JPWO2016035388A1 - Semiconductor test apparatus and semiconductor test method - Google Patents

Semiconductor test apparatus and semiconductor test method Download PDF

Info

Publication number
JPWO2016035388A1
JPWO2016035388A1 JP2016546343A JP2016546343A JPWO2016035388A1 JP WO2016035388 A1 JPWO2016035388 A1 JP WO2016035388A1 JP 2016546343 A JP2016546343 A JP 2016546343A JP 2016546343 A JP2016546343 A JP 2016546343A JP WO2016035388 A1 JPWO2016035388 A1 JP WO2016035388A1
Authority
JP
Japan
Prior art keywords
temperature
time
data
semiconductor element
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016546343A
Other languages
Japanese (ja)
Other versions
JP6203415B2 (en
Inventor
伸一 木ノ内
伸一 木ノ内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2016035388A1 publication Critical patent/JPWO2016035388A1/en
Application granted granted Critical
Publication of JP6203415B2 publication Critical patent/JP6203415B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

半導体素子91の温度を変数としたときの、一定電流I0の通電に必要な端子間電圧との相関データを保持するデータ保持部5bと、パワーサイクル試験において、半導体素子91に一定電流I0を通電した際の端子間電圧の実測データを収集するデータ収集部4と、データ収集部4が収集した実測データと、データ保持部5bが保持する相関データに基づき、半導体素子91の温度を算出する温度算出部5aと、を備える。When the temperature of the semiconductor element 91 is a variable, the data holding unit 5b holds correlation data with the inter-terminal voltage necessary for energizing the constant current I0, and the semiconductor element 91 is energized with the constant current I0 in the power cycle test. A temperature at which the temperature of the semiconductor element 91 is calculated based on the data collection unit 4 that collects the actual measurement data of the inter-terminal voltage at the time, the actual measurement data collected by the data collection unit 4, and the correlation data held by the data holding unit 5b And a calculation unit 5a.

Description

本発明は、半導体試験装置および半導体試験方法に関し、とくにパワーサイクル試験における温度を管理するための構成に関する。   The present invention relates to a semiconductor test apparatus and a semiconductor test method, and more particularly to a configuration for managing temperature in a power cycle test.

パワーサイクル試験は、モジュール(半導体装置)に組み込まれた半導体素子の電極接合部周辺の信頼性を評価するための装置であり、電流を繰り返し半導体素子に印加し、局所的に発熱させることで、その電極接合部周辺の劣化度合いを評価する。その際、半導体素子の温度が想定した最低温度と最高温度内にあることを確認する必要があり、半導体素子の温度を正確に測定できることが望ましい。   The power cycle test is a device for evaluating the reliability around the electrode joint portion of the semiconductor element incorporated in the module (semiconductor device), by repeatedly applying a current to the semiconductor element and locally generating heat, The degree of deterioration around the electrode joint is evaluated. At that time, it is necessary to confirm that the temperature of the semiconductor element is within the assumed minimum temperature and maximum temperature, and it is desirable that the temperature of the semiconductor element can be accurately measured.

ここで、半導体素子自体に温度センサー機能が備わっていれば、容易に温度を測定することができるが、半導体素子の多くは温度センサー機能を備えていない。しかも、半導体装置内での半導体素子は、その表面がパッケージ材で覆われているため、赤外線カメラのような手段を用いて温度を測定することもできない。   Here, if the semiconductor element itself has a temperature sensor function, the temperature can be easily measured, but many of the semiconductor elements do not have a temperature sensor function. Moreover, since the surface of the semiconductor element in the semiconductor device is covered with the package material, the temperature cannot be measured using means such as an infrared camera.

そこで、半導体素子のPN接合部分に、温度測定用の微小電流を通電させ、予め取得した電圧と温度との関係から、半導体素子の温度を推定する方法が提案されている(例えば、特許文献1参照。)。   Therefore, a method has been proposed in which a minute current for temperature measurement is applied to the PN junction portion of the semiconductor element, and the temperature of the semiconductor element is estimated from the relationship between the voltage and temperature acquired in advance (for example, Patent Document 1). reference.).

特開2000−111416号公報(段落0012〜0017、図1〜図5)JP 2000-111416 A (paragraphs 0012 to 0017, FIGS. 1 to 5)

しかしながら、温度測定用の微小電流を通電させて温度を推定する方法では、微小電流を安定に供給するための電源や、微小電流とパワーサイクル用の電流とをタイミングよく切替えるための回路構成が必要となる。一方、パワーサイクル試験は、信頼性を評価するための試験であり、数日から数ヶ月にわたる連続運転が実施される場合が多い。この場合、装置構成が複雑化すると試験装置自体の動作が不安定となり、適正な信頼性評価が困難になる。   However, the method of estimating the temperature by energizing a minute current for temperature measurement requires a power supply for stably supplying the minute current and a circuit configuration for switching the minute current and the current for the power cycle in a timely manner. It becomes. On the other hand, the power cycle test is a test for evaluating reliability, and continuous operation is often performed for several days to several months. In this case, if the apparatus configuration becomes complicated, the operation of the test apparatus itself becomes unstable, and it becomes difficult to perform proper reliability evaluation.

本発明は、上記のような問題点を解決するためになされたものであり、装置構成を複雑化することなく、適正な温度管理によるパワーサイクル試験が可能な半導体試験装置および半導体試験方法を得ることを目的としている。   The present invention has been made to solve the above problems, and provides a semiconductor test apparatus and a semiconductor test method capable of performing a power cycle test by appropriate temperature management without complicating the apparatus configuration. The purpose is that.

本発明にかかる半導体試験装置は、半導体装置内に実装された半導体素子に対し、電流の通電と停止を周期的に繰り返すパワーサイクル試験を実行する半導体試験装置であって、前記半導体素子の温度を変数としたときの、前記電流の通電に必要な印加電圧との相関データを保持する相関データ保持部と、前記パワーサイクル試験において、前記半導体素子に前記電流を通電した際の前記印加電圧の実測データを収集するデータ収集部と、前記データ収集部が収集した前記実測データと、前記相関データ保持部が保持する前記相関データに基づき、前記半導体素子の温度を算出する温度算出部と、を備えたことを特徴とする。   A semiconductor test apparatus according to the present invention is a semiconductor test apparatus for executing a power cycle test that periodically repeats energization and stop of a current on a semiconductor element mounted in the semiconductor device, wherein the temperature of the semiconductor element is set. A correlation data holding unit for holding correlation data with an applied voltage necessary for energization of the current when a variable is used; and an actual measurement of the applied voltage when the current is passed through the semiconductor element in the power cycle test A data collection unit for collecting data; and a temperature calculation unit for calculating the temperature of the semiconductor element based on the actual measurement data collected by the data collection unit and the correlation data held by the correlation data holding unit. It is characterized by that.

また、本発明にかかる半導体試験方法は、半導体装置内に実装された半導体素子に対し、電流の通電と停止を周期的に繰り返すパワーサイクル試験を実行する半導体試験方法であって、前記半導体素子の温度を変数としたときの、前記電流の通電に必要な印加電圧との相関データを保持する相関データ保持工程と、前記パワーサイクル試験において、前記半導体素子に前記電流を通電した際の前記印加電圧の実測データを収集するデータ収集工程と、前記データ収集工程で収集した前記実測データと、前記相関データ保持工程で保持した前記相関データに基づき、前記半導体素子の温度を算出する温度算出工程と、を含むことを特徴とする。   A semiconductor test method according to the present invention is a semiconductor test method for executing a power cycle test that periodically repeats energization and stop of current on a semiconductor element mounted in a semiconductor device. A correlation data holding step for holding correlation data with an applied voltage necessary for energizing the current when temperature is a variable, and the applied voltage when the current is energized to the semiconductor element in the power cycle test A data collection step for collecting actual measurement data, a temperature calculation step for calculating a temperature of the semiconductor element based on the actual measurement data collected in the data collection step, and the correlation data held in the correlation data holding step; It is characterized by including.

この発明によれば、パワーサイクルにおいて主電流を流すための半導体素子への印加電圧から素子温度を算出できるので、装置構成を複雑化することなく、適正に温度管理したパワーサイクル試験が可能になる。   According to the present invention, since the element temperature can be calculated from the voltage applied to the semiconductor element for supplying the main current in the power cycle, it is possible to perform a power cycle test in which the temperature is properly controlled without complicating the device configuration. .

