JPWO2015166935A1 - π-stacked polymer and complex polymer - Google Patents

π-stacked polymer and complex polymer Download PDF

Info

Publication number
JPWO2015166935A1
JPWO2015166935A1 JP2016516381A JP2016516381A JPWO2015166935A1 JP WO2015166935 A1 JPWO2015166935 A1 JP WO2015166935A1 JP 2016516381 A JP2016516381 A JP 2016516381A JP 2016516381 A JP2016516381 A JP 2016516381A JP WO2015166935 A1 JPWO2015166935 A1 JP WO2015166935A1
Authority
JP
Japan
Prior art keywords
polymer
structural unit
general formula
group
complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016516381A
Other languages
Japanese (ja)
Other versions
JP6712805B2 (en
Inventor
中野 環
環 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
Original Assignee
Hokkaido University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido University NUC filed Critical Hokkaido University NUC
Publication of JPWO2015166935A1 publication Critical patent/JPWO2015166935A1/en
Application granted granted Critical
Publication of JP6712805B2 publication Critical patent/JP6712805B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C53/00Saturated compounds having only one carboxyl group bound to an acyclic carbon atom or hydrogen
    • C07C53/02Formic acid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F13/00Compounds containing elements of Groups 7 or 17 of the Periodic System

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

本発明は、ポリマー鎖中に下記一般式(1)〜(3)のいずれかで表される構造単位を含むポリマーであって、かつ前記構造単位の少なくとも一部がスタッキングしたポリマー、及びこのポリマーが、遷移金属に配位している錯体ポリマー、及びこの錯体ポリマーを含有する二酸化炭素光還元用触媒を提供する。本発明は、C-C結合を有する有機物の合成を実現できる新規触媒系を提供する。The present invention is a polymer containing a structural unit represented by any one of the following general formulas (1) to (3) in a polymer chain, and a polymer in which at least a part of the structural unit is stacked, and the polymer Provides a complex polymer coordinated to a transition metal and a catalyst for photoreduction of carbon dioxide containing the complex polymer. The present invention provides a novel catalyst system capable of realizing the synthesis of an organic substance having a C—C bond.

Description

本発明は、πスタック型ポリマー及びπスタック型ポリマーを含有する錯体ポリマーに関する。さらに本発明は、πスタック型ポリマーを含有する錯体ポリマーの用途に関する。
関連出願の相互参照
本出願は、2014年5月2日出願の日本特願2014−95545号の優先権を主張し、その全記載は、ここに特に開示として援用される。
The present invention relates to a π-stacked polymer and a complex polymer containing the π-stacked polymer. Furthermore, the present invention relates to the use of a complex polymer containing a π stack type polymer.
This application claims the priority of Japanese Patent Application No. 2014-95545 filed on May 2, 2014, the entire description of which is specifically incorporated herein by reference.

ビピリジン(bpy)-Re錯体の光触媒機能は1986年にLehnによって初めて報告され、その後これに基づく様々な低分子系錯体が作られており、反応効率の向上、反応機構の解明などの研究が行われてきた。例えば、特許文献1には、bpy-Re錯体との組合せにより還元生成物への選択性を向上させる方法が記載されている。   The photocatalytic function of a bipyridine (bpy) -Re complex was first reported by Lehn in 1986, and various low-molecular-weight complexes based on this were subsequently created, and research on improving reaction efficiency and elucidating the reaction mechanism was conducted. I have been. For example, Patent Document 1 describes a method for improving selectivity to a reduction product by combination with a bpy-Re complex.

bpy-ReによるCO2の還元機構には不明な点が多く、反応の活性種のすべてが明らかにはなっていない。現在までの主な報告としては、光還元の機構は反応中心としてRe-CO種を含むものであることが非特許文献1に記載されている。さらに、Re-C結合はラジカル開裂することも報告されている(非特許文献2および3)。There are many unclear points about the CO 2 reduction mechanism by bpy-Re, and not all of the active species in the reaction have been clarified. As a main report to date, Non-Patent Document 1 describes that the mechanism of photoreduction includes a Re-CO species as a reaction center. Furthermore, it has been reported that the Re-C bond is radically cleaved (Non-patent Documents 2 and 3).

特許文献1:日本特開2010−64066号公報 Patent Document 1: Japanese Unexamined Patent Application Publication No. 2010-64066

非特許文献1:Fujita et al., Acc. Chem. Res., 2009, 42, 1983
非特許文献2:Vlcek, Organometallics, 2006, 25, 2148
非特許文献3:Kuninobu, Takai, Bull. Chem. Soc. Jpn., 2012, 85, 656
特許文献1及び非特許文献1〜3の全記載は、ここに特に開示として援用される。
Non-Patent Document 1: Fujita et al., Acc. Chem. Res., 2009, 42, 1983
Non-Patent Document 2: Vlcek, Organometallics, 2006, 25, 2148
Non-Patent Document 3: Kuninobu, Takai, Bull. Chem. Soc. Jpn., 2012, 85, 656
The entire description of Patent Document 1 and Non-Patent Documents 1 to 3 is specifically incorporated herein by reference.

しかし、既報の単体低分子のbpy-ReによるCO2の還元成物は、依然としてCOおよびギ酸であり、その他の還元生成物が得られていないのが実状である。However, the reported reduction products of CO 2 by simple single molecule bpy-Re are still CO and formic acid, and no other reduction products are obtained.

そこで、本発明は、CO2を効率的に還元して従来のbpy-Re触媒によるCO2の還元生成物として知られるCO、およびギ酸だけでなく、C-C結合を有する有機物の合成を実現できる新規触媒系を提供することを目的とする。Accordingly, the present invention is not a CO 2 CO known as efficiently reduced reduction products CO 2 by conventional bpy-Re catalyst, and only formic acid, the novel can realize the synthesis of organic substances having a CC bond An object is to provide a catalyst system.

本発明者らは、上記目的を達成するために、ビピリジン(bpy)-Re型錯体が稠密に集積したπスタック型錯体ポリマーを合成し、ポリマーのスタッキングによりReが集積した反応の場を提供することを考えた。πスタック型錯体ポリマーに含まれるReが配位するπスタック型の構造単位を用いて、Reを含む反応中心を究極まで近づけることにより、ラジカルカップリングによるC-C結合生成を実現することを試みた。その結果、CO、およびギ酸だけでなく、C-C結合を有する有機物の合成を実現できる新規触媒反応が可能であることを見出して、本発明を完成させた。   In order to achieve the above object, the inventors of the present invention synthesize a π stack type complex polymer in which bipyridine (bpy) -Re type complexes are densely integrated, and provide a reaction field in which Re is accumulated by stacking the polymers. I thought. Using a π-stacked structural unit coordinated by Re in a π-stacked complex polymer, we attempted to realize C-C bond formation by radical coupling by bringing the reaction center containing Re close to the ultimate. As a result, it was found that a novel catalytic reaction capable of realizing synthesis of not only CO and formic acid but also an organic substance having a C—C bond was possible, and the present invention was completed.

本発明は以下のとおりである。
[1]
ポリマー鎖中に下記一般式(1)〜(3)のいずれかで表される構造単位を含むポリマーであって、かつ前記構造単位の少なくとも一部がスタッキングしたポリマー。
一般式(1)〜(3)中、X1及びX2は、独立に共有結合または(CH2m1であり、(CH2m1におけるm1は1〜3の整数であり、
Yは、無結合であるか、または共有結合または(CH2m2であり、(CH2m2におけるm2は1〜3の整数であり、
Zは共有結合または2価の基であり、
は、置換基を有することができる窒素原子(N)含有芳香族3〜8員環であり、
1、及びR2、は、独立に水素原子又は炭素数1〜6のアルキル基であり、
は、ポリマー鎖を示し、
一般式(2)において、Yが共有結合または(CH2m2である場合、C=C、X1、X2、2つのヘテロ環及びYは、共同して電子共鳴構造を形成してもよく、
一般式(3)において、R1及びR2は、独立に水素原子又は炭素数1〜6のアルキル基である。
[2]
一般式(1)の構造単位が、下記の式4である、[1]記載のポリマー。
式中、X1及びX2は、独立に共有結合または(CH2m1であり、(CH2m1におけるm1は1〜3の整数であり、
Yは、無結合であるか、または共有結合または(CH2m2であり、(CH2m2におけるm2は1〜3の整数であり、
Zは共有結合または2価の炭化水素基であり、
は、置換基を有することができる窒素原子(N)含有芳香族3〜8員環であり、
3、R4は、独立に水素原子又は炭素数1〜6のアルキル基であり、
は、ポリマー鎖を示す。
[3]
ヘテロ環は、ピリジル環である[1]又は[2]に記載のポリマー。
[4]
一般式(1)又は(4)の構造単位が、下記式(10)又は(20)で示される[1]又は[2]に記載のポリマー。
ここで、Rは独立に水素原子又は置換基であり、
及び
は、共鳴環若しくは非共鳴環を表すか、又は破線部分は存在しなくてもよく、破線部分が存在しない場合は、Rはピリジン環に結合する。
[5]
一般式(1)又は(4)の構造単位が、下記式(11)又は(21)で示される[1]又は[2]に記載のポリマー。
ここで、Rは独立に水素原子又は置換基である。
[6]
一般式(2)の構造単位が、下記式(30)で示される[1]に記載のポリマー。
ここで、Rは独立に水素原子又は置換基であり、
及び
は、共鳴環若しくは非共鳴環を表すか、又は破線部分は存在しなくてもよく、破線部分が存在しない場合は、Rはピリジン環に結合する。
[7]
一般式(2)の構造単位が、下記式(31)で示される[1]に記載のポリマー。
ここで、Rは独立に水素原子又は置換基である。
[8]
Zが2価の基の場合、2価の基が、炭素数1〜4のアルキレン基、オキソアルキレン基、チオアルキレン基又はアザアルキレン基である[1]〜[7]のいずれか1項に記載のポリマー。
[9]
数平均分子量が、500〜1,000,000である[1]〜[8]のいずれか1項に記載のポリマー。
[10]
[1]〜[9]のいずれか1項に記載のポリマーが、遷移金属に配位していることを特徴とする錯体ポリマー。
[11]
遷移金属がレニウム又はルテニウムである、[10]に記載のポリマー。
[12]
CO及びハロゲン分子からなる少なくとも1つを配位子としてさらに含有する[10]又は[11]に記載の錯体ポリマー。
[13]
[10]〜[12]のいずれか1項に記載の錯体ポリマーを含有する二酸化炭素光還元用触媒。
[14]
[10]〜[13]のいずれか1項に記載の錯体ポリマーと二酸化炭素とを水素提供化合物の存在下に接触させて、二酸化炭素の還元生成物を得ることを含む、二酸化炭素の還元生成物の製造方法。
[15]
二酸化炭素の還元生成物が、炭素−炭素の共有結合を有する化合物を含むものである[14]の二酸化炭素の還元生成物の製造方法。
The present invention is as follows.
[1]
A polymer comprising a structural unit represented by any one of the following general formulas (1) to (3) in a polymer chain, wherein at least a part of the structural unit is stacked.
In general formulas (1) to (3), X 1 and X 2 are independently a covalent bond or (CH 2 ) m1 , m1 in (CH 2 ) m1 is an integer of 1 to 3,
Y is no bond, or a covalent bond or (CH 2 ) m 2, m 2 in (CH 2 ) m 2 is an integer of 1 to 3,
Z is a covalent bond or a divalent group;
Is a nitrogen atom (N) -containing aromatic 3- to 8-membered ring that can have a substituent,
R 1 and R 2 are each independently a hydrogen atom or an alkyl group having 1 to 6 carbon atoms,
Indicates a polymer chain,
In the general formula (2), when Y is a covalent bond or (CH 2 ) m 2 , C═C, X 1 , X 2 , two heterocycles and Y may jointly form an electron resonance structure. Often,
In the general formula (3), R 1 and R 2 are independently a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
[2]
The polymer according to [1], wherein the structural unit of the general formula (1) is the following formula 4.
In the formula, X 1 and X 2 are independently a covalent bond or (CH 2 ) m1 , m1 in (CH 2 ) m1 is an integer of 1 to 3,
Y is no bond, or a covalent bond or (CH 2 ) m 2, m 2 in (CH 2 ) m 2 is an integer of 1 to 3,
Z is a covalent bond or a divalent hydrocarbon group,
Is a nitrogen atom (N) -containing aromatic 3- to 8-membered ring that can have a substituent,
R 3 and R 4 are each independently a hydrogen atom or an alkyl group having 1 to 6 carbon atoms,
Indicates a polymer chain.
[3]
The polymer according to [1] or [2], wherein the heterocycle is a pyridyl ring.
[4]
The polymer according to [1] or [2], wherein the structural unit of the general formula (1) or (4) is represented by the following formula (10) or (20).
Here, R is independently a hydrogen atom or a substituent,
And represents a resonant ring or a non-resonant ring, or the broken line portion may not exist, and when the broken line portion does not exist, R is bonded to the pyridine ring.
[5]
The polymer according to [1] or [2], wherein the structural unit of the general formula (1) or (4) is represented by the following formula (11) or (21).
Here, R is independently a hydrogen atom or a substituent.
[6]
The polymer according to [1], wherein the structural unit of the general formula (2) is represented by the following formula (30).
Here, R is independently a hydrogen atom or a substituent,
And represents a resonant ring or a non-resonant ring, or the broken line portion may not exist, and when the broken line portion does not exist, R is bonded to the pyridine ring.
[7]
The polymer according to [1], wherein the structural unit of the general formula (2) is represented by the following formula (31).
Here, R is independently a hydrogen atom or a substituent.
[8]
In the case where Z is a divalent group, any one of [1] to [7], wherein the divalent group is an alkylene group having 1 to 4 carbon atoms, an oxoalkylene group, a thioalkylene group or an azaalkylene group. The polymer described.
[9]
The polymer according to any one of [1] to [8], wherein the number average molecular weight is 500 to 1,000,000.
[10]
A complex polymer, wherein the polymer according to any one of [1] to [9] is coordinated to a transition metal.
[11]
The polymer according to [10], wherein the transition metal is rhenium or ruthenium.
[12]
[10] or [11], wherein the complex polymer further contains at least one of CO and a halogen molecule as a ligand.
[13]
A catalyst for photoreduction of carbon dioxide containing the complex polymer according to any one of [10] to [12].
[14]
[10]-[13], wherein the complex polymer according to any one of [10] to [13] is brought into contact with carbon dioxide in the presence of a hydrogen-providing compound to obtain a reduction product of carbon dioxide. Manufacturing method.
[15]
[14] The method for producing a reduction product of carbon dioxide according to [14], wherein the reduction product of carbon dioxide includes a compound having a carbon-carbon covalent bond.

