JPWO2015111207A1 - Fluid concentration measuring device - Google Patents

Fluid concentration measuring device Download PDF

Info

Publication number
JPWO2015111207A1
JPWO2015111207A1 JP2015558700A JP2015558700A JPWO2015111207A1 JP WO2015111207 A1 JPWO2015111207 A1 JP WO2015111207A1 JP 2015558700 A JP2015558700 A JP 2015558700A JP 2015558700 A JP2015558700 A JP 2015558700A JP WO2015111207 A1 JPWO2015111207 A1 JP WO2015111207A1
Authority
JP
Japan
Prior art keywords
light
fluid
concentration
light receiving
receiving elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015558700A
Other languages
Japanese (ja)
Other versions
JP6383369B2 (en
Inventor
佐野 嘉彦
嘉彦 佐野
証英 原田
証英 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nipro Corp
Harada Electronics Industry Co Ltd
Original Assignee
Nipro Corp
Harada Electronics Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nipro Corp, Harada Electronics Industry Co Ltd filed Critical Nipro Corp
Publication of JPWO2015111207A1 publication Critical patent/JPWO2015111207A1/en
Application granted granted Critical
Publication of JP6383369B2 publication Critical patent/JP6383369B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity

Abstract

【課題】受光素子の感度のばらつきや光軸のずれに起因する測定誤差をなくして、光透過性の管壁を持つ管路内を流れる流体の濃度を高精度に測定できるようにすることにある。【解決手段】光透過性の管壁を持つ管路内を流れる流体の濃度を測定する装置において、前記管路の表面上の少なくとも1箇所の光供給箇所から前記管路内に光を供給する光源と、前記光供給箇所に対しその管路の直径方向の反対側に位置するとともにその管路の延在方向に互いに等間隔に微細な間隔で直線状に並んだ互いに同一感度の多数の受光素子により、前記光供給箇所から前記管路内に供給されてその管路の壁内およびその管路内の流体内を通過して来た光を受光して、それら多数の受光素子がそれぞれ受光した光の強度を示す信号を出力するラインセンサと、前記ラインセンサの多数の受光素子がそれぞれ受光した光の強度およびそれら多数の受光素子の間隔からランベルト−ベールの法則に基づき流体の濃度を求めて出力する流体濃度出力手段と、を具えるものである。【選択図】図6An object of the present invention is to make it possible to measure the concentration of a fluid flowing in a pipe line having a light-transmitting pipe wall with high accuracy by eliminating measurement errors caused by variations in sensitivity of light receiving elements and optical axis deviations. is there. In an apparatus for measuring the concentration of a fluid flowing in a pipe line having a light transmissive pipe wall, light is supplied into the pipe line from at least one light supply point on the surface of the pipe line. A light source and a plurality of light-receiving elements that are located on the opposite side of the diameter direction of the conduit with respect to the light supply location and that are arranged in a straight line at fine intervals at equal intervals in the extending direction of the conduit The light received by the element from the light supply point into the pipe and passed through the wall of the pipe and the fluid in the pipe is received by each of the light receiving elements. The concentration of the fluid based on the Lambert-Beer law from the intensity of the light received by each of the light receiving elements of the line sensor and the intervals between the light receiving elements. Output Those comprising a, a density output means. [Selection] Figure 6

Description

この発明は、光透過性の管路内を流れる流体の濃度をランベルト−ベールの法則に基づいて測定する装置に関するものである。   The present invention relates to an apparatus for measuring the concentration of a fluid flowing in a light-transmitting pipe line based on the Lambert-Beer law.

従来の流体濃度測定装置としては、例えば特許文献1記載のものが知られており、ここにおける測定方法および測定装置は、半導体ウエハを洗浄処理する流体としての処理液の濃度を測定するもので、処理液供給配管の途中に測定体を複数設け、各測定体内に、処理液中を通過する光の光路長さを異ならせた光透過部を設け、処理液の性質に応じた光路長さの光透過部に光源からの光を供給し、その光透過部において処理液中を透過した光を光検出器で受光してその光の強度を調べ、その光の強度からランベルト−ベールの法則に基づいて処理液の濃度を求めている。   As a conventional fluid concentration measuring device, for example, the one described in Patent Document 1 is known, and the measuring method and measuring device here measure the concentration of a processing liquid as a fluid for cleaning a semiconductor wafer, A plurality of measuring bodies are provided in the middle of the processing liquid supply pipe, and a light transmitting part in which the optical path length of the light passing through the processing liquid is different is provided in each measuring body, and the optical path length corresponding to the properties of the processing liquid is provided. The light from the light source is supplied to the light transmission part, the light transmitted through the processing liquid in the light transmission part is received by the photodetector, the intensity of the light is examined, and the Lambert-Beer law is determined from the intensity of the light. Based on this, the concentration of the treatment liquid is obtained.

特開平10−325797号公報Japanese Patent Laid-Open No. 10-325797

しかしながら上記従来の装置を、樹脂チューブやガラス管等の光透過性の管路内を流れる血液や薬液等の流体の濃度測定に適用しようとすると、光透過性の管路を横切る光路に光を通過させる必要があるが、光路長さとなる管路の内径も管路の壁厚さも実測が困難であり、特に管路が変形可能な樹脂チューブの場合はその変形によって内径が変化する可能性があり、それゆえこのような場合の血液や薬液等の濃度の測定は極めて困難で、従来は実質上その測定ができなかった。   However, if the conventional device is applied to measure the concentration of a fluid such as blood or a chemical solution flowing in a light-transmitting conduit such as a resin tube or a glass tube, light is transmitted to the optical path crossing the light-transmitting conduit. Although it is necessary to pass through, it is difficult to actually measure the inner diameter of the pipe and the wall thickness of the pipe as the optical path length, and in particular, in the case of a resin tube that can deform the pipe, the inner diameter may change due to the deformation. Therefore, it is very difficult to measure the concentration of blood, chemicals, etc. in such a case, and it has been practically impossible to measure the concentration.

このため本願発明者は、図1に示すように、各々LED(発光ダイオード)あるいはLD(レーザーダイオード)等からなる3つの発光素子1からの光りを光透過性の管路としての樹脂チューブ2に互いに等間隔(受光間隔L)の3個所で横切らせ、3つの発光素子1と樹脂チューブ2の直径方向にそれぞれ対向するフォトダイオードやフォトトランジスタ等からなる3つの受光素子3でそれぞれ受光して各箇所での光の強度を求め、それら3つずつの発光素子1および受光素子3の複数種類の組合せにおいてそれらの間の幾何学的な光路LPの距離からそれぞれ光の強度と流体の濃度との関係を求め、それらを相互に関係付けることで、ランベルト−ベールの法則に基づく計算から樹脂チューブ2の内径や壁厚の影響を除去し、樹脂チューブ2内を流れる流体の濃度を求める流体濃度測定装置を先に提案している(PCT/JP2013/54664号国際出願).For this reason, as shown in FIG. 1, the inventor of the present application transmits light from three light emitting elements 1 each consisting of an LED (light emitting diode) or LD (laser diode) to a resin tube 2 as a light transmissive conduit. The light is received by three light receiving elements 3 including photodiodes, phototransistors, and the like that cross each other at three equal intervals (light receiving intervals L N ) and oppose each other in the diameter direction of the three light emitting elements 1 and the resin tube 2. The light intensity at each location is obtained, and the light intensity and fluid concentration are determined from the distance of the geometrical light path LP between the three light emitting elements 1 and the light receiving elements 3 in combination. By eliminating the influence of the inner diameter and wall thickness of the resin tube 2 from the calculation based on the Lambert-Beer law, It proposes a fluid density measuring device for determining the concentration of the fluid flowing through the over Bed 2 above (PCT / JP2013 / 54664 International Patent Application).