本発明の実施の形態1にかかる半導体試験装置の構成を示す図である。It is a figure which shows the structure of the semiconductor test apparatus concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる半導体試験装置を構成する制御部の構成を示すブロック図である。It is a block diagram which shows the structure of the control part which comprises the semiconductor testing apparatus concerning Embodiment 1 of this invention. パワーサイクル試験での通電電流、印加電圧、および素子温度の経時変化を示す図である。It is a figure which shows the time-dependent change of the energization current in a power cycle test, an applied voltage, and element temperature. 半導体素子に、一定の電流を通電させたときの素子温度と端子間電圧の関係を示す図である。It is a figure which shows the relationship between element temperature when a fixed electric current is sent through a semiconductor element, and the voltage between terminals. 本発明の実施の形態1にかかる半導体試験装置、および半導体試験方法において、最低温度を算出するための、電流導通開始直後のデータ収得タイミングを示す電流と端子間電圧の波形図である。In the semiconductor testing apparatus and the semiconductor testing method concerning Embodiment 1 of this invention, it is a waveform diagram of the electric current and the voltage between terminals which shows the data acquisition timing immediately after the start of electric current conduction for calculating minimum temperature. 本発明の実施の形態2にかかる半導体試験装置、および半導体試験方法において、最高温度を算出するための、電流停止時のデータ収得タイミングを示す電流と端子間電圧の波形図である。In the semiconductor testing apparatus and the semiconductor testing method concerning Embodiment 2 of this invention, it is a wave form diagram of the electric current which shows the data acquisition timing at the time of an electric current stop, and the voltage between terminals for calculating the maximum temperature.

実施の形態1.
図1〜図5は、本発明の実施の形態1にかかる半導体試験装置および半導体試験方法について説明するためのものであり、図1は半導体試験装置において、試験体である半導体装置との接続を示す電気回路と装置内の各構成部分との関係を示すブロック図、図2は半導体試験装置の部分である制御部の構成を示すブロック図である。また、図3は本試験装置および本試験方法で実施するパワーサイクル試験において繰り返される通電電流、印加電圧、および半導体素子の温度(素子温度)の経時変化を示す図である。
Embodiment 1 FIG.
1 to 5 are diagrams for explaining a semiconductor test apparatus and a semiconductor test method according to a first embodiment of the present invention. FIG. 1 illustrates a connection between a semiconductor test apparatus and a semiconductor device as a test body. FIG. 2 is a block diagram showing a configuration of a control unit which is a part of the semiconductor test apparatus. FIG. 3 is a graph showing temporal changes in energization current, applied voltage, and semiconductor element temperature (element temperature) that are repeated in the power cycle test performed by the test apparatus and the test method.

図4は、所定のゲート電圧と通電電流における端子間電圧と素子温度との関係を示す図である。そして、図5はパワーサイクル試験におけるサイクルごとの最低温度を算出するための、電流導通開始直後のデータ収得タイミングを示す電流と端子間電圧の波形図である。   FIG. 4 is a diagram showing the relationship between the terminal voltage and the element temperature at a predetermined gate voltage and energization current. FIG. 5 is a waveform diagram of current and terminal voltage showing data acquisition timing immediately after the start of current conduction for calculating the minimum temperature for each cycle in the power cycle test.

はじめに、本発明の実施の形態1にかかる半導体試験装置および半導体試験方法の詳細な説明の前に、その前提となるパワーサイクル試験について説明する。パワーサイクル試験は、外部から加熱を行うヒートサイクル試験とは異なり、半導体素子に通電することで、半導体素子自身を発熱させて温度を変化させるものである。例えば、図3はMOSFET(Metal Oxide Semiconductor Field Effect Transistor)に、所定の電流を周期的に通電(入/切の繰返し)したときの、電流値(上段)、ドレイン・ソース間電圧(端子間電圧:中段)、MOSFETの温度(素子温度:下段)の経時変化を示すものである。   First, before the detailed description of the semiconductor test apparatus and the semiconductor test method according to the first embodiment of the present invention, a power cycle test as a premise thereof will be described. Unlike the heat cycle test in which heating is performed from the outside, the power cycle test changes the temperature by causing the semiconductor element itself to generate heat by energizing the semiconductor element. For example, FIG. 3 shows a current value (upper stage), drain-source voltage (terminal voltage) when a predetermined current is periodically energized (repeated ON / OFF) to a MOSFET (Metal Oxide Semiconductor Field Effect Transistor). : Middle stage), and changes in the temperature of the MOSFET (element temperature: lower stage) over time.

電流が通電されている通電期間Paでは、素子の発熱により素子温度が上昇し、通電を止めた停止期間Prでは、放熱により素子温度が下降する。そのため、通電期間Paから停止期間Prに切り替わる際に、その周期の最高温度THになり、停止期間Prから通電期間Paに切り替わる際に、その周期の最低温度TLになる。このようなサイクルが十万回のオーダーで繰り返されるが、適正な耐久性評価には、サイクルごとの最高温度THおよび最低温度TLが設定範囲内で管理されることが要求される。   In the energization period Pa in which a current is applied, the element temperature increases due to heat generation of the element, and in the stop period Pr in which the energization is stopped, the element temperature decreases due to heat dissipation. Therefore, when the energization period Pa is switched to the stop period Pr, the maximum temperature TH of the period is reached, and when the stop period Pr is switched to the energization period Pa, the period becomes the minimum temperature TL. Such a cycle is repeated on the order of 100,000 times. However, for proper durability evaluation, it is required that the maximum temperature TH and the minimum temperature TL for each cycle be managed within a set range.

図1に示すように、本発明の実施の形態1にかかる半導体試験装置10は、パワーサイクル試験の対象である半導体装置90(電気回路としては、半導体装置90内の半導体素子91(MOSFET)とその端子部分を記載)のドレイン端子91dとソース端子91sに電気接続され、半導体装置90に電流を通電する電源1と、ゲート端子91gとソース端子91sに接続され、ゲート電圧を印加するゲート電源2と、ソース端子91sとドレイン端子91dにかかる印加電圧(端子間電圧)を計測する電圧計3と、電源1から出力される通電開始信号、あるいは通電停止信号のような半導体装置90(半導体素子91)への通電状態を示す情報や、電圧計3から出力される端子間電圧を示す信号等のデータを時間と関連づけて収集するデータ収集部4と、パワーサイクル試験の動作全体を制御するとともに、データ収集部4からのデータに基づいて上述した最低温度TL、最高温度THを算出する制御部5と、パワーサイクル試験の状態等を表示する表示部6と、を備えている。   As shown in FIG. 1, a semiconductor test apparatus 10 according to a first embodiment of the present invention includes a semiconductor device 90 (an electric circuit that includes a semiconductor element 91 (MOSFET) in the semiconductor device 90 and a power cycle test). The power source 1 is electrically connected to the drain terminal 91d and the source terminal 91s, and the gate power source 2 is connected to the gate terminal 91g and the source terminal 91s and applies the gate voltage. A voltmeter 3 for measuring an applied voltage (inter-terminal voltage) applied to the source terminal 91s and the drain terminal 91d, and a semiconductor device 90 (semiconductor element 91) such as an energization start signal or an energization stop signal output from the power supply 1. ) That collects data such as information indicating the energization state of the) and signals indicating the inter-terminal voltage output from the voltmeter 3 in association with time. The data collection unit 4, the overall operation of the power cycle test, the control unit 5 that calculates the above-described minimum temperature TL and maximum temperature TH based on the data from the data collection unit 4, the state of the power cycle test, etc. And a display unit 6 for displaying.

データ収集部4は、デジタルオシロスコープなどのような、デジタル化した時間と関連づけたデータを一定期間保持できるものであれば良い。例えば、電圧計3で測定され、出力された信号が、データ収集部4に入力されると、データ収集部4は、端子間電圧とその信号を受けた時の時間データを制御部5に出力する。   The data collection unit 4 only needs to be capable of holding data associated with digitized time, such as a digital oscilloscope, for a certain period. For example, when a signal measured and output by the voltmeter 3 is input to the data collecting unit 4, the data collecting unit 4 outputs the voltage between the terminals and the time data when the signal is received to the control unit 5. To do.

制御部5は、いわゆるマイコン等にソフトウェアをインストールすることにより構成され、図2に示すように、後述する端子間電圧と素子温度との相関データが保持されているデータ保持部5bと、データ収集部4からのデータを受け入れるデータ受信部5cと、データ受信部5cが受信したデータとデータ保持部5bに保持された相関データ、および通電状態の情報に基づいて、素子温度、最低温度を算出する温度算出部5aと、を備えている。   The control unit 5 is configured by installing software in a so-called microcomputer or the like, and as shown in FIG. 2, a data holding unit 5b that holds correlation data between a terminal voltage and an element temperature, which will be described later, and data collection Based on the data receiving unit 5c that receives data from the unit 4, the data received by the data receiving unit 5c, the correlation data held in the data holding unit 5b, and the energization state information, the element temperature and the minimum temperature are calculated. And a temperature calculation unit 5a.