本発明によれば、πスタック型ポリマー及びこのポリマーを用いたπスタック型錯体ポリマーを用い、二酸化炭素のC-C結合を有する還元生成物を製造することができる。また、πスタック型錯体ポリマーを用いて、二酸化炭素を還元してC-C結合を有する有機物の合成を実現できる新規触媒を提供することができる。   According to the present invention, a reduction product having a C—C bond of carbon dioxide can be produced using a π stack type polymer and a π stack type complex polymer using the polymer. In addition, it is possible to provide a novel catalyst that can realize synthesis of an organic substance having a C—C bond by reducing carbon dioxide using a π stack type complex polymer.

BPM(モノマー単位モデル)とpoly(BPE)のUVスペクトル(MeOH溶液中)(左)およびpoly(BPE)の1H NMRスペクトル(CD3OD溶液中)UV spectrum of BPM (monomer unit model) and poly (BPE) (in MeOH solution) (left) and 1H NMR spectrum of poly (BPE) (in CD3OD solution) 標準試料としてのシュウ酸、ギ酸とCO2の光還元反応生成物のHPLC分析結果[カラム Phenomex Synergy 4μHydro-RP 80Å 25 cm x 0.46 cm (i.d.), 溶離液 リン酸バッファー pH 2.9, 流速 0.8 mL/min, temp. 30℃]HPLC analysis results of photoreduction products of oxalic acid, formic acid and CO 2 as standard samples [column Phenomex Synergy 4μHydro-RP 80Å 25 cm x 0.46 cm (id), eluent phosphate buffer pH 2.9, flow rate 0.8 mL / min, temp. 30 ℃] 標準試料としてのシュウ酸、ギ酸とCO2の光還元反応生成物のイオンクロマト分析結果[カラム IonPac(R) AS12A 20 cm x 0.4 cm (i.d.), 溶離液 0.3 mM aq. NaHCO3/2.7 mM aq. Na2CO3, 流速 1.2 mL/min, temp. 35℃]Ion chromatographic analysis results of photoreduction products of oxalic acid, formic acid and CO 2 as standard samples [column IonPac (R) AS12A 20 cm x 0.4 cm (id), eluent 0.3 mM aq. NaHCO 3 /2.7 mM aq Na 2 CO 3 , flow rate 1.2 mL / min, temp. 35 ℃] 4,5-Diazafluoreneの1H NMRスペクトル(400 MHz, CDCl3 with TMS, RT) 1 H NMR spectrum of 4,5-Diazafluorene (400 MHz, CDCl 3 with TMS, RT) poly(DADBF)の 1H NMR スペクトル(from Run1. 400 MHz, CD3OD , RT) 1 H NMR spectrum of poly (DADBF) (from Run1. 400 MHz, CD 3 OD, RT) polyDADBF のUVスペクトル(in DMF)UV spectrum of polyDADBF (in DMF) poly(DADBF) の2D NMR HMQC スペクトル(from Run1 (400 MHz, CD3OD, RT))2D NMR HMQC spectrum of poly (DADBF) (from Run1 (400 MHz, CD 3 OD, RT)) poly(DADBF)の2D NMR HMBCスペクトル(from Run1 (400 MHz, CD3OD, RT))2D NMR HMBC spectrum of poly (DADBF) (from Run1 (400 MHz, CD 3 OD, RT)) 1H NMR spectra of coordination experiment. (400 MHz, DMF-d7 , RT)左図: poly(DADBF) (下図), Re-poly(DADBF) after 13 h from UV irradiation (上図). 右図: DAF (下図), Re-DAF (上図). 1 H NMR spectra of coordination experiment. (400 MHz, DMF-d 7 , RT) Left: poly (DADBF) (bottom), Re-poly (DADBF) after 13 h from UV irradiation (top). Right: DAF (bottom), Re-DAF (top). phenおよび Re錯体の1H NMRスペクトル[400MHz, CDCl3, r.t.] 1 H NMR spectra of phen and Re complexes [400MHz, CDCl 3 , rt] DBPhenおよびRe錯体の1H NMRスペクトル[400MHz, CDCl3, r.t.] 1 H NMR spectrum of DBPhen and Re complexes [400MHz, CDCl 3, rt] Poly(DBPhen)およびRe錯体の1H NMRスペクトル[400MHz, CDCl3, r.t.] 1 H NMR spectra of Poly (DBPhen) and Re complexes [400 MHz, CDCl 3 , rt] Poly(DBPhen)およびRe錯体CHCl3-Solの1H NMRスペクトル[400MHz, CDCl3, r.t.] 1 H NMR spectrum of Poly (DBPhen) and Re complex CHCl 3 -Sol [400 MHz, CDCl 3 , rt] Poly(DBPhen)およびRe錯体CHCl3-Insol.[400MHz, DMF-d7, r.t.]Poly (DBPhen) and Re complex CHCl 3 -Insol. [400MHz, DMF-d 7 , rt] phenおよびRe錯体のUVスペクトル[DMF, Cell 2 mm, r.t.]UV spectra of phen and Re complexes [DMF, Cell 2 mm, r.t.] poly(DBPhen) (135-2 DMF-Sol) およびRe錯体(147-2CHCl3-Insol). のUVスペクトル[DMF, Cell 2 mm, r.t.]UV spectrum of poly (DBPhen) (135-2 DMF-Sol) and Re complex (147-2CHCl 3 -Insol). [DMF, Cell 2 mm, rt]

<ポリマーおよび錯体ポリマー>
本発明は、ポリマー鎖中に下記一般式(1)〜(3)のいずれかで表される構造単位を含むポリマーであって、かつ前記構造単位の少なくとも一部がスタッキングしたポリマーに関する。
<Polymer and complex polymer>
The present invention relates to a polymer including a structural unit represented by any one of the following general formulas (1) to (3) in a polymer chain, and at least a part of the structural unit is stacked.

一般式(1)〜(3)中、X1及びX2は、独立に共有結合または(CH2m1であり、(CH2m1におけるm1は1〜3の整数である。X1及びX2は、好ましくは共有結合であり、X1及びX2が(CH2m1である場合、m1は好ましくは1または2である。
Yは、無結合であるか、または共有結合または(CH2m2であり、(CH2m2におけるm2は1〜3の整数である。Yは、好ましくは無結合であるか、または共有結合である。無結合とは、2つのYヘテロ環の間に直接的な化学結合は存在しないことを意味する。Yが(CH2m2である場合、m2は好ましくは1または2である。
さらに好ましくは、式(1)の場合、X1及びX2がCH2で、Yは無結合又は共有結合の場合である。また、式2の場合、(X)mが共有結合で、Yが共有結合の場合である。
一般式(1)〜(3)におけるZは、2価の基である(以下、Z基と記すこともある。)。2価の基としては、例えば、アルキレン基、オキソアルキレン基、チオアルキレン基、アゾアルキレン基を挙げることがである。アルキレン基、オキソアルキレン基、チオアルキレン基、アザアルキレン基の炭素数は1〜4が好ましく、1、2、3又は4のいずれであることもでき、直鎖であっても分岐であっても好ましい。
In General Formulas (1) to (3), X 1 and X 2 are independently a covalent bond or (CH 2 ) m1 , and m1 in (CH 2 ) m1 is an integer of 1 to 3. X 1 and X 2 are preferably covalent bonds, and when X 1 and X 2 are (CH 2 ) m1 , m1 is preferably 1 or 2.
Y is no bond, or a covalent bond or (CH 2 ) m 2 , and m 2 in (CH 2 ) m 2 is an integer of 1 to 3. Y is preferably unbonded or a covalent bond. No bond means that there is no direct chemical bond between the two Y heterocycles. When Y is (CH 2 ) m 2 , m 2 is preferably 1 or 2.
More preferably, in the case of formula (1), X 1 and X 2 are CH 2 and Y is no bond or covalent bond. In the case of Formula 2, (X) m is a covalent bond and Y is a covalent bond.
Z in the general formulas (1) to (3) is a divalent group (hereinafter sometimes referred to as Z group). Examples of the divalent group include an alkylene group, an oxoalkylene group, a thioalkylene group, and an azoalkylene group. The alkylene group, oxoalkylene group, thioalkylene group, and azaalkylene group preferably have 1 to 4 carbon atoms, and may be 1, 2, 3 or 4, and may be linear or branched. preferable.

一般式(1)〜(3)中のヘテロ環
は、置換基を有することができる窒素原子(N)含有の芳香族3〜8員環であり、好ましくは5、6又は7員環であり、より好ましくは6員環(ピリジル環)である。ヘテロ環は、芳香族であることで、近接する芳香族ヘテロ環のπ結合が相互作用してスタッキングを生じるものと考えられる。ヘテロ環が有することができる置換基は、例えば、炭素数1〜6のアルキル基、アリール基、アルコキシ基、アルキルカルボニル基、アルコキシカルボニル基、シアノ基、アミノ基、ハロゲン分子などを挙げることができる。置換基の数に限定はない。
Heterocycle in general formula (1)-(3)
Is a nitrogen atom (N) -containing aromatic 3- to 8-membered ring which can have a substituent, preferably a 5-, 6- or 7-membered ring, more preferably a 6-membered ring (pyridyl ring) . Since the heterocycle is aromatic, it is considered that π bonds of adjacent aromatic heterocycles interact to cause stacking. Examples of the substituent that the heterocycle can have include an alkyl group having 1 to 6 carbon atoms, an aryl group, an alkoxy group, an alkylcarbonyl group, an alkoxycarbonyl group, a cyano group, an amino group, and a halogen molecule. . There is no limitation on the number of substituents.

