JPWO2015199103A1 - Pinion shaft and manufacturing method thereof - Google Patents

Pinion shaft and manufacturing method thereof Download PDF

Info

Publication number
JPWO2015199103A1
JPWO2015199103A1 JP2016529614A JP2016529614A JPWO2015199103A1 JP WO2015199103 A1 JPWO2015199103 A1 JP WO2015199103A1 JP 2016529614 A JP2016529614 A JP 2016529614A JP 2016529614 A JP2016529614 A JP 2016529614A JP WO2015199103 A1 JPWO2015199103 A1 JP WO2015199103A1
Authority
JP
Japan
Prior art keywords
pinion shaft
amount
retained austenite
shaft
caulking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016529614A
Other languages
Japanese (ja)
Inventor
宮本 祐司
祐司 宮本
雄介 荒川
雄介 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Publication of JPWO2015199103A1 publication Critical patent/JPWO2015199103A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/28Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for plain shafts
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/08General details of gearing of gearings with members having orbital motion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

鋼材製で、転動面の表面の残留オーステナイト量が20〜50体積%で、心部の残留オーステナイト量が0体積%であり、軸端部において、表面硬さが150〜350HVで、表層に0.02〜0.1mmのフェライト脱炭層を有し、該フェライト脱炭層内に初析炭化物が存在しないピニオンシャフト。It is made of steel, the amount of retained austenite on the surface of the rolling surface is 20 to 50% by volume, the amount of retained austenite at the center is 0% by volume, and the surface hardness is 150 to 350 HV at the shaft end. A pinion shaft having a ferrite decarburized layer of 0.02 to 0.1 mm, and no pro-eutectoid carbides present in the ferrite decarburized layer.

Description

本発明は、遊星歯車装置に使用される合金製ピニオンシャフト、並びにその製造方法に関する。   The present invention relates to an alloy pinion shaft used for a planetary gear device and a method for manufacturing the same.

自動車等の遊星歯車装置において、プラネタリシャフトはニードルころを介してピニオンギアを支持している。ピニオンシャフトは転がり軸受の内輪に、ピニオンギアの内面は外輪に相当し、ピニオンシャフトの軸端部は、キャリアに固定されている。固定方式としては、係止ピンを掛け渡す「ピン止めタイプ」と、軸端部を塑性変形させる「加締めタイプ」の2種類があり、「加締めタイプ」は、係止ピンが不要であることから部品点数を削減できとともに、軸長さを抑えることができるという利点を有する。   In a planetary gear device such as an automobile, the planetary shaft supports a pinion gear via a needle roller. The pinion shaft corresponds to the inner ring of the rolling bearing, the inner surface of the pinion gear corresponds to the outer ring, and the shaft end of the pinion shaft is fixed to the carrier. There are two types of fixing methods: a “pinning type” that spans the locking pin and a “clamping type” that plastically deforms the shaft end, and the “clamping type” does not require a locking pin. Therefore, the number of parts can be reduced and the shaft length can be suppressed.

しかし、「加締めタイプ」構造にするには、ピニオンシャフトは、転がり軸受としてせん断応力に対する強度を確保した上で、端部を軟化させて塑性加工性を高めるという相反する特性を同時に満たす必要がある。   However, in order to achieve a “clamping type” structure, the pinion shaft must satisfy the conflicting characteristics of softening the end part and improving the plastic workability while ensuring the strength against shear stress as a rolling bearing. is there.

ピニオンシャフトの素材としては炭素鋼や炭素工鋼、高炭素クロム軸受鋼、肌焼鋼等が使用されているが、例えば、高炭素鋼を、浸炭窒化後に高温で焼戻(調質)して加締め部の硬さを低下させた後、転送面を高周波焼入れしたピニオンシャフトや、クロム含有量を高めた肌焼鋼を浸炭窒化して組織安定性を高めたピニオンシャフト等が知られている(特許文献1、2参照)。   Carbon steel, carbon engineering steel, high carbon chromium bearing steel, case-hardened steel, etc. are used as the material of the pinion shaft. For example, high carbon steel is tempered (tempered) at high temperature after carbonitriding. Known are pinion shafts that have been induction hardened on the transfer surface after reducing the hardness of the caulking part, and pinion shafts that have been carbonitrided with case-hardened steel with increased chromium content to increase the structural stability. (See Patent Documents 1 and 2).

日本国特開2013−228032号公報Japanese Unexamined Patent Publication No. 2013-228032 日本国特開2013−227615号公報Japanese Unexamined Patent Publication No. 2013-227615

クロム含有量を高めた鋼材を浸炭窒化すると、その後の冷却過程において粒界に選択的に炭化物(初析炭化物)が析出する。そして、この初析炭化物により延性が低下して加締め性も低下する。加締めタイプのピニオンシャフトでは軸端部が加締め可能な硬さになっているが、初析炭化物が析出していると、加締め部にひびや割れが発生する。しかし、このような初析炭化物による加締め性の低下についてこれまで検討されておらず、加締め型ピニオンシャフトには更なる改良の余地がある。   When carbonitriding a steel material with a high chromium content, carbides (predetermined carbides) are selectively deposited at grain boundaries in the subsequent cooling process. And by this pro-eutectoid carbide, ductility falls and caulking property also falls. In the caulking type pinion shaft, the end of the shaft is hard enough to be caulked, but if a pro-eutectoid carbide is deposited, cracks and cracks occur in the caulking portion. However, a reduction in caulking property due to such pro-eutectoid carbide has not been studied so far, and there is room for further improvement in the caulking pinion shaft.

本発明はこのような状況に鑑みてなされたものであり、加締め型ピニオンシャフトにおける加締め性を更に向上させることを目的とする。   This invention is made | formed in view of such a condition, and it aims at further improving the caulking property in a caulking type pinion shaft.

