JPWO2015093499A1 - the film - Google Patents

the film Download PDF

Info

Publication number
JPWO2015093499A1
JPWO2015093499A1 JP2015526812A JP2015526812A JPWO2015093499A1 JP WO2015093499 A1 JPWO2015093499 A1 JP WO2015093499A1 JP 2015526812 A JP2015526812 A JP 2015526812A JP 2015526812 A JP2015526812 A JP 2015526812A JP WO2015093499 A1 JPWO2015093499 A1 JP WO2015093499A1
Authority
JP
Japan
Prior art keywords
molecular weight
film
peak top
pva
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015526812A
Other languages
Japanese (ja)
Other versions
JP6472380B2 (en
Inventor
磯▲ざき▼ 孝徳
孝徳 磯▲ざき▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Publication of JPWO2015093499A1 publication Critical patent/JPWO2015093499A1/en
Application granted granted Critical
Publication of JP6472380B2 publication Critical patent/JP6472380B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

【課題】ポリビニルアルコールを含むフィルムであって、加熱による着色が少なく、界面活性剤を含む場合であってもその分散状態に優れるフィルムを提供すること。【解決手段】けん化度が50〜99.99モル%、粘度平均重合度が200〜5,000であるポリビニルアルコールを含み、カルボン酸のアルカリ金属塩の含有量がアルカリ金属の質量換算で0.5質量%以下であるフィルムであって、120℃において3時間加熱された前記ポリビニルアルコールをゲルパーミエーションクロマトグラフィー測定したときの、示差屈折率検出器で測定されるピークトップ分子量(A)と、吸光光度検出器(測定波長280nm)で測定されるピークトップ分子量(B)が下記式(1)(A−B)/A<0.75 (1)を満たし、かつピークトップ分子量(B)における吸光度が0.25×10−3〜3.00×10−3となる、フィルム。【選択図】図1Disclosed is a film containing polyvinyl alcohol, which is less colored by heating and excellent in dispersion even when it contains a surfactant. SOLUTION: Polyvinyl alcohol having a saponification degree of 50 to 99.99 mol% and a viscosity average polymerization degree of 200 to 5,000 is contained, and the content of alkali metal salt of carboxylic acid is 0. 0 in terms of mass of alkali metal. A peak top molecular weight (A) measured with a differential refractive index detector when the film is 5% by mass or less and the polyvinyl alcohol heated at 120 ° C. for 3 hours is subjected to gel permeation chromatography measurement, The peak top molecular weight (B) measured with an absorptiometric detector (measurement wavelength: 280 nm) satisfies the following formula (1) (AB) / A <0.75 (1) and the peak top molecular weight (B) A film having an absorbance of 0.25 × 10 −3 to 3.00 × 10 −3. [Selection] Figure 1

Description

本発明は特定のポリビニルアルコールを含むフィルムとその製造方法に関する。   The present invention relates to a film containing specific polyvinyl alcohol and a method for producing the same.

ポリビニルアルコール(以下、「PVA」と略記することがある)は水溶性の合成高分子として知られている。PVAは他の合成高分子と比べて強度特性及び造膜性が特に優れており、フィルム等、種々の用途において重用されている。一方で、PVAは加熱により着色しやすい。   Polyvinyl alcohol (hereinafter sometimes abbreviated as “PVA”) is known as a water-soluble synthetic polymer. PVA is particularly excellent in strength characteristics and film-forming properties as compared with other synthetic polymers, and is frequently used in various applications such as films. On the other hand, PVA is easily colored by heating.

特許文献1には、ビニルエステルの重合に用いる開始剤として所定の構造を有するパーオキシエステル系化合物を用いるPVAの製造方法が提案されている。特許文献1には、製造されるPVAが加熱によって着色しにくいことが記載されている。   Patent Document 1 proposes a method for producing PVA using a peroxyester compound having a predetermined structure as an initiator used for polymerization of vinyl ester. Patent Document 1 describes that the manufactured PVA is difficult to be colored by heating.

また特許文献2には、抑制剤(重合禁止剤)の含有量が10ppm以下である酢酸ビニルモノマーを重合してポリ酢酸ビニルを得た後、該ポリ酢酸ビニルを加水分解するPVAの製造方法が記載されている。特許文献2には、製造されるPVAの着色が少ないことが記載されている。   Patent Document 2 discloses a method for producing PVA in which a polyvinyl acetate monomer having a content of an inhibitor (polymerization inhibitor) of 10 ppm or less is polymerized to obtain polyvinyl acetate, and then the polyvinyl acetate is hydrolyzed. Have been described. Patent Document 2 describes that the produced PVA is less colored.

特開平5−320219号公報JP-A-5-320219 特表2011−508802号公報Special table 2011-508802 gazette

しかしながら、特許文献1及び2に記載された方法によっても、PVAやそれを含むフィルムを加熱した際の着色低減効果は未だ不十分であり、また、界面活性剤を含むフィルムを製造する際にその分散性が悪く表面特性が悪いという問題があった。   However, even when the methods described in Patent Documents 1 and 2 are used, the effect of reducing coloration when PVA or a film containing the same is heated is still inadequate. There was a problem of poor dispersibility and poor surface properties.

本発明は、上記課題を解決するためになされたものであり、PVAを含むフィルムであって、加熱による着色が少なく、界面活性剤を含む場合であってもその分散状態に優れるフィルムを提供することを目的とする。   The present invention has been made in order to solve the above-described problems, and provides a film containing PVA, which is less colored by heating and excellent in dispersion even when it contains a surfactant. For the purpose.

本発明者らは上記の課題を解決するため鋭意検討した結果、特定の要件を満足するPVAを用いた特定のフィルムが、加熱による着色が少なく、しかも界面活性剤を含む場合であってもその分散状態に優れることを見出し、当該知見に基づいて更に検討を重ねて本発明を完成させた。   As a result of intensive studies to solve the above problems, the present inventors have found that a specific film using PVA that satisfies specific requirements is less colored by heating and includes a surfactant. The present inventors have found that it is excellent in a dispersed state, and further studied based on the knowledge to complete the present invention.

すなわち、上記の課題は、けん化度が50〜99.99モル%、粘度平均重合度が200〜5,000であるPVAを含み、カルボン酸のアルカリ金属塩の含有量がアルカリ金属の質量換算で0.5質量%以下であるフィルムであって、120℃において3時間加熱された前記PVAをゲルパーミエーションクロマトグラフィー(以下、GPCと略記することがある)測定したときの、示差屈折率検出器で測定されるピークトップ分子量(A)と、吸光光度検出器(測定波長280nm)で測定されるピークトップ分子量(B)が下記式(1)
(A−B)/A<0.75 (1)
を満たし、かつピークトップ分子量(B)における吸光度が0.25×10−3〜3.00×10−3となる、フィルムを提供することにより解決される。
That is, the above-described problem includes PVA having a saponification degree of 50 to 99.99 mol% and a viscosity average polymerization degree of 200 to 5,000, and the content of the alkali metal salt of the carboxylic acid is in terms of the mass of the alkali metal. A differential refractive index detector when the film is 0.5% by mass or less and the PVA heated at 120 ° C. for 3 hours is measured by gel permeation chromatography (hereinafter sometimes abbreviated as GPC). The peak top molecular weight (A) measured by (1) and the peak top molecular weight (B) measured by an absorptiometric detector (measurement wavelength: 280 nm) are represented by the following formula (1):
(AB) / A <0.75 (1)
And a film having an absorbance at a peak top molecular weight (B) of 0.25 × 10 −3 to 3.00 × 10 −3 is solved.

ただし、前記GPC測定において、
移動相:20mmol/Lのトリフルオロ酢酸ナトリウム含有ヘキサフルオロイソプロパノール(以下、ヘキサフルオロイソプロパノールをHFIPと略記することがある。)
試料濃度:1.00mg/mL
試料注入量:100μL
カラム:昭和電工株式会社製「GPC HFIP−806M」
カラム温度:40℃
流速:1mL/分
吸光光度検出器のセル長:10mm
である。
However, in the GPC measurement,
Mobile phase: 20 mmol / L sodium trifluoroacetate-containing hexafluoroisopropanol (hereinafter, hexafluoroisopropanol may be abbreviated as HFIP.)
Sample concentration: 1.00 mg / mL
Sample injection volume: 100 μL
Column: “GPC HFIP-806M” manufactured by Showa Denko KK
Column temperature: 40 ° C
Flow rate: 1 mL / min Absorbance detector cell length: 10 mm
It is.

本発明によれば、PVAを含むフィルムであって、加熱による着色が少なく、界面活性剤を含む場合であってもその分散状態に優れるフィルムが得られる。   According to this invention, it is a film containing PVA, and there is little coloring by heating, and even if it is a case where surfactant is included, the film excellent in the dispersion state is obtained.

実施例1のPVAにおいて、分子量と示差屈折率検出器(RI)で測定された値との関係、及び、分子量と吸光光度検出器(UV)(測定波長280nm)で測定された吸光度との関係を示したグラフである。In the PVA of Example 1, the relationship between the molecular weight and the value measured by the differential refractive index detector (RI), and the relationship between the molecular weight and the absorbance measured by the absorptiometric detector (UV) (measurement wavelength 280 nm). It is the graph which showed.

本発明におけるPVAは、けん化度が50〜99.99モル%、粘度平均重合度が200〜5,000であるPVAであって、120℃において3時間加熱された前記PVAをGPC測定したときの、示差屈折率検出器で測定されるピークトップ分子量(A)と、吸光光度検出器(測定波長280nm)で測定されるピークトップ分子量(B)が下記式(1)
(A−B)/A<0.75 (1)
を満たし、かつピークトップ分子量(B)における吸光度が0.25×10−3〜3.00×10−3となるものである。
The PVA in the present invention is a PVA having a saponification degree of 50 to 99.99 mol% and a viscosity average polymerization degree of 200 to 5,000, and when the PVA heated at 120 ° C. for 3 hours is measured by GPC. The peak top molecular weight (A) measured with a differential refractive index detector and the peak top molecular weight (B) measured with an absorptiometric detector (measurement wavelength 280 nm) are expressed by the following formula (1).
(AB) / A <0.75 (1)
And the absorbance at the peak top molecular weight (B) is 0.25 × 10 −3 to 3.00 × 10 −3 .

ただし、前記GPC測定において、
移動相:20mmol/Lのトリフルオロ酢酸ナトリウム含有HFIP
試料濃度:1.00mg/mL
試料注入量:100μL
カラム:昭和電工株式会社製「GPC HFIP−806M」
カラム温度:40℃
流速:1mL/分
吸光光度検出器のセル長:10mm
である。
However, in the GPC measurement,
Mobile phase: HFIP containing 20 mmol / L sodium trifluoroacetate
Sample concentration: 1.00 mg / mL
Sample injection volume: 100 μL
Column: “GPC HFIP-806M” manufactured by Showa Denko KK
Column temperature: 40 ° C
Flow rate: 1 mL / min Absorbance detector cell length: 10 mm
It is.

本発明におけるGPC測定では、示差屈折率検出器及び吸光光度検出器を有し、これらの検出器による測定を同時に行うことのできるGPC装置を使用する。吸光光度検出器には、波長280nmにおける吸光度を測定できるものを使用する必要があり、波長280nmにおける吸光度と波長320nmにおける吸光度とを同時に測定できるものを使用することが好ましい。吸光光度検出器の検出部のセルには、セル長(光路長)が10mmのものを使用する。吸光光度検出器は、特定波長の紫外光の吸収を測定するものでもよいし、特定範囲の波長の紫外光の吸収を分光測定するものでもよい。測定に供されたPVAは、GPCカラムによって各分子量成分に分離される。示差屈折率検出器によるシグナル強度は、概ねPVAの濃度(mg/mL)に比例する。一方、吸光光度検出器により検出されるPVAは、所定の波長に吸収を有するPVAのみである。前記GPC測定により、PVAの各分子量成分ごとの、濃度及び所定の波長における吸光度を測定することができる。   In the GPC measurement in the present invention, a GPC apparatus having a differential refractive index detector and an absorptiometric detector and capable of performing measurement by these detectors at the same time is used. It is necessary to use an absorptiometric detector that can measure the absorbance at a wavelength of 280 nm, and it is preferable to use an absorptivity detector that can simultaneously measure the absorbance at a wavelength of 280 nm and the absorbance at a wavelength of 320 nm. A cell having a cell length (optical path length) of 10 mm is used as the cell of the detection unit of the absorptiometer. The absorptiometric detector may measure the absorption of ultraviolet light having a specific wavelength, or may measure the absorption of ultraviolet light having a specific range of wavelengths. The PVA subjected to the measurement is separated into each molecular weight component by a GPC column. The signal intensity by the differential refractive index detector is approximately proportional to the concentration of PVA (mg / mL). On the other hand, the PVA detected by the absorptiometric detector is only PVA having absorption at a predetermined wavelength. By the GPC measurement, the concentration and absorbance at a predetermined wavelength can be measured for each molecular weight component of PVA.