そしてこの流体濃度測定装置では、管路としての樹脂チューブ2が限定されてその内径や壁厚が一定であると考えられる場合に、図2(a)に示す、左端の光供給箇所の正面の受光素子およびすぐ隣の受光素子で受光する場合の光路LPや、図2(b)に示す、左端の光供給箇所の正面のすぐ隣の受光素子およびさらに隣の受光素子で受光する場合の光路LPを設定することで、1つの発光素子1と2つの受光素子3との組み合わせにより、樹脂チューブ2内を流れる流体の濃度をある程度の誤差の範囲内で求めることができる。   In this fluid concentration measuring device, when the resin tube 2 as a pipe line is limited and the inner diameter and wall thickness thereof are considered to be constant, the front side of the light supply point at the left end shown in FIG. The optical path LP when receiving light by the light receiving element and the immediately adjacent light receiving element, and the optical path when receiving light by the light receiving element immediately adjacent to the front of the left end light supply location shown in FIG. By setting LP, the concentration of the fluid flowing in the resin tube 2 can be determined within a certain range of error by the combination of one light emitting element 1 and two light receiving elements 3.

しかしながらこの先に提案した流体濃度測定装置では、3つの受光素子3の受光感度が互いに異なっている場合に測定誤差が生じ、それらを揃える調整も困難であり、また、発光素子1と受光素子3との光軸が管路の延在方向にずれていても測定誤差が生じることから、計算精度をさらに高めるには未だ改良の余地があることが判明した。   However, in the previously proposed fluid concentration measuring apparatus, measurement errors occur when the light receiving sensitivities of the three light receiving elements 3 are different from each other, and it is difficult to adjust them, and the light emitting element 1 and the light receiving element 3 However, it was found that there is still room for improvement in order to further improve the calculation accuracy because a measurement error occurs even if the optical axis of the lens is shifted in the direction in which the pipe extends.

一方、受光素子を有する電子部品としては近年、ラインセンサが知られており、ラインセンサでは、多数の受光素子が互いに等間隔に微細な間隔で直線状に並ぶとともに、それらの受光素子の感度が互いに同一になるように調整されている。   On the other hand, line sensors have been known in recent years as electronic components having light receiving elements. In a line sensor, a large number of light receiving elements are arranged in a straight line at equal intervals and the sensitivity of these light receiving elements is high. They are adjusted to be the same.

この発明は上述の点に鑑みて、ラインセンサを用いることで従来の流体濃度測定装置の課題を有利に解決するものであり、この発明の流体濃度測定装置は、光透過性の管壁を持つ管路内を流れる流体の濃度を測定する装置において、
前記管路の表面上の少なくとも1箇所の光供給箇所から前記管路内に光を供給する光源と、
前記光供給箇所に対しその管路の直径方向の反対側に位置するとともにその管路の延在方向に互いに等間隔に直線状に並んだ互いに同一感度の多数の受光素子により、前記光供給箇所から前記管路内に供給されてその管路の壁内およびその管路内の流体内を通過して来た光を受光して、それら多数の受光素子がそれぞれ受光した光の強度を示す信号を出力するラインセンサと、
前記ラインセンサの多数の受光素子がそれぞれ受光した光の強度およびそれら多数の受光素子の間隔からランベルト−ベールの法則に基づき流体の濃度を求めて出力する流体濃度出力手段と、
を具えることを特徴とするものである。
In view of the above points, the present invention advantageously solves the problems of the conventional fluid concentration measuring device by using a line sensor, and the fluid concentration measuring device of the present invention has a light-transmitting tube wall. In a device for measuring the concentration of a fluid flowing in a pipeline,
A light source that supplies light into the conduit from at least one light supply location on the surface of the conduit;
The light supply point is formed by a plurality of light receiving elements that are located on the opposite side of the diameter direction of the pipe line with respect to the light supply point and are linearly arranged at equal intervals in the extending direction of the pipe line. The light that is supplied into the pipe from the inside and that has passed through the wall of the pipe and the fluid in the pipe is received, and signals indicating the intensity of the light received by each of the light receiving elements. A line sensor that outputs
Fluid concentration output means for obtaining and outputting the concentration of the fluid based on the Lambert-Beer law from the intensity of light received by each of the light receiving elements of the line sensor and the interval between the light receiving elements;
It is characterized by comprising.

かかるこの発明の流体濃度測定装置にあっては、樹脂チューブ等の光透過性の管壁を持つ管路内を流れる流体の濃度を測定する際に、光源が、前記管路の表面上の少なくとも1箇所の光供給箇所から前記管路内に光を供給し、ラインセンサが、前記光供給箇所に対しその管路の直径方向の反対側に位置するとともにその管路の延在方向に互いに等間隔に並んだ互いに同一感度の(すなわち互いに同一感度に調整された)多数(例えば32個以上)の受光素子により、前記光供給箇所から前記管路内に供給されてその管路の壁内およびその管路内の流体内を通過して来た光を受光して、それら多数の受光素子がそれぞれ受光した光の強度を示す信号を出力し、流体濃度出力手段が、前記ラインセンサの多数の受光素子がそれぞれ受光した光の強度およびそれら多数の受光素子の間隔からランベルト−ベールの法則に基づき流体の濃度を求めて出力する。   In the fluid concentration measuring apparatus of the present invention, when measuring the concentration of the fluid flowing in the pipe line having a light-transmitting tube wall such as a resin tube, the light source is at least on the surface of the pipe line. Light is supplied into the pipeline from one light supply location, and the line sensors are located on the opposite side of the diameter direction of the pipeline with respect to the light supply location and are equal to each other in the extending direction of the pipeline. A large number (for example, 32 or more) of light receiving elements having the same sensitivity (that is, adjusted to the same sensitivity to each other) arranged at intervals are supplied from the light supply point into the pipe line, and within the wall of the pipe line and The light that has passed through the fluid in the pipe line is received, and a signal indicating the intensity of the light received by each of the light receiving elements is output. The intensity of light received by each light receiving element And a number of Lambertian from the interval of the light receiving element thereof - obtains and outputs the density of the fluid based on Beer's Law.

従って、この発明の流体濃度測定装置によれば、多数の受光素子の受光感度があらかじめ互いに実質的に同一にされていて、それらの感度を揃える調整の必要もなく、また、受光素子が管路の延在方向に多数並ぶため、それら多数の受光素子のうちの何れかと発光素子とで光軸が実質的に一致するので、受光感度のばらつきや光軸のずれに起因する測定誤差を実質的になくして、樹脂チューブ等の光透過性の管壁を持つ管路内を流れる血液や薬液等の流体の濃度を高精度に測定することができる。   Therefore, according to the fluid concentration measuring apparatus of the present invention, the light receiving sensitivities of a large number of light receiving elements are substantially the same as each other in advance, and it is not necessary to make adjustments to align the sensitivities. Since the optical axis of the light emitting element substantially coincides with any one of the many light receiving elements, the measurement error due to variations in light receiving sensitivity or optical axis deviation is substantially reduced. However, it is possible to measure the concentration of fluid such as blood and chemicals flowing through a pipe line having a light transmissive tube wall such as a resin tube with high accuracy.