一般式(1)〜(3)中、は、ポリマー鎖を示し、このポリマー鎖は、一般式(1)〜(3)のいずれかで表される構造単位を含むポリマー鎖であることができる。一般式(1)中ので示されるポリマー鎖は、一般式(1)で表される構造単位を含むポリマー鎖であり、さらに好ましくは一般式(1)で表される構造単位からなるポリマー鎖である。一般式(2)中ので示されるポリマー鎖は、一般式(2)で表される構造単位を含むポリマー鎖であり、さらに好ましくは一般式(2)で表される構造単位からなるポリマー鎖である。一般式(3)中ので示されるポリマー鎖は、一般式(3)で表される構造単位を含むポリマー鎖であり、さらに好ましくは一般式(3)で表される構造単位からなるポリマー鎖である。本発明のポリマーの数平均分子量は500〜100,000であることが好ましく、500〜10,000がより好ましく、特に500〜10,000であることが好ましい。   In the general formulas (1) to (3), represents a polymer chain, and this polymer chain can be a polymer chain including the structural unit represented by any of the general formulas (1) to (3). . The polymer chain represented by in the general formula (1) is a polymer chain including the structural unit represented by the general formula (1), more preferably a polymer chain composed of the structural unit represented by the general formula (1). is there. The polymer chain represented by (2) in the general formula (2) is a polymer chain including the structural unit represented by the general formula (2), and more preferably a polymer chain composed of the structural unit represented by the general formula (2). is there. The polymer chain represented by in the general formula (3) is a polymer chain including the structural unit represented by the general formula (3), more preferably a polymer chain composed of the structural unit represented by the general formula (3). is there. The number average molecular weight of the polymer of the present invention is preferably 500 to 100,000, more preferably 500 to 10,000, and particularly preferably 500 to 10,000.

一般式(3)において、R1、及びR2、は、独立に水素原子又は炭素数1〜6のアルキル基である。In the general formula (3), R 1, and R 2, are independently hydrogen atom or an alkyl group having 1 to 6 carbon atoms.

一般式(2)において、Yが共有結合または(CH2m2である場合、C=C、X1、X2、2つのヘテロ環及びYは、共同して電子共鳴構造を形成してもよい。In the general formula (2), when Y is a covalent bond or (CH 2 ) m 2 , C═C, X 1 , X 2 , two heterocycles and Y may jointly form an electron resonance structure. Good.

一般式(1)で示される構造単位は、下記の一般式(4)であることができる。式中R3、R4以外の定義は、一般式(1)についての定義と同様である。
3、R4は、独立に水素原子又は炭素数1〜6のアルキル基である。
The structural unit represented by the general formula (1) can be represented by the following general formula (4). In the formula, definitions other than R 3 and R 4 are the same as the definitions for the general formula (1).
R 3 and R 4 are each independently a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.

一般式(1)又は(4)の構造単位は、下記式(10)又は(20)で示されることができる。
The structural unit of the general formula (1) or (4) can be represented by the following formula (10) or (20).

さらに、一般式(1)又は(4)の構造単位は、下記式(11)又は(21)で示されることができる。
Furthermore, the structural unit of the general formula (1) or (4) can be represented by the following formula (11) or (21).

さらに、一般式(2)の構造単位は、下記式(30)で示されることができる。
Furthermore, the structural unit of the general formula (2) can be represented by the following formula (30).

さらに一般式(2)の構造単位は、下記式(31)で示されることかできる。
Furthermore, the structural unit of the general formula (2) can be represented by the following formula (31).

上記一般式(10)、(11)、(20)、(21)、(30)及び(31)におけるRは、独立に水素原子又は置換基である。Rが置換基である場合、置換基としては、例えば、炭素数1〜10の直鎖、分岐、環状のアルキル基、アリール基、アルコキシ基、アルキルカルボニル基、アルコキシカルボニル基、シアノ基、アミノ基、ハロゲン分子などを挙げることができる。置換基の数に限定はなく、一方のヘテロ環が有する置換基の数は、例えば、1又は2個以上であることができ、2個以上である場合の置換基は同一でも異なってもよい。また、各ヘテロ環に結合する置換基も同一でも異なってもよい。   R in the general formulas (10), (11), (20), (21), (30) and (31) is independently a hydrogen atom or a substituent. When R is a substituent, examples of the substituent include linear, branched, and cyclic alkyl groups having 1 to 10 carbon atoms, aryl groups, alkoxy groups, alkylcarbonyl groups, alkoxycarbonyl groups, cyano groups, and amino groups. And halogen molecules. The number of substituents is not limited, and the number of substituents on one heterocycle may be, for example, 1 or 2 or more, and the substituents in the case of 2 or more may be the same or different. . The substituents bonded to each heterocycle may be the same or different.

上記一般式(10)、(20)、及び(30)において、
は、共鳴環若しくは非共鳴環を表すか、又は破線部分は存在しなくてもよく、破線部分が存在しない場合は、Rはピリジン環に結合する。共鳴環及び非共鳴環の炭素数は、例えば、4〜7であることができる。上記一般式(10)において、
の破線部分が存在しない態様は、上記一般式(11)で表されるポリマーに相当する。上記一般式(20)において、
の破線部分が存在しない態様は、上記一般式(21)で表されるポリマーに相当する。上記一般式(30)において、
が存在しない態様は、上記一般式(31)で表されるポリマーに相当する。
In the general formulas (10), (20), and (30),
Represents a resonant ring or a non-resonant ring, or the broken line portion may not be present, and when there is no broken line portion, R is bonded to the pyridine ring. The carbon number of the resonant ring and the non-resonant ring can be, for example, 4-7. In the general formula (10),
The mode in which the broken line portion does not exist corresponds to the polymer represented by the general formula (11). In the general formula (20),
The mode in which the broken line portion does not exist corresponds to the polymer represented by the general formula (21). In the general formula (30),
A mode in which is absent corresponds to the polymer represented by the general formula (31).

本発明のポリマーにおいては、構造単位は有機溶媒中、水中、固体状でスタッキングし得る。ここでスタック構造とは、側鎖の官能基中のヘテロ環同士が積層している構造を意味する。例えば、構造単位がスタッキングすることは、吸収ピークを測定し、淡色化(モル吸収係数が小さくなる。)ことを観測することで確認できる。スタッキングした状態では、スタッキングした構造単位が、Re等の遷移金属に配位し得る。本発明のポリマーがスタッキングを生じ得る有機溶媒としては、例えば、N,N−ジメチルホルムアミド、アセトニトリル、メタノール、エタノール、THF、クロロホルム、ジオキシサン、ジメチルスルホシド,ジメチルアセトアミドなどが好ましく挙げられる。   In the polymer of the present invention, the structural unit can be stacked in an organic solvent in water and in a solid state. Here, the stack structure means a structure in which heterocycles in the side chain functional groups are laminated. For example, stacking of a structural unit can be confirmed by measuring an absorption peak and observing that the color is lightened (a molar absorption coefficient is small). In the stacked state, the stacked structural unit can coordinate to a transition metal such as Re. Preferred examples of the organic solvent that can cause stacking of the polymer of the present invention include N, N-dimethylformamide, acetonitrile, methanol, ethanol, THF, chloroform, dioxysan, dimethylsulfoside, and dimethylacetamide.

本発明の錯体ポリマーは、上記一般式(1)〜(4)のいずれかで表される構造単位を含むポリマーが遷移金属に配位したポリマーである。錯体ポリマーは、例えば、有機溶媒中で本発明のポリマーが遷移金属に配位することで製造することができる。   The complex polymer of the present invention is a polymer in which a polymer containing a structural unit represented by any one of the general formulas (1) to (4) is coordinated to a transition metal. The complex polymer can be produced, for example, by coordination of the polymer of the present invention with a transition metal in an organic solvent.

遷移金属としては、錯体ポリマーの用途に応じて選択することができる。遷移金属としては、例えば、第一遷移元素(3d遷移元素)、第二遷移元素(4d遷移元素)及び第三遷移元素(5d遷移元素)を挙げることができる。第一遷移元素としては、Sc スカンジウム、Ti チタン、V バナジウム、Cr クロム、Mn マンガン、Fe 鉄、Co コバルト、Ni ニッケル、Cu 銅、及びZn 亜鉛を例示できる。第二遷移元素としては、Y イットリウム、Zr ジルコニウム、Nb ニオブ、Mo モリブデン、Tc テクネチウム、Ru ルテニウム、Rh ロジウム、Pd パラジウム、Ag 銀、及びCd カドミウム を例示できる。第三遷移元素(5d遷移元素) としては、W タングステン、Re レニウム、Os オスミウム 、Ir イリジウム 、Pt 白金 、Au 金、Pb鉛を例示できる。本発明においては、例えば、二酸化炭素の還元生成物を製造するための触媒として錯体ポリマーを用いるには、遷移金属は、レニウム(Re)、ルテニウム(Ru)が好ましく、特にレニウムが好ましい。   The transition metal can be selected according to the use of the complex polymer. Examples of the transition metal include a first transition element (3d transition element), a second transition element (4d transition element), and a third transition element (5d transition element). Examples of the first transition element include Sc scandium, Ti titanium, V vanadium, Cr chromium, Mn manganese, Fe iron, Co cobalt, Ni nickel, Cu copper, and Zn zinc. Examples of the second transition element include Y yttrium, Zr zirconium, Nb niobium, Mo molybdenum, Tc technetium, Ru ruthenium, Rh rhodium, Pd palladium, Ag silver, and Cd cadmium. Examples of the third transition element (5d transition element) include W tungsten, Re rhenium, Os osmium, Ir iridium, Pt platinum, Au gold, and Pb lead. In the present invention, for example, to use a complex polymer as a catalyst for producing a reduction product of carbon dioxide, the transition metal is preferably rhenium (Re) or ruthenium (Ru), and particularly preferably rhenium.

二酸化炭素の還元生成物を製造するには、前記ポリマーに含まれる構造単位の少なくとも一部がレニウムに配位していることが好ましい。レニウムが配位している構造単位の数は、両者の含有比率によって変化する。本発明においては、レニウム:構造単位の数は、1:0.1〜1の範囲であることができ、活性が高い触媒とするという観点からは、1:0.5〜1の範囲である。レニウム(Re)は、0価〜+7価の価数を取り得る金属である。   In order to produce a reduction product of carbon dioxide, it is preferable that at least a part of the structural unit contained in the polymer is coordinated to rhenium. The number of structural units coordinated with rhenium varies depending on the content ratio of the two. In the present invention, the number of rhenium: structural units can be in the range of 1: 0.1 to 1, and from the viewpoint of a highly active catalyst, it is in the range of 1: 0.5 to 1. . Rhenium (Re) is a metal that can take a valence of 0 to +7.

本発明の錯体ポリマーにおいては、本発明のポリマー中の構造単位に含まれるヘテロ環中の窒素原子が、レニウムに対して配位結合をする。さらにレニウムは、他の配位子として、CO、Cl等のハロゲン分子が配位されている。これらの追加の配位子は、上記レニウム含有錯体から導入されたものであることができる。   In the complex polymer of the present invention, the nitrogen atom in the heterocycle contained in the structural unit in the polymer of the present invention forms a coordinate bond with rhenium. Furthermore, rhenium is coordinated with halogen molecules such as CO and Cl as other ligands. These additional ligands can be those introduced from the rhenium-containing complex.

<ポリマーの製造方法>
一般式(1)〜(4)で表される構造単位を含むポリマーの調製について、式(1)又は(4)で示される構造単位の例である式(11)および(21)で示されるポリマーの調製方法を例として以下に示す。
<Method for producing polymer>
About preparation of the polymer containing the structural unit represented by General Formula (1)-(4), it is shown by Formula (11) and (21) which are examples of the structural unit shown by Formula (1) or (4). The polymer preparation method is shown below as an example.

式(11)で示されるポリマーの調製方法
式(11)で示されるポリマー[poly(BPE)]は、ビス(2-ピリジル)ケトン(BPy-ketone)から重合用モノマーであるビス(2-ピリジル)エチレン(BPE)を合成し、このモノマーを重合することで調製できる。ビス(2-ピリジル)ケトンは市販品を入手可能である。上記スキームに示すように、ビス(2-ピリジル)ケトンは、Wittig試薬と反応させることによりケトン部分を重合性のメチレン基に変換することができる。得られるビス(2-ピリジル)エチレン(BPE)は、種々の条件で重合することができるが、本発明者らの検討によれば、カチオン重合が、モノマー転換率が高いという観点で好ましい。カチオン重合は、例えば、HClO4, H2SO4, Cl3CCOOH などのブレンステッド酸;BF3, AlCl3, AlBr3, SnCl4などのルイス酸を開始剤として用いて適宜実施できる。具体例は実施例1に記載する。
また、例えば、上式にあるBPEのビニル基の代わりに、一般式(1)又は(4)におけるZ基を含む環構造を導入し、これを開環重合すれば、Z基を有する式(1)一般の構造単位を有するポリマーを製造できる。
Method for preparing polymer represented by formula (11)
The polymer [poly (BPE)] represented by the formula (11) synthesizes bis (2-pyridyl) ethylene (BPE), which is a monomer for polymerization, from bis (2-pyridyl) ketone (BPy-ketone). Can be prepared by polymerizing. Bis (2-pyridyl) ketone is commercially available. As shown in the above scheme, bis (2-pyridyl) ketone can be converted to a polymerizable methylene group by reacting with a Wittig reagent. The resulting bis (2-pyridyl) ethylene (BPE) can be polymerized under various conditions, but according to the study by the present inventors, cationic polymerization is preferable from the viewpoint of high monomer conversion. Cationic polymerization can be suitably performed using, for example, Bronsted acids such as HClO 4 , H 2 SO 4 , and Cl 3 CCOOH; Lewis acids such as BF 3 , AlCl 3 , AlBr 3 , and SnCl 4 as initiators. A specific example is described in Example 1.
In addition, for example, instead of the vinyl group of BPE in the above formula, if a ring structure containing a Z group in the general formula (1) or (4) is introduced and subjected to ring-opening polymerization, the formula (Z 1) A polymer having a general structural unit can be produced.

