JPWO2016108256A1 - Pseudoparticles for sintering and method for producing the same - Google Patents

Pseudoparticles for sintering and method for producing the same Download PDF

Info

Publication number
JPWO2016108256A1
JPWO2016108256A1 JP2016567293A JP2016567293A JPWO2016108256A1 JP WO2016108256 A1 JPWO2016108256 A1 JP WO2016108256A1 JP 2016567293 A JP2016567293 A JP 2016567293A JP 2016567293 A JP2016567293 A JP 2016567293A JP WO2016108256 A1 JPWO2016108256 A1 JP WO2016108256A1
Authority
JP
Japan
Prior art keywords
raw material
iron ore
alkali metal
mass
limestone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016567293A
Other languages
Japanese (ja)
Other versions
JP6187712B2 (en
Inventor
寿幸 廣澤
寿幸 廣澤
隆英 樋口
隆英 樋口
山本 哲也
哲也 山本
大山 伸幸
伸幸 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JPWO2016108256A1 publication Critical patent/JPWO2016108256A1/en
Application granted granted Critical
Publication of JP6187712B2 publication Critical patent/JP6187712B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/242Binding; Briquetting ; Granulating with binders
    • C22B1/243Binding; Briquetting ; Granulating with binders inorganic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

焼結鉱における被還元性のさらなる改善をはかる。高炉用焼結鉱の製造に供する、少なくとも鉄鉱石原料、石灰石系原料および固体燃料系原料を含む焼結用擬似粒子であって、前記鉄鉱石原料を核として、該核の周囲に前記石灰石系原料および固体燃料系原料を配してなり、前記鉄鉱石原料の核は、アルカリ金属の含有率が0.05mass%未満の鉄鉱石とアルカリ金属の含有率が0.05mass%以上の鉄鉱石と含むものとする。Further improve the reducibility of sintered ore. A quasi-particle for sintering that includes at least an iron ore raw material, a limestone-based raw material, and a solid fuel-based raw material for use in the production of a blast furnace sintered ore, the iron ore raw material as a core, and the limestone system around the core The core of the iron ore raw material includes iron ore having an alkali metal content of less than 0.05 mass% and iron ore having an alkali metal content of 0.05 mass% or more. .

Description

本発明は、例えば下方吸引のドワイトロイド式焼結機を用いて高炉用焼結鉱を製造する際に該ドワイトロイド式焼結機のパレット上に焼結用原料として供する焼結用擬似粒子およびその製造方法に関するものである。   The present invention relates to, for example, a pseudo particle for sintering provided as a raw material for sintering on a pallet of a dwy toroid type sintering machine when a sintered ore for blast furnace is produced using a dwy toroid type sintering machine with downward suction, and It relates to the manufacturing method.

高炉用原料として用いられる焼結鉱は、次のような焼結原料の処理方法を経て製造されるのが一般的である。例えば、図1に示すように、まず、粒径が10mm以下の鉄鉱石、粒径が10mm以下の珪石、蛇紋岩または、ニッケルスラグなどからなるSiO2含有原料、粉状のCaOを含有する石灰石系原料および粉状のコークスまたは、無煙炭などの熱源となる固体燃料系原料を、ドラムミキサーにおいて、これら原料に適当量の水分を添加して混合、造粒して擬似粒子と呼ばれる造粒物を形成する。この造粒物からなる配合原料は、ドワイトロイド式焼結機のパレット上に適当な厚さ、例えば500〜700mmになるように装入し、その表層部の固体燃料に着火し、着火後は下方に向けて空気を吸引しながら固体燃料を燃焼させ、その燃焼熱によって配合した焼結原料を焼結させて焼結ケーキとする。この焼結ケーキは破砕、整粒され、一定の粒径以上の焼結鉱を得る一方、それ未満の粒径を有するものは返鉱となり、焼結原料として再使用される。In general, sintered ore used as a raw material for a blast furnace is manufactured through the following processing method of a sintered raw material. For example, as shown in FIG. 1, first, a particle size of 10mm or less of iron ore, grain size 10mm following silica, serpentinite or, SiO 2 containing material made of nickel slag, limestone containing powdered CaO In a drum mixer, an appropriate amount of water is added to a raw material and a solid fuel system raw material that serves as a heat source such as powdered coke or anthracite, and the resulting mixture is granulated by mixing and granulating it. Form. The blended raw material consisting of this granulated material is charged onto a pallet of a dweroid-type sintering machine so as to have an appropriate thickness, for example, 500 to 700 mm. Solid fuel is combusted while sucking air downward, and the sintered raw material blended by the combustion heat is sintered to form a sintered cake. This sintered cake is crushed and sized to obtain sintered ore having a certain particle size or larger, while those having a particle size smaller than that are returned to ore and reused as a sintering raw material.

このように製造される焼結鉱は、とくに高炉の操業を大きく左右する因子となる、被還元性が良好であることが重要である。通常、焼結鉱の被還元性は、JIS M8713(JIS:Japanese Industrial Standard,以下JISと称す)で定義されており、ここでは、焼結鉱の被還元性をJIS−RIと記す。図2に示すように、焼結鉱の被還元性(JIS−RI)と高炉でのガス利用率(ηco)との間には正の相関があり、この高炉でのガス利用率と燃料比との間には、図3に示すように負の相関がある。このため、焼結鉱の被還元性(JIS−RI)は、高炉でのガス利用率(ηco)を介して燃料比と良好な負の相関があり、焼結鉱の被還元性を向上させると、高炉での燃料比は低下することになる。
ここで、ガス利用率(ηco)と燃料比は、下記のとおり定義される。
ηco=CO2(%)/(CO(%)+CO2(%))
なお、CO2(%)、CO(%)は、いずれも高炉の炉頂ガス中の体積%である。
燃料比=(石炭+コークスの使用量(kg/日))/銑鉄の生産量 (t/日)
It is important that the sintered ore produced in this way has good reducibility, which is a factor that greatly affects the operation of the blast furnace. Usually, the reducibility of sintered ore is defined by JIS M8713 (JIS: Japanese Industrial Standard, hereinafter referred to as JIS). Here, the reducibility of sintered ore is described as JIS-RI. As shown in FIG. 2, there is a positive correlation between the reducibility of sinter (JIS-RI) and the gas utilization rate (ηco) in the blast furnace, and the gas utilization rate and fuel ratio in this blast furnace. As shown in FIG. 3, there is a negative correlation. For this reason, the reducibility (JIS-RI) of the sintered ore has a good negative correlation with the fuel ratio through the gas utilization rate (ηco) in the blast furnace, and improves the reducibility of the sintered ore. As a result, the fuel ratio in the blast furnace decreases.
Here, the gas utilization rate (ηco) and the fuel ratio are defined as follows.
ηco = CO 2 (%) / (CO (%) + CO 2 (%))
Note that CO 2 (%) and CO (%) are both volume% in the top gas of the blast furnace.
Fuel ratio = (coal + coke consumption (kg / day)) / pig iron production (t / day)

さらに、焼結鉱の冷間強度も高炉での通気性を確保する上で重要な因子であり、高炉毎に冷間強度の下限基準を設けて、操業を行っている。
したがって、高炉用原料として望ましい焼結鉱とは、被還元性に優れ、かつ冷間強度が高いものであると言える。
ここで、表1に焼結鉱を形成する主要鉱物組織であるカルシウムフェライト(CF):nCaO・Fe23、ヘマタイト(He):Fe23、FeOを含有するカルシウムシリケート(CS):CaO・xFeO・y SiO2、マグネタイト(Mg):Fe34の4つの被還元性、引張強さ(冷間強度)を示す。なお、引張強さは、円盤形の鉱石試験片を作製し、圧裂引張試験方法(radial compression testまたは、Brazilian test)で規定された方法で測定した。表1に示すように、被還元性の高いものはヘマタイト(He)であり、引張強さの高いものはカルシウムフェライト(CF)である。
Furthermore, the cold strength of the sintered ore is also an important factor for ensuring air permeability in the blast furnace, and operations are performed with a lower limit standard for cold strength for each blast furnace.
Therefore, it can be said that the sintered ore desirable as a blast furnace raw material is excellent in reducibility and has high cold strength.
Here, calcium ferrite (CS) containing calcium ferrite (CF): nCaO.Fe 2 O 3 and hematite (He): Fe 2 O 3 , FeO, which are main mineral structures forming sintered ore in Table 1. Four reducibility and tensile strength (cold strength) of CaO.xFeO.ySiO 2 and magnetite (Mg): Fe 3 O 4 are shown. The tensile strength was measured by a disk-shaped ore test piece and measured by a method specified by a compression test method (radial compression test or Brazilian test). As shown in Table 1, hematite (He) has a high reducibility, and calcium ferrite (CF) has a high tensile strength.