上記課題を解決するために本発明は、下記のピニオンシャフト及びその製造方法を提供する。
(1)鋼材製で、かつ、
転動面の表面の残留オーステナイト量が20〜50体積%で、
心部の残留オーステナイト量が0体積%であり、
軸端部において、表面硬さが150〜350HVで、表層に0.02〜0.1mmのフェライト脱炭層を有し、該フェライト脱炭層内に初析炭化物が存在しないことを特徴とするピニオンシャフト。
(2)前記鋼材が、質量%で、C:0.1〜0.29%、Cr:2.0〜5.0%、Mo:0.1〜1.5%、Mn:0.1〜1.5%、Si:0.1〜1.5%含有し、残部が鉄及び不可避的不純物からなる合金鋼であることを特徴とする上記(1)記載のピニオンシャフト。
(3)上記(2)記載のピニオンシャフトの製造方法であって、
質量%で、C:0.1〜0.29%、Cr:2.0〜5.0%、Mo:0.1〜1.5%、Mn:0.1〜1.5%、Si:0.1〜1.5%含有し、残部が鉄及び不可避的不純物からなる合金鋼を、所定形状に加工後、浸炭窒化処理した後、大気中または窒素雰囲気中で700〜770℃で焼鈍することを特徴とするピニオンシャフトの製造方法。
In order to solve the above-described problems, the present invention provides the following pinion shaft and a manufacturing method thereof.
(1) Made of steel and
The amount of retained austenite on the surface of the rolling surface is 20 to 50% by volume,
The amount of retained austenite in the core is 0% by volume,
A pinion shaft characterized by having a surface hardness of 150 to 350 HV and a ferrite decarburized layer of 0.02 to 0.1 mm on the surface layer, and no pro-eutectoid carbide in the ferrite decarburized layer at the shaft end. .
(2) The said steel materials are the mass%, C: 0.1-0.29%, Cr: 2.0-5.0%, Mo: 0.1-1.5%, Mn: 0.1 The pinion shaft according to (1), characterized in that the pinion shaft contains 1.5%, Si: 0.1 to 1.5%, and the balance is an alloy steel made of iron and inevitable impurities.
(3) A method for manufacturing a pinion shaft according to (2) above,
In mass%, C: 0.1 to 0.29%, Cr: 2.0 to 5.0%, Mo: 0.1 to 1.5%, Mn: 0.1 to 1.5%, Si: An alloy steel containing 0.1 to 1.5% and the balance being iron and inevitable impurities is processed into a predetermined shape, and then carbonitrided, and then annealed at 700 to 770 ° C. in the air or in a nitrogen atmosphere. A method for manufacturing a pinion shaft.

本発明のピニオンシャフトは、加締め部の延性に影響を及ぼす初析炭化物の析出が抑えられ、加締め性がより向上したものとなる。また、転送面は高周波焼入れにより十分な表面硬さを有しており、耐久性にも優れる。   In the pinion shaft of the present invention, precipitation of pro-eutectoid carbide that affects the ductility of the crimped portion is suppressed, and the crimpability is further improved. Moreover, the transfer surface has sufficient surface hardness by induction hardening, and is excellent in durability.

本発明のピニオンシャフトの一例を示す断面図である。It is sectional drawing which shows an example of the pinion shaft of this invention. フェライト脱炭層深さと、軸端部の表面硬さとの関係を示すグラフである。It is a graph which shows the relationship between a ferrite decarburization layer depth and the surface hardness of a shaft end part. 式1の値と。割れの有無との関係を示すグラフである。With the value of Equation 1. It is a graph which shows the relationship with the presence or absence of a crack. 式2の値と、破損の有無との関係を示すグラフである。It is a graph which shows the relationship between the value of Formula 2, and the presence or absence of damage. 式3の値と、耐久試験後の曲がり量との関係を示すグラフである。It is a graph which shows the relationship between the value of Formula 3, and the bending amount after an endurance test.

以下、本発明に関して詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明においてピニオンシャフトは、加締め型であり、例えば図1に示す構造を有する。図示されるピニオンシャフト10では、円柱状の支持軸11の外周面が転動面13となり、軸端部18a,18bが加締め部として機能する。また、転動面13に潤滑油を供給するための給油孔として、中心孔15並びに分岐孔16a,16bが設けられている。中心孔15は、支持軸11の軸端部18a,18bの一方(ここでは18a)の径方向中心が開口し、そこから軸方向に延びたものである。また、この中心孔15から分岐して径方向外方に延びて転動面13に開口して2つの分岐孔16a,16bが形成されている。更に、支持軸11の転動面13に、表面硬化層19が形成されている。   In the present invention, the pinion shaft is a caulking type and has, for example, the structure shown in FIG. In the illustrated pinion shaft 10, the outer peripheral surface of the columnar support shaft 11 becomes a rolling surface 13, and the shaft end portions 18 a and 18 b function as caulking portions. A center hole 15 and branch holes 16a and 16b are provided as oil supply holes for supplying lubricating oil to the rolling surface 13. The center hole 15 has an opening in the radial center of one of the shaft end portions 18a and 18b (here 18a) of the support shaft 11 and extends in the axial direction therefrom. Further, two branch holes 16a and 16b are formed by branching from the center hole 15 and extending outward in the radial direction so as to open to the rolling surface 13. Further, a hardened surface layer 19 is formed on the rolling surface 13 of the support shaft 11.