なお、制御部5には、パワーサイクル試験自体の動作として、電源1やゲート電源2の動作を制御する機能を有する部分が設けられることもあるが、温度を算出する機能に特化して説明を行うため、それらについての説明は省略する。なお、温度を算出する部分と験自体を制御する部分とが一体であるか否かは、本発明を限定するものではなく、どのように構成してもよい。   The control unit 5 may be provided with a part having a function of controlling the operation of the power supply 1 and the gate power supply 2 as the operation of the power cycle test itself. Therefore, the description thereof is omitted. It should be noted that whether or not the part for calculating the temperature and the part for controlling the experiment itself is integrated does not limit the present invention and may be configured in any manner.

データ保持部5bに保持される素子温度と端子間電圧の相関データは、素子温度をパラメータとし、ゲート電圧が一定で、所定のドレイン電流を通電するのに必要な端子間電圧のデータを事前に測定することによって取得する。具体的には、パワーサイクル試験の対象となる半導体装置90を恒温槽中或いはホットプレート上等で一定温度に保持し、ゲート―ソース間電圧(ゲート電圧)を一定とした条件で、所定の電流値のパルス電流を通電し、ドレイン―ソース間電圧(端子間電圧)を計測する。パルス通電時間が長いと自己発熱効果により、素子温度が計測中に保持温度より大きく変化することになる。   The correlation data between the element temperature and the inter-terminal voltage held in the data holding unit 5b uses the element temperature as a parameter, the gate voltage is constant, and the inter-terminal voltage data necessary for supplying a predetermined drain current is obtained in advance. Get by measuring. Specifically, the semiconductor device 90 to be subjected to the power cycle test is held at a constant temperature in a thermostatic bath or on a hot plate, and a predetermined current is supplied under a condition that a gate-source voltage (gate voltage) is constant. Apply the value pulse current and measure the drain-source voltage (terminal voltage). If the pulse energization time is long, the element temperature changes more greatly than the holding temperature during measurement due to the self-heating effect.

そのため、試験対象となる半導体装置90内の半導体素子91の、恒温槽中或いはホットプレート上で保持され、一定となった温度からの変化(上昇)が許容範囲となるように、パルス通電時間が調整される。つまり、端子間電圧と素子温度との相関データは、恒温槽或いはホットプレートの温度をパラメータとして収得されるが、上述したパルス時間の調整により、素子温度をパラメータとして取得したことになる。   Therefore, the pulse energization time is set so that the change (increase) from the constant temperature of the semiconductor element 91 in the semiconductor device 90 to be tested held in the thermostatic bath or on the hot plate is within an allowable range. Adjusted. That is, the correlation data between the terminal voltage and the element temperature is obtained using the temperature of the thermostatic chamber or the hot plate as a parameter, but the element temperature is obtained as a parameter by adjusting the pulse time described above.

このようにして、得られたゲート電圧と、ドレイン電流が一定の場合における、端子間電圧と素子温度との関係は、図4に示すように、一対一の関係になり、端子間電圧が分かれば、素子温度が一意的に定まる。そのため、データ保持部5bには、試験対象となる半導体装置90のパワーサイクル試験に対応するドレイン電流とゲート電圧における、端子間電圧と素子温度との相関データが、例えば、LUT(ルックアップテーブル)のような形で保持されている。これにより、温度算出部5aは、少なくとも通電期間Paにおいては、データ受信部5cが受信した電圧データとデータ保持部5bに保持された相関データに基づいて、その電圧が印加された時の素子温度を算出することができる。   Thus, when the obtained gate voltage and the drain current are constant, the relationship between the terminal voltage and the element temperature is a one-to-one relationship as shown in FIG. For example, the element temperature is uniquely determined. Therefore, in the data holding unit 5b, correlation data between the terminal voltage and the element temperature in the drain current and the gate voltage corresponding to the power cycle test of the semiconductor device 90 to be tested is, for example, an LUT (Look Up Table). Is held in a shape like As a result, the temperature calculation unit 5a is operated at least during the energization period Pa based on the voltage data received by the data reception unit 5c and the correlation data held in the data holding unit 5b. Can be calculated.

最高温度THは、通電期間Paから停止期間Prに切り替わる際の素子温度であるので、通電期間Paにおける最後の電圧データをもとに容易に算出することができる。一方、最低温度TLは通電されない状態での温度であるので、通電期間Paに切り替わった際の電流導通開始直後における(時間の異なる)2点以上の端子間電圧のデータから、以下のようにして算出する。   Since the maximum temperature TH is an element temperature at the time of switching from the energization period Pa to the stop period Pr, it can be easily calculated based on the last voltage data in the energization period Pa. On the other hand, since the minimum temperature TL is a temperature in a state where current is not supplied, from the data of the voltage between two or more points immediately after the start of current conduction when switching to the current supply period Pa (different in time), the following is performed. calculate.

原理的には、電流導通開始直後において2点以上の端子間電圧値から求めた2点以上の温度をそれぞれの温度を測定した(電流導通開始時を0とする)時間の2次関数でフィッティングし、2次関数の0次の値を最低温度TLとすることができる。このようにして最低温度TLを演算する場合、電源1の通電開始信号が、最低温度TLを算出するためのデータ収集のトリガ信号となる。このとき、データ収集部4に対しては、(導通開始直後の不安定な期間を除く)電流が一定値となるタイミングでデータを収得するように、トリガ信号に対して遅延時間Δtが設定されている。   In principle, two or more temperatures obtained from two or more terminal voltage values immediately after the start of current conduction are measured with a quadratic function of the time at which each temperature is measured (the current conduction start time is 0). Then, the zeroth order value of the quadratic function can be set as the minimum temperature TL. When the minimum temperature TL is calculated in this way, the energization start signal of the power source 1 becomes a data collection trigger signal for calculating the minimum temperature TL. At this time, the delay time Δt is set for the trigger signal so that the data acquisition unit 4 acquires data at a timing when the current becomes a constant value (excluding an unstable period immediately after the start of conduction). ing.

そして、本実施の形態1にかかる半導体試験装置10あるいは半導体試験方法では、後述する条件を考慮して、図5に示すように、電流導通開始直後の時間の異なる2点のデータから、最低温度TLを演算するようにした。図において、あるサイクルにおける電源1からの通電開始信号(トリガ信号)が、時間t時にデータ収集部4に入力される。すると、時間tから遅延時間Δt後の時間に第一点目の電圧データVとその測定時間のデータである時間データtがデータ収集部4によって収得される。遅延時間Δtは、上述したように、電流が一定値(一定電流I)となる時間によって決められ、これは電源1と半導体装置90(半導体素子91)の熱的な接続環境に固有な値であり、事前に評価することで決めることができる。Then, in the semiconductor test apparatus 10 or the semiconductor test method according to the first embodiment, considering the conditions described later, as shown in FIG. TL was calculated. In the figure, an energization start signal (trigger signal) from the power source 1 in a certain cycle is input to the data collection unit 4 at time t 0 . Then, the voltage data V 1 at the first point and the time data t 1 that is data of the measurement time are acquired by the data collection unit 4 at a time after the delay time Δt from the time t 0 . As described above, the delay time Δt is determined by the time during which the current becomes a constant value (constant current I 0 ), which is a value specific to the thermal connection environment between the power supply 1 and the semiconductor device 90 (semiconductor element 91). It can be decided by evaluating in advance.

そして、第二点目のデータは、時間tより後の時間t時に収集される。時間tと時間tの間隔t−tは、半導体装置90(半導体素子91)の温度変化時定数τ=R×Cより十分短い時間で設定されることが望ましい。Rは半導体素子91の過渡熱抵抗、Cは半導体素子91周辺の熱容量である。半導体素子91の温度(素子温度)をTmとし、半導体素子91周辺の過渡的な熱抵抗と熱容量が定数とみなせるモデルでは、Tmの時間変化は、以下の式(1)で記述される。Then, data of the second point is collected at the time t 2 after the time t 1. The interval t 2 -t 0 between the time t 0 and the time t 2 is desirably set to a time sufficiently shorter than the temperature change time constant τ = R × C of the semiconductor device 90 (semiconductor element 91). R is the transient thermal resistance of the semiconductor element 91, and C is the heat capacity around the semiconductor element 91. In a model in which the temperature (element temperature) of the semiconductor element 91 is Tm and the transient thermal resistance and heat capacity around the semiconductor element 91 are regarded as constants, the time change of Tm is described by the following equation (1).