Figure 2016108256
Figure 2016108256

従って、焼結鉱に適した焼結組織は、図4に模式で示すように、塊表面に強度の高いカルシウムフェライト(CF)を生成させ、かつ塊内部に向かって被還元性の高いヘマタイト(He)を生成させたものであり、被還元性や強度が低いFeOを含有するカルシウムシリケート(CS)は可能な限り生成させないことが好ましい。しかし、従来は、ほとんどの焼結機において、前述のように、鉄鉱石、SiO2含有原料、石灰石系原料、固体燃料系原料を同時に混合しているため、図5に示すように、原料を混合して造粒した擬似粒子構造では粗粒の核鉱石の周囲に粉鉱石、石灰、コークスが混在しており、該擬似粒子を焼結して得られた焼結鉱構造ではヘマタイト(He)、カルシウムフェライト(CF)、FeOを含有するカルシウムシリケート(CS)、マグネタイト(Mg)の4つの鉱物組織が混在することになる。Therefore, as schematically shown in FIG. 4, the sintered structure suitable for the sintered ore generates calcium ferrite (CF) having high strength on the surface of the lump, and hematite having high reducibility toward the inside of the lump ( It is preferable that calcium silicate (CS) containing FeO having a reduced reducibility and strength is not generated as much as possible. However, conventionally, in most sintering machines, as described above, iron ore, SiO 2 -containing material, limestone-based material, and solid fuel-based material are mixed at the same time, as shown in FIG. In the mixed and granulated pseudo-particle structure, coarse ore, lime and coke are mixed around the coarse-grained ore. In the sintered ore structure obtained by sintering the pseudo-particle, hematite (He) , Calcium ferrite (CF), calcium silicate (CS) containing FeO, and magnetite (Mg) are mixed together.

そこで、これまでにカルシウムフェライト(CF)とヘマタイト(He)を多く生成する方法が試みられてきた。例えば、FeOを含有するカルシウムシリケート(CS)は高温で焼結した場合に多く生成することから、特許文献1に記載の技術では粉状の鉄鉱石にバインダや石灰石を加えて造粒した後に、熱源である粉コークスを表面に被覆することでコークスの燃焼性を改善し、低温で焼結させて被還元性を向上する技術が提案されている。
しかしながら、ここで提案された従来方法では、CaOと鉄系原料中のSiO2やSiO2系原料が近接しているため、どうしてもFeOを含有するカルシウムシリケート(CS)が多く生成してしまい、カルシウムフェライト(CF)とヘマタイト(He)を主体とする構造には必ずしもならない場合が多かった。
Thus, methods for generating a large amount of calcium ferrite (CF) and hematite (He) have been attempted so far. For example, since calcium silicate (CS) containing FeO is often produced when sintered at a high temperature, in the technique described in Patent Document 1, after granulating by adding a binder or limestone to powdered iron ore, Techniques have been proposed in which the coke flammability is improved by coating the surface with powder coke, which is a heat source, and the reducibility is improved by sintering at low temperatures.
However, in the conventional method proposed here, CaO and SiO 2 in the iron-based material and the SiO 2- based material are close to each other, so that a large amount of calcium silicate (CS) containing FeO is inevitably produced. In many cases, the structure mainly composed of ferrite (CF) and hematite (He) is not always obtained.

前記した従来の問題点を解決するため、特許文献2には、焼結鉱を製造するプロセスの事前処理として膨大な設備を必要とせず、鉄鉱石原料を石灰石系原料と固体燃料系原料から分離した、積層構造の擬似粒子を原料として供することにより、表面には強度の高いカルシウムフェライト(CF)を、一方内部に向かっては被還元性の高いヘマタイト(He)を、選択的に生成させた構造の焼結鉱を製造することができ、かくして得られた焼結鉱は、冷間強度が向上し、かつ被還元性が改善することが提案されている。   In order to solve the above-described conventional problems, Patent Document 2 discloses that iron ore raw material is separated from limestone-based raw material and solid fuel-based raw material without requiring a large amount of equipment as a pretreatment of a process for producing sintered ore. In addition, by using pseudo particles having a laminated structure as a raw material, calcium ferrite (CF) having high strength was selectively generated on the surface, and hematite (He) having high reducibility was selectively generated toward the inside. It has been proposed that a sintered ore having a structure can be produced, and the sinter thus obtained has improved cold strength and improved reducibility.

特開平63−149331号公報Japanese Patent Laid-Open No. 63-149331 国際公開2001−92588号公報International Publication 2001-92588

特許文献2に記載の技術では、図6に示すように、SiO2を多く含有する鉄鉱石やSiO2含有原料を、石灰石系原料と固体燃料系原料から分離した擬似粒子を焼結鉱の製造に用いれば、焼結過程において、CaOとSiO2との反応を遅らせ、被還元性が悪くかつ冷間強度も低いFeOを含有するカルシウムシリケート(CS)の生成を抑制することができる。従って、焼結鉱表面に強度の高いカルシウムフェライト(CF)を、焼結鉱内部に向かっては被還元性の高いヘマタイト(He)を選択的に生成させた焼結鉱が得られる。In the technique described in Patent Document 2, as shown in FIG. 6, the iron ore and SiO 2 containing material containing a large amount of SiO 2, the pseudo particles separated from the limestone-based raw material and solid fuel based material sintered ore production If it is used, it is possible to delay the reaction between CaO and SiO 2 in the sintering process, and to suppress the formation of calcium silicate (CS) containing FeO having poor reducibility and low cold strength. Accordingly, it is possible to obtain a sintered ore in which calcium ferrite (CF) having high strength is selectively formed on the surface of the sintered ore and hematite (He) having high reducibility is selectively generated toward the inside of the sintered ore.

特許文献2に記載の焼結用擬似粒子を適用することによって、被還元性に優れ、かつ冷間強度の高い焼結鉱が得られるが、高炉での焼結鉱の還元性を更に向上させて高炉の低還元比操業(低RAR(Reduction Agent Ratio):銑鉄1t製造当たりにおける羽口からの吹き込み還元材と炉頂から装入されるコークスの合計量を低くした操業)を達成するためには、焼結鉱における被還元性(JIS−RI)のさらなる改善が希求されていた。   By applying the sintering pseudo-particles described in Patent Document 2, a sintered ore having excellent reducibility and high cold strength can be obtained, but the reducibility of the sintered ore in the blast furnace is further improved. To achieve a low reduction ratio operation (low RAR (Reduction Agent Ratio)) of the blast furnace with a reduced total amount of reducing material blown from the tuyere and coke charged from the top of the pig iron Therefore, further improvement of reducibility (JIS-RI) in sintered ore has been desired.

発明者らは、鉄鉱石原料を石灰石系原料および固体燃料系原料から分離した、積層構造の焼結用擬似粒子を用いて製造した焼結鉱の、特に被還元性を向上する方途について鋭意究明したところ、鉄鉱石原料に特定範囲量のアルカリ金属を含有させることが前記積層構造焼結用擬似粒子の利点を増長するのに有効であるとの新規知見を得るに到った。   The inventors have intensively studied how to improve the reducibility of sintered ore produced by using pseudo-particles for sintering having a laminated structure in which iron ore materials are separated from limestone and solid fuel materials. As a result, the inventors have obtained new knowledge that it is effective to increase the advantages of the pseudo-particles for laminating a laminated structure by including a specific range amount of alkali metal in the iron ore raw material.