式(21)で示されるポリマーの調製方法
Method for preparing polymer represented by formula (21)

式(21)で示されるポリマーは上記反応スキームでは、式(4)で表される重合体である。式(4)の重合体は、1,10-Phenanthroline monohydrateを原料として、1,10-Phenanthroline-5,6-dione(式(1))、4,5-Diazafluorene-9-one(式(2))、(3)4,5-Diazafluorene(式(3))を経て合成できる。但し、式(4)で表される重合体は、式(2)の化合物から直接合成することも可能である。原料である1,10-Phenanthroline monohydrateは、市販品を入手可能である。
各反応の詳細な条件は実施例2を参照のこと。
また、例えば、上式にある(3)のビニル基の代わりに、一般式(1)又は(4)におけるZ基を含む環構造を導入し、これを開環重合すれば、Z基を有する式(1)又は(4)の構造単位を有するポリマーを製造できる。
In the above reaction scheme, the polymer represented by the formula (21) is a polymer represented by the formula (4). The polymer of formula (4) is made from 1,10-Phenanthroline monohydrate as a raw material, 1,10-Phenanthroline-5,6-dione (formula (1)), 4,5-Diazafluorene-9-one (formula (2) )), (3) 4,5-Diazafluorene (Formula (3)). However, the polymer represented by the formula (4) can also be directly synthesized from the compound of the formula (2). The raw material 1,10-Phenanthroline monohydrate is commercially available.
See Example 2 for detailed conditions of each reaction.
Also, for example, instead of the vinyl group of (3) in the above formula, if a ring structure containing a Z group in the general formula (1) or (4) is introduced and subjected to ring-opening polymerization, it has a Z group A polymer having a structural unit of the formula (1) or (4) can be produced.

一般式(2)で示される構造単位の例である式(31)で示されるポリマーの調製方法を例として以下に示す。
5,6-ジブロモ-1,10-フェナントロリンを1,10-フェナントロリンとBr2を原料として既報の手法[(a) M. Feng, K. S. Chan, Organometallics, 21, 2743 (2002). (b) B. Chesneau, A. Passelande, P. Hudhomme, Org. Lett., 11, 649-652 (2009).]を改良して合成することができる。原料である1,10-フェナントロリンは市販品を入手可能である。
この反応では目的化合物である5,6-ジブロモ-1,10-フェナントロリンに加えて、5-ブロモ-1,10-フェナントロリンおよび1,10-フェナントロリン-5,6-ジオンを副成することがある。これら副生物はカラムクロマトグラフィー等で除去することができる。
1,10-フェナントロリンとn-BuLiの反応により2,9-ジブチル-1,10-フェナントロリンを得る。2,9-ジブチル-1,10-フェナントロリンとBr2との反応により5,6-ジブロモ-2,9-ジブチル-1,10-フェナントロリンを合成できる。いずれの化合物もカラムクロマトグラフィー及び再結晶により精製し、NMRスペクトルおよび質量分析により同定できる。
A method for preparing the polymer represented by the formula (31), which is an example of the structural unit represented by the general formula (2), is shown below as an example.
5,6-dibromo-1,10-phenanthroline as a raw material from 1,10-phenanthroline and Br 2 [(a) M. Feng, KS Chan, Organometallics, 21, 2743 (2002). (B) B Chesneau, A. Passelande, P. Hudhomme, Org. Lett., 11, 649-652 (2009).] Can be synthesized. The raw material 1,10-phenanthroline is commercially available.
This reaction may by-produce 5-bromo-1,10-phenanthroline and 1,10-phenanthroline-5,6-dione in addition to the target compound 5,6-dibromo-1,10-phenanthroline . These by-products can be removed by column chromatography or the like.
Reaction of 1,10-phenanthroline and n-BuLi gives 2,9-dibutyl-1,10-phenanthroline. 2,9 by reaction with dibutyl-1,10-phenanthroline and Br 2 can be synthesized 5,6-dibromo-2,9-dibutyl-1,10-phenanthroline. Any compound can be purified by column chromatography and recrystallization and identified by NMR spectrum and mass spectrometry.

重合反応はジメチルホルムアミド(DMF)中窒素雰囲気下でNi(シクロオクタジエン)2 (Ni(COD)2)を触媒としてシクロオクタジエンおよび2,2’-ビピリジル(BPy)の存在下で行うことができる。5,6-ジブロモ-1,10-フェナントロリンの重合によりポリ(1,10-フェナントロリン-5,6-ジイル)(Poly(Phen))を、5,6-ジブロモ-2,9-ジブチル-1,10-フェナントロリンの重合によりポリ(5,6-ジブロモ-2,9-ジブチル-1,10-フェナントロリン-5,6-ジイル)(Poly(DBPhen))を得ることができる(下図)。The polymerization reaction can be carried out in the presence of cyclooctadiene and 2,2'-bipyridyl (BPy) using Ni (cyclooctadiene) 2 (Ni (COD) 2 ) as a catalyst in dimethylformamide (DMF) under a nitrogen atmosphere. it can. Polymerization of 5,6-dibromo-1,10-phenanthroline yields poly (1,10-phenanthroline-5,6-diyl) (Poly (Phen)) to 5,6-dibromo-2,9-dibutyl-1, Poly (5,6-dibromo-2,9-dibutyl-1,10-phenanthroline-5,6-diyl) (Poly (DBPhen)) can be obtained by polymerization of 10-phenanthroline (lower figure).

また、例えば両末端にハロゲン基を有するZ基を有する化合物と重縮合反応すれば、一般式(2)のZ基を有するポリマーを製造することができる。この場合、好ましいZ基はアルキレン基である。   For example, if a polycondensation reaction is performed with a compound having a Z group having a halogen group at both ends, a polymer having a Z group of the general formula (2) can be produced. In this case, the preferred Z group is an alkylene group.

<錯体ポリマーの製造方法>
遷移金属を含有する錯体ポリマーは、遷移金属を含有しない、フリーのポリマーと遷移金属化合物とを所定の条件下で混合反応させることで調製することができる。遷移金属化合物は、遷移金属の種類に応じて適宜選択することができる。遷移金属がレニウムの場合、レニウム化合物としては、既存のレニウム錯体を挙げることができ、例えば、Re(CO)5Cl、などを例示できる。錯体ポリマーの調製は、フリーのポリマー中の構造単位がスタッキングを形成した状態で行うことが適当であり、ポリマー中の構造単位がスタッキングを形成できる有機溶媒中で実施することが好ましい。有機溶媒としては、例えば、N,N−ジメチルホルムアミド、アセトニトリル、メタノール、エタノール、THF、クロロホルム、ジオキシサン、ジメチルスルホシド、ジメチルアセトアミドなどを挙げることができる。
錯体ポリマーの調製のための反応温度は特に制限はないが、例えば、0℃から溶媒の沸点の範囲である。反応時間は、錯体の形成を適宜考慮して決定でき、例えば、1時間〜24時間であることができる。
<Method for producing complex polymer>
A complex polymer containing a transition metal can be prepared by mixing and reacting a free polymer not containing a transition metal and a transition metal compound under predetermined conditions. The transition metal compound can be appropriately selected according to the type of transition metal. When the transition metal is rhenium, examples of the rhenium compound include existing rhenium complexes, such as Re (CO) 5 Cl. The preparation of the complex polymer is suitably performed in a state where the structural units in the free polymer form stacking, and is preferably performed in an organic solvent in which the structural units in the polymer can form stacking. Examples of the organic solvent include N, N-dimethylformamide, acetonitrile, methanol, ethanol, THF, chloroform, dioxysan, dimethylsulfoside, dimethylacetamide and the like.
The reaction temperature for preparing the complex polymer is not particularly limited, and is, for example, in the range of 0 ° C. to the boiling point of the solvent. The reaction time can be determined by appropriately considering the formation of the complex, and can be, for example, 1 hour to 24 hours.

<二酸化炭素光還元用触媒>
本発明の錯体ポリマーは、二酸化炭素光還元用触媒として用いることができる。本発明の錯体ポリマーは、触媒作用を有し、二酸化炭素を還元して、一酸化炭素およびギ酸を生成することができ、これらの生成物に加えて、C-C結合を有する炭素数2以上の化合物である、例えばシュウ酸、酢酸、などの有機酸、アルデヒド、アルコール、さらに、炭化水素を製造することができる。
<Catalyst for photoreduction of carbon dioxide>
The complex polymer of the present invention can be used as a catalyst for photoreduction of carbon dioxide. The complex polymer of the present invention has a catalytic action and can reduce carbon dioxide to produce carbon monoxide and formic acid. In addition to these products, a compound having 2 or more carbon atoms having a CC bond For example, organic acids such as oxalic acid and acetic acid, aldehydes, alcohols, and hydrocarbons can be produced.

<二酸化炭素の還元生成物の製造方法>
本発明は、二酸化炭素の還元生成物の製造方法を包含し、この方法は、本発明の錯体ポリマーと二酸化炭素とを、水素提供化合物の存在下に光照射下で接触させて、二酸化炭素の還元生成物を得ることを含む。照射される光は、錯体ポリマーの吸収波長によるが、例えば、紫外線および可視光線を利用することができる。本発明の錯体ポリマーにおいては、Reとポリマーとが錯形成することで、Reの吸収帯が長波長化する。そのため、可視光でも触媒反応が起きるようになる。ここで、水素提供化合物とは、二酸化炭素の還元に利用させる水素提供源であるが、水、有機溶媒はもちろん、これにトリエタノールアミン、トリエチルアミン等のアミン等の水素提供源を加えたものであることもできる。
<Method for producing reduction product of carbon dioxide>
The present invention includes a method for producing a reduction product of carbon dioxide, which comprises contacting the complex polymer of the present invention with carbon dioxide under light irradiation in the presence of a hydrogen-providing compound, and Obtaining a reduction product. Although the light to be irradiated depends on the absorption wavelength of the complex polymer, for example, ultraviolet rays and visible rays can be used. In the complex polymer of the present invention, Re and the polymer form a complex, whereby the Re absorption band becomes longer. Therefore, a catalytic reaction occurs even with visible light. Here, the hydrogen-providing compound is a hydrogen-providing source to be used for the reduction of carbon dioxide, but it is not only water and an organic solvent but also a hydrogen-providing source such as an amine such as triethanolamine or triethylamine. There can also be.

本発明の錯体ポリマーと二酸化炭素とは、バッチ式また連続式の反応容器内で接触させることができ、反応容器内の錯体ポリマーに光を照射しつつ、二酸化炭素を接触させることで、二酸化炭素の還元生成物を生成させる。二酸化炭素は常圧(大気圧)であっても、減圧下又は加圧下であることもできる。二酸化炭素は、純品でもよく、また、これにヘリウム、窒素などの不活性ガスを含んで使用してもよい。錯体ポリマーと二酸化炭素との接触時間は、錯体ポリマーの触媒能と二酸化炭素の量(連続式の場合には流通量)を考慮して適宜決定できる。本発明の製造方法における二酸化炭素の還元生成物は、例えば、一酸化炭素およびギ酸である他、これらの生成物に加えて、例えばシュウ酸、酢酸、などの有機酸、アルデヒド、アルコール、さらに、炭化水素を製造することができる。   The complex polymer of the present invention and carbon dioxide can be brought into contact in a batch-type or continuous reaction vessel, and carbon dioxide is brought into contact with the complex polymer in the reaction vessel while irradiating light. To produce a reduction product of Carbon dioxide can be under normal pressure (atmospheric pressure) or under reduced pressure or under pressure. Carbon dioxide may be a pure product or may contain an inert gas such as helium or nitrogen. The contact time between the complex polymer and carbon dioxide can be appropriately determined in consideration of the catalytic ability of the complex polymer and the amount of carbon dioxide (circulation amount in the case of a continuous type). The reduction product of carbon dioxide in the production method of the present invention is, for example, carbon monoxide and formic acid, in addition to these products, for example, organic acids such as oxalic acid and acetic acid, aldehydes, alcohols, Hydrocarbons can be produced.

