JPWO2015190280A1 - Air lift pump and underwater sediment suction method - Google Patents

Air lift pump and underwater sediment suction method Download PDF

Info

Publication number
JPWO2015190280A1
JPWO2015190280A1 JP2016527729A JP2016527729A JPWO2015190280A1 JP WO2015190280 A1 JPWO2015190280 A1 JP WO2015190280A1 JP 2016527729 A JP2016527729 A JP 2016527729A JP 2016527729 A JP2016527729 A JP 2016527729A JP WO2015190280 A1 JPWO2015190280 A1 JP WO2015190280A1
Authority
JP
Japan
Prior art keywords
working fluid
pipe
main pipe
working
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016527729A
Other languages
Japanese (ja)
Inventor
茂雄 細川
茂雄 細川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe University NUC
Original Assignee
Kobe University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe University NUC filed Critical Kobe University NUC
Publication of JPWO2015190280A1 publication Critical patent/JPWO2015190280A1/en
Pending legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/88Dredgers; Soil-shifting machines mechanically-driven with arrangements acting by a sucking or forcing effect, e.g. suction dredgers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F1/00Pumps using positively or negatively pressurised fluid medium acting directly on the liquid to be pumped
    • F04F1/18Pumps using positively or negatively pressurised fluid medium acting directly on the liquid to be pumped the fluid medium being mixed with, or generated from the liquid to be pumped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F1/00Pumps using positively or negatively pressurised fluid medium acting directly on the liquid to be pumped
    • F04F1/18Pumps using positively or negatively pressurised fluid medium acting directly on the liquid to be pumped the fluid medium being mixed with, or generated from the liquid to be pumped
    • F04F1/20Pumps using positively or negatively pressurised fluid medium acting directly on the liquid to be pumped the fluid medium being mixed with, or generated from the liquid to be pumped specially adapted for raising liquids from great depths, e.g. in wells

Abstract

【課題】 水中堆積物の吸引を効率良く行うことができるエアリフトポンプを提供する。【解決手段】 水中に起立状態で設置される主管(10)および作動管(20)を有し、作動管(20)から主管(10)に作動流体を導入することにより、主管(10)の下部に形成された吸引口(12)から堆積物を水と共に吸引して、上方に搬送するエアリフトポンプ(1)であって、作動管(20)は、供給された液相の作動流体を外部の水と断熱した状態で下方に案内する断熱部(22)と、断熱部(22)を経た作動流体を外部の水との熱交換により加熱気化させて主管(10)に供給する熱交換部(24)とを備える。PROBLEM TO BE SOLVED: To provide an air lift pump capable of efficiently sucking underwater deposits. SOLUTION: A main pipe (10) and a working pipe (20) installed in an upright state in water, and by introducing a working fluid from the working pipe (20) to the main pipe (10), the main pipe (10) An air lift pump (1) for sucking deposits together with water from a suction port (12) formed in the lower part and transporting the deposits upward, and a working pipe (20) Heat-insulating part (22) that guides downward in a state of being insulated from the water, and a heat exchanging part that heats and vaporizes the working fluid that has passed through the heat-insulating part (22) by heat exchange with external water and supplies it to the main pipe (10) (24).

Description

本発明は、エアリフトポンプおよび水中堆積物の吸引方法に関する。  The present invention relates to an air lift pump and a method for sucking underwater deposits.

液体を押し上げるための従来の装置として、フロン等の低沸点作動流体の相変化によるエアリフト効果を利用する構成が知られている。例えば、特許文献1には、作動流体の気泡を上昇管の下部から注入ノズルを介して注入し、上昇管内を温水と共に上昇させる液体押上装置が開示されている。作動流体の気泡は、上昇管の上部に設置された気液分離ドラムで温水と分離された後、空冷コンデンサにより凝縮・液化し、下降管内を自重により降下して再び上昇管の下部に導入される際に、上昇管内の温水により加熱されて沸騰気泡となる。  As a conventional apparatus for pushing up a liquid, a configuration using an air lift effect by a phase change of a low boiling point working fluid such as Freon is known. For example, Patent Document 1 discloses a liquid booster that injects bubbles of a working fluid from the lower part of a riser pipe through an injection nozzle and raises the inside of the riser pipe with warm water. The air bubbles in the working fluid are separated from the hot water by the gas-liquid separation drum installed at the top of the riser, then condensed and liquefied by the air-cooled condenser, lowered by the dead weight in the downcomer, and again introduced into the lower part of the riser. When heated, it is heated by hot water in the riser tube to form boiling bubbles.

また、特許文献2には、エアリフトパイプを海中に設置して、海底の鉱物等を海水と共に吸引する深底資源吸引装置が開示されている。レアアース、マンガン団塊等の海底資源は、我が国の資源の安定供給の要となる極めて重要な国内資源であり、その開発と利用が期待されている。海底からの揚鉱システムとしては、エアリフト式以外にポンプ式やバケット式等も知られているが、生産性およびメンテナンス性を両立させる点では、エアリフト式が有望である。  Patent Document 2 discloses a deep bottom resource suction device in which an air lift pipe is installed in the sea and sucks seabed minerals and the like together with seawater. Undersea resources such as rare earths and manganese nodules are extremely important domestic resources that are essential for the stable supply of resources in Japan, and their development and use are expected. As a pumping system from the seabed, a pump type and a bucket type are known in addition to the air lift type, but the air lift type is promising in terms of achieving both productivity and maintainability.

特開平1−155099号公報Japanese Patent Laid-Open No. 1-155099 特開2000−227100号公報JP 2000-227100 A

ところが、上記の特許文献1に開示された液体押上装置を、海底資源の採取等のために海中などの水中で使用する場合、以下のような問題があった。すなわち、この液体押上装置は、上昇管内の温水温度と、下降管の周囲温度との温度差を利用して、作動流体の相変化を生じさせるように構成されているので、海中のように上昇管の内外で十分な温度差が生じない状況で使用すると、作動流体に所望の相変化が生じず、運転を継続的に行うことが困難であった。  However, when the liquid lifting device disclosed in Patent Document 1 is used in water such as underwater for collecting seabed resources, there are the following problems. In other words, this liquid push-up device is configured to cause a phase change of the working fluid by utilizing the temperature difference between the hot water temperature in the riser pipe and the ambient temperature of the downfall pipe. When used in a situation where a sufficient temperature difference does not occur between the inside and outside of the pipe, the desired phase change does not occur in the working fluid, and it is difficult to continuously operate.