すなわち、本発明の要旨構成は、次のとおりである。
1.高炉用焼結鉱の製造に供する、少なくとも鉄鉱石原料、石灰石系原料および固体燃料系原料を含む焼結用擬似粒子であって、
前記鉄鉱石原料を核として、該核の周囲に前記石灰石系原料および固体燃料系原料を配してなり、
前記鉄鉱石原料の核は、アルカリ金属の含有率が0.05mass%以上の鉄鉱石を含有する焼結用擬似粒子。
That is, the gist configuration of the present invention is as follows.
1. A pseudo-particle for sintering, which includes at least an iron ore raw material, a limestone-based raw material, and a solid fuel-based raw material, which is used for the production of a blast furnace sintered ore,
With the iron ore raw material as a core, the limestone-based raw material and the solid fuel-based raw material are arranged around the core,
The core of the iron ore raw material is a pseudo-particle for sintering containing iron ore having an alkali metal content of 0.05 mass% or more.

ここで、アルカリ金属としては、リチウム、ナトリウム、カリウム、ルビジウムおよびセシウムが挙げられるが、中でもナトリウムおよびカリウムが焼結鉱用鉄鉱石原料に適当である。   Here, examples of the alkali metal include lithium, sodium, potassium, rubidium, and cesium. Among them, sodium and potassium are suitable as iron ore raw materials for sintered ore.

2.前記鉄鉱石原料の核は、アルカリ金属の含有率が0.05mass%未満の鉄鉱石による第一層と、該第一層の表面を覆うアルカリ金属の含有率が0.05mass%以上の鉄鉱石による第二層とを有する前記1に記載の焼結用擬似粒子。 2. The core of the iron ore raw material includes a first layer of iron ore having an alkali metal content of less than 0.05 mass% and an iron ore having an alkali metal content of 0.05 mass% or more covering the surface of the first layer. The pseudo-particle for sintering according to 1 above, comprising two layers.

3.前記鉄鉱石原料の核は、アルカリ金属の含有率が0.05mass%以上の鉄鉱石による第一層と、該第一層の表面を覆うアルカリ金属の含有率が0.05mass%未満の鉄鉱石による第二層とを有する前記1に記載の焼結用擬似粒子。 3. The core of the iron ore raw material includes a first layer of iron ore having an alkali metal content of 0.05 mass% or more and an iron ore having an alkali metal content of less than 0.05 mass% covering the surface of the first layer. The pseudo-particle for sintering according to 1 above, comprising two layers.

4.前記鉄鉱石原料は、アルカリ金属の含有率が0.05mass%以上の鉄鉱石を20mass%以上含有する前記1から3のいずれかに記載の焼結用擬似粒子。 4). 4. The sintered pseudo particle according to any one of 1 to 3, wherein the iron ore material contains 20 mass% or more of iron ore having an alkali metal content of 0.05 mass% or more.

5.前記アルカリ金属の含有率が0.05mass%以上の鉄鉱石は平均粒径が2mm以上であり、前記アルカリ金属の含有率が0.05mass%未満の鉄鉱石は平均粒径が2mm未満である前記1から4のいずれかに記載の焼結用擬似粒子。 5. The iron ore having an alkali metal content of 0.05 mass% or more has an average particle diameter of 2 mm or more, and the iron ore having an alkali metal content of less than 0.05 mass% has an average particle diameter of less than 2 mm. 4. The pseudo particle for sintering according to any one of 4 above.

6.前記アルカリ金属の含有率が0.05mass%以上の鉄鉱石は、アルカリ金属の含有率が0.30mass%以下である前記1から5のいずれかに記載の焼結用擬似粒子。 6). The pseudo-particle for sintering according to any one of 1 to 5, wherein the iron ore having an alkali metal content of 0.05 mass% or more has an alkali metal content of 0.30 mass% or less.

7.前記核の周囲に前記石灰石系原料および固体燃料系原料を積層して配してなる前記1から6のいずれかに記載の焼結用擬似粒子。 7). 7. The pseudo particle for sintering according to any one of 1 to 6 above, wherein the limestone raw material and the solid fuel raw material are laminated around the core.

8.前記核の周囲に前記石灰石系原料および固体燃料系原料の混合層を配してなる前記1から7のいずれかに記載の焼結用擬似粒子。 8). 8. The pseudo particle for sintering according to any one of 1 to 7 above, wherein a mixed layer of the limestone-based raw material and the solid fuel-based raw material is disposed around the core.

9.高炉用焼結鉱の製造に供する、少なくとも鉄鉱石原料、石灰石系原料および固体燃料系原料を混合して造粒するに際し、
アルカリ金属を0.05mass%以上含有する鉄鉱石を含む鉄鉱石原料を混合して造粒した後に、該粒に石灰石系原料および固体燃料系原料を付着させて造粒する焼結用擬似粒子の製造方法。
9. At the time of mixing and granulating at least iron ore raw material, limestone raw material and solid fuel raw material for production of blast furnace sintered ore,
Manufacture of pseudo-particles for sintering in which iron ore raw materials containing iron ore containing 0.05 mass% or more of alkali metal are mixed and granulated, and then granulated by attaching limestone raw materials and solid fuel raw materials to the particles Method.

10.高炉用焼結鉱の製造に供する、少なくとも鉄鉱石原料、石灰石系原料および固体燃料系原料を混合して造粒するに際し、
アルカリ金属の含有率が0.05mass%未満の鉄鉱石およびSiO2含有原料を混合、造粒して第一層を形成し、該第一層の表面にアルカリ金属の含有率が0.05mass%以上の鉄鉱石を付着させてから造粒して第二層を形成し、該第二層の表面に石灰石系原料および固体燃料系原料を付着させて造粒する焼結用擬似粒子の製造方法。
10. At the time of mixing and granulating at least iron ore raw material, limestone raw material and solid fuel raw material for production of blast furnace sintered ore,
An iron ore having an alkali metal content of less than 0.05 mass% and an SiO 2 -containing raw material are mixed and granulated to form a first layer, and the alkali metal content of 0.05 mass% or more is formed on the surface of the first layer. A method for producing pseudo particles for sintering, in which iron ore is adhered and then granulated to form a second layer, and a limestone-based material and a solid fuel-based material are adhered to the surface of the second layer and granulated.

11.高炉用焼結鉱の製造に供する、少なくとも鉄鉱石原料、石灰石系原料および固体燃料系原料を混合して造粒するに際し、
アルカリ金属の含有率が0.05mass%以上の鉄鉱石を混合、造粒して第一層を形成し、該第一層の表面にアルカリ金属の含有率が0.05mass%未満の鉄鉱石を付着させてから造粒して第二層を形成し、該第二層の表面に石灰石系原料および固体燃料系原料を付着させて造粒する焼結用擬似粒子の製造方法。
11. At the time of mixing and granulating at least iron ore raw material, limestone raw material and solid fuel raw material for production of blast furnace sintered ore,
Iron ore with an alkali metal content of 0.05 mass% or more is mixed and granulated to form a first layer, and an iron ore with an alkali metal content of less than 0.05 mass% is adhered to the surface of the first layer. Then, granulation is performed to form a second layer, and a limestone-based raw material and a solid fuel-based raw material are adhered to the surface of the second layer for granulation.

12.前記アルカリ金属の含有率が0.05mass%以上の鉄鉱石は平均粒径が2mm以上であり、前記アルカリ金属の含有率が0.05mass%未満の鉄鉱石は平均粒径が2mm未満である前記7から11のいずれかに記載の焼結用擬似粒子の製造方法。 12 The iron ore with an alkali metal content of 0.05 mass% or more has an average particle diameter of 2 mm or more, and the iron ore with an alkali metal content of less than 0.05 mass% has an average particle diameter of less than 2 mm. A method for producing a pseudo particle for sintering according to any one of 11.

