JPWO2016113899A1 - Refrigeration cycle equipment - Google Patents

Refrigeration cycle equipment Download PDF

Info

Publication number
JPWO2016113899A1
JPWO2016113899A1 JP2016569194A JP2016569194A JPWO2016113899A1 JP WO2016113899 A1 JPWO2016113899 A1 JP WO2016113899A1 JP 2016569194 A JP2016569194 A JP 2016569194A JP 2016569194 A JP2016569194 A JP 2016569194A JP WO2016113899 A1 JPWO2016113899 A1 JP WO2016113899A1
Authority
JP
Japan
Prior art keywords
refrigerant
suction
compressor
refrigeration cycle
negative pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016569194A
Other languages
Japanese (ja)
Other versions
JP6275283B2 (en
Inventor
七種 哲二
哲二 七種
仁隆 門脇
仁隆 門脇
大林 誠善
誠善 大林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2016113899A1 publication Critical patent/JPWO2016113899A1/en
Application granted granted Critical
Publication of JP6275283B2 publication Critical patent/JP6275283B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • F25B47/025Defrosting cycles hot gas defrosting by reversing the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0011Ejectors with the cooled primary flow at reduced or low pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0403Refrigeration circuit bypassing means for the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0409Refrigeration circuit bypassing means for the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/027Compressor control by controlling pressure
    • F25B2600/0272Compressor control by controlling pressure the suction pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

圧縮機1と凝縮器3と主膨張弁4と蒸発器5とが環状に接続され、R407Cに比べて沸点が高い冷媒が循環する主回路30と、圧縮機1から吐出された冷媒の一部と凝縮器3から流出した冷媒とを合流して圧縮機1の吸入側に流入させるバイパス回路40(吐出ガスバイパス回路6および吸入バイパス回路8)と、バイパス回路40の流量を調整する負圧調整弁(吐出ガスバイパス弁7)と、負圧調整弁7を制御して圧縮機1の吸入圧力が負圧になるのを防止する負圧防止運転を行う負圧防止制御手段20aとを備えたものである。The compressor 1, the condenser 3, the main expansion valve 4, and the evaporator 5 are connected in an annular shape, and a main circuit 30 in which a refrigerant having a higher boiling point than R407C circulates, and a part of the refrigerant discharged from the compressor 1 And a bypass circuit 40 (discharge gas bypass circuit 6 and suction bypass circuit 8) that joins the refrigerant flowing out of the condenser 3 and flows into the suction side of the compressor 1, and a negative pressure adjustment that adjusts the flow rate of the bypass circuit 40 And a negative pressure prevention control means 20a for performing a negative pressure prevention operation for controlling the negative pressure adjusting valve 7 to prevent the suction pressure of the compressor 1 from becoming negative pressure. Is.

Description

本発明は、ヒートポンプ式給湯機等の冷凍サイクル装置に関するものである。   The present invention relates to a refrigeration cycle apparatus such as a heat pump type hot water heater.

従来の冷凍サイクル装置として、例えば、「冷媒としてHFO−1234yfを用い、少なくとも圧縮機、凝縮器、絞り装置、および蒸発器を順次接続して環状の冷媒回路を構成し、四方弁を設けて、冷媒が流れる向きを変え、冷房運転のときは室内熱交換器を蒸発器、室外熱交換器を凝縮器として作用させ、暖房運転のときは室内熱交換器を凝縮器、室外熱交換器を蒸発器として作用させるようにした」ものが提案されている。(例えば、特許文献1参照)   As a conventional refrigeration cycle device, for example, “HFO-1234yf is used as a refrigerant, and at least a compressor, a condenser, a throttling device, and an evaporator are sequentially connected to form an annular refrigerant circuit, and a four-way valve is provided. The direction of refrigerant flow is changed, and during the cooling operation, the indoor heat exchanger acts as an evaporator and the outdoor heat exchanger as a condenser, and during the heating operation, the indoor heat exchanger serves as a condenser and the outdoor heat exchanger evaporates. "It has been made to act as a vessel" has been proposed. (For example, see Patent Document 1)

特開2011−252638号公報JP 2011-252638 A

上記特許文献1の技術で用いられているHFO−1234yfは、従来用いられていたR407CおよびR410Aなどの冷媒に比べて沸点が高い冷媒である。このため、圧縮機吸入圧力が低くなる特性がある。よって、特に低外気温度条件で暖房運転すると、圧縮機吸入圧力が大気圧力よりも低い負圧状態で運転され、空気の吸引による動作不良等の不都合が生じるなどの課題があった。   HFO-1234yf used in the technique of Patent Document 1 is a refrigerant having a higher boiling point than refrigerants such as R407C and R410A that have been conventionally used. For this reason, there is a characteristic that the compressor suction pressure is lowered. Therefore, particularly when the heating operation is performed under a low outside air temperature condition, the compressor is operated in a negative pressure state in which the suction pressure of the compressor is lower than the atmospheric pressure, causing problems such as malfunction due to air suction.

本発明は、上記のような課題を解決するためになされたもので、R407C冷媒に比べて沸点が高い冷媒を用いても、低外気条件で圧縮機吸入圧力が大気圧以下に低下することを防止し、信頼性を向上することが可能な冷凍サイクル装置を提供するものである。   The present invention has been made to solve the above-described problems. Even when a refrigerant having a higher boiling point than that of the R407C refrigerant is used, the compressor suction pressure is reduced to an atmospheric pressure or lower under low outside air conditions. The present invention provides a refrigeration cycle apparatus capable of preventing and improving reliability.

本発明に係る冷凍サイクル装置は、圧縮機と凝縮器と主膨張弁と蒸発器とが環状に接続され、R407Cに比べて沸点が高い冷媒が循環する主回路と、圧縮機から吐出された冷媒の一部と凝縮器から流出した冷媒とを合流して圧縮機の吸入側に流入させるバイパス回路と、バイパス回路の流量を調整する負圧調整弁と、負圧調整弁を制御して圧縮機の吸入圧力が負圧になるのを防止する負圧防止運転を行う負圧防止制御手段とを備えたものである。   In the refrigeration cycle apparatus according to the present invention, a compressor, a condenser, a main expansion valve, and an evaporator are connected in a ring shape, a main circuit in which a refrigerant having a higher boiling point than R407C circulates, and refrigerant discharged from the compressor A bypass circuit that joins a part of the refrigerant and the refrigerant that has flown out of the condenser to flow into the suction side of the compressor, a negative pressure adjustment valve that adjusts the flow rate of the bypass circuit, and a compressor that controls the negative pressure adjustment valve And a negative pressure prevention control means for performing a negative pressure prevention operation for preventing the suction pressure from becoming negative.

本発明によれば、R407C冷媒に比べて沸点が高い冷媒を用いても、低外気条件で圧縮機吸入圧力が大気圧以下に低下することを防止し、信頼性を向上することが可能な冷凍サイクル装置を得ることができる。   According to the present invention, even when a refrigerant having a higher boiling point than that of the R407C refrigerant is used, the refrigeration capable of preventing the compressor suction pressure from being reduced to an atmospheric pressure or lower under low outside air conditions and improving the reliability. A cycle device can be obtained.

本発明の実施の形態1に係る冷凍サイクル装置の冷媒回路図である。It is a refrigerant circuit figure of the refrigerating cycle device concerning Embodiment 1 of the present invention. 各種冷媒の飽和温度と飽和蒸気圧力との関係を比較したグラフである。It is the graph which compared the relationship between the saturation temperature of various refrigerant | coolants, and saturated vapor pressure. 本発明の実施の形態1に係る冷凍サイクル装置における負圧防止運転の動作状態を示すP−h線図である。It is a Ph diagram which shows the operation state of the negative pressure prevention driving | operation in the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍サイクル装置のシステム構成図である。1 is a system configuration diagram of a refrigeration cycle apparatus according to Embodiment 1 of the present invention. 本発明の実施の形態1に係る冷凍サイクル装置における負圧防止運転の制御手順を示すフローチャートである。It is a flowchart which shows the control procedure of the negative pressure prevention driving | operation in the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る冷凍サイクル装置のシステム構成図である。It is a system configuration figure of the refrigerating cycle device concerning Embodiment 2 of the present invention. 本発明の実施の形態2に係る冷凍サイクル装置における負圧防止運転の制御手順を示すフローチャートである。It is a flowchart which shows the control procedure of the negative pressure prevention driving | operation in the refrigerating-cycle apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る冷凍サイクル装置の冷媒回路図である。It is a refrigerant circuit figure of the refrigerating cycle device concerning Embodiment 3 of the present invention. 図8のエジェクタの概略図である。It is the schematic of the ejector of FIG. 本発明の実施の形態4に係る冷凍サイクル装置の冷媒回路図である。It is a refrigerant circuit figure of the refrigerating cycle device concerning Embodiment 4 of the present invention. 本発明の実施の形態4に係る冷凍サイクル装置の変形例1を示す冷凍サイクル装置の冷媒回路図である。It is a refrigerant circuit figure of the refrigerating cycle device which shows modification 1 of the refrigerating cycle device concerning Embodiment 4 of the present invention. 本発明の実施の形態4に係る冷凍サイクル装置の変形例2を示す冷凍サイクル装置の冷媒回路図である。It is a refrigerant circuit figure of the refrigerating cycle device which shows modification 2 of the refrigerating cycle device concerning Embodiment 4 of the present invention. 本発明の実施の形態5に係る冷凍サイクル装置の冷媒回路図である。It is a refrigerant circuit figure of the refrigerating cycle device concerning Embodiment 5 of the present invention. 図13の運転の動作状態を示すP−h線図である。It is a Ph diagram which shows the operation state of the driving | operation of FIG. 本発明の実施の形態5に係る冷凍サイクル装置のシステム構成図である。It is a system block diagram of the refrigerating-cycle apparatus which concerns on Embodiment 5 of this invention. 本発明の実施の形態5に係る冷凍サイクル装置における負圧防止運転の制御手順を示すフローチャートである。It is a flowchart which shows the control procedure of the negative pressure prevention driving | operation in the refrigerating-cycle apparatus which concerns on Embodiment 5 of this invention. 本発明の実施の形態6に係る冷凍サイクル装置の冷媒回路図である。It is a refrigerant circuit figure of the refrigerating cycle device concerning Embodiment 6 of the present invention. 本発明の実施の形態6に係る冷凍サイクル装置の変形例1の冷媒回路図である。It is a refrigerant circuit figure of the modification 1 of the refrigerating-cycle apparatus which concerns on Embodiment 6 of this invention. 本発明の実施の形態6に係る冷凍サイクル装置の変形例2の冷媒回路図である。It is a refrigerant circuit figure of the modification 2 of the refrigerating-cycle apparatus which concerns on Embodiment 6 of this invention.

以下、本発明の実施の形態に係る冷凍サイクル装置について図面等を参照しながら説明する。ここで、図1を含め、以下の図面において、同一の符号を付したものは、同一またはこれに相当するものであり、以下に記載する実施の形態の全文において共通することとする。そして、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、明細書に記載された形態に限定するものではない。特に構成要素の組み合わせは、各実施の形態における組み合わせのみに限定するものではなく、他の実施の形態に記載した構成要素を別の実施の形態に適用することができる。そして、温度、圧力等の高低については、特に絶対的な値との関係で高低等が定まっているものではなく、システム、装置等における状態、動作等において相対的に定まるものとする。   Hereinafter, a refrigeration cycle apparatus according to an embodiment of the present invention will be described with reference to the drawings. Here, in FIG. 1 and the following drawings, the same reference numerals denote the same or corresponding parts, and are common to the whole text of the embodiments described below. And the form of the component represented by the whole specification is an illustration to the last, Comprising: It does not limit to the form described in the specification. In particular, the combination of the components is not limited to the combination in each embodiment, and the components described in the other embodiments can be applied to another embodiment. The level of temperature, pressure, etc. is not particularly determined in relation to absolute values, but is relatively determined in the state, operation, etc. of the system, apparatus, and the like.

また、以下では、冷凍サイクル装置をヒートポンプ式給湯機に適用した場合を例に本実施の形態を説明する。   Moreover, below, this Embodiment is demonstrated to the case where the refrigeration cycle apparatus is applied to a heat pump type hot water heater as an example.

実施の形態1.
図1は、本発明の実施の形態1に係る冷凍サイクル装置の冷媒回路図であり、負荷側の水の温度を上げる加熱運転(給湯運転)を実施している時の状態が示されている。
Embodiment 1 FIG.
FIG. 1 is a refrigerant circuit diagram of the refrigeration cycle apparatus according to Embodiment 1 of the present invention, and shows a state when a heating operation (hot water supply operation) for increasing the temperature of water on the load side is performed. .

本実施の形態1の冷凍サイクル装置は、圧縮機1と四方弁2と凝縮器3と主膨張弁4と蒸発器5とが環状に接続され、冷媒が循環する主回路30と、バイパス回路40と、バイパス回路40の流量を調整する負圧調整弁としての吐出ガスバイパス弁7とを備えている。   In the refrigeration cycle apparatus of the first embodiment, a compressor 1, a four-way valve 2, a condenser 3, a main expansion valve 4, and an evaporator 5 are connected in an annular shape, and a main circuit 30 in which refrigerant circulates, and a bypass circuit 40. And a discharge gas bypass valve 7 as a negative pressure adjusting valve for adjusting the flow rate of the bypass circuit 40.

圧縮機1は、例えば、容量制御可能なインバーター圧縮機等で構成され、低温低圧ガス冷媒を吸引し、圧縮して高温高圧ガス冷媒の状態にして吐出するものである。
四方弁2は、圧縮機1を吐出した高温高圧ガス冷媒の流れ方向を凝縮器3または蒸発器5に切り換えるものである。
凝縮器3は、プレート式熱交換器で構成され、主回路30を流れる冷媒と、冷却負荷(図示せず)から供給される被熱交換媒体と熱交換させて放熱させるものである。
主膨張弁4は、高圧冷媒を減圧させ低圧二相冷媒にするものである。
蒸発器5は、例えばプレートフィン式熱交換器等で構成され、冷媒を空気と熱交換させて蒸発させるものである。
The compressor 1 is composed of, for example, a capacity-controllable inverter compressor or the like, and sucks low-temperature low-pressure gas refrigerant, compresses it, and discharges it as a high-temperature high-pressure gas refrigerant.
The four-way valve 2 switches the flow direction of the high-temperature high-pressure gas refrigerant discharged from the compressor 1 to the condenser 3 or the evaporator 5.
The condenser 3 is configured by a plate heat exchanger, and heat is exchanged between the refrigerant flowing through the main circuit 30 and a heat exchange medium supplied from a cooling load (not shown) to dissipate heat.
The main expansion valve 4 depressurizes the high-pressure refrigerant into a low-pressure two-phase refrigerant.
The evaporator 5 is composed of, for example, a plate fin heat exchanger or the like, and evaporates the refrigerant by exchanging heat with air.

バイパス回路40は、吐出ガスバイパス回路6と吸入バイパス回路8とを備え、圧縮機1から吐出された冷媒の一部と凝縮器3から流出した冷媒とを合流して圧縮機1の吸入側に流入させる回路である。   The bypass circuit 40 includes a discharge gas bypass circuit 6 and a suction bypass circuit 8, and a part of the refrigerant discharged from the compressor 1 and the refrigerant flowing out of the condenser 3 are joined to the suction side of the compressor 1. It is a circuit that flows in.

吐出ガスバイパス回路6は、圧縮機1を吐出した吐出冷媒の一部を圧縮機1の吸入側にバイパスするものである。吐出ガスバイパス弁7は、吐出ガスバイパス回路6に設けられ、吐出ガスバイパス回路6に流す吐出ガスのバイパス量を調整するものである。吐出ガスバイパス弁7の開度を大きくすると、吐出ガスバイパス回路6を通って圧縮機1の吸入側に戻る冷媒流量が増え、圧縮機吸入圧力が上がる。一方、吐出ガスバイパス弁7の開度を小さくすると、吐出ガスバイパス回路6を通って圧縮機1の吸入側に戻る冷媒流量が減り、圧縮機吸入圧力が下がる。   The discharge gas bypass circuit 6 bypasses a part of the refrigerant discharged from the compressor 1 to the suction side of the compressor 1. The discharge gas bypass valve 7 is provided in the discharge gas bypass circuit 6 and adjusts the bypass amount of the discharge gas flowing through the discharge gas bypass circuit 6. When the opening degree of the discharge gas bypass valve 7 is increased, the refrigerant flow rate returning to the suction side of the compressor 1 through the discharge gas bypass circuit 6 is increased, and the compressor suction pressure is increased. On the other hand, when the opening degree of the discharge gas bypass valve 7 is reduced, the refrigerant flow rate returning to the suction side of the compressor 1 through the discharge gas bypass circuit 6 is reduced, and the compressor suction pressure is lowered.