なお、この発明の流体濃度測定装置においては、前記光源は、前記管路の表面上の複数箇所の光供給箇所から前記管路内に光を供給し、前記流体濃度出力手段は、それら複数の光供給箇所およびそれらと光軸が一致する受光素子の幾何学的位置関係から光の強度と流体の濃度との関係を相互に関係付けることで、ランベルト−ベールの法則に基づき管路内を流れる流体の濃度を求めるものとしてもよく、このようにすれば、ランベルト−ベールの法則に基づく計算から管路の内径や壁厚の影響を除去し、管路内を流れる流体の濃度を求めることができる。   In the fluid concentration measuring apparatus according to the present invention, the light source supplies light into the conduit from a plurality of light supply locations on the surface of the conduit, and the fluid concentration output means includes the plurality of fluid concentration output means. By correlating the relationship between the light intensity and the fluid concentration based on the geometric position of the light receiving element and the light receiving element whose optical axis coincides with the light supply location, the light flows in the pipeline based on the Lambert-Beer law. The concentration of the fluid may be obtained, and in this way, the influence of the inner diameter and wall thickness of the pipeline is removed from the calculation based on the Lambert-Beer law, and the concentration of the fluid flowing in the pipeline is obtained. it can.

また、この発明の流体濃度測定装置においては、前記流体濃度出力手段は、前記多数の受光素子のうち受光した光の強度が最も高いものを前記光供給箇所と光軸が一致する受光素子として、ランベルト−ベールの法則に基づき管路内を流れる流体の濃度を求めるものとしてもよく、このようにすれば、ランベルト−ベールの法則に基づく計算から光軸のずれによる誤差を実質的に除去して、管路内を流れる流体の濃度を高精度に求めることができる。   Further, in the fluid concentration measuring apparatus of the present invention, the fluid concentration output means uses the light receiving element having the highest received light intensity among the plurality of light receiving elements as a light receiving element whose optical axis coincides with the light supply location. The concentration of the fluid flowing in the pipe line may be obtained based on the Lambert-Beer law. In this way, the error due to the deviation of the optical axis is substantially eliminated from the calculation based on the Lambert-Beer law. The concentration of the fluid flowing in the pipe line can be obtained with high accuracy.

さらに、この発明の流体濃度測定装置においては、前記光源は、前記管路の表面上の複数箇所の光供給箇所から互いに波長の異なる光を前記管路内に供給し、前記流体濃度出力手段は、それら複数の光供給箇所およびそれらと光軸が一致する受光素子の幾何学的位置関係から前記各波長の光の強度と流体の濃度との関係を相互に関連付けることで、ランベルト−ベールの法則に基づき管路内を流れる流体の濃度を求めるものとしてもよく、このようにすれば、互いに波長の異なる複数種類の光を用いてランベルト−ベールの法則に基づく計算から管路内を流れる複数種類の流体の濃度を求めることができる。   Furthermore, in the fluid concentration measuring apparatus according to the present invention, the light source supplies light having different wavelengths from the plurality of light supply locations on the surface of the conduit into the conduit, and the fluid concentration output means includes: The Lambert-Beer law is obtained by correlating the relationship between the light intensity of each wavelength and the concentration of the fluid from the geometrical positional relationship between the plurality of light supply locations and the light receiving element whose optical axis coincides with the plurality of light supply locations. It is also possible to obtain the concentration of fluid flowing in the pipeline based on the above, and in this way, using the multiple types of light having different wavelengths, the multiple types flowing in the pipeline from the calculation based on the Lambert-Beer law The concentration of the fluid can be determined.

そして、この発明の流体濃度の測定装置においては、前記流体濃度出力手段は、前記ラインセンサの所定範囲の前記多数の受光素子が受光した光の強度の分布パターンまたはその分布パターンが囲む領域の面積を、あらかじめ求めて記憶している光の強度の分布パターンまたはその分布パターンが囲む領域の面積と比較することで、流体の濃度を求めて出力するものでもよく、このような分布パターンを用いれば、多数の受光素子が受光した光の強度から短時間で容易に流体の濃度を求めて出力することができる。   In the fluid concentration measuring apparatus according to the present invention, the fluid concentration output means includes a distribution pattern of light intensity received by the multiple light receiving elements in a predetermined range of the line sensor or an area of a region surrounded by the distribution pattern. May be obtained and output by comparing the light intensity distribution pattern obtained and stored in advance or the area of the region surrounded by the distribution pattern, and if such a distribution pattern is used, The fluid concentration can be easily obtained and output in a short time from the intensity of the light received by a large number of light receiving elements.

本発明者が先に提案した流体濃度測定装置の光路設定を模式的に示す説明図である。It is explanatory drawing which shows typically the optical path setting of the fluid concentration measuring apparatus which the inventor proposed previously. (a)は、上記流体濃度測定装置が左端の光供給箇所の正面の受光素子およびすぐ隣の受光素子で受光する場合の光路を示す説明図、(b)は、上記流体濃度測定装置が左端の光供給箇所の正面のすぐ隣の受光素子およびさらに隣の受光素子で受光する場合の光路を示す説明図である。(A) is explanatory drawing which shows the optical path in case the said fluid concentration measuring apparatus light-receives with the light receiving element of the front of the light supply location of a left end, and the light receiving element immediately adjacent to it, (b) is the left side of the said fluid concentration measuring apparatus. It is explanatory drawing which shows the optical path in the case of light-receiving with the light receiving element immediately adjacent to the front of the light supply location of this, and a further adjacent light receiving element. 本発明の流体濃度測定装置の一実施形態の原理を示す説明図である。It is explanatory drawing which shows the principle of one Embodiment of the fluid concentration measuring apparatus of this invention. 上記実施形態の流体濃度測定装置において1つの光供給箇所からラインセンサの多数の受光素子がそれぞれ受光した光の強度の分布パターン例を示す説明図である。It is explanatory drawing which shows the example of a distribution pattern of the intensity | strength of the light which many light receiving elements of the line sensor each received from one light supply location in the fluid concentration measuring apparatus of the said embodiment. 上記実施形態の流体濃度測定装置において2つの光供給箇所からラインセンサの多数の受光素子がそれぞれ受光した光の強度の分布パターン例を示す説明図である。It is explanatory drawing which shows the distribution pattern example of the intensity | strength of the light which the many light receiving elements of the line sensor each received from two light supply locations in the fluid concentration measuring apparatus of the said embodiment. 上記実施形態の流体濃度測定装置の一実施例を示す構成図である。It is a block diagram which shows one Example of the fluid concentration measuring apparatus of the said embodiment. 光の波長と動脈血の酸素化ヘモグロビンおよび静脈血の脱酸素化ヘモグロビンの吸光特性との関係を示す説明図である。It is explanatory drawing which shows the relationship between the light wavelength and the light absorption characteristic of oxygenated hemoglobin of arterial blood and deoxygenated hemoglobin of venous blood.