13.前記石灰石系原料と固体燃料系原料との混合粉を付着させて造粒する前記7から12のいずれかに記載の焼結用擬似粒子の製造方法。 13. 13. The method for producing pseudo particles for sintering according to any one of 7 to 12, wherein the mixed powder of the limestone-based material and the solid fuel-based material is adhered and granulated.

14.前記石灰石系原料を付着した後、さらにその石灰石系原料層の外層部に固体燃料系原料を付着させて造粒する前記7から12のいずれかに記載の焼結用擬似粒子の製造方法。 14 13. The method for producing pseudo particles for sintering according to any one of 7 to 12, wherein after depositing the limestone-based material, the solid fuel-based material is further adhered to the outer layer portion of the limestone-based material layer and granulated.

本発明によれば、焼結鉱における被還元性のさらなる改善をはかるのに最適の原料となる、擬似粒子を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the pseudo particle used as the optimal raw material for aiming at the further improvement of the reducibility in a sintered ore can be provided.

従来例に係る焼結原料の混合、造粒処理を行うフロー図である。It is a flowchart which performs the mixing and granulation process of the sintering raw material which concerns on a prior art example. 高炉における焼結鉱の被還元性JIS−RI(%)とガス利用率ηco(%)との関係を示すグラフである。It is a graph which shows the relationship between the reducible JIS-RI (%) of the sintered ore in a blast furnace, and gas utilization factor (eta) co (%). 高炉におけるガス利用率ηco(%)と燃料比(kg/t−pig)との関係を示すグラフである。It is a graph which shows the relationship between gas utilization rate (eta) co (%) in a blast furnace, and fuel ratio (kg / t-pig). 望ましい焼結鉱構造を示す図である。It is a figure which shows a desirable sintered ore structure. 従来の擬似粒子構造および焼結鉱構造を示す図である。It is a figure which shows the conventional pseudo-particle structure and sintered ore structure. 従来の望ましい擬似粒子構造を示す図である。It is a figure which shows the conventional desirable pseudo-particle structure. 本発明の擬似粒子の基本構造を示す図である。It is a figure which shows the basic structure of the pseudo particle of this invention. 本発明に係る焼結原料の混合、造粒処理フロー(方法A)を示す図である。It is a figure which shows the mixing of the sintering raw material which concerns on this invention, and a granulation process flow (method A). 本発明に係る焼結原料の混合、造粒処理フロー(方法B)を示す図である。It is a figure which shows the mixing of the sintering raw material which concerns on this invention, and a granulation process flow (method B). 本発明に係る焼結原料の混合、造粒処理フロー(方法C)を示す図である。It is a figure which shows the mixing of the sintering raw material which concerns on this invention, and a granulation process flow (method C).

発明の実施するための最良の形態BEST MODE FOR CARRYING OUT THE INVENTION

以下に、本発明の焼結用擬似粒子について、図面を参照して詳細に説明する。
被還元性に優れ、かつ冷間強度の高い焼結鉱を製造するための、焼結用擬似粒子としては、少なくとも鉄鉱石原料、石灰石系原料および固体燃料系原料を含む焼結用擬似粒子において、図7に示すように、前記鉄鉱石原料を核1として、該核1の周囲に前記石灰石系原料および固体燃料系原料の層2を配する構成が基本となる。
Hereinafter, the pseudo particles for sintering of the present invention will be described in detail with reference to the drawings.
As a pseudo-particle for sintering for producing a sintered ore having excellent reducibility and high cold strength, a pseudo-particle for sintering including at least an iron ore raw material, a limestone-based raw material, and a solid fuel-based raw material is used. As shown in FIG. 7, the iron ore raw material is the core 1 and the limestone-based raw material and the solid fuel-based raw material layer 2 are arranged around the core 1.

すなわち、鉄鉱石原料を、石灰石系原料から分離した、石灰石のない状態で焼結用擬似粒子の核1として製造することで達成する。そして、この核1の表面を覆う石灰石系原料および固体燃料系原料の石灰石系原料の層2により、焼結過程において石灰石系原料と鉄鉱石との界面でカルシウムフェライト(CF)系融液を生成させ、該CFで鉄鉱石の周囲を覆うことにより、十分な冷間強度を発揮させる。この焼結用擬似粒子を焼結原料とすることにより、得られる焼結鉱は、表面に強度の高いカルシウムフェライト(CF)を有し、内部に向かって被還元性の高いヘマタイト(He)を有するものとなる。   That is, this is achieved by producing the iron ore raw material as the core 1 of the pseudo particles for sintering in a state without limestone separated from the limestone-based raw material. The limestone raw material layer 2 covering the surface of the core 1 and the limestone raw material layer 2 of the solid fuel raw material produce a calcium ferrite (CF) melt at the interface between the limestone raw material and iron ore during the sintering process. By covering the periphery of the iron ore with the CF, sufficient cold strength is exhibited. By using these sintering pseudo-particles as a sintering raw material, the resulting sintered ore has calcium ferrite (CF) with high strength on the surface, and hematite (He) with high reducibility toward the inside. It will have.

なお、前記層2は、石灰石系原料および石灰石系原料の混合層であっても、石灰石系原料層(内側)と固体燃料系原料層(外側)との積層であってもよい。いずれの場合も、この層2中に含まれる石灰石分により、焼結鉱表面に強度の高いカルシウムフェライト(CF)が形成されることになる。   The layer 2 may be a mixed layer of a limestone-based material and a limestone-based material, or a laminate of a limestone-based material layer (inner side) and a solid fuel-based material layer (outer side). In either case, calcium ferrite (CF) having high strength is formed on the surface of the sintered ore by the limestone contained in the layer 2.

ここで、核1の鉄鉱石原料は、アルカリ金属の含有率が0.05mass%以上の鉄鉱石(以下、高アルカリ鉄鉱石ともいう)を含むことが肝要である。すなわち、核1の鉄鉱石原料に高アルカリ鉄鉱石を含有させることによって、アルカリ金属を介した触媒効果とカルシウムフェライトの近接配置とが実現する結果、焼結鉱の被還元性をさらに向上することができる。高アルカリ鉄鉱石のアルカリ金属含有率が0.05mass%未満では、以上の効果を得ることが難しい。   Here, it is important that the iron ore raw material of the core 1 contains iron ore having an alkali metal content of 0.05 mass% or more (hereinafter also referred to as high alkali iron ore). That is, by including a high alkali iron ore in the iron ore raw material of the core 1, the catalytic effect through the alkali metal and the close arrangement of calcium ferrite are realized, thereby further improving the reducibility of the sintered ore. Can do. When the alkali metal content of the high alkali iron ore is less than 0.05 mass%, it is difficult to obtain the above effects.

一方、アルカリ金属の含有率が0.05mass%以上の高アルカリ鉄鉱石のアルカリ金属含有率は、0.30mass%以下であることが好ましい。なぜなら、アルカリ金属含有率が過度に高い場合、配合率が小さくても焼結機で得られるアルカリ金属割合が高くなり、高炉でのアルカリ金属量が増加してアルカリ金属が炉内に蓄積して、炉壁にアルカリ金属の付着層が形成される結果、健全な高炉操業を阻害する、おそれがある。また、焼結鉱においてアルカリ金属の分散性が下がり、上記した効果が低下することもある。   On the other hand, the alkali metal content of the high alkali iron ore having an alkali metal content of 0.05 mass% or more is preferably 0.30 mass% or less. Because if the alkali metal content is excessively high, the proportion of alkali metal obtained by the sintering machine increases even if the blending ratio is small, the amount of alkali metal in the blast furnace increases, and alkali metal accumulates in the furnace. As a result of the formation of an alkali metal adhesion layer on the furnace wall, there is a risk of hindering sound blast furnace operation. In addition, the dispersibility of the alkali metal in the sintered ore is lowered, and the above-described effect may be reduced.