本発明では、ピニオンシャフト10を、SUJ2〜5の高炭素クロム軸受鋼、100CrMnSi6−4等のISO683の軸受鋼、または質量%で、C:0.1〜0.29%、Cr:2.0〜5.0%、Mo:0.1〜1.5%、Mn:0.1〜1.5%、Si:0.1〜1.5%含有し、残部が鉄及び不可避的不純物からなる合金鋼で形成することが好ましい。以下に、CやCr等の合金成分について説明する。   In the present invention, the pinion shaft 10 is made of SUJ2-5 high carbon chrome bearing steel, ISO683 bearing steel such as 100CrMnSi6-4, or mass%, C: 0.1 to 0.29%, Cr: 2.0. -5.0%, Mo: 0.1-1.5%, Mn: 0.1-1.5%, Si: 0.1-1.5%, with the balance consisting of iron and inevitable impurities It is preferable to form with alloy steel. Below, alloy components, such as C and Cr, are demonstrated.

〔C:0.1〜0.29%〕
C(炭素)は、合金鋼の基地に固溶して焼入れ、焼戻し後の硬さを向上させるとともに、Fe、Cr、Mo等の炭化物形成元素と結合して炭化物を形成し、耐摩耗性を高める作用を有する元素である。耐転動疲労性に必要な硬さを得るために浸炭窒化処理を行うが、その処理時間が長くなるとコストアップを招くため、処理時間の短縮のために、C含有量を0.1%以上にする必要がある。但し、C含有量が0.29%を超えると鍛造性や冷間加工性、被削性が低下して加工コストの上昇を招くことがある。また、棒材成形性が悪く、特に軸径φ15mm以下は塑性加工困難で、成形時に割れやクラックが発生しやすい。更に、0.29%を超えると、製鋼時に粗大な共晶炭化物が生成しやすくなり、転動疲労寿命や強度が低下する場合がある。好ましいC含有量は、0.15〜0.24%である。
[C: 0.1-0.29%]
C (carbon) dissolves in the base of the alloy steel to improve the hardness after quenching and tempering, and also forms carbide by combining with carbide forming elements such as Fe, Cr, Mo, etc. It is an element that has an enhancing effect. In order to obtain the hardness required for rolling fatigue resistance, carbonitriding is performed. However, if the processing time is increased, the cost is increased, so that the C content is 0.1% or more in order to shorten the processing time. It is necessary to. However, if the C content exceeds 0.29%, forgeability, cold workability, and machinability may be reduced, resulting in an increase in processing cost. In addition, the rod formability is poor, and particularly when the shaft diameter is 15 mm or less, plastic working is difficult, and cracks and cracks are likely to occur during molding. Furthermore, if it exceeds 0.29%, coarse eutectic carbides are likely to be produced during steelmaking, and the rolling fatigue life and strength may be reduced. A preferable C content is 0.15 to 0.24%.

〔Cr:2.0〜5.0%〕
Cr(クロム)は、基地に固溶して焼入れ性、焼戻し軟化抵抗性、耐食性及び転動疲労寿命を高める作用を有する元素である。また、炭素や窒素等の侵入型固溶元素を実質的に動きにくくして基地の組織を安定化し、水素侵入時の寿命低下を大幅に抑制する作用も有している。更に、合金鋼中に微細に分布する炭化物が、より高硬度の(Fe,Cr)Cや(Fe,Cr)、(Fe,Cr)23等の炭化物からなるために、耐摩耗性を高める作用も有している。加えて、残留オーステナイトが熱により分解しにくくなり、結果として塑性変形しにくくなる。そのため、Cr含有量が2.0%未満ではこれらの効果が十分に得られない場合がある。但し、Cr含有量が5.0%を超えると、冷間加工性や被削性、浸炭窒化製が低下してコストの上昇を招くおそれがある。更に、製鋼時に粗大な共晶炭化物が生成しやすくなり、転動疲労寿命や強度が低下する場合がある。好ましいCr含有量は、2.5〜3.5%である。
[Cr: 2.0-5.0%]
Cr (chromium) is an element having a function of improving the hardenability, temper softening resistance, corrosion resistance, and rolling fatigue life by dissolving in a matrix. It also has the effect of substantially preventing the movement of interstitial solid-solution elements such as carbon and nitrogen, making the base structure stable, and greatly reducing the lifespan at the time of hydrogen intrusion. Furthermore, since the carbides finely distributed in the alloy steel are composed of carbides such as (Fe, Cr) 3 C, (Fe, Cr) 7 C 3 , (Fe, Cr) 23 C 6 and the like having higher hardness, It also has the effect of increasing wear resistance. In addition, the retained austenite is not easily decomposed by heat, and as a result, it is difficult to plastically deform. Therefore, if the Cr content is less than 2.0%, these effects may not be sufficiently obtained. However, if the Cr content exceeds 5.0%, cold workability, machinability, and carbonitriding may decrease, leading to an increase in cost. Furthermore, coarse eutectic carbides are likely to be produced during steel making, and the rolling fatigue life and strength may be reduced. A preferable Cr content is 2.5 to 3.5%.

〔Mo:0.1〜1.5%〕
Mo(モリブデン)は、Crと同様に基地に固溶して焼入れ性、焼戻し軟化抵抗性、耐食性及び転動疲労寿命を高める作用を有する元素である。また、Crと同様に、炭素や窒素等の侵入型固溶元素を実質的に動きにくくして基地の組織を安定化し、水素侵入時の寿命低下を大幅に抑制する作用も有している。更に、合金鋼中に微細に分布する炭化物が、より高硬度のモリブデンの炭化物からなるために、耐摩耗性を高める作用も有している。そのため、Mo含有量が0.1%未満ではこれらの効果が十分に得られない場合がある。但し、Mo含有量が1.5%を超えると、冷間加工性や被削性が低下してコストの上昇を招くおそれがある。更に、製鋼時に粗大な共晶炭化物が生成しやすくなり、転動疲労寿命や強度が低下する場合がある。好ましいMo含有量は、0.2〜0.5%である。
[Mo: 0.1 to 1.5%]
Mo (molybdenum) is an element having a function of increasing the hardenability, temper softening resistance, corrosion resistance, and rolling fatigue life by dissolving in a matrix as in Cr. Moreover, like Cr, it has the effect | action which suppresses the lifetime fall at the time of hydrogen penetration | invasion substantially by making the penetration | invasion type solid solution elements, such as carbon and nitrogen, substantially difficult to move, stabilizing a base organization. Furthermore, since the carbide finely distributed in the alloy steel is made of molybdenum carbide having a higher hardness, it also has an effect of improving the wear resistance. Therefore, if the Mo content is less than 0.1%, these effects may not be sufficiently obtained. However, if the Mo content exceeds 1.5%, cold workability and machinability may be reduced, leading to an increase in cost. Furthermore, coarse eutectic carbides are likely to be produced during steel making, and the rolling fatigue life and strength may be reduced. A preferable Mo content is 0.2 to 0.5%.

