditioning equipment including the output temperature were calculated. Then, the control command unit 27 controls the air conditioning equipment based on the operation parameters of the air conditioning equipment. As a result, the temperature in the factory 10 can be precisely maintained at the target temperature.

運転計画部26は、予測された熱負荷需要の外気処理量に対して、熱源機141と外調機14の消費電力を2次計画法によって消費電力最小化条件で解くことで、室内環境条件範囲内に対しての外調機14の給気温度および湿度の設定値を求める。具体的には、たとえば(27)式を制約式とし、(30)から(33)式を制約条件式として、次計画法を使用して(29)式を目的関数として電力費用f(x)が最小となるように外調機14の給気温度および湿度が運転パラメータとして決定される。そして、このようにして求められた運転パラメータによって、ばらつきの少ない温度および湿度の制御が可能となる。そのため、外気温度によって設定温度21℃から25℃の範囲で、また外気湿度によって設定湿度40%から60%の範囲で、熱源機141と外調機14のエネルギ消費量を最小に抑えることができる。 The operation planning unit 26 solves the power consumption of the heat source device 141 and the external air conditioner 14 with the power consumption minimization condition by the second-order programming method with respect to the predicted outside air processing amount of the heat load demand. The set values of the supply temperature and humidity of the external air conditioner 14 within the range are obtained. Specifically, for example, the (27) equation constraint equation, as from (30) (33) a constraint condition expression using the quadratic programming (29) the power equation as an objective function cost f (x ) Is determined as operating parameters such that the supply air temperature and humidity of the external air conditioner 14 are minimized. The temperature and humidity can be controlled with little variation by the operation parameters thus obtained. Therefore, the energy consumption of the heat source device 141 and the external air conditioner 14 can be minimized in the range of the set temperature 21 ° C. to 25 ° C. depending on the outside air temperature and in the range of the set humidity 40% to 60% depending on the outside air humidity. .

実施の形態2では、工場10内での作業員15の数と排気ファンの排気量とを用いて単位時間ごとの外気処理量を予測し、予測された熱負荷需要が熱交換器熱量と等しくなる条件で、2次計画法を用いて、熱交換器熱量とファンの消費電力との和が最小となるように、外調機14の給気温度と給気湿度とを求める。そして、求めた給気温度と給気湿度を用いて外調機14の運転を行う。これによって、ばらつきの少ない温度と湿度の制御が可能になるという効果を有する。また、外気を工場10内に導入する際に、工場10内に導入する空気の温度と、導入する前までの工場10内の温度との差が小さくなるので、空調管理システムで消費される電力を抑えることができるという効果を有する。 In the second embodiment, the outside air processing amount per unit time is predicted using the number of workers 15 in the factory 10 and the exhaust fan exhaust amount, and the predicted heat load demand is equal to the heat exchanger heat amount. Under such conditions, the air supply temperature and the air supply humidity of the external air conditioner 14 are obtained using the quadratic programming method so that the sum of the heat quantity of the heat exchanger and the power consumption of the fan is minimized. Then, the external air conditioner 14 is operated using the obtained supply air temperature and supply air humidity. This has the effect that temperature and humidity can be controlled with little variation . In addition, when the outside air is introduced into the factory 10, the difference between the temperature of the air introduced into the factory 10 and the temperature inside the factory 10 before the introduction is reduced, so that the power consumed by the air conditioning management system It has the effect that can be suppressed.