なお、鉄鉱石原料における高アルカリ鉄鉱石の配合率は、20〜60mass%であることが好ましい。なぜなら、この配合率が20mass%未満では、還元性の向上効果が少なくなり、一方、60mass%を超えると、焼結機で得られる焼結鉱のアルカリ金属割合が高くなり、高炉でのアルカリ量が増加して炉内蓄積して、炉壁への付着層が形成し高炉操業を悪化させる、おそれがある。また、焼結鉱の還元粉化指数の過度な増加により高炉の通気性が悪化して、コークス比の増加が懸念される。
また、鉄鉱石原料における高アルカリ鉄鉱石以外の残部は、アルカリ金属の含有率が0.05mass%未満の鉄鉱石(以下、一般鉄鉱石ともいう)である。さらに、鉄鉱石原料には、必要に応じてSiO2原料を添加してもよい。
In addition, it is preferable that the compounding rate of the high alkali iron ore in an iron ore raw material is 20-60 mass%. This is because if the blending ratio is less than 20 mass%, the effect of improving the reducing property is reduced. On the other hand, if it exceeds 60 mass%, the alkali metal ratio of the sintered ore obtained by the sintering machine is increased, and the alkali amount in the blast furnace is increased. May increase and accumulate in the furnace, forming an adhesion layer on the furnace wall and deteriorating blast furnace operation. In addition, an excessive increase in the reduced powder index of sintered ore deteriorates the air permeability of the blast furnace, and there is a concern that the coke ratio will increase.
Moreover, the remainder other than the highly alkaline iron ore in the iron ore raw material is iron ore having an alkali metal content of less than 0.05 mass% (hereinafter also referred to as general iron ore). Furthermore, the iron ore raw material, the SiO 2 raw material may be added as necessary.

次に、鉄鉱石原料は、次の三形態I〜IIIにて核1を構成することが好ましい。いずれの形態においても、上述したアルカリ金属による作用を及ぼすことができ、さらに、形態毎に次に示す特徴を有する。
[形態I]:一般鉄鉱石と高アルカリ鉄鉱石との混合層
この形態Aでは、高アルカリ鉄鉱石を一般鉄鉱石との混合層とすることによって、アルカリ金属を焼結鉱内で均一に分散させる結果、触媒作用を示すアルカリ金属の表面積を増加させ、触媒効果の向上による被還元性の増加をはかることができる。また、焼結鉱の強度においても脆弱部位の形成を抑制できるため、冷間強度を確保できる。
Next, the iron ore raw material preferably constitutes the nucleus 1 in the following three forms I to III. In any of the forms, the above-described action of the alkali metal can be exerted, and furthermore, each form has the following characteristics.
[Form I]: Mixed layer of general iron ore and high alkali iron ore In this form A, the alkali metal is uniformly dispersed in the sintered ore by using the high alkaline iron ore as a mixed layer with general iron ore. As a result, the surface area of the alkali metal exhibiting catalytic action can be increased, and the reducibility can be increased by improving the catalytic effect. Moreover, since formation of a weak part can be suppressed also in the intensity | strength of a sintered ore, cold intensity | strength is securable.

[形態II]:一般鉄鉱石による第一層と該第一層の表面を覆う高アルカリ鉄鉱石による第二層との積層
この形態Bでは、触媒作用を示すアルカリ金属が核の表面側にあるため、アルカリ金属による触媒効果を十二分に発揮させることができ、被還元性の増加をはかることができる。
[Form II]: Lamination of a first layer made of general iron ore and a second layer made of high alkali iron ore covering the surface of the first layer. In this form B, an alkali metal showing catalytic action is on the surface side of the nucleus. Therefore, the catalytic effect by the alkali metal can be sufficiently exhibited, and the reducibility can be increased.

[形態III]:高アルカリ鉄鉱石による第一層と該第一層の表面を覆う一般鉄鉱石による第二層との積層
この形態Cでは、焼結前の擬似粒子において高アルカリ鉄鉱石が核の内側にあるため、焼結鉱の表面に形成されるカルシウムフェライト相内における、アルカリ金属の存在割合を低下させる結果、アルカリ金属の触媒作用を損なうことなく還元粉化性を向上することが可能になる。
[Form III]: Lamination of the first layer made of high alkali iron ore and the second layer made of general iron ore covering the surface of the first layer. In this form C, the high alkali iron ore is the nucleus in the pseudo-particle before sintering. As a result of reducing the proportion of alkali metal present in the calcium ferrite phase formed on the surface of the sintered ore, it is possible to improve the reduction powderability without impairing the catalytic action of the alkali metal. become.

また、高アルカリ鉄鉱石は平均粒径が2mm以上であること、そして一般鉄鉱石は平均粒径が2mm未満であること、が好ましい。なお、この鉄鉱石に関する平均粒径は、篩を用いて複数の粒度に分かれるように分級して、それらの重量割合と代表粒度の算術平均である。   The high alkali iron ore preferably has an average particle size of 2 mm or more, and the general iron ore preferably has an average particle size of less than 2 mm. In addition, the average particle diameter regarding this iron ore is classified so that it may be divided into a plurality of particle sizes using a sieve, and is an arithmetic average of their weight ratio and representative particle size.

すなわち、高アルカリ鉄鉱石の平均粒径は2mm以上を好適とする理由は、次のとおりである。焼結機に投入される原料を擬似粒子に造粒する過程において、粒径の相対的に大きい鉱石は擬似粒子の中心に偏在することになり、擬似粒子を焼結後の鉄鉱石の表面に形成されるカルシウムフェライト相内において、アルカリ金属の存在割合を低下させるのに有利である。カルシウムフェライト相内にアルカリ金属を多量に含有させると、還元粉化性が悪化することになる。従って、高アルカリ鉄鉱石の平均粒径を2mm以上にすることが、還元粉化指数の低い焼結鉱を製造する際に有利である。   That is, the reason why the average particle size of the high alkali iron ore is preferably 2 mm or more is as follows. In the process of granulating the raw material charged into the sintering machine into pseudo particles, the ore with a relatively large particle size is unevenly distributed at the center of the pseudo particles, and the pseudo particles are placed on the surface of the iron ore after sintering. In the formed calcium ferrite phase, it is advantageous to reduce the proportion of alkali metal present. When a large amount of alkali metal is contained in the calcium ferrite phase, the reduction powdering property is deteriorated. Therefore, it is advantageous to produce a sintered ore having a low reduced powdering index that the average particle size of the high alkaline iron ore is 2 mm or more.

一方、一般鉄鉱石の平均粒径は2mm未満を好適とする理由は、次のとおりである。
すなわち、擬似粒子に造粒する過程において、平均粒径の小さい鉱石は擬似粒子の外側に偏在することになるため、高アルカリ鉱石とカルシウムフェライト相が多量に混合されるのを抑制することができる。
On the other hand, the reason why the average particle size of general iron ore is preferably less than 2 mm is as follows.
That is, in the process of granulating into pseudo particles, ores with a small average particle size are unevenly distributed outside the pseudo particles, so that a large amount of high alkali ore and calcium ferrite phase can be suppressed. .

次に、本発明に従う焼結用擬似粒子を製造するための方法について説明する。
まず、図8に、本発明の望ましい擬似粒子構造を製造するための造粒フロー例(方法A)を示す。この方法Aでは、上記した高アルカリ鉄鉱石1aおよび一般鉄鉱石1bと、さらに必要に応じてSiO2含有原料1cをドラムミキサー4の入り側装入口から装入して造粒しつつ、ドラムミキサー4の出側排出口から石灰石系原料2aおよび固体燃料系原料2bをミキサー4内に添加して造粒し、高アルカリ鉄鉱石1aおよび一般鉄鉱石1bが混合した核の周囲に石灰石系原料2aおよび固体燃料系原料2bを付着させた、上記した形態Iの焼結用擬似粒子が得られる。
Next, a method for producing the pseudo particles for sintering according to the present invention will be described.
First, FIG. 8 shows an example of granulation flow (Method A) for producing a desirable pseudo particle structure of the present invention. In this method A, the high alkaline iron ore 1a and the general iron ore 1b and, if necessary, the SiO 2 -containing raw material 1c are charged from the inlet side inlet of the drum mixer 4 and granulated. The limestone-based raw material 2a and the solid fuel-based raw material 2b are added into the mixer 4 and granulated from the outlet of the outlet 4, and the limestone-based raw material 2a is surrounded around the core where the high alkali iron ore 1a and the general iron ore 1b are mixed. And the pseudo | simulation particle | grain for sintering of the above-mentioned form I to which the solid fuel type raw material 2b was made to adhere is obtained.