また、この液体押上装置は、作動流体の上昇管への注入が液相で行われ、上昇管内で加熱されて気相になるように構成されているので、作動流体の相変化を生じさせるための機構を上昇管の内部に設ける必要があり、この相変化部の構成が煩雑になるだけでなく、吸引する土砂等による相変化部の損傷等の問題が生じるおそれがあった。  In addition, this liquid push-up device is configured so that the working fluid is injected into the riser in the liquid phase and heated in the riser to become a gas phase, so that a phase change of the working fluid occurs. It is necessary to provide this mechanism inside the riser tube, which not only makes the configuration of the phase change portion complicated, but also may cause problems such as damage to the phase change portion due to sucked earth and sand.

このため、従来のエアリフト式の揚鉱システムは、上記特許文献2に開示された圧送ポンプ等のように、作動流体を管内に導入するための動力源が必要とされており、この動力源の負荷は、注入深度が深くなるほど大きくなることから、低コストで省エネルギー化を実現するポンプシステムの開発が求められていた。  For this reason, the conventional air lift type pumping system requires a power source for introducing the working fluid into the pipe, such as the pressure feed pump disclosed in Patent Document 2 above. Since the load increases as the injection depth increases, development of a pump system that realizes energy saving at low cost has been demanded.

そこで、本発明は、水中堆積物の吸引を効率良く行うことができるエアリフトポンプおよび水中堆積物の吸引方法の提供を目的とする。  Therefore, an object of the present invention is to provide an air lift pump and a method for sucking underwater deposits that can efficiently suck underwater deposits.

本発明の前記目的は、水中に起立状態で設置される主管および作動管を有し、前記作動管から前記主管に作動流体を導入することにより、前記主管の下部に形成された吸引口から堆積物を水と共に吸引して、上方に搬送するエアリフトポンプであって、前記作動管は、供給された液相の作動流体を外部の水と断熱した状態で下方に案内する断熱部と、前記断熱部を経た作動流体を外部の水との熱交換により加熱気化させて前記主管に供給する熱交換部とを備えるエアリフトポンプにより達成される。  The object of the present invention is to have a main pipe and a working pipe installed in an upright state in water, and deposit from a suction port formed in a lower portion of the main pipe by introducing a working fluid from the working pipe to the main pipe. An air lift pump that sucks an object together with water and conveys it upwards, wherein the working pipe guides the supplied liquid-phase working fluid downward in a state insulated from outside water, and the heat insulation This is achieved by an air lift pump including a heat exchanging unit that heats and vaporizes the working fluid that has passed through the unit by heat exchange with external water and supplies the heat to the main pipe.

このエアリフトポンプにおいて、前記熱交換部は、前記断熱部から前記主管に向けて作動流体を上方に案内することが好ましい。  In this air lift pump, it is preferable that the heat exchanging portion guides the working fluid upward from the heat insulating portion toward the main pipe.

また、前記主管を上昇する気相の作動流体を回収する気液分離器と、回収された作動流体を圧縮加熱する圧縮機と、水中に設置されて前記圧縮機からの作動流体を外部の水と熱交換して冷却する放熱部と、前記放熱部を経た作動流体を膨張液化させる膨張器とを更に備え、前記膨張器を経た液相の作動流体を前記作動管に導入することが好ましい。あるいは、前記主管を上昇する気相の作動流体を回収する気液分離器と、回収された作動流体を冷却して液化する冷却器とを更に備えてもよく、前記冷却器を経た液相の作動流体を前記作動管に導入することも可能である。  A gas-liquid separator that recovers the gas-phase working fluid rising up the main pipe; a compressor that compresses and heats the recovered working fluid; and the working fluid from the compressor that is installed in water It is preferable to further include a heat dissipating part that exchanges heat and cools, and an expander that expands and liquefies the working fluid that has passed through the heat dissipating part, and introduces the liquid working fluid that has passed through the expander into the working pipe. Alternatively, it may further comprise a gas-liquid separator that recovers the gas-phase working fluid that rises in the main pipe, and a cooler that cools and collects the recovered working fluid. It is also possible to introduce a working fluid into the working tube.

また、本発明の前記目的は、主管および作動管を水中に起立状態で設置し、前記作動管から前記主管に作動流体を導入することにより、前記主管の下部に形成された吸引口から堆積物を水と共に吸引して、上方に搬送する水中堆積物の吸引方法であって、前記作動管に供給された液相の作動流体を、外部の水と断熱状態で下方に案内するステップと、前記作動管の下方に案内された液相の作動流体を、外部の水との熱交換により加熱気化させて、前記主管に供給するステップとを備える水中堆積物の吸引方法により達成される。  Further, the object of the present invention is to install a main pipe and a working pipe in an upright state in water, and introduce a working fluid from the working pipe into the main pipe, thereby depositing from a suction port formed at a lower portion of the main pipe. A method for sucking a submerged sediment transported upward together with water, wherein the liquid-phase working fluid supplied to the working pipe is guided downward in a heat-insulated state with external water; and The liquid phase working fluid guided below the working pipe is heated and vaporized by heat exchange with external water, and is supplied to the main pipe.

本発明によれば、水中堆積物の吸引を効率良く行うことができるエアリフトポンプおよび水中堆積物の吸引方法を提供することができる。  According to the present invention, it is possible to provide an air lift pump and an underwater deposit suction method that can efficiently suck in underwater deposits.

本発明の一実施形態に係るエアリフトポンプの概略構成図である。It is a schematic block diagram of the air lift pump which concerns on one Embodiment of this invention. 本発明の他の実施形態に係るエアリフトポンプの概略構成図である。It is a schematic block diagram of the air lift pump which concerns on other embodiment of this invention. 本発明の一実施例に係るエアリフトポンプの概略構成図である。It is a schematic block diagram of the air lift pump which concerns on one Example of this invention. 本発明の他の実施例に係るエアリフトポンプの概略構成図である。It is a schematic block diagram of the air lift pump which concerns on the other Example of this invention. 図4に示すエアリフトポンプの測定データの一例を示す図であり、(a)は作動流体の流量変化、(b)は作動流体の温度変化をそれぞれ示している。It is a figure which shows an example of the measurement data of the air lift pump shown in FIG. 4, (a) has shown the flow volume change of the working fluid, (b) has each shown the temperature change of the working fluid. 図4に示すエアリフトポンプの揚水特性の測定結果を示す図であり、(a)から(c)は、主管の内径をそれぞれ異ならせて従来技術と比較したものである。It is a figure which shows the measurement result of the pumping characteristic of the air lift pump shown in FIG. 4, (a)-(c) compares the internal diameter of the main pipe with each other, and compares with the prior art. 図6に示す測定結果を数値計算結果と比較した図である。It is the figure which compared the measurement result shown in FIG. 6 with the numerical calculation result.