Figure 2016035388
Figure 2016035388

ここで、時間tは、時間t=0秒とした時の値である。Tは時間t時の素子温度、Tは飽和温度である。このとき、間隔t−tが、温度変化時定数τより十分短ければ、式(1)は、以下の式(2)で示す1次近似式となる。Here, time t is a value when time t 0 = 0 seconds. T 0 is the element temperature at time t 0 , and T f is the saturation temperature. At this time, if the interval t 2 -t 0 is sufficiently shorter than the temperature change time constant τ, the equation (1) is a linear approximation equation represented by the following equation (2).

Figure 2016035388
Figure 2016035388

Tmの時間変化が、式(2)で示す線形式で近似されるなら、異なる時間の2点の温度データがあれば、Tを求めることができる。例えば、半導体素子91がMOSFETならば、端子間電圧として時間t、t、t時のドレイン―ソース間電圧V、V、Vが制御部5(データ受信部5c)に出力される。なお、時間t時点では、電流が流れていないので、V=0Vとなり、t時のドレイン―ソース間電圧Vは計測する必要が無い。If the time change of Tm is approximated by the linear form shown in Equation (2), T 0 can be obtained if there are two points of temperature data at different times. For example, if the semiconductor element 91 is a MOSFET, drain-source voltages V 0 , V 1 , V 2 at times t 0 , t 1 , t 2 are output to the control unit 5 (data receiving unit 5c) as terminal voltages. Is done. Since no current flows at time t 0 , V 0 = 0V, and it is not necessary to measure the drain-source voltage V 0 at t 0 .

そして、時間t、tの電圧データV、Vから、具体的には以下のようにしてTを演算する。制御部5(温度算出部5a)は、電圧データV、Vとデータ保持部5bに保持された相関データから、時間t、tにおける素子温度T、Tをそれぞれ計算する。さらに、式(2)を用い、時差データt−t、t−tと、算出した素子温度T、TからTを計算する。計算されたTがそのサイクルにおける半導体素子91の最低温度TLとなる。算出した最低温度TLは、表示部6に表示される。なお、算出した最低温度TL、最高温度THはパワーサイクル試験の履歴として別途保存するようにしてもよい。Then, T 0 is calculated from the voltage data V 1 and V 2 at times t 1 and t 2 as follows. The control unit 5 (temperature calculation unit 5a) calculates element temperatures T 1 and T 2 at times t 1 and t 2 from the voltage data V 1 and V 2 and the correlation data held in the data holding unit 5b, respectively. Further, T 0 is calculated from the time difference data t 1 -t 0 , t 2 -t 0 and the calculated element temperatures T 1 , T 2 using the equation (2). The calculated T 0 becomes the minimum temperature TL of the semiconductor element 91 in the cycle. The calculated minimum temperature TL is displayed on the display unit 6. The calculated minimum temperature TL and maximum temperature TH may be stored separately as a history of the power cycle test.

なお、上記では、第二点目のデータ取得時間tとtとの間隔を温度変化時定数τより短くすることで、式(1)を線形近似した式(2)を基に、端子間電圧の測定点数を減らし、単純な計算で最低温度TLを算出する方法を述べた。しかし、式(1)を2次式で近似した式を使用すれば、さらに精度良く最低温度TLを算出する事ができる。但し、この場合は、データ収集部4は、端子間電圧を異なる時間の最低3点計測し、制御部5(温度算出部5a)は、3点それぞれの時間と端子間電圧データを基に、最低温度TLを計算する。In the above, the terminal between the second data acquisition time t 2 and t 0 is made shorter than the temperature change time constant τ, and the terminal is based on the equation (2) obtained by linear approximation of the equation (1). A method has been described in which the minimum temperature TL is calculated by a simple calculation by reducing the number of inter-voltage measurement points. However, the minimum temperature TL can be calculated with higher accuracy by using an equation obtained by approximating the equation (1) with a quadratic equation. However, in this case, the data collection unit 4 measures the inter-terminal voltage at least three points at different times, and the control unit 5 (temperature calculation unit 5a), based on the time at each of the three points and the inter-terminal voltage data, Calculate the minimum temperature TL.

このように、MOSFETのドレイン―ソース間電圧のように、半導体素子91へ主電流を通電した時の端子間電圧を電流導通開始直後の時間の異なる2点以上測定することで、最低温度TLが演算できる。さらに、電流停止直前の1点の端子間電圧を測定することで、最高温度THも簡易に求めることができる。つまり、各サイクルにおける最高温度THと最低温度TLを単純な方法により算出し、管理したパワーサイクル試験が可能な半導体試験装置10あるいは半導体試験方法が得られる。なお、上記例では、素子温度を時間関数に近似する例について説明したが、これに限ることはない。例えば、端子間電圧を時間関数に近似して算出した時間tの端子間電圧に基づいて素子温度を算出するようにしてもよい。As described above, by measuring the voltage between the terminals when the main current is supplied to the semiconductor element 91, such as the drain-source voltage of the MOSFET, at least two points with different times immediately after the start of current conduction, the minimum temperature TL can be reduced. Can be calculated. Further, the maximum temperature TH can be easily obtained by measuring the voltage at one point immediately before the current is stopped. That is, the semiconductor test apparatus 10 or the semiconductor test method capable of performing the managed power cycle test by calculating the maximum temperature TH and the minimum temperature TL in each cycle by a simple method is obtained. In addition, although the example which approximates element temperature to a time function was demonstrated in the said example, it does not restrict to this. For example, the element temperature may be calculated based on the inter-terminal voltage at time t 0 calculated by approximating the inter-terminal voltage to a time function.

とくに、背景技術で述べたような、PN接合部分に、温度測定用の微小電流を通電させて素子温度を推定する方法では、温度測定用の微小電流を安定に供給するための電源と微小電流を制御するための付加的な回路が必要となる。しかし、本発明の実施の形態1にかかる半導体試験装置10では、微小電流を安定に供給するための電源や微小電流を制御するための付加的な回路は不要であり、装置構成が複雑化することがない。   In particular, in the method of estimating the element temperature by supplying a small current for temperature measurement to the PN junction as described in the background art, a power source and a small current for stably supplying a small current for temperature measurement An additional circuit is required to control this. However, the semiconductor test apparatus 10 according to the first embodiment of the present invention does not require a power supply for stably supplying a minute current and an additional circuit for controlling the minute current, and the apparatus configuration is complicated. There is nothing.

なお、試験対象となる半導体装置に用いられる半導体素子としては、シリコンウエハを基材とした一般的な素子でも良い。しかし、炭化ケイ素(SiC)や窒化ガリウム系材料(GaN)、またはダイヤモンドといったシリコンと較べてバンドギャップが広い、いわゆるワイドバンドギャップ半導体材料を用いた場合の方が、運転温度が高く、接合部の信頼性が重要になる。本発明の実施の形態1にかかる半導体試験装置10あるいは試験方法を用いれば、耐久性等を適正に評価し、信頼性の高い半導体装置が得られる効果が顕著となる。半導体素子の種類としては、上述したMOSFETやIGBT(Insulated Gate Bipolar Transistor)のようなスイッチング素子、またはダイオードのような整流素子であってもよい。また、半導体素子91としてIGBTを用いた場合、本実施の形態で使用した端子の名称を以下のように置き換えれば良い。ソース(ソース端子91s)→エミッタ、ドレイン(ドレイン端子91d)→コレクタ。   The semiconductor element used in the semiconductor device to be tested may be a general element based on a silicon wafer. However, the operation temperature is higher when a so-called wide band gap semiconductor material having a wider band gap than silicon carbide (SiC), gallium nitride-based material (GaN), or diamond is used. Reliability becomes important. When the semiconductor test apparatus 10 or the test method according to the first embodiment of the present invention is used, the effect of appropriately evaluating the durability and the like and obtaining a highly reliable semiconductor device becomes remarkable. The type of semiconductor element may be a switching element such as the above-described MOSFET or IGBT (Insulated Gate Bipolar Transistor), or a rectifying element such as a diode. Further, when an IGBT is used as the semiconductor element 91, the names of the terminals used in this embodiment may be replaced as follows. Source (source terminal 91s) → emitter, drain (drain terminal 91d) → collector.