以下、本発明を実施例に基づいて更に詳細に説明する。但し、実施例は本発明の例示であって、本発明は実施例に限定される意図ではない。   Hereinafter, the present invention will be described in more detail based on examples. However, the examples are illustrative of the present invention, and the present invention is not intended to be limited to the examples.

実施例1
[スタック型Poly(BPE)の合成]
ビス(2-ピリジル)ケトン(BPy-ketone)から重合用モノマーであるビス(2-ピリジル)エチレン(BPE)を合成した。スキーム1に示すように、BPy-ketoneをWittig試薬と反応させることによりケトン部分を重合性のメチレン基に変換することができた。BPEの化学構造はNMRと質量分析により確認した。
Example 1
[Synthesis of Stacked Poly (BPE)]
Bis (2-pyridyl) ethylene (BPE), a monomer for polymerization, was synthesized from bis (2-pyridyl) ketone (BPy-ketone). As shown in Scheme 1, the ketone moiety could be converted to a polymerizable methylene group by reacting BPy-ketone with a Wittig reagent. The chemical structure of BPE was confirmed by NMR and mass spectrometry.

BPEの重合をラジカル、アニオン、カチオンの3種類の開始剤を用いて行い、ポリマーを得た(表1)。なかでもカチオン重合条件でより高い分子量を有する生成物が高いモノマー転換率で得られた(表1中run5-11)。次に、CF3CO2Hを開始剤に用いて得られた比較的分子量の高いポリマーの立体構造についての知見を得るため、UVスペクトルおよび1H NMRスペクトルを測定した。UV吸収スペクトルにおいてpoly(BPE)はモノマーモデルとして別途合成したビス(2-ピリジル)メタン(DPM)に対して著しい淡色効果および吸収端の長波長シフトを示した(図1左)。この結果からpoly(BPE)がπスタック型構造を有すること分かる。NMRスペクトルには芳香環シグナルの幅広化と低磁場側へのシフトが見られた。この結果からポリマー側鎖のピリジン環がH-会合的なface-to-faceのスタッキング構造を取っていることが分かる(図1右)。Polymerization of BPE was performed using three types of initiators: radical, anion, and cation (Table 1). In particular, a product having a higher molecular weight was obtained with high monomer conversion under the cationic polymerization conditions (run 5-11 in Table 1). Next, in order to obtain knowledge about the three-dimensional structure of a polymer having a relatively high molecular weight obtained using CF 3 CO 2 H as an initiator, UV spectrum and 1 H NMR spectrum were measured. In the UV absorption spectrum, poly (BPE) showed a remarkable light color effect and a long wavelength shift of the absorption edge with respect to bis (2-pyridyl) methane (DPM) synthesized separately as a monomer model (left in FIG. 1). This result shows that poly (BPE) has a π stack type structure. The NMR spectrum showed a broadening of the aromatic ring signal and a shift to the lower magnetic field side. From this result, it can be seen that the pyridine ring of the polymer side chain has an H-associative face-to-face stacking structure (right side of FIG. 1).

スキーム1.BPEの合成と重合
Scheme 1. Synthesis and polymerization of BPE

[ポリマー錯体の調製]
上記で調製した高分子配位子としてのπスタック型Poly(BPE)とClRe(CO)5をN,N-ジメチルホルムアミド溶液中あるいはアセトニトリル溶液中で混合することにより高分子錯体を調製した。生成物はN,N-ジメチルホルムアミドに良く溶け、アセトニトリルに概ね可溶であった。アセトニトリル中でのUVスペクトル測定よりビピリジル(bpy)-Re錯体について報告されている300-350nmの吸収帯(JACS, 1974, 96, 998)が観測され、この吸収体は配位子のみのスペクトルには見られないことから、ポリマーを構成するピリジル基とReの間で配位結合が生じていることが強く示唆される。加えて、次節に述べるCO2の光還元反応が進行することもRe-ピリジンの錯体形成を支持する。
[Preparation of polymer complex]
Polymer complexes were prepared by mixing π-stacked Poly (BPE) and ClRe (CO) 5 as polymer ligands prepared above in N, N-dimethylformamide solution or acetonitrile solution. The product was well soluble in N, N-dimethylformamide and was almost soluble in acetonitrile. The 300-350 nm absorption band (JACS, 1974, 96, 998) reported for bipyridyl (bpy) -Re complexes was observed from UV spectrum measurements in acetonitrile. Is not observed, which strongly suggests that a coordinate bond is formed between the pyridyl group constituting the polymer and Re. In addition, the progress of the photoreduction reaction of CO 2 described in the next section also supports the formation of a complex of Re-pyridine.

[ポリマー錯体によるCO2の光還元]
上記で調製したπスタック型Poly(BPE)-Re錯体を用いてCO2の光還元実験を行った。加えて、低分子系錯体でありこれまで最も広く研究されている触媒であるビピリジル(bpy)-Re錯体、および、Poly(BPE)-Re錯体に対応するモノマー単位モデルとしてのビス(2-ピリジル)ケトン(BPy-ketone)-Re錯体による反応も対照実験として検討した。反応は錯体と飽和CO2ガスを含むN,N-ジメチルホルムアミド溶液中で行い、光源には500WのHg-Xeランプを用いた([Re]/[Ligand] = 1/1 per residue, [Re] = 0.55 mM, room temp.)。
[Photoreduction of CO 2 by polymer complex]
CO 2 photoreduction experiments were performed using the π-stacked Poly (BPE) -Re complex prepared above. In addition, bipyridyl (bpy) -Re complex, which is a low molecular weight complex and the most widely studied catalyst to date, and bis (2-pyridyl) as a monomer unit model corresponding to Poly (BPE) -Re complex Reaction with ketone (BPy-ketone) -Re complex was also studied as a control experiment. The reaction was carried out in an N, N-dimethylformamide solution containing a complex and saturated CO 2 gas, and a 500 W Hg-Xe lamp was used as the light source ([Re] / [Ligand] = 1/1 per residue, [Re ] = 0.55 mM, room temp.).

24時間の反応の後、気相部分をGC(ガスクロマトグラフィー)により分析したところいずれの触媒を用いた場合にも成分の60〜80%以上がCOであることが明らかになった。これらの結果から、低分子系だけでなく本発明の錯体ポリマー(高分子触媒)も光還元触媒として有効であることが分かった。N,N-ジメチルホルムアミド中での反応の液相の成分を逆相HPLC(Phenomex Synergy 4 Hydro-RP 80Å型 C18カラム、リン酸酸性バッファー溶離液 (pH 〜2.9))で分析した。このHPLC条件によりシュウ酸、ギ酸、酢酸などの有機酸を完全に分離分析できる。   After the reaction for 24 hours, the gas phase portion was analyzed by GC (gas chromatography), and it was found that 60-80% or more of the components were CO in any of the catalysts. From these results, it was found that not only the low molecular weight system but also the complex polymer (polymer catalyst) of the present invention is effective as a photoreduction catalyst. The liquid phase components of the reaction in N, N-dimethylformamide were analyzed by reverse phase HPLC (Phenomex Synergy 4 Hydro-RP 80RP C18 column, phosphate acidic buffer eluent (pH ˜2.9)). Under these HPLC conditions, organic acids such as oxalic acid, formic acid and acetic acid can be completely separated and analyzed.

Poly(BPE)-Re錯体を用いて得られた生成物にはギ酸はほとんど含まれず、シュウ酸の溶出位置にピークが観測された(図2C)。bpy-Re錯体を用いて得られた生成物はこの位置にピークを示さなかった。また、シュウ酸の生成を、さらにイオンクロマトグラフィーで確認した(図3B)。   The product obtained using the Poly (BPE) -Re complex contained almost no formic acid, and a peak was observed at the elution position of oxalic acid (FIG. 2C). The product obtained using bpy-Re complex showed no peak at this position. Moreover, the production of oxalic acid was further confirmed by ion chromatography (FIG. 3B).

表2に光還元実験の条件と結果をまとめた。シュウ酸を製造することができた。触媒調製の際に熱アニーリング(thermal annealing、条件: ジメチルホルムアミド中80℃で12時間アニーリング)することにより還元効率を向上させることができた(Entry 1および2)。   Table 2 summarizes the conditions and results of the photoreduction experiment. Oxalic acid could be produced. Reduction efficiency could be improved by thermal annealing (conditions: annealing in dimethylformamide at 80 ° C. for 12 hours) during catalyst preparation (Entry 1 and 2).

以上、πスタック型高分子錯体がCO2の光還元触媒となることを初めて証明し、モノマー単位モデル系とは全く異なる生成物を与えることを初めて明らかにした。この系では構造は不明だが他にも複数の二酸化炭素の還元生成物が見られた。Thus, we have demonstrated for the first time that a π-stacked polymer complex is a photoreduction catalyst for CO 2 , and for the first time revealed that it gives a product that is completely different from the monomer unit model system. In this system, the structure was unknown, but several other reduction products of carbon dioxide were found.

実施例2
Example 2

(1)1,10-Phenanthroline-5,6-dione(1)の合成
1,10-Phenanthroline monohydrate (20.0 g, 0.101 mol)とKBr (14.3 g, 0.181 mol)に混酸(濃HNO3 72 ml, 濃H2SO4 144 mL)をゆっくり加え、3時間還流させた。反応溶液を氷(ca. 1 L) に少しずつ加えた後、水酸化カリウム水溶液 (4 M 550 mL)を用いて徐々に中和した(オレンジ色に懸濁した)。懸濁溶液をろ過し、クロロホルムで洗い目的物を得た。ろ液はクロロホルム (500 mL×3回)で抽出し、硫酸ナトリウムで乾燥、ろ過後濃縮し目的物 (17.8 g, 85 %)を得た。
1H NMR (400 MHz, CDCl3, TMS) : δ (ppm) : 9.14 (dd, J = 2.06 Hz, 2H); 8.52 (d, J = 3.21 Hz, 2H) ; 7.61 (dd, J = 4.10 Hz, 2H)
Lit. : J. F. Zhao et al., Tetrahedron, 67, 2011, 1977
(1) Synthesis of 1,10-Phenanthroline-5,6-dione (1)
A mixed acid (concentrated HNO 3 72 ml, concentrated H 2 SO 4 144 mL) was slowly added to 1,10-Phenanthroline monohydrate (20.0 g, 0.101 mol) and KBr (14.3 g, 0.181 mol), and the mixture was refluxed for 3 hours. The reaction solution was added little by little to ice (ca. 1 L), and then gradually neutralized with an aqueous potassium hydroxide solution (4 M 550 mL) (suspended in orange). The suspension was filtered and washed with chloroform to obtain the desired product. The filtrate was extracted with chloroform (500 mL × 3 times), dried over sodium sulfate, filtered and concentrated to obtain the desired product (17.8 g, 85%).
1 H NMR (400 MHz, CDCl 3 , TMS): δ (ppm): 9.14 (dd, J = 2.06 Hz, 2H); 8.52 (d, J = 3.21 Hz, 2H); 7.61 (dd, J = 4.10 Hz , 2H)
Lit .: JF Zhao et al., Tetrahedron, 67, 2011, 1977

(2)4,5-Diazafluorene-9-one(2)の合成
1,10-Phenanthroline-5,6-dione (17.8 g, 84.8 mmol)をNaOH aq (5.0 L, 0.15 M)に溶解させ、反応溶液を穏やかに沸騰させ、水溶液が100 mL になるまで水を蒸発させた。析出した白色結晶をろ過後、再結晶 (メタノール/ヘキサン)し目的物 (10.1 g, 66 %)を得た。
1H NMR (400 MHz, CDCl3, TMS) : δ (ppm) : 8.81 (dd, J = 2.21 Hz, 2H); 8.01 (d, J = 3.03 Hz, 2H) ; 7.31 (dd, J = 4.20 Hz, 2H)
Lit. : George. E. I, G. F. Smith, J. Am. Chem. Soc., 72, 1950, 842
(2) Synthesis of 4,5-Diazafluorene-9-one (2)
Dissolve 1,10-Phenanthroline-5,6-dione (17.8 g, 84.8 mmol) in NaOH aq (5.0 L, 0.15 M), gently boil the reaction solution, evaporate the water until the aqueous solution is 100 mL I let you. The precipitated white crystals were filtered and recrystallized (methanol / hexane) to obtain the desired product (10.1 g, 66%).
1 H NMR (400 MHz, CDCl 3 , TMS): δ (ppm): 8.81 (dd, J = 2.21 Hz, 2H); 8.01 (d, J = 3.03 Hz, 2H); 7.31 (dd, J = 4.20 Hz , 2H)
Lit .: George. E. I, GF Smith, J. Am. Chem. Soc., 72, 1950, 842