以下、本発明の実施の形態について、添付図面を参照して説明する。図1は、本発明の一実施形態に係るエアリフトポンプの概略構成図である。図1に示すように、エアリフトポンプ1は、不図示の支持部材により海水等の水中に起立状態で設置される主管10および作動管20を備えている。本実施形態のエアリフトポンプ1は、上記特許文献1に開示された閉鎖ループ内での液体流動装置とは異なり、開放空間での利用が可能な汎用性を有するものである。  Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a schematic configuration diagram of an air lift pump according to an embodiment of the present invention. As shown in FIG. 1, the air lift pump 1 includes a main pipe 10 and a working pipe 20 that are installed in a standing state in water such as seawater by a support member (not shown). Unlike the liquid flow device in the closed loop disclosed in Patent Document 1, the air lift pump 1 of this embodiment has versatility that can be used in an open space.

主管10は、下端側に吸引口12が形成され、上端側に排出口14が形成されており、吸引口12が海底等の底面近傍に位置することにより、海底鉱物や土砂、汚泥等の水中堆積物を吸引口12から吸引可能に配置されている。排出口14は、海面等の水面よりも上方に位置しており、吸引口12から海水等の水と共に吸引された水中堆積物が排出口14から排出されて、回収部30に回収される。主管10の起立状態は、直立状態であることが好ましいが、傾斜状態であってもよい。  The main pipe 10 has a suction port 12 formed at the lower end side and a discharge port 14 formed at the upper end side, and the suction port 12 is located in the vicinity of the bottom surface such as the seabed, so that water such as seabed minerals, earth and sand, sludge, etc. The deposit is arranged so as to be sucked from the suction port 12. The discharge port 14 is located above the water surface such as the sea surface, and the underwater sediment sucked together with the water such as seawater from the suction port 12 is discharged from the discharge port 14 and collected by the collection unit 30. The standing state of the main pipe 10 is preferably an upright state, but may be an inclined state.

作動管20は、下端側の接続口22が、主管10の吸引口12の上方に接続されている。作動管20の上端側には導入口24が形成されており、液状の作動流体が導入口24から作動管20に導入される。また、作動管20は、断熱部26および熱交換部28を備えており、導入口24側に断熱部26が配置され、接続口22側に熱交換部28が配置されている。作動管20の起立状態は直立状態のみならず傾斜状態であってもよい。  The working tube 20 has a lower end side connection port 22 connected above the suction port 12 of the main tube 10. An introduction port 24 is formed on the upper end side of the working tube 20, and a liquid working fluid is introduced into the working tube 20 from the introduction port 24. In addition, the working tube 20 includes a heat insulating portion 26 and a heat exchanging portion 28, the heat insulating portion 26 is disposed on the introduction port 24 side, and the heat exchanging portion 28 is disposed on the connection port 22 side. The standing state of the working tube 20 may be not only an upright state but also an inclined state.

断熱部26は、内部を通過する作動流体を、外部の水と断熱した状態で下方に案内する。断熱部26の具体的構成は、特に限定されないが、例えば、作動流体が通過する配管の外周面をウレタンフォームやポリイミド等の耐水性断熱材で被覆した構成、二重管を用いて内管内部の作動流体と外管外部の水とを真空断熱する構成等を挙げることができる。  The heat insulating part 26 guides the working fluid passing through the inside downward while being insulated from the external water. Although the specific structure of the heat insulation part 26 is not specifically limited, For example, the structure which coat | covered the outer peripheral surface of piping which a working fluid passes with water-resistant heat insulating materials, such as a urethane foam and a polyimide, An inner pipe interior using a double pipe The structure etc. which carry out the vacuum insulation of the working fluid of this and the water outside an outer tube | pipe can be mentioned.

熱交換部28は、内部を通過する作動流体を、外部の水との熱交換により加熱気化させて、主管10に供給する。熱交換部28は、例えばアルミニウム合金等の熱伝導性に優れる金属管から構成することができ、作動流体の気化に必要な伝熱面積を確保するために、適宜湾曲させてもよい。断熱部26が、配管を断熱材等で被覆して構成される場合には、配管の一部を露出させて熱交換部28とすることができる。作動流体は、液密度が周囲液相(例えば海水)の密度以上であり、沸点が周囲液相の温度以下であり、周囲液相に対して不溶性または難溶性であるものを好適に使用することができる。作動流体は、これらの条件に加えて、不燃性または難燃性であり、人体や生物に対して無害であるものを、より好ましく使用することができる。  The heat exchange unit 28 heats and vaporizes the working fluid passing through the inside by heat exchange with external water, and supplies the working fluid to the main pipe 10. The heat exchanging portion 28 can be composed of a metal tube having excellent thermal conductivity such as an aluminum alloy, for example, and may be appropriately curved in order to secure a heat transfer area necessary for vaporizing the working fluid. When the heat insulating part 26 is configured by covering the pipe with a heat insulating material or the like, a part of the pipe can be exposed to form the heat exchanging part 28. Use a working fluid whose liquid density is equal to or higher than the density of the surrounding liquid phase (for example, seawater), whose boiling point is equal to or lower than the temperature of the surrounding liquid phase, and insoluble or hardly soluble in the surrounding liquid phase. Can do. In addition to these conditions, a working fluid that is nonflammable or flame retardant and harmless to the human body and living organisms can be used more preferably.

次に、上記の構成を備えるエアリフトポンプ1を用いて、水中堆積物を吸引する方法を説明する。作動管20には、液状の作動流体を導入口24から供給する。使用する作動流体は、導入時は液相である一方、水中においては熱交換部28での熱交換により気相になるように、エアリフトポンプ1を設置する場所の水温や水圧を考慮して適宜選択すればよい。エアリフトポンプ1を水深が比較的浅い海中に設置する場合、海中において熱交換部28の周囲の海水温よりも低い沸点を有する代替フロン等から適宜選択可能であり、例えば、1,1,1,3,3−ペンタフルオロプロパン(HFC−245fa、沸点:15.3 ℃)を使用することができる。深海底においては、高い水圧によって作動流体の沸点が上昇することから、例えば、HFC-23 (沸点-82℃(1気圧), 0℃(約20気圧))を作動流体として好ましく使用することができる。作動流体は、吹き込む位置の水深等を考慮して決定すればよく、例えば、HFC-22(沸点4℃(約5気圧)), HFC-32(沸点0℃(約7気圧)), HFC-134a(沸点4℃(約3.5気圧))等も使用可能である。  Next, a method for sucking underwater deposits using the air lift pump 1 having the above configuration will be described. A liquid working fluid is supplied to the working tube 20 from the inlet 24. The working fluid to be used is in a liquid phase at the time of introduction, but in water, the working fluid is appropriately changed in consideration of the water temperature and water pressure at the place where the air lift pump 1 is installed so as to be in a gas phase by heat exchange in the heat exchange unit 28. Just choose. When the air lift pump 1 is installed in the sea where the water depth is relatively shallow, it can be appropriately selected from alternative chlorofluorocarbon having a boiling point lower than the sea water temperature around the heat exchange section 28 in the sea, for example, 1,1,1, 3,3-Pentafluoropropane (HFC-245fa, boiling point: 15.3 ° C.) can be used. At the deep sea floor, the boiling point of the working fluid rises due to high water pressure.For example, HFC-23 (boiling point -82 ° C (1 atm), 0 ° C (about 20 atm)) is preferably used as the working fluid. it can. The working fluid may be determined in consideration of the water depth at the blowing position, for example, HFC-22 (boiling point 4 ° C (about 5 atm)), HFC-32 (boiling point 0 ° C (about 7 atm)), HFC- 134a (boiling point 4 ° C. (about 3.5 atm)) or the like can also be used.