吸入バイパス回路8は、凝縮器3出口の高圧冷媒を吐出ガスバイパス回路6に合流させて圧縮機1の吸入側に流入させるものである。吸入バイパス弁9は、吸入バイパス回路8に設けられ、吸入バイパス回路8に流す冷媒流量を調整するものである。吸入バイパス弁9の開度を大きくすると、吸入バイパス回路8を通って圧縮機1の吸入側に流入する高圧冷媒の流量が多くなるため、圧縮機吸入過熱度が下がる。一方、吸入バイパス弁9の開度を小さくすると、吸入バイパス回路8から圧縮機1の吸入側に流入する高圧冷媒の流量が減るため、圧縮機吸入過熱度が上がる。   The suction bypass circuit 8 joins the high-pressure refrigerant at the outlet of the condenser 3 to the discharge gas bypass circuit 6 and flows into the suction side of the compressor 1. The suction bypass valve 9 is provided in the suction bypass circuit 8 and adjusts the flow rate of refrigerant flowing through the suction bypass circuit 8. When the opening degree of the suction bypass valve 9 is increased, the flow rate of the high-pressure refrigerant flowing into the suction side of the compressor 1 through the suction bypass circuit 8 increases, and the compressor suction superheat degree decreases. On the other hand, if the opening degree of the suction bypass valve 9 is reduced, the flow rate of the high-pressure refrigerant flowing from the suction bypass circuit 8 to the suction side of the compressor 1 is reduced, so that the compressor suction superheat degree is increased.

ここで、本実施の形態1においては、冷媒として、HFO−1234yf冷媒またはHFO−1234ze冷媒を含む冷媒を使用している。冷媒は、HFO−1234yfの単独冷媒、HFO−1234zeの単独冷媒、HFO−1234yfもしくはHFO−1234zeを含む混合冷媒でもよい。混合冷媒とする場合には、例えばR32を用いることができる。これらのHFO−1234yf冷媒もしくはHFO−1234ze冷媒は、地球温暖化係数(GWP)が「4」と従来のR410A冷媒の「2090」およびR407C冷媒の「1770」に比べて低く、地球環境に与える影響が小さい冷媒である。   Here, in this Embodiment 1, the refrigerant | coolant containing a HFO-1234yf refrigerant | coolant or a HFO-1234ze refrigerant | coolant is used as a refrigerant | coolant. The refrigerant may be a single refrigerant of HFO-1234yf, a single refrigerant of HFO-1234ze, or a mixed refrigerant containing HFO-1234yf or HFO-1234ze. In the case of using a mixed refrigerant, for example, R32 can be used. These HFO-1234yf refrigerant or HFO-1234ze refrigerant have a global warming potential (GWP) of “4”, which is lower than the conventional R410A refrigerant “2090” and the R407C refrigerant “1770”, and has an effect on the global environment. Is a small refrigerant.

次に図1を参照しながら、本実施の形態1に係る冷凍サイクル装置の冷凍サイクルの動作を説明する。   Next, the operation of the refrigeration cycle of the refrigeration cycle apparatus according to Embodiment 1 will be described with reference to FIG.

まず、通常の給湯運転について説明する。
通常の給湯運転時は、吐出ガスバイパス弁7および吸入バイパス弁9は全閉とし、吐出ガスバイパス回路6および吸入バイパス回路8の冷媒の流れはない。通常の給湯運転では、低温低圧のガス状態の冷媒が圧縮機1に吸引され、圧縮されて高温高圧ガスとなって吐出される。圧縮機1から吐出された高温高圧の冷媒は、四方弁2を経由して凝縮器3へ流入する。凝縮器3に流入した高温高圧ガス冷媒は、被熱交換媒体である水に放熱し、高圧液冷媒となる。凝縮器3を流出した高圧液冷媒は、主膨張弁4へ流入し、減圧膨張されて低温低圧の気液二相冷媒となる。主膨張弁4を流出した気液二相冷媒は、蒸発器5に流入し、被熱交換媒体である空気を冷却し、蒸発して低温低圧のガス冷媒となる。蒸発器5を流出した低温低圧のガス冷媒は、再び四方弁2を通過したのち圧縮機1に再び吸引される。
First, a normal hot water supply operation will be described.
During normal hot water supply operation, the discharge gas bypass valve 7 and the suction bypass valve 9 are fully closed, and there is no refrigerant flow in the discharge gas bypass circuit 6 and the suction bypass circuit 8. In a normal hot water supply operation, a low-temperature and low-pressure gaseous refrigerant is sucked into the compressor 1 and compressed to be discharged as a high-temperature and high-pressure gas. The high-temperature and high-pressure refrigerant discharged from the compressor 1 flows into the condenser 3 via the four-way valve 2. The high-temperature high-pressure gas refrigerant that has flowed into the condenser 3 radiates heat to the heat exchange medium, and becomes high-pressure liquid refrigerant. The high-pressure liquid refrigerant that has flowed out of the condenser 3 flows into the main expansion valve 4 and is decompressed and expanded to become a low-temperature and low-pressure gas-liquid two-phase refrigerant. The gas-liquid two-phase refrigerant that has flowed out of the main expansion valve 4 flows into the evaporator 5, cools the air that is the heat exchange medium, and evaporates to become a low-temperature and low-pressure gas refrigerant. The low-temperature and low-pressure gas refrigerant that has flowed out of the evaporator 5 passes through the four-way valve 2 again, and is again sucked into the compressor 1.

ここで、従来使用していたR410A冷媒およびR407C冷媒と、本実施の形態1で用いるHFO−1234yf冷媒およびHFO−1234zeとのそれぞれについて、飽和温度と飽和蒸気圧力との関係について説明する。   Here, the relationship between the saturation temperature and the saturation vapor pressure will be described for each of the conventionally used R410A refrigerant and R407C refrigerant and the HFO-1234yf refrigerant and HFO-1234ze used in the first embodiment.

図2は、各種冷媒の飽和温度と飽和蒸気圧力との関係を比較したグラフである。ここでは、各種冷媒として、R410A冷媒、R407C冷媒、HFO−1234yf冷媒およびHFO−1234zeを示している。図2において横軸は飽和温度[℃]、縦軸は飽和蒸気圧力[MPa(abs)]を示している。
図2によれば、本実施の形態1で用いるHFO−1234yf冷媒は、従来使用していたR410A冷媒やR407C冷媒に比べて、飽和蒸気圧力が低い。このため、外気が例えば−25℃以下となるような極寒冷地域において給湯運転をすると、蒸発温度が大気圧における飽和蒸気温度である−29.5℃を下回り、圧縮機吸入圧力が大気圧以下の負圧運転となることが予想される。圧縮機吸入圧力が負圧となると、冷凍サイクル内に空気が吸引され、冷凍サイクルの動作不良等の不都合が生じる。
FIG. 2 is a graph comparing the relationship between the saturation temperature and saturation vapor pressure of various refrigerants. Here, R410A refrigerant, R407C refrigerant, HFO-1234yf refrigerant, and HFO-1234ze are shown as various refrigerants. In FIG. 2, the horizontal axis indicates the saturation temperature [° C.], and the vertical axis indicates the saturation vapor pressure [MPa (abs)].
According to FIG. 2, the HFO-1234yf refrigerant used in the first embodiment has a lower saturated vapor pressure than the conventionally used R410A refrigerant and R407C refrigerant. For this reason, when the hot water supply operation is performed in an extremely cold region where the outside air is, for example, −25 ° C. or less, the evaporation temperature falls below −29.5 ° C., which is the saturated vapor temperature at atmospheric pressure, and the compressor suction pressure is less than atmospheric pressure. It is expected that this will be a negative pressure operation. When the compressor suction pressure becomes negative, air is sucked into the refrigeration cycle, causing problems such as malfunction of the refrigeration cycle.

そこで、本実施の形態1に係る冷凍サイクル装置は、低外気条件になっても、圧縮機吸入圧力が負圧以上を維持しながら給湯運転を継続する負圧防止運転を実施する。   Therefore, the refrigeration cycle apparatus according to the first embodiment performs the negative pressure prevention operation in which the hot water supply operation is continued while the compressor suction pressure is maintained at a negative pressure or higher even under a low outside air condition.

次に、負圧防止運転における冷凍サイクル動作について、図1の冷媒回路図および次の図3のP−h線図を用いて説明する。   Next, the refrigeration cycle operation in the negative pressure prevention operation will be described using the refrigerant circuit diagram of FIG. 1 and the Ph diagram of FIG.

図3は、本発明の実施の形態1に係る冷凍サイクル装置における負圧防止運転の動作状態を示すP−h線図である。図3における[1]〜[5]は図1における[1]〜[5]の各位置での冷媒状態を示している。なお、負圧防止運転時は、主膨張弁4の開度は実質的に閉塞されている。この「実質的に閉塞」には、完全に閉塞されている場合のみに限らず、負圧防止を図る上で悪影響が生じない程度のきわめて小さな開度も含まれる。つまり、「実質的に閉塞」とは、全閉もしくは全閉に近い開度に相当する。低外気温度条件の暖房運転時に主膨張弁4が開いていると、蒸発器5に冷媒が流れ込み、圧縮機吸入圧力の低下を招く。このため、負圧防止運転の際には主膨張弁4を閉じて、蒸発器5に冷媒が流れ込まないようにする。   FIG. 3 is a Ph diagram illustrating the operating state of the negative pressure prevention operation in the refrigeration cycle apparatus according to Embodiment 1 of the present invention. [1] to [5] in FIG. 3 indicate refrigerant states at positions [1] to [5] in FIG. During the negative pressure prevention operation, the opening of the main expansion valve 4 is substantially closed. This “substantially closed” includes not only a completely closed state but also a very small opening that does not adversely affect the prevention of negative pressure. In other words, “substantially closed” corresponds to a fully closed position or an opening degree close to a fully closed position. If the main expansion valve 4 is open during the heating operation under the low outside air temperature condition, the refrigerant flows into the evaporator 5 and causes a reduction in the compressor suction pressure. For this reason, the main expansion valve 4 is closed during the negative pressure prevention operation so that the refrigerant does not flow into the evaporator 5.

本実施の形態1に係る冷凍サイクル装置における負圧防止運転では、低温低圧のガス状態の冷媒([1])が圧縮機1に吸引され、圧縮されて高温高圧ガスとなって吐出される。圧縮機1から吐出された高温高圧の冷媒([2])は2分岐し、一方は吐出ガスバイパス回路6に流入し、吐出ガスバイパス弁7で減圧されて高温低圧ガス冷媒([3])となり、圧縮機1の吸入側にバイパスされる。分岐したもう一方の高温高圧ガス冷媒は、四方弁2を経由して凝縮器3へ流入する。凝縮器3に流入した高温高圧ガス冷媒は、被熱交換媒体である水に放熱し、高圧液冷媒([4])となる。   In the negative pressure prevention operation in the refrigeration cycle apparatus according to the first embodiment, the refrigerant ([1]) in the low-temperature and low-pressure gas state is sucked into the compressor 1, compressed, and discharged as high-temperature and high-pressure gas. The high-temperature and high-pressure refrigerant ([2]) discharged from the compressor 1 is branched into two, one of which flows into the discharge gas bypass circuit 6 and is decompressed by the discharge gas bypass valve 7 to be high-temperature and low-pressure gas refrigerant ([3]). And is bypassed to the suction side of the compressor 1. The other branched high-temperature high-pressure gas refrigerant flows into the condenser 3 via the four-way valve 2. The high-temperature high-pressure gas refrigerant that has flowed into the condenser 3 dissipates heat to water, which is a heat exchange medium, and becomes a high-pressure liquid refrigerant ([4]).

凝縮器3を流出した高圧液冷媒は、吸入バイパス回路8へ流入し、吸入バイパス弁9で減圧膨張されて低温低圧の気液二相冷媒([5])となる。吐出ガスバイパス弁7で減圧された高温低圧ガス([3])と、吸入バイパス弁9で減圧膨張された低温低圧の気液二相冷媒([5])とは、合流して、低温低圧のガス冷媒([1])となり、圧縮機1に再び吸引される。なお、負圧防止運転時は、主膨張弁4は実質的に閉塞されているため、蒸発器5には低圧二相冷媒はほとんど流れず、外気との熱交換による冷媒の蒸発は行われない。   The high-pressure liquid refrigerant that has flowed out of the condenser 3 flows into the suction bypass circuit 8, is decompressed and expanded by the suction bypass valve 9, and becomes a low-temperature and low-pressure gas-liquid two-phase refrigerant ([5]). The high-temperature and low-pressure gas ([3]) decompressed by the discharge gas bypass valve 7 and the low-temperature and low-pressure gas-liquid two-phase refrigerant ([5]) decompressed and expanded by the suction bypass valve 9 merge to form a low-temperature and low-pressure Gas refrigerant ([1]) and is sucked into the compressor 1 again. During the negative pressure prevention operation, the main expansion valve 4 is substantially closed, so that the low-pressure two-phase refrigerant hardly flows through the evaporator 5, and the refrigerant is not evaporated by heat exchange with the outside air. .

ここで、負圧防止運転の概要について説明する。
負圧防止運転は、圧縮機吸入圧力が負圧に近い運転状態になった場合に開始され、蒸発器5にほとんど冷媒を流さず、凝縮器3から流出した高圧冷媒のほとんどを吸入バイパス回路8に流入させるようにする運転である。そして、圧縮機吸入圧力が負圧より高くなるように吐出ガスバイパス弁7を制御することで、負圧防止を図る。また、本実施の形態1では、吐出ガスバイパス弁7の制御に加えてさらに吸入バイパス弁9を制御し、圧縮機吸入過熱度が適正な状態となるように制御するようにしている。
Here, an outline of the negative pressure prevention operation will be described.
The negative pressure prevention operation is started when the compressor suction pressure is in an operation state close to negative pressure. Almost no refrigerant flows through the evaporator 5 and most of the high-pressure refrigerant flowing out of the condenser 3 is sucked into the suction bypass circuit 8. It is the driving | running | working made to flow in. The discharge gas bypass valve 7 is controlled so that the compressor suction pressure is higher than the negative pressure, thereby preventing negative pressure. Further, in the first embodiment, in addition to the control of the discharge gas bypass valve 7, the suction bypass valve 9 is further controlled so that the compressor suction superheat degree is in an appropriate state.

図4は、本発明の実施の形態1に係る冷凍サイクル装置のシステム構成図である。図5は、本発明の実施の形態1に係る冷凍サイクル装置における負圧防止運転の制御手順を示すフローチャートである。   FIG. 4 is a system configuration diagram of the refrigeration cycle apparatus according to Embodiment 1 of the present invention. FIG. 5 is a flowchart showing a control procedure of the negative pressure prevention operation in the refrigeration cycle apparatus according to Embodiment 1 of the present invention.

図4に示されるように、本実施の形態1に係る冷凍サイクル装置は、制御装置20と、圧縮機吸入圧力センサ21と、圧縮機吸入温度センサ22とを備えている。なお、その他の構成要素については図1と同じである。   As shown in FIG. 4, the refrigeration cycle apparatus according to the first embodiment includes a control device 20, a compressor suction pressure sensor 21, and a compressor suction temperature sensor 22. Other components are the same as those in FIG.

制御装置20は、冷凍サイクル装置全体の制御を行うものである。制御装置20は例えばマイクロコンピュータで構成され、CPU、RAMおよびROM等を備えている。ROMには制御プログラムおよび図5のフローチャートに対応したプログラムが記憶されている。   The control device 20 controls the entire refrigeration cycle device. The control device 20 is constituted by a microcomputer, for example, and includes a CPU, a RAM, a ROM, and the like. The ROM stores a control program and a program corresponding to the flowchart of FIG.