また、図9に、本発明の擬似粒子を製造するための造粒フロー例(方法B)を示す。この方法Bでは、高アルカリ鉄鉱石および一般鉄鉱石、例えばアルカリ金属を0.05〜1.0mass%程度含有し平均粒径が2mm以上である高アルカリ鉄鉱石1aおよびアルカリ金属の含有量が0.05mass%未満で平均粒径が2mm未満の一般鉄鉱石1bと、さらに必要に応じてSiO2を0.5〜5.0%程度含有し平均粒径が2mm未満、例えば0.1〜1.0mm程度である細粒のSiO2含有原料1c(鉄鉱石、珪石、蛇紋岩、Niスラグ等)とを造粒機3により、一般鉄鉱石1bおよび必要に応じて添加するSiO2を第一層としてその周囲にアルカリ鉄鉱石1aを第二層として付着させて予備造粒する。FIG. 9 shows an example of a granulation flow (Method B) for producing the pseudo particles of the present invention. In this method B, the content of high alkali iron ore and general iron ore, such as high alkali iron ore 1a containing about 0.05 to 1.0 mass% of alkali metal and having an average particle diameter of 2 mm or more, and alkali metal is 0. General iron ore 1b having an average particle size of less than 0.05 mass% and an average particle size of less than 2 mm, and optionally containing about 0.5 to 5.0% of SiO 2 and an average particle size of less than 2 mm, for example 0.1 to 1 A fine-grained SiO 2 -containing raw material 1c (iron ore, silica stone, serpentine, Ni slag, etc.) of about 0.0 mm is added by a granulator 3 to general iron ore 1b and SiO 2 added as needed. As a layer, preliminarily granulated by depositing the alkaline iron ore 1a as a second layer around the layer.

この予備造粒における造粒順序を変更することによって、高アルカリ鉄鉱石1aおよび一般鉄鉱石1bの積層順序を変更することが可能である。すなわち、上記とは逆に、アルカリ鉄鉱石1aおよび必要に応じて添加するSiO2を第一層としてその周囲に一般鉄鉱石1bを第二層として付着させることができる。By changing the granulation order in this preliminary granulation, it is possible to change the stacking order of the high alkali iron ore 1a and the general iron ore 1b. That is, contrary to the above, the alkaline iron ore 1a and SiO 2 added as necessary can be attached as the first layer, and the general iron ore 1b can be attached as the second layer around it.

その後、さらに石灰石系原料2a、または石灰石系原料2aと熱源となる固体燃料系原料2b(コークス、無煙炭等)を添加してドラムミキサー4で混合、造粒し、高アルカリ鉄鉱石1aを第一層としてその周囲に一般鉄鉱石1bを第二層とした鉄鉱石原料の核の周囲に石灰石系原料2aおよび固体燃料系原料2bを付着させた、上記した形態IIまたはIIIの焼結用擬似粒子が得られる。   Thereafter, the limestone raw material 2a or the limestone raw material 2a and the solid fuel raw material 2b (coke, anthracite, etc.) serving as a heat source are further added, mixed and granulated by the drum mixer 4, and the high alkali iron ore 1a is first added. Pseudo-particles for sintering of the above-mentioned form II or III, in which the limestone-based raw material 2a and the solid fuel-based raw material 2b are attached around the core of the iron ore raw material having the general iron ore 1b as the second layer as a layer Is obtained.

さらに、図10に、別の本発明の望ましい擬似粒子構造を製造するための造粒フロー例(方法C)を示す。この方法Cでは、ドラムミキサーを複数配置した構成(本例では2組)として、上記した高アルカリ鉄鉱石1aおよび一般鉄鉱石1bと、さらに必要に応じてSiO2含有原料1cをドラムミキサー4の入り側装入口から装入して造粒しつつ、最終段のドラムミキサー4'の破線先にある装入口から、あるいは実線先にある排出口から石灰石系原料2a、または石灰石系原料2aと固体燃料系原料2bとを添加して造粒する。石灰石系原料2aのみを添加した場合は、その後、固体燃料系原料2bを添加して造粒し、石灰石系原料2aおよび固体燃料系原料2bを積層して造粒することができる。なお、石灰石系原料2aおよび固体燃料系原料2bは、平均粒径が0.5mm以下、好ましくは0.25mm以下とすることにより両者は相互に付着しやすくなり、石灰石系原料2aの表面を固体燃料系原料2bで覆うことができる。Further, FIG. 10 shows an example of granulation flow (Method C) for producing another desirable pseudo-particle structure of the present invention. In this method C, the high-alkaline iron ore 1a and the general iron ore 1b and, if necessary, the SiO 2 -containing raw material 1c are added to the drum mixer 4 as a configuration in which a plurality of drum mixers are arranged (two sets in this example). The limestone-based raw material 2a or the limestone-based raw material 2a and the solid are charged from the inlet at the end of the broken line of the drum mixer 4 ′ in the final stage or from the outlet at the end of the solid line while being granulated by charging from the inlet side inlet. The fuel system raw material 2b is added and granulated. When only the limestone-based raw material 2a is added, the solid fuel-based raw material 2b is then added and granulated, and the limestone-based raw material 2a and the solid fuel-based raw material 2b can be laminated and granulated. The limestone raw material 2a and the solid fuel raw material 2b have an average particle size of 0.5 mm or less, preferably 0.25 mm or less, so that they can be easily attached to each other, and the surface of the limestone raw material 2a is solid. It can be covered with the fuel system raw material 2b.

上記した方法A、方法Bまたは方法Cによれば、高アルカリ鉄鉱石を含む鉄鉱石原料を核として、その周囲に石灰石系原料と熱源である固体燃料系原料を付着させることができ、二層以上に被覆造粒された擬似粒子となる。これにより、擬似粒子からなる焼結原料の焼結過程でCaOとSiO2の反応が遅れ、冷間強度の低いカルシウムシリケート(CS)の生成が抑制され、塊表面に強度の高いカルシウムフェライト(CF)を、塊内部に向かっては被還元性の高いヘマタイト(He)が選択的に生成され、微細気孔が多く、被還元性に優れ冷間強度の高い焼結鉱が安定して製造可能になる。According to the above-described method A, method B or method C, a limestone-based material and a solid fuel-based material that is a heat source can be attached to the periphery of an iron ore material containing high alkali iron ore as a core. The pseudo particles are coated and granulated as described above. This delays the reaction between CaO and SiO 2 during the sintering process of the sintering raw material composed of pseudo particles, suppresses the formation of calcium silicate (CS) with low cold strength, and increases the strength of calcium ferrite (CF ), Hematite (He) with high reducibility is selectively generated toward the inside of the lump, and it is possible to stably produce sintered ore with many fine pores, excellent reducibility and high cold strength. Become.

表2に示す配合割合の焼結原料を用いて、本発明の図8または9に示す(方法AまたはB)にて造粒した焼結用擬似粒子を、それぞれドワイトロイド焼結機に輸送し、パレット上に装入した。比較のため鉄鉱石原料、SiO2含有原料、石灰石系原料、コークス粉を同時に混合する処理方法にて造粒した擬似粒子をドワイトロイド焼結機に輸送し、パレット上に装入する操業も行った。その後、パレット上で焼結を行ったのち、得られた焼結鉱に関して、被還元性(JIS−RI)、還元粉化率(RDI)および焼結強度(TI)を測定した。その測定結果を表3に示す。Using the sintering raw materials having the blending ratios shown in Table 2, the sintered pseudo particles granulated by (Method A or B) shown in FIG. 8 or 9 of the present invention are respectively transported to a Dwightroid sintering machine. , Loaded on the pallet. For comparison, iron ore raw material, SiO 2 containing raw material, limestone-based raw material, coke powder and the pseudo particles granulated by the processing method of mixing at the same time are transported to the Dwytroid sintering machine and charged on the pallet. It was. Then, after sintering on a pallet, the reducibility (JIS-RI), the reduction | restoration powder ratio (RDI), and the sintering strength (TI) were measured regarding the obtained sintered ore. The measurement results are shown in Table 3.

なお、被還元性(JIS−RI)は、JIS M8713に準拠して測定した。また、還元粉化率(RDI)は、JIS M8720に準拠して測定した。そして、焼結強度は、成品焼結鉱の回転強度(タンブラー強度TI)をJIS M8712に準拠して測定した。   The reducibility (JIS-RI) was measured according to JIS M8713. Moreover, the reduction | restoration powdering rate (RDI) was measured based on JISM8720. And the sintering strength measured the rotational strength (tumbler strength TI) of the product sintered ore based on JIS M8712.

Figure 2016108256
Figure 2016108256

Figure 2016108256
Figure 2016108256
Figure 2016108256
Figure 2016108256
Figure 2016108256
Figure 2016108256

表3に示すように、鉄鉱石原料、SiO2含有原料、石灰石系原料、コークス粉を同時に混合するNo.1、3および5に比較し、本発明に従って鉄鉱石原料核の周囲に石灰石系原料およびコークス粉を配置したNo.6〜28はいずれも、被還元性(JIS−RI)が向上していることがわかる。さらに、鉄鉱石原料核の周囲に石灰石系原料およびコークス粉を配置したNo.2および4に対して、No.6〜28はいずれも鉄鉱石原料の核に高アルカリ鉄鉱石を含むところが相違するが、この相違によって被還元性が向上している。As shown in Table 3, No. 1 in which an iron ore raw material, a SiO 2 -containing raw material, a limestone raw material, and coke powder are mixed at the same time. Compared with 1, 3 and 5, No. 1 in which a limestone-based raw material and coke powder are arranged around the iron ore raw material core according to the present invention. It can be seen that all of Nos. 6 to 28 have improved reducibility (JIS-RI). Furthermore, No. 1 in which a limestone-based raw material and coke powder are arranged around the iron ore raw material core. For 2 and 4, no. 6 to 28 are different in that the core of the iron ore raw material contains high alkali iron ore, but the reducibility is improved by this difference.

Claims (14)

高炉用焼結鉱の製造に供する、少なくとも鉄鉱石原料、石灰石系原料および固体燃料系原料を含む焼結用擬似粒子であって、
前記鉄鉱石原料を核として、該核の周囲に前記石灰石系原料および固体燃料系原料を配してなり、
前記鉄鉱石原料の核は、アルカリ金属の含有率が0.05mass%以上の鉄鉱石を含有する焼結用擬似粒子。
A pseudo-particle for sintering, which includes at least an iron ore raw material, a limestone-based raw material, and a solid fuel-based raw material, which is used for the production of a blast furnace sintered ore,
With the iron ore raw material as a core, the limestone-based raw material and the solid fuel-based raw material are arranged around the core,
The core of the iron ore raw material is a pseudo-particle for sintering containing iron ore having an alkali metal content of 0.05 mass% or more.
前記鉄鉱石原料の核は、アルカリ金属の含有率が0.05mass%未満の鉄鉱石による第一層と、該第一層の表面を覆うアルカリ金属の含有率が0.05mass%以上の鉄鉱石による第二層とを有する請求項1に記載の焼結用擬似粒子。   The core of the iron ore raw material includes a first layer of iron ore having an alkali metal content of less than 0.05 mass% and an iron ore having an alkali metal content of 0.05 mass% or more covering the surface of the first layer. The pseudo-particle for sintering according to claim 1 having two layers. 前記鉄鉱石原料の核は、アルカリ金属の含有率が0.05mass%以上の鉄鉱石による第一層と、該第一層の表面を覆うアルカリ金属の含有率が0.05mass%未満の鉄鉱石による第二層とを有する請求項1に記載の焼結用擬似粒子。   The core of the iron ore raw material includes a first layer of iron ore having an alkali metal content of 0.05 mass% or more and an iron ore having an alkali metal content of less than 0.05 mass% covering the surface of the first layer. The pseudo-particle for sintering according to claim 1 having two layers. 前記鉄鉱石原料は、アルカリ金属の含有率が0.05mass%以上の鉄鉱石を20mass%以上含有する請求項1から3のいずれかに記載の焼結用擬似粒子。   The said iron ore raw material is a pseudo | simulation particle | grain for sintering in any one of Claim 1 to 3 containing 20 mass% or more of iron ores whose content rate of an alkali metal is 0.05 mass% or more. 前記アルカリ金属の含有率が0.05mass%以上の鉄鉱石は平均粒径が2mm以上であり、前記アルカリ金属の含有率が0.05mass%未満の鉄鉱石は平均粒径が2mm未満である請求項1から4のいずれかに記載の焼結用擬似粒子。   The iron ore having an alkali metal content of 0.05 mass% or more has an average particle diameter of 2 mm or more, and the iron ore having an alkali metal content of less than 0.05 mass% has an average particle diameter of less than 2 mm. 5 to 4 for sintering. 前記アルカリ金属の含有率が0.05mass%以上の鉄鉱石は、アルカリ金属の含有率が0.30mass%以下である請求項1から5のいずれかに記載の焼結用擬似粒子。   The pseudo-particle for sintering according to any one of claims 1 to 5, wherein the iron ore having an alkali metal content of 0.05 mass% or more has an alkali metal content of 0.30 mass% or less. 前記核の周囲に前記石灰石系原料および固体燃料系原料を積層して配してなる請求項1から6のいずれかに記載の焼結用擬似粒子。   The pseudo-particle for sintering according to any one of claims 1 to 6, wherein the limestone-based raw material and the solid fuel-based raw material are laminated around the core. 前記核の周囲に前記石灰石系原料および固体燃料系原料の混合層を配してなる請求項1から7のいずれかに記載の焼結用擬似粒子。   The pseudo particle for sintering according to any one of claims 1 to 7, wherein a mixed layer of the limestone-based material and the solid fuel-based material is disposed around the core. 高炉用焼結鉱の製造に供する、少なくとも鉄鉱石原料、石灰石系原料および固体燃料系原料を混合して造粒するに際し、
アルカリ金属を0.05mass%以上含有する鉄鉱石を含む鉄鉱石原料を混合して造粒した後に、該粒に石灰石系原料および固体燃料系原料を付着させて造粒する焼結用擬似粒子の製造方法。
At the time of mixing and granulating at least iron ore raw material, limestone raw material and solid fuel raw material for production of blast furnace sintered ore,
Manufacture of pseudo-particles for sintering in which iron ore raw materials containing iron ore containing 0.05 mass% or more of alkali metal are mixed and granulated, and then granulated by attaching limestone raw materials and solid fuel raw materials to the particles Method.
高炉用焼結鉱の製造に供する、少なくとも鉄鉱石原料、石灰石系原料および固体燃料系原料を混合して造粒するに際し、
アルカリ金属の含有率が0.05mass%未満の鉄鉱石およびSiO2含有原料を混合、造粒して第一層を形成し、該第一層の表面にアルカリ金属の含有率が0.05mass%以上の鉄鉱石を付着させてから造粒して第二層を形成し、該第二層の表面に石灰石系原料および固体燃料系原料を付着させて造粒する焼結用擬似粒子の製造方法。
At the time of mixing and granulating at least iron ore raw material, limestone raw material and solid fuel raw material for production of blast furnace sintered ore,
An iron ore having an alkali metal content of less than 0.05 mass% and an SiO 2 -containing raw material are mixed and granulated to form a first layer, and the alkali metal content of 0.05 mass% or more is formed on the surface of the first layer. A method for producing pseudo particles for sintering, in which iron ore is adhered and then granulated to form a second layer, and a limestone-based material and a solid fuel-based material are adhered to the surface of the second layer and granulated.
高炉用焼結鉱の製造に供する、少なくとも鉄鉱石原料、石灰石系原料および固体燃料系原料を混合して造粒するに際し、
アルカリ金属の含有率が0.05mass%以上の鉄鉱石を混合、造粒して第一層を形成し、該第一層の表面にアルカリ金属の含有率が0.05mass%未満の鉄鉱石を付着させてから造粒して第二層を形成し、該第二層の表面に石灰石系原料および固体燃料系原料を付着させて造粒する焼結用擬似粒子の製造方法。
At the time of mixing and granulating at least iron ore raw material, limestone raw material and solid fuel raw material for production of blast furnace sintered ore,
Iron ore with an alkali metal content of 0.05 mass% or more is mixed and granulated to form a first layer, and an iron ore with an alkali metal content of less than 0.05 mass% is adhered to the surface of the first layer. Then, granulation is performed to form a second layer, and a limestone-based raw material and a solid fuel-based raw material are adhered to the surface of the second layer for granulation.
前記アルカリ金属の含有率が0.05mass%以上の鉄鉱石は平均粒径が2mm以上であり、前記アルカリ金属の含有率が0.05mass%未満の鉄鉱石は平均粒径が2mm未満である請求項7から11のいずれかに記載の焼結用擬似粒子の製造方法。   The iron ore with an alkali metal content of 0.05 mass% or more has an average particle size of 2 mm or more, and the iron ore with an alkali metal content of less than 0.05 mass% has an average particle size of less than 2 mm. The manufacturing method of the pseudo | simulation particle | grain for sintering in any one of 11 to 11. 前記石灰石系原料と固体燃料系原料との混合粉を付着させて造粒する請求項7から12のいずれかに記載の焼結用擬似粒子の製造方法。   The method for producing pseudo particles for sintering according to any one of claims 7 to 12, wherein the mixed powder of the limestone-based material and the solid fuel-based material is adhered and granulated. 前記石灰石系原料を付着した後、さらにその石灰石系原料層の外層部に固体燃料系原料を付着させて造粒する請求項7から12のいずれかに記載の焼結用擬似粒子の製造方法。   The method for producing pseudo particles for sintering according to any one of claims 7 to 12, wherein after depositing the limestone-based material, the solid fuel-based material is further adhered to the outer layer portion of the limestone-based material layer and granulated.
JP2016567293A 2015-03-06 2015-03-06 Pseudoparticles for sintering and method for producing the same Active JP6187712B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/001243 WO2016108256A1 (en) 2015-03-06 2015-03-06 Quasi-particles for use in sintering, and method for manufacturing same