作動管20に導入された作動流体は、断熱部26を通過する間は外部の水との熱交換が遮断されるため、液相の状態が維持される。したがって、作動流体は、断熱部26を自重により下降し、熱交換部28に案内される。そして、作動流体が熱交換部28を通過する間に、外部の水との熱交換により加熱され、大部分が液相から気相に変化して、主管10に供給される。  Since the working fluid introduced into the working tube 20 passes through the heat insulating portion 26, heat exchange with external water is interrupted, so that the liquid phase state is maintained. Accordingly, the working fluid descends due to its own weight in the heat insulating portion 26 and is guided to the heat exchanging portion 28. Then, while the working fluid passes through the heat exchanging portion 28, it is heated by heat exchange with external water, and most of the fluid is changed from the liquid phase to the gas phase and supplied to the main pipe 10.

主管10に供給された作動流体は、水中を気泡Bとなって上昇する。このエアリフト効果により、主管10の吸引部12から海底鉱物等の水中堆積物Mが水と共に吸引され、上方に搬送される。こうして、主管10の排出口14から水と共に排出された水中堆積物Mを、回収部30において回収することができる。回収部30は、例えば底板が網板などからなるコンテナ状に形成することができ、水を底板から排出して水中堆積物Mのみを貯留することができる。主管10に対する作動流体の導入箇所は、本実施形態のように吸引口12の近傍であることが好ましいが、例えば、主管10の中央付近等であっても、吸引口12から水中堆積物Mを吸引することが可能である。  The working fluid supplied to the main pipe 10 rises as bubbles B in the water. Due to this air lift effect, underwater deposits M such as seabed minerals are sucked together with water from the suction portion 12 of the main pipe 10 and conveyed upward. Thus, the underwater deposit M discharged together with the water from the discharge port 14 of the main pipe 10 can be recovered in the recovery unit 30. The collection unit 30 can be formed in a container shape having a bottom plate made of, for example, a net plate, and can discharge only water from the bottom plate to store only the underwater deposit M. It is preferable that the working fluid is introduced into the main pipe 10 in the vicinity of the suction port 12 as in the present embodiment. For example, even in the vicinity of the center of the main pipe 10, the underwater sediment M is removed from the suction port 12. It is possible to suck.

本実施形態のエアリフトポンプ1によれば、作動管20が、液相の作動流体を外部の水と断熱した状態で下方に案内する断熱部26と、断熱部26を経た作動流体を外部の水との熱交換により加熱気化させて主管10に供給する熱交換部28とを備えているので、周囲の水温より沸点が低い作動流体を選択することにより、作動流体を下降させるための動力や、作動流体の相変化を生じさせるための動力を必要とすることなく、主管10の内部に作動流体によるエアリフト効果を生じさせることができる。したがって、水中堆積物の吸引を低コストで効率良く行うことができ、例えば、レアアース、マンガン団塊、メタンハイドレード等の海底資源の吸引、港湾施設やダム等での浚渫工事における土砂の吸引、養殖所、ダム湖、貯水タンク等における汚泥の吸引等、各種の水中堆積物の吸引に好適に使用することができる。  According to the air lift pump 1 of the present embodiment, the working tube 20 guides the liquid-phase working fluid downward in a state in which the working fluid in the liquid phase is insulated from the external water, and the working fluid that has passed through the heat-insulating portion 26 to the external water. A heat exchanging unit 28 that is heated and vaporized by heat exchange with the main pipe 10 to be supplied to the main pipe 10, so that by selecting a working fluid having a boiling point lower than the surrounding water temperature, power for lowering the working fluid, The air lift effect by the working fluid can be generated inside the main pipe 10 without requiring power for causing the phase change of the working fluid. Therefore, suction of underwater sediments can be performed efficiently at low cost. For example, suction of marine resources such as rare earths, manganese nodules and methane hydrate, suction of soil and sand in dredging works at port facilities and dams, etc. It can be suitably used for suction of various underwater deposits such as sludge suction in a dam, dam lake, water storage tank, etc.

また、作動流体は大部分が気相の状態で主管10に供給されるため、作動流体を水深が深い位置で注入する場合でも、注入エネルギーを軽減して主管10内に作動流体を容易且つ確実に供給することができる。また、従来のように作動流体の相変化部を主管10の内部に設ける必要がないので、相変化部の修理やメンテナンスの問題を解消することができると共に、主管10を流れる流体に固体が含まれる場合にも好適に使用可能である。  In addition, since most of the working fluid is supplied to the main pipe 10 in a gas phase state, even when the working fluid is injected at a deep water depth, the injection energy is reduced and the working fluid is easily and reliably placed in the main pipe 10. Can be supplied to. In addition, since it is not necessary to provide a phase change portion of the working fluid in the main pipe 10 as in the prior art, it is possible to solve the problems of repair and maintenance of the phase change portion, and the fluid flowing in the main pipe 10 contains solids. It can be suitably used also in the case where

更に、作動流体の沸点が周囲の水温よりも低いと、気相の状態で主管10に導入された作動流体が、主管10を上昇する途中で凝縮するおそれがない。したがって、エアリフト効果を安定的に生じさせることができ、水中堆積物の吸引搬送を確実に行うことができる。  Furthermore, when the boiling point of the working fluid is lower than the ambient water temperature, the working fluid introduced into the main pipe 10 in a gas phase state is not likely to condense on the way up the main pipe 10. Therefore, the air lift effect can be stably generated, and the underwater deposit can be reliably sucked and conveyed.