前記GPC測定において測定されるPVAの溶解に用いる溶媒及び移動相として、トリフルオロ酢酸ナトリウムを20mmol/Lの濃度で含有するHFIPを用いる。HFIPは、PVA及びポリメタクリル酸メチル(以下、PMMAと略記する)を溶解させることができる。また、トリフルオロ酢酸ナトリウムを添加することにより、カラム充填剤へのPVAの吸着が防止される。前記GPC測定における流速は1mL/分、カラム温度は40℃とする。   HFIP containing sodium trifluoroacetate at a concentration of 20 mmol / L is used as a solvent and mobile phase used for dissolving PVA measured in the GPC measurement. HFIP can dissolve PVA and polymethyl methacrylate (hereinafter abbreviated as PMMA). Further, by adding sodium trifluoroacetate, the adsorption of PVA to the column filler is prevented. The flow rate in the GPC measurement is 1 mL / min, and the column temperature is 40 ° C.

前記GPC測定において、標品として単分散のPMMA(以下、標準PMMAと称する)を用いる。分子量の異なる数種類の標準PMMAを測定し、GPC溶出容量と標準PMMAの分子量から検量線を作成する。本発明においては、示差屈折率検出器による測定には当該検出器を用いて作成した検量線を使用し、吸光光度検出器による測定には当該検出器を用いて作成した検量線を使用する。これらの検量線を用いてGPC溶出容量から分子量に換算し、ピークトップ分子量(A)及びピークトップ分子量(B)を求める。   In the GPC measurement, monodisperse PMMA (hereinafter referred to as standard PMMA) is used as a standard. Several types of standard PMMA with different molecular weights are measured, and a calibration curve is created from the GPC elution volume and the molecular weight of the standard PMMA. In the present invention, a calibration curve created using the detector is used for measurement by the differential refractive index detector, and a calibration curve created using the detector is used for measurement by the absorptiometric detector. Using these calibration curves, the GPC elution volume is converted into the molecular weight, and the peak top molecular weight (A) and the peak top molecular weight (B) are determined.

前記GPC測定の前に、PVAを120℃において3時間加熱する。本発明においては、以下の方法でPVAを加熱する。すなわち、まずPVAの粉体を溶解した水溶液を流延した後、23℃、50%RHで乾燥してフィルムを得る。当該フィルムの厚みは、30〜75μmであり、40〜60μmが好ましい。次に熱風乾燥機を用いて当該フィルムを120℃で3時間加熱する。試料間の熱処理誤差を抑制する観点から、熱風乾燥機としてギアオーブンが好ましい。   Prior to the GPC measurement, the PVA is heated at 120 ° C. for 3 hours. In the present invention, PVA is heated by the following method. That is, first, an aqueous solution in which PVA powder is dissolved is cast, and then dried at 23 ° C. and 50% RH to obtain a film. The thickness of the film is 30 to 75 μm, and preferably 40 to 60 μm. Next, the film is heated at 120 ° C. for 3 hours using a hot air dryer. From the viewpoint of suppressing heat treatment errors between samples, a gear oven is preferable as the hot air dryer.

加熱したPVA(フィルム)を前述した溶媒に溶解して測定試料を得る。測定試料のPVAの濃度は1.00mg/mLとし、注入量は100μLとする。但し、PVAの粘度平均重合度が2400を超える場合、排除体積が増大するため、PVAの濃度が1.00mg/mLでは再現性よく測定できない場合がある。その場合には、適宜希釈した試料(注入量100μL)を用いる。吸光度はPVAの濃度に比例する。したがって、希釈した試料の濃度と実測された吸光度を用いて、PVA濃度が1.00mg/mLの場合の吸光度を求める。   A heated PVA (film) is dissolved in the aforementioned solvent to obtain a measurement sample. The concentration of PVA in the measurement sample is 1.00 mg / mL, and the injection volume is 100 μL. However, when the viscosity average degree of polymerization of PVA exceeds 2400, the excluded volume increases, and therefore the PVA concentration may not be measured with good reproducibility at 1.00 mg / mL. In that case, an appropriately diluted sample (injection amount 100 μL) is used. Absorbance is proportional to the concentration of PVA. Therefore, the absorbance when the PVA concentration is 1.00 mg / mL is obtained using the concentration of the diluted sample and the actually measured absorbance.

図1は、後述する本発明の実施例において、PVAをGPC測定して得られた、分子量と示差屈折率検出器で測定された値との関係、及び、分子量と吸光光度検出器(測定波長280nm)で測定された吸光度との関係を示したグラフである。図1を用いて本発明におけるGPC測定について更に説明する。図1において、「RI」で示されるクロマトグラムは、溶出容量から換算したPVAの分子量(横軸)に対して、示差屈折率検出器で測定された値をプロットしたものである。本発明において当該クロマトグラム中のピークの位置における分子量をピークトップ分子量(A)とする。なお、クロマトグラム中に複数のピークが存在する場合には、ピーク高さが最も高いピークの位置における分子量をピークトップ分子量(A)とする。   FIG. 1 shows the relationship between the molecular weight obtained by GPC measurement of PVA and the value measured by the differential refractive index detector, and the molecular weight and the absorptiometric detector (measurement wavelength). It is the graph which showed the relationship with the light absorbency measured by 280 nm. The GPC measurement in the present invention will be further described with reference to FIG. In FIG. 1, the chromatogram indicated by “RI” is a plot of the value measured by the differential refractive index detector against the molecular weight (horizontal axis) of PVA converted from the elution volume. In the present invention, the molecular weight at the peak position in the chromatogram is defined as peak top molecular weight (A). When there are a plurality of peaks in the chromatogram, the molecular weight at the peak position where the peak height is the highest is the peak top molecular weight (A).

図1において、「UV」で示されるクロマトグラムは、溶出容量から換算したPVAの分子量(横軸)に対して、吸光光度検出器(測定波長280nm)で測定された吸光度をプロットしたものである。本発明において当該クロマトグラム中のピークの位置における分子量をピークトップ分子量(B)とする。なお、クロマトグラム中に複数のピークが存在する場合には、ピーク高さが最も高いピークの位置における分子量をピークトップ分子量(B)とする。   In FIG. 1, the chromatogram indicated by “UV” is a plot of the absorbance measured by an absorptiometric detector (measurement wavelength 280 nm) against the molecular weight (horizontal axis) of PVA converted from the elution volume. . In the present invention, the molecular weight at the peak position in the chromatogram is defined as peak top molecular weight (B). When there are a plurality of peaks in the chromatogram, the molecular weight at the peak position where the peak height is the highest is the peak top molecular weight (B).

前記PVAは、上述した方法によりGPC測定されたときの、示差屈折率検出器で測定されるピークトップ分子量(A)と、吸光光度検出器(測定波長280nm)で測定されるピークトップ分子量(B)が下記式(1)を満たす。
(A−B)/A<0.75 (1)
The PVA has a peak top molecular weight (A) measured with a differential refractive index detector and a peak top molecular weight (B) measured with an absorptiometric detector (measurement wavelength 280 nm) when GPC measurement is performed by the above-described method. ) Satisfies the following formula (1).
(AB) / A <0.75 (1)

ピークトップ分子量(A)は、PVAの分子量の指標となる値である。一方、ピークトップ分子量(B)は、PVA中に存在する、280nmに吸収を有する成分に由来する。通常、ピークトップ分子量(B)よりもピークトップ分子量(A)のほうが大きいため、(A−B)/Aは正の値になる。ピークトップ分子量(B)が大きくなれば、(A−B)/Aは小さくなり、ピークトップ分子量(B)が小さくなれば、(A−B)/Aは大きくなる。すなわち、(A−B)/Aが大きい場合には、PVA中の低分子量成分に波長280nmの紫外線を吸収する成分が多いことを意味する。   The peak top molecular weight (A) is a value serving as an index of the molecular weight of PVA. On the other hand, the peak top molecular weight (B) is derived from a component present in PVA and having absorption at 280 nm. Usually, since the peak top molecular weight (A) is larger than the peak top molecular weight (B), (AB) / A becomes a positive value. If the peak top molecular weight (B) increases, (AB) / A decreases, and if the peak top molecular weight (B) decreases, (AB) / A increases. That is, when (A−B) / A is large, it means that there are many components that absorb ultraviolet rays having a wavelength of 280 nm in the low molecular weight components in PVA.

(A−B)/Aが0.75以上の場合、上述の通り、低分子量成分に波長280nmの紫外線を吸収する成分が多くなる。この場合には、加熱による着色が少なく、しかも界面活性剤を含む場合であってもその分散状態に優れるフィルムを得ることが困難になる。このような観点から、(A−B)/Aは、好ましくは0.70未満であり、より好ましくは0.65未満である。   When (A-B) / A is 0.75 or more, as described above, the component that absorbs ultraviolet light having a wavelength of 280 nm increases in the low molecular weight component. In this case, it is difficult to obtain a film that is less colored by heating and that is excellent in its dispersed state even if it contains a surfactant. From such a viewpoint, (A−B) / A is preferably less than 0.70, and more preferably less than 0.65.

前記PVAは、上述した方法によりGPC測定されたときの、ピークトップ分子量(B)における吸光度(測定波長280nm)が0.25×10−3〜3.00×10−3となる必要がある。前記吸光度が0.25×10−3未満の場合には、界面活性剤の分散状態に優れるフィルムを得ることが困難になる。一方、前記吸光度が3.00×10−3を超える場合には、加熱による着色の少ないフィルムを得ることが困難になる。前記吸光度は0.50×10−3〜2.80×10−3が好ましく、0.75×10−3〜2.50×10−3がより好ましい。The PVA needs to have an absorbance (measurement wavelength of 280 nm) at a peak top molecular weight (B) of 0.25 × 10 −3 to 3.00 × 10 −3 when GPC measurement is performed by the method described above. When the absorbance is less than 0.25 × 10 −3 , it is difficult to obtain a film excellent in the dispersion state of the surfactant. On the other hand, when the absorbance exceeds 3.00 × 10 −3 , it is difficult to obtain a film that is less colored by heating. The absorbance is preferably 0.50 × 10 −3 to 2.80 × 10 −3, and more preferably 0.75 × 10 −3 to 2.50 × 10 −3 .

加熱による着色性の低下効果と、界面活性剤の分散状態の向上効果とのバランスの観点から、前記GPC測定における、示差屈折率検出器で測定されるピークトップ分子量(A)と、吸光光度検出器(測定波長320nm)で測定されるピークトップ分子量(C)が下記式(2)
(A−C)/A<0.75 (2)
を満たすことが好ましい。
From the viewpoint of the balance between the effect of reducing the colorability by heating and the effect of improving the dispersion state of the surfactant, the peak top molecular weight (A) measured by the differential refractive index detector and the spectrophotometric detection in the GPC measurement. The peak top molecular weight (C) measured by a vessel (measurement wavelength: 320 nm) is represented by the following formula (2)
(AC) / A <0.75 (2)
It is preferable to satisfy.

ピークトップ分子量(C)は、吸光光度検出器における測定波長が320nmであること以外はピークトップ分子量(B)と同様にして測定される。ピークトップ分子量(C)は、PVA中に存在する、320nmに吸収を有する成分に由来する。通常、ピークトップ分子量(C)よりもピークトップ分子量(A)のほうが大きいため、(A−C)/Aは正の値になる。ピークトップ分子量(C)が大きくなれば、(A−C)/Aは小さくなり、ピークトップ分子量(C)が小さくなれば、(A−C)/Aは大きくなる。すなわち、(A−C)/Aが大きい場合には、PVA中の低分子量成分に波長320nmの紫外線を吸収する成分が多いことを意味する。   The peak top molecular weight (C) is measured in the same manner as the peak top molecular weight (B) except that the measurement wavelength in the absorptiometric detector is 320 nm. The peak top molecular weight (C) is derived from a component present in PVA and having an absorption at 320 nm. Usually, since the peak top molecular weight (A) is larger than the peak top molecular weight (C), (AC) / A becomes a positive value. If the peak top molecular weight (C) increases, (AC) / A decreases, and if the peak top molecular weight (C) decreases, (AC) / A increases. That is, when (AC) / A is large, it means that there are many components that absorb ultraviolet rays having a wavelength of 320 nm among low molecular weight components in PVA.

(A−C)/Aが0.75以上の場合、上述の通り、低分子量成分に波長320nmの紫外線を吸収する成分が多くなる。加熱による着色性の低下効果と、界面活性剤の分散状態の向上効果とのバランスの観点から、(A−C)/Aは、より好ましくは0.70未満であり、更に好ましくは0.65未満である。   When (AC) / A is 0.75 or more, as described above, the low molecular weight component contains more components that absorb ultraviolet light having a wavelength of 320 nm. From the viewpoint of the balance between the effect of reducing the colorability by heating and the effect of improving the dispersion state of the surfactant, (AC) / A is more preferably less than 0.70, and even more preferably 0.65. Is less than.