〔Mn:0.1〜1.5%〕
Mn(マンガン)は、製鋼時に脱酸剤として作用する元素であり、その含有量は0.1%以上必要である。また、Mnと同様に、基地に固溶してMs点を降下させて多量の残留オーステナイトを確保したり、焼入れ性を高める作用を有している。但し、多量に添加すると、冷間加工性や被削性が低下するだけでなく、マルテンサイト変態開示温度が低下し、浸炭窒化後に多量の残留オーステナイトが残存して十分な硬さが得られない場合がある。そのため、Mn含有量を1.5%以下にする。好ましいMn含有量は0.5〜1.2%である。
[Mn: 0.1 to 1.5%]
Mn (manganese) is an element that acts as a deoxidizer during steel making, and its content needs to be 0.1% or more. Moreover, like Mn, it has the effect | action which solid-dissolves in a base | substrate and lowers Ms point and ensures a large amount of retained austenite, or improves hardenability. However, if added in a large amount, not only cold workability and machinability are lowered, but also the martensitic transformation disclosure temperature is lowered, and a large amount of retained austenite remains after carbonitriding, and sufficient hardness cannot be obtained. There is a case. Therefore, the Mn content is 1.5% or less. A preferable Mn content is 0.5 to 1.2%.

〔Si:0.1〜1.5%〕
Si(ケイ素)は、Mnと同様に、製鋼時に脱酸剤として作用する元素である。また、Cr、Mnと同様に、焼入れ性を向上させるとともに基地のマルテンサイト化や残留オーステナイトの安定化を促進し、軸受寿命の向上に有効な元素である。更に、焼戻し軟化抵抗性を高める作用も有する。そのため、Si含有量は0.1%必要である。但し、多量に添加すると、鍛造性や冷間加工性、浸炭窒化性が低下する場合があるため、Si含有量を1.5%以下にする必要がある。好ましいSi含有量は0.3〜0.5%である。
[Si: 0.1 to 1.5%]
Si (silicon) is an element that acts as a deoxidizing agent during steelmaking, like Mn. Further, like Cr and Mn, it is an element effective in improving the bearing life by improving the hardenability and promoting the martensitic transformation of the base and the stabilization of retained austenite. Furthermore, it has the effect | action which raises temper softening resistance. Therefore, the Si content needs to be 0.1%. However, if added in a large amount, the forgeability, cold workability, and carbonitriding properties may deteriorate, so the Si content needs to be 1.5% or less. A preferable Si content is 0.3 to 0.5%.

その他はFe及び不可避的不純物であるが、必要に応じてNi、Cu等を適量添加してもよい。   Others are Fe and unavoidable impurities, but an appropriate amount of Ni, Cu or the like may be added if necessary.

そして、後述する製造方法により、下記を満足するように調整される。
(a)支持軸11の転動面13の表面残留オーステナイト量が20〜50体積%
(b)支持軸11の心部20の残留オーステナイト量が0体積%
(c)軸端部18a、18bの表面硬さが150〜350HV
(d)軸端部18a、18bの表層に、0.02〜0.1mmのフェライト脱炭層を有し、かつ、このフェライト脱炭層には初析炭化物が存在しない
また、転動面13の表面硬さは、転動寿命向上のためには、700〜850HVが好ましく、760〜790HVであることがより好ましい。
And it adjusts so that the following may be satisfied with the manufacturing method mentioned later.
(A) The amount of retained austenite on the rolling surface 13 of the support shaft 11 is 20 to 50% by volume.
(B) The amount of retained austenite at the core 20 of the support shaft 11 is 0% by volume.
(C) The surface hardness of the shaft end portions 18a and 18b is 150 to 350 HV.
(D) The surface layer of the shaft end portions 18a and 18b has a ferrite decarburized layer of 0.02 to 0.1 mm, and no proeutectoid carbide exists in the ferrite decarburized layer. The hardness is preferably 700 to 850 HV, and more preferably 760 to 790 HV, in order to improve the rolling life.

本発明のピニオンシャフト10を得るには、上記の合金鋼からなる線材を旋削加工して所定形状に加工して、830〜960℃で浸炭窒化処理することが好ましい。この浸炭窒化処理後に、冷却速度を調整して冷却し、大気中または窒素雰囲気中で、700〜830℃、好ましくは700〜770℃にて焼鈍する。また、転動面13については、高周波焼入れ・焼戻し処理を行う。   In order to obtain the pinion shaft 10 of the present invention, it is preferable that the wire material made of the above alloy steel is turned into a predetermined shape and carbonitrided at 830 to 960 ° C. After the carbonitriding process, the cooling rate is adjusted to cool, and annealing is performed at 700 to 830 ° C., preferably 700 to 770 ° C. in the air or nitrogen atmosphere. The rolling surface 13 is subjected to induction hardening / tempering treatment.