制御装置20には、圧縮機吸入圧力センサ21および圧縮機吸入温度センサ22からの検出信号を受けることができるように各センサが接続されている。制御装置20は、これらの検出信号等に基づいて、主膨張弁4の開度制御、吐出ガスバイパス弁7の開度制御および吸入バイパス弁9の開度制御等を行う。また、制御装置20は、各センサ21、22からの検出信号等に基づいて負圧防止運転を含む各種運転制御を行う。   Each sensor is connected to the control device 20 so as to receive detection signals from the compressor suction pressure sensor 21 and the compressor suction temperature sensor 22. The control device 20 performs the opening degree control of the main expansion valve 4, the opening degree control of the discharge gas bypass valve 7, the opening degree control of the suction bypass valve 9, and the like based on these detection signals and the like. The control device 20 performs various operation controls including a negative pressure prevention operation based on detection signals from the sensors 21 and 22 and the like.

次に、制御装置20の機能的な構成について説明する。制御装置20は、負圧防止制御手段20aと、過熱度制御手段20bとを備えている。負圧防止制御手段20aは、吐出ガスバイパス弁7を制御して圧縮機1の吸入圧力が負圧になるのを防止する負圧防止運転を行うものである。過熱度制御手段20bは、圧縮機1の吸入ガスの過熱度が、あらかじめ設定された設定値となるように、吸入バイパス弁9の開度を調整するものである。この負圧防止制御手段20aおよび過熱度制御手段20bは、CPUと制御プログラムとにより機能的に構成されている。   Next, a functional configuration of the control device 20 will be described. The control device 20 includes negative pressure prevention control means 20a and superheat degree control means 20b. The negative pressure prevention control means 20a performs a negative pressure prevention operation for controlling the discharge gas bypass valve 7 to prevent the suction pressure of the compressor 1 from becoming negative. The superheat degree control means 20b adjusts the opening degree of the suction bypass valve 9 so that the superheat degree of the suction gas of the compressor 1 becomes a preset set value. The negative pressure prevention control means 20a and the superheat degree control means 20b are functionally constituted by a CPU and a control program.

次に図4および図5を参照しながら、本実施の形態1に係る冷凍サイクル装置の負圧防止運転の制御の動作を説明する。   Next, the control operation of the negative pressure prevention operation of the refrigeration cycle apparatus according to the first embodiment will be described with reference to FIGS. 4 and 5.

制御装置20は、圧縮機吸入圧力センサ21で検知された圧縮機吸入圧力Psを取得する(S1)。そして、制御装置20は、圧縮機吸入圧力Psとあらかじめ設定された、負圧防止運転を開始する上限圧力である設定値1(例えば、0.01MPa(G)。少なくとも正圧の設定値とされる)とを比較する(S2)。制御装置20は、圧縮機吸入圧力Psが設定値1以上の間はステップS1に戻り、通常の給湯運転を継続する。一方、圧縮機吸入圧力Psが設定値1を下回ると、制御装置20は、外気温度が低く圧縮機吸入圧力が負圧に近い運転状態にあるものと判断して負圧防止運転を開始する(S3)。   The control device 20 acquires the compressor suction pressure Ps detected by the compressor suction pressure sensor 21 (S1). The control device 20 sets the compressor suction pressure Ps and a preset value 1 (for example, 0.01 MPa (G), which is an upper limit pressure for starting the negative pressure prevention operation). (S2). While the compressor suction pressure Ps is equal to or higher than the set value 1, the control device 20 returns to step S1 and continues the normal hot water supply operation. On the other hand, when the compressor suction pressure Ps falls below the set value 1, the control device 20 determines that the outside air temperature is low and the compressor suction pressure is close to negative pressure, and starts negative pressure prevention operation ( S3).

負圧運転では、制御装置20はまず、主膨張弁4を実質的に閉塞する(全閉もしくは全閉に近い開度まで小さくする)(S4)。次に、制御装置20は圧縮機吸入圧力の目標値としてあらかじめ設定された設定値2(例えば、0.02MPa(G)。少なくとも正圧の設定値とされる)と圧縮機吸入圧力Psとを比較する(S5)。そして、圧縮機吸入圧力Psが設定値2(>設定値1)よりも低い場合、制御装置20は吐出ガスバイパス弁7の開度を大きくする(S6)。これにより圧縮機吸入圧力Psが上昇して設定値2に近づく。一方、圧縮機吸入圧力Psが設定値2よりも高い場合は吐出ガスバイパス弁7の開度を小さくする(S7)。これにより圧縮機吸入圧力Psが下降して設定値2に近づく。なお、図5には示していないが、圧縮機吸入圧力Psが設定値2に一致する場合、吐出ガスバイパス弁7の開度は現状維持とすればよい。   In the negative pressure operation, first, the control device 20 substantially closes the main expansion valve 4 (smallly closes or closes to an opening degree close to full closing) (S4). Next, the controller 20 sets a preset value 2 (for example, 0.02 MPa (G), at least a positive pressure) as a target value for the compressor suction pressure, and the compressor suction pressure Ps. Compare (S5). When the compressor suction pressure Ps is lower than the set value 2 (> set value 1), the control device 20 increases the opening of the discharge gas bypass valve 7 (S6). As a result, the compressor suction pressure Ps increases and approaches the set value 2. On the other hand, when the compressor suction pressure Ps is higher than the set value 2, the opening degree of the discharge gas bypass valve 7 is reduced (S7). As a result, the compressor suction pressure Ps decreases and approaches the set value 2. Although not shown in FIG. 5, when the compressor suction pressure Ps matches the set value 2, the opening degree of the discharge gas bypass valve 7 may be maintained as it is.

次に、制御装置20は圧縮機吸入温度センサ22で検知された圧縮機吸入温度Tsを取得する。そして、制御装置20は、取得した圧縮機吸入温度Tsを用いて圧縮機吸入過熱度SHsを算出する(S9)。すなわち、制御装置20は、圧縮機吸入圧力Psの飽和温度f(Ps) を算出し、圧縮機吸入温度Tsから圧縮機吸入圧力Psの飽和温度f(Ps)を差し引くことにより、圧縮機吸入過熱度SHsを算出する。   Next, the control device 20 acquires the compressor suction temperature Ts detected by the compressor suction temperature sensor 22. Then, the control device 20 calculates the compressor suction superheat degree SHs using the acquired compressor suction temperature Ts (S9). That is, the control device 20 calculates the saturation temperature f (Ps) of the compressor suction pressure Ps, and subtracts the saturation temperature f (Ps) of the compressor suction pressure Ps from the compressor suction temperature Ts, so that the compressor suction overheat is performed. The degree SHs is calculated.

そして、制御装置20は、算出した圧縮機吸入過熱度SHsとあらかじめ圧縮機吸入過熱度の目標値として設定された設定値3(例えば、5K)とを比較する(S10)。そして、圧縮機吸入過熱度SHsが設定値3よりも小さい場合、制御装置20は、吸入バイパス弁9の開度を小さくする(S11)。これにより、圧縮機吸入過熱度SHsが上昇して設定値3に近づく。一方、圧縮機吸入過熱度SHsが設定値3よりも大きい場合は、吸入バイパス弁9の開度を大きくする(S12)。これにより、圧縮機吸入過熱度SHsが下降して設定値3に近づく。なお、図5には示していないが、圧縮機吸入過熱度SHsが設定値3に一致する場合、吸入バイパス弁9の開度は現状維持とすればよい。そして、S11またはS12の処理後、制御装置20はS5に戻り、圧縮機吸入圧力Psおよび圧縮機吸入過熱度SHsをそれぞれ対応の設定値2および設定値3に一致させる制御を繰り返す。   Then, the control device 20 compares the calculated compressor suction superheat degree SHs with a set value 3 (for example, 5K) set in advance as a target value of the compressor suction superheat degree (S10). When the compressor suction superheat degree SHs is smaller than the set value 3, the control device 20 decreases the opening degree of the suction bypass valve 9 (S11). As a result, the compressor intake superheat degree SHs increases and approaches the set value 3. On the other hand, when the compressor suction superheat degree SHs is larger than the set value 3, the opening degree of the suction bypass valve 9 is increased (S12). Thereby, the compressor suction superheat degree SHs decreases and approaches the set value 3. Although not shown in FIG. 5, when the compressor intake superheat degree SHs matches the set value 3, the opening degree of the intake bypass valve 9 may be maintained as it is. Then, after the processing of S11 or S12, the control device 20 returns to S5, and repeats the control to match the compressor suction pressure Ps and the compressor suction superheat degree SHs with the corresponding set value 2 and set value 3, respectively.

以上のように、本実施の形態1に係る冷凍サイクル装置は、外気温度が低く圧縮機吸入圧力が負圧に近い運転状態になると、主膨張弁4を全閉にして蒸発器5での冷媒の蒸発を行うことなく給湯運転を継続する。そして、圧縮機吸入圧力を吐出ガスバイパス弁7の開度で制御すると共に、圧縮機吸入過熱度を吸入バイパス弁9の開度で制御する。このため、圧縮機吸入圧力が負圧になることなく、また、圧縮機吸入過熱度を適正な状態で給湯運転を継続することができる。よって、外気が低下しても空気吸引による動作不良等の不都合を回避することができる。さらに、給湯機において低外気条件でも水の温度を上げる給湯運転を停止する必要がないため、水配管の凍結等も防止することができる。   As described above, in the refrigeration cycle apparatus according to Embodiment 1, when the outside air temperature is low and the compressor suction pressure is close to a negative pressure, the main expansion valve 4 is fully closed and the refrigerant in the evaporator 5 is closed. Continue hot water supply operation without evaporating the water. The compressor suction pressure is controlled by the opening degree of the discharge gas bypass valve 7, and the compressor suction superheat degree is controlled by the opening degree of the suction bypass valve 9. For this reason, the hot water supply operation can be continued without causing the compressor suction pressure to become negative and with the compressor suction superheat degree being appropriate. Therefore, inconveniences such as malfunction due to air suction can be avoided even if the outside air decreases. Furthermore, since it is not necessary to stop the hot water supply operation for raising the temperature of the water even in a low outside air condition in the water heater, it is possible to prevent water piping from being frozen.

実施の形態2.
実施の形態2は、図1に示した実施の形態1の構成にさらに二方弁を備えたものである。なお、その他の構成要素については図1と同じである。以下、実施の形態2が実施の形態1と異なる部分を中心に説明する。
Embodiment 2. FIG.
The second embodiment further includes a two-way valve in the configuration of the first embodiment shown in FIG. Other components are the same as those in FIG. In the following, the second embodiment will be described focusing on the differences from the first embodiment.

図6は、本発明の実施の形態2に係る冷凍サイクル装置のシステム構成図である。図7は、本発明の実施の形態2に係る冷凍サイクル装置における負圧防止運転の制御手順を示すフローチャートである。   FIG. 6 is a system configuration diagram of the refrigeration cycle apparatus according to Embodiment 2 of the present invention. FIG. 7 is a flowchart showing a control procedure of negative pressure prevention operation in the refrigeration cycle apparatus according to Embodiment 2 of the present invention.

図6に示されるように、実施の形態2に係る冷凍サイクル装置は、実施の形態1の構成にさらに二方弁10を備えている。   As shown in FIG. 6, the refrigeration cycle apparatus according to the second embodiment further includes a two-way valve 10 in the configuration of the first embodiment.

二方弁10は、四方弁2と蒸発器5の間に配置され、二方弁10を閉とすることで、四方弁2と蒸発器5の間の冷媒の流れを遮断するものである。   The two-way valve 10 is disposed between the four-way valve 2 and the evaporator 5, and shuts off the refrigerant flow between the four-way valve 2 and the evaporator 5 by closing the two-way valve 10.

次に図6および図7を参照しながら、実施の形態2に係る冷凍サイクル装置の制御の動作を説明する。なお、通常の給湯運転については実施の形態1と同様であるので省略し、負圧防止運転についてのみ説明する。   Next, the control operation of the refrigeration cycle apparatus according to Embodiment 2 will be described with reference to FIGS. Note that the normal hot water supply operation is the same as that of the first embodiment, and is omitted, and only the negative pressure prevention operation will be described.

本実施の形態2に係る冷凍サイクル装置における負圧防止運転は、図5に示した実施の形態1のフローチャートにおいて、二方弁10を閉じる工程(S21)をさらに備えた点が実施の形態1と異なり、それ以外は同様である。二方弁10を閉じる工程は、ステップS3とステップS5との間であればよい。   The negative pressure prevention operation in the refrigeration cycle apparatus according to the second embodiment is that the first embodiment shown in the flowchart of the first embodiment shown in FIG. 5 further includes a step (S21) of closing the two-way valve 10. Otherwise, the rest is the same. The process of closing the two-way valve 10 may be between step S3 and step S5.

以上のように、本実施の形態2に係る冷凍サイクル装置は、実施の形態1と同様の効果が得られると共に、以下の効果が得られる。すなわち、負圧防止運転時に二方弁10を閉とするため、吐出ガスバイパス弁7を流出した低圧高温冷媒(図6において点線矢印で示した冷媒)が四方弁2を経由して、低温の蒸発器5に流れ込み、凝縮して滞留することを防止することができる。このため、吐出ガスバイパス回路6および吸入バイパス回路8を循環する冷媒が不足となることなく、負圧防止運転を継続することができる。   As described above, the refrigeration cycle apparatus according to the second embodiment can obtain the same effects as those of the first embodiment and the following effects. That is, in order to close the two-way valve 10 during the negative pressure prevention operation, the low-pressure and high-temperature refrigerant (refrigerant indicated by the dotted arrow in FIG. 6) that has flowed out of the discharge gas bypass valve 7 passes through the four-way valve 2 and has a low temperature. It can be prevented from flowing into the evaporator 5 and condensing and staying. For this reason, the negative pressure prevention operation can be continued without the refrigerant circulating through the discharge gas bypass circuit 6 and the suction bypass circuit 8 becoming insufficient.

実施の形態3.
実施の形態3は、図1に示した実施の形態1の構成にさらにエジェクタおよび吸引管を設けたものである。なお、その他の構成要素については図1と同じである。以下、実施の形態3が実施の形態1と異なる部分を中心に説明する。
Embodiment 3 FIG.
In the third embodiment, an ejector and a suction pipe are further provided in the configuration of the first embodiment shown in FIG. Other components are the same as those in FIG. In the following, the third embodiment will be described focusing on the differences from the first embodiment.

図8は、本発明の実施の形態3に係る冷凍サイクル装置の冷媒回路図である。
エジェクタ11は、吐出ガスバイパス回路6の吐出ガスバイパス弁7の下流に配置され、蒸発器5側の冷媒を吸引管12を介して、吸引するものである。
FIG. 8 is a refrigerant circuit diagram of the refrigeration cycle apparatus according to Embodiment 3 of the present invention.
The ejector 11 is disposed downstream of the discharge gas bypass valve 7 of the discharge gas bypass circuit 6 and sucks the refrigerant on the evaporator 5 side through the suction pipe 12.

図9は、図8のエジェクタの概略図である。
エジェクタ11は、ノズル11a、絞り部11b、ディフューザ11cの3つの部分で構成され、入口から流入した主流はノズル11aで絞られ、絞り部11bでは入口に比べて流速が速い状態となる。入口における冷媒の圧力をP1、流速をv1、密度をρ1、絞り部11bにおける冷媒の圧力をP2、流速をv2、密度をρ2とすると、ベルヌーイの式により下記の関係が成立する。
FIG. 9 is a schematic view of the ejector of FIG.
The ejector 11 is composed of three parts, a nozzle 11a, a constricting part 11b, and a diffuser 11c. The main flow that flows from the inlet is constricted by the nozzle 11a, and the restricting part 11b has a higher flow velocity than the inlet. When the refrigerant pressure at the inlet is P1, the flow velocity is v1, the density is ρ1, the refrigerant pressure at the throttle portion 11b is P2, the flow velocity is v2, and the density is ρ2, the following relationship is established by Bernoulli's equation.

Figure 2016113899
Figure 2016113899

ここで、絞り部11bの流速v2>入口の流速v1となるため、圧力はP2<P1となり、冷媒吸引部11dにおいて差圧P1−P2が発生し、冷媒が吸引される。   Here, since the flow velocity v2 of the throttle portion 11b> the flow velocity v1 at the inlet, the pressure becomes P2 <P1, and the refrigerant suction portion 11d generates the differential pressure P1-P2, and the refrigerant is sucked.