以下、本発明の実施の形態を実施例によって、図面に基づき詳細に説明する。ここに、図3は、本発明の流体濃度測定装置の一実施形態の原理を示す説明図である。本実施形態では図示のように、光源としての発光素子1からの光を、例えば管路の外表面の1箇所の光供給箇所から管路内に供給すると、その光は管路の壁内および管路内の流体内を通過するとともにその通過の際に拡散して、上記光供給箇所に対しその管路の直径方向の反対側に位置するとともにその管路の延在方向に互いに等間隔に直線状に並んだ多数の受光素子3を有するラインセンサ4の、それら多数の受光素子3に到達し、それら多数の受光素子3がその到達した光を受光し、ラインセンサ4が、それら多数の受光素子3がそれぞれ受光した光の強度を示す信号を出力する。そして、流体濃度出力手段が、そのラインセンサ4の多数の受光素子3がそれぞれ受光した光の強度およびそれら多数の受光素子3間の間隔から、ランベルト−ベールの法則に基づき流体の濃度を求めて出力する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 3 is an explanatory view showing the principle of one embodiment of the fluid concentration measuring apparatus of the present invention. In the present embodiment, as shown in the drawing, when light from the light emitting element 1 as a light source is supplied into the pipe from one light supply place on the outer surface of the pipe, for example, the light is transmitted in the wall of the pipe and It passes through the fluid in the pipeline and diffuses during the passage, and is located on the opposite side of the diameter direction of the pipeline with respect to the light supply location and at equal intervals in the extending direction of the pipeline. The line sensor 4 having a large number of light receiving elements 3 arranged in a straight line reaches the large number of light receiving elements 3, the large number of light receiving elements 3 receive the light that has reached the line sensor 4, and the line sensor 4 Each of the light receiving elements 3 outputs a signal indicating the intensity of light received. Then, the fluid concentration output means obtains the concentration of the fluid based on the Lambert-Beer law from the intensity of the light received by each of the light receiving elements 3 of the line sensor 4 and the distance between the many light receiving elements 3. Output.

ここで、ラインセンサ4の多数の受光素子3は、あらかじめ互いに同一感度に調整されているので、受光素子3間の感度のばらつきに起因する濃度測定誤差は実質上生じない。また、ラインセンサ4の多数の受光素子3のそれぞれの間隔は、一定であってあらかじめ知られているので、それらのうちの任意の受光素子3を用いることで、図2(a),(b)に示すような光供給箇所から受光素子までの光路を任意の受光間隔(ピッチ)Lで設定できる。図1や図2に示すように複数の発光素子1と複数の受光素子3とを管路としての樹脂チューブ2を挟んでその直径方向にそれぞれ対向させて各発光素子1から複数の受光素子3への光路LPを設定する場合、発光強度や受光感度によって受光間隔Lを適宜に設定する必要があるが、ラインセンサ4は多数の受光素子3を有しているので、受光素子3が受光する光の強度に応じて、例えば、最大強度レベルが大きい場合は受光間隔Lを大きくして測定誤差を小さくし、最大強度レベルが小さい場合は受光間隔Lを小さくして測定感度を高める等の処理を行うことができる。Here, since the multiple light receiving elements 3 of the line sensor 4 are adjusted in advance to the same sensitivity, density measurement errors due to sensitivity variations among the light receiving elements 3 do not substantially occur. In addition, since the intervals between the many light receiving elements 3 of the line sensor 4 are constant and known in advance, by using any of the light receiving elements 3 among them, FIGS. The optical path from the light supply location to the light receiving element as shown in (2) can be set at an arbitrary light receiving interval (pitch) LN . As shown in FIGS. 1 and 2, a plurality of light-emitting elements 1 and a plurality of light-receiving elements 3 are opposed to each other in the diameter direction with a resin tube 2 serving as a pipe interposed between the light-emitting elements 1 and the plurality of light-receiving elements 3. When setting the optical path LP to the light path, it is necessary to appropriately set the light receiving interval L N according to the light emission intensity and the light receiving sensitivity. However, since the line sensor 4 has a large number of light receiving elements 3, the light receiving element 3 receives light. For example, when the maximum intensity level is large, the light receiving interval L N is increased to reduce the measurement error, and when the maximum intensity level is small, the light receiving interval L N is decreased to increase the measurement sensitivity. Etc. can be performed.

そして、ラインセンサ4の多数の受光素子3が出力する光の強度は、管路の壁内および管路内の流体内での光の拡散により、光供給箇所が1つの場合は図4に示すように1つの山形の分布パターンPに、また光供給箇所が2つの場合は図5に示すように2つの山形の分布パターンP1,P2になる。なお、これらの分布パターンの横軸はラインセンサ4上の受光素子3の位置、縦軸は受光素子3が出力する光の強度を示している。従って、光の強度が最大の受光素子3の光軸が、管路の延在方向と直交する発光素子1の光軸と実質的に一致して位置していることになり、その発光素子1と光軸が実質的に一致する受光素子3の出力信号から、管路の延在方向と直交する光路を用いて高精度の濃度測定を行うことができる。   The intensity of the light output from the many light receiving elements 3 of the line sensor 4 is shown in FIG. 4 when there is one light supply location due to the diffusion of light in the walls of the pipes and in the fluid in the pipes. In this manner, the distribution pattern P has one mountain shape, and when there are two light supply locations, the distribution patterns P1 and P2 have two mountain shapes as shown in FIG. The horizontal axis of these distribution patterns indicates the position of the light receiving element 3 on the line sensor 4, and the vertical axis indicates the intensity of light output from the light receiving element 3. Therefore, the optical axis of the light receiving element 3 having the maximum light intensity is positioned substantially coincident with the optical axis of the light emitting element 1 orthogonal to the extending direction of the duct. From the output signal of the light receiving element 3 whose optical axes substantially coincide with each other, it is possible to perform highly accurate concentration measurement using an optical path orthogonal to the extending direction of the pipe.

また、ラインセンサ4の延在方向の、例えば発光素子1と光軸が実質的に一致する受光素子3の位置を中心とする所定範囲での、受光した光の強度についての分布パターンPの形状あるいは、その所定範囲の分布パターンPで囲まれる領域Sの面積を、あらかじめ取得して記録してある複数種類の流体濃度のそれぞれについての分布パターンPの形状あるいは面積と比較し、一致しない場合は補完することで、流体濃度を求めるようにしてもよい。   Further, the shape of the distribution pattern P with respect to the intensity of received light in a predetermined range in the extending direction of the line sensor 4, for example, in a predetermined range centered on the position of the light receiving element 3 whose optical axis substantially coincides with the light emitting element 1. Alternatively, the area of the region S surrounded by the distribution pattern P in the predetermined range is compared with the shape or area of the distribution pattern P for each of a plurality of types of fluid concentrations acquired and recorded in advance. By complementing, the fluid concentration may be obtained.

さらに、図5に示すように、互いに発光する光の波長が異なる複数の発光素子1にラインセンサ4を対向させる場合は、それぞれの発光素子1と光軸が一致する受光素子3の位置を推定でき、ひいてはそれぞれの波長での光の強度の分布パターンP1,P2を求めることができるので、測定対象の流体の、それぞれの波長での吸光パターンからの情報を得ることもできる。   Further, as shown in FIG. 5, when the line sensor 4 is opposed to a plurality of light emitting elements 1 having different wavelengths of light emitted from each other, the position of the light receiving element 3 whose optical axis coincides with each light emitting element 1 is estimated. As a result, the light intensity distribution patterns P1 and P2 at the respective wavelengths can be obtained, so that information from the light absorption patterns at the respective wavelengths of the fluid to be measured can also be obtained.