作動管20に供給される液相状態での作動流体の密度は、作動管20の周囲における水の密度よりも大きいことが好ましい。このような作動流体を選択することにより、作動管20における液相の作動流体の自重による移動を、エアリフトポンプ1の始動直後から補助動力を要することなく確実に行うことができ、作動流体を搬送するためのエネルギーの低減を図ることができる。  The density of the working fluid in the liquid phase supplied to the working tube 20 is preferably larger than the density of water around the working tube 20. By selecting such a working fluid, it is possible to reliably move the liquid-phase working fluid in the working pipe 20 by its own weight immediately after the start of the air lift pump 1 without requiring auxiliary power. Energy can be reduced.

図2は、本発明の他の実施形態に係るエアリフトポンプの概略構成図である。図2において、図1と同様の構成部分については同一の符号を付して、詳細な説明を省略する。  FIG. 2 is a schematic configuration diagram of an air lift pump according to another embodiment of the present invention. 2, the same components as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.

図2に示すエアリフトポンプ1’は、図1に示すエアリフトポンプ1において、主管10の上部に気液分離器40を設けると共に、この気液分離器40の気体出口42を、作動管20の導入口24に還流配管50を介して接続することにより、作動流体が相変化を伴いながら循環するように構成したものである。  The air lift pump 1 ′ shown in FIG. 2 is provided with a gas-liquid separator 40 in the upper part of the main pipe 10 in the air lift pump 1 shown in FIG. 1, and a gas outlet 42 of the gas-liquid separator 40 is introduced into the working pipe 20. By connecting to the port 24 via a reflux pipe 50, the working fluid is configured to circulate with a phase change.

還流配管50は、気液分離器40で分離された気相の作動流体を断熱圧縮により加熱する圧縮機52と、圧縮機52で加熱された作動流体を冷却する放熱部54と、放熱部54で冷却された作動流体を断熱膨張により液化させる膨張器56とを備えており、膨張器56を経た作動流体が作動管20に導入される。放熱部54は、熱伝導性が良好な材料からなる配管から構成することができ、内部を通過する作動流体の温度よりも低温の水中に設置されて、作動流体を外部の水との熱交換により冷却する。この水温は、作動管20の熱交換部28の周囲における水温と同程度であればよい。例えば、主管10および作動管20を海中に設置する場合には、放熱部54も海中に設置すればよい。  The reflux pipe 50 includes a compressor 52 that heats the vapor-phase working fluid separated by the gas-liquid separator 40 by adiabatic compression, a heat radiating portion 54 that cools the working fluid heated by the compressor 52, and a heat radiating portion 54. And an expander 56 that liquefies the working fluid cooled in step adiabatic expansion, and the working fluid that has passed through the expander 56 is introduced into the working tube 20. The heat dissipating part 54 can be composed of a pipe made of a material having good thermal conductivity, and is installed in water at a temperature lower than the temperature of the working fluid passing through the inside, so that the working fluid exchanges heat with external water. To cool. This water temperature may be approximately the same as the water temperature around the heat exchange section 28 of the working tube 20. For example, when the main pipe 10 and the working pipe 20 are installed in the sea, the heat radiating unit 54 may be installed in the sea.

図2に示すエアリフトポンプ1’によれば、気液分離器40の液体出口44から水中堆積物Mを含む水を回収部30において回収した後、気液分離器40で分離された作動流体が、圧縮機52、放熱部54および膨張器56を通過することにより気相から液相に変化するので、作動管20に導入される作動流体を、主管10内にエアリフト効果を生じさせる動力源として再利用可能となる。すなわち、作動流体の液化エネルギーのみでエアリフトポンプ1’を作動させることができ、設置場所の水深が深い場合であっても、水中堆積物Mを低コストで効率良く吸引することができる。また、上述した作動流体の液化エネルギーは、放熱部54を主管10および作動管20と同様に水中に設置することで軽減可能であり、更なる低コスト化、高効率化を図ることができる。  According to the air lift pump 1 ′ shown in FIG. 2, the working fluid separated by the gas-liquid separator 40 is collected after the water containing the underwater deposit M is collected from the liquid outlet 44 of the gas-liquid separator 40 by the collecting unit 30. Since the gas phase is changed to the liquid phase by passing through the compressor 52, the heat radiating portion 54, and the expander 56, the working fluid introduced into the working pipe 20 is used as a power source that causes an air lift effect in the main pipe 10. Reusable. That is, the air lift pump 1 ′ can be operated only with the liquefaction energy of the working fluid, and the underwater sediment M can be efficiently sucked at low cost even when the installation site is deep. Further, the above-described liquefaction energy of the working fluid can be reduced by installing the heat dissipating part 54 in water in the same manner as the main pipe 10 and the working pipe 20, and further cost reduction and high efficiency can be achieved.

還流配管50は、不凝縮性ガスである空気の混入を確実に防止できるように、気液分離器40および作動管20に気密に接続されていることが好ましく、また、仮に空気が混入した場合には、この空気を還流配管50の外部に容易に排出できるように、排出弁などの排出機構を備えることが好ましい。  The reflux pipe 50 is preferably airtightly connected to the gas-liquid separator 40 and the working tube 20 so as to surely prevent the entry of air, which is a non-condensable gas. It is preferable to provide a discharge mechanism such as a discharge valve so that the air can be easily discharged to the outside of the reflux pipe 50.

熱交換部28は、断熱部26側から主管10に向けて作動流体を上方に案内することができるように、作動流体の液体流入位置が気相流出位置より低いことが好ましい。この構成によれば、熱交換部28において気相となった作動流体を主管10に確実に案内することができ、主管10への作動流体の注入をより容易に行うことができる。具体的には、図2に示すように、熱交換部28を、断熱部26から主管10に向けて傾斜して配置することが好ましい。あるいは、熱交換部28を、一部に鉛直部を有する屈曲配管等から構成することもできる。  It is preferable that the liquid exchange position of the working fluid is lower than the gas-phase outflow position so that the heat exchange section 28 can guide the working fluid upward from the heat insulation section 26 side toward the main pipe 10. According to this configuration, the working fluid that has become a gas phase in the heat exchange unit 28 can be reliably guided to the main pipe 10, and the working fluid can be injected into the main pipe 10 more easily. Specifically, as shown in FIG. 2, it is preferable that the heat exchanging portion 28 is disposed to be inclined from the heat insulating portion 26 toward the main pipe 10. Or the heat exchange part 28 can also be comprised from the bending piping etc. which have a perpendicular part in part.

以上、本発明の実施の形態について詳述したが、本発明の具体的な態様は上記実施形態に限定されるものではない。本発明によれば、深海底における資源の引き上げコストを低減でき、海底資源の利用が容易になるので、我が国における資源・エネルギーの安定供給に寄与することができる。また、高効率の吸引装置として、海底資源の吸引以外の用途にも広く適用可能である。  As mentioned above, although embodiment of this invention was explained in full detail, the specific aspect of this invention is not limited to the said embodiment. According to the present invention, it is possible to reduce the cost of raising resources in the deep seabed and to facilitate the use of seabed resources, which can contribute to the stable supply of resources and energy in Japan. Moreover, as a highly efficient suction device, it can be widely applied to uses other than the suction of seabed resources.

本発明の作用・効果を検証するため、図3に示す構成のエアリフトポンプ101を貯水槽内に設置して試験を行った。なお、図3において、図1および図2と同様の構成部分には、同一の符号を付している。  In order to verify the operation and effect of the present invention, an air lift pump 101 having the configuration shown in FIG. 3 was installed in a water tank and tested. In FIG. 3, the same components as those in FIGS. 1 and 2 are denoted by the same reference numerals.

主管10は、内径を11mm、長さを1000mmとした。作動管20の断熱部26は、内径を11mm、長さを900mmの配管とし、ネオプレンスポンジで被覆することにより周囲と断熱した。作動管20の熱交換部28は、内径を11mm、長さを150mmの配管とし、断熱部26から主管10に向けてθ=60度の角度で直線状に傾斜するように配置した。作動流体はHFC−245faを使用し、エアリフトポンプ101の周囲の液体Lは、30℃の水とした。気液分離器40と作動管20とはペルチェ素子62を備える冷却器60を介して接続し、気液分離器40から導入された気相の作動流体が、ペルチェ冷却により液化して、作動管20に導入されるように構成した。  The main tube 10 had an inner diameter of 11 mm and a length of 1000 mm. The heat insulating portion 26 of the working tube 20 was a pipe having an inner diameter of 11 mm and a length of 900 mm, and was insulated from the surroundings by being covered with neoprene sponge. The heat exchanging portion 28 of the working tube 20 is a pipe having an inner diameter of 11 mm and a length of 150 mm, and is arranged so as to incline linearly at an angle of θ = 60 degrees from the heat insulating portion 26 toward the main pipe 10. The working fluid was HFC-245fa, and the liquid L around the air lift pump 101 was 30 ° C. water. The gas-liquid separator 40 and the working tube 20 are connected via a cooler 60 having a Peltier element 62, and the gas-phase working fluid introduced from the gas-liquid separator 40 is liquefied by Peltier cooling, and the working tube 20 to be introduced.

上記の構成を備えるエアリフトポンプ101は、ペルチェ素子62を110Wの電力で0℃に制御したところ、断熱部26には、14℃の液相の作動流体が0.013 L/min(0.017
kg/min)の流量で導入され、この作動流体が熱交換部28で気相になった後、主管10に導入されることにより、主管10には、周囲の水Lが吸込流量30 mL/s(1.8 L/min)で吸引された。
In the air lift pump 101 having the above-described configuration, when the Peltier element 62 is controlled to 0 ° C. with the power of 110 W, the liquid phase working fluid at 14 ° C. is 0.013 L / min (0.017
kg / min), the working fluid is converted into a gas phase in the heat exchanging section 28, and then introduced into the main pipe 10, whereby the surrounding water L is sucked into the main pipe 10 at a suction flow rate of 30 mL / min. s (1.8 L / min).

図3に示すエアリフトポンプ101と同様の構成を備える装置を、水深の深い海中などに設置した場合、主管10内を作動流体が上昇する際に、上昇とともに作動流体の圧力が減少し、膨張により温度が低下する。したがって、主管10への外部からの熱移動量を抑制することにより、主管10出口での作動流体温度、すなわち、冷却器60への流入温度を低下でき、冷却器60での除熱量が少なくなり、効率を向上することができる。主管10の熱移動量を抑制する方法は、特に限定されないが、例えば、作動管20の断熱部26と同様に、主管10の外周面をウレタンフォームやポリイミド等の耐水性断熱材で被覆した構成、主管10を二重管として内管内部と外管外部とを真空断熱する構成等を挙げることができる。主管10の熱移動量の抑制は、主管10内を通過する海水が凍らない程度に、水深等に応じて適宜調整すればよい。  When a device having the same configuration as that of the air lift pump 101 shown in FIG. 3 is installed in the deep sea or the like, when the working fluid rises in the main pipe 10, the pressure of the working fluid decreases as the working fluid rises. The temperature drops. Therefore, by suppressing the amount of heat transfer from the outside to the main pipe 10, the working fluid temperature at the outlet of the main pipe 10, that is, the inflow temperature to the cooler 60 can be reduced, and the amount of heat removed at the cooler 60 is reduced. , Can improve efficiency. Although the method for suppressing the amount of heat transfer of the main pipe 10 is not particularly limited, for example, the outer peripheral surface of the main pipe 10 is covered with a water-resistant heat insulating material such as urethane foam or polyimide similarly to the heat insulating portion 26 of the working pipe 20. A configuration in which the main pipe 10 is a double pipe and the inside of the inner pipe and the outside of the outer pipe are thermally insulated by vacuum is exemplified. The amount of heat transfer of the main pipe 10 may be appropriately adjusted according to the water depth or the like so that the seawater passing through the main pipe 10 does not freeze.