(3)4,5-Diazafluorene(3)の合成
4,5-Diazafluorene-9-one (10.1 g, 55.5 mmol)とKOH (31.0 g, 55.6 mmol)をEthylene glycol (148 mL)に溶解させ、Hydrazine monohydrate (16.2 mL)を加え150 ℃で1.5時間撹拌後、180 ℃で5時間撹拌し水酸化カリウム水溶液 (1 L, 0.1 M)を加えた。そして、クロロホルム (500 mL×3回)で抽出し、硫酸ナトリウムで乾燥、ろ過後濃縮し黒色固体を得た。シリカゲルクロマトグラフィー(酢酸エチル(トリエチルアミン 3 % v/v))により精製し、再結晶後(メタノール)、目的物 (3.73g, 40 %)を得た。
1H NMR (400 MHz, CDCl3, TMS) : δ (ppm) : 8.75 (d, J = 4.87 Hz, 2H); 7.89 (d, J = 7.61 Hz, 2H) ; 7.31 (dd, J = 4.13 Hz, 2H) ; 3.89 (s, 2H)
図4参照
(3) Synthesis of 4,5-Diazafluorene (3)
Dissolve 4,5-Diazafluorene-9-one (10.1 g, 55.5 mmol) and KOH (31.0 g, 55.6 mmol) in Ethylene glycol (148 mL), add Hydrogen monohydrate (16.2 mL), and stir at 150 ° C for 1.5 hours Thereafter, the mixture was stirred at 180 ° C. for 5 hours, and an aqueous potassium hydroxide solution (1 L, 0.1 M) was added. Then, the mixture was extracted with chloroform (500 mL × 3 times), dried over sodium sulfate, filtered and concentrated to obtain a black solid. Purification by silica gel chromatography (ethyl acetate (triethylamine 3% v / v)) and recrystallization (methanol) gave the desired product (3.73 g, 40%).
1 H NMR (400 MHz, CDCl 3 , TMS): δ (ppm): 8.75 (d, J = 4.87 Hz, 2H); 7.89 (d, J = 7.61 Hz, 2H); 7.31 (dd, J = 4.13 Hz , 2H); 3.89 (s, 2H)
See Figure 4

(4)Poly(4,5-Diazadibenzofuluvene) (poly(DADBF))(4)の合成
(i)ジヨードメタンを用いた方法(Table3. Run1)
4,5-Diazafluorene (150 mg, 0.892 mmol)をTHF (6.0 mL) に溶解させ、凍結脱気法によって脱気し反応系内を窒素置換した。反応溶液を0 ℃に冷却したままt-BuOK (200 mg, 1.78 mmol)を加え(濃赤紫色溶液)、30分間撹拌後にCH2I2 (0.08 mL, 1.0 mmol)を加え20分間撹拌した(あずき色に徐々に変化)。そして溶媒を留去し得た粗生成物に再沈殿 (良溶媒:メタノール 3 mL、貧溶媒:アセトン 300 mL)し、紫色のアセトン不溶部 (139 mg, 0.77 mmol)としてポリマーA を得た。Mn = 242 (GPC : DMF including LiCl 30mM)
(4) Synthesis of Poly (4,5-Diazadibenzofuluvene) (poly (DADBF)) (4)
(i) Method using diiodomethane (Table3. Run1)
4,5-Diazafluorene (150 mg, 0.892 mmol) was dissolved in THF (6.0 mL), degassed by freeze degassing, and the inside of the reaction system was purged with nitrogen. While the reaction solution was cooled to 0 ° C., t-BuOK (200 mg, 1.78 mmol) was added (dark red purple solution), and after stirring for 30 minutes, CH 2 I 2 (0.08 mL, 1.0 mmol) was added and stirred for 20 minutes ( Gradually change to maroon color). The crude product obtained by distilling off the solvent was reprecipitated (good solvent: 3 mL of methanol, poor solvent: 300 mL of acetone) to obtain polymer A as a purple acetone insoluble part (139 mg, 0.77 mmol). Mn = 242 (GPC: DMF including LiCl 30mM)

(ii)パラホルムアルデヒドを用いた方法(Table3. Run3)
4,5-Diazafluorene (50.0 mg, 0.297 mmol)をTHF (3.0 mL) に溶解させ、凍結脱気法によって脱気し反応系内を窒素置換した。0 ℃でt-BuOK (68.9 mg, 0.614 mmol)を加え(濃赤紫色溶液)、室温に戻し30分間撹拌後に(CH2O) (17.8 mg, 0.594 mmol)を加え50分間撹拌した。そして溶媒を留去し得た粗生成物に再沈殿 (良溶媒:メタノール 4 mL、貧溶媒:アセトン 50 mL) し、アセトン不溶部 (27.1 mg, 0.150 mmol)としてポリマーBを得た。
(ii) Method using paraformaldehyde (Table3. Run3)
4,5-Diazafluorene (50.0 mg, 0.297 mmol) was dissolved in THF (3.0 mL), degassed by freeze degassing, and the inside of the reaction system was purged with nitrogen. T-BuOK (68.9 mg, 0.614 mmol) was added at 0 ° C. (dark red purple solution), the mixture was returned to room temperature, stirred for 30 minutes, (CH 2 O) (17.8 mg, 0.594 mmol) was added, and the mixture was stirred for 50 minutes. The crude product obtained by distilling off the solvent was reprecipitated (good solvent: methanol 4 mL, poor solvent: acetone 50 mL), and polymer B was obtained as an acetone insoluble part (27.1 mg, 0.150 mmol).

(iii) Wittg試薬を用いた方法(Table3. Run4)
4,5-Diazafluorene-9-one(2) (300 mg, 1.65 mmol)とWittg試薬 (591 mg, 1.65 mmol)を入れ、DMF (3.0 mL)に溶解させた。溶液を0℃に冷却し、MeONa(5 Mメタノール溶液) (0.39 mL, 2.0 mmol)を2分間かけて滴下した。0℃で24時間撹拌後、反応溶液を脱気した水 (30 mL)に滴下し、生じた沈殿を窒素下でろ過した。ろ液は、クロロホルム (75 mL)で窒素下抽出を行い、有機層と水層を60℃の湯浴中で濃縮し、粗生成物1と2を得た。沈殿、粗生成物1、粗生成物2について、1H NMR [CD3OD with TMS, r.t., 400 MHz]を測定した。その結果どの相にも、4,5-diazadibenzofulveneの信号は確認できず、ホスフィンオキシドとポリマーの信号が確認できた。沈殿、粗生成物1、粗生成物2を一つにし、再沈殿を行った(アセトン : 300 mL,メタノール : 4 mL)。アセトン不溶部として黄白色固体(87 %)、アセトン可溶部として黄色オイルを得た。

(iii) Method using Wittg reagent (Table3. Run4)
4,5-Diazafluorene-9-one (2) (300 mg, 1.65 mmol) and Wittg reagent (591 mg, 1.65 mmol) were added and dissolved in DMF (3.0 mL). The solution was cooled to 0 ° C. and MeONa (5 M methanol solution) (0.39 mL, 2.0 mmol) was added dropwise over 2 minutes. After stirring at 0 ° C. for 24 hours, the reaction solution was added dropwise to degassed water (30 mL), and the resulting precipitate was filtered under nitrogen. The filtrate was extracted with chloroform (75 mL) under nitrogen, and the organic layer and aqueous layer were concentrated in a 60 ° C. hot water bath to obtain crude products 1 and 2. 1 H NMR [CD 3 OD with TMS, rt, 400 MHz] was measured for the precipitate, crude product 1 and crude product 2. As a result, no signal of 4,5-diazadibenzofulvene could be confirmed in any phase, and signals of phosphine oxide and polymer could be confirmed. Precipitation, crude product 1 and crude product 2 were combined into one and re-precipitated (acetone: 300 mL, methanol: 4 mL). A yellowish white solid (87%) was obtained as the acetone insoluble part, and a yellow oil was obtained as the acetone soluble part.

ポリマーAの立体構造特定
合成したポリマーAは、UV吸光測定(図6)からπスタック型高分子であることがわかった。尚、Run2〜4のポリマーについても、同様のUV吸光スペクトルが得られ、πスタック型高分子であることを確認した。
Identification of three-dimensional structure of polymer A Synthesized polymer A was found to be a π-stacked polymer from UV absorption measurement (FIG. 6). In addition, the same UV absorption spectrum was obtained for the polymers of Run 2 to 4, and it was confirmed that the polymers were π stack type polymers.

2D NMR (HMQC, HMBC)測定を行った。HMQC測定(図7)から、ピリジン環部位の水素は反応していないということがわかり、1H NMRにおける2.5〜4.0 ppmのピーク群が主鎖のものであることが示唆された。2D NMR (HMQC, HMBC) measurement was performed. From the HMQC measurement (FIG. 7), it was found that hydrogen at the pyridine ring site did not react, suggesting that the peak group of 2.5 to 4.0 ppm in 1 H NMR was of the main chain.

主鎖のピークについて調べるためにHMBC測定を次に行った。HMBC測定(図8)から、主鎖のある炭素とその隣の水素との相関と、ジアザフルオレンの9位炭素と主鎖の水素との相関が確認できた。このことから、poly(DADBF)は、典型的なビニルポリマーであることがわかった。   HMBC measurements were then performed to check for main chain peaks. From the HMBC measurement (FIG. 8), it was confirmed that there was a correlation between the carbon in the main chain and the adjacent hydrogen, and a correlation between the 9th carbon of diazafluorene and the hydrogen in the main chain. From this, it was found that poly (DADBF) is a typical vinyl polymer.

(5)Rhenium-poly(DADBF)の合成
ポリマーA (10.8 mg, 60.0μmol)をDMF-d7 (0.6 mL)に溶解させ、Re(CO)5Cl (21.7 mg, 60.0μmol)を加え(DMF不溶)、1H NMR測定(図9右)により、レニウムが低分子のジアザフルオレンに配位すると、ピークが低磁場へシフトすることがわかった。この結果をもとに、poly(DADBF)とレニウムの配位実験の1H NMR測定(図9左)において、低磁場シフトが観測されたことから錯形成反応が進行したと判断した。
(5) Synthesis of Rhenium-poly (DADBF) Polymer A (10.8 mg, 60.0 μmol) was dissolved in DMF-d 7 (0.6 mL), and Re (CO) 5 Cl (21.7 mg, 60.0 μmol) was added (DMF Insoluble), 1 H NMR measurement (FIG. 9 right) shows that when rhenium is coordinated to low molecular diazafluorene, the peak shifts to a low magnetic field. Based on this result, it was judged that the complex formation reaction had progressed because a low magnetic field shift was observed in 1 H NMR measurement (left of FIG. 9) in the coordination experiment of poly (DADBF) and rhenium.

二酸化炭素還元反応
●装置
CERMAX Xe illuminator system, SHIMADZU GC-2014 , DIONEX ICS-1500, IonPac AS12A, DIONEX A550 Autosampler
Carbon dioxide reduction reaction
CERMAX Xe illuminator system, SHIMADZU GC-2014, DIONEX ICS-1500, IonPac AS12A, DIONEX A550 Autosampler

●実験詳細
1 cm2光学石英セルにRhenium-Poly(DADBF) (0.5 mM)のDMF/TEOA (5/1)溶液を3 mL 入れゴム付きスクリューキャップでふたをした。そして、二酸化炭素吹き込みを20分間以上行い、直後に光を照射した。6時間後、気相をガスクロマトグラフィー、液相をイオンクロマトグラフィーによって測定した。結果を表4に示す。二酸化炭素吹き込み及び光照射は室温で行った。
● Experiment details
3 mL of DMF / TEOA (5/1) solution of Rhenium-Poly (DADBF) (0.5 mM) was placed in a 1 cm 2 optical quartz cell, and the cap was covered with a screw cap with rubber. Then, carbon dioxide was blown for 20 minutes or more, and light was irradiated immediately after. After 6 hours, the gas phase was measured by gas chromatography and the liquid phase was measured by ion chromatography. The results are shown in Table 4. Carbon dioxide blowing and light irradiation were performed at room temperature.