図6は、上記実施形態の流体濃度測定装置の一実施例としての、人工透析等の際にブラッドボリューム(BV)を計測するのに用い得る血液濃度測定装置を示す構成図である。この血液濃度測定装置は、各々例えば発光ダイオード(LED)からなる2つの発光素子1と、各々例えばフォトトランジスタからなる多数の受光素子3およびそれらの受光素子3の信号を経時的に並べて順次に出力する図示しない多数の例えば電荷結合素子(CCD)を有するラインセンサ4とを、管路としての樹脂チューブ2を着脱可能に挟持するチューブホルダ5に、樹脂チューブ2の直径方向に対向させて配置し、2つの発光素子1と、ラインセンサ4の多数の受光素子3とが各々、樹脂チューブ2の延在方向に整列するようにする。   FIG. 6 is a configuration diagram showing a blood concentration measuring device that can be used to measure a blood volume (BV) during artificial dialysis or the like as an example of the fluid concentration measuring device of the above embodiment. This blood concentration measuring apparatus outputs two light emitting elements 1 each composed of, for example, a light emitting diode (LED), a large number of light receiving elements 3 each composed of, for example, a phototransistor, and signals of these light receiving elements 3 sequentially with time. A line sensor 4 having a large number of charge coupled devices (CCDs) (not shown) is arranged in a tube holder 5 that detachably holds a resin tube 2 serving as a conduit so as to face the resin tube 2 in the diameter direction. The two light emitting elements 1 and the many light receiving elements 3 of the line sensor 4 are each aligned in the extending direction of the resin tube 2.

ここで、チューブホルダ5には、2つの発光素子1の各々の位置で直径方向の貫通孔5aを形成して、それらの発光素子1が発光した光を所定の光供給箇所で貫通孔5aからチューブホルダ5内の樹脂チューブ2に供給可能とし、また、チューブホルダ5には、2つの発光素子1と直径方向に対向する位置にラインセンサ4が貫通する長孔5bを軸線方向に形成して、その長孔5bからチューブホルダ5内にラインセンサ4を露出させることにより、チューブホルダ5内の樹脂チューブ2からそこを通過した光をラインセンサ4に供給可能とする。   Here, the tube holder 5 is formed with a through hole 5a in the diameter direction at each position of the two light emitting elements 1, and the light emitted by the light emitting elements 1 is transmitted from the through hole 5a at a predetermined light supply location. The tube holder 5 can be supplied to the resin tube 2, and the tube holder 5 is formed with an elongated hole 5 b in the axial direction through which the line sensor 4 penetrates at a position facing the two light emitting elements 1 in the diameter direction. By exposing the line sensor 4 in the tube holder 5 from the long hole 5b, the light passing through the resin tube 2 in the tube holder 5 can be supplied to the line sensor 4.

またここで、2つ発光素子1の一方は波長が660nmの光を発光し、他方は波長が805nmの光を発光するものとされ、図7に光の波長と動脈血の酸素化ヘモグロビンHbOおよび静脈血の脱酸素化ヘモグロビンHbの吸光特性との関係を示すように、波長が660nmの光は酸素化ヘモグロビンHbOと脱酸素化ヘモグロビンHbとの吸光特性が最も異なり、波長が805nmの光は酸素化ヘモグロビンHbOと脱酸素化ヘモグロビンHbとの吸光特性がほぼ同一となっている。Here, one of the two light emitting elements 1 emits light having a wavelength of 660 nm, and the other emits light having a wavelength of 805 nm. FIG. 7 shows the wavelength of light and oxygenated hemoglobin HbO 2 of arterial blood and As shown in the relationship with the absorption characteristics of venous blood deoxygenated hemoglobin Hb, light having a wavelength of 660 nm has the most different light absorption characteristics of oxygenated hemoglobin HbO 2 and deoxygenated hemoglobin Hb, and light having a wavelength of 805 nm The light absorption characteristics of oxygenated hemoglobin HbO 2 and deoxygenated hemoglobin Hb are almost the same.

従って、波長が805nmの光を発光する発光素子1を用いることで酸素化ヘモグロビンHbOと脱酸素化ヘモグロビンHbとの両方の濃度を一緒に測定することができ、波長が660nmの光を発光する発光素子1を用いることで酸素化ヘモグロビンHbOの濃度を選択的に測定することができ、それらの測定結果から脱酸素化ヘモグロビンHbの濃度も測定することができる。Therefore, by using the light emitting element 1 that emits light having a wavelength of 805 nm, the concentrations of both oxygenated hemoglobin HbO 2 and deoxygenated hemoglobin Hb can be measured together, and light having a wavelength of 660 nm is emitted. By using the light emitting element 1, the concentration of oxygenated hemoglobin HbO 2 can be selectively measured, and the concentration of deoxygenated hemoglobin Hb can also be measured from the measurement results.

また、ラインセンサ4は、例えば128個の受光素子3を8μピッチで有し、それらの受光素子3は、あらかじめ受光感度が互いに等しくなるように調整されて、受光した光の強度に応じたレベルの電気信号を出力し、CCDは、それらの電気信号を経時的に並べてアナログ出力信号として出力する。   Further, the line sensor 4 has, for example, 128 light receiving elements 3 at 8 μ pitch, and these light receiving elements 3 are adjusted in advance so that the light receiving sensitivities are equal to each other, and the level according to the intensity of the received light. The CCD outputs these electrical signals, and the CCD arranges these electrical signals over time and outputs them as analog output signals.

そしてこの実施例では、二つのLEDドライバ6が、二つの発光素子1をそれぞれ発光作動させ、ラインセンサドライバ7が、ラインセンサ4から多数の受光素子3の経時的に並んだアナログ出力信号を読み出してアナログデータとしてアナログ−デジタルコンバータ(A/D)8に出力し、A/D8が、そのアナログデータをデジタルデータに変換して中央処理ユニット(CPU)9に出力する。   In this embodiment, the two LED drivers 6 cause the two light emitting elements 1 to emit light, and the line sensor driver 7 reads the analog output signals of the many light receiving elements 3 arranged over time from the line sensor 4. The analog data is output to the analog-digital converter (A / D) 8, and the A / D 8 converts the analog data into digital data and outputs the digital data to the central processing unit (CPU) 9.

CPU9は、図示しないメモリにあらかじめ記憶したプログラムに基づき、A/D8の出力するデジタルデータからラインセンサ4の多数の受光素子3のうち例えば二つの発光素子1と光軸が一致する二つの受光素子3を含む所定の位置の複数の受光素子3が各々受光した光の強度を求め、例えば、それら受光した光の強度と、発光素子1から受光素子3までの光路LPの長さとから、ランベルト−ベールの法則に基づき、例えば樹脂チューブ2の壁厚と内径等を未知数として複数の関係式を求め、それらを連立させることで、図中矢印で示すように樹脂チューブ2内を流れる血液BDの濃度を求めて出力する。なお、ランベルト−ベールの法則に基づく具体的な計算方法については、例えば本願出願人が先に出願したPCT/JP2013/54664号国際出願やPCT/JP2013/61486号国際出願の明細書中に詳細に記載されている。従ってCPU9は、流体濃度出力手段として機能する。   Based on a program stored in advance in a memory (not shown), the CPU 9 uses, for example, two light receiving elements whose optical axes coincide with the two light emitting elements 1 among the many light receiving elements 3 of the line sensor 4 from the digital data output from the A / D 8. The light intensity received by each of the plurality of light receiving elements 3 at a predetermined position including 3 is determined. For example, from the intensity of the received light and the length of the optical path LP from the light emitting element 1 to the light receiving element 3, Lambert Based on Beer's law, for example, a plurality of relational expressions are obtained with the wall thickness, inner diameter, etc. of the resin tube 2 as unknowns, and by combining them, the concentration of blood BD flowing in the resin tube 2 as shown by the arrows in the figure Is output. The specific calculation method based on the Lambert-Beer law is described in detail, for example, in the specifications of the PCT / JP2013 / 54664 international application and the PCT / JP2013 / 61486 international application previously filed by the present applicant. Have been described. Therefore, the CPU 9 functions as fluid concentration output means.