上記目的を達成するため、この発明にかかる空調管理装置は、工場内の発熱体の発熱量を関数化した発熱体の動作モデルと、生産計画情報で規定される前記発熱体の動作状態と、を用いて単位時間ごとの発生熱量を予測する第1処理と、前記工場を構成する建物の熱伝達率と熱容量とを含む関数化された建物の熱モデルと、気象データと、を用いて単位時間ごとの侵入熱量を予測する第2処理と、前記工場内に設定された温度および湿度と、単位時間ごとの前記発生熱量および前記侵入熱量と、を用いて空調設備で除去する単位時間ごとの除去熱量を予測する第3処理と、を実行する熱負荷予測部と、前記単位時間ごとの除去熱量を前記空調設備で除去するための前記空調設備の運転計画を単位時間ごとに作成する運転計画部と、前記運転計画にしたがって前記空調設備の運転を制御する制御指令部と、表示部と、を備え、前記運転計画部は、前記単位時間ごとの除去熱量と、前記工場内に設定される温度および湿度と前記空調設備の動作モデルとに基づいて、前記空調設備全体での消費エネルギを最小化する前記単位時間ごとの除去熱量を除去する前記運転計画を立て、前記生産計画情報は、前記工場内で稼働させる機械設備の数、稼働させる時間を含み、前記熱負荷予測部は、単位時間当たりの前記発熱体の発熱量、および前記侵入熱量を、前記表示部にグラフ表示する機能を有することを特徴とする。 In order to achieve the above object, an air conditioning management device according to the present invention includes an operation model of a heating element that is a function of the amount of heat generated by a heating element in a factory, and an operation state of the heating element defined by production plan information, Unit using a first process for predicting the amount of heat generated per unit time by using a heat function of a building including a heat transfer coefficient and a heat capacity of the building constituting the factory, and meteorological data. The second process for predicting the amount of intrusion heat per hour, the temperature and humidity set in the factory, the generated heat amount and the intrusion heat amount per unit time, and the unit time to be removed by the air conditioning equipment A heat load predicting unit that executes a third process for predicting the amount of heat to be removed, and an operation plan for creating an operation plan for the air conditioning equipment for removing the amount of heat removed per unit time by the air conditioning equipment per unit time And the operation meter Wherein and a control instruction unit for controlling the operation of air conditioning equipment, and a display unit, the following, the operation plan unit has a quantity of heat removed per unit time, the temperature and humidity are set in said plant conditioning Based on the operation model of the facility, the operation plan for removing the amount of heat removed per unit time that minimizes the energy consumption in the entire air conditioning facility is established, and the production plan information is a machine that is operated in the factory. the number of facilities, viewed including the time to run, the heat load prediction unit, the heating value of the heating element per unit time, and the penetration amount of heat, and having a function of displaying the graph on the display unit .

Claims (11)

稼働する機械設備、照明設備および空調設備を含む設備を有し、作業員が入退室する工場と、前記工場内が目標温度となるように前記空調設備を制御する空調管理装置と、を備える空調管理システムにおいて、
前記空調管理装置は、
生産計画情報を用いて算出される前記工場内で発生する発生熱量と、気象データを用いて算出される前記工場内に侵入する侵入熱量と、を含む熱負荷を単位時間ごとに予測する熱負荷予測部と、
前記熱負荷に基づいて前記空調設備の運転計画を単位時間ごとに作成する運転計画部と、
前記運転計画にしたがって前記空調設備の運転を制御する制御指令部と、
を備え、
前記運転計画部は、前記熱負荷に対して、前記工場内に設定される温度および湿度と前記空調設備の動作モデルとに基づいて、2次計画法を用いて当該空調管理システム全体での消費エネルギを、個々の前記空調設備を定格運転した場合の消費エネルギの総和に対して最小化するように前記運転計画を立てることを特徴とする空調管理システム。
An air conditioner having facilities including operating mechanical equipment, lighting equipment, and air conditioning equipment, and a factory where workers enter and leave the room, and an air conditioning management device that controls the air conditioning equipment so that the inside of the factory has a target temperature. In the management system,
The air conditioning management device
A heat load that predicts, every unit time, a heat load that includes the amount of heat generated in the factory that is calculated using production plan information and the amount of heat that enters the factory that is calculated using weather data. A predictor;
An operation planning unit that creates an operation plan of the air conditioning equipment on a unit time basis based on the heat load;
A control command unit for controlling the operation of the air conditioning equipment according to the operation plan;
With
The operation planning unit uses the secondary planning method based on the temperature and humidity set in the factory and the operation model of the air conditioning equipment for the heat load. An air conditioning management system characterized in that the operation plan is made so that energy is minimized with respect to the total energy consumption when the individual air conditioning facilities are rated-operated.
前記工場内は、複数の空調ゾーンに分割され、
前記熱負荷予測部は、前記各空調ゾーンに対して単位時間ごとの前記熱負荷を予測し、
前記運転計画部は、前記各空調ゾーンに対して単位時間ごとの前記運転計画を作成することを特徴とする請求項1に記載の空調管理システム。
The factory is divided into a plurality of air conditioning zones,
The thermal load prediction unit predicts the thermal load per unit time for the air conditioning zones,
The air conditioning management system according to claim 1, wherein the operation planning unit creates the operation plan for each unit time for each air conditioning zone.
前記熱負荷予測部は、前記空調ゾーンでの前記機械設備、前記照明設備および前記作業員の配置情報にしたがって作成された、前記機械設備、前記照明設備および前記作業員の発熱量を算出する動作モデルと前記空調ゾーンとを対応付けた空調ゾーンごとの発熱モデル対応情報を用いて、単位時間ごとの前記各空調ゾーンでの前記発生熱量を算出し、前記工場の外部から内部へ侵入する熱量を算出する建物の熱モデルを用いて前記侵入熱量を算出することを特徴とする請求項2に記載の空調管理システム。   The thermal load prediction unit calculates the calorific value of the mechanical equipment, the lighting equipment, and the worker created according to the arrangement information of the mechanical equipment, the lighting equipment, and the worker in the air conditioning zone. Using the heat generation model correspondence information for each air conditioning zone that associates the model with the air conditioning zone, the amount of generated heat in each air conditioning zone per unit time is calculated, and the amount of heat entering the inside from the outside of the factory is calculated. The air conditioning management system according to claim 2, wherein the intrusion heat amount is calculated using a thermal model of the building to be calculated. 前記空調管理装置は、表示部をさらに備え、
前記熱負荷予測部は、単位時間当たりの前記機械設備、前記照明設備、前記作業員の発熱量および前記侵入熱量を、前記空調ゾーンごとに前記表示部にグラフ表示する機能を有することを特徴とする請求項3に記載の空調管理システム。
The air conditioning management device further includes a display unit,
The thermal load prediction unit has a function of displaying the mechanical equipment per unit time, the lighting equipment, the calorific value of the worker, and the intrusion heat amount on the display unit for each air conditioning zone. The air conditioning management system according to claim 3.
前記空調設備は、第1媒体を冷却する冷却用熱源機と、第2媒体を加熱する加熱用熱源機と、前記工場外の空気を前記第1媒体または前記第2媒体と接触させて設定された温度と湿度にして前記工場内に導入する外調機と、を備え、
前記運転計画部は、前記熱負荷予測部で予測した単位時間ごとの前記熱負荷を、前記冷却用熱源機と前記加熱用熱源機の出力と等しくした状態で、前記冷却用熱源機と前記加熱用熱源機の入力エネルギと、前記冷却用熱源機および前記加熱用熱源機にそれぞれ接続されるポンプの消費電力との合計を最小化するように、2次計画法を使用して前記冷却用熱源機と前記加熱用熱源機の出力温度を前記空調ゾーンごとに決定することを特徴とする請求項2に記載の空調管理システム。
The air conditioning equipment is set by bringing a heat source for cooling that cools the first medium, a heat source for heating that heats the second medium, and air outside the factory in contact with the first medium or the second medium. An external air conditioner to be introduced into the factory at a high temperature and humidity,
The operation planning unit is configured so that the heat load per unit time predicted by the heat load prediction unit is equal to the outputs of the cooling heat source unit and the heating heat source unit, and the cooling heat source unit and the heating unit. The cooling heat source using quadratic programming so as to minimize the sum of the input energy of the heat source machine and the power consumption of the pump connected to the cooling heat source machine and the heating heat source machine, respectively. The air-conditioning management system according to claim 2, wherein an output temperature of each of the air-conditioning zones is determined for each air-conditioning zone.