転動面13は、この浸炭窒化処理及び高周波焼入れ・焼戻し処理により、表面残留オーステナイト量が20〜50体積%で、心部20の残留オーステナイト量が0体積%になるようにする。転動面13の表面残留オーステナイト量を20〜50体積%、好ましくは30〜50体積%にすることにより、転動面13に良好な耐久性を付与することができる。また、ピニオンシャフト10は高温で負荷を受けることがあり、心部20の残留オーステナイト量を0体積%にすることにより、残留オーステナイトの熱分解に伴うピニオンシャフト10の曲がりを防止することができる。   The rolling surface 13 is made to have a surface retained austenite amount of 20 to 50% by volume and a retained austenite amount of the core 20 of 0% by volume by the carbonitriding and induction quenching and tempering processes. By setting the surface retained austenite amount of the rolling surface 13 to 20 to 50% by volume, preferably 30 to 50% by volume, good durability can be imparted to the rolling surface 13. In addition, the pinion shaft 10 may be subjected to a load at a high temperature. By setting the amount of retained austenite of the core 20 to 0% by volume, it is possible to prevent the pinion shaft 10 from being bent due to thermal decomposition of the retained austenite.

また、浸炭窒化処理により、軸端部18a,18bの表面硬さを150〜350HV、好ましくは200〜300HVにする。   Further, the surface hardness of the shaft end portions 18a and 18b is set to 150 to 350 HV, preferably 200 to 300 HV, by carbonitriding.

浸炭窒化処理では、転動面13、心部20、軸端部18a,18bが上記の残留オーステナイト量や硬さとなるように、処理温度、処理ガスの組成(RXガス、エンリッチガス、アンモニアガス)及び流量を調整する。   In the carbonitriding process, the processing temperature and the composition of the processing gas (RX gas, enriched gas, ammonia gas) are set so that the rolling surface 13, the core part 20, and the shaft end parts 18a and 18b have the above-mentioned retained austenite amount and hardness. And adjust the flow rate.

また、高周波焼入れ・焼戻し処理では、高周波出力条件を適宜設定して行う。高周波の電磁波による電磁誘導を起こして表面を加熱して焼入れを行うため、転動面13のみ硬化させて硬さを増し、内部は靭性を保った状態にすることができる。また、軸端部18a,18bを加締め加工可能な状態にすることができる。   In the induction hardening / tempering treatment, the high frequency output conditions are set as appropriate. Since the surface is heated by quenching by causing electromagnetic induction by high frequency electromagnetic waves, only the rolling surface 13 is cured to increase the hardness, and the inside can be kept in toughness. Further, the shaft end portions 18a and 18b can be made into a state that can be caulked.

軸端部18a,18bの処理に当たり、浸炭窒化処理後の冷却は、550℃まで1.6℃/sec以上が好ましく、より好ましくは10℃/sec以上で行う。冷却速度の上限には制限はないが、100℃/sec以下が好ましい。冷却速度が1.6℃/secよりも遅くなり、大気中または窒素雰囲気中での焼鈍温度が700〜770℃から外れると、目的とするフェライト脱炭層を形成できないおそれがある。また、大気中または窒素雰囲気中での焼鈍時間としては、2〜5時間が好ましい。   In the treatment of the shaft end portions 18a and 18b, the cooling after the carbonitriding treatment is preferably 1.6 ° C./sec or more, more preferably 10 ° C./sec or more up to 550 ° C. Although there is no restriction | limiting in the upper limit of a cooling rate, 100 degrees C / sec or less is preferable. If the cooling rate is slower than 1.6 ° C./sec and the annealing temperature in the air or nitrogen atmosphere deviates from 700 to 770 ° C., the intended ferrite decarburized layer may not be formed. Moreover, as an annealing time in air | atmosphere or nitrogen atmosphere, 2 to 5 hours are preferable.

軸端部18a,18bは大きな歪を受ける加締め部であり、この部分に初析炭化物が存在しないフェライト脱炭層を0.02〜0.1mmの深さで形成することにより、有害な初析炭化物を無くし、軟質なフェライトにして加締めに耐え得る延性を持たせることができる。フェライト脱炭層が0.02mmよりも浅くなると、延性のあるフェライト領域が狭すぎて良好な加締め性を得ることが困難になる。一方、フェライト脱炭層を0.1mmよりも厚く形成すると、加締め固定が困難になり、転動面13にもフェライト脱炭層が現れるようになり、転動面13の表面硬さが上記を満足しなくなり、ピニオンシャフト10としての耐久性が低下する。   The shaft end portions 18a and 18b are caulking portions that receive a large strain. By forming a ferrite decarburized layer having no pro-eutectoid carbide in this portion at a depth of 0.02 to 0.1 mm, harmful pre-deposition It is possible to eliminate the carbide, and to make the ferrite soft and have ductility that can withstand caulking. If the ferrite decarburized layer is shallower than 0.02 mm, the ductile ferrite region is too narrow and it becomes difficult to obtain good caulking properties. On the other hand, when the ferrite decarburized layer is formed to be thicker than 0.1 mm, it becomes difficult to perform caulking and fixing, and the ferrite decarburized layer appears on the rolling surface 13, and the surface hardness of the rolling surface 13 satisfies the above. As a result, the durability of the pinion shaft 10 decreases.

このように、本発明のピニオンシャフト10は、軸端部18a,18bにおいて加締め部の延性に影響を及ぼす初析炭化物の析出が抑えられており、良好な加締め性を有するともに、転動面13の表面硬化層19が十分な硬さを有しており耐久性に優れる。   Thus, in the pinion shaft 10 of the present invention, precipitation of pro-eutectoid carbides affecting the ductility of the caulking portion at the shaft end portions 18a and 18b is suppressed, and the pinion shaft 10 has excellent caulking properties and rolling. The surface hardening layer 19 of the surface 13 has sufficient hardness and is excellent in durability.