CPU9はまた、二つのLEDドライバ6に制御信号を送り、2つの発光素子1を順次に発光させるとともに、例えば受光素子3の出力信号レベルが所定値より低い場合には発光素子1が発光する光の強度レベルを高め、受光素子3の出力信号レベルが所定値より高い場合には発光素子1が発光する光の強度レベルを低めるというように発光素子1の発光強度を調節して、受光素子3の出力信号レベルを濃度測定に適したものとする。   The CPU 9 also sends a control signal to the two LED drivers 6 to cause the two light emitting elements 1 to emit light sequentially. For example, when the output signal level of the light receiving element 3 is lower than a predetermined value, the light emitted from the light emitting element 1 The light emitting element 1 is adjusted so that the intensity level of the light emitted from the light emitting element 1 is lowered when the output signal level of the light receiving element 3 is higher than a predetermined value. Output signal level suitable for concentration measurement.

従って、この実施例の血液濃度測定装置によれば、多数の受光素子3の受光感度があらかじめ互いに実質的に同一にされていて、それらの感度を揃える調整の必要もなく、また、受光素子3が樹脂チューブ2の延在方向に多数並ぶため、それら多数の受光素子3のうちの何れかと発光素子1とで光軸が実質的に一致するので、受光感度のばらつきや光軸のずれに起因する測定誤差を実質的になくして、樹脂チューブ2内を流れる血液の濃度を高精度に測定することができる。   Therefore, according to the blood concentration measuring apparatus of this embodiment, the light receiving sensitivities of the large number of light receiving elements 3 are made substantially the same with each other in advance, and there is no need to adjust their sensitivity, and the light receiving elements 3 Are arranged in the extending direction of the resin tube 2, so that the optical axis of one of the many light receiving elements 3 and the light emitting element 1 substantially coincide with each other. Therefore, the concentration of blood flowing in the resin tube 2 can be measured with high accuracy.

また、この実施例の血液濃度測定装置によれば、二つの発光素子1が、貫通孔5aの位置に対応する樹脂チューブ2の表面上の2箇所の光供給箇所から樹脂チューブ2内に光を供給し、CPU9が、それら2箇所の光供給箇所およびそれらと光軸が一致する受光素子3の幾何学的位置関係から光の強度と血液の濃度との関係を相互に関係付けることで、ランベルト−ベールの法則に基づき樹脂チューブ2内を流れる血液の濃度を求めるので、ランベルト−ベールの法則に基づく計算から樹脂チューブ2の内径や壁厚の影響を除去し、樹脂チューブ2内を流れる流体の濃度を求めることができる。   Further, according to the blood concentration measuring apparatus of this embodiment, the two light emitting elements 1 emit light into the resin tube 2 from the two light supply locations on the surface of the resin tube 2 corresponding to the position of the through hole 5a. And the CPU 9 correlates the relationship between the light intensity and the blood concentration from the two light supply locations and the geometrical positional relationship of the light receiving element 3 whose optical axis coincides with them. -Since the concentration of blood flowing in the resin tube 2 is obtained based on the Beer's law, the influence of the inner diameter and wall thickness of the resin tube 2 is removed from the calculation based on the Lambert-Beer's law, and the fluid flowing in the resin tube 2 is The concentration can be determined.

しかも、この実施例の血液濃度測定装置によれば、CPU9は、ラインセンサ4の多数の受光素子3のうち受光した光の強度が最も高いものを光供給箇所と光軸が一致する受光素子3として、ランベルト−ベールの法則に基づき、樹脂チューブ2内を流れる血液の濃度を求めるので、ランベルト−ベールの法則に基づく計算から光軸のずれによる誤差を実質的に除去して、樹脂チューブ2内を流れる血液の濃度を高精度に求めることができる。   In addition, according to the blood concentration measuring apparatus of this embodiment, the CPU 9 receives the light receiving element 3 having the highest intensity of received light among the many light receiving elements 3 of the line sensor 4 and whose optical axis coincides with the light supply location. Since the concentration of blood flowing in the resin tube 2 is obtained based on the Lambert-Beer law, the error due to the deviation of the optical axis is substantially eliminated from the calculation based on the Lambert-Beer law. The concentration of blood flowing through can be obtained with high accuracy.

さらに、この実施例の血液濃度測定装置によれば、二つの発光素子1が樹脂チューブ2の表面上の2箇所の光供給箇所から互いに波長の異なる光を樹脂チューブ2内に供給し、CPU9は、それらの光供給箇所およびそれらと光軸が一致する受光素子3の幾何学的位置関係から各波長の光の強度と血液の濃度との関係を相互に関連付けることで、ランベルト−ベールの法則に基づき樹脂チューブ2内を流れる血液の濃度を求めるので、互いに波長の異なる2種類の光を用いてランベルト−ベールの法則に基づく計算から樹脂チューブ2内を流れる2種類の血液成分の濃度を求めることができる。   Furthermore, according to the blood concentration measuring apparatus of this embodiment, the two light emitting elements 1 supply light having different wavelengths from the two light supply locations on the surface of the resin tube 2 into the resin tube 2, and the CPU 9 The Lambert-Beer law is established by correlating the relationship between the light intensity of each wavelength and the blood concentration from the light supply locations and the geometric positional relationship of the light receiving elements 3 whose optical axes coincide with each other. Since the concentration of blood flowing in the resin tube 2 is calculated based on the above, the concentration of two types of blood components flowing in the resin tube 2 is calculated from the calculation based on the Lambert-Beer law using two types of light having different wavelengths. Can do.

以上、図示例に基づき説明したが、この発明は上述の例に限定されるものでなく特許請求の範囲の記載範囲内で適宜変更し得るものであり、例えば上記実施例の装置では、ラインセンサ4として受光素子3が128個(128画素)で受光素子3の間隔ピッチ(画素ピッチ)が8μmのものを用いたが、ラインセンサ4はこれに限られず、受光素子3の数が例えば64個以上で、それらが例えば4μm以上のピッチで数mm〜数cmの長さに整列していれば、本発明の流体濃度測定装置に好適に用いることができる。またラインセンサ4は複数本並列にして管路の延在方向に配置し、あるいは少なくとも管路の延在方向に整列する多数の画素を有する2次元光センサで代用してもよく、このようにすれば、管路の周方向あるいは接線方向の光軸のずれにも対応することができる。   Although the present invention has been described based on the illustrated examples, the present invention is not limited to the above-described examples, and can be appropriately changed within the scope of the claims. For example, in the apparatus of the above-described embodiment, the line sensor 4, the number of the light receiving elements 3 is 128 (128 pixels) and the interval pitch (pixel pitch) of the light receiving elements 3 is 8 μm. However, the line sensor 4 is not limited to this, and the number of the light receiving elements 3 is, for example, 64 As described above, if they are aligned with a length of several mm to several cm at a pitch of 4 μm or more, for example, they can be suitably used for the fluid concentration measuring device of the present invention. Further, a plurality of line sensors 4 may be arranged in parallel in the extending direction of the pipeline, or may be substituted by a two-dimensional photosensor having a large number of pixels aligned at least in the extending direction of the pipeline. In this case, it is possible to cope with the deviation of the optical axis in the circumferential direction or tangential direction of the pipe.

また、上記実施例の装置では、動脈血の酸素化ヘモグロビンと静脈血の脱酸素化ヘモグロビンとの両方の吸光率がほぼ等しい光として、805nm付近の波長の光を用いているが、これに代えて例えば590nmあるいは880nm付近の波長の光を用いても良い。   In the apparatus of the above embodiment, light having a wavelength of about 805 nm is used as light having substantially the same extinction coefficient for both oxygenated hemoglobin of arterial blood and deoxygenated hemoglobin of venous blood. For example, light having a wavelength near 590 nm or 880 nm may be used.

さらに、上記実施例の装置では、液体としての血液の濃度を測定したが、これに代えて、他の液体の濃度測定に用いることもでき、その場合には光源から供給する光として、その液体による吸収率が高い波長の光を選択すると、管壁の厚さ等に応じて受光箇所での光の強度に差異が出易いので好ましい。   Furthermore, in the apparatus of the above embodiment, the concentration of blood as a liquid is measured. However, instead of this, it can also be used for measuring the concentration of other liquids, in which case the liquid is used as light supplied from the light source. It is preferable to select light having a wavelength with a high absorptance due to the difference in light intensity at the light receiving location depending on the thickness of the tube wall.

さらに、上記実施例の装置では、CPU9が、受光素子3が出力する光の強度に基づき演算処理を行って血液濃度を求め、それを出力しているが、これに代えて、ラインセンサ4の所定範囲の受光素子3が出力する光の強度の複数種類の分布パターンPあるいはその所定範囲の分布パターンPで囲まれる領域Sの面積を、あらかじめ取得して上記メモリ等に記憶してある複数種類の流体濃度のそれぞれについての分布パターンPの形状あるいは面積と比較し、一致しない場合はデータ間を補完することで、流体濃度を求めるようにしてもよく、このようにすれば、多数の受光素子3が受光した光の強度から短時間で容易に流体の濃度を求めて出力することができる。   Furthermore, in the apparatus of the above embodiment, the CPU 9 performs a calculation process based on the intensity of light output from the light receiving element 3 to obtain a blood concentration and outputs it, but instead of this, the line sensor 4 A plurality of types of distribution patterns P of the intensity of light output from the light receiving element 3 in a predetermined range or areas of the region S surrounded by the distribution pattern P in the predetermined range are acquired in advance and stored in the memory or the like. Compared with the shape or area of the distribution pattern P for each of the fluid concentrations, and if they do not match, the fluid concentration may be obtained by interpolating between the data. In this way, a large number of light receiving elements 3 can easily obtain and output the concentration of the fluid in a short time from the intensity of the received light.

そして、上記実施例の装置では、2箇所の光供給箇所で光を供給し、その光をラインセンサ4で受光して光の強度を求めているが、これに代えて1箇所の光供給箇所で光を供給し、その光をラインセンサ4で受光して光の強度を求め、その光の強度から流体の濃度を求めるようにしてもよく、あるいは3箇所以上の光供給箇所で光を供給し、その光をラインセンサ4で受光して光の強度を求め、その光の強度から流体濃度をより高精度に求めるようにしてもよい。   And in the apparatus of the said Example, although the light is supplied in two light supply locations and the light is received by the line sensor 4 and the intensity | strength of light is calculated | required, it replaces with this and one light supply location The light may be supplied by the line sensor 4 and the light intensity may be obtained by the line sensor 4 and the fluid concentration may be obtained from the light intensity. Alternatively, the light may be supplied at three or more light supply locations. Then, the light may be received by the line sensor 4 to obtain the light intensity, and the fluid concentration may be obtained with higher accuracy from the light intensity.

かくしてこの発明の流体濃度測定装置法によれば、多数の受光素子の受光感度があらかじめ互いに実質的に同一にされていて、それらの感度を揃える調整の必要もなく、また、受光素子が管路の延在方向に多数並ぶため、それら多数の受光素子のうちの何れかと発光素子とで光軸が実質的に一致するので、受光感度のばらつきや光軸のずれに起因する測定誤差を実質的になくして、樹脂チューブ等の光透過性の管壁を持つ管路内を流れる血液や薬液等の流体の濃度を高精度に測定することができる。   Thus, according to the fluid concentration measuring apparatus method of the present invention, the light receiving sensitivities of a large number of light receiving elements are substantially the same as each other in advance, and it is not necessary to adjust the sensitivity to be uniform. Since the optical axis of the light emitting element substantially coincides with any one of the many light receiving elements, the measurement error due to variations in light receiving sensitivity or optical axis deviation is substantially reduced. However, it is possible to measure the concentration of fluid such as blood and chemicals flowing through a pipe line having a light transmissive tube wall such as a resin tube with high accuracy.

1 発光素子
2 樹脂チューブ
3 受光素子
4 ラインセンサ
5 チューブホルダ
5a 貫通孔
5b 長孔
6 LEDドライバ
7 ラインセンサドライバ
8 アナログ−デジタルコンバータ(A/D)
9 中央処理ユニット(CPU)
BD 血液
受光間隔
LP 光路
P,P1,P2 分布パターン
S 領域
DESCRIPTION OF SYMBOLS 1 Light emitting element 2 Resin tube 3 Light receiving element 4 Line sensor 5 Tube holder 5a Through-hole 5b Long hole 6 LED driver 7 Line sensor driver 8 Analog-digital converter (A / D)
9 Central processing unit (CPU)
BD Blood L N Light receiving interval LP Optical path P, P1, P2 Distribution pattern S region

Claims (5)

光透過性の管壁を持つ管路内を流れる流体の濃度を測定する装置において、
前記管路の表面上の少なくとも1箇所の光供給箇所から前記管路内に光を供給する光源と、
前記光供給箇所に対しその管路の直径方向の反対側に位置するとともにその管路の延在方向に互いに等間隔に微細な間隔で直線状に並んだ互いに同一感度の多数の受光素子により、前記光供給箇所から前記管路内に供給されてその管路の壁内およびその管路内の流体内を通過して来た光を受光して、それら多数の受光素子がそれぞれ受光した光の強度を示す信号を出力するラインセンサと、
前記ラインセンサの多数の受光素子がそれぞれ受光した光の強度およびそれら多数の受光素子の間隔からランベルト−ベールの法則に基づき流体の濃度を求めて出力する流体濃度出力手段と、
を具えることを特徴とする流体濃度測定装置。
In an apparatus for measuring the concentration of a fluid flowing in a pipe line having a light transmissive pipe wall,
A light source that supplies light into the conduit from at least one light supply location on the surface of the conduit;
By a large number of light receiving elements that are located on the opposite side of the diameter direction of the pipe line with respect to the light supply location and are arranged in a straight line at a minute interval at equal intervals in the extending direction of the pipe line, The light supplied from the light supply point into the pipeline and received through the wall of the pipeline and the fluid in the pipeline is received, and the light received by each of the multiple light receiving elements is received. A line sensor that outputs a signal indicating intensity;
Fluid concentration output means for obtaining and outputting the concentration of the fluid based on the Lambert-Beer law from the intensity of light received by each of the light receiving elements of the line sensor and the interval between the light receiving elements;
A fluid concentration measuring device comprising:
前記光源は、前記管路の表面上の複数箇所の光供給箇所から前記管路内に光を供給し、
前記流体濃度出力手段は、それら複数の光供給箇所およびそれらと光軸が一致する受光素子の幾何学的位置関係から光の強度と流体の濃度との関係を相互に関係付けることで、ランベルト−ベールの法則に基づき管路内を流れる流体の濃度を求めて出力することを特徴とする、請求項1記載の流体濃度測定装置。
The light source supplies light into the conduit from a plurality of light supply locations on the surface of the conduit,
The fluid concentration output means correlates the relationship between the light intensity and the fluid concentration from the plurality of light supply locations and the geometric positional relationship between the light receiving elements whose optical axes coincide with each other. 2. The fluid concentration measuring apparatus according to claim 1, wherein the concentration of the fluid flowing in the pipe is obtained and output based on Beer's law.
前記流体濃度出力手段は、前記多数の受光素子のうち受光した光の強度が最も高いものを前記光供給箇所と光軸が一致する受光素子として、ランベルト−ベールの法則に基づき管路内を流れる流体の濃度を求めて出力することを特徴とする、請求項1または2記載の流体濃度測定装置。   The fluid concentration output means uses the light receiving element having the highest received light intensity among the plurality of light receiving elements as a light receiving element whose optical axis coincides with the light supply location, and flows in a pipeline based on the Lambert-Beer law. 3. The fluid concentration measuring device according to claim 1, wherein the concentration of the fluid is obtained and output. 前記光源は、前記管路の表面上の複数箇所の光供給箇所から互いに波長の異なる光を前記管路内に供給し、
前記流体濃度出力手段は、それら複数の光供給箇所およびそれらと光軸が一致する受光素子の幾何学的位置関係から前記各波長の光の強度と流体の濃度との関係を相互に関係付けることで、ランベルト−ベールの法則に基づき管路内を流れる流体の濃度を求めて出力することを特徴とする、請求項1から3までの何れか1項記載の流体濃度測定装置。
The light source supplies light having different wavelengths from the plurality of light supply locations on the surface of the pipeline into the pipeline,
The fluid concentration output means correlates the relationship between the light intensity of each wavelength and the concentration of the fluid from the plurality of light supply locations and the geometric positional relationship of the light receiving elements having the same optical axis. The fluid concentration measuring device according to any one of claims 1 to 3, wherein the concentration of the fluid flowing in the pipe line is obtained and output based on the Lambert-Beer law.
前記流体濃度出力手段は、前記ラインセンサの所定範囲の前記多数の受光素子が受光した光の強度の分布パターンまたはその分布パターンが囲む領域の面積を、あらかじめ求めて記憶している光の強度の分布パターンまたはその分布パターンが囲む領域の面積と比較することで、流体の濃度を求めて出力することを特徴とする、請求項1から4までの何れか1項記載の流体濃度測定装置。   The fluid concentration output means obtains a light intensity distribution pattern received by the plurality of light receiving elements in a predetermined range of the line sensor or an area of a region surrounded by the distribution pattern in advance and stores the light intensity 5. The fluid concentration measuring apparatus according to claim 1, wherein the concentration of the fluid is obtained and output by comparing with the distribution pattern or the area of the region surrounded by the distribution pattern. 6.
JP2015558700A 2014-01-27 2014-01-27 Fluid concentration measuring device Active JP6383369B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/051626 WO2015111207A1 (en) 2014-01-27 2014-01-27 Fluid concentration measurement device

Publications (2)

Publication Number Publication Date
JPWO2015111207A1 true JPWO2015111207A1 (en) 2017-03-23
JP6383369B2 JP6383369B2 (en) 2018-08-29

Family

ID=53681035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015558700A Active JP6383369B2 (en) 2014-01-27 2014-01-27 Fluid concentration measuring device

Country Status (2)

Country Link
JP (1) JP6383369B2 (en)
WO (1) WO2015111207A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60128332A (en) * 1983-12-15 1985-07-09 Olympus Optical Co Ltd Optical measuring method
JPS62108858U (en) * 1985-12-25 1987-07-11
JPH0638947A (en) * 1992-03-31 1994-02-15 Univ Manitoba Spectrophotometric analysis method and apparatus for blood
JP2006017566A (en) * 2004-07-01 2006-01-19 Dkk Toa Corp Measuring cell of absorbance detector
JP2007163422A (en) * 2005-12-16 2007-06-28 Toyota Motor Corp Exhaust gas analytical method, and exhaust gas analyzer
JP2013156274A (en) * 2008-03-18 2013-08-15 Ricoh Co Ltd Toner density detection method, reflective optical sensor, reflective optical sensor device, and image forming device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60128332A (en) * 1983-12-15 1985-07-09 Olympus Optical Co Ltd Optical measuring method
JPS62108858U (en) * 1985-12-25 1987-07-11
JPH0638947A (en) * 1992-03-31 1994-02-15 Univ Manitoba Spectrophotometric analysis method and apparatus for blood
JP2006017566A (en) * 2004-07-01 2006-01-19 Dkk Toa Corp Measuring cell of absorbance detector
JP2007163422A (en) * 2005-12-16 2007-06-28 Toyota Motor Corp Exhaust gas analytical method, and exhaust gas analyzer
JP2013156274A (en) * 2008-03-18 2013-08-15 Ricoh Co Ltd Toner density detection method, reflective optical sensor, reflective optical sensor device, and image forming device

Also Published As

Publication number Publication date
WO2015111207A1 (en) 2015-07-30
JP6383369B2 (en) 2018-08-29

Similar Documents

Publication Publication Date Title
JP6851996B2 (en) Direct light difference measurement system
JP6205346B2 (en) Optical measuring apparatus and fiber bundle association method
JP2005283465A (en) Device and method for detecting defect of optical fiber, and manufacturing device of plastic optical fiber
US20160069803A1 (en) Fluid concentration measuring device
JP5959652B2 (en) Scattered light measuring device
JP2018507411A5 (en)
US11473972B2 (en) Monitoring light output from at least one solid-state light source
JP6383369B2 (en) Fluid concentration measuring device
WO2016049072A1 (en) An improved apparatus for measuring hexavalent chromium in water
US10682043B2 (en) Measurement probe and bio-optical measurement system with contact detection
WO2016194834A1 (en) Transmitted light intensity measurement unit
JP2013205332A (en) Defect inspection device and defect inspection method
US11079328B2 (en) Optical sensor
JP7250978B1 (en) Fluid concentration measuring device
KR102263863B1 (en) Optical-Waveguide Based Flexible Pressure Sensor
JP6053807B2 (en) Method and apparatus for measuring fluid concentration
US20230098744A1 (en) Multi-Wavelength Ozone Concentration Sensor and Method of Use
JP6620002B2 (en) Fluid concentration measuring device and bubble detecting device
EP4283279A1 (en) Accurate turbidity measurement system and method, using speckle pattern
JPWO2020085236A5 (en) Concentration measuring device and concentration measuring method
JP4536501B2 (en) Method and apparatus for measuring ozone concentration in ozone water
JP2013088137A (en) Scattering coefficient measuring device, concentration measuring device with the same and method thereof
JP6896243B2 (en) Liquid detection sensor
KR20230096599A (en) Apparatus and method for measuring hemoglobin concentration
JPWO2015141621A1 (en) Blood concentration measurement calibration method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180803

R150 Certificate of patent or registration of utility model

Ref document number: 6383369

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250