前記熱負荷予測部は、他に時間ごとに工場内に導入する外気処理量を予測する機能をさらに有し、
前記運転計画部は、予測された前記外気処理量に対して、前記熱負荷予測部で予測した単位時間ごとの前記熱負荷を、前記冷却用熱源機および前記加熱量熱源機にそれぞれ接続される熱交換器での熱量と等しくした状態で、前記熱交換器の熱量と、前記工場外の空気を前記工場内に送風するファンの消費電力との合計を最小化するように、2次計画法を使用して前記外調機の給気温度と給気湿度とを求めることを特徴とする請求項5に記載の空調管理システム。
The thermal load prediction unit further has a function of predicting the outside air processing amount to be introduced into the factory every other time,
The operation planning unit is connected to the cooling heat source unit and the heating amount heat source unit, with respect to the predicted outside air processing amount, the thermal load for each unit time predicted by the thermal load prediction unit. A quadratic programming method so as to minimize the sum of the heat quantity of the heat exchanger and the power consumption of the fan that blows air outside the factory into the factory in a state equal to the heat quantity in the heat exchanger. The air conditioning management system according to claim 5, wherein an air supply temperature and an air supply humidity of the external air conditioner are obtained using
前記発熱モデル対応情報は、前記生産計画情報から前記各空調ゾーンに存在する前記作業員の人数をさらに含むことを特徴とする請求項3に記載の空調管理システム。   The air conditioning management system according to claim 3, wherein the heat generation model correspondence information further includes the number of workers present in each air conditioning zone from the production plan information. 前記機械設備の動作モデルは、前記機械設備の稼働率または単位時間当たりの生産個数と発熱量との間の関係を定義した生産量−発熱量対応情報であり、
前記熱負荷予測部は、前記生産計画情報中の前記機械設備の稼働率または単位時間当たりの生産個数に対応する前記機械設備の発熱量を、前記生産量−発熱量対応情報から取得することを特徴とする請求項3に記載の空調管理システム。
The operation model of the machine facility is production amount-heat generation amount correspondence information that defines a relationship between an operation rate of the machine facility or a production number per unit time and a heat generation amount,
The thermal load prediction unit obtains the heat generation amount of the mechanical equipment corresponding to the operation rate of the mechanical equipment or the number of production per unit time in the production plan information from the production amount-heat generation amount correspondence information. The air conditioning management system according to claim 3, wherein
前記機械設備の消費電力を計測する消費電力計測装置をさらに備え、
前記熱負荷予測部は、前記消費電力計測装置から前記機械設備の発熱量を取得し、前記生産計画情報から前記稼働率または単位時間当たりの生産個数を取得する機能をさらに有することを特徴とする請求項8に記載の空調管理システム。
It further comprises a power consumption measuring device for measuring the power consumption of the mechanical equipment,
The thermal load prediction unit further has a function of acquiring a calorific value of the mechanical equipment from the power consumption measuring device and acquiring the operating rate or the number of production per unit time from the production plan information. The air conditioning management system according to claim 8.
前記熱負荷予測部は、前記機械設備が熱処理を伴う機械である場合に、加熱対象物の材質、体積および数量を前記生産計画情報から取得し、前記機械設備の立ち上げ時から連続運転時を介してクールダウン運転までの必要な電力エネルギ量と、前記機械設備から漏洩する漏洩熱量と、を推定することによって、前記機械設備の発熱量を予測することを特徴とする請求項3に記載の空調管理システム。   The thermal load predicting unit obtains the material, volume and quantity of the object to be heated from the production plan information when the mechanical equipment is a machine accompanied by heat treatment, and performs the continuous operation from the startup of the mechanical equipment. The heat generation amount of the mechanical equipment is predicted by estimating the amount of electric energy required until the cool-down operation and the amount of heat leaked from the mechanical equipment. Air conditioning management system. 前記空調管理装置は、
前記設備の消費電力または発熱量を含む動作状態値を取得する動作状態取得部と、
取得した前記動作状態値を基準となる動作状態値と比較して、閾値以上乖離しているかを判定し、乖離している場合にユーザに対して通知を行う予防保全部と、
をさらに備えることを特徴とする請求項2に記載の空調管理システム。
The air conditioning management device
An operation state acquisition unit for acquiring an operation state value including power consumption or heat generation amount of the facility;
The acquired operation state value is compared with a reference operation state value to determine whether or not the threshold value is deviated, and a preventive maintenance unit that notifies the user when there is a deviation,
The air conditioning management system according to claim 2, further comprising:
JP2016554291A 2015-01-30 2015-01-30 Air conditioning management device Active JP6073001B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/052698 WO2016121107A1 (en) 2015-01-30 2015-01-30 Air-conditioning management system