前記PVAは、加熱による着色性の低下効果と、界面活性剤の分散状態の向上効果とのバランスの観点から、上述した方法によりGPC測定されたときの、ピークトップ分子量(C)における吸光度(測定波長320nm)が0.20×10−3〜2.90×10−3であることが好ましい。上記のような観点から前記吸光度は、0.40×10−3〜2.70×10−3がより好ましく、0.60×10−3〜2.40×10−3が更に好ましい。From the viewpoint of the balance between the effect of reducing the colorability due to heating and the effect of improving the dispersion state of the surfactant, the PVA has an absorbance (measurement) at the peak top molecular weight (C) when GPC measurement is performed by the method described above. The wavelength 320 nm) is preferably 0.20 × 10 −3 to 2.90 × 10 −3 . From the above viewpoint, the absorbance is more preferably 0.40 × 10 −3 to 2.70 × 10 −3, and still more preferably 0.60 × 10 −3 to 2.40 × 10 −3 .

また、前記PVAは、加熱による着色性の低下効果と、界面活性剤の分散状態の向上効果とのバランスの観点から、前記GPC測定における、示差屈折率検出器によって求められる、前記PVAの数平均分子量Mnに対する重量平均分子量Mwの比Mw/Mnが2.2〜6.0であることが好ましい。Mw及びMnは、前述したPVAの分子量に対して、示差屈折率検出器で測定された値をプロットして得たクロマトグラムから求められる。本発明におけるMw及びMnは、PMMA換算の値である。   Further, the PVA is the number average of the PVA obtained by the differential refractive index detector in the GPC measurement from the viewpoint of the balance between the effect of reducing the colorability by heating and the effect of improving the dispersion state of the surfactant. The ratio Mw / Mn of the weight average molecular weight Mw to the molecular weight Mn is preferably 2.2 to 6.0. Mw and Mn are obtained from a chromatogram obtained by plotting the values measured by the differential refractive index detector with respect to the molecular weight of PVA described above. Mw and Mn in the present invention are values in terms of PMMA.

一般にMnは低分子量成分の影響を強く受ける平均分子量であり、Mwは高分子量成分の影響を強く受ける平均分子量である。Mw/Mnは高分子の分子量分布の指標として一般的に用いられている。Mw/Mnが小さい場合は、低分子量成分の割合が小さい高分子であることを示し、Mw/Mnが大きい場合には、低分子量成分の割合が大きい高分子であることを示す。   In general, Mn is an average molecular weight that is strongly influenced by a low molecular weight component, and Mw is an average molecular weight that is strongly influenced by a high molecular weight component. Mw / Mn is generally used as an index of molecular weight distribution of a polymer. When Mw / Mn is small, it indicates that the polymer has a small proportion of low molecular weight component, and when Mw / Mn is large, it indicates that the polymer has a large proportion of low molecular weight component.

したがって、本発明において、Mw/Mnが2.2未満の場合、PVAにおいて、低分子量成分の割合が小さいことを示す。界面活性剤の分散状態により優れるフィルムを得る観点から、Mw/Mnは2.3以上であることがより好ましい。一方、Mw/Mnが6.0を超える場合、PVAにおいて、低分子量成分の割合が大きいことを示す。加熱による着色のより少ないフィルムを得る観点から、Mw/Mnは3.5以下であることがより好ましく、3.0以下であることが更に好ましい。PVA中の低分子量成分は、フィルムにおける加熱による着色性や界面活性剤の分散状態に影響を及ぼすと考えられる。   Therefore, in this invention, when Mw / Mn is less than 2.2, it shows that the ratio of a low molecular weight component is small in PVA. From the viewpoint of obtaining a film that is more excellent in the dispersed state of the surfactant, Mw / Mn is more preferably 2.3 or more. On the other hand, when Mw / Mn exceeds 6.0, it shows that the ratio of a low molecular weight component is large in PVA. From the viewpoint of obtaining a film with less coloring by heating, Mw / Mn is more preferably 3.5 or less, and further preferably 3.0 or less. It is considered that the low molecular weight component in PVA affects the colorability of the film by heating and the dispersion state of the surfactant.

前記PVAの粘度平均重合度は、JIS−K6726に準じて測定される。すなわち、PVAをけん化度99.5モル%以上に再けん化し、精製した後、30℃の水中で測定した極限粘度[η]から次式により求めることができる。
P=([η]×10,000/8.29)(1/0.62)
The viscosity average degree of polymerization of the PVA is measured according to JIS-K6726. That is, after re-saponifying and purifying PVA to a saponification degree of 99.5 mol% or more, it can be obtained from the intrinsic viscosity [η] measured in water at 30 ° C. by the following equation.
P = ([η] × 10,000 / 8.29) (1 / 0.62)

前記PVAの粘度平均重合度は200〜5,000である。粘度平均重合度が200未満の場合には、形成されるフィルムの強度が不足する。一方、粘度平均重合度が5,000を超える場合には、当該PVAを含む水溶液の粘度が高くなってフィルムの製膜が困難になる。粘度平均重合度は、好ましくは250〜4,500、より好ましくは300〜4,000、更に好ましくは400〜3,500である。   The viscosity average polymerization degree of the PVA is 200 to 5,000. When the viscosity average polymerization degree is less than 200, the strength of the formed film is insufficient. On the other hand, when the viscosity average degree of polymerization exceeds 5,000, the viscosity of the aqueous solution containing the PVA becomes high and film formation becomes difficult. The viscosity average degree of polymerization is preferably 250 to 4,500, more preferably 300 to 4,000, and still more preferably 400 to 3,500.

前記PVAのけん化度は、JIS−K6726に準じて測定される。前記PVAのけん化度は50〜99.99モル%である。けん化度が50モル%に満たない場合、PVAの水溶性が著しく低下する。一方、けん化度が99.99モル%を超える場合、PVAを安定に製造することができない。けん化度は、好ましくは60〜99.8モル%であり、より好ましくは70〜99.7モル%であり、更に好ましくは80〜99.6モル%である。   The degree of saponification of the PVA is measured according to JIS-K6726. The saponification degree of the PVA is 50 to 99.99 mol%. When the degree of saponification is less than 50 mol%, the water solubility of PVA is significantly reduced. On the other hand, when the degree of saponification exceeds 99.99 mol%, PVA cannot be produced stably. The saponification degree is preferably 60 to 99.8 mol%, more preferably 70 to 99.7 mol%, and still more preferably 80 to 99.6 mol%.

前記PVAの製造に用いられるビニルエステルとしては、例えば、ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、バレリン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、安息香酸ビニル、ピバリン酸ビニル及びバーサティック酸ビニル等が挙げられ、とりわけ酢酸ビニルが好ましい。   Examples of the vinyl ester used in the production of the PVA include vinyl formate, vinyl acetate, vinyl propionate, vinyl valelate, vinyl caprate, vinyl laurate, vinyl stearate, vinyl benzoate, vinyl pivalate, and versatic. Examples thereof include vinyl acid, and vinyl acetate is particularly preferable.

また、前記PVAは、ビニルエステルを2−メルカプトエタノール、n−ドデシルメルカプタン、メルカプト酢酸、3−メルカプトプロピオン酸などのチオール化合物の存在下で重合し、得られるポリビニルエステルをけん化することによって製造することもできる。この方法により、チオール化合物に由来する官能基が末端に導入されたPVAが得られる。   The PVA is produced by polymerizing a vinyl ester in the presence of a thiol compound such as 2-mercaptoethanol, n-dodecyl mercaptan, mercaptoacetic acid, 3-mercaptopropionic acid, and saponifying the resulting polyvinyl ester. You can also. By this method, PVA in which a functional group derived from a thiol compound is introduced at the terminal is obtained.

ビニルエステルを重合する方法としては、塊状重合法、溶液重合法、懸濁重合法、乳化重合法などの公知の方法が挙げられる。それらの方法の中でも、無溶媒で行う塊状重合法又はアルコールなどの溶媒を用いて行う溶液重合法が通常採用される。本発明の効果を高める点では、低級アルコールと共に重合する溶液重合法が好ましい。低級アルコールとしては、特に限定はされないが、メタノール、エタノール、プロパノール、イソプロパノール等の炭素数3以下のアルコールが好ましく、通常、メタノールが用いられる。塊状重合法や溶液重合法で重合反応を行うにあたって、反応の方式は回分式及び連続式のいずれの方式も採用することができる。重合反応に使用される開始剤としては、2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、2,2’−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)などのアゾ系開始剤;過酸化ベンゾイル、n−プロピルパーオキシカーボネートなどの有機過酸化物系開始剤など本発明の効果を損なわない範囲で公知の開始剤が挙げられる。中でも、60℃での半減期が10〜110分の有機過酸化物系開始剤が好ましく、特にパーオキシジカーボネートを用いることが好ましい。重合反応を行う際の重合温度については特に制限はないが、5℃〜200℃の範囲が適当である。   Examples of the method for polymerizing vinyl ester include known methods such as bulk polymerization, solution polymerization, suspension polymerization, and emulsion polymerization. Among these methods, a bulk polymerization method performed without a solvent or a solution polymerization method performed using a solvent such as alcohol is usually employed. In terms of enhancing the effect of the present invention, a solution polymerization method in which polymerization is performed together with a lower alcohol is preferable. The lower alcohol is not particularly limited, but alcohols having 3 or less carbon atoms such as methanol, ethanol, propanol and isopropanol are preferable, and methanol is usually used. When performing the polymerization reaction by the bulk polymerization method or the solution polymerization method, either a batch method or a continuous method can be adopted as the reaction method. Examples of the initiator used for the polymerization reaction include 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis (4-methoxy- 2,4-dimethylvaleronitrile) and other azo initiators; organic peroxide initiators such as benzoyl peroxide and n-propyl peroxycarbonate, and the like, which are known initiators within a range not impairing the effects of the present invention. It is done. Among these, organic peroxide initiators having a half-life at 60 ° C. of 10 to 110 minutes are preferable, and it is particularly preferable to use peroxydicarbonate. Although there is no restriction | limiting in particular about the polymerization temperature at the time of performing a polymerization reaction, The range of 5 to 200 degreeC is suitable.