以上のように、本実施の形態にかかる半導体試験装置10によれば、半導体装置90内に実装された半導体素子91に対し、電流Iの通電と停止を周期的に繰り返すパワーサイクル試験を実行する半導体試験装置10であって、半導体素子91の温度を変数としたときの、電流Iの通電に必要な印加電圧(端子間電圧)との相関データを保持する相関データ保持部(データ保持部5b)と、パワーサイクル試験において、半導体素子91に電流Iを通電した際の印加電圧(端子間電圧)の実測データを収集するデータ収集部4と、データ収集部4が収集した実測データと、相関データ保持部(データ保持部5b)が保持する相関データに基づき、半導体素子91の温度を算出する温度算出部5aと、を備えるように構成したので、微小電流を安定に供給するための電源や微小電流を制御するための付加的な回路は不要であり、装置構成が複雑化することがないのに、半導体素子91の温度を適正に管理してパワーサイクル試験を行うことができる。As described above, according to the semiconductor test apparatus 10 according to the present embodiment, the power cycle test is periodically performed on the semiconductor element 91 mounted in the semiconductor device 90 to repeatedly energize and stop the current I 0. A correlation data holding unit (data holding) that holds correlation data with an applied voltage (inter-terminal voltage) necessary for energizing the current I 0 when the temperature of the semiconductor element 91 is a variable. Unit 5b), a data collection unit 4 that collects actual measurement data of the applied voltage (voltage between terminals) when the current I 0 is supplied to the semiconductor element 91 in the power cycle test, and actual measurement data collected by the data collection unit 4 And a temperature calculation unit 5a for calculating the temperature of the semiconductor element 91 based on the correlation data held by the correlation data holding unit (data holding unit 5b). A power supply for stably supplying a current and an additional circuit for controlling a minute current are not required, and the device configuration is not complicated. A cycle test can be performed.

また、データ収集部4は、パワーサイクル試験における各サイクルで、半導体素子91への通電を開始する通電開始信号を受信すると、通電開始信号を受信した後の、それぞれ受信時間(時間t)からの経過時間が異なる時点での実測データとその測定時間とのデータ組(V,t)、(V,t)を2組以上収集し、温度算出部5aは、収集した2組以上のデータ組を時間の関数に近似して算出した受信時間(時間t)における半導体素子91の温度を各サイクルにおける最低温度TLとするように構成したので、停止期間Prから通電期間Paに切り替わる際の温度であり、パワーサイクル試験の適正さを判断するのに重要な最低温度TLを容易に算出することができる。Further, when the data collection unit 4 receives an energization start signal for starting energization of the semiconductor element 91 in each cycle in the power cycle test, the data collection unit 4 starts from the reception time (time t 0 ) after receiving the energization start signal. Two or more data sets (V 1 , t 1 ) and (V 2 , t 2 ) of the actual measurement data and the measurement time at the time when the elapsed times of the two are different are collected, and the temperature calculation unit 5a collects the two collected sets Since the temperature of the semiconductor element 91 at the reception time (time t 0 ) calculated by approximating the above data set to a function of time is set to the minimum temperature TL in each cycle, the period from the stop period Pr to the energization period Pa is set. It is the temperature at the time of switching, and the minimum temperature TL that is important for determining the appropriateness of the power cycle test can be easily calculated.

とくに、経過時間は、半導体装置90内における半導体素子91の温度変化時定数τより短い時間に設定され、温度算出部5aは、収集した2組以上のデータ組を時間の一次関数に近似するので、例えば、2組のデータ組でも最低温度TLを算出でき、より簡易に最低温度TLを算出することができる。   In particular, the elapsed time is set to a time shorter than the temperature change time constant τ of the semiconductor element 91 in the semiconductor device 90, and the temperature calculation unit 5a approximates two or more collected data sets to a linear function of time. For example, the minimum temperature TL can be calculated even with two data sets, and the minimum temperature TL can be calculated more easily.

また、本実施の形態1にかかる半導体試験方法によれば、半導体装置90内に実装された半導体素子91に対し、電流Iの通電と停止を周期的に繰り返すパワーサイクル試験を実行する半導体試験方法であって、(パワーサイクル試験の前に実行される)半導体素子91の温度を変数としたときの、電流Iの通電に必要な印加電圧(端子間電圧)との相関データを保持する(パワーサイクル試験の前に実行される)相関データ保持工程と、パワーサイクル試験において、半導体素子91に電流Iを通電した際の印加電圧(端子間電圧)の実測データを収集するデータ収集工程と、データ収集工程で収集した実測データと、相関データ保持工程で保持した相関データに基づき、半導体素子91の温度を算出する温度算出工程と、を含むように構成したので、微小電流を安定に供給するための電源や微小電流を制御するための付加的な回路は不要であり、装置構成が複雑化することがないのに、半導体素子91の温度を適正に管理してパワーサイクル試験を行うことができる。In addition, according to the semiconductor test method according to the first embodiment, a semiconductor test for executing a power cycle test in which the current I 0 is periodically turned on and off is performed on the semiconductor element 91 mounted in the semiconductor device 90. A method for holding correlation data with an applied voltage (inter-terminal voltage) necessary for energizing the current I 0 when the temperature of the semiconductor element 91 (executed before the power cycle test) is a variable. A correlation data holding step (performed before the power cycle test) and a data collection step for collecting measured data of applied voltage (voltage between terminals) when the current I 0 is applied to the semiconductor element 91 in the power cycle test. And a temperature calculation step of calculating the temperature of the semiconductor element 91 based on the actual measurement data collected in the data collection step and the correlation data held in the correlation data holding step. Thus, the power supply for stably supplying a minute current and an additional circuit for controlling the minute current are not necessary, and the temperature of the semiconductor element 91 can be increased without complicating the device configuration. The power cycle test can be performed with proper management.

また、データ収集工程では、パワーサイクル試験における各サイクルで、半導体素子91への通電を開始する通電開始信号を受信すると、通電開始信号を受信した後の、それぞれ受信時間(時間t)からの経過時間が異なる時点での実測データとその測定時間とのデータ組(V,t)、(V,t)を2組以上収集し、温度算出工程では、収集した2組以上のデータ組を時間の関数に近似して算出した受信時間(時間t)における半導体素子91の温度を各サイクルにおける最低温度TLとするように構成したので、停止期間Prから通電期間Paに切り替わる際の温度であり、パワーサイクル試験の適正さを判断するのに重要な最低温度TLを容易に算出することができる。Further, in the data collection process, when an energization start signal for starting energization of the semiconductor element 91 is received in each cycle in the power cycle test, from the reception time (time t 0 ) after receiving the energization start signal, respectively. Collect two or more sets (V 1 , t 1 ) and (V 2 , t 2 ) of data sets (V 1 , t 1 ) and actual measurement data at the time points when the elapsed times are different. Since the temperature of the semiconductor element 91 at the reception time (time t 0 ) calculated by approximating the data set to a function of time is set to the minimum temperature TL in each cycle, the switching from the stop period Pr to the energization period Pa is performed. The minimum temperature TL that is important for judging the suitability of the power cycle test can be easily calculated.

とくに、経過時間は、半導体装置90内における半導体素子91の温度変化時定数τより短い時間に設定され、温度算出工程では、収集した2組以上のデータ組を時間の一次関数に近似するので、例えば、2組のデータ組でも最低温度TLを算出でき、より簡易に最低温度TLを算出することができる。   In particular, the elapsed time is set to a time shorter than the temperature change time constant τ of the semiconductor element 91 in the semiconductor device 90, and in the temperature calculation step, two or more collected data sets are approximated to a linear function of time. For example, the minimum temperature TL can be calculated with two data sets, and the minimum temperature TL can be calculated more easily.

実施の形態2.
上記実施の形態1においては、最高温度については、通電期間の最後の電圧データから算出する旨のみ説明した。本実施の形態2においては、最後の電圧データの取得タイミングを予定された切替タイミングに応じて設定するようにした。図6は、本発明の実施の形態2にかかる半導体試験装置及び半導体試験方法において、最高温度を算出するための電流停止時のデータ収得タイミング、を示すための電流と端子間電圧の波形図である。なお、その他の基本的な構成については、実施の形態1と同様であり、図を援用するとともに、同様部分については説明を省略する。
Embodiment 2. FIG.
In the first embodiment, only the description has been given of calculating the maximum temperature from the last voltage data in the energization period. In the second embodiment, the acquisition timing of the last voltage data is set according to the scheduled switching timing. FIG. 6 is a waveform diagram of the current and the voltage between the terminals for showing the data acquisition timing at the time of stopping the current for calculating the maximum temperature in the semiconductor test apparatus and the semiconductor test method according to the second embodiment of the present invention. is there. In addition, about another basic structure, it is the same as that of Embodiment 1, While using a figure, description is abbreviate | omitted about the same part.