Publications (2)

Publication Number Publication Date
JP6073001B2 JP6073001B2 (en) 2017-02-01
JPWO2016121107A1 true JPWO2016121107A1 (en) 2017-04-27

Family

ID=56542757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016554291A Active JP6073001B2 (en) 2015-01-30 2015-01-30 Air conditioning management device

Country Status (4)

Country Link
JP (1) JP6073001B2 (en)
CN (1) CN107110545B (en)
TW (1) TW201627614A (en)
WO (1) WO2016121107A1 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6907653B2 (en) * 2017-03-31 2021-07-21 ダイキン工業株式会社 Air conditioning system
WO2019008723A1 (en) * 2017-07-06 2019-01-10 パナソニックIpマネジメント株式会社 Control system and control method
CN107797581B (en) * 2017-09-04 2021-01-26 任升莲 Warm big data economizer system that leads to
JP6508287B1 (en) * 2017-10-23 2019-05-08 栗田工業株式会社 Water temperature control method, water temperature control system and model construction device
CN108154258B (en) * 2017-11-27 2021-11-05 国网北京市电力公司 Method and device for predicting load of air source heat pump, storage medium and processor
JP7133389B2 (en) * 2018-08-16 2022-09-08 大成建設株式会社 Device heat generation calculation method
CN110895721B (en) * 2018-09-12 2021-11-16 珠海格力电器股份有限公司 Method and device for predicting electric appliance function
TWI678504B (en) 2018-10-12 2019-12-01 群光電能科技股份有限公司 Ice storage amount adjusting system and adjusting method for the same
JP7272784B2 (en) * 2018-12-04 2023-05-12 ファナック株式会社 Factory environment control system
JP7216566B2 (en) * 2019-02-19 2023-02-01 日立造船株式会社 Information processing device, information processing method, and information processing program
WO2021001954A1 (en) * 2019-07-03 2021-01-07 三菱電機株式会社 Air conditioning system
US12104812B2 (en) * 2019-07-16 2024-10-01 Tyco Fire & Security Gmbh Variable refrigerant flow system with zone grouping control feasibility estimation
CN111415487B (en) * 2020-04-07 2021-08-03 珠海格力电器股份有限公司 High-temperature early warning method and device and air conditioner
JP7533595B2 (en) 2020-09-18 2024-08-14 日本電信電話株式会社 Prediction method, prediction device, and prediction program
CN112393387A (en) * 2020-11-13 2021-02-23 青岛海信日立空调系统有限公司 Air conditioner and temperature correction method
CN113137699A (en) * 2021-04-30 2021-07-20 青岛海尔空调电子有限公司 Air conditioner and control method thereof
CN113459130B (en) * 2021-06-03 2022-12-30 上海楷新机器人自动化设备有限公司 Automatic machining system of industrial robot and application thereof
JP2023077651A (en) * 2021-11-25 2023-06-06 国立大学法人京都大学 Controller, control method and control program
CN114963683B (en) * 2022-06-01 2023-09-15 深圳市汉盛制冷科技有限公司 Accurate temperature control refrigerating system
KR102591813B1 (en) * 2022-08-04 2023-10-20 한국생산기술연구원 System for optimizing heat source supply using typical meteorological year data and method thereof
CN117039910B (en) * 2023-10-09 2024-01-05 国网浙江省电力有限公司宁波供电公司 Management method and management device for electric power energy requirements based on multiple models