ビニルエステルをラジカル重合等の手法によって重合させる際には、本発明の効果が損なわれない範囲であれば、必要に応じて、共重合可能な単量体を共重合させることができる。このような単量体としては、エチレン、プロピレン、1−ブテン、イソブテン、1−ヘキセン等のα−オレフィン;フマル酸、マレイン酸、イタコン酸、無水マレイン酸、無水イタコン酸等のカルボン酸又はその誘導体;アクリル酸又はその塩、アクリル酸メチル、アクリル酸エチル、アクリル酸n−プロピル、アクリル酸イソプロピル等のアクリル酸エステル;メタクリル酸又はその塩、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n−プロピル、メタクリル酸イソプロピル等のメタクリル酸エステル;アクリルアミド;N−メチルアクリルアミド、N−エチルアクリルアミド等のアクリルアミド誘導体;メタクリルアミド;N−メチルメタクリルアミド、N−エチルメタクリルアミド等のメタクリルアミド誘導体;メチルビニルエーテル、エチルビニルエーテル、n−プロピルビニルエーテル、イソプロピルビニルエーテル、n−ブチルビニルエーテル等のビニルエーテル;エチレングリコールビニルエーテル、1,3−プロパンジオールビニルエーテル、1,4−ブタンジオールビニルエーテル等のヒドロキシ基含有ビニルエーテル;アリルアセテート、プロピルアリルエーテル、ブチルアリルエーテル、ヘキシルアリルエーテル等のアリルエーテル;オキシアルキレン基を有する単量体;酢酸イソプロペニル;3−ブテン−1−オール、4−ペンテン−1−オール、5−ヘキセン−1−オール、7−オクテン−1−オール、9−デセン−1−オール、3−メチル−3−ブテン−1−オール等のヒドロキシ基含有α−オレフィン;エチレンスルホン酸、アリルスルホン酸、メタリルスルホン酸、2−アクリルアミド−2−メチルプロパンスルホン酸等のスルホン酸基を有する単量体;ビニロキシエチルトリメチルアンモニウムクロライド、ビニロキシブチルトリメチルアンモニウムクロライド、ビニロキシエチルジメチルアミン、ビニロキシメチルジエチルアミン、N−アクリルアミドメチルトリメチルアンモニウムクロライド、N−アクリルアミドエチルトリメチルアンモニウムクロライド、N−アクリルアミドジメチルアミン、アリルトリメチルアンモニウムクロライド、メタアリルトリメチルアンモニウムクロライド、ジメチルアリルアミン、アリルエチルアミン等のカチオン基を有する単量体;ビニルトリメトキシシラン、ビニルメチルジメトキシシラン、ビニルジメチルメトキシシラン、ビニルトリエトキシシラン、ビニルメチルジエトキシシラン、ビニルジメチルエトキシシラン、3−(メタ)アクリルアミドプロピルトリメトキシシラン、3−(メタ)アクリルアミドプロピルトリエトキシシラン等のシリル基を有する単量体などが挙げられる。これらのビニルエステルと共重合可能な単量体の使用量は、その使用される目的及び用途等によっても異なるが、通常、共重合に用いられる全ての単量体を基準にした割合で20モル%以下、好ましくは10モル%以下である。   When the vinyl ester is polymerized by a technique such as radical polymerization, a copolymerizable monomer can be copolymerized as necessary as long as the effects of the present invention are not impaired. Such monomers include α-olefins such as ethylene, propylene, 1-butene, isobutene, 1-hexene; carboxylic acids such as fumaric acid, maleic acid, itaconic acid, maleic anhydride, itaconic anhydride or the like Derivatives; acrylic acid or salts thereof, acrylic acid esters such as methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate; methacrylic acid or salts thereof, methyl methacrylate, ethyl methacrylate, n-propyl methacrylate Methacrylic acid esters such as isopropyl methacrylate; acrylamide; acrylamide derivatives such as N-methyl acrylamide and N-ethyl acrylamide; methacrylamide; methacrylamide derivatives such as N-methyl methacrylamide and N-ethyl methacrylamide; Vinyl ethers such as ruether, ethyl vinyl ether, n-propyl vinyl ether, isopropyl vinyl ether, n-butyl vinyl ether; hydroxy group-containing vinyl ethers such as ethylene glycol vinyl ether, 1,3-propanediol vinyl ether, 1,4-butanediol vinyl ether; allyl acetate; Allyl ethers such as propyl allyl ether, butyl allyl ether, hexyl allyl ether; monomers having an oxyalkylene group; isopropenyl acetate; 3-buten-1-ol, 4-penten-1-ol, 5-hexene-1 Hydroxy group-containing α-olefins such as ol, 7-octen-1-ol, 9-decen-1-ol, 3-methyl-3-buten-1-ol; Monomers having a sulfonic acid group such as acid, methallylsulfonic acid, 2-acrylamido-2-methylpropanesulfonic acid; vinyloxyethyltrimethylammonium chloride, vinyloxybutyltrimethylammonium chloride, vinyloxyethyldimethylamine, vinyl Monomers having cationic groups such as roxymethyldiethylamine, N-acrylamidomethyltrimethylammonium chloride, N-acrylamidoethyltrimethylammonium chloride, N-acrylamidodimethylamine, allyltrimethylammonium chloride, methallyltrimethylammonium chloride, dimethylallylamine, allylethylamine Body: Vinyltrimethoxysilane, Vinylmethyldimethoxysilane, Vinyldimethylmethoxysilane, Vinyl Triethoxysilane, vinyl methyl diethoxy silane, vinyl dimethyl ethoxy silane, 3- (meth) acrylamido propyl trimethoxy silane, 3- (meth) monomers include having a silyl group such as acrylamide-propyltriethoxysilane. The amount of monomers copolymerizable with these vinyl esters varies depending on the purpose and application of use, but is usually 20 moles based on all monomers used for copolymerization. % Or less, preferably 10 mol% or less.

上述の方法により得られたポリビニルエステルをアルコール溶媒中でけん化することによりPVAを得ることができる。   PVA can be obtained by saponifying the polyvinyl ester obtained by the above-mentioned method in an alcohol solvent.

ポリビニルエステルのけん化反応の触媒としては通常アルカリ性物質が用いられ、その例として、水酸化カリウム、水酸化ナトリウムなどのアルカリ金属の水酸化物、及びナトリウムメトキシドなどのアルカリ金属アルコキシドが挙げられる。アルカリ性物質の使用量は、ポリビニルエステルのビニルエステル単量体単位を基準にしたモル比で0.002〜0.2の範囲内であることが好ましく、0.004〜0.1の範囲内であることが特に好ましい。けん化反応の触媒は、けん化反応の初期に一括して添加してもよいし、あるいはけん化反応の初期に一部を添加し、残りをけん化反応の途中で追加してもよい。   As the catalyst for the saponification reaction of the polyvinyl ester, an alkaline substance is usually used, and examples thereof include alkali metal hydroxides such as potassium hydroxide and sodium hydroxide, and alkali metal alkoxides such as sodium methoxide. The amount of the alkaline substance used is preferably within a range of 0.002 to 0.2 in a molar ratio based on the vinyl ester monomer unit of the polyvinyl ester, and within a range of 0.004 to 0.1. It is particularly preferred. The catalyst for the saponification reaction may be added all at once in the early stage of the saponification reaction, or a part thereof may be added in the early stage of the saponification reaction and the rest may be added during the saponification reaction.

けん化反応に用いることができる溶媒としては、メタノール、酢酸メチル、ジメチルスルホキシド、ジエチルスルホキシド、ジメチルホルムアミドなどが挙げられる。これらの溶媒の中でもメタノールが好ましく用いられる。このとき、メタノールの含水率を好ましくは0.001〜1質量%、より好ましくは0.003〜0.9質量%、特に好ましくは0.005〜0.8質量%に調整する。   Examples of the solvent that can be used for the saponification reaction include methanol, methyl acetate, dimethyl sulfoxide, diethyl sulfoxide, dimethylformamide, and the like. Of these solvents, methanol is preferably used. At this time, the moisture content of methanol is preferably adjusted to 0.001 to 1% by mass, more preferably 0.003 to 0.9% by mass, and particularly preferably 0.005 to 0.8% by mass.

けん化反応は、好ましくは5〜80℃、より好ましくは20〜70℃の温度で行われる。けん化反応は、好ましくは5分間〜10時間、より好ましくは10分間〜5時間行う。けん化反応は、バッチ法及び連続法のいずれの方式によっても行うことができる。けん化反応の終了後に、必要に応じて、残存する触媒を中和してもよい。使用可能な中和剤として、酢酸、乳酸などの有機酸、及び酢酸メチルなどのエステルなどを挙げることができる。   The saponification reaction is preferably performed at a temperature of 5 to 80 ° C, more preferably 20 to 70 ° C. The saponification reaction is preferably performed for 5 minutes to 10 hours, more preferably for 10 minutes to 5 hours. The saponification reaction can be performed by either a batch method or a continuous method. After completion of the saponification reaction, the remaining catalyst may be neutralized as necessary. Usable neutralizing agents include organic acids such as acetic acid and lactic acid, and esters such as methyl acetate.

けん化反応時に添加したアルカリ金属を含有するアルカリ性物質は、通常、けん化反応の進行により生じる酢酸メチルなどのエステルにより中和されるか、反応後添加された酢酸などのカルボン酸により中和される。このとき、酢酸ナトリウムなどのカルボン酸のアルカリ金属塩が生じる。後述するように、本発明のフィルムにおいて、カルボン酸のアルカリ金属塩の含有量は、アルカリ金属の質量換算で0.5質量%以下である必要がある。このようなフィルムを得るために、けん化後、PVAを洗浄してもよい。   The alkaline substance containing an alkali metal added during the saponification reaction is usually neutralized by an ester such as methyl acetate generated by the progress of the saponification reaction, or neutralized by a carboxylic acid such as acetic acid added after the reaction. At this time, an alkali metal salt of a carboxylic acid such as sodium acetate is formed. As will be described later, in the film of the present invention, the content of the alkali metal salt of the carboxylic acid needs to be 0.5% by mass or less in terms of the mass of the alkali metal. To obtain such a film, the PVA may be washed after saponification.

この場合に用いる洗浄液として、メタノールなどの低級アルコール、当該低級アルコール100質量部と20質量部以下の水からなる溶液、当該低級アルコールとけん化工程において生成する酢酸メチルなどのエステルからなる溶液などが挙げられる。低級アルコールとエステルからなる溶液中のエステルの含有量は、特に制限はないが、低級アルコール100質量部に対して、1,000質量部以下が好ましい。洗浄液の添加量としては、けん化により得られる、アルコールによってPVAが膨潤したゲル100質量部に対して、100〜10,000質量部が好ましく、150〜5,000質量部がより好ましく、200〜1,000質量部が更に好ましい。洗浄液の添加量が100質量部に満たない場合には、得られるフィルムにおいてカルボン酸のアルカリ金属塩の含有量が上記範囲を超えるおそれがある。一方、洗浄液の添加量が10,000質量部を超える場合には、添加量を増やすことによる洗浄効果の改善を見込みにくい。洗浄の方法に特に限定はないが、例えば、槽内にゲル(PVA)と洗浄液を加え、5〜100℃で、5〜180分程度、撹拌あるいは静置した後で脱液する工程を、カルボン酸のアルカリ金属塩の含有量が所望の範囲になるまで繰り返すバッチ方式が挙げられる。また、おおよそバッチ方式と同温度、同時間で、塔頂からPVAを連続的に添加するとともに、塔底より低級アルコールを連続的に添加し、両者を接触交流させる連続方式などが挙げられる。   Examples of the cleaning liquid used in this case include a lower alcohol such as methanol, a solution composed of 100 parts by weight of the lower alcohol and 20 parts by weight or less of water, and a solution composed of the lower alcohol and an ester such as methyl acetate produced in the saponification step. It is done. The content of the ester in the solution composed of the lower alcohol and the ester is not particularly limited, but is preferably 1,000 parts by mass or less with respect to 100 parts by mass of the lower alcohol. The addition amount of the cleaning liquid is preferably 100 to 10,000 parts by mass, more preferably 150 to 5,000 parts by mass, and more preferably 200 to 1 with respect to 100 parts by mass of the gel obtained by saponification and PVA swollen with alcohol. Is more preferable. When the addition amount of the cleaning liquid is less than 100 parts by mass, the content of the alkali metal salt of the carboxylic acid may exceed the above range in the obtained film. On the other hand, when the addition amount of the cleaning liquid exceeds 10,000 parts by mass, it is difficult to expect improvement of the cleaning effect by increasing the addition amount. Although there is no particular limitation on the washing method, for example, a step of adding a gel (PVA) and a washing liquid in a tank, stirring or standing at 5 to 100 ° C. for about 5 to 180 minutes, and then removing the liquid is performed. A batch system that repeats until the content of the alkali metal salt of the acid is in a desired range is exemplified. Further, there is a continuous method in which PVA is continuously added from the top of the column at the same temperature and for the same time as the batch method, and a lower alcohol is continuously added from the bottom of the column, and the two are brought into contact with each other.

前記PVAを調製するに際して、ピークトップ分子量(A)、ピークトップ分子量(B)、ピークトップ分子量(B)における吸光度、ピークトップ分子量(C)及びピークトップ分子量(C)における吸光度が上述した条件を満たすように調整する方法としては、例えば、以下の方法が挙げられる。   In preparing the PVA, the peak top molecular weight (A), the peak top molecular weight (B), the absorbance at the peak top molecular weight (B), the peak top molecular weight (C), and the absorbance at the peak top molecular weight (C) are as described above. As a method of adjusting so as to satisfy, for example, the following methods can be mentioned.

A)原料ビニルエステルに含まれるラジカル重合禁止剤を予め取り除いたビニルエステルを重合に用いる。   A) A vinyl ester from which a radical polymerization inhibitor contained in the raw vinyl ester has been removed in advance is used for the polymerization.

B)原料ビニルエステル中に含まれる不純物の合計含有量が、好ましくは1〜1,200ppm、より好ましくは3〜1,100ppm、更に好ましくは5〜1,000ppmであるビニルエステルをラジカル重合に用いる。不純物としては、アセトアルデヒド、クロトンアルデヒド、アクロレイン等のアルデヒド;同アルデヒドが溶媒のアルコールによりアセタール化したアセトアルデヒドジメチルアセタール、クロトンアルデヒドジメチルアセタール、アクロレインジメチルアセタール等のアセタール;アセトン等のケトン;酢酸メチル、酢酸エチル等のエステルなどが挙げられる。   B) A vinyl ester having a total content of impurities contained in the raw material vinyl ester of preferably 1 to 1,200 ppm, more preferably 3 to 1,100 ppm, and still more preferably 5 to 1,000 ppm is used for radical polymerization. . Impurities include aldehydes such as acetaldehyde, crotonaldehyde, and acrolein; acetaldehyde such as acetaldehyde dimethyl acetal, crotonaldehyde dimethyl acetal, and acrolein dimethyl acetal obtained by acetalizing the aldehyde with a solvent alcohol; ketones such as acetone; methyl acetate and ethyl acetate Ester etc. are mentioned.