以下に、実施例を挙げて本発明を更に説明するが、本発明はこれにより何ら制限されるものではない。   Hereinafter, the present invention will be further described with reference to examples, but the present invention is not limited thereto.

(実施例1〜12、比較例1〜6)
表1に示す合金鋼A〜Iからなる線材を、旋削加工、熱処理、外径粗研削及び外径仕上げ研削を行ってピニオンシャフトを作製した。尚、合金鋼A〜Iは、何れも本発明の組成範囲内である。また、熱処理条件は、830〜930℃で3時間の浸炭窒化処理を行った後、冷却速度を調整して冷却し、その後、650〜830℃で2〜10時間大気中または窒素雰囲気中で焼鈍し、転送面については200kHzの高周波焼入れ・焼戻しを行った。また、合金鋼HはSUJ2鋼であり、合金鋼Iは100CrMnSi6−4鋼である。
(Examples 1-12, Comparative Examples 1-6)
A wire rod made of alloy steels A to I shown in Table 1 was subjected to turning, heat treatment, outer diameter rough grinding, and outer diameter finish grinding to produce a pinion shaft. Alloy steels A to I are all within the composition range of the present invention. The heat treatment conditions were carbonitriding for 3 hours at 830 to 930 ° C., cooling by adjusting the cooling rate, and annealing in air or nitrogen atmosphere at 650 to 830 ° C. for 2 to 10 hours. The transfer surface was subjected to induction hardening and tempering at 200 kHz. The alloy steel H is SUJ2 steel, and the alloy steel I is 100CrMnSi6-4 steel.

Figure 2015199103
Figure 2015199103

作製したピニオンシャフトについて、軸端部から試験片を採取し、電子顕微鏡によりフェライト脱炭層の深さを測定するとともに、化学分析によりフェライト脱炭素層における初析炭化物の有無を確認した。また、支持軸について表面または心部の残留オーステナイト量、転動面の表面硬さ、軸端部の表面硬さを測定した。それぞれの結果を表2に示す。   About the produced pinion shaft, the test piece was extract | collected from the axial end part, while measuring the depth of the ferrite decarburization layer with the electron microscope, the presence or absence of the pro-eutectoid carbide in a ferrite decarbonization layer was confirmed by chemical analysis. Further, the amount of retained austenite on the surface or center of the support shaft, the surface hardness of the rolling surface, and the surface hardness of the shaft end were measured. The results are shown in Table 2.

更に、加締め性及び耐久性を評価するために下記試験を行った。結果を表2に示す。
(1)加締め性試験
作製したピニオンシャフトの軸端部をキャリアに加締め固定した後、延性不足に基づくひびや割れの発生の有無を確認した。具体的には、日本精工株式会社製の加締めプレス試験機を使用して、加締め荷重23.5kN、加締め速度40mm/secにて各ピニオンシャフトの軸方向端部に加締め部を形成し、加締め部の破損(ひび割れ)の有無を確認した。
(2)耐久性試験
作製したピニオンシャフトの軸端部をキャリアに加締め固定した状態で運転し、強度不足に起因する破損の有無を確認した。具体的には、日本精工株式会社製の油圧式変動加振試験機を使用して、抜け荷重4.7kN、加振周波数35Hz、試験サイクル100万回にて運転を行い、運転後に加締め部の破損の有無を確認した。尚、軸端部の表面硬さが高く、加締め不可能であったものについては本試験を実施しなかった。
Furthermore, the following tests were conducted in order to evaluate caulking properties and durability. The results are shown in Table 2.
(1) Crimpability test After the end of the produced pinion shaft was caulked and fixed to the carrier, it was confirmed whether cracks or cracks were generated due to insufficient ductility. Specifically, using a caulking press tester manufactured by NSK Ltd., a caulking portion is formed at the axial end of each pinion shaft at a caulking load of 23.5 kN and a caulking speed of 40 mm / sec. Then, the presence or absence of breakage (cracking) of the caulking portion was confirmed.
(2) Durability test It was operated in a state where the shaft end portion of the produced pinion shaft was caulked and fixed to the carrier, and the presence or absence of damage due to insufficient strength was confirmed. Specifically, using a hydraulic fluctuation excitation tester manufactured by NSK Ltd., operation is performed with a pull-out load of 4.7 kN, an excitation frequency of 35 Hz, and a test cycle of 1 million times. The presence or absence of damage was confirmed. In addition, this test was not implemented about the thing whose surface hardness of the shaft end part was high and could not be caulked.

Figure 2015199103
Figure 2015199103

表2に示すように、軸端部のフェライト脱炭層が本発明の範囲の場合は、加締め試験での割れが無く、耐久性が高い。これに対し、比較例1〜3のように、フェライト脱炭層が規定通りに形成されない場合には割れや破損が生じている。また、比較例4〜6のように、転動面や心部の残留オーステナイト量が本発明の範囲外である場合も、割れや破損が生じている。   As shown in Table 2, when the ferrite decarburized layer at the shaft end is within the range of the present invention, there is no crack in the caulking test, and the durability is high. On the other hand, as in Comparative Examples 1 to 3, when the ferrite decarburized layer is not formed as specified, cracks and breakage occur. Moreover, also when the amount of retained austenite of a rolling surface or a core part is outside the scope of the present invention as in Comparative Examples 4 to 6, cracks and breakage occur.