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6865450B2 (en) * 2001-05-10 2005-03-08 Siemens Westinghouse Power Corporation Schedule-based load estimator and method for electric power and other utilities and resources
US20060065750A1 (en) * 2004-05-21 2006-03-30 Fairless Keith W Measurement, scheduling and reporting system for energy consuming equipment
JP2010002081A (en) * 2008-06-18 2010-01-07 Daikin Ind Ltd Air conditioner and its target characteristic derivation method
CN101363653A (en) * 2008-08-22 2009-02-11 日滔贸易(上海)有限公司 Energy consumption control method and device of central air-conditioning refrigeration system
JP2011043306A (en) * 2009-08-24 2011-03-03 Shimizu Corp Energy saving air conditioning control system
US20110106327A1 (en) * 2009-11-05 2011-05-05 General Electric Company Energy optimization method
WO2011140369A1 (en) * 2010-05-05 2011-11-10 Greensleeves, LLC Energy chassis and energy exchange device
JP5752148B2 (en) * 2010-12-09 2015-07-22 三菱電機株式会社 Air conditioner
JP2013142494A (en) * 2012-01-10 2013-07-22 Hitachi Plant Technologies Ltd Air conditioner control system and method of controlling air conditioner

Also Published As

Publication number Publication date
TW201627614A (en) 2016-08-01
CN107110545A (en) 2017-08-29
CN107110545B (en) 2018-07-24
WO2016121107A1 (en) 2016-08-04
JP6073001B2 (en) 2017-02-01

Similar Documents

Publication Publication Date Title
JP6073001B2 (en) Air conditioning management device
CN108375144B (en) HVAC system with predictive free cooling control and free cooling optimization
JP6976976B2 (en) Multilevel model predictive control system and method
US9447985B2 (en) HVAC control system and methods for operating same
JP5963959B2 (en) Air conditioning system control apparatus and air conditioning system control method
US20180323994A1 (en) Intelligent equipment sequencing
US10544956B2 (en) HVAC system start/stop control
JP2023505766A (en) Heat Exchanger System with Machine Learning Based Optimization
EP3270239A1 (en) Device characteristic model learning device, device characteristic model learning method, and storage medium
US10884398B2 (en) Systems and methods for prediction model update scheduling for building equipment
JP2011152043A (en) Device for control of cold storage equipment
JP2013195000A (en) Thermal recycling plant system, and apparatus and method of controlling thermal recycling plant
JP2013127348A (en) Remote monitor control system and method of operating the same
US12085296B2 (en) Building equipment with predictive control and allocation of energy from multiple energy sources
JP4166051B2 (en) Air conditioning system
Vakiloroaya et al. Component-wise optimization for a commercial central cooling plant
JP6534038B2 (en) Demand power control apparatus and demand power control method
JP5980425B2 (en) Control device for air conditioner and control method for air conditioner
CN105180342B (en) Air regulator and its control method
Kim et al. Implementation and validation of optimal start control strategy for air conditioners and heat pumps
Gao et al. Experimental study of a bilinear control for a GSHP integrated air-conditioning system
JP2011198169A (en) Operation control system of industrial plant
JPH05233012A (en) Device for managing operation of air conditioning facility
Park et al. Supervised learning based iterative learning control platform for optimal HVAC start-stop in a real building context
KR20240160164A (en) Systems and methods for dynamic control of HVAC components in buildings

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20161005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161228

R150 Certificate of patent or registration of utility model

Ref document number: 6073001

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250