次に図8を参照しながら、実施の形態3に係る冷凍サイクル装置における冷凍サイクルの動作を説明する。なお、通常の給湯運転における冷凍サイクルの動作は実施の形態1と同様であるので省略し、負圧防止運転についてのみ説明する。負圧防止運転において、主膨張弁4を実質的に閉塞する点は実施の形態1と同様である。   Next, the operation of the refrigeration cycle in the refrigeration cycle apparatus according to Embodiment 3 will be described with reference to FIG. Note that the operation of the refrigeration cycle in the normal hot water supply operation is the same as that in the first embodiment, and is therefore omitted. In the negative pressure prevention operation, the point that the main expansion valve 4 is substantially closed is the same as in the first embodiment.

本実施の形態3に係る冷凍サイクル装置における負圧防止運転では、低温低圧のガス状態の冷媒が圧縮機1に吸引され、圧縮されて高温高圧ガスとなって吐出される。圧縮機1から吐出された高温高圧の冷媒は2分岐し、一方は吐出ガスバイパス回路6に流入し、吐出ガスバイパス弁7で減圧されて高温低圧ガス冷媒となり、エジェクタ11に流入する。エジェクタ11の内部では、冷媒流速の増加に伴い冷媒圧力が低下し、冷媒吸引部11dに接続された吸引管12を介して、蒸発器5側の冷媒を吸引する。   In the negative pressure prevention operation in the refrigeration cycle apparatus according to Embodiment 3, low-temperature and low-pressure gaseous refrigerant is sucked into the compressor 1, compressed, and discharged as high-temperature and high-pressure gas. The high-temperature and high-pressure refrigerant discharged from the compressor 1 branches into two, one flows into the discharge gas bypass circuit 6, is decompressed by the discharge gas bypass valve 7, becomes a high-temperature and low-pressure gas refrigerant, and flows into the ejector 11. Inside the ejector 11, the refrigerant pressure decreases as the refrigerant flow rate increases, and the refrigerant on the evaporator 5 side is sucked through the suction pipe 12 connected to the refrigerant suction part 11d.

分岐したもう一方の高温高圧ガス冷媒は、四方弁2を経由して凝縮器3へ流入する。凝縮器3に流入した高温高圧ガス冷媒は、被熱交換媒体である水に放熱し、高圧液冷媒となる。凝縮器3を流出した高圧液冷媒は、吸入バイパス回路8へ流入し、吸入バイパス弁9で減圧膨張されて低温低圧の気液二相冷媒となる。吐出ガスバイパス弁7で減圧されてエジェクタ11を通過した高温低圧ガスと、吸入バイパス弁9で減圧膨張された低温低圧の気液二相冷媒とは、合流して、低温低圧のガス冷媒となり、圧縮機1に再び吸引される。   The other branched high-temperature high-pressure gas refrigerant flows into the condenser 3 via the four-way valve 2. The high-temperature high-pressure gas refrigerant that has flowed into the condenser 3 radiates heat to the heat exchange medium, and becomes high-pressure liquid refrigerant. The high-pressure liquid refrigerant that has flowed out of the condenser 3 flows into the suction bypass circuit 8 and is decompressed and expanded by the suction bypass valve 9 to become a low-temperature and low-pressure gas-liquid two-phase refrigerant. The high-temperature and low-pressure gas decompressed by the discharge gas bypass valve 7 and passed through the ejector 11 and the low-temperature and low-pressure gas-liquid two-phase refrigerant decompressed and expanded by the suction bypass valve 9 merge to become a low-temperature and low-pressure gas refrigerant, It is sucked into the compressor 1 again.

以上のように、本実施の形態3に係る冷凍サイクル装置は、実施の形態1と同様の効果が得られると共に、以下の効果が得られる。すなわち、負圧防止運転時に吐出ガスバイパス弁7を流出した低圧高温冷媒が四方弁2を経由して低温の蒸発器5に流れ込んでも、蒸発器5側に流れ込んだ冷媒をエジェクタ11によって吸引して吐出ガスバイパス回路6に引き戻すことができる。よって、吐出ガスバイパス弁7を流出して蒸発器5に流れ込んだ冷媒が、蒸発器5内部に凝縮して滞留することを防止することができる。このため、吐出ガスバイパス回路6および吸入バイパス回路8を循環する冷媒が不足となることなく、負圧防止運転を継続することができる。   As described above, the refrigeration cycle apparatus according to the third embodiment can obtain the same effects as those of the first embodiment and the following effects. That is, even if the low-pressure high-temperature refrigerant that has flowed out of the discharge gas bypass valve 7 during the negative pressure prevention operation flows into the low-temperature evaporator 5 via the four-way valve 2, the refrigerant that has flowed into the evaporator 5 side is sucked by the ejector 11. It can be pulled back to the discharge gas bypass circuit 6. Therefore, it is possible to prevent the refrigerant flowing out of the discharge gas bypass valve 7 and flowing into the evaporator 5 from condensing and staying in the evaporator 5. For this reason, the negative pressure prevention operation can be continued without the refrigerant circulating through the discharge gas bypass circuit 6 and the suction bypass circuit 8 becoming insufficient.

実施の形態4.
実施の形態4は、図1に示した実施の形態1の構成にさらにレシーバを設けたものである。なお、その他の構成要素については図1と同じである。以下、実施の形態4が実施の形態1と異なる部分を中心に説明する。
Embodiment 4 FIG.
In the fourth embodiment, a receiver is further provided in the configuration of the first embodiment shown in FIG. Other components are the same as those in FIG. Hereinafter, the difference between the fourth embodiment and the first embodiment will be mainly described.

図10は、本発明の実施の形態4に係る冷凍サイクル装置の冷媒回路図である。
レシーバ13は、凝縮器3と吸入バイパス弁9とを接続する配管に配置され、運転中に発生した余剰冷媒を貯溜するものである。
FIG. 10 is a refrigerant circuit diagram of the refrigeration cycle apparatus according to Embodiment 4 of the present invention.
The receiver 13 is disposed in a pipe connecting the condenser 3 and the suction bypass valve 9 and stores surplus refrigerant generated during operation.

次に図10を参照しながら、実施の形態4に係る冷凍サイクルの動作を説明する。なお、通常の給湯運転については実施の形態1と同様であるので省略し、負圧防止運転についてのみ説明する。負圧防止運転において、主膨張弁4を実質的に閉塞する点は実施の形態1と同様である。   Next, the operation of the refrigeration cycle according to Embodiment 4 will be described with reference to FIG. Note that the normal hot water supply operation is the same as that of the first embodiment, and is omitted, and only the negative pressure prevention operation will be described. In the negative pressure prevention operation, the point that the main expansion valve 4 is substantially closed is the same as in the first embodiment.

本実施の形態4に係る冷凍サイクル装置における負圧防止運転では、低温低圧のガス状態の冷媒が圧縮機1に吸引され、圧縮されて高温高圧ガスとなって吐出される。圧縮機1から吐出された高温高圧の冷媒は2分岐し、一方は吐出ガスバイパス回路6に流入し、吐出ガスバイパス弁7で減圧されて高温低圧ガス冷媒となり、圧縮機1の吸入側にバイパスされる。分岐したもう一方の高温高圧ガス冷媒は、四方弁2を経由して凝縮器3へ流入する。凝縮器3に流入した高温高圧ガス冷媒は、被熱交換媒体である水に放熱し、高圧液冷媒となる。凝縮器3を流出した高圧液冷媒は、レシーバ13を経由して吸入バイパス回路8へ流入し、吸入バイパス弁9で減圧膨張されて低温低圧の気液二相冷媒となる。吐出ガスバイパス弁7で減圧された高温低圧ガスと、吸入バイパス弁9で減圧膨張された低温低圧の気液二相冷媒とは、合流して、低温低圧のガス冷媒となり、圧縮機1に再び吸引される。   In the negative pressure prevention operation in the refrigeration cycle apparatus according to Embodiment 4, low-temperature and low-pressure gaseous refrigerant is sucked into the compressor 1, compressed, and discharged as high-temperature and high-pressure gas. The high-temperature and high-pressure refrigerant discharged from the compressor 1 is branched into two, one of which flows into the discharge gas bypass circuit 6 and is decompressed by the discharge gas bypass valve 7 to become a high-temperature and low-pressure gas refrigerant, and is bypassed to the suction side of the compressor 1. Is done. The other branched high-temperature high-pressure gas refrigerant flows into the condenser 3 via the four-way valve 2. The high-temperature high-pressure gas refrigerant that has flowed into the condenser 3 radiates heat to the heat exchange medium, and becomes high-pressure liquid refrigerant. The high-pressure liquid refrigerant that has flowed out of the condenser 3 flows into the suction bypass circuit 8 via the receiver 13 and is decompressed and expanded by the suction bypass valve 9 to become a low-temperature and low-pressure gas-liquid two-phase refrigerant. The high-temperature and low-pressure gas decompressed by the discharge gas bypass valve 7 and the low-temperature and low-pressure gas-liquid two-phase refrigerant decompressed and expanded by the suction bypass valve 9 merge to become a low-temperature and low-pressure gas refrigerant, and are returned to the compressor 1 again. Sucked.

なお、負圧防止運転時は、主膨張弁4は実質的に閉塞されているため、蒸発器5には低圧二相冷媒はほとんど流れず、外気との熱交換による冷媒の蒸発は行われない。このように、負圧防止運転では蒸発器5を使わないため、通常の給湯運転に比べて必要冷媒量が少ない。このため、負圧防止運転では余剰冷媒が発生するが、本実施の形態4ではレシーバ13に余剰冷媒を貯溜させることができる。   During the negative pressure prevention operation, the main expansion valve 4 is substantially closed, so that the low-pressure two-phase refrigerant hardly flows through the evaporator 5, and the refrigerant is not evaporated by heat exchange with the outside air. . Thus, since the evaporator 5 is not used in the negative pressure prevention operation, the required amount of refrigerant is smaller than that in the normal hot water supply operation. For this reason, surplus refrigerant is generated in the negative pressure prevention operation, but in the fourth embodiment, the surplus refrigerant can be stored in the receiver 13.

以上のように、本実施の形態4に係る冷凍サイクル装置は、実施の形態1と同様の効果が得られると共に、以下の効果が得られる。すなわち、負圧防止運転時にレシーバ13に余剰冷媒を貯溜することができるため、圧縮機1の吸入側への液バック運転を防止し、信頼性の高い負圧防止運転を継続することができる。   As described above, the refrigeration cycle apparatus according to the fourth embodiment can obtain the same effects as those of the first embodiment and the following effects. In other words, since the excess refrigerant can be stored in the receiver 13 during the negative pressure prevention operation, the liquid back operation to the suction side of the compressor 1 can be prevented, and the highly reliable negative pressure prevention operation can be continued.

本実施の形態4は、冷媒貯留容器(ここではレシーバ13)を備えた構成であるが、冷媒貯留容器の配置は図10に示した配置に限られず、以下の変形例1、変形例2のように変形実施可能である。   The fourth embodiment has a configuration including a refrigerant storage container (here, receiver 13), but the arrangement of the refrigerant storage container is not limited to the arrangement shown in FIG. It can be modified as described above.

<変形例1>
図11は、本発明の実施の形態4に係る冷凍サイクル装置の変形例1を示す冷凍サイクル装置の冷媒回路図である。
<Modification 1>
FIG. 11 is a refrigerant circuit diagram of the refrigeration cycle apparatus showing Modification 1 of the refrigeration cycle apparatus according to Embodiment 4 of the present invention.

図11に示されるように、実施の形態4に係る冷凍サイクル装置の変形例1の冷媒回路は、図10のレシーバ13に代えて、レシーバ13aと逆止弁14とを設けたものである。なお、その他の構成要素については図10と同じである。   As shown in FIG. 11, the refrigerant circuit of Modification 1 of the refrigeration cycle apparatus according to Embodiment 4 is provided with a receiver 13 a and a check valve 14 instead of the receiver 13 of FIG. 10. Other components are the same as those in FIG.

レシーバ13aは、運転中に発生した余剰冷媒を貯溜する冷媒貯留容器である。レシーバ13aは、凝縮器3の出口側で主回路30と並列に設けられている。言い換えれば、レシーバ13aは、吸入バイパス回路8の上流端と主回路30との合流部と凝縮器3の出口との間の配管に対して並列に設けられている。   The receiver 13a is a refrigerant storage container that stores excess refrigerant generated during operation. The receiver 13 a is provided in parallel with the main circuit 30 on the outlet side of the condenser 3. In other words, the receiver 13 a is provided in parallel to the pipe between the junction between the upstream end of the suction bypass circuit 8 and the main circuit 30 and the outlet of the condenser 3.

逆止弁14は、主膨張弁4側からレシーバ13aに冷媒が流入するのを防止するものである。給湯運転中、蒸発器5に霜が付く場合があり、この場合は、リバースデフロスト運転が行われる。リバースデフロスト運転は、四方弁2を図11の点線方向に切り換え、圧縮機1を吐出した高温高圧ガス冷媒を蒸発器5に供給して、蒸発器5に付着した霜を除去する運転である。逆止弁14は、このリバースデフロスト運転時に冷媒がレシーバ13aに流入を防止するものである。   The check valve 14 prevents the refrigerant from flowing into the receiver 13a from the main expansion valve 4 side. During the hot water supply operation, the evaporator 5 may be frosted. In this case, the reverse defrost operation is performed. The reverse defrost operation is an operation in which the four-way valve 2 is switched in the dotted line direction of FIG. 11 and the high-temperature high-pressure gas refrigerant discharged from the compressor 1 is supplied to the evaporator 5 to remove frost attached to the evaporator 5. The check valve 14 prevents the refrigerant from flowing into the receiver 13a during the reverse defrost operation.

次に図11を参照しながら、実施の形態4に係る冷凍サイクル装置の変形例1の冷凍サイクル動作を説明する。なお、通常の給湯運転については実施の形態1と同様であるため、負圧防止運転についてのみ説明する。負圧防止運転時において、主膨張弁4が実質的に閉塞されている点は実施の形態1と同様である。   Next, the refrigeration cycle operation of Modification 1 of the refrigeration cycle apparatus according to Embodiment 4 will be described with reference to FIG. Since the normal hot water supply operation is the same as that of the first embodiment, only the negative pressure prevention operation will be described. The point that the main expansion valve 4 is substantially closed during the negative pressure prevention operation is the same as in the first embodiment.

本変形例1の負圧防止運転では、低温低圧のガス状態の冷媒が圧縮機1に吸引され、圧縮されて高温高圧ガスとなって吐出される。圧縮機1から吐出された高温高圧の冷媒は2分岐し、一方は吐出ガスバイパス回路6に流入し、吐出ガスバイパス弁7で減圧されて高温低圧ガス冷媒となり、圧縮機1の吸入側にバイパスされる。分岐したもう一方の高温高圧ガス冷媒は、四方弁2を経由して凝縮器3へ流入する。凝縮器3に流入した高温高圧ガス冷媒は、被熱交換媒体である水に放熱し、高圧液冷媒となる。   In the negative pressure prevention operation of the first modified example, the refrigerant in a low-temperature and low-pressure gas state is sucked into the compressor 1 and compressed to be discharged as a high-temperature and high-pressure gas. The high-temperature and high-pressure refrigerant discharged from the compressor 1 is branched into two, one of which flows into the discharge gas bypass circuit 6 and is decompressed by the discharge gas bypass valve 7 to become a high-temperature and low-pressure gas refrigerant, and is bypassed to the suction side of the compressor 1. Is done. The other branched high-temperature high-pressure gas refrigerant flows into the condenser 3 via the four-way valve 2. The high-temperature high-pressure gas refrigerant that has flowed into the condenser 3 radiates heat to the heat exchange medium, and becomes high-pressure liquid refrigerant.