ついで、図4に示すエアリフトポンプ101’を貯水槽110に設置して、作動の検証を行った。図4において、図1から図3と同様の構成部分には、同一の符号を付している。主管10は、内径を11mm、長さを1000mmとした。貯水槽110に貯留される液体Lは30±1℃の水を使用し、主管10の揚水高さHdを300mmに設定した。作動流体はHFC−245faを使用した。作動管20は、図3の構成と同様にして断熱部26を形成し、熱交換部28については、両壁面28a,28bが厚さ0.5mmのアルミ板により形成されたケーシングを鉛直方向に直立させることで、入熱量がケーシング内の液面高さにより調整されるように構成した。主管10の吸引口12と作動管20の接続口22との距離Liは、20mmに設定した。気液分離器40は、湿式流量計120を介して冷却器60と接続し、気液分離器40から排出される気相の作動流体の流量を測定可能にした。冷却器60は、作動流体の流量調整時にバッファとなるリザーブバッグ64を備えており、ペルチェ素子62の印加電圧の調節により、作動流体の流量に応じて吸熱量を制御可能に構成した。  Next, the air lift pump 101 ′ shown in FIG. 4 was installed in the water storage tank 110 to verify the operation. 4, the same components as those in FIGS. 1 to 3 are denoted by the same reference numerals. The main tube 10 had an inner diameter of 11 mm and a length of 1000 mm. The liquid L stored in the water storage tank 110 used 30 ± 1 ° C. water, and the pumping height Hd of the main pipe 10 was set to 300 mm. The working fluid was HFC-245fa. The working tube 20 forms the heat insulating portion 26 in the same manner as the configuration of FIG. 3, and for the heat exchanging portion 28, a casing in which both wall surfaces 28a and 28b are formed of an aluminum plate having a thickness of 0.5 mm is arranged in the vertical direction. By making it stand upright, it was comprised so that the heat input amount might be adjusted with the liquid level height in a casing. The distance Li between the suction port 12 of the main tube 10 and the connection port 22 of the working tube 20 was set to 20 mm. The gas-liquid separator 40 is connected to the cooler 60 via the wet flow meter 120 so that the flow rate of the gas-phase working fluid discharged from the gas-liquid separator 40 can be measured. The cooler 60 includes a reserve bag 64 that serves as a buffer when adjusting the flow rate of the working fluid, and the heat absorption amount can be controlled in accordance with the flow rate of the working fluid by adjusting the voltage applied to the Peltier element 62.

上記のエアリフトポンプ101’を500秒間作動させて、湿式流量計120により作動流体の流量を測定すると共に、図4に示す4か所の測温部T1〜T4における作動流体の温度を測定した結果を図5に示す。図5(a)は、冷却器60に導入される作動流体の流量を示しており、図5(b)は、各測温部T1〜T4の温度を貯水槽110内の水温と共に示している。図5(a)および(b)から明らかなように、流量および温度のいずれも安定していることを確認した。  The above-described air lift pump 101 ′ is operated for 500 seconds, the flow rate of the working fluid is measured by the wet flow meter 120, and the temperature of the working fluid in the four temperature measuring portions T1 to T4 shown in FIG. 4 is measured. Is shown in FIG. FIG. 5A shows the flow rate of the working fluid introduced into the cooler 60, and FIG. 5B shows the temperatures of the temperature measuring units T1 to T4 together with the water temperature in the water storage tank 110. . As is clear from FIGS. 5A and 5B, it was confirmed that both the flow rate and temperature were stable.

次に、図4に示すエアリフトポンプ101’において、内径が異なる3種類(8mm、11mm、16mm)の主管10を用意し、それぞれについて、湿式流量計120が検出する気相の作動流体の流量Qg(ml/s)と、主管10の揚水量Ql(ml/s)との関係を測定した。この結果を図6に示す。  Next, in the air lift pump 101 ′ shown in FIG. 4, three types (8 mm, 11 mm, and 16 mm) of main pipes 10 having different inner diameters are prepared, and the flow rate Qg of the working fluid in the gas phase detected by the wet flow meter 120 is prepared for each. The relationship between (ml / s) and the pumping amount Ql (ml / s) of the main pipe 10 was measured. The result is shown in FIG.

図6(a)、(b)および(c)は、主管10の内径が8mm、11mmおよび16mmである場合にそれぞれ対応しており、貯水槽110内の水温を、25℃、30℃、35℃および40℃に設定した場合において、上記のQgとQlとの関係をそれぞれ複数回ずつ測定した。この結果を従来技術と比較するため、主管10に導入する作動流体として圧縮空気を使用し、上記のQgとQlとの関係を測定した。  6A, 6B, and 6C correspond to the case where the inner diameter of the main pipe 10 is 8 mm, 11 mm, and 16 mm, respectively, and the water temperature in the water storage tank 110 is 25 ° C., 30 ° C., 35 When the temperature was set to 40 ° C. and 40 ° C., the relationship between Qg and Ql was measured several times. In order to compare this result with the prior art, compressed air was used as the working fluid introduced into the main pipe 10, and the relationship between the above Qg and Ql was measured.

図6(a)〜(c)のいずれの場合においても、本発明に係るエアリフトポンプ101’の揚水特性は、従来技術のエアリフトポンプの揚水特性と同様の傾向を示した。すなわち、揚水特性に関する既存の知見が、本発明の相変化エアリフトポンプにも利用可能であることを確認した。従来のエアリフトポンプの揚水量を予測する手法としては、畠山ら(1989)による「一次元二流体ドリフトフラックスモデル」を用いて数値計算する方法が知られているが、この数値計算結果を図6(a)〜(c)の測定結果と比較すると、図7に示すように両者は概ね一致することを確認した。  6 (a) to 6 (c), the pumping characteristics of the air lift pump 101 'according to the present invention showed the same tendency as the pumping characteristics of the air lift pump of the prior art. That is, it was confirmed that the existing knowledge about the pumping characteristics can be used for the phase change air lift pump of the present invention. As a method for predicting the pumped amount of a conventional air lift pump, there is known a method of numerical calculation using the “one-dimensional two-fluid drift flux model” by Hiyama et al. (1989). The numerical calculation result is shown in FIG. When compared with the measurement results of (a) to (c), it was confirmed that the two values were almost the same as shown in FIG.

1,1’ エアリフトポンプ
10 主管
12 吸引口
20 作動管
26 断熱部
28 熱交換部
30 回収部
40 気液分離器
52 圧縮機
54 放熱部
56 膨張器
60 冷却器
1, 1 'Airlift pump 10 Main pipe 12 Suction port 20 Working pipe 26 Heat insulation part 28 Heat exchange part 30 Recovery part 40 Gas-liquid separator 52 Compressor 54 Heat radiation part 56 Expander 60 Cooler

Claims (5)