●二酸化炭素還元反応まとめ
● Carbon dioxide reduction reaction summary

実施例3
Example 3

フェナントロリン無水物(anhydrous phenanthroline)溶液および Re(CO)5Cl in chloroform を反応管に充填した。反応は60℃で反応が完了するまで行った。結果を図10および表5に示す。A reaction tube was filled with an anhydrous phenanthroline solution and Re (CO) 5 Cl in chloroform. The reaction was performed at 60 ° C. until the reaction was completed. The results are shown in FIG.

2,9-ジブチル-1,10-フェナントロリン(2,9-dibutyl-1,10-phenanthroline)溶液およびRe(CO)5Cl in chloroform を反応管に充填した。反応は60℃で反応が完了するまで行った。結果を図11および表6に示す。尚、2,9-ジブチル-1,10-フェナントロリンは、1,10-フェナントロリンとn-BuLiの反応により合成した。A 2,9-dibutyl-1,10-phenanthroline (2,9-dibutyl-1,10-phenanthroline) solution and Re (CO) 5 Cl in chloroform were charged into a reaction tube. The reaction was performed at 60 ° C. until the reaction was completed. The results are shown in FIG. 2,9-Dibutyl-1,10-phenanthroline was synthesized by the reaction of 1,10-phenanthroline and n-BuLi.

(3)ポリマー合成
5,6-ジブロモ-1,10-フェナントロリンを1,10-フェナントロリンとBr2を原料として既報の手法[(a) M. Feng, K. S. Chan, Organometallics, 21, 2743 (2002). (b) B. Chesneau, A. Passelande, P. Hudhomme, Org. Lett., 11, 649-652 (2009).]を改良して合成した。原料である1,10-フェナントロリンは市販品を入手可能である。この反応では目的化合物である5,6-ジブロモ-1,10-フェナントロリンに加えて、5-ブロモ-1,10-フェナントロリンおよび1,10-フェナントロリン-5,6-ジオンを副成するが、これら副生物はカラムクロマトグラフィー等で除去した。生成物は、カラムクロマトグラフィー及び再結晶により精製し、NMRスペクトルおよび質量分析により、それぞれ目的生成物であることを同定した。
(3) Polymer synthesis
5,6-dibromo-1,10-phenanthroline as a raw material from 1,10-phenanthroline and Br 2 [(a) M. Feng, KS Chan, Organometallics, 21, 2743 (2002). (B) B Chesneau, A. Passelande, P. Hudhomme, Org. Lett., 11, 649-652 (2009).] The raw material 1,10-phenanthroline is commercially available. In this reaction, in addition to the target compound 5,6-dibromo-1,10-phenanthroline, 5-bromo-1,10-phenanthroline and 1,10-phenanthroline-5,6-dione are produced as by-products. By-products were removed by column chromatography or the like. The product was purified by column chromatography and recrystallization, and identified as the desired product by NMR spectrum and mass spectrometry, respectively.

1,10-フェナントロリンとn-BuLiの反応により2,9-ジブチル-1,10-フェナントロリンを得る。2,9-ジブチル-1,10-フェナントロリンとBr2との反応により5,6-ジブロモ-2,9-ジブチル-1,10-フェナントロリンを合成した。生成物は、カラムクロマトグラフィー及び再結晶により精製し、NMRスペクトルおよび質量分析により、それぞれ目的生成物であることを同定した。Reaction of 1,10-phenanthroline and n-BuLi gives 2,9-dibutyl-1,10-phenanthroline. 2,9 by reaction with dibutyl-1,10-phenanthroline and Br 2 was synthesized 5,6-dibromo-2,9-dibutyl-1,10-phenanthroline. The product was purified by column chromatography and recrystallization, and identified as the desired product by NMR spectrum and mass spectrometry, respectively.

重合反応はジメチルホルムアミド(DMF)中窒素雰囲気下でNi(シクロオクタジエン)2 (Ni(COD)2)を触媒としてシクロオクタジエンおよび2,2’-ビピリジル(BPy)の存在下で行った。重合条件は、以下のとおりである。
5,6-ジブロモ-1,10-フェナントロリンの重合によりポリ(1,10-フェナントロリン-5,6-ジイル)(Poly(Phen))を、5,6-ジブロモ-2,9-ジブチル-1,10-フェナントロリンの重合によりポリ(5,6-ジブロモ-2,9-ジブチル-1,10-フェナントロリン-5,6-ジイル)(Poly(DBPhen))を得た(下記反応スキーム参照)。
The polymerization reaction was carried out in the presence of cyclooctadiene and 2,2′-bipyridyl (BPy) using Ni (cyclooctadiene) 2 (Ni (COD) 2 ) as a catalyst in dimethylformamide (DMF) under a nitrogen atmosphere. The polymerization conditions are as follows.
Polymerization of 5,6-dibromo-1,10-phenanthroline yields poly (1,10-phenanthroline-5,6-diyl) (Poly (Phen)) to 5,6-dibromo-2,9-dibutyl-1, Polymerization of 10-phenanthroline gave poly (5,6-dibromo-2,9-dibutyl-1,10-phenanthroline-5,6-diyl) (Poly (DBPhen)) (see reaction scheme below).

Poly(DBPhen)は次のように合成した。Ni(COD)(420 mg, 1.5mmol)、COD(0.18 mL, 1.5 mmol)および2,2'-ビピリジル(236 mg, 1.5 mmol)をDMF(3 mL)に窒素雰囲気化で溶解し、この溶液を85℃で30min撹拌した後、DMF(9 mL)に溶解した5,6-ジブロモ-2,9-ジブチル-1,10-フェナントロリン(223 mg, 0.5 mmol)をシリンジでくわえた。混合溶液を85℃で24時間撹拌した。1 mLのH2Oを加えて反応を停止し、反応混合物を遠心分離してDMF不溶部とDMF可溶部に分別した。DMF可溶部からは溶媒を減圧溜去して固体を得た。DMF不溶の固体およびDMF可溶の固体を、トルエン(20mL)、KOHで酸性度を調製したエチレンジアミン四酢酸(EDTA)水溶液(pH 9)(20mL)、KOHで酸性度を調製したエチレンジアミン四酢酸(EDTA)水溶液(pH 5)(20mL)、KOH水溶液(2 mol/L)(20 mL)、水(20 mL)、および、ベンゼン(20 mL)を用いて、この順番で洗浄し、乾燥した。DMF不溶のポリマー25 mg (17%)およびDMF可溶のポリマー94 mg (65%)が得られた。DMF可溶のポリマーをスペクトル測定およびReとの錯形成に用いた。Poly (DBPhen) was synthesized as follows. Ni (COD) (420 mg, 1.5 mmol), COD (0.18 mL, 1.5 mmol) and 2,2'-bipyridyl (236 mg, 1.5 mmol) were dissolved in DMF (3 mL) under a nitrogen atmosphere. After stirring at 85 ° C. for 30 min, 5,6-dibromo-2,9-dibutyl-1,10-phenanthroline (223 mg, 0.5 mmol) dissolved in DMF (9 mL) was added with a syringe. The mixed solution was stirred at 85 ° C. for 24 hours. 1 mL of H 2 O was added to stop the reaction, and the reaction mixture was centrifuged to separate into a DMF insoluble part and a DMF soluble part. From the DMF soluble part, the solvent was distilled off under reduced pressure to obtain a solid. DMF-insoluble solid and DMF-soluble solid were mixed with toluene (20 mL), ethylenediaminetetraacetic acid (EDTA) aqueous solution (pH 9) (20 mL) adjusted to acidity with KOH, and ethylenediaminetetraacetic acid (pH 9) adjusted with KOH ( EDTA) aqueous solution (pH 5) (20 mL), KOH aqueous solution (2 mol / L) (20 mL), water (20 mL), and benzene (20 mL) were washed in this order and dried. 25 mg (17%) of DMF insoluble polymer and 94 mg (65%) of DMF soluble polymer were obtained. DMF soluble polymer was used for spectral measurements and complexation with Re.

Poly(DBPhen)溶液およびRe(CO)5Cl in chloroform を反応管に充填した。反応は60℃で反応が完了するまで行った。結果を図12〜14および表7に示す。A reaction tube was filled with Poly (DBPhen) solution and Re (CO) 5 Cl in chloroform. The reaction was performed at 60 ° C. until the reaction was completed. The results are shown in FIGS.

図15に、phenおよびRe錯体のUVスペクトル[DMF, Cell 2 mm, r.t.]、、並びに図16に、Poly(DBPhen) (135-2 DMF-Sol) およびRe錯体(147-2CHCl3-Insol). のUVスペクトル[DMF, Cell 2 mm, r.t.] を示す。
図15からは、吸収の長波長化にもとづいてphenに対するReの錯体形成が確認される。図15からは、吸収の長波長化にもとづいてDBPhenのポリマーに対するReの錯体形成が確認される。
FIG. 15 shows UV spectra of phen and Re complex [DMF, Cell 2 mm, rt], and FIG. 16 shows Poly (DBPhen) (135-2 DMF-Sol) and Re complex (147-2CHCl 3 -Insol). Shows the UV spectrum [DMF, Cell 2 mm, rt].
FIG. 15 confirms the formation of a complex of Re with respect to phen based on the longer wavelength of absorption. FIG. 15 confirms the formation of Re complex with DBPhen polymer based on the longer wavelength of absorption.

本発明は、二酸化炭素還元用触媒および二酸化炭素還元生成物の製造に関する分野に有用である。   The present invention is useful in the field relating to the production of carbon dioxide reduction catalysts and carbon dioxide reduction products.

Claims (15)