凝縮器3を流出した高圧冷媒は2分岐し、一方は主回路30を介して吸入バイパス回路8へ流れ、もう一方はレシーバ13aに凝縮して貯溜される。吸入バイパス回路8へ流入した高圧冷媒は、吸入バイパス弁9で減圧膨張されて低温低圧の気液二相冷媒となる。吐出ガスバイパス弁7で減圧された高温低圧ガスと、吸入バイパス弁9で減圧膨張された低温低圧の気液二相冷媒とは、合流して、低温低圧のガス冷媒となり、圧縮機1に再び吸引される。   The high-pressure refrigerant that has flowed out of the condenser 3 is branched into two, one flows through the main circuit 30 to the suction bypass circuit 8, and the other is condensed and stored in the receiver 13a. The high-pressure refrigerant flowing into the suction bypass circuit 8 is decompressed and expanded by the suction bypass valve 9 to become a low-temperature and low-pressure gas-liquid two-phase refrigerant. The high-temperature and low-pressure gas decompressed by the discharge gas bypass valve 7 and the low-temperature and low-pressure gas-liquid two-phase refrigerant decompressed and expanded by the suction bypass valve 9 merge to become a low-temperature and low-pressure gas refrigerant, and are returned to the compressor 1 again. Sucked.

なお、負圧防止運転時は、主膨張弁4は実質的に閉塞されているため、蒸発器5には低圧二相冷媒はほとんど流れず、外気との熱交換による冷媒の蒸発は行われない。負圧防止運転では、蒸発器5を使わないため、通常の給湯運転に比べて必要冷媒量が少なく、余剰冷媒が発生するが、本変形例1ではレシーバ13aに余剰冷媒を貯溜させることができる。   During the negative pressure prevention operation, the main expansion valve 4 is substantially closed, so that the low-pressure two-phase refrigerant hardly flows through the evaporator 5, and the refrigerant is not evaporated by heat exchange with the outside air. . In the negative pressure prevention operation, since the evaporator 5 is not used, the amount of refrigerant required is smaller than that in the normal hot water supply operation, and surplus refrigerant is generated. However, in the first modification, the surplus refrigerant can be stored in the receiver 13a. .

以上のように、本実施の形態4に係る冷凍サイクル装置の変形例1では、レシーバ13aが凝縮器3の出口側で主回路30と並列に設けられている。このため、凝縮器3の出口が二相冷媒の状態であっても、レシーバ13aに余剰冷媒を貯溜することが可能である。よって、余剰冷媒が発生する負圧防止運転時に、圧縮機1の吸入側への液バック運転を防止し、信頼性の高い負圧防止運転を継続することができる。   As described above, in Modification 1 of the refrigeration cycle apparatus according to Embodiment 4, the receiver 13 a is provided in parallel with the main circuit 30 on the outlet side of the condenser 3. For this reason, even if the outlet of the condenser 3 is in the state of a two-phase refrigerant, it is possible to store surplus refrigerant in the receiver 13a. Therefore, during the negative pressure prevention operation in which surplus refrigerant is generated, the liquid back operation to the suction side of the compressor 1 can be prevented, and the highly reliable negative pressure prevention operation can be continued.

<変形例2>
図12は、本発明の実施の形態4に係る冷凍サイクル装置の変形例2を示す冷凍サイクル装置の冷媒回路図である。
<Modification 2>
FIG. 12 is a refrigerant circuit diagram of the refrigeration cycle apparatus showing Modification 2 of the refrigeration cycle apparatus according to Embodiment 4 of the present invention.

図12に示されるように、実施の形態4に係る冷凍サイクル装置の変形例2の冷媒回路は、図10のレシーバ13に代えてアキュームレータ15を設けたものである。なお、その他の構成要素については図10と同じである。   As shown in FIG. 12, the refrigerant circuit of Modification 2 of the refrigeration cycle apparatus according to Embodiment 4 is provided with an accumulator 15 instead of the receiver 13 of FIG. Other components are the same as those in FIG.

アキュームレータ15は、圧縮機1の吸入側に設けたものであり、運転中に発生した余剰冷媒を貯溜する冷媒貯留容器である。   The accumulator 15 is provided on the suction side of the compressor 1 and is a refrigerant storage container that stores excess refrigerant generated during operation.

次に図12を参照しながら、実施の形態4に係る冷凍サイクル装置の変形例2の冷凍サイクル動作を説明する。なお、通常の給湯運転については実施の形態1と同様であるため、負圧防止運転についてのみ説明する。   Next, the refrigeration cycle operation of Modification 2 of the refrigeration cycle apparatus according to Embodiment 4 will be described with reference to FIG. Since the normal hot water supply operation is the same as that of the first embodiment, only the negative pressure prevention operation will be described.

変形例2の負圧防止運転では、低温低圧のガス状態の冷媒が圧縮機1に吸引され、圧縮されて高温高圧ガスとなって吐出される。圧縮機1から吐出された高温高圧の冷媒は2分岐し、一方は吐出ガスバイパス回路6に流入し、吐出ガスバイパス弁7で減圧されて高温低圧ガス冷媒となり、圧縮機1の吸入側にバイパスされる。分岐したもう一方の高温高圧ガス冷媒は、四方弁2を経由して凝縮器3へ流入する。凝縮器3に流入した高温高圧ガス冷媒は、被熱交換媒体である水に放熱し、高圧液冷媒となる。   In the negative pressure prevention operation of the modified example 2, the low-temperature and low-pressure gaseous refrigerant is sucked into the compressor 1, compressed, and discharged as high-temperature and high-pressure gas. The high-temperature and high-pressure refrigerant discharged from the compressor 1 is branched into two, one of which flows into the discharge gas bypass circuit 6 and is decompressed by the discharge gas bypass valve 7 to become a high-temperature and low-pressure gas refrigerant, and is bypassed to the suction side of the compressor 1. Is done. The other branched high-temperature high-pressure gas refrigerant flows into the condenser 3 via the four-way valve 2. The high-temperature high-pressure gas refrigerant that has flowed into the condenser 3 radiates heat to the heat exchange medium, and becomes high-pressure liquid refrigerant.

凝縮器3を流出した高圧冷媒は吸入バイパス回路8へ流入し、吸入バイパス回路8へ流入した高圧冷媒は、吸入バイパス弁9で減圧膨張されて低温低圧の気液二相冷媒となる。吐出ガスバイパス弁7で減圧された高温低圧ガスと、吸入バイパス弁9で減圧膨張された低温低圧の気液二相冷媒は、合流して低温低圧の冷媒となり、アキュームレータ15を経由して、圧縮機1に再び吸引される。   The high-pressure refrigerant that has flowed out of the condenser 3 flows into the suction bypass circuit 8, and the high-pressure refrigerant that flows into the suction bypass circuit 8 is decompressed and expanded by the suction bypass valve 9 to become a low-temperature and low-pressure gas-liquid two-phase refrigerant. The high-temperature and low-pressure gas decompressed by the discharge gas bypass valve 7 and the low-temperature and low-pressure gas-liquid two-phase refrigerant decompressed and expanded by the suction bypass valve 9 merge to become a low-temperature and low-pressure refrigerant, and are compressed via the accumulator 15. It is sucked into the machine 1 again.

なお、負圧防止運転時は、主膨張弁4は実質的に閉塞されているため、蒸発器5には低圧二相冷媒はほとんど流れず、外気との熱交換による冷媒の蒸発は行われない。負圧防止運転では、蒸発器5を使わないため、通常の給湯運転に比べて必要冷媒量が少なく、余剰冷媒が発生するが、本変形例2ではアキュームレータ15に余剰冷媒を貯溜させることができる。   During the negative pressure prevention operation, the main expansion valve 4 is substantially closed, so that the low-pressure two-phase refrigerant hardly flows through the evaporator 5, and the refrigerant is not evaporated by heat exchange with the outside air. . In the negative pressure prevention operation, since the evaporator 5 is not used, the amount of refrigerant required is smaller than that in the normal hot water supply operation, and surplus refrigerant is generated. However, in the second modification, the surplus refrigerant can be stored in the accumulator 15. .

以上のように、本実施の形態4に係る冷凍サイクル装置の変形例2では、アキュームレータ15を圧縮機1の吸入側に設けたため、余剰冷媒が発生する負圧防止運転時に、アキュームレータ15に余剰冷媒を貯溜することができる。このため、圧縮機1の吸入側への液バック運転を防止し、信頼性の高い負圧防止運転を継続することができる。   As described above, in Modification 2 of the refrigeration cycle apparatus according to Embodiment 4, since the accumulator 15 is provided on the suction side of the compressor 1, the excess refrigerant is supplied to the accumulator 15 during the negative pressure prevention operation in which excess refrigerant is generated. Can be stored. For this reason, the liquid back operation to the suction side of the compressor 1 can be prevented, and the highly reliable negative pressure prevention operation can be continued.

実施の形態5.
上記実施の形態1〜4では、圧縮機1から吐出して凝縮器3に向かう冷媒の一部を吐出ガスバイパス回路6に流入させることで主回路30から分岐し、その分岐冷媒を圧縮機1の吸入側に戻す構成としている。そして、分岐冷媒を圧縮機1の吸入側に戻すにあたり、分岐冷媒を、吸入バイパス回路8を流れる冷媒と吸入バイパス弁9の下流側で合流させて戻す構成としている。これに対し、本実施の形態5では、主回路30から分岐した分岐冷媒を圧縮機1の吸入側に戻すにあたり、分岐冷媒を、吸入バイパス回路8を流れる冷媒と吸入バイパス弁9の上流側で合流させて戻す構成としたものである。
Embodiment 5. FIG.
In the first to fourth embodiments, a part of the refrigerant discharged from the compressor 1 and directed to the condenser 3 is branched into the discharge gas bypass circuit 6 to branch from the main circuit 30, and the branched refrigerant is supplied to the compressor 1. It is configured to return to the suction side. When returning the branch refrigerant to the suction side of the compressor 1, the branch refrigerant is combined with the refrigerant flowing through the suction bypass circuit 8 and downstream of the suction bypass valve 9 and returned. In contrast, in the fifth embodiment, when returning the branched refrigerant branched from the main circuit 30 to the suction side of the compressor 1, the branched refrigerant is divided into the refrigerant flowing through the suction bypass circuit 8 and the upstream side of the suction bypass valve 9. It is configured to be returned after being merged.

図13は、本発明の実施の形態5に係る冷凍サイクル装置の冷媒回路図であり、負荷側の水の温度を上げる給湯運転を実施している時の状態が示されている。また、図14は、図13の運転の動作状態を示すP−h線図である。   FIG. 13 is a refrigerant circuit diagram of the refrigeration cycle apparatus according to Embodiment 5 of the present invention, and shows a state when a hot water supply operation for raising the temperature of water on the load side is being performed. FIG. 14 is a Ph diagram showing the operation state of the operation of FIG.

本実施の形態5は、図1に示した実施の形態1の構成から、吐出ガスバイパス回路6および吐出ガスバイパス弁7が削除される一方、凝縮器3をバイパスする凝縮器バイパス回路16と凝縮器バイパス回路16の流量を調整する凝縮器バイパス弁17とを備えている。本実施の形態5のバイパス回路41は、凝縮器バイパス回路16と吸入バイパス回路8とを備え、凝縮器バイパス回路16を流出した冷媒(圧縮機1から吐出された冷媒の一部)と凝縮器3から流出した冷媒とを合流し、吸入バイパス回路8を介して圧縮機1の吸入側に流入させる回路である。このバイパス回路41においては、吸入バイパス弁9が本発明に係る負圧調整弁を構成している。   In the fifth embodiment, the discharge gas bypass circuit 6 and the discharge gas bypass valve 7 are eliminated from the configuration of the first embodiment shown in FIG. 1, while the condenser bypass circuit 16 and the condenser bypass circuit 16 that bypass the condenser 3 are condensed. And a condenser bypass valve 17 for adjusting the flow rate of the condenser bypass circuit 16. The bypass circuit 41 according to the fifth embodiment includes a condenser bypass circuit 16 and a suction bypass circuit 8, and refrigerant (a part of the refrigerant discharged from the compressor 1) that has flowed out of the condenser bypass circuit 16 and the condenser. 3 is a circuit that merges the refrigerant that has flowed out of the refrigerant flow into the suction side of the compressor 1 via the suction bypass circuit 8. In this bypass circuit 41, the suction bypass valve 9 constitutes a negative pressure adjusting valve according to the present invention.

凝縮器バイパス回路16は、圧縮機1を吐出した吐出冷媒の一部を凝縮器3の出口側にバイパスするものである。
凝縮器バイパス弁17は、凝縮器バイパス回路16に流す吐出ガスのバイパス量を調整するものである。
The condenser bypass circuit 16 bypasses a part of the refrigerant discharged from the compressor 1 to the outlet side of the condenser 3.
The condenser bypass valve 17 adjusts the bypass amount of the discharge gas that flows to the condenser bypass circuit 16.

次に図13を参照しながら、本実施の形態5に係る冷凍サイクル装置の冷凍サイクルの動作を説明する。なお、通常の給湯運時は、凝縮器バイパス弁17および吸入バイパス弁9は全閉とし、凝縮器バイパス回路16および吸入バイパス回路8の冷媒の流れはない。よって、本実施の形態5における通常の給湯運時の冷凍サイクルの動作は実施の形態1と同様である。このため、負圧防止運転についてのみ説明する。負圧防止運転時において、主膨張弁4が実質的に閉塞されている点は実施の形態1と同様である。   Next, the operation of the refrigeration cycle of the refrigeration cycle apparatus according to Embodiment 5 will be described with reference to FIG. During normal hot water supply operation, the condenser bypass valve 17 and the suction bypass valve 9 are fully closed, and there is no refrigerant flow in the condenser bypass circuit 16 and the suction bypass circuit 8. Therefore, the operation of the refrigeration cycle during normal hot water supply in Embodiment 5 is the same as that in Embodiment 1. Therefore, only the negative pressure prevention operation will be described. The point that the main expansion valve 4 is substantially closed during the negative pressure prevention operation is the same as in the first embodiment.

次に、負圧防止運転の動作について図13の冷媒回路図および図14のP−h線図を用いて説明する。図14における[1]〜[5]は、図13における[1]〜[5]の各位置での冷媒状態を示している。   Next, the operation of the negative pressure prevention operation will be described using the refrigerant circuit diagram of FIG. 13 and the Ph diagram of FIG. [1] to [5] in FIG. 14 indicate refrigerant states at positions [1] to [5] in FIG.

本実施の形態5に係る冷凍サイクル装置における負圧防止運転では、低温低圧のガス状態の冷媒([1])が圧縮機1に吸引され、圧縮されて高温高圧ガス([2])となって吐出される。圧縮機1から吐出された高温高圧のガス冷媒は、四方弁2を通過後、2分岐し、一方は凝縮器バイパス回路16に流入し、凝縮器バイパス弁17で減圧された後([3])、凝縮器バイパス回路16を流出する。分岐したもう一方の高温高圧ガス冷媒は、凝縮器3へ流入する。凝縮器3に流入した高温高圧ガス冷媒は、被熱交換媒体である水に放熱し、高圧液冷媒([4])となる。   In the negative pressure prevention operation in the refrigeration cycle apparatus according to Embodiment 5, the refrigerant ([1]) in the low-temperature and low-pressure gas state is sucked into the compressor 1 and compressed to become the high-temperature and high-pressure gas ([2]). Discharged. The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 passes through the four-way valve 2 and branches into two branches, one of which flows into the condenser bypass circuit 16 and is decompressed by the condenser bypass valve 17 ([3] ) And flows out of the condenser bypass circuit 16. The other branched high-temperature high-pressure gas refrigerant flows into the condenser 3. The high-temperature high-pressure gas refrigerant that has flowed into the condenser 3 dissipates heat to water, which is a heat exchange medium, and becomes a high-pressure liquid refrigerant ([4]).

凝縮器バイパス回路16を流出した高温高圧ガス冷媒と凝縮器3を流出した高圧液冷媒とは、合流して高圧の乾き度が高い二相冷媒([5])となる。この二相冷媒は、吸入バイパス回路8へ流入し、吸入バイパス弁9で減圧膨張されて低温低圧のガス冷媒([1])となり、圧縮機1に再び吸引される。なお、負圧防止運転時は、主膨張弁4は実質的に閉塞されているため、蒸発器5には低圧二相冷媒はほとんど流れず、外気との熱交換による冷媒の蒸発は行われない。   The high-temperature high-pressure gas refrigerant that has flowed out of the condenser bypass circuit 16 and the high-pressure liquid refrigerant that has flowed out of the condenser 3 merge to form a two-phase refrigerant ([5]) having a high pressure and high dryness. The two-phase refrigerant flows into the suction bypass circuit 8, is decompressed and expanded by the suction bypass valve 9, becomes a low-temperature and low-pressure gas refrigerant ([1]), and is sucked into the compressor 1 again. During the negative pressure prevention operation, the main expansion valve 4 is substantially closed, so that the low-pressure two-phase refrigerant hardly flows through the evaporator 5, and the refrigerant is not evaporated by heat exchange with the outside air. .