C)アルコール溶媒中で原料ビニルエステルをラジカル重合し、未反応のビニルエステルを回収再利用する一連の工程において、アルコールや微量の水分によるビニルエステルの加アルコール分解や加水分解を抑制するために、有機酸、具体的にはグリコール酸、グリセリン酸、リンゴ酸、クエン酸、乳酸、酒石酸、サリチル酸等のヒドロキシカルボン酸;マロン酸、コハク酸、マレイン酸、フタル酸、シュウ酸、グルタル酸等の多価カルボン酸などを添加し、分解により生じるアセトアルデヒド等のアルデヒドの生成を極力抑制する。有機酸の添加量としては、原料ビニルエステルに対して、好ましくは1〜500ppm、より好ましくは3〜300ppm、更に好ましくは5〜100ppmである。   C) In order to suppress alcoholic decomposition and hydrolysis of vinyl ester due to alcohol or a small amount of water in a series of steps in which raw material vinyl ester is radically polymerized in alcohol solvent and unreacted vinyl ester is recovered and reused, Organic acids, specifically hydroxycarboxylic acids such as glycolic acid, glyceric acid, malic acid, citric acid, lactic acid, tartaric acid, salicylic acid; malonic acid, succinic acid, maleic acid, phthalic acid, oxalic acid, glutaric acid A carboxylic acid or the like is added to suppress the generation of aldehydes such as acetaldehyde generated by decomposition as much as possible. The addition amount of the organic acid is preferably 1 to 500 ppm, more preferably 3 to 300 ppm, and still more preferably 5 to 100 ppm with respect to the raw material vinyl ester.

D)重合に用いる溶媒として、不純物の合計含有量が、好ましくは1〜1,200ppm、より好ましくは3〜1,100ppm、更に好ましくは5〜1,000ppmであるものを用いる。溶媒中に含まれる不純物としては、原料ビニルエステル中に含まれる不純物として上述したものが挙げられる。   D) As a solvent used for polymerization, a solvent having a total content of impurities of preferably 1 to 1,200 ppm, more preferably 3 to 1,100 ppm, and still more preferably 5 to 1,000 ppm. Examples of the impurities contained in the solvent include those described above as the impurities contained in the raw material vinyl ester.

E)ビニルエステルをラジカル重合する際に、ビニルエステルに対する溶媒の比を高める。   E) When the vinyl ester is radically polymerized, the ratio of the solvent to the vinyl ester is increased.

F)ビニルエステルをラジカル重合する際に使用するラジカル重合開始剤として、有機過酸化物を用いる。有機過酸化物としては、アセチルパーオキシド、イソブチルパーオキシド、ジイソプロピルパーオキシカーボネート、ジアリルパーオキシジカーボネート、ジ−n−プロピルパーオキシジカーボネート、ジミリスチルパーオキシジカーボネート、ジ(2−エトキシエチル)パーオキシジカーボネート、ジ(2−エチルヘキシル)パーオキシジカーボネート、ジ(メトキシイソプロピル)パーオキシジカーボネート、ジ(4−tert−ブチルシクロヘキシル)パーオキシジカーボネートなどが挙げられ、特に、60℃での半減期が10〜110分のパーオキシジカーボネートを用いることが好ましい。   F) An organic peroxide is used as a radical polymerization initiator used for radical polymerization of vinyl ester. Organic peroxides include acetyl peroxide, isobutyl peroxide, diisopropyl peroxycarbonate, diallyl peroxydicarbonate, di-n-propyl peroxydicarbonate, dimyristyl peroxydicarbonate, di (2-ethoxyethyl) And peroxydicarbonate, di (2-ethylhexyl) peroxydicarbonate, di (methoxyisopropyl) peroxydicarbonate, di (4-tert-butylcyclohexyl) peroxydicarbonate, and the like. It is preferable to use peroxydicarbonate having a half-life of 10 to 110 minutes.

G)ビニルエステルのラジカル重合後に、重合を抑制するために禁止剤を添加する場合、残存する未分解のラジカル重合開始剤に対して5モル当量以下の禁止剤を添加する。禁止剤の種類としては、分子量が1,000以下の共役二重結合を有する化合物であって、ラジカルを安定化させて重合反応を阻害する化合物が挙げられる。具体的には、例えば、イソプレン、2,3−ジメチル−1,3−ブタジエン、2,3−ジエチル−1,3−ブタジエン、2−t−ブチル−1,3−ブタジエン、1,3−ペンタジエン、2,3−ジメチル−1,3−ペンタジエン、2,4−ジメチル−1,3−ペンタジエン、3,4−ジメチル−1,3−ペンタジエン、3−エチル−1,3−ペンタジエン、2−メチル−1,3−ペンタジエン、3−メチル−1,3−ペンタジエン、4−メチル−1,3−ペンタジエン、1,3−ヘキサジエン、2,4−ヘキサジエン、2,5−ジメチル−2,4−ヘキサジエン、1,3−オクタジエン、1,3−シクロペンタジエン、1,3−シクロヘキサジエン、1−メトキシ−1,3−ブタジエン、2−メトキシ−1,3−ブタジエン、1−エトキシ−1,3−ブタジエン、2−エトキシ−1,3−ブタジエン、2−ニトロ−1,3−ブタジエン、クロロプレン、1−クロロ−1,3−ブタジエン、1−ブロモ−1,3−ブタジエン、2−ブロモ−1,3−ブタジエン、フルベン、トロポン、オシメン、フェランドレン、ミルセン、ファルネセン、センブレン、ソルビン酸、ソルビン酸エステル、ソルビン酸塩、アビエチン酸等の炭素−炭素二重結合2個の共役構造よりなる共役ジエン;1,3,5−ヘキサトリエン、2,4,6−オクタトリエン−1−カルボン酸、エレオステアリン酸、桐油、コレカルシフェロール等の炭素−炭素二重結合3個の共役構造よりなる共役トリエン;シクロオクタテトラエン、2,4,6,8−デカテトラエン−1−カルボン酸、レチノール、レチノイン酸等の炭素−炭素二重結合4個以上の共役構造よりなる共役ポリエンなどのポリエンが挙げられる。なお、1,3−ペンタジエン、ミルセン、ファルネセンのように、複数の立体異性体を有するものについては、そのいずれを用いてもよい。更に、p−ベンゾキノン、ヒドロキノン、ヒドロキノンモノメチルエーテル、2−フェニル−1−プロペン、2−フェニル−1−ブテン、2,4−ジフェニル−4−メチル−1−ペンテン、3,5−ジフェニル−5−メチル−2−ヘプテン、2,4,6−トリフェニル−4,6−ジメチル−1−ヘプテン、3,5,7−トリフェニル−5−エチル−7−メチル−2−ノネン、1,3−ジフェニル−1−ブテン、2,4−ジフェニル−4−メチル−2−ペンテン、3,5−ジフェニル−5−メチル−3−ヘプテン、1,3,5−トリフェニル−1−ヘキセン、2,4,6−トリフェニル−4,6−ジメチル−2−ヘプテン、3,5,7−トリフェニル−5−エチル−7−メチル−3−ノネン、1−フェニル−1,3−ブタジエン、1,4−ジフェニル−1,3−ブタジエン等の芳香族系化合物が挙げられる。   G) When an inhibitor is added after radical polymerization of the vinyl ester in order to suppress polymerization, an inhibitor of 5 molar equivalents or less is added to the remaining undecomposed radical polymerization initiator. As a kind of inhibitor, a compound having a conjugated double bond having a molecular weight of 1,000 or less and stabilizing a radical to inhibit a polymerization reaction can be mentioned. Specifically, for example, isoprene, 2,3-dimethyl-1,3-butadiene, 2,3-diethyl-1,3-butadiene, 2-t-butyl-1,3-butadiene, 1,3-pentadiene 2,3-dimethyl-1,3-pentadiene, 2,4-dimethyl-1,3-pentadiene, 3,4-dimethyl-1,3-pentadiene, 3-ethyl-1,3-pentadiene, 2-methyl -1,3-pentadiene, 3-methyl-1,3-pentadiene, 4-methyl-1,3-pentadiene, 1,3-hexadiene, 2,4-hexadiene, 2,5-dimethyl-2,4-hexadiene 1,3-octadiene, 1,3-cyclopentadiene, 1,3-cyclohexadiene, 1-methoxy-1,3-butadiene, 2-methoxy-1,3-butadiene, 1-ethoxy- , 3-butadiene, 2-ethoxy-1,3-butadiene, 2-nitro-1,3-butadiene, chloroprene, 1-chloro-1,3-butadiene, 1-bromo-1,3-butadiene, 2-bromo -1,3-butadiene, fulvene, tropone, osymene, ferrandrene, myrcene, farnesene, semblene, sorbic acid, sorbic acid ester, sorbic acid salt, abietic acid, etc. Conjugated dienes; from conjugated structures of three carbon-carbon double bonds such as 1,3,5-hexatriene, 2,4,6-octatriene-1-carboxylic acid, eleostearic acid, tung oil, cholecalciferol Conjugated triene: cyclooctatetraene, 2,4,6,8-decatetraene-1-carboxylic acid, retinol, retinoic acid, etc. Carbon - include polyenes such as conjugated polyene consisting of carbon-carbon double bond of four or more conjugated structure. Any of those having a plurality of stereoisomers such as 1,3-pentadiene, myrcene, and farnesene may be used. Further, p-benzoquinone, hydroquinone, hydroquinone monomethyl ether, 2-phenyl-1-propene, 2-phenyl-1-butene, 2,4-diphenyl-4-methyl-1-pentene, 3,5-diphenyl-5 Methyl-2-heptene, 2,4,6-triphenyl-4,6-dimethyl-1-heptene, 3,5,7-triphenyl-5-ethyl-7-methyl-2-nonene, 1,3- Diphenyl-1-butene, 2,4-diphenyl-4-methyl-2-pentene, 3,5-diphenyl-5-methyl-3-heptene, 1,3,5-triphenyl-1-hexene, 2,4 , 6-triphenyl-4,6-dimethyl-2-heptene, 3,5,7-triphenyl-5-ethyl-7-methyl-3-nonene, 1-phenyl-1,3-butadiene, 1,4 -Diff Aromatic compounds such-1,3-butadiene and the like.

H)残存するビニルエステルが極力除去されたポリビニルエステルのアルコール溶液をけん化反応に用いる。好ましくは残存モノマーの除去率99%以上、より好ましくは99.5%以上、更に好ましくは99.8%以上のものを用いる。   H) An alcohol solution of polyvinyl ester from which the remaining vinyl ester is removed as much as possible is used for the saponification reaction. Preferably, the residual monomer removal rate is 99% or more, more preferably 99.5% or more, still more preferably 99.8% or more.

A)〜H)を適宜組み合わせることで所望のPVAが得られる。こうして得られるPVAを用いてカルボン酸のアルカリ金属塩の含有量が特定の範囲にあるフィルムを製造することにより、加熱による着色が少なく、界面活性剤を含む場合であってもその分散状態に優れるフィルムが容易に得られる。   A desired PVA can be obtained by appropriately combining A) to H). By producing a film in which the content of the alkali metal salt of the carboxylic acid is in a specific range using the PVA thus obtained, there is little coloring due to heating, and even in the case of containing a surfactant, the dispersion state is excellent. A film is easily obtained.

本発明のフィルムは、カルボン酸のアルカリ金属塩を含有し、その含有量は、アルカリ金属の質量換算で0.5質量%以下であり、好ましくは0.37質量%以下、より好ましくは0.28質量%以下、更に好ましくは0.23質量%以下である。当該含有量が0.5質量%を超える場合、加熱による着色の少ないフィルムを得ることが困難になる。このような含有量を有するフィルムは、製造に使用されるPVA等の原料中に含まれるカルボン酸のアルカリ金属塩の含有量を調整することにより得ることができる。   The film of the present invention contains an alkali metal salt of a carboxylic acid, and the content thereof is 0.5% by mass or less, preferably 0.37% by mass or less, more preferably 0.8% by mass in terms of alkali metal mass. It is 28 mass% or less, More preferably, it is 0.23 mass% or less. When the said content exceeds 0.5 mass%, it becomes difficult to obtain a film with little coloring by heating. A film having such a content can be obtained by adjusting the content of an alkali metal salt of a carboxylic acid contained in a raw material such as PVA used for production.

本発明において、カルボン酸のアルカリ金属塩の含有量(アルカリ金属の質量換算値)は、PVA又はフィルムを白金ルツボで灰化したのち、得られた灰分をICP発光分析により測定して得たアルカリ金属イオン量から求めることができる。   In the present invention, the content of the alkali metal salt of the carboxylic acid (the alkali metal mass conversion value) is obtained by ashing the PVA or film with a platinum crucible and then measuring the obtained ash content by ICP emission analysis. It can be determined from the amount of metal ions.