また、図2に、実施例1〜4、10及び比較例1〜4を基に、フェライト脱炭層深さと端部表面硬さとの関係を示す。図中のプロット「●」は実施例、プロット「▲」は比較例であるが、実施例は何れも図中の点線で示す本発明の範囲内であり、割れや破損が発生していないのに対し、点線で示す本発明の範囲から外れる比較例では割れや破損が生じている。尚、比較例1は、フェライト脱炭層深さ及び端部表面硬さが点線内であるが、表2に示すようにフェライト脱炭層に初析炭化物が存在しており、加締め試験で割れが発生した。   Moreover, the relationship between a ferrite decarburization layer depth and an end surface hardness is shown in FIG. 2 based on Examples 1-4, 10 and Comparative Examples 1-4. The plot “●” in the figure is an example, and the plot “▲” is a comparative example, but the examples are all within the scope of the present invention indicated by the dotted line in the figure, and no cracks or breakage occurs. On the other hand, in the comparative example deviating from the scope of the present invention indicated by the dotted line, cracks or breakage occurs. In Comparative Example 1, the ferrite decarburized layer depth and end surface hardness are within the dotted line, but as shown in Table 2, pro-eutectoid carbide is present in the ferrite decarburized layer, and cracking occurs in the caulking test. Occurred.

上記に加えて実施例1〜12、比較例2〜4の結果から、端部硬さとフェライト脱炭層深さに関する下記式1の値と、加締め試験における割れの有無との間に相関関係があることを見出した。そして、式1の値が0.8〜39.6の範囲であれば、割れが発生しないことが判明した。特に、式1の値が0.8〜25.2の範囲が好ましい。表2に式1の値を併記するとともに、図3に式1の値と割れの有無との関係をグラフ化して示す。
式1=(430−端部表面硬さ)×フェライト脱炭層深さ
In addition to the above, from the results of Examples 1 to 12 and Comparative Examples 2 to 4, there is a correlation between the value of the following formula 1 regarding end hardness and ferrite decarburized layer depth and the presence or absence of cracks in the caulking test. I found out. And it turned out that a crack does not generate | occur | produce, if the value of Formula 1 is the range of 0.8-39.6. In particular, the value of Formula 1 is preferably in the range of 0.8 to 25.2. Table 2 shows the value of Equation 1 together, and FIG. 3 shows the relationship between the value of Equation 1 and the presence or absence of cracks in a graph.
Formula 1 = (430-end surface hardness) × ferrite decarburized layer depth

また、実施例1〜12、比較例3、5、6の結果から、転動面表面硬さと転動面残留オーステナイト量に関する下記式2の値と、耐久性試験における破損の有無との間に相関関係があることを見出した。そして、式2の値が1175〜7910の範囲であれば、破損しないことが判明した。特に、式2の値が2640〜4410の範囲が好ましい。表2に式2の値を併記するとともに、図4に式2の値と破損の有無との関係をグラフ化して示す。
式2=(転動面表面硬さ−550)×(55−転動面残留オーステナイト量)
In addition, from the results of Examples 1 to 12 and Comparative Examples 3, 5, and 6, between the value of the following formula 2 regarding the rolling surface surface hardness and the amount of rolling surface retained austenite, and the presence or absence of breakage in the durability test We found that there is a correlation. And it turned out that it will not be damaged if the value of Formula 2 is in the range of 1175-7910. In particular, the value of Formula 2 is preferably in the range of 2640 to 4410. Table 2 shows the value of Equation 2 together, and FIG. 4 shows the relationship between the value of Equation 2 and the presence or absence of breakage in a graph.
Formula 2 = (Rolling surface surface hardness−550) × (55−Rolling surface residual austenite amount)

更に、実施例1〜12の結果から、素材のCr量、転動面残留オーステナイト量及び転動面表面硬さに関する下記式3の値と、耐久性試験後の曲がり量との間に相関関係があることを見出した。そして、式3の値が54以上であれば、曲がり量を小さくできることが判明した。特に、式3の値が60以上が好ましい。表2に式3の値を併記するとともに、図5に式3の値と曲がり量との関係をグラフ化して示す。
式3=(Cr量/転動面残留オーステナイト量)×(転動面表面硬さ−677)×(60−転動面残留オーステナイト量)
Further, from the results of Examples 1 to 12, there is a correlation between the value of the following formula 3 regarding the Cr amount of the material, the amount of rolling surface retained austenite, and the surface hardness of the rolling surface, and the amount of bending after the durability test. Found that there is. It has been found that if the value of Equation 3 is 54 or more, the amount of bending can be reduced. In particular, the value of Formula 3 is preferably 60 or more. Table 2 shows the value of Equation 3 together, and FIG. 5 is a graph showing the relationship between the value of Equation 3 and the amount of bending.
Formula 3 = (Cr amount / Rolling surface residual austenite amount) × (Rolling surface surface hardness−677) × (60−Rolling surface residual austenite amount)

本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
本出願は、2014年6月24日出願の日本特許出願(特願2014−129501)に基づくものであり、その内容はここに参照として取り込まれる。
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application filed on June 24, 2014 (Japanese Patent Application No. 2014-129501), the contents of which are incorporated herein by reference.

本発明によれば、加締め型ピニオンシャフトにおける加締め性を更に向上させることができる。   According to the present invention, the caulking property of the caulking pinion shaft can be further improved.

10 ピニオンシャフト
11 支持軸
13 転動面
15 中心孔
16a,16b 分岐孔
18a,18b 軸端部
19 表面硬化層
20 心部
DESCRIPTION OF SYMBOLS 10 Pinion shaft 11 Support shaft 13 Rolling surface 15 Center hole 16a, 16b Branch hole 18a, 18b Shaft end part 19 Surface hardening layer 20 Core part

Claims (3)

鋼材製で、かつ、
転動面の表面の残留オーステナイト量が20〜50体積%で、
心部の残留オーステナイト量が0体積%であり、
軸端部において、表面硬さが150〜350HVで、表層に0.02〜0.1mmのフェライト脱炭層を有し、該フェライト脱炭層内に初析炭化物が存在しないことを特徴とするピニオンシャフト。
Made of steel, and
The amount of retained austenite on the surface of the rolling surface is 20-50% by volume,
The amount of retained austenite in the core is 0% by volume,
A pinion shaft characterized by having a surface hardness of 150 to 350 HV and a ferrite decarburized layer of 0.02 to 0.1 mm on the surface layer, and no pro-eutectoid carbide present in the ferrite decarburized layer at the shaft end. .
前記鋼材が、質量%で、C:0.1〜0.29%、Cr:2.0〜5.0%、Mo:0.1〜1.5%、Mn:0.1〜1.5%、Si:0.1〜1.5%含有し、残部が鉄及び不可避的不純物からなる合金鋼であることを特徴とする請求項1記載のピニオンシャフト。   The said steel materials are the mass%, C: 0.1-0.29%, Cr: 2.0-5.0%, Mo: 0.1-1.5%, Mn: 0.1-1.5 The pinion shaft according to claim 1, wherein the pinion shaft is made of an alloy steel composed of iron and unavoidable impurities. 請求項2記載のピニオンシャフトの製造方法であって、
質量%で、C:0.1〜0.29%、Cr:2.0〜5.0%、Mo:0.1〜1.5%、Mn:0.1〜1.5%、Si:0.1〜1.5%含有し、残部が鉄及び不可避的不純物からなる合金鋼を、所定形状に加工後、浸炭窒化処理した後、大気中または窒素雰囲気中で700〜770℃で焼鈍することを特徴とするピニオンシャフトの製造方法。
A method of manufacturing a pinion shaft according to claim 2,
In mass%, C: 0.1 to 0.29%, Cr: 2.0 to 5.0%, Mo: 0.1 to 1.5%, Mn: 0.1 to 1.5%, Si: An alloy steel containing 0.1 to 1.5% and the balance being iron and inevitable impurities is processed into a predetermined shape, and then carbonitrided, and then annealed at 700 to 770 ° C. in the air or in a nitrogen atmosphere. A method for manufacturing a pinion shaft.
JP2016529614A 2014-06-24 2015-06-23 Pinion shaft and manufacturing method thereof Pending JPWO2015199103A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014129501 2014-06-24
JP2014129501 2014-06-24
PCT/JP2015/068109 WO2015199103A1 (en) 2014-06-24 2015-06-23 Pinion shaft and method for manufacturing same

Publications (1)

Publication Number Publication Date
JPWO2015199103A1 true JPWO2015199103A1 (en) 2017-04-20

Family

ID=54938183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016529614A Pending JPWO2015199103A1 (en) 2014-06-24 2015-06-23 Pinion shaft and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JPWO2015199103A1 (en)
WO (1) WO2015199103A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112987540A (en) * 2019-12-13 2021-06-18 精工爱普生株式会社 Timepiece exterior member and timepiece

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108913989B (en) * 2018-06-20 2020-05-22 舞阳钢铁有限责任公司 High-performance 10CrMo9-10 steel plate and production method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006292139A (en) * 2005-04-14 2006-10-26 Nsk Ltd Pinion shaft, its manufacturing method, and planetary gear device
JP2013228032A (en) * 2012-04-25 2013-11-07 Nsk Ltd Pinion shaft

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006292139A (en) * 2005-04-14 2006-10-26 Nsk Ltd Pinion shaft, its manufacturing method, and planetary gear device
JP2013228032A (en) * 2012-04-25 2013-11-07 Nsk Ltd Pinion shaft

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112987540A (en) * 2019-12-13 2021-06-18 精工爱普生株式会社 Timepiece exterior member and timepiece
CN112987540B (en) * 2019-12-13 2023-06-02 精工爱普生株式会社 Timepiece exterior member and timepiece

Also Published As

Publication number Publication date
WO2015199103A1 (en) 2015-12-30

Similar Documents

Publication Publication Date Title
US10202677B2 (en) Production method of carburized steel component and carburized steel component
US10151010B2 (en) Soft nitrided induction hardened steel part
JP2007146232A (en) Method for producing soft-nitrided machine part made of steel
US20160251744A1 (en) Bearing steel
JP5168958B2 (en) Rolling shaft
JP2011006734A (en) Steel for vacuum carburizing and vacuum-carburized component
JP6055397B2 (en) Bearing parts having excellent wear resistance and manufacturing method thereof
EP2647734B1 (en) Bearing steel exhibiting excellent machinability after spheroidizing annealing and excellent resistance to hydrogen fatigue after quenching/tempering
JP5292897B2 (en) Bearing parts with excellent fatigue characteristics in a foreign environment and manufacturing method thereof
JP2019183215A (en) Carburization machine component and manufacturing method therefor
WO2015199103A1 (en) Pinion shaft and method for manufacturing same
JP5402711B2 (en) Steel product having carbonitriding layer and method for producing the same
JP2008174810A (en) Inner ring and outer ring of bearing, having excellent rolling fatigue characteristic, and bearing
JP7013833B2 (en) Carburized parts
JP6225613B2 (en) Case-hardened steel
KR101713677B1 (en) Steel for high nitrogen air hardened bearing with high performance on rolling contact fatigue and method producing the same
JP2015183227A (en) Steel material for vacuum carburization, and method of manufacturing the same
JP6447064B2 (en) Steel parts
WO2015156374A1 (en) Pinion shaft and process for producing same
JP5821512B2 (en) NITRIDED COMPONENT AND MANUFACTURING METHOD THEREOF
JP2011080096A (en) Method for manufacturing rolling-slide member
JP5119717B2 (en) Method for manufacturing rolling bearing component and rolling bearing
WO2014019670A1 (en) Low temperature heat treatment for steel alloy
JP2008266683A (en) Method for producing rolling bearing constituting member, and rolling bearing
JP2019183211A (en) Carburization component

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170905