上記実施の形態1〜4では、圧縮機吸入圧力の制御を吐出ガスバイパス弁7で行っていた。これに対し、本実施の形態5では、冷媒の流れが、図14に示されているように凝縮器バイパス回路16から流出した冷媒([3])と凝縮器3から流出した冷媒([4])とが合流し、合流後の冷媒を吸入バイパス弁9で減圧して圧縮機1に吸入させる流れとなっている。このため、本実施の形態5では圧縮機吸入圧力の制御を吸入バイパス弁9で行っている。   In the first to fourth embodiments, the compressor suction pressure is controlled by the discharge gas bypass valve 7. In contrast, in the fifth embodiment, the refrigerant flows into the refrigerant flowing out of the condenser bypass circuit 16 ([3]) and the refrigerant flowing out of the condenser 3 ([4 ]) And the combined refrigerant is decompressed by the suction bypass valve 9 and sucked into the compressor 1. For this reason, in the fifth embodiment, the suction pressure of the compressor is controlled by the suction bypass valve 9.

図15は、本発明の実施の形態5に係る冷凍サイクル装置のシステム構成図である。
図15に示されるように、本実施の形態5に係る冷凍サイクル装置は、図4に示した実施の形態1のシステム構成において、制御装置20が、吐出ガスバイパス弁7に代えて凝縮器バイパス弁17を制御可能に接続されている点が図4と異なる。また、制御装置20の機能的な構成として、制御装置20が負圧防止制御手段20Aと、過熱度制御手段20Bとを備えている。負圧防止制御手段20Aは、吸入バイパス弁9の開度を制御して圧縮機1の吸入圧力が負圧になるのを防止する負圧防止運転を行うものである。過熱度制御手段20Bは、圧縮機1の吸入ガスの過熱度が、あらかじめ設定された設定値となるように、凝縮器バイパス弁17の開度を調整するものである。この負圧防止制御手段20Aおよび過熱度制御手段20Bは、CPUと制御プログラムとにより機能的に構成されている。それ以外の構成は図4と同様である。
FIG. 15 is a system configuration diagram of a refrigeration cycle apparatus according to Embodiment 5 of the present invention.
As shown in FIG. 15, in the refrigeration cycle apparatus according to the fifth embodiment, in the system configuration of the first embodiment shown in FIG. 4, the control device 20 replaces the discharge gas bypass valve 7 with a condenser bypass. The point from which the valve 17 is connected so that control is possible differs from FIG. As a functional configuration of the control device 20, the control device 20 includes a negative pressure prevention control unit 20A and a superheat degree control unit 20B. The negative pressure prevention control means 20A performs a negative pressure prevention operation for controlling the opening of the suction bypass valve 9 to prevent the suction pressure of the compressor 1 from becoming negative. The superheat degree control means 20B adjusts the opening degree of the condenser bypass valve 17 so that the superheat degree of the intake gas of the compressor 1 becomes a preset set value. The negative pressure prevention control means 20A and the superheat degree control means 20B are functionally constituted by a CPU and a control program. The other configuration is the same as that of FIG.

図16は、本発明の実施の形態5に係る冷凍サイクル装置における負圧防止運転の制御手順を示すフローチャートである。図16に示す実施の形態5のフローチャートは、上記図5に示した実施の形態1のフローチャートと比較して、以下の点が異なる。すなわち、図5のステップS6およびステップS7の吐出ガスバイパス弁7の開度制御が、図16ではステップS6aおよびステップS7aの吸入バイパス弁9の開度制御に置き換わっている。また、図5のステップS11およびステップS12の吸入バイパス弁9の開度制御が、図16では凝縮器バイパス弁17の開度制御に置き換わっている。それ以外は、図16の制御フローチャートと同様である。以下、実施の形態5における負圧防止運転の制御が実施の形態1と異なる部分を中心に説明する。   FIG. 16 is a flowchart showing the control procedure of the negative pressure prevention operation in the refrigeration cycle apparatus according to Embodiment 5 of the present invention. The flowchart of the fifth embodiment shown in FIG. 16 differs from the flowchart of the first embodiment shown in FIG. 5 in the following points. That is, the opening degree control of the discharge gas bypass valve 7 in steps S6 and S7 in FIG. 5 is replaced with the opening degree control of the suction bypass valve 9 in steps S6a and S7a in FIG. Further, the opening degree control of the suction bypass valve 9 in step S11 and step S12 in FIG. 5 is replaced with the opening degree control of the condenser bypass valve 17 in FIG. The rest is the same as the control flowchart of FIG. Hereinafter, the control of the negative pressure prevention operation in the fifth embodiment will be described with a focus on the differences from the first embodiment.

実施の形態5では、ステップS5で圧縮機吸入圧力Psとあらかじめ設定された設定値2とを比較した結果、圧縮機吸入圧力Psが設定値2よりも低い場合、吸入バイパス弁9の開度を大きくしている(S6a)。これにより、圧縮機吸入圧力Psが上昇して設定値2に近づく。一方、圧縮機吸入圧力Psが設定値2よりも高い場合は吸入バイパス弁9の開度を小さくする(S7a)。これにより圧縮機吸入圧力Psが下降して設定値2に近づく。   In the fifth embodiment, when the compressor suction pressure Ps is lower than the set value 2 as a result of comparing the compressor suction pressure Ps with the preset set value 2 in step S5, the opening degree of the suction bypass valve 9 is set. It is enlarged (S6a). As a result, the compressor suction pressure Ps increases and approaches the set value 2. On the other hand, when the compressor suction pressure Ps is higher than the set value 2, the opening degree of the suction bypass valve 9 is decreased (S7a). As a result, the compressor suction pressure Ps decreases and approaches the set value 2.

また、実施の形態5では、ステップS10で圧縮機吸入過熱度SHsとあらかじめ圧縮機吸入過熱度の目標値として設定された設定値3とを比較した結果、圧縮機吸入過熱度SHsが設定値3よりも小さい場合、制御装置20は凝縮器バイパス弁17の開度を大きくする(S11a)。これにより、圧縮機吸入過熱度SHsが上昇して設定値3に近づく。一方、圧縮機吸入過熱度SHsが設定値3よりも大きい場合は、凝縮器バイパス弁17の開度を小さくする(S12a)。これにより、圧縮機吸入過熱度SHsが下降して設定値3に近づく。そして、S11aまたはS12aの処理後、制御装置20はS5に戻り、圧縮機吸入圧力Psおよび圧縮機吸入過熱度SHsをそれぞれ対応の設定値2および設定値3に一致させる制御を繰り返す。   Further, in the fifth embodiment, as a result of comparing the compressor suction superheat degree SHs with the set value 3 set in advance as the target value of the compressor suction superheat degree in step S10, the compressor suction superheat degree SHs is set to the set value 3. If smaller, the control device 20 increases the opening of the condenser bypass valve 17 (S11a). As a result, the compressor intake superheat degree SHs increases and approaches the set value 3. On the other hand, when the compressor suction superheat degree SHs is larger than the set value 3, the opening degree of the condenser bypass valve 17 is reduced (S12a). Thereby, the compressor suction superheat degree SHs decreases and approaches the set value 3. Then, after the processing of S11a or S12a, the control device 20 returns to S5, and repeats the control to match the compressor suction pressure Ps and the compressor suction superheat degree SHs with the corresponding set value 2 and set value 3, respectively.

以上のように、本実施の形態5に係る冷凍サイクル装置は、圧縮機吸入圧力の制御および圧縮機吸入過熱度の制御にあたり、制御対象のバイパス弁が異なるものの、実施の形態1と同様の効果を得ることができる。すなわち、外気温度が低く圧縮機吸入圧力が負圧に近い運転状態になると、主膨張弁4を全閉にして蒸発器5での冷媒の蒸発を行うことなく給湯運転を継続する。そして、圧縮機吸入圧力を吸入バイパス弁9の開度で制御すると共に、圧縮機1の吸入過熱度を凝縮器バイパス弁17の開度で制御する。このため、圧縮機吸入圧力が負圧になることなく、また、圧縮機吸入過熱度を適正な状態で給湯運転を継続することができる。よって、外気が低下しても空気吸引による動作不良等の不都合を回避することができる。さらに、給湯機において低外気条件でも水の温度を上げる給湯運転を停止する必要がないため、水配管の凍結等も防止することができる。   As described above, the refrigeration cycle apparatus according to the fifth embodiment has the same effects as those of the first embodiment although the bypass valve to be controlled is different in controlling the compressor suction pressure and the compressor suction superheat degree. Can be obtained. That is, when the outside air temperature is low and the compressor suction pressure is close to a negative pressure, the hot water supply operation is continued without fully evaporating the refrigerant in the evaporator 5 with the main expansion valve 4 fully closed. The compressor suction pressure is controlled by the opening degree of the suction bypass valve 9, and the suction superheat degree of the compressor 1 is controlled by the opening degree of the condenser bypass valve 17. For this reason, the hot water supply operation can be continued without causing the compressor suction pressure to become negative and with the compressor suction superheat degree being appropriate. Therefore, inconveniences such as malfunction due to air suction can be avoided even if the outside air decreases. Furthermore, since it is not necessary to stop the hot water supply operation for raising the temperature of the water even in a low outside air condition in the water heater, it is possible to prevent water piping from being frozen.

実施の形態6.
実施の形態6は、いわば、実施の形態5と、レシーバ13を備えたことを特徴とする実施の形態4とを組み合わせた構成に相当する。以下、実施の形態6が実施の形態5と異なる部分を中心に説明する。
Embodiment 6 FIG.
In other words, the sixth embodiment corresponds to a configuration in which the fifth embodiment is combined with the fourth embodiment that includes the receiver 13. Hereinafter, the difference between the sixth embodiment and the fifth embodiment will be mainly described.

図17は、本発明の実施の形態6に係る冷凍サイクル装置の冷媒回路図である。
図17に示されるように、実施の形態6に係る冷凍サイクル装置のシステム構成図は、レシーバ13を設けたものである。なお、その他の構成要素については図13に示した実施の形態5と同じである。
FIG. 17 is a refrigerant circuit diagram of the refrigeration cycle apparatus according to Embodiment 6 of the present invention.
As shown in FIG. 17, the system configuration diagram of the refrigeration cycle apparatus according to Embodiment 6 is provided with a receiver 13. Other components are the same as those in the fifth embodiment shown in FIG.

レシーバ13は、凝縮器3と吸入バイパス弁9を接続する配管に配置され、運転中に発生した余剰冷媒を貯溜するものである。   The receiver 13 is disposed in a pipe connecting the condenser 3 and the suction bypass valve 9 and stores excess refrigerant generated during operation.

次に図17を参照しながら、実施の形態6に係る冷凍サイクルの動作を説明する。なお、通常の給湯運転については実施の形態1と同様であるので省略し、負圧防止運転についてのみ説明する。   Next, the operation of the refrigeration cycle according to Embodiment 6 will be described with reference to FIG. Note that the normal hot water supply operation is the same as that of the first embodiment, and is omitted, and only the negative pressure prevention operation will be described.

低温低圧のガス状態の冷媒が圧縮機1に吸引され、圧縮されて高温高圧ガスとなって吐出される。圧縮機1から吐出された高温高圧のガス冷媒は、四方弁2を通過後、2分岐し、一方は凝縮器バイパス回路16に流入し、凝縮器バイパス弁17で減圧された後、凝縮器バイパス回路16を流出する。分岐したもう一方の高温高圧ガス冷媒は、凝縮器3へ流入する。凝縮器3に流入した高温高圧ガス冷媒は、被熱交換媒体である水に放熱し、高圧液冷媒となりレシーバ13に流入する。凝縮器バイパス回路16を流出した高温高圧ガス冷媒とレシーバ13を流出した高圧液冷媒とは、合流して、高圧の乾き度が高い二相冷媒となり、吸入バイパス回路8へ流入する。吸入バイパス回路8へ流入した二相冷媒は、吸入バイパス弁9で減圧膨張されて低温低圧のガス冷媒となり、圧縮機1に再び吸引される。   A refrigerant in a low-temperature and low-pressure gas state is sucked into the compressor 1, compressed, and discharged as a high-temperature and high-pressure gas. The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 passes through the four-way valve 2 and branches into two branches. One of the refrigerant flows into the condenser bypass circuit 16 and is depressurized by the condenser bypass valve 17. The circuit 16 flows out. The other branched high-temperature high-pressure gas refrigerant flows into the condenser 3. The high-temperature high-pressure gas refrigerant that has flowed into the condenser 3 dissipates heat to water, which is a heat exchange medium, and becomes high-pressure liquid refrigerant and flows into the receiver 13. The high-temperature and high-pressure gas refrigerant that has flowed out of the condenser bypass circuit 16 and the high-pressure liquid refrigerant that has flowed out of the receiver 13 merge to form a two-phase refrigerant with high pressure and high dryness, and flow into the suction bypass circuit 8. The two-phase refrigerant that has flowed into the suction bypass circuit 8 is decompressed and expanded by the suction bypass valve 9 to become a low-temperature and low-pressure gas refrigerant, and is sucked into the compressor 1 again.

なお、負圧防止運転時は、主膨張弁4は実質的に閉塞されているため、蒸発器5には低圧二相冷媒はほとんど流れず、外気との熱交換による冷媒の蒸発は行われない。負圧防止運転では、蒸発器5を使わないため、通常の給湯運転に比べて必要冷媒量が少なく、余剰冷媒が発生するが、本実施の形態6ではレシーバ13に余剰冷媒が貯溜される。   During the negative pressure prevention operation, the main expansion valve 4 is substantially closed, so that the low-pressure two-phase refrigerant hardly flows through the evaporator 5, and the refrigerant is not evaporated by heat exchange with the outside air. . In the negative pressure prevention operation, since the evaporator 5 is not used, the amount of refrigerant required is smaller than in the normal hot water supply operation, and surplus refrigerant is generated. However, in the sixth embodiment, surplus refrigerant is stored in the receiver 13.

以上のように、本実施の形態6に係る冷凍サイクル装置は、実施の形態5と同様の効果が得られると共に、以下の効果が得られる。すなわち、負圧防止運転時にレシーバ13に余剰冷媒を貯溜することができるため、圧縮機1の吸入側への液バック運転を防止し、信頼性の高い負圧防止運転を継続することができる。   As described above, the refrigeration cycle apparatus according to the sixth embodiment can obtain the same effects as those of the fifth embodiment and the following effects. In other words, since the excess refrigerant can be stored in the receiver 13 during the negative pressure prevention operation, the liquid back operation to the suction side of the compressor 1 can be prevented, and the highly reliable negative pressure prevention operation can be continued.

本実施の形態6は、冷媒貯留容器(ここではレシーバ13)を備えた構成であるが、冷媒貯留容器の配置は図17に示した配置に限られず、以下の変形例1、変形例2のように変形実施可能である。   The sixth embodiment has a configuration including a refrigerant storage container (here, receiver 13), but the arrangement of the refrigerant storage container is not limited to the arrangement shown in FIG. It can be modified as described above.

<変形例1>
図18は、本発明の実施の形態6に係る冷凍サイクル装置の変形例1の冷媒回路図である。
<Modification 1>
FIG. 18 is a refrigerant circuit diagram of Modification 1 of the refrigeration cycle apparatus according to Embodiment 6 of the present invention.

図18に示されるように、実施の形態6に係る冷凍サイクル装置の変形例1の冷媒回路は、図17のレシーバ13に代えて、レシーバ13aと逆止弁14とを設けたものである。その他の構成要素については図17と同じである。   As shown in FIG. 18, the refrigerant circuit of Modification 1 of the refrigeration cycle apparatus according to Embodiment 6 is provided with a receiver 13 a and a check valve 14 instead of the receiver 13 of FIG. 17. Other components are the same as those in FIG.

レシーバ13aは、運転中に発生した余剰冷媒を貯溜する冷媒貯留容器である。レシーバ13aは、凝縮器3の出口側で主回路30と並列に設けられている。言い換えれば、レシーバ13aは、凝縮器バイパス回路16の上流端と主回路30との合流部と凝縮器3の出口との間の配管に対して並列に設けられている。   The receiver 13a is a refrigerant storage container that stores excess refrigerant generated during operation. The receiver 13 a is provided in parallel with the main circuit 30 on the outlet side of the condenser 3. In other words, the receiver 13 a is provided in parallel to the pipe between the junction between the upstream end of the condenser bypass circuit 16 and the main circuit 30 and the outlet of the condenser 3.