カルボン酸のアルカリ金属塩としては、上記したけん化工程で使用するアルカリ触媒、例えば水酸化ナトリウム、水酸化カリウム、ナトリウムメチラートなどをカルボン酸で中和して得られるもの、また、上記した重合工程で使用する酢酸ビニルなどのビニルエステルの加アルコール分解を抑制する目的で添加されるカルボン酸が、けん化工程で中和されて得られるもの、ラジカル重合を停止させるために添加する禁止剤として共役二重結合を有するカルボン酸を用いた場合に、当該カルボン酸がけん化工程で中和されて得られるもの、あるいは意図的に添加されたものなどが含まれる。具体例としては、酢酸ナトリウム、酢酸カリウム、プロピオン酸ナトリウム、プロピオン酸カリウム、グリセリン酸ナトリウム、グリセリン酸カリウム、リンゴ酸ナトリウム、リンゴ酸カリウム、クエン酸ナトリウム、クエン酸カリウム、乳酸ナトリウム、乳酸カリウム、酒石酸ナトリウム、酒石酸カリウム、サリチル酸ナトリウム、サリチル酸カリウム、マロン酸ナトリウム、マロン酸カリウム、コハク酸ナトリウム、コハク酸カリウム、マレイン酸ナトリウム、マレイン酸カリウム、フタル酸ナトリウム、フタル酸カリウム、シュウ酸ナトリウム、シュウ酸カリウム、グルタル酸ナトリウム、グルタル酸カリウム、アビエチン酸ナトリウム、アビエチン酸カリウム、ソルビン酸ナトリウム、ソルビン酸カリウム、2,4,6−オクタトリエン−1−カルボン酸ナトリウム、2,4,6−オクタトリエン−1−カルボン酸カリウム、エレオステアリン酸ナトリウム、エレオステアリン酸カリウム、2,4,6,8−デカテトラエン−1−カルボン酸ナトリウム、2,4,6,8−デカテトラエン−1−カルボン酸カリウム、レチノイン酸ナトリウム、レチノイン酸カリウムなどが挙げられるが、これらに限定されるものではない。   Examples of the alkali metal salt of carboxylic acid include those obtained by neutralizing an alkali catalyst used in the above saponification step, such as sodium hydroxide, potassium hydroxide, sodium methylate, etc. with carboxylic acid, and the above polymerization step. Carboxylic acid added for the purpose of suppressing the alcoholysis of vinyl esters such as vinyl acetate used in saponification is obtained by neutralization in the saponification process, and as a inhibitor added to stop radical polymerization. When a carboxylic acid having a heavy bond is used, it includes those obtained by neutralizing the carboxylic acid in a saponification step, or those intentionally added. Specific examples include sodium acetate, potassium acetate, sodium propionate, potassium propionate, sodium glycerate, potassium glycerate, sodium malate, potassium malate, sodium citrate, potassium citrate, sodium lactate, potassium lactate, tartaric acid Sodium, potassium tartrate, sodium salicylate, potassium salicylate, sodium malonate, potassium malonate, sodium succinate, potassium succinate, sodium maleate, potassium maleate, sodium phthalate, potassium phthalate, sodium oxalate, potassium oxalate , Sodium glutarate, potassium glutarate, sodium abietic acid, potassium abietic acid, sodium sorbate, potassium sorbate, 2,4,6-octatri Sodium -1-carboxylate, potassium 2,4,6-octatriene-1-carboxylate, sodium eleostearate, potassium eleostearate, sodium 2,4,6,8-decatetraene-1-carboxylate 2,4,6,8-decatetraene-1-carboxylate, sodium retinoate, potassium retinoate and the like, but are not limited thereto.

本発明のフィルムは可塑剤を含むことができる。可塑剤の種類に特に制限はないが、グリセリン、トリメチレングリコール、プロピレングリコール、ジエチレングリコール等の多価アルコール系可塑剤が好ましく、特にグリセリンが好ましい。可塑剤の含有量は、PVA100質量部に対して30質量部以下であることが好ましく、25質量部以下であることがより好ましい。可塑剤の含有量が30質量部を超えると、可塑剤がフィルムの表面ににじみ出ることがある。   The film of the present invention may contain a plasticizer. Although there is no restriction | limiting in particular in the kind of plasticizer, Polyhydric alcohol type plasticizers, such as glycerol, trimethylene glycol, propylene glycol, diethylene glycol, are preferable, and glycerol is especially preferable. The plasticizer content is preferably 30 parts by mass or less and more preferably 25 parts by mass or less with respect to 100 parts by mass of PVA. If the plasticizer content exceeds 30 parts by mass, the plasticizer may ooze out on the surface of the film.

本発明のフィルムは界面活性剤を含むことができる。界面活性剤としては、アニオン性界面活性剤、ノニオン性界面活性剤、カチオン性界面活性剤、両性界面活性剤が挙げられ、これらのうちの1種又は2種以上を用いることができる。   The film of the present invention can contain a surfactant. Examples of the surfactant include an anionic surfactant, a nonionic surfactant, a cationic surfactant, and an amphoteric surfactant, and one or more of these can be used.

アニオン性界面活性剤としては、例えば、ラウリン酸カリウム等のカルボン酸型;オクチルサルフェート等の硫酸エステル型;ドデシルベンゼンスルホネート、アルキルベンゼンスルホン酸ナトリウム等のスルホン酸型;ポリオキシエチレンラウリルエーテルリン酸エステルモノエタノールアミン塩、オクチルリン酸エステルカリウム塩、ラウリルリン酸エステルカリウム塩、ステアリルリン酸エステルカリウム塩、オクチルエーテルリン酸エステルカリウム塩、ドデシルリン酸エステルナトリウム塩、テトラデシルリン酸エステルナトリウム塩、ジオクチルリン酸エステルナトリウム塩、トリオクチルリン酸エステルナトリウム塩、ポリオキシエチレンアリールフェニルエーテルリン酸エステルカリウム塩、ポリオキシエチレンアリールフェニルエーテルリン酸エステルアミン塩などが挙げられる。   Examples of the anionic surfactant include carboxylic acid types such as potassium laurate; sulfate ester types such as octyl sulfate; sulfonic acid types such as dodecylbenzenesulfonate and sodium alkylbenzenesulfonate; polyoxyethylene lauryl ether phosphate mono Ethanolamine salt, octyl phosphate potassium salt, lauryl phosphate potassium salt, stearyl phosphate potassium salt, octyl ether phosphate potassium salt, dodecyl phosphate sodium salt, tetradecyl phosphate sodium salt, dioctyl phosphate Ester sodium salt, Trioctyl phosphate sodium salt, Polyoxyethylene aryl phenyl ether phosphate potassium salt, Polyoxyethylene aryl ester Such as alkenyl ether phosphate amine salts.

ノニオン性界面活性剤としては、例えば、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンラウリルエーテル等のアルキルエーテル型;ポリオキシエチレンオクチルフェニルエーテル等のアルキルフェニルエーテル型;ポリオキシエチレンラウレート等のアルキルエステル型;ポリオキシエチレンラウリルアミノエーテル等のアルキルアミン型;ポリオキシエチレンラウリン酸アミド等のアルキルアミド型;ポリオキシエチレンポリオキシプロピレンエーテル等のポリプロピレングリコールエーテル型;ラウリン酸ジエタノールアミド、オレイン酸ジエタノールアミド等のアルカノールアミド型;ポリオキシアルキレンアリルフェニルエーテル等のアリルフェニルエーテル型などが挙げられる。   Examples of nonionic surfactants include alkyl ether types such as polyoxyethylene oleyl ether and polyoxyethylene lauryl ether; alkylphenyl ether types such as polyoxyethylene octylphenyl ether; alkyl ester types such as polyoxyethylene laurate. Alkylamine type such as polyoxyethylene lauryl amino ether; alkylamide type such as polyoxyethylene lauric acid amide; polypropylene glycol ether type such as polyoxyethylene polyoxypropylene ether; lauric acid diethanolamide, oleic acid diethanolamide, etc. Examples include alkanolamide type; allyl phenyl ether type such as polyoxyalkylene allyl phenyl ether.

カチオン性界面活性剤としては、例えば、ラウリルアミン塩酸塩等のアミン類;ラウリルトリメチルアンモニウムクロライド等の第四級アンモニウム塩類;ラウリルビリジニウムクロライド等のピリジウム塩などが挙げられる。   Examples of the cationic surfactant include amines such as laurylamine hydrochloride; quaternary ammonium salts such as lauryltrimethylammonium chloride; and pyridium salts such as laurylbiridinium chloride.

両性界面活性剤としては、例えば、N−アルキル−N,N−ジメチルアンモニウムベタインなどが挙げられる。   Examples of amphoteric surfactants include N-alkyl-N, N-dimethylammonium betaine.

界面活性剤の含有量は、PVA100質量部に対して0.01〜5質量部の範囲内であることが好ましく、0.02〜3質量部の範囲内であることがより好ましい。   The content of the surfactant is preferably in the range of 0.01 to 5 parts by mass and more preferably in the range of 0.02 to 3 parts by mass with respect to 100 parts by mass of PVA.

本発明のフィルムは無機フィラーを含むことができる。無機フィラーとしては、例えば、シリカ、表面処理されていてもよい重質又は軽質の炭酸カルシウム、水酸化アルミニウム、酸化アルミニウム、酸化チタン、珪藻土、マイカ、炭酸マグネシウム、カオリン、ハロサイト、バイロフェライト、セリサイト等のクレー、タルクなどが挙げられ、これらのうちの1種又は2種以上を用いることができる。これらの中でも、PVAへの分散性の観点から、シリカ、タルクが好ましい。無機フィラーの含有量は、PVA100質量部に対して10質量部以下であることが好ましい。   The film of the present invention can contain an inorganic filler. Examples of the inorganic filler include silica, heavy or light calcium carbonate that may be surface-treated, aluminum hydroxide, aluminum oxide, titanium oxide, diatomaceous earth, mica, magnesium carbonate, kaolin, halosite, viroferrite, selenium. Examples include clays such as sites, talc, and the like, and one or more of these can be used. Among these, silica and talc are preferable from the viewpoint of dispersibility in PVA. It is preferable that content of an inorganic filler is 10 mass parts or less with respect to 100 mass parts of PVA.

本発明のフィルムは、上記したもの以外にも、架橋剤、着色剤、香料、増量剤、消泡剤、剥離剤、紫外線吸収剤、澱粉、PVA以外の樹脂(例えば、PVA以外の水溶性高分子等)など、他の成分を必要に応じて更に含むことができる。本発明のフィルムの全質量に対する、PVA、可塑剤、界面活性剤及び無機フィラーの合計の質量の占める割合は、50〜100質量%の範囲内であることが好ましく、80〜100質量%の範囲内であることがより好ましく、90〜100質量%の範囲内であることが更に好ましい。   In addition to those described above, the film of the present invention has a crosslinking agent, a colorant, a fragrance, an extender, an antifoaming agent, a release agent, an ultraviolet absorber, starch, and a resin other than PVA (for example, a water-soluble high-performance material other than PVA). Other components such as molecules) can be further included as necessary. The ratio of the total mass of PVA, plasticizer, surfactant and inorganic filler to the total mass of the film of the present invention is preferably in the range of 50 to 100% by mass, and in the range of 80 to 100% by mass. It is more preferable that the content is within the range of 90 to 100% by mass.

本発明のフィルムの厚みに特に制限はなく、本発明のフィルムの用途や使用態様などに応じて適宜設定することができるが、1〜100μmの範囲内であることが好ましく、3〜50μmの範囲内であることがより好ましい。なお、フィルムの厚みは、任意の5箇所の厚みを測定し、それらの平均値として求めることができる。   There is no restriction | limiting in particular in the thickness of the film of this invention, Although it can set suitably according to the use, usage aspect, etc. of the film of this invention, it is preferable to exist in the range of 1-100 micrometers, The range of 3-50 micrometers More preferably, it is within. In addition, the thickness of a film can measure the thickness of arbitrary 5 places, and can obtain | require it as those average values.

カルボン酸のアルカリ金属塩の含有量が上記範囲にある本発明のフィルムの製造方法に特に制限はないが、前記PVAを含む製膜原液を乾燥する工程を有する本発明の製造方法によれば、本発明のフィルムを効率的に製造することができ、好ましい。   Although there is no restriction | limiting in particular in the manufacturing method of the film of this invention which content of the alkali metal salt of carboxylic acid exists in the said range, According to the manufacturing method of this invention which has the process of drying the film forming stock solution containing the said PVA, The film of the present invention can be efficiently produced, which is preferable.

製膜原液の調製に使用される液体媒体としては、例えば、水、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン、エチレングリコール、グリセリン、プロピレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、トリメチロールプロパン、エチレンジアミン、ジエチレントリアミンなどを挙げることができ、これらのうちの1種又は2種以上を使用することができる。そのうちでも、環境に与える負荷が小さいことや回収性の点から水が好ましい。製膜原液におけるPVAの濃度に特に制限はなく、例えば、0.1〜50質量%とすることができる。   Examples of the liquid medium used for preparing the membrane forming stock solution include water, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, ethylene glycol, glycerin, propylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, Trimethylolpropane, ethylenediamine, diethylenetriamine and the like can be mentioned, and one or more of these can be used. Among these, water is preferable from the viewpoint of a small environmental load and recoverability. There is no restriction | limiting in particular in the density | concentration of PVA in a film forming undiluted | stock solution, For example, it can be 0.1-50 mass%.