水中に起立状態で設置される主管および作動管を有し、前記作動管から前記主管に作動流体を導入することにより、前記主管の下部に形成された吸引口から堆積物を水と共に吸引して、上方に搬送するエアリフトポンプであって、
前記作動管は、供給された液相の作動流体を外部の水と断熱した状態で下方に案内する断熱部と、前記断熱部を経た作動流体を外部の水との熱交換により加熱気化させて前記主管に供給する熱交換部とを備えるエアリフトポンプ。
A main pipe and a working pipe installed in an upright state in water; by introducing a working fluid from the working pipe to the main pipe, the sediment is sucked together with water from a suction port formed in a lower portion of the main pipe; An air lift pump for conveying upward,
The working pipe is configured to heat and vaporize the working fluid that has passed through the heat insulating portion by heat exchange with external water, and a heat insulating portion that guides the supplied liquid phase working fluid downward while being insulated from the external water. An air lift pump comprising: a heat exchanging unit that supplies the main pipe.
前記熱交換部は、前記断熱部から前記主管に向けて作動流体を上方に案内する請求項1に記載のエアリフトポンプ。  The air lift pump according to claim 1, wherein the heat exchange unit guides the working fluid upward from the heat insulating unit toward the main pipe. 前記主管を上昇する気相の作動流体を回収する気液分離器と、
回収された作動流体を圧縮加熱する圧縮機と、
水中に設置されて前記圧縮機からの作動流体を外部の水と熱交換して冷却する放熱部と、
前記放熱部を経た作動流体を膨張液化させる膨張器とを更に備え、
前記膨張器を経た液相の作動流体を前記作動管に導入する請求項1に記載のエアリフトポンプ。
A gas-liquid separator that recovers the gas-phase working fluid rising up the main pipe;
A compressor that compresses and heats the recovered working fluid;
A heat dissipating unit that is installed in water and cools the working fluid from the compressor by exchanging heat with external water;
An expander that expands and liquefies the working fluid that has passed through the heat dissipation section;
The air lift pump according to claim 1, wherein a liquid-phase working fluid that has passed through the expander is introduced into the working pipe.
前記主管を上昇する気相の作動流体を回収する気液分離器と、
回収された作動流体を冷却して液化する冷却器とを更に備え、
前記冷却器を経た液相の作動流体を前記作動管に導入する請求項1に記載のエアリフトポンプ。
A gas-liquid separator that recovers the gas-phase working fluid rising up the main pipe;
A cooler that cools and liquefies the recovered working fluid;
The air lift pump according to claim 1, wherein a liquid-phase working fluid that has passed through the cooler is introduced into the working pipe.
主管および作動管を水中に起立状態で設置し、前記作動管から前記主管に作動流体を導入することにより、前記主管の下部に形成された吸引口から堆積物を水と共に吸引して、上方に搬送する水中堆積物の吸引方法であって、
前記作動管に供給された液相の作動流体を、外部の水と断熱状態で下方に案内するステップと、
前記作動管の下方に案内された液相の作動流体を、外部の水との熱交換により加熱気化させて、前記主管に供給するステップとを備える水中堆積物の吸引方法。
The main pipe and the working pipe are installed standing in water, and the working fluid is introduced from the working pipe into the main pipe, thereby sucking the deposit together with water from the suction port formed in the lower part of the main pipe, A method for sucking underwater sediment to be conveyed,
Guiding the liquid-phase working fluid supplied to the working pipe downward in a heat-insulated state with external water;
A method of sucking underwater sediment, comprising: heating and vaporizing a liquid-phase working fluid guided below the working pipe by heat exchange with external water and supplying the liquid to the main pipe.
JP2016527729A 2014-06-12 2015-05-26 Air lift pump and underwater sediment suction method Pending JPWO2015190280A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014121184 2014-06-12
JP2014121184 2014-06-12
PCT/JP2015/065045 WO2015190280A1 (en) 2014-06-12 2015-05-26 Air-lift pump and method for sucking in underwater sediment

Publications (1)

Publication Number Publication Date
JPWO2015190280A1 true JPWO2015190280A1 (en) 2017-06-08

Family

ID=54833383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016527729A Pending JPWO2015190280A1 (en) 2014-06-12 2015-05-26 Air lift pump and underwater sediment suction method

Country Status (2)

Country Link
JP (1) JPWO2015190280A1 (en)
WO (1) WO2015190280A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113294125A (en) * 2021-04-26 2021-08-24 西南石油大学 Gas lift exploitation device for seabed natural gas hydrate

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6254645B1 (en) * 2016-07-19 2017-12-27 三井造船株式会社 Gas hydrate recovery system and gas hydrate recovery method
JP6713405B2 (en) * 2016-11-11 2020-06-24 株式会社三井E&Sホールディングス Gas hydrate recovery method and gas hydrate recovery device
WO2022173493A1 (en) * 2021-02-09 2022-08-18 Matt Hutcheson Hydroelectricity production using changes in water column density to induce vertical flow

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4397612A (en) * 1979-02-22 1983-08-09 Kalina Alexander Ifaevich Gas lift utilizing a liquefiable gas introduced into a well
JPH081199B2 (en) * 1987-12-11 1996-01-10 鹿島建設株式会社 Liquid pusher with low boiling point medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113294125A (en) * 2021-04-26 2021-08-24 西南石油大学 Gas lift exploitation device for seabed natural gas hydrate

Also Published As

Publication number Publication date
WO2015190280A1 (en) 2015-12-17

Similar Documents

Publication Publication Date Title
WO2015190280A1 (en) Air-lift pump and method for sucking in underwater sediment
US7900452B2 (en) Clathrate ice thermal transport for ocean thermal energy conversion
RU2416002C1 (en) System for temperature stabilisation of structures foundation on permafrost soils
US4290266A (en) Electrical power generating system
US8789593B2 (en) Enhancing water recovery in subterranean wells with a cryogenic pump
JP5612096B2 (en) Self-supporting pump for heated liquid, and heat-driven liquid closed-loop automatic circulation system using the same
US20090126923A1 (en) Closed loop energy production from geothermal reservoirs
JP2014202149A (en) Geothermal power generation system
JP7269674B2 (en) Geothermal power generation system
JP5067692B2 (en) Siphon circulation heat pipe
NO20120557A1 (en) Underwater hydrocarbon transport and temperature control device
JP2009092350A (en) Pipe for collecting subterranean heat, subterranean heat exchanger, and heat pump utilizing subterranean heat
JP2015212618A (en) Method and device for spontaneous heat transfer in direction opposite to natural convection
US20100193152A1 (en) Sawyer-singleton geothermal energy tank
JP2017071959A (en) Gas recovery device and gas recovery method from water bottom methane hydrate
CN114017004A (en) Deepwater oil and gas production shaft simulation test device and test method
US20090321040A1 (en) Methods and systems for hole reclamation for power generation via geo-saturation of secondary working fluids
JP2022542910A (en) geothermal mining system
CN207194865U (en) A kind of large span for deep geothermal heat exploitation is horizontal to dock U-shaped well
KR101358303B1 (en) Floating marine structure and electricity generation method using the same
JP2016215151A (en) Fluid separation device and fluid separation method
CN206430398U (en) A kind of thermal siphon oil cooling system
KR20140001267A (en) Thermal cycling device using vapor pressure
RU66412U1 (en) HEAT EXCHANGE DIAGRAM FOR PREPARING OIL WELL PRODUCTS IN THE FIELD
JP2009150409A (en) Low temperature tank and method for constructing same

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20170210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170220