図において、通電期間Paから停止期間Prに切り替わる際、電源1からの電流停止トリガ信号が、時間tにデータ収集部4に入力される。このとき、理想的には、時間t以前の、電流が一定値(一定電流I)を保持し、かつ時間tに近い時間における端子間電圧を測定することが望ましい。しかし、そのためには、時間tから遡った時間のデータを収集する必要があり、例えば、切替タイミング前の電圧データを細かい測定周期で計測し、FIFO(先入先出)形式で記憶・読み出しが可能な計測・記憶装置等を設ける必要がある。In the figure, when switched to the stop period Pr from energization period Pa, the current stop trigger signal from the power supply 1 is inputted to the data collecting section 4 to the time t x. In this case, ideally, the time t x previously, holds the current constant value (constant current I 0), and to measure the terminal voltage at the time close to the time t x desirable. However, for this, it is necessary to collect time data going back from the time t x, for example, to measure the voltage data before the switching timing at a fine measurement period, is stored and read in FIFO (first-in, first-unloading) format It is necessary to provide a possible measurement / storage device.

一方、停止期間Prから通電期間Paに切り替わる場合と異なり、通常のパワーサイクル試験条件においては、時間t付近での素子温度が急激に変化することは無い。そこで、本実施の形態2にかかる半導体試験装置、および半導体試験方法では、実際に電流を停止する際に出力される電流停止トリガ信号ではなく、パワーサイクル試験として計画された切替タイミングtに基づき、最高温度THを算出するための電圧データを取得する取得タイミングtを設定するようにした。取得タイミングtは、計画された切替タイミングtと実際の切り替え時間tがずれた場合でも、tより後になることがなく、かつ電流が一定値(一定電流I)を保持し、かつ時間tに近くなるように、定める。On the other hand, unlike the case where switching to the conduction period Pa from stop period Pr, in the conventional power cycle test conditions, it is not the element temperature in the vicinity of the time t x changes abruptly. In the present exemplary semiconductor test apparatus according to Embodiment 2, and semiconductor testing method, actually not the current stop trigger signal output to stop a current, based on the switching timing t s which is planned as a power cycle test and to set the acquisition timing t a to acquire voltage data for calculating the highest temperature TH. Acquisition timing t a, even if the actual switching time t x and planned switching timing t s is shifted, without become later than t x, and current is held at a constant value (a constant current I 0), And it is determined so as to be close to the time t x .

切替タイミングtの情報は、例えば、予めデータ保持部5b等に保持するようにしてもよいが、例えば、周期ごとにタイミングを調整する場合等は、図示しない試験を制御する制御部等から入手するようにしてもよい。このように構成することで、データ収集部4は、その周期において予定された切替タイミングtに対して、所定期間前の時点を取得タイミングtに設定し、取得タイミングtになると、端子間電圧の電圧データVを収集し、制御部5に出力する。Information of switching timing t s is obtained, for example, may be held in advance data holding portion 5b and the like. For example, like the case of adjusting the timing for each cycle, the control unit for controlling the not-shown test You may make it do. With this configuration, the data collection unit 4, to the switching timing t s which is scheduled in the period, to set the time of the predetermined period before the acquisition timing t a, becomes the acquisition timing t a, the terminal collect voltage data V a between the voltage, and outputs it to the control unit 5.

制御部5(温度算出部5a)では、実施の形態1で説明したのと同様に、入力された電圧データVとデータ保持部5bに保持された相関データに基づいて、取得タイミングtでの素子温度を算出する。算出した素子温度をその周期における最高温度THとすることができ、例えば、算出した最高温度THは表示部6に表示される。本実施の形態2においても、算出した最低温度TL、最高温度THはパワーサイクル試験の履歴として別途保存するようにしてもよい。In the control unit 5 (temperature calculation unit 5a), in a manner similar to that described in the first embodiment, based on the correlation data held in the voltage data V a and the data holding portion 5b is input, at the acquisition timing t a The element temperature is calculated. The calculated element temperature can be set as the maximum temperature TH in the cycle. For example, the calculated maximum temperature TH is displayed on the display unit 6. Also in the second embodiment, the calculated minimum temperature TL and maximum temperature TH may be separately stored as a power cycle test history.

つまり、最高温度THを得るのに必要な端子間電圧のデータは1点で済み、例えば、取得タイミングtに該当するかもしれない膨大な数のデータを収集する必要が無い。つまり、高速で記憶容量を要する計測器を用いる必要が無く、単純な計測器を用いて、パワーサイクル試験における周期ごとの最高温度THを管理することができる。つまり、実施の形態1で説明した最低温度TLを算出する方法と組み合わせることで、より単純な装置により、適正な温度管理下でパワーサイクル試験を実行できる半導体試験装置10あるいは半導体試験方法を得ることができる。That is, the data required terminal voltage to obtain a maximum temperature TH requires only one point, for example, there is no need to collect a large number of data that may correspond to the acquisition timing t a. That is, it is not necessary to use a measuring instrument that requires high-speed storage capacity, and the maximum temperature TH for each cycle in the power cycle test can be managed using a simple measuring instrument. That is, by combining with the method for calculating the minimum temperature TL described in the first embodiment, a semiconductor test apparatus 10 or a semiconductor test method capable of performing a power cycle test under appropriate temperature management is obtained with a simpler apparatus. Can do.

以上のように、本実施の形態2にかかる半導体試験装置10によれば、データ収集部4は、パワーサイクル試験における各サイクルで予定された通電を停止する停止予定時間(切替タイミングt)の情報に基づき、停止予定時間(切替タイミングt)から所定時間前の時間(取得タイミングt)における実測データ(電圧データV)を収集し、温度算出部5aは、取得タイミングtにおける実測データ(電圧データV)に基づいて算出された半導体素子91の温度を、各サイクルにおける最高温度THとするように構成したので、通電期間Paから停止期間Prに切り替わる際の温度であり、パワーサイクル試験の適正さを判断するのに重要な最高温度THを容易に算出することができる。As described above, according to the semiconductor test apparatus 10 according to the second embodiment, the data collection unit 4 has the scheduled stop time (switching timing t s ) for stopping energization scheduled in each cycle in the power cycle test. based on the information, collects the measured data (voltage data V a) at the scheduled stop time (switching timing t s) from the predetermined time before the time (acquisition time t a), the temperature calculation unit 5a, measured at the acquisition timing t a Since the temperature of the semiconductor element 91 calculated based on the data (voltage data V a ) is set to the maximum temperature TH in each cycle, it is the temperature when the energization period Pa is switched to the stop period Pr, and the power It is possible to easily calculate the maximum temperature TH that is important for determining the suitability of the cycle test.

また、本実施の形態にかかる半導体試験方法によれば、データ収集工程では、パワーサイクル試験における各サイクルで予定された通電を停止する停止予定時間(切替タイミングt)の情報に基づき、停止予定時間(切替タイミングt)から所定時間前の時間(取得タイミングt)における実測データ(電圧データV)を収集し、温度算出工程では、取得タイミングtにおける実測データ(電圧データV)に基づいて算出された半導体素子91の温度を、各サイクルにおける最高温度THとするように構成したので、通電期間Paから停止期間Prに切り替わる際の温度であり、パワーサイクル試験の適正さを判断するのに重要な最高温度THを容易に算出することができる。Further, according to the semiconductor test method according to the present embodiment, in the data collection process, the scheduled stop based on the information on the scheduled stop time (switching timing t s ) for stopping the energization scheduled in each cycle in the power cycle test. Actual measurement data (voltage data V a ) at a time (acquisition timing t a ) a predetermined time before the time (switching timing t s ) is collected, and in the temperature calculation step, actual measurement data (voltage data V a ) at the acquisition timing t a is collected. Since the temperature of the semiconductor element 91 calculated based on the above is configured to be the maximum temperature TH in each cycle, the temperature at the time of switching from the energization period Pa to the stop period Pr is determined, and the appropriateness of the power cycle test is determined. It is possible to easily calculate the maximum temperature TH that is important for this.