製膜原液を調製するに際して、PVAと前記した可塑剤、界面活性剤、無機フィラー、他の成分等の添加物との混合方法に特に制限はなく、例えば、PVAのペレットと添加物とを混合して混合物として、これと液体媒体とを更に混合する方法;液体媒体に溶解させたPVAと添加物とを混合する方法;添加物を界面活性剤に分散させてからPVAと混合する方法;添加物を可塑剤に分散させてからPVAとを混合する方法などが挙げられる。これらの中でも、添加物がより均一に分散したフィルムを容易に得ることができることから、添加物を界面活性剤に分散させてからPVAと混合する方法を採用することが好ましく、添加物を界面活性剤に分散させてからPVAと液体媒体とを混合する方法を採用することがより好ましい。   There is no particular limitation on the method of mixing the PVA with additives such as the above-mentioned plasticizer, surfactant, inorganic filler and other components when preparing the film forming stock solution. For example, PVA pellets and additives are mixed. Then, this is mixed with the liquid medium as a mixture; the PVA dissolved in the liquid medium is mixed with the additive; the additive is dispersed in the surfactant and then mixed with the PVA; And a method of dispersing the product in a plasticizer and then mixing with PVA. Among these, since it is possible to easily obtain a film in which the additive is more uniformly dispersed, it is preferable to adopt a method in which the additive is dispersed in a surfactant and then mixed with PVA. It is more preferable to adopt a method in which PVA and a liquid medium are mixed after being dispersed in the agent.

フィルムに、上記したような可塑剤、界面活性剤、無機フィラー、他の成分などの添加物のうちの1種又は2種以上を配合する場合には、製膜前に予めこれらの成分を上記製膜原液に含有させておくことが好ましい。これらの成分の配合時期に特に制限はなく、上記のようにしてPVAと界面活性剤とが混合されたものに更に配合したり、あるいは、PVAと界面活性剤の混合前にPVA及び界面活性剤のうちの一方又は両方に予め配合したりする方法が挙げられる。   When one or more of additives such as the above-mentioned plasticizer, surfactant, inorganic filler, and other components are blended in the film, these components are added in advance before film formation. It is preferable to make it contain in the film-forming stock solution. There is no particular limitation on the blending time of these components, and further blending into the mixture of PVA and surfactant as described above, or before mixing of PVA and surfactant, The method of mix | blending in advance in one or both of these is mentioned.

製膜原液を乾燥する工程において、その具体的な乾燥方法に特に制限はなく、キャストフィルムを製造する際に一般的に採用されている乾燥方法を採用することができる。製膜されたフィルムには、必要に応じて熱処理を施すことができる。当該熱処理の温度は、70〜145℃の範囲内であることが好ましく、100〜135℃の範囲内であることがより好ましい。熱処理の時間としては、例えば、1秒〜1時間の範囲内が挙げられる。なお、当該熱処理をはじめとするフィルムを製造する工程中で、高すぎる温度に晒されると得られるフィルムの水膨潤性が低下する場合があることから、製膜原液を用いてフィルムを製造するまでの間の製膜原液及びフィルムの温度を180℃以下に保つことが好ましく、150℃以下に保つことが好ましく、145℃以下に保つことが更に好ましく、135℃以下に保つことが特に好ましい。   In the step of drying the film-forming stock solution, the specific drying method is not particularly limited, and a drying method generally employed when producing a cast film can be employed. The formed film can be heat-treated as necessary. The temperature of the heat treatment is preferably in the range of 70 to 145 ° C, and more preferably in the range of 100 to 135 ° C. Examples of the heat treatment time include a range of 1 second to 1 hour. In addition, in the process of manufacturing the film including the heat treatment, the water swellability of the obtained film may be reduced when exposed to a temperature that is too high, and thus until the film is manufactured using the film forming stock solution. It is preferable to keep the film forming stock solution and the film at a temperature of 180 ° C. or lower, preferably 150 ° C. or lower, more preferably 145 ° C. or lower, and particularly preferably 135 ° C. or lower.

また必要に応じて、乾燥前、乾燥中又は乾燥後のうちのいずれか1つ又は2つ以上の段階で一軸又は二軸の延伸を行うこともできる。延伸の際の温度としては、20〜120℃の範囲内であることが好ましい。また、延伸倍率は、延伸前の長さに基づいて1.05〜5倍の範囲内であることが好ましく、1.1〜3倍の範囲内であることがより好ましい。更に必要であれば、延伸後にフィルムを熱固定して残存応力を低下させることもできる。   If necessary, uniaxial or biaxial stretching may be performed at any one or two or more stages before, during or after drying. The stretching temperature is preferably in the range of 20 to 120 ° C. In addition, the draw ratio is preferably in the range of 1.05 to 5 times, more preferably in the range of 1.1 to 3 times, based on the length before drawing. Further, if necessary, the residual stress can be reduced by heat fixing the film after stretching.

本発明のフィルムは加熱による着色が少ない。本発明のフィルムは、120℃において3時間加熱したときのYI値が7以下であることが好ましく、5以下であることがより好ましく、4以下であることが更に好ましく、2以下であることが特に好ましく、また、0.3以上であることが好ましい。YI値は、JIS K 7105に準じて求めることができ、具体的には実施例において後述する方法により求めることができる。   The film of the present invention is less colored by heating. The YI value of the film of the present invention when heated at 120 ° C. for 3 hours is preferably 7 or less, more preferably 5 or less, further preferably 4 or less, and preferably 2 or less. Particularly preferred is 0.3 or more. The YI value can be determined according to JIS K 7105, and specifically can be determined by the method described later in the examples.

本発明のフィルムの用途に特に制限はないが、本発明のフィルムは、加熱による着色が少なく、界面活性剤を含む場合であってもその分散状態に優れることから、繊維包装材料、農業用フィルム(野菜保温用、野菜生育用等のフィルム)、ガスバリア材、フィルター、偏光フィルム等の光学フィルムなどの用途をはじめ、水圧転写用、包装用、農業用、土木用、医療用、工業用、日用雑貨用、玩具用などの水溶性フィルムや生分解性フィルムの用途に好ましく使用することができる。   The use of the film of the present invention is not particularly limited, but the film of the present invention is less colored by heating and is excellent in its dispersed state even when it contains a surfactant. (Films for warming vegetables, growing vegetables, etc.), gas barrier materials, filters, optical films such as polarizing films, hydraulic transfer, packaging, agriculture, civil engineering, medical, industrial, Japan It can be preferably used for water-soluble films and biodegradable films for household goods and toys.

以下、実施例及び比較例により本発明を更に詳細に説明する。なお、以下の実施例及び比較例において「部」及び「%」は、特に断らない限り質量基準である。「重合度」は「粘度平均重合度」を意味する。   Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. In the following examples and comparative examples, “parts” and “%” are based on mass unless otherwise specified. “Polymerization degree” means “viscosity average polymerization degree”.

[PVAの重合度及びけん化度]
PVAの重合度及びけん化度は、JIS−K6726に記載の方法により求めた。
[Polymerization degree and saponification degree of PVA]
The degree of polymerization and saponification of PVA were determined by the method described in JIS-K6726.

[PVA及びフィルムにおける酢酸ナトリウムの含有量]
PVA及びフィルムにおける酢酸ナトリウムの含有量(ナトリウムの質量換算値)は、PVA又はフィルムを灰化した後に、ジャーレルアッシュ社製ICP発光分析装置「IRIS AP」を用いて、得られた灰分中のナトリウム量を測定することにより求めた。
[Content of sodium acetate in PVA and film]
The content of sodium acetate in the PVA and film (mass converted value of sodium) was determined by using the Jerrel Ash ICP emission analyzer “IRIS AP” after ashing the PVA or film. This was determined by measuring the amount of sodium.

[PVAのGPC測定]
(PVAの加熱)
PVAの粉体を水に入れ、95℃で1時間加熱して溶解させた後、室温に冷却して、PVAの2%水溶液を得た。次いで、ポリエチレンテレフタレートフィルム上(20cm×20cm)に得られた水溶液を流延し、23℃、50%RHの条件下で2週間乾燥させて、厚み50μmのフィルムを得た。得られたフィルムをステンレス製の金属型枠(20cm×20cmで幅1cmの金属枠)にクリップで固定し、ギアオーブンにて120℃で3時間加熱した。
[GPC measurement of PVA]
(PVA heating)
The PVA powder was put in water, heated at 95 ° C. for 1 hour to dissolve, and then cooled to room temperature to obtain a 2% aqueous solution of PVA. Next, the obtained aqueous solution was cast on a polyethylene terephthalate film (20 cm × 20 cm) and dried for 2 weeks under the conditions of 23 ° C. and 50% RH to obtain a film having a thickness of 50 μm. The obtained film was fixed with a clip to a stainless steel metal mold (20 cm × 20 cm, 1 cm wide metal frame), and heated in a gear oven at 120 ° C. for 3 hours.

(測定装置)
VISCOTECH製「GPCmax」を用いてGPC測定を行った。示差屈折率検出器としてVISCOTECH製「TDA305」を用いた。紫外可視吸光光度検出器としてVISCOTECH製「UV Detector2600」を用いた。当該吸光光度検出器の検出用セルの光路長は10mmである。GPCカラムには昭和電工株式会社製「GPC HFIP−806M」を用いた。また、解析ソフトには、装置付属のOmniSEC(Version 4.7.0.406)を用いた。
(measuring device)
GPC measurement was performed using “GPCmax” manufactured by VISCOTECH. As a differential refractive index detector, “TDA305” manufactured by VISCOTECH was used. “UV Detector 2600” manufactured by VISCOTECH was used as an ultraviolet-visible absorption detector. The optical path length of the detection cell of the absorptiometric detector is 10 mm. “GPC HFIP-806M” manufactured by Showa Denko KK was used for the GPC column. Moreover, OmniSEC (Version 4.7.0.406) attached to the apparatus was used as analysis software.

(測定条件)
上記方法で得られた加熱後のフィルムの中央付近から試料を採取した。当該試料を、20mmol/Lのトリフルオロ酢酸ナトリウム含有HFIPに溶解し、PVAの1.00mg/mL溶液を調製した。当該溶液を0.45μmのポリテトラフルオロエチレン製フィルターでろ過した後、測定に用いた。
(Measurement condition)
A sample was collected from the vicinity of the center of the heated film obtained by the above method. The sample was dissolved in 20 mmol / L sodium trifluoroacetate-containing HFIP to prepare a 1.00 mg / mL solution of PVA. The solution was filtered through a 0.45 μm polytetrafluoroethylene filter and used for measurement.

移動相には、20mmol/Lのトリフルオロ酢酸ナトリウム含有HFIPを用いた。移動相の流速は1.0mL/分とした。試料注入量は100μLとし、GPCカラム温度40℃で測定した。   As the mobile phase, HFIP containing 20 mmol / L sodium trifluoroacetate was used. The mobile phase flow rate was 1.0 mL / min. The sample injection amount was 100 μL, and measurement was performed at a GPC column temperature of 40 ° C.

なお、PVAの粘度平均重合度が2400を超える試料の場合には、適宜希釈した溶液(100μL)を用いてGPC測定を行った。実測値から下記式により、試料濃度が1.00mg/mLの場合における吸光度を算出した。α(mg/mL)は希釈された試料の濃度である。
試料濃度1.00mg/mLにおける吸光度=(1.00/α)×吸光度の測定値
In addition, in the case of the sample whose viscosity average polymerization degree of PVA exceeds 2400, GPC measurement was performed using the solution (100 microliters) diluted suitably. The absorbance at a sample concentration of 1.00 mg / mL was calculated from the measured value by the following formula. α (mg / mL) is the concentration of the diluted sample.
Absorbance at a sample concentration of 1.00 mg / mL = (1.00 / α) × measured value of absorbance

(検量線の作成)
標品として、Agilent Technologies製のPMMA(ピークトップ分子量:1,944,000、790,000、467,400、271,400、144,000、79,250、35,300、13,300、7,100、1,960、1,020、690)を測定し、示差屈折率検出器及び吸光光度検出器のそれぞれについて、溶出容量をPMMA分子量に換算するための検量線を作成した。各検量線の作成には、前記解析ソフトを用いた。
なお、本測定においてはPMMAの測定において、1,944,000と271,400の両分子量の標準試料同士のピークが分離できるカラムを用いた。また、本装置においては、示差屈折率検出器から得られるピーク強度はmV(ミリボルト)で、紫外可視吸光光度検出器から得られるピーク強度は吸光度(abs unit:アブソーバンスユニット)で表される。
(Create a calibration curve)
As a standard, PMMA (peak top molecular weight: 1,944,000, 790,000, 467,400, 271,400, 144,000, 79,250, 35,300, 13,300, 7, manufactured by Agilent Technologies 100, 1,960, 1,020, 690), and a calibration curve for converting the elution volume into the PMMA molecular weight was prepared for each of the differential refractive index detector and the absorptiometric detector. The analytical software was used to create each calibration curve.
In this measurement, a column capable of separating peaks of standard samples having both molecular weights of 1,944,000 and 271400 was used in the measurement of PMMA. Moreover, in this apparatus, the peak intensity obtained from the differential refractive index detector is expressed in mV (millivolt), and the peak intensity obtained from the ultraviolet-visible absorbance detector is expressed in absorbance (abs unit: Absorbance unit).