逆止弁14は、主膨張弁4側からレシーバ13aに冷媒が流入するのを防止するものである。給湯運転中、蒸発器5に霜が付く場合があり、この場合は、リバースデフロスト運転が行われる。リバースデフロスト運転は、四方弁2を図18の点線方向に切り換え、圧縮機1を吐出した高温高圧ガス冷媒を蒸発器5に供給して、蒸発器5に付着した霜を除去する運転である。逆止弁14は、このリバースデフロスト運転時に冷媒の流入を防止するものである。   The check valve 14 prevents the refrigerant from flowing into the receiver 13a from the main expansion valve 4 side. During the hot water supply operation, the evaporator 5 may be frosted. In this case, the reverse defrost operation is performed. The reverse defrost operation is an operation in which the four-way valve 2 is switched in the direction of the dotted line in FIG. 18 and the high-temperature high-pressure gas refrigerant discharged from the compressor 1 is supplied to the evaporator 5 to remove frost attached to the evaporator 5. The check valve 14 prevents the refrigerant from flowing in during the reverse defrost operation.

次に図18を参照しながら、実施の形態6に係る冷凍サイクル装置の変形例1の冷凍サイクル動作を説明する。なお、通常の給湯運転については実施の形態5と同様であるので省略し、負圧防止運転についてのみ説明する。負圧防止運転時において、主膨張弁4が実質的に閉塞されている点は実施の形態5と同様である。   Next, the refrigeration cycle operation of Modification 1 of the refrigeration cycle apparatus according to Embodiment 6 will be described with reference to FIG. In addition, since it is the same as that of Embodiment 5 about normal hot water supply operation, it abbreviate | omits and demonstrates only negative pressure prevention operation. The point that the main expansion valve 4 is substantially closed during the negative pressure prevention operation is the same as in the fifth embodiment.

本変形例1の負圧防止運転では、低温低圧のガス状態の冷媒が圧縮機1に吸引され、圧縮されて高温高圧ガスとなって吐出される。圧縮機1から吐出された高温高圧のガス冷媒は、四方弁2を通過後、2分岐し、一方は凝縮器バイパス回路16に流入し、凝縮器バイパス弁17で減圧された後、凝縮器バイパス回路16を流出する。分岐したもう一方の高温高圧ガス冷媒は、凝縮器3へ流入する。凝縮器3に流入した高温高圧ガス冷媒は、被熱交換媒体である水に放熱し、高圧液冷媒となる。   In the negative pressure prevention operation of the first modified example, the refrigerant in a low-temperature and low-pressure gas state is sucked into the compressor 1 and compressed to be discharged as a high-temperature and high-pressure gas. The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 passes through the four-way valve 2 and branches into two branches. One of the refrigerant flows into the condenser bypass circuit 16 and is depressurized by the condenser bypass valve 17. The circuit 16 flows out. The other branched high-temperature high-pressure gas refrigerant flows into the condenser 3. The high-temperature high-pressure gas refrigerant that has flowed into the condenser 3 radiates heat to the heat exchange medium, and becomes high-pressure liquid refrigerant.

凝縮器3を流出した高圧冷媒は2分岐し、一方は主回路30へ流れ、もう一方はレシーバ13aに凝縮して貯溜される。主回路30へ流れた高圧冷媒は、凝縮器バイパス回路16を流出した高温高圧ガス冷媒と合流して高圧の乾き度が高い二相冷媒となる。この二相冷媒は吸入バイパス回路8へ流入し、吸入バイパス弁9で減圧膨張されて低温低圧のガス冷媒となり、圧縮機1に再び吸引される。   The high-pressure refrigerant that has flowed out of the condenser 3 is branched into two, one flows into the main circuit 30 and the other is condensed and stored in the receiver 13a. The high-pressure refrigerant that has flowed to the main circuit 30 merges with the high-temperature and high-pressure gas refrigerant that has flowed out of the condenser bypass circuit 16, and becomes a high-pressure two-phase refrigerant with high dryness. This two-phase refrigerant flows into the suction bypass circuit 8, is decompressed and expanded by the suction bypass valve 9, becomes a low-temperature and low-pressure gas refrigerant, and is sucked into the compressor 1 again.

なお、負圧防止運転時は、主膨張弁4は実質的に閉塞されているため、蒸発器5には低圧二相冷媒はほとんど流れず、外気との熱交換による冷媒の蒸発は行われない。負圧防止運転では、蒸発器5を使わないため、通常の給湯運転に比べて必要冷媒量が少なく、余剰冷媒が発生するが、本実施の形態6ではレシーバ13aに余剰冷媒が貯溜される。   During the negative pressure prevention operation, the main expansion valve 4 is substantially closed, so that the low-pressure two-phase refrigerant hardly flows through the evaporator 5, and the refrigerant is not evaporated by heat exchange with the outside air. . In the negative pressure prevention operation, since the evaporator 5 is not used, the amount of refrigerant required is smaller than in the normal hot water supply operation, and surplus refrigerant is generated. However, in Embodiment 6, the surplus refrigerant is stored in the receiver 13a.

以上のように、本実施の形態6に係る冷凍サイクル装置の変形例1は、レシーバ13aが凝縮器3の出口側で主回路30と並列に設けられている。このため、凝縮器3の出口が二相冷媒の状態であっても、レシーバ13aに余剰冷媒を貯溜することが可能である。よって、余剰冷媒が発生する負圧防止運転時に、圧縮機1の吸入側への液バック運転を防止し、信頼性の高い負圧防止運転を継続することができる。   As described above, in Modification 1 of the refrigeration cycle apparatus according to Embodiment 6, the receiver 13a is provided in parallel with the main circuit 30 on the outlet side of the condenser 3. For this reason, even if the outlet of the condenser 3 is in the state of a two-phase refrigerant, it is possible to store surplus refrigerant in the receiver 13a. Therefore, during the negative pressure prevention operation in which surplus refrigerant is generated, the liquid back operation to the suction side of the compressor 1 can be prevented, and the highly reliable negative pressure prevention operation can be continued.

<変形例2>
図19は、本発明の実施の形態6に係る冷凍サイクル装置の変形例2の冷媒回路図である。
<Modification 2>
FIG. 19 is a refrigerant circuit diagram of Modification 2 of the refrigeration cycle apparatus according to Embodiment 6 of the present invention.

図19に示されるように、実施の形態6に係る冷凍サイクル装置の変形例1の冷媒回路は、図17のレシーバ13に代えて、アキュームレータ15を設けたものである。なお、その他の構成要素については図17と同じである。   As shown in FIG. 19, the refrigerant circuit of Modification 1 of the refrigeration cycle apparatus according to Embodiment 6 is provided with an accumulator 15 instead of the receiver 13 of FIG. 17. Other components are the same as those in FIG.

アキュームレータ15は、圧縮機1の吸入側に設けたものであり、運転中に発生した余剰冷媒を貯溜するものである。   The accumulator 15 is provided on the suction side of the compressor 1 and stores excess refrigerant generated during operation.

次に図19を参照しながら、実施の形態6に係る冷凍サイクル装置の変形例2の動作を説明する。なお、通常の給湯運転については実施の形態1と同様であるので省略し、負圧防止運転についてのみ説明する。   Next, the operation of Modification 2 of the refrigeration cycle apparatus according to Embodiment 6 will be described with reference to FIG. Note that the normal hot water supply operation is the same as that of the first embodiment, and is omitted, and only the negative pressure prevention operation will be described.

変形例2の負圧防止運転では、低温低圧のガス状態の冷媒が圧縮機1に吸引され、圧縮されて高温高圧ガスとなって吐出される。圧縮機1から吐出された高温高圧のガス冷媒は、四方弁2を通過後、2分岐し、一方は凝縮器バイパス回路16に流入し、凝縮器バイパス弁17で減圧された後、凝縮器バイパス回路16を流出する。分岐したもう一方の高温高圧ガス冷媒は、凝縮器3へ流入する。凝縮器3に流入した高温高圧ガス冷媒は、被熱交換媒体である水に放熱し、高圧液冷媒となる。凝縮器バイパス回路16を流出した高温高圧ガス冷媒と凝縮器3を流出した高圧液冷媒とは、合流して、高圧の乾き度が高い二相冷媒となり、吸入バイパス回路8へ流入する。吸入バイパス回路8へ流入した二相冷媒は、吸入バイパス弁9で減圧膨張されて低温低圧の冷媒となり、アキュームレータ15を経由して、圧縮機1に再び吸引される。   In the negative pressure prevention operation of the modified example 2, the low-temperature and low-pressure gaseous refrigerant is sucked into the compressor 1, compressed, and discharged as high-temperature and high-pressure gas. The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 passes through the four-way valve 2 and branches into two branches. One of the refrigerant flows into the condenser bypass circuit 16 and is depressurized by the condenser bypass valve 17. The circuit 16 flows out. The other branched high-temperature high-pressure gas refrigerant flows into the condenser 3. The high-temperature high-pressure gas refrigerant that has flowed into the condenser 3 radiates heat to the heat exchange medium, and becomes high-pressure liquid refrigerant. The high-temperature and high-pressure gas refrigerant that has flowed out of the condenser bypass circuit 16 and the high-pressure liquid refrigerant that has flowed out of the condenser 3 merge to form a two-phase refrigerant with high pressure and high dryness, and flow into the suction bypass circuit 8. The two-phase refrigerant that has flowed into the suction bypass circuit 8 is decompressed and expanded by the suction bypass valve 9 to become a low-temperature and low-pressure refrigerant, and is sucked into the compressor 1 again via the accumulator 15.

なお、負圧防止運転時は、主膨張弁4は実質的に閉塞されているため、蒸発器5には低圧二相冷媒はほとんど流れず、外気との熱交換による冷媒の蒸発は行われない。   During the negative pressure prevention operation, the main expansion valve 4 is substantially closed, so that the low-pressure two-phase refrigerant hardly flows through the evaporator 5, and the refrigerant is not evaporated by heat exchange with the outside air. .

以上のように、本実施の形態6に係る冷凍サイクル装置の変形例2は、アキュームレータ15を圧縮機1の吸入側に設けたため、余剰冷媒が発生する負圧防止運転時に、アキュームレータ15に余剰冷媒を貯溜することができる。このため、圧縮機1の吸入側への液バック運転を防止し、信頼性の高い負圧防止運転を継続することができる。   As described above, in the second modification of the refrigeration cycle apparatus according to the sixth embodiment, since the accumulator 15 is provided on the suction side of the compressor 1, the excess refrigerant is supplied to the accumulator 15 during the negative pressure prevention operation in which excess refrigerant is generated. Can be stored. For this reason, the liquid back operation to the suction side of the compressor 1 can be prevented, and the highly reliable negative pressure prevention operation can be continued.

上記各実施の形態および変形例では、冷媒として、HFO−1234yfの単独冷媒、HFO−1234zeの単独冷媒、HFO−1234yfもしくはHFO−1234zeとR32とを混合した混合冷媒を用いている。なお、冷媒は、R407Cに比べて沸点が高い冷媒であればよい。また、冷媒は、R407Cに比べて地球温暖化係数が低い冷媒が好ましい。   In each of the above embodiments and modifications, a single refrigerant of HFO-1234yf, a single refrigerant of HFO-1234ze, a mixed refrigerant of HFO-1234yf or HFO-1234ze and R32 is used as the refrigerant. In addition, the refrigerant | coolant should just be a refrigerant | coolant with a high boiling point compared with R407C. In addition, the refrigerant is preferably a refrigerant having a lower global warming potential than R407C.

なお、上記各実施の形態では、冷凍サイクル装置をヒートポンプ式給湯機に適用した場合を説明したが、空気調和機等にも適用できる。   In each of the above embodiments, the case where the refrigeration cycle apparatus is applied to a heat pump type hot water heater has been described, but the present invention can also be applied to an air conditioner or the like.

1 圧縮機、2 四方弁、3 凝縮器、4 主膨張弁、5 蒸発器、6 吐出ガスバイパス回路、7 吐出ガスバイパス弁、8 吸入バイパス回路、9 吸入バイパス弁、10 二方弁、11 エジェクタ、11a ノズル、11b 絞り部、11c ディフューザ、11d 冷媒吸引部、12 吸引管、13 レシーバ、13a レシーバ、14 逆止弁、15 アキュームレータ、16 凝縮器バイパス回路、17 凝縮器バイパス弁、20 制御装置、20A 負圧防止制御手段、20B 過熱度制御手段、20a 負圧防止制御手段、20b 過熱度制御手段、21 圧縮機吸入圧力センサ、22 圧縮機吸入温度センサ、30 主回路、40 バイパス回路、41 バイパス回路。   1 Compressor, 2 Four way valve, 3 Condenser, 4 Main expansion valve, 5 Evaporator, 6 Discharge gas bypass circuit, 7 Discharge gas bypass valve, 8 Suction bypass circuit, 9 Suction bypass valve, 10 Two way valve, 11 Ejector , 11a Nozzle, 11b Throttle part, 11c Diffuser, 11d Refrigerant suction part, 12 Suction pipe, 13 Receiver, 13a Receiver, 14 Check valve, 15 Accumulator, 16 Condenser bypass circuit, 17 Condenser bypass valve, 20 Control device, 20A Negative pressure prevention control means, 20B Superheat degree control means, 20a Negative pressure prevention control means, 20b Superheat degree control means, 21 Compressor intake pressure sensor, 22 Compressor intake temperature sensor, 30 Main circuit, 40 Bypass circuit, 41 Bypass circuit.

本発明に係る冷凍サイクル装置は、圧縮機と凝縮器と主膨張弁と蒸発器とが環状に接続され、R407Cに比べて沸点が高い冷媒が循環する主回路と、圧縮機から吐出された冷媒の一部と凝縮器から流出した冷媒とを合流して圧縮機の吸入側に流入させるバイパス回路と、バイパス回路の流量を調整する負圧調整弁と、負圧調整弁を制御して圧縮機の吸入圧力が負圧になるのを防止する負圧防止運転を行う負圧防止制御手段とを備え、負圧防止制御手段は、負圧防止運転時、主膨張弁を閉じるものである。 In the refrigeration cycle apparatus according to the present invention, a compressor, a condenser, a main expansion valve, and an evaporator are connected in a ring shape, a main circuit in which a refrigerant having a higher boiling point than R407C circulates, and refrigerant discharged from the compressor A bypass circuit that joins a part of the refrigerant and the refrigerant that has flown out of the condenser to flow into the suction side of the compressor, a negative pressure adjustment valve that adjusts the flow rate of the bypass circuit, and a compressor that controls the negative pressure adjustment valve And a negative pressure prevention control means for performing a negative pressure prevention operation for preventing the suction pressure from becoming negative . The negative pressure prevention control means closes the main expansion valve during the negative pressure prevention operation .

Claims (23)

圧縮機と凝縮器と主膨張弁と蒸発器とが環状に接続され、R407Cに比べて沸点が高い冷媒が循環する主回路と、
前記圧縮機から吐出された冷媒の一部と前記凝縮器から流出した冷媒とを合流して前記圧縮機の吸入側に流入させるバイパス回路と、
前記バイパス回路の流量を調整する負圧調整弁と、
前記負圧調整弁を制御して前記圧縮機の吸入圧力が負圧になるのを防止する負圧防止運転を行う負圧防止制御手段とを備えた冷凍サイクル装置。
A main circuit in which a compressor, a condenser, a main expansion valve, and an evaporator are annularly connected, and a refrigerant having a higher boiling point than R407C circulates;
A bypass circuit for joining a part of the refrigerant discharged from the compressor and the refrigerant flowing out of the condenser to flow into the suction side of the compressor;
A negative pressure adjusting valve for adjusting the flow rate of the bypass circuit;
A refrigeration cycle apparatus comprising negative pressure prevention control means for performing a negative pressure prevention operation for controlling the negative pressure regulating valve to prevent the suction pressure of the compressor from becoming negative.
前記バイパス回路は、
前記圧縮機から吐出された冷媒の一部を吸入側にバイパスする吐出ガスバイパス回路と、前記凝縮器から流出した冷媒を前記吐出ガスバイパス回路に合流させて前記圧縮機の吸入側に流入させる吸入バイパス回路とを有し、
前記負圧調整弁は前記吐出ガスバイパス回路の流量を調整する吐出ガスバイパス弁である請求項1記載の冷凍サイクル装置。
The bypass circuit is:
A discharge gas bypass circuit that bypasses a part of the refrigerant discharged from the compressor to the suction side, and a suction that causes the refrigerant that flows out of the condenser to join the discharge gas bypass circuit and flow into the suction side of the compressor A bypass circuit,
The refrigeration cycle apparatus according to claim 1, wherein the negative pressure adjusting valve is a discharge gas bypass valve that adjusts a flow rate of the discharge gas bypass circuit.
前記圧縮機の吸入圧力を検知する圧力センサを有し、
前記負圧防止制御手段は、前記圧力センサで検知した前記吸入圧力があらかじめ設定された第1の設定値を下回る場合に前記負圧防止運転を開始して前記吐出ガスバイパス弁を制御する請求項2記載の冷凍サイクル装置。
A pressure sensor for detecting the suction pressure of the compressor;
The negative pressure prevention control means starts the negative pressure prevention operation to control the discharge gas bypass valve when the suction pressure detected by the pressure sensor is lower than a first preset value. 2. The refrigeration cycle apparatus according to 2.
前記負圧防止制御手段は、前記負圧防止運転時、前記主膨張弁を閉じると共に、前記吸入圧力があらかじめ設定された第2の設定値となるように前記吐出ガスバイパス弁の開度を調整する請求項2または請求項3記載の冷凍サイクル装置。   The negative pressure prevention control means closes the main expansion valve during the negative pressure prevention operation and adjusts the opening of the discharge gas bypass valve so that the suction pressure becomes a second preset value. The refrigeration cycle apparatus according to claim 2 or claim 3. 前記吸入バイパス回路の流量を調整して前記圧縮機の吸入ガスの過熱度を制御する吸入バイパス弁をさらに有する請求項2〜請求項4のいずれか一項に記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to any one of claims 2 to 4, further comprising a suction bypass valve that adjusts a flow rate of the suction bypass circuit to control a degree of superheat of the suction gas of the compressor. 前記圧縮機の吸入ガスの過熱度が、あらかじめ設定された第3の設定値となるように、前記吸入バイパス弁の開度を調整する過熱度制御手段をさらに備えた請求項5記載の冷凍サイクル装置。   6. The refrigeration cycle according to claim 5, further comprising a superheat degree control means for adjusting an opening degree of the suction bypass valve so that a superheat degree of the suction gas of the compressor becomes a preset third set value. apparatus. 前記主回路は、前記圧縮機から吐出された冷媒の流れ方向を切り替える四方弁をさらに備えた請求項1〜請求項6のいずれか一項に記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to any one of claims 1 to 6, wherein the main circuit further includes a four-way valve that switches a flow direction of the refrigerant discharged from the compressor. 前記四方弁と前記蒸発器との間に二方弁を備えたことを特徴とする請求項7記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to claim 7, further comprising a two-way valve between the four-way valve and the evaporator. 前記負圧防止制御手段は、前記負圧防止運転時に前記二方弁を閉止することを特徴とする請求項8記載の冷凍サイクル装置。   9. The refrigeration cycle apparatus according to claim 8, wherein the negative pressure prevention control means closes the two-way valve during the negative pressure prevention operation. 前記バイパス回路において、前記圧縮機から吐出された冷媒の一部を吸入側にバイパスする吐出ガスバイパス回路に設けられたエジェクタと、
前記蒸発器と前記四方弁との間の冷媒を前記エジェクタの吸引部に吸引させる吸引回路とを備えた請求項7記載の冷凍サイクル装置。
In the bypass circuit, an ejector provided in a discharge gas bypass circuit that bypasses a part of the refrigerant discharged from the compressor to the suction side;
The refrigeration cycle apparatus according to claim 7, further comprising a suction circuit that sucks a refrigerant between the evaporator and the four-way valve into a suction portion of the ejector.
前記凝縮器の出口側にレシーバを有する請求項1〜請求項9のいずれか一項に記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to any one of claims 1 to 9, further comprising a receiver on an outlet side of the condenser. 前記凝縮器の出口側に前記主回路と並列にレシーバを有する請求項1〜請求項9のいずれか一項に記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to any one of claims 1 to 9, further comprising a receiver in parallel with the main circuit on an outlet side of the condenser. 前記圧縮機吸入側にアキュームレータを有する請求項1〜請求項9のいずれか一項に記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to any one of claims 1 to 9, further comprising an accumulator on the compressor suction side. 前記バイパス回路は、
前記圧縮機から吐出された冷媒の一部を前記凝縮器の出口側にバイパスする凝縮器バイパス回路と、前記凝縮器バイパス回路および前記凝縮器から流出した冷媒を合流して前記圧縮機の吸入側にバイパスする吸入バイパス回路とを有し、
前記負圧調整弁は前記吸入バイパス回路の流量を調整する吸入バイパス弁である請求項1記載の冷凍サイクル装置。
The bypass circuit is:
A condenser bypass circuit that bypasses a part of the refrigerant discharged from the compressor to the outlet side of the condenser, and a refrigerant that flows out of the condenser bypass circuit and the condenser and joins the suction side of the compressor A suction bypass circuit for bypassing
The refrigeration cycle apparatus according to claim 1, wherein the negative pressure adjusting valve is a suction bypass valve that adjusts a flow rate of the suction bypass circuit.
前記圧縮機の吸入圧力を検知する圧力センサを有し、
前記負圧防止制御手段は、前記圧力センサで検知した前記吸入圧力があらかじめ設定された第1の設定値を下回る場合に前記負圧防止運転を開始して前記吸入バイパス弁を制御する請求項14記載の冷凍サイクル装置。
A pressure sensor for detecting the suction pressure of the compressor;
The negative pressure prevention control means starts the negative pressure prevention operation and controls the suction bypass valve when the suction pressure detected by the pressure sensor is lower than a first preset value. The refrigeration cycle apparatus described.
前記負圧防止制御手段は、前記負圧防止運転時、前記主膨張弁を閉じると共に、前記吸入圧力があらかじめ設定された第2の設定値となるように前記吸入バイパス弁の開度を調整する請求項14または請求項15記載の冷凍サイクル装置。   The negative pressure prevention control means closes the main expansion valve during the negative pressure prevention operation and adjusts the opening of the suction bypass valve so that the suction pressure becomes a second preset value. The refrigeration cycle apparatus according to claim 14 or claim 15. 前記凝縮器バイパス回路の流量を調整して前記圧縮機の吸入ガスの過熱度を制御する凝縮器バイパス弁をさらに有する請求項14〜請求項16のいずれか一項に記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to any one of claims 14 to 16, further comprising a condenser bypass valve that adjusts a flow rate of the condenser bypass circuit to control a degree of superheat of the suction gas of the compressor. 前記圧縮機の吸入ガスの過熱度が、あらかじめ設定された第3の設定値となるように前記凝縮器バイパス弁の開度を調整する過熱度制御手段をさらに備えた請求項17記載の冷凍サイクル装置。   18. The refrigeration cycle according to claim 17, further comprising a superheat degree control means for adjusting an opening degree of the condenser bypass valve so that a superheat degree of the suction gas of the compressor becomes a preset third set value. apparatus. 前記主回路は、前記圧縮機から吐出された冷媒の流れ方向を切り替える四方弁をさらに備えた請求項14〜請求項18のいずれか一項に記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to any one of claims 14 to 18, wherein the main circuit further includes a four-way valve that switches a flow direction of the refrigerant discharged from the compressor. 前記凝縮器の出口側にレシーバを有する請求項14〜請求項19のいずれか一項に記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to any one of claims 14 to 19, further comprising a receiver on an outlet side of the condenser. 前記凝縮器の出口側に前記主回路と並列にレシーバを有する請求項14〜請求項19のいずれか一項に記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to any one of claims 14 to 19, further comprising a receiver in parallel with the main circuit on an outlet side of the condenser. 前記圧縮機吸入側にアキュームレータを有することを特徴とする請求項14〜請求項19のいずれか一項に記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to any one of claims 14 to 19, further comprising an accumulator on the compressor suction side. 前記冷媒は、HFO−1234yfの単独冷媒、HFO−1234zeの単独冷媒、HFO−1234yfまたはHFO−1234zeを含む混合冷媒のいずれかである請求項1〜請求項22のいずれか一項に記載の冷凍サイクル装置。   The refrigeration according to any one of claims 1 to 22, wherein the refrigerant is any one of a single refrigerant of HFO-1234yf, a single refrigerant of HFO-1234ze, and a mixed refrigerant containing HFO-1234yf or HFO-1234ze. Cycle equipment.
JP2016569194A 2015-01-16 2015-01-16 Refrigeration cycle equipment Active JP6275283B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/051068 WO2016113899A1 (en) 2015-01-16 2015-01-16 Refrigeration cycle device

Publications (2)

Publication Number Publication Date
JPWO2016113899A1 true JPWO2016113899A1 (en) 2017-07-13
JP6275283B2 JP6275283B2 (en) 2018-02-07

Family

ID=56405460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016569194A Active JP6275283B2 (en) 2015-01-16 2015-01-16 Refrigeration cycle equipment

Country Status (3)

Country Link
EP (1) EP3246637B1 (en)
JP (1) JP6275283B2 (en)
WO (1) WO2016113899A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3524904A1 (en) * 2018-02-06 2019-08-14 Carrier Corporation Hot gas bypass energy recovery
JP7303413B2 (en) * 2018-09-28 2023-07-05 ダイキン工業株式会社 heat pump equipment
CN109140840A (en) * 2018-11-02 2019-01-04 西安交通大学 A kind of air conditioner and control method using suction and discharge bypass line
CN109373636B (en) * 2018-11-09 2023-07-04 珠海格力电器股份有限公司 System and method for preventing liquid impact
KR20200097127A (en) 2019-02-07 2020-08-18 삼성전자주식회사 Air conditioner system comprising refrigerant cycle circuitry for oil flow blocking
US20220205662A1 (en) * 2019-07-25 2022-06-30 Mitsubishi Electric Corporation Air-conditioning apparatus
CN110736204B (en) * 2019-09-25 2021-11-23 青岛海尔空调器有限总公司 Control method and control device for defrosting of air conditioner and air conditioner
CN114761738B (en) * 2019-11-22 2024-04-09 株式会社电装 Refrigeration cycle device
JP7298580B2 (en) * 2019-11-22 2023-06-27 株式会社デンソー refrigeration cycle equipment
WO2021166494A1 (en) * 2020-02-20 2021-08-26 株式会社デンソー Refrigeration cycle device
CN111536722A (en) * 2020-05-26 2020-08-14 广东省现代农业装备研究所 Defrosting method and device for supercooling refrigerant of main path of refrigeration cycle
CN113639415B (en) * 2021-07-23 2023-05-26 青岛海尔空调电子有限公司 Method and device for defrosting air conditioner and air conditioner
JP2023075844A (en) * 2021-11-19 2023-05-31 サンデン株式会社 vehicle air conditioner

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0703422A2 (en) * 1994-09-21 1996-03-27 Bosch-Siemens HausgerÀ¤te GmbH Freezing apparatus
JP2001280669A (en) * 2000-03-30 2001-10-10 Mitsubishi Electric Corp Refrigerating cycle device
US20060107671A1 (en) * 2004-11-24 2006-05-25 Hoshizaki Denki Kabushiki Kaisha Cooling device
JP2009041845A (en) * 2007-08-09 2009-02-26 Panasonic Corp Operation control method of multi-room type air conditioner
JP2010007874A (en) * 2008-06-24 2010-01-14 Mitsubishi Electric Corp Refrigerating cycle device
JP2012117760A (en) * 2010-12-01 2012-06-21 Tokyo Electric Power Co Inc:The Heat pump and heat supply system
WO2014112615A1 (en) * 2013-01-21 2014-07-24 東芝キヤリア株式会社 Binary refrigeration cycle device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2517071B2 (en) * 1988-08-17 1996-07-24 日本電信電話株式会社 Cooling device and its control method
JPH1114165A (en) * 1997-06-25 1999-01-22 Mitsubishi Heavy Ind Ltd Air-conditioner
US6711906B2 (en) * 2001-04-20 2004-03-30 Hankison International Variable evaporator control for a gas dryer
KR100471723B1 (en) * 2002-05-17 2005-03-08 삼성전자주식회사 Air conditioner and control method thereof
JP4597180B2 (en) * 2007-11-06 2010-12-15 本田技研工業株式会社 Vehicle air conditioning system
WO2009091401A1 (en) * 2008-01-17 2009-07-23 Carrier Corporation Capacity modulation of refrigerant vapor compression system
US9453669B2 (en) * 2009-12-08 2016-09-27 Thermo King Corporation Method of controlling inlet pressure of a refrigerant compressor
WO2012127834A1 (en) * 2011-03-18 2012-09-27 パナソニック株式会社 Refrigeration cycle device
JP5754627B2 (en) * 2011-04-25 2015-07-29 株式会社大気社 Fluid cooling method and fluid cooling device
JP2013184592A (en) * 2012-03-08 2013-09-19 Denso Corp Refrigerating cycle device for air-conditioning vehicle and for temperature-conditioning parts constituting vehicle
JP5972024B2 (en) * 2012-04-25 2016-08-17 三菱電機株式会社 Refrigeration equipment
CN104254743B (en) * 2012-04-27 2016-04-27 三菱电机株式会社 Conditioner
JP5962596B2 (en) * 2013-06-18 2016-08-03 株式会社デンソー Ejector refrigeration cycle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0703422A2 (en) * 1994-09-21 1996-03-27 Bosch-Siemens HausgerÀ¤te GmbH Freezing apparatus
JP2001280669A (en) * 2000-03-30 2001-10-10 Mitsubishi Electric Corp Refrigerating cycle device
US20060107671A1 (en) * 2004-11-24 2006-05-25 Hoshizaki Denki Kabushiki Kaisha Cooling device
JP2009041845A (en) * 2007-08-09 2009-02-26 Panasonic Corp Operation control method of multi-room type air conditioner
JP2010007874A (en) * 2008-06-24 2010-01-14 Mitsubishi Electric Corp Refrigerating cycle device
JP2012117760A (en) * 2010-12-01 2012-06-21 Tokyo Electric Power Co Inc:The Heat pump and heat supply system
WO2014112615A1 (en) * 2013-01-21 2014-07-24 東芝キヤリア株式会社 Binary refrigeration cycle device

Also Published As

Publication number Publication date
WO2016113899A1 (en) 2016-07-21
EP3246637A1 (en) 2017-11-22
EP3246637A4 (en) 2018-12-26
EP3246637B1 (en) 2021-06-16
JP6275283B2 (en) 2018-02-07

Similar Documents

Publication Publication Date Title
JP6275283B2 (en) Refrigeration cycle equipment
US9200820B2 (en) Heat pump apparatus with ejector cycle
US10845095B2 (en) Air-conditioning apparatus
US10247454B2 (en) Refrigerating apparatus
US10208987B2 (en) Heat pump with an auxiliary heat exchanger for compressor discharge temperature control
US10161647B2 (en) Air-conditioning apparatus
EP3301380B1 (en) Refrigeration cycle device and refrigeration cycle device control method
JPWO2009150761A1 (en) Refrigeration cycle apparatus and control method thereof
EP3109566B1 (en) Air conditioning device
GB2554560A (en) Refrigeration apparatus
US20170234582A1 (en) Air-conditioning apparatus
JP6463464B2 (en) Refrigeration cycle equipment
EP3351870A1 (en) Refrigerant circuit system and control method
US11796212B2 (en) Air-conditioning apparatus
JP2011099571A (en) Refrigerating cycle device and hot-water heating device using the same
EP3220078A1 (en) Refrigeration cycle device and hot water heating device provided with the same
JP6797262B2 (en) Refrigeration cycle equipment
JP6588645B2 (en) Refrigeration cycle equipment
JP2013217602A (en) Heat source device, refrigeration air conditioner, and control device
EP1235043A1 (en) Refrigerating device
JP2018059665A (en) Refrigerant circuit system and control method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170308

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180109

R150 Certificate of patent or registration of utility model

Ref document number: 6275283

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250