1:電源、 2:ゲート電源、 3:電圧計、 4:データ収集部、 5:制御部、 5a:温度算出部、 5b:データ保持部、 5c:データ受信部、 6:表示部、 10:半導体試験装置、 90:半導体装置、 91:半導体素子、 91d:ドレイン端子(電力端子)、 91g:ゲート端子(制御端子)、 91s:ソース端子(電力端子)、 I:一定電流、 Pa:通電期間、 Pr:停止期間、 t:時間(通電期間に切替るタイミング)、 t:取得タイミング、 TH:再移行温度、 TL:最低温度、時間t:時間(受信時間)、 t:(予定された)切替タイミング(停止予定時間)、 t:(実際の)切替タイミング、 V,V:電圧データ(実測データ)、 V:(取得タイミングにおける)電圧データ(実測データ)、 Δt:遅延時間。 1: power supply, 2: gate power supply, 3: voltmeter, 4: data collection unit, 5: control unit, 5a: temperature calculation unit, 5b: data holding unit, 5c: data reception unit, 6: display unit, 10: Semiconductor test equipment, 90: semiconductor equipment, 91: semiconductor element, 91d: drain terminal (power terminal), 91g: gate terminal (control terminal), 91s: source terminal (power terminal), I 0 : constant current, Pa: energization period, Pr: stop period, t 0: time (toggle its timing energizing period), t a: obtaining timing, TH: reconversion temperature, TL: minimum temperature, time t 0: time (reception time), t s: (Scheduled) switching timing (scheduled stop time), t x : (actual) switching timing, V 1 , V 2 : voltage data (measured data), V a : voltage data (measured at the acquisition timing) Data), Δt: delay time.

本発明にかかる半導体試験装置は、半導体装置内に実装された半導体素子に対し、電流の通電と停止を周期的に繰り返すパワーサイクル試験を実行する半導体試験装置であって、前記半導体素子の温度を変数としたときの、前記電流の通電に必要な印加電圧との相関データを保持する相関データ保持部と、前記パワーサイクル試験において、前記半導体素子に前記電流を通電した際の前記印加電圧の実測データを収集するデータ収集部と、前記データ収集部が収集した前記実測データと、前記相関データ保持部が保持する前記相関データに基づき、前記半導体素子の温度を算出する温度算出部と、を備え、前記データ収集部は、前記パワーサイクル試験における各サイクルで、前記半導体素子への通電を開始する通電開始信号を受信すると、前記通電開始信号を受信した後の、それぞれ受信時間からの経過時間が異なる時点での前記実測データとその測定時間とのデータ組を2組以上収集し、前記温度算出部は、前記収集した2組以上のデータ組を時間の関数に近似して算出した前記受信時間における前記半導体素子の温度を前記各サイクルにおける最低温度とすることを特徴とする。

A semiconductor test apparatus according to the present invention is a semiconductor test apparatus for executing a power cycle test that periodically repeats energization and stop of a current on a semiconductor element mounted in the semiconductor device, wherein the temperature of the semiconductor element is set. A correlation data holding unit for holding correlation data with an applied voltage necessary for energization of the current when a variable is used; and an actual measurement of the applied voltage when the current is passed through the semiconductor element in the power cycle test A data collection unit for collecting data; and a temperature calculation unit for calculating the temperature of the semiconductor element based on the actual measurement data collected by the data collection unit and the correlation data held by the correlation data holding unit. The data collection unit receives an energization start signal for starting energization of the semiconductor element in each cycle in the power cycle test. Collect two or more data sets of the actual measurement data and the measurement time at times when the elapsed time from the reception time after receiving the energization start signal is different, and the temperature calculation unit collects the collected 2 The temperature of the semiconductor element at the reception time calculated by approximating a data set equal to or more than a set to a function of time is set as a minimum temperature in each cycle .

また、本発明にかかる半導体試験方法は、半導体装置内に実装された半導体素子に対し、電流の通電と停止を周期的に繰り返すパワーサイクル試験を実行する半導体試験方法であって、前記半導体素子の温度を変数としたときの、前記電流の通電に必要な印加電圧との相関データを保持する相関データ保持工程と、前記パワーサイクル試験において、前記半導体素子に前記電流を通電した際の前記印加電圧の実測データを収集するデータ収集工程と、前記データ収集工程で収集した前記実測データと、前記相関データ保持工程で保持した前記相関データに基づき、前記半導体素子の温度を算出する温度算出工程と、を含み、前記データ収集工程では、前記パワーサイクル試験における各サイクルで、前記半導体素子への通電を開始する通電開始信号を受信すると、前記通電開始信号を受信した後の、それぞれ受信時間からの経過時間が異なる時点での前記実測データとその測定時間とのデータ組を2組以上収集し、前記温度算出工程では、前記収集した2組以上のデータ組を時間の関数に近似して算出した前記受信時間における前記半導体素子の温度を前記各サイクルにおける最低温度とすることを特徴とする。 A semiconductor test method according to the present invention is a semiconductor test method for executing a power cycle test that periodically repeats energization and stop of current on a semiconductor element mounted in a semiconductor device. A correlation data holding step for holding correlation data with an applied voltage necessary for energizing the current when temperature is a variable, and the applied voltage when the current is energized to the semiconductor element in the power cycle test A data collection step for collecting actual measurement data, a temperature calculation step for calculating a temperature of the semiconductor element based on the actual measurement data collected in the data collection step, and the correlation data held in the correlation data holding step; only contains, in the data collection process, in each cycle of the power cycle test, energized open to start energization of the semiconductor element When the signal is received, two or more data sets of the actual measurement data and the measurement time at the time when the elapsed time from the reception time is different after receiving the energization start signal are collected, and in the temperature calculation step, The temperature of the semiconductor element at the reception time calculated by approximating the collected two or more data sets to a function of time is set as the lowest temperature in each cycle .

Claims (8)