Publications (2)

Publication Number Publication Date
JPWO2016108256A1 true JPWO2016108256A1 (en) 2017-06-15
JP6187712B2 JP6187712B2 (en) 2017-08-30

Family

ID=56284412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016567293A Active JP6187712B2 (en) 2015-03-06 2015-03-06 Pseudoparticles for sintering and method for producing the same

Country Status (6)

Country Link
EP (1) EP3266884B1 (en)
JP (1) JP6187712B2 (en)
KR (1) KR101987568B1 (en)
CN (1) CN107406905B (en)
BR (1) BR112017019129B1 (en)
WO (1) WO2016108256A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7047645B2 (en) * 2018-07-19 2022-04-05 日本製鉄株式会社 Sintered ore manufacturing method
CN110804449B (en) * 2019-11-20 2020-10-27 四川大学 Method for preparing coke by co-coking calcium ferrite and non-coking coal
CN113005284B (en) * 2021-01-27 2022-08-23 日照钢铁控股集团有限公司 Application method of titanium-containing sea sand in sinter production
CN114350940A (en) * 2021-12-25 2022-04-15 深圳市考拉生态科技有限公司 Method for producing alkaline iron ore concentrate by reducing weakly magnetic iron ore

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002322514A (en) * 2001-02-22 2002-11-08 Nippon Steel Corp Pelletizing treating agent for manufacturing iron and pelletizing treating method using the same
JP2003147370A (en) * 2001-08-28 2003-05-21 Nkk Corp Method for producing metallurgical coke

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4082540A (en) * 1974-12-30 1978-04-04 Nippon Steel Corporation Material for sintering emitting a lesser amount of nitrogen oxide and a method for manufacturing the same
US3975183A (en) * 1975-03-20 1976-08-17 Nalco Chemical Company Use of alkali metal silicates to reduce particulate emissions in sintering operations
JPS63149331A (en) 1986-12-15 1988-06-22 Nkk Corp Production of burnt agglomerated ore
JP4084906B2 (en) * 1999-05-21 2008-04-30 株式会社神戸製鋼所 Method for producing sintered ore and sintered ore
US6683598B1 (en) 1999-09-01 2004-01-27 Microsoft Corporation Mouse optical sampling scheme
BR0106705B1 (en) * 2000-05-29 2010-11-16 pseudoparticle sintering material and method for manufacturing said material.
US7402191B2 (en) * 2002-12-17 2008-07-22 Jfe Steel Corporation Process for producing sintering feedstock and apparatus therefor
CN1863932B (en) * 2003-10-09 2010-10-13 杰富意钢铁株式会社 Method for producing sintered ore, method for producing raw material for sintering, granulated pellet, and sintered ore
KR101228599B1 (en) * 2010-04-27 2013-02-07 오미혜 Composition Of Additive For Metal Sintering

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002322514A (en) * 2001-02-22 2002-11-08 Nippon Steel Corp Pelletizing treating agent for manufacturing iron and pelletizing treating method using the same
JP2003147370A (en) * 2001-08-28 2003-05-21 Nkk Corp Method for producing metallurgical coke

Also Published As

Publication number Publication date
BR112017019129B1 (en) 2021-07-27
CN107406905A (en) 2017-11-28
WO2016108256A8 (en) 2017-06-08
EP3266884A4 (en) 2018-04-18
BR112017019129A2 (en) 2018-05-02
KR101987568B1 (en) 2019-06-10
EP3266884A1 (en) 2018-01-10
EP3266884B1 (en) 2021-10-20
WO2016108256A1 (en) 2016-07-07
CN107406905B (en) 2019-11-19
KR20170107560A (en) 2017-09-25
JP6187712B2 (en) 2017-08-30

Similar Documents

Publication Publication Date Title
JP6187712B2 (en) Pseudoparticles for sintering and method for producing the same
CN105002352B (en) A kind of preparation method of high performance pellet binder
JP3656632B2 (en) Pseudoparticle raw material for sintering and method for producing pseudoparticle raw material for sintering
JP3755452B2 (en) Method for manufacturing raw materials for sintering
JP2006265569A (en) Method for producing sintered ore and pseudo-grain for producing sintered ore
JP2014214334A (en) Method for manufacturing sintered ore
JP2704673B2 (en) Method for producing semi-reduced sintered ore
JP2005171388A (en) Pseudo particle raw material for sintering, sintered ore for blast furnace, and method of producing pseudo particle raw material for sintering
JP6477167B2 (en) Method for producing sintered ore
JP2009019224A (en) Method for manufacturing sintered ore
JP4228678B2 (en) Method for manufacturing raw materials for sintering
JP4599736B2 (en) Granulation method of sintering raw material
JP4379097B2 (en) Pseudoparticles for sintering and method for producing the same
JP4175158B2 (en) Method for manufacturing raw materials for sintering
JP2013256694A (en) Method for granulating sintering raw material
JP3952906B2 (en) Ultra-low SiO2, ultra-low Al2O3 high-strength sintered ore and method for producing the same
JP2012052164A (en) Method for manufacturing raw material for sintering
JP2002332526A (en) Method for pretreating sintering raw material
JP2004027245A (en) Method for pelletizing sintering material
JP2004225147A (en) Method for manufacturing sintered ore for blast furnace
JP2007291455A (en) Method for manufacturing sintered ore
JP2016183368A (en) Material for sintered ore and method for producing material for sintered ore
CN117737410A (en) Preparation method of vanadium-titanium sinter for improving calcium ferrite phase content
JP2004027327A (en) Pelletization method for sintering raw material
JP2009114537A (en) Method for producing low slag-based sintered ore

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170317

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20170317

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170717

R150 Certificate of patent or registration of utility model

Ref document number: 6187712

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250