[フィルムの着色性]
「PVAのGPC測定」−「PVAの加熱」の項で上記した方法により、PVAを含むフィルムの作製と加熱を行った。そして、加熱後のフィルムについて、スガ試験機株式会社製SMカラーコンピュータ「SM−T−H」を用いてJIS K 7105に従って黄色度(YI値)を求め、加熱によるフィルムの着色性の指標とした。
[Colorability of film]
A film containing PVA was prepared and heated by the method described above in “GPC measurement of PVA” — “PVA heating”. And about the film after a heating, yellowness (YI value) was calculated | required according to JISK7105 using SM color computer "SM-TH" by Suga Test Instruments Co., Ltd., and it was set as the index of the coloring property of the film by heating. .

[フィルムにおける界面活性剤の分散状態]
PVA100部とラウリン酸ジエタノールアミド0.1部を95℃で1時間加熱して水に溶解させた後、室温に冷却して、PVAの4%水溶液を得た。ポリエチレンテレフタレートフィルム上(20cm×20cm)に得られた水溶液を流延し、23℃、50%RHの条件下で1週間乾燥させて、厚み50μmのフィルムを得た。得られたフィルムを200倍の光学顕微鏡で観察し、界面活性剤の分散状態(凝集物の有無)を評価した。
[Dispersed state of surfactant in film]
100 parts of PVA and 0.1 part of lauric acid diethanolamide were heated at 95 ° C. for 1 hour and dissolved in water, and then cooled to room temperature to obtain a 4% aqueous solution of PVA. The obtained aqueous solution was cast on a polyethylene terephthalate film (20 cm × 20 cm) and dried for 1 week under conditions of 23 ° C. and 50% RH to obtain a film having a thickness of 50 μm. The obtained film was observed with a 200-fold optical microscope, and the dispersion state of the surfactant (presence of aggregates) was evaluated.

[ポリ酢酸ビニルの合成]
(PVAc−1)
撹拌機、温度計、窒素導入チューブ、還流管を備え付けた6Lセパラブルフラスコに、あらかじめ脱酸素した、アセトアルデヒド(AA)を500ppm、アセトアルデヒドジメチルアセタール(DMA)を50ppm含有する酢酸ビニル(VAM)2,555g;アセトアルデヒドジメチルアセタールを50ppm含有し、アセトアルデヒドの含有量が1ppm未満であるメタノール(MeOH)945g;酢酸ビニル中の酒石酸の含有量が20ppmとなる量の酒石酸1%メタノール溶液を仕込んだ。前記フラスコ内に窒素を吹き込みながら、フラスコ内の温度を60℃に保った。なお、還流管には−10℃のエチレングリコール/水溶液を循環させた。ジn−プロピルパーオキシジカーボネートの0.55質量%メタノール溶液を調製し、18.6mLを前記フラスコ内に添加して重合を開始した。このときのジn−プロピルパーオキシジカーボネートの添加量は0.081gであった。ジn−プロピルパーオキシジカーボネートのメタノール溶液を20.9mL/時間の速度で重合終了まで逐次添加した。重合中、フラスコ内の温度を60℃に保った。重合開始から4時間後、重合液の固形分濃度が25.1%となった時点で、ソルビン酸を0.0141g(重合液中に未分解で残存するジn−プロピルパーオキシジカーボネートの3モル当量に相当する)含有するメタノールを1200g添加した後、重合液を冷却して重合を停止した。重合停止時の酢酸ビニルの重合率は35.0%であった。重合液を室温まで冷却した後、水流アスピレータを用いてフラスコ内を減圧することにより、酢酸ビニル及びメタノールを留去し、ポリ酢酸ビニルを析出させた。析出したポリ酢酸ビニルにメタノールを3,000g添加し、30℃で加温しつつポリ酢酸ビニルを溶解させた後、再び水流アスピレータを用いてフラスコ内を減圧することにより、酢酸ビニル及びメタノールを留去してポリ酢酸ビニルを析出させた。ポリ酢酸ビニルをメタノールに溶解させた後、析出させる操作を更に2回繰り返した。析出したポリ酢酸ビニルにメタノールを添加し、酢酸ビニルの除去率99.8%のポリ酢酸ビニル(PVAc−1)の40質量%のメタノール溶液を得た。
[Synthesis of polyvinyl acetate]
(PVAc-1)
A 6-liter separable flask equipped with a stirrer, a thermometer, a nitrogen introduction tube, and a reflux tube was previously deoxygenated and contained vinyl acetate (VAM) 2 containing 500 ppm of acetaldehyde (AA) and 50 ppm of acetaldehyde dimethyl acetal (DMA). 555 g; methanol (MeOH) 945 g containing 50 ppm of acetaldehyde dimethyl acetal and acetaldehyde content of less than 1 ppm; a 1% methanol solution of tartaric acid in an amount of 20 ppm of tartaric acid in vinyl acetate was charged. While blowing nitrogen into the flask, the temperature in the flask was kept at 60 ° C. In addition, -10 degreeC ethylene glycol / water solution was circulated through the reflux pipe. A 0.55 mass% methanol solution of di-n-propyl peroxydicarbonate was prepared, and 18.6 mL was added to the flask to initiate polymerization. The amount of di-n-propyl peroxydicarbonate added at this time was 0.081 g. A methanol solution of di-n-propyl peroxydicarbonate was sequentially added at a rate of 20.9 mL / hour until the completion of polymerization. During the polymerization, the temperature in the flask was kept at 60 ° C. Four hours after the start of polymerization, when the solid content concentration of the polymerization solution reached 25.1%, 0.0141 g of sorbic acid (3% of di-n-propyl peroxydicarbonate remaining undecomposed in the polymerization solution) was obtained. After adding 1200 g of contained methanol (corresponding to a molar equivalent), the polymerization liquid was cooled to terminate the polymerization. When the polymerization was stopped, the polymerization rate of vinyl acetate was 35.0%. After the polymerization solution was cooled to room temperature, the pressure in the flask was reduced using a water flow aspirator to distill off vinyl acetate and methanol, thereby precipitating polyvinyl acetate. After 3,000 g of methanol was added to the precipitated polyvinyl acetate and the polyvinyl acetate was dissolved while heating at 30 ° C., the pressure in the flask was reduced again using a water aspirator, so that the vinyl acetate and methanol were retained. And polyvinyl acetate was precipitated. The operation of dissolving polyvinyl acetate in methanol and then precipitating it was further repeated twice. Methanol was added to the precipitated polyvinyl acetate to obtain a 40% by mass methanol solution of polyvinyl acetate (PVAc-1) with a vinyl acetate removal rate of 99.8%.

得られたPVAc−1のメタノール溶液の一部を用いて粘度平均重合度を測定した。PVAc−1のメタノール溶液に、ポリ酢酸ビニル中の酢酸ビニル単量体単位に対する水酸化ナトリウムのモル比が、0.1となるように水酸化ナトリウムの10%メタノール溶液を添加した。ゲル化物が生成した時点でゲルを粉砕し、メタノールでソックスレー抽出を3日間行った。得られたPVAを乾燥し、粘度平均重合度の測定に供した。粘度平均重合度は1700であった。   The viscosity average degree of polymerization was measured using a part of the obtained methanol solution of PVAc-1. To a methanol solution of PVAc-1, a 10% methanol solution of sodium hydroxide was added so that the molar ratio of sodium hydroxide to vinyl acetate monomer units in polyvinyl acetate was 0.1. When the gelled product was formed, the gel was pulverized and subjected to Soxhlet extraction with methanol for 3 days. The obtained PVA was dried and subjected to measurement of the viscosity average polymerization degree. The viscosity average degree of polymerization was 1700.

(PVAc−2〜PVAc−20)
表1に記載した条件に変更したこと以外は、PVAc−1と同様の方法により、ポリ酢酸ビニル(PVAc−2〜PVAc−20)を得た。なお、表1中の「ND」は1ppm未満を意味する。得られた各ポリ酢酸ビニルの粘度平均重合度をPVAc−1と同様にして求めた。その結果を表1に示す。
(PVAc-2 to PVAc-20)
Polyvinyl acetate (PVAc-2 to PVAc-20) was obtained by the same method as PVAc-1, except that the conditions described in Table 1 were changed. In Table 1, “ND” means less than 1 ppm. Viscosity average polymerization degree of each obtained polyvinyl acetate was calculated | required similarly to PVAc-1. The results are shown in Table 1.

Figure 2015093499
Figure 2015093499

[実施例1]
PVAc−1の40質量%のメタノール溶液に対して、総固形分濃度(けん化濃度)が30質量%となり、且つ、PVAc−1中の酢酸ビニル単量体単位に対する水酸化ナトリウムのモル比が0.02となるように、メタノール及び水酸化ナトリウムの8%メタノール溶液を撹拌下に加え、40℃でけん化反応を開始した。けん化反応の進行に伴ってゲル化物が生成した時点でゲルを粉砕し、粉砕後のゲルを40℃の容器に移し、けん化反応の開始から60分経過した時点で、メタノール/酢酸メチル/水(25/70/5質量比)の溶液に浸漬し、中和処理した。得られた膨潤ゲルを遠心分離し、膨潤ゲルの質量に対して2倍の質量のメタノールに浸漬し30分間放置した後で、遠心分離する操作を4回繰り返し、60℃で1時間乾燥した後、100℃で2時間乾燥してPVAを得た。
[Example 1]
The total solid concentration (saponification concentration) is 30% by mass with respect to a 40% by mass methanol solution of PVAc-1, and the molar ratio of sodium hydroxide to the vinyl acetate monomer unit in PVAc-1 is 0. The saponification reaction was started at 40 ° C. by adding methanol and an 8% methanol solution of sodium hydroxide with stirring so that the ratio became 0.02. The gel is pulverized when the gelated product is generated as the saponification reaction proceeds, and the crushed gel is transferred to a container at 40 ° C. When 60 minutes have elapsed from the start of the saponification reaction, methanol / methyl acetate / water ( 25/70/5 mass ratio) solution and neutralized. The obtained swollen gel was centrifuged, immersed in methanol twice the weight of the swollen gel, allowed to stand for 30 minutes, and then centrifuged four times and dried at 60 ° C. for 1 hour. And dried at 100 ° C. for 2 hours to obtain PVA.

得られたPVAの粘度平均重合度は1,700、けん化度は99.1モル%、酢酸ナトリウムの含有量は0.7%(ナトリウム(Na)の質量換算で0.20%)であった。これらのデータを表2にも示す。   The obtained PVA had a viscosity average polymerization degree of 1,700, a saponification degree of 99.1 mol%, and a sodium acetate content of 0.7% (0.20% in terms of mass of sodium (Na)). . These data are also shown in Table 2.

得られたPVAを用いて上記方法によりGPC測定を行った。図1は、分子量と示差屈折率検出器で測定された値との関係、及び分子量と吸光光度検出器(測定波長280nm)で測定された吸光度との関係を示したグラフである。このときの分子量は、溶出容量から検量線を用いて換算されたもの(PMMA換算分子量)である。図1から求めた示差屈折率検出器で測定されたピークトップ分子量(A)は100,000であり、吸光光度検出器(280nm)で測定されたピークトップ分子量(B)は53,000であった。得られた値を下記式
(A−B)/A
に代入して得られた値は0.47であった。ピークトップ分子量(B)における吸光度は1.30×10−3であった。これらの結果を表2にも示す。
GPC measurement was performed by the said method using obtained PVA. FIG. 1 is a graph showing the relationship between the molecular weight and the value measured with a differential refractive index detector, and the relationship between the molecular weight and the absorbance measured with an absorptiometric detector (measurement wavelength 280 nm). The molecular weight at this time is one converted from the elution volume using a calibration curve (PMMA equivalent molecular weight). The peak top molecular weight (A) measured with the differential refractive index detector obtained from FIG. 1 was 100,000, and the peak top molecular weight (B) measured with the absorptiometric detector (280 nm) was 53,000. It was. The obtained value is expressed by the following formula (AB) / A
The value obtained by substituting for was 0.47. The absorbance at the peak