ポリマー鎖中に下記一般式(1)〜(3)のいずれかで表される構造単位を含むポリマーであって、かつ前記構造単位の少なくとも一部がスタッキングしたポリマー。
一般式(1)〜(3)中、X1及びX2は、独立に共有結合または(CH2m1であり、(CH2m1におけるm1は1〜3の整数であり、
Yは、無結合、共有結合または(CH2m2であり、(CH2m2におけるm2は1〜3の整数であり、
Zは共有結合または2価の基であり、
は、置換基を有することができる窒素原子(N)含有芳香族3〜8員環であり、
は、ポリマー鎖を示し、
一般式(2)において、Yが共有結合または(CH2m2である場合、C=C、X1、X2、2つのヘテロ環及びYは、共同して電子共鳴構造を形成してもよく、
一般式(3)において、R1及びR2は、独立に水素原子又は炭素数1〜6のアルキル基である。
A polymer comprising a structural unit represented by any one of the following general formulas (1) to (3) in a polymer chain, wherein at least a part of the structural unit is stacked.
In general formulas (1) to (3), X 1 and X 2 are independently a covalent bond or (CH 2 ) m1 , m1 in (CH 2 ) m1 is an integer of 1 to 3,
Y is no bond, a covalent bond, or (CH 2 ) m 2, m 2 in (CH 2 ) m 2 is an integer of 1 to 3,
Z is a covalent bond or a divalent group;
Is a nitrogen atom (N) -containing aromatic 3- to 8-membered ring that can have a substituent,
Indicates a polymer chain,
In the general formula (2), when Y is a covalent bond or (CH 2 ) m 2 , C═C, X 1 , X 2 , two heterocycles and Y may jointly form an electron resonance structure. Often,
In the general formula (3), R 1 and R 2 are independently a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
一般式(1)の構造単位が、下記の一般式(4)で表される、請求項1記載のポリマー。
式中、X1及びX2は、独立に共有結合または(CH2m1であり、(CH2m1におけるm1は1〜3の整数であり、
Yは、無結合、共有結合または(CH2m2であり、(CH2m2におけるm2は1〜3の整数であり、
Zは共有結合または2価の炭化水素基であり、
は、置換基を有することができる窒素原子(N)含有芳香族3〜8員環であり、
3及びR4は、独立に水素原子又は炭素数1〜6のアルキル基であり、
は、ポリマー鎖を示す。
The polymer according to claim 1, wherein the structural unit of the general formula (1) is represented by the following general formula (4).
In the formula, X 1 and X 2 are independently a covalent bond or (CH 2 ) m1 , m1 in (CH 2 ) m1 is an integer of 1 to 3,
Y is no bond, a covalent bond, or (CH 2 ) m 2, m 2 in (CH 2 ) m 2 is an integer of 1 to 3,
Z is a covalent bond or a divalent hydrocarbon group,
Is a nitrogen atom (N) -containing aromatic 3- to 8-membered ring that can have a substituent,
R 3 and R 4 are independently a hydrogen atom or an alkyl group having 1 to 6 carbon atoms,
Indicates a polymer chain.
ヘテロ環は、ピリジル環である請求項1又は2に記載のポリマー。 The polymer according to claim 1 or 2, wherein the heterocyclic ring is a pyridyl ring. 一般式(1)又は(4)の構造単位が、下記式(10)又は(20)で示される請求項1又は2に記載のポリマー。
ここで、Rは独立に水素原子又は置換基であり、
及び
は、共鳴環若しくは非共鳴環を表すか、又は破線部分は存在しなくてもよく、破線部分が存在しない場合は、Rはピリジン環に結合する。
The polymer according to claim 1 or 2, wherein the structural unit of the general formula (1) or (4) is represented by the following formula (10) or (20).
Here, R is independently a hydrogen atom or a substituent,
And represents a resonant ring or a non-resonant ring, or the broken line portion may not exist, and when the broken line portion does not exist, R is bonded to the pyridine ring.
一般式(1)又は(4)の構造単位が、下記式(11)又は(21)で示される請求項1又は2に記載のポリマー。
ここで、Rは独立に水素原子又は置換基である。
The polymer according to claim 1 or 2, wherein the structural unit of the general formula (1) or (4) is represented by the following formula (11) or (21).
Here, R is independently a hydrogen atom or a substituent.
一般式(2)の構造単位が、下記式(30)で示される請求項1に記載のポリマー。
ここで、Rは独立に水素原子又は置換基であり、
及び
は、共鳴環若しくは非共鳴環を表すか、又は破線部分は存在しなくてもよく、破線部分が存在しない場合は、Rはピリジン環に結合する。
The polymer according to claim 1, wherein the structural unit of the general formula (2) is represented by the following formula (30).
Here, R is independently a hydrogen atom or a substituent,
And represents a resonant ring or a non-resonant ring, or the broken line portion may not exist, and when the broken line portion does not exist, R is bonded to the pyridine ring.
一般式(2)の構造単位が、下記式(31)で示される請求項1に記載のポリマー。
ここで、Rは独立に水素原子又は置換基である。
The polymer according to claim 1, wherein the structural unit of the general formula (2) is represented by the following formula (31).
Here, R is independently a hydrogen atom or a substituent.
Zが2価の基の場合、2価の基が、炭素数1〜4のアルキレン基、オキソアルキレン基、チオアルキレン基又はアザアルキレン基である請求項1〜7のいずれか1項に記載のポリマー。 When Z is a divalent group, the divalent group is an alkylene group having 1 to 4 carbon atoms, an oxoalkylene group, a thioalkylene group, or an azaalkylene group. polymer. 数平均分子量が、500〜1,000,000である請求項1〜8のいずれか1項に記載のポリマー。 The number average molecular weight is 500 to 1,000,000, The polymer according to any one of claims 1 to 8. 請求項1〜9のいずれか1項に記載のポリマーが、遷移金属に配位していることを特徴とする錯体ポリマー。 A complex polymer, wherein the polymer according to any one of claims 1 to 9 is coordinated to a transition metal. 遷移金属がレニウム又はルテニウムである、請求項10に記載のポリマー。 11. A polymer according to claim 10, wherein the transition metal is rhenium or ruthenium. CO及びハロゲン分子からなる少なくとも1つを配位子としてさらに含有する請求項10又は11に記載の錯体ポリマー。 The complex polymer according to claim 10 or 11, further comprising at least one of CO and a halogen molecule as a ligand. 請求項10〜12のいずれか1項に記載の錯体ポリマーを含有する二酸化炭素光還元用触媒。 The catalyst for a carbon dioxide photoreduction containing the complex polymer of any one of Claims 10-12. 請求項10〜13のいずれか1項に記載の錯体ポリマーと二酸化炭素とを水素提供化合物の存在下に接触させて、二酸化炭素の還元生成物を得ることを含む、二酸化炭素の還元生成物の製造方法。 A reduction product of carbon dioxide comprising contacting the complex polymer according to any one of claims 10 to 13 with carbon dioxide in the presence of a hydrogen-providing compound to obtain a reduction product of carbon dioxide. Production method. 二酸化炭素の還元生成物が、炭素−炭素の共有結合を有する化合物を含むものである請求項14の二酸化炭素の還元生成物の製造方法。 The method for producing a reduction product of carbon dioxide according to claim 14, wherein the reduction product of carbon dioxide contains a compound having a carbon-carbon covalent bond.
JP2016516381A 2014-05-02 2015-04-28 π stack type polymer and complex polymer Active JP6712805B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014095545 2014-05-02
JP2014095545 2014-05-02
PCT/JP2015/062762 WO2015166935A1 (en) 2014-05-02 2015-04-28 π-STACKED POLYMER AND COMPLEX POLYMER

Publications (2)

Publication Number Publication Date
JPWO2015166935A1 true JPWO2015166935A1 (en) 2017-04-20
JP6712805B2 JP6712805B2 (en) 2020-06-24

Family

ID=54358662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016516381A Active JP6712805B2 (en) 2014-05-02 2015-04-28 π stack type polymer and complex polymer

Country Status (2)

Country Link
JP (1) JP6712805B2 (en)
WO (1) WO2015166935A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109755416B (en) * 2017-11-02 2019-12-20 广东阿格蕾雅光电材料有限公司 Organic electroluminescent device containing carbazole and pyridine construction unit material
WO2023163048A1 (en) * 2022-02-25 2023-08-31 日東電工株式会社 Immobilized catalyst, production method for immobilized catalyst, production method for formate, and production method for formic acid

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6465105A (en) * 1980-07-17 1989-03-10 Ciba Geigy Ag Polymer obtained from vinyl substituted 2, 2'-bipyridine compound and its use
JPH0381264A (en) * 1989-08-23 1991-04-05 Sankyo Seiki Mfg Co Ltd Phenanthroline derivative, bipyridyl derivative and electrochromic display element
JP2000508686A (en) * 1996-04-17 2000-07-11 ヘキスト・リサーチ・アンド・テクノロジー・ドイチュラント・ゲーエムベーハー・ウント・コンパニー・カーゲー Spiro atom containing polymers and their use as electroluminescent materials
JP2003332075A (en) * 2002-05-16 2003-11-21 Tokyo Inst Of Technol Light emitting element using polymeric material
JP2005174613A (en) * 2003-12-08 2005-06-30 Fuji Photo Film Co Ltd Organic electroluminescent element
JP2010064066A (en) * 2008-08-11 2010-03-25 Toyota Central R&D Labs Inc Photocatalyst and catalyst body for reduction using the same
JP2013006135A (en) * 2011-06-23 2013-01-10 Nippon Telegr & Teleph Corp <Ntt> Photocatalyst and method for manufacturing the same
JP2013017929A (en) * 2011-07-08 2013-01-31 Ihi Corp Carbon dioxide reduction method and reduction device
JP2013173130A (en) * 2012-02-27 2013-09-05 Kanagawa Univ Olefin dimerization catalyst, method of manufacturing cyclobutane compound, and dimerization execution method of olefin compound
JP2013180943A (en) * 2012-03-05 2013-09-12 Nippon Telegr & Teleph Corp <Ntt> Method for reducing carbon dioxide, photocatalyst for reduction, and method for producing photocatalyst for reduction

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6465105A (en) * 1980-07-17 1989-03-10 Ciba Geigy Ag Polymer obtained from vinyl substituted 2, 2'-bipyridine compound and its use
JPH0381264A (en) * 1989-08-23 1991-04-05 Sankyo Seiki Mfg Co Ltd Phenanthroline derivative, bipyridyl derivative and electrochromic display element
JP2000508686A (en) * 1996-04-17 2000-07-11 ヘキスト・リサーチ・アンド・テクノロジー・ドイチュラント・ゲーエムベーハー・ウント・コンパニー・カーゲー Spiro atom containing polymers and their use as electroluminescent materials
JP2003332075A (en) * 2002-05-16 2003-11-21 Tokyo Inst Of Technol Light emitting element using polymeric material
JP2005174613A (en) * 2003-12-08 2005-06-30 Fuji Photo Film Co Ltd Organic electroluminescent element
JP2010064066A (en) * 2008-08-11 2010-03-25 Toyota Central R&D Labs Inc Photocatalyst and catalyst body for reduction using the same
JP2013006135A (en) * 2011-06-23 2013-01-10 Nippon Telegr & Teleph Corp <Ntt> Photocatalyst and method for manufacturing the same
JP2013017929A (en) * 2011-07-08 2013-01-31 Ihi Corp Carbon dioxide reduction method and reduction device
JP2013173130A (en) * 2012-02-27 2013-09-05 Kanagawa Univ Olefin dimerization catalyst, method of manufacturing cyclobutane compound, and dimerization execution method of olefin compound
JP2013180943A (en) * 2012-03-05 2013-09-12 Nippon Telegr & Teleph Corp <Ntt> Method for reducing carbon dioxide, photocatalyst for reduction, and method for producing photocatalyst for reduction

Also Published As

Publication number Publication date
WO2015166935A1 (en) 2015-11-05
JP6712805B2 (en) 2020-06-24

Similar Documents

Publication Publication Date Title
JP5535217B2 (en) Method for producing ruthenium-indenylidenecarbene catalyst
Timokhin et al. Novel coordination polymers with (pyrazolato)-based tectons: Catalytic activity in the peroxidative oxidation of alcohols and cyclohexane
Kisanga et al. Synthesis of new proazaphosphatranes and their application in organic synthesis
CN111801297A (en) Process for producing ammonia, molybdenum complex compound, and benzimidazole compound
JPH0139426B2 (en)
JP6712805B2 (en) π stack type polymer and complex polymer
EP0647223A1 (en) Ion-sensitive bipyridine complexes
CN101001900B (en) Method for producing aromatic compound polymer
Ho et al. Synthesis and structures of titanaoxacyclobutanes
da Silva et al. Copper-based 2D-coordination polymer as catalyst for allylation of aldehydes
Padilla-Martínez et al. Synthesis and Reactivity of [Ir (C2H4) 2TpmMe2] PF6 (TpmMe2= Tris (3, 5-dimethylpyrazolyl) methane): Comparison with the Analogous TpMe2 Derivatives (TpMe2= Hydrotris (3, 5-dimethylpyrazolyl) borate)
Campos-Carrasco et al. Cationic palladium (II) complexes for CO/vinyl arene copolymerization in the presence of carbon dioxide
Trzeciak et al. Low-pressure carbonylation of benzyl bromide with palladium complexes modified with PNS (PNS= Ph2PCH2CH2C (O) NHC (CH3) 2CH2SO3Li) or P (OPh) 3. Structural identification of palladium-catalyst intermediate
JP2012518040A (en) Thermally switchable ruthenium initiator
WO2007046352A1 (en) Process for producing organic transition metal complex compound, metathesis catalyst produced by the process, metathesis polymer formed by ring opening polymerization with the same, and process for producing polymer with the same
Tanaka et al. Redox-active polyiron complexes with tetra (ethynylphenyl) ethene and [2, 2] paracyclophane spacers containing ethynylphenyl units: extension to higher dimensional molecular wire
US10017474B1 (en) Method of synthesizing (E)-1,2-di(pyridin-2-yl) ethene-1,2-diol
EP2025697B1 (en) Process to obtain dimers, trimers and up to polymers from pyridinemethanol derivatives compounds
JP2017132738A (en) Manufacturing method of bipyridyl compound
Gavrielatos et al. Palladium (II)/β-diketonate complexes containing the enolates of N-acetyl-3-acyltetramic acids: crystal structure of the Lewis base adduct,[Pd (py) 4](abta) 2
JP6670164B2 (en) Bisphosphine-bipyridine ligand-containing conjugated polymer and method for producing the same
Akita et al. Synthesis and Dehydrative Condensation of Monomeric Hydroxoruthenium Complexes with Hydrotris (3, 5-diisopropylpyrazolyl) borate Ligand, TpiPr2Ru (L2)− OH (L2= dppe, bipy)
Packheiser et al. Transition‐Metal Complexes Based on the 1, 3, 5‐Triethynyl Benzene Linking Unit
JP2013053253A (en) Dynamic covalent bond polymer and method for producing the same
Raciti et al. Palladium (II) and Platinum (II) Mononuclear Complexes and Tendency to Undergo Dehydrogenation of the Multiple N-Donor Ligand Di-(2-pyridyl) dihydropyrazine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190625

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200519

R150 Certificate of patent or registration of utility model

Ref document number: 6712805

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250