半導体装置内に実装された半導体素子に対し、電流の通電と停止を周期的に繰り返すパワーサイクル試験を実行する半導体試験装置であって、
前記半導体素子の温度を変数としたときの、前記電流の通電に必要な印加電圧との相関データを保持する相関データ保持部と、
前記パワーサイクル試験において、前記半導体素子に前記電流を通電した際の前記印加電圧の実測データを収集するデータ収集部と、
前記データ収集部が収集した前記実測データと、前記相関データ保持部が保持する前記相関データに基づき、前記半導体素子の温度を算出する温度算出部と、
を備えたことを特徴とする半導体試験装置。
A semiconductor test apparatus that performs a power cycle test that periodically repeats energization and stop of current for a semiconductor element mounted in a semiconductor device,
A correlation data holding unit that holds correlation data with an applied voltage necessary for energization of the current when the temperature of the semiconductor element is a variable;
In the power cycle test, a data collection unit that collects actual measurement data of the applied voltage when the current is supplied to the semiconductor element;
A temperature calculation unit that calculates a temperature of the semiconductor element based on the actual measurement data collected by the data collection unit and the correlation data held by the correlation data holding unit;
A semiconductor test apparatus comprising:
前記データ収集部は、前記パワーサイクル試験における各サイクルで、前記半導体素子への通電を開始する通電開始信号を受信すると、前記通電開始信号を受信した後の、それぞれ受信時間からの経過時間が異なる時点での前記実測データとその測定時間とのデータ組を2組以上収集し、
前記温度算出部は、前記収集した2組以上のデータ組を時間の関数に近似して算出した前記受信時間における前記半導体素子の温度を前記各サイクルにおける最低温度とすることを特徴とする請求項1に記載の半導体試験装置。
When the data collection unit receives an energization start signal for starting energization of the semiconductor element in each cycle in the power cycle test, the elapsed time from the reception time after receiving the energization start signal is different. Collect two or more data sets of the actual measurement data and the measurement time at the time,
The temperature calculation unit is characterized in that the temperature of the semiconductor element at the reception time calculated by approximating the collected two or more data sets to a function of time is the lowest temperature in each cycle. The semiconductor test apparatus according to 1.
前記経過時間は、前記半導体装置内における前記半導体素子の温度変化時定数より短い時間に設定され、
前記温度算出部は、前記収集した2組以上のデータ組を時間の一次関数に近似することを特徴とする請求項2に記載の半導体試験装置。
The elapsed time is set to a time shorter than the temperature change time constant of the semiconductor element in the semiconductor device,
The semiconductor test apparatus according to claim 2, wherein the temperature calculation unit approximates the collected two or more data sets to a linear function of time.
前記データ収集部は、前記パワーサイクル試験における各サイクルで予定された前記通電を停止する停止予定時間の情報に基づき、前記停止予定時間から所定時間前の時間における前記実測データを収集し、
前記温度算出部は、前記所定時間前の時間における前記実測データに基づいて算出された前記半導体素子の温度を、前記各サイクルにおける最高温度とすることを特徴とする請求項1から3のいずれか1項に記載の半導体試験装置。
The data collection unit collects the actual measurement data in a predetermined time before the scheduled stop time based on information on the scheduled stop time to stop the energization scheduled in each cycle in the power cycle test,
4. The temperature calculation unit according to claim 1, wherein the temperature of the semiconductor element calculated based on the actual measurement data at the time before the predetermined time is set as the maximum temperature in each cycle. The semiconductor test apparatus according to item 1.
半導体装置内に実装された半導体素子に対し、電流の通電と停止を周期的に繰り返すパワーサイクル試験を実行する半導体試験方法であって、
前記半導体素子の温度を変数としたときの、前記電流の通電に必要な印加電圧との相関データを保持する相関データ保持工程と、
前記パワーサイクル試験において、前記半導体素子に前記電流を通電した際の前記印加電圧の実測データを収集するデータ収集工程と、
前記データ収集工程で収集した前記実測データと、前記相関データ保持工程で保持した前記相関データに基づき、前記半導体素子の温度を算出する温度算出工程と、
を含むことを特徴とする半導体試験方法。
A semiconductor test method for performing a power cycle test that periodically repeats energization and stop of current for a semiconductor element mounted in a semiconductor device,
A correlation data holding step for holding correlation data with an applied voltage necessary for energization of the current when the temperature of the semiconductor element is a variable;
In the power cycle test, a data collection step of collecting measured data of the applied voltage when the current is supplied to the semiconductor element;
A temperature calculating step for calculating a temperature of the semiconductor element based on the measured data collected in the data collecting step and the correlation data held in the correlation data holding step;
A semiconductor test method comprising:
前記データ収集工程では、前記パワーサイクル試験における各サイクルで、前記半導体素子への通電を開始する通電開始信号を受信すると、前記通電開始信号を受信した後の、それぞれ受信時間からの経過時間が異なる時点での前記実測データとその測定時間とのデータ組を2組以上収集し、
前記温度算出工程では、前記収集した2組以上のデータ組を時間の関数に近似して算出した前記受信時間における前記半導体素子の温度を前記各サイクルにおける最低温度とすることを特徴とする請求項5に記載の半導体試験方法。
In the data collection step, when an energization start signal for starting energization of the semiconductor element is received in each cycle in the power cycle test, the elapsed time from the reception time after receiving the energization start signal is different. Collect two or more data sets of the actual measurement data and the measurement time at the time,
The temperature calculation step is characterized in that the temperature of the semiconductor element at the reception time calculated by approximating the collected two or more data sets to a function of time is the lowest temperature in each cycle. 5. The semiconductor test method according to 5.
前記経過時間は、前記半導体装置内における前記半導体素子の温度変化時定数より短い時間に設定され、
前記温度算出工程では、前記収集した2組以上のデータ組を時間の一次関数に近似することを特徴とする請求項6に記載の半導体試験方法。
The elapsed time is set to a time shorter than the temperature change time constant of the semiconductor element in the semiconductor device,
The semiconductor test method according to claim 6, wherein in the temperature calculation step, the two or more collected data sets are approximated to a linear function of time.
前記データ収集工程では、前記パワーサイクル試験における各サイクルで予定された前記通電を停止する停止予定時間の情報に基づき、前記停止予定時間から所定時間前の時間における前記実測データを収集し、
前記温度算出工程では、前記所定時間前の時間における前記実測データに基づいて算出された前記半導体素子の温度を、前記各サイクルにおける最高温度とすることを特徴とする請求項5から7のいずれか1項に記載の半導体試験方法。
In the data collection step, based on the information on the scheduled stop time for stopping the energization scheduled in each cycle in the power cycle test, the actual measurement data is collected at a predetermined time before the scheduled stop time,
8. The temperature calculation step according to claim 5, wherein the temperature of the semiconductor element calculated based on the actual measurement data at the time before the predetermined time is set as a maximum temperature in each cycle. 9. The semiconductor test method according to 1.
JP2016546343A 2014-09-01 2015-05-14 Semiconductor test apparatus and semiconductor test method Expired - Fee Related JP6203415B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014176912 2014-09-01
JP2014176912 2014-09-01
PCT/JP2015/063908 WO2016035388A1 (en) 2014-09-01 2015-05-14 Semiconductor testing device and semiconductor testing method

Publications (2)

Publication Number Publication Date
JPWO2016035388A1 true JPWO2016035388A1 (en) 2017-04-27
JP6203415B2 JP6203415B2 (en) 2017-09-27

Family

ID=55439462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016546343A Expired - Fee Related JP6203415B2 (en) 2014-09-01 2015-05-14 Semiconductor test apparatus and semiconductor test method

Country Status (2)

Country Link
JP (1) JP6203415B2 (en)
WO (1) WO2016035388A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6834731B2 (en) * 2017-04-12 2021-02-24 富士通株式会社 Test control device, test control system, and test method
EP3734244B1 (en) * 2019-05-02 2021-11-10 Siemens Aktiengesellschaft Circuit arrangement and method for controlling a power semiconductor switch
WO2020246300A1 (en) 2019-06-04 2020-12-10 株式会社クオルテック Semiconductor element testing device and testing method for semiconductor element
JP7343180B2 (en) * 2019-08-07 2023-09-12 株式会社クオルテック Electrical element testing equipment
CN111024746A (en) * 2019-11-27 2020-04-17 中山市海明润超硬材料有限公司 Method and device for testing heat resistance of diamond compact

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5832177A (en) * 1981-08-20 1983-02-25 Nec Corp Measuring method for temperature in mosfet channel part
JP2012098224A (en) * 2010-11-04 2012-05-24 Renesas Electronics Corp Power cycle test method and power cycle test apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5832177A (en) * 1981-08-20 1983-02-25 Nec Corp Measuring method for temperature in mosfet channel part
JP2012098224A (en) * 2010-11-04 2012-05-24 Renesas Electronics Corp Power cycle test method and power cycle test apparatus

Also Published As

Publication number Publication date
WO2016035388A1 (en) 2016-03-10
JP6203415B2 (en) 2017-09-27

Similar Documents

Publication Publication Date Title
JP6203415B2 (en) Semiconductor test apparatus and semiconductor test method
Lai et al. Low $\Delta T_ {j} $ Stress Cycle Effect in IGBT Power Module Die-Attach Lifetime Modeling
van der Broeck et al. IGBT junction temperature estimation via gate voltage plateau sensing
Ugur et al. Degradation assessment and precursor identification for SiC MOSFETs under high temp cycling
Zhang et al. Online junction temperature monitoring using intelligent gate drive for SiC power devices
RU2640089C2 (en) System and method of monitoring working condition of igbt device in real time
Gonzalez et al. A novel non-intrusive technique for bti characterization in sic mosfet s
US11397209B2 (en) Methods of monitoring conditions associated with aging of silicon carbide power MOSFET devices in-situ, related circuits and computer program products
JP6221408B2 (en) Thermal resistance measuring method and thermal resistance measuring device
Strauss et al. Measuring the junction temperature of an IGBT using its threshold voltage as a temperature sensitive electrical parameter (TSEP)
Blackburn et al. Power MOSFET temperature measurements
Salmen et al. A new test procedure to realistically estimate end-of-life electrical parameter stability of SiC MOSFETs in switching operation
Zhang et al. Online junction temperature monitoring using turn-off delay time for silicon carbide power devices
Ali et al. A simple plug-in circuit for IGBT gate drivers to monitor device aging: Toward smart gate drivers
JP6540062B2 (en) Device and method for evaluating switching energy loss of power semiconductor devices
Sodan et al. Experimental Benchmarking of Electrical Methods and $\mu $-Raman Spectroscopy for Channel Temperature Detection in AlGaN/GaN HEMTs
Wang et al. SiC device junction temperature online monitoring
Weimer et al. Accuracy study of calorimetric switching loss energy measurements for wide bandgap power transistors
JP2019027929A (en) Power cycle tester and power cycle test method
Kempiak et al. Impact of Threshold Voltage Instabilities of SiC MOSFETs on the Methodology of Power Cycling Tests
Davis et al. Methodology and apparatus for rapid power cycle accumulation and in-situ incipient failure monitoring for power electronic modules
JP6616699B2 (en) Power converter and thermal resistance measurement method for power module
JP5742642B2 (en) Semiconductor element junction temperature estimation method, estimation system, and estimation program
ten Have et al. An approach to lifetime estimation of SiC MOSFETs subjected to thermal stress
Sarkany et al. Effect of power cycling parameters on predicted IGBT lifetime

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170829

R151 Written notification of patent or utility model registration

Ref document number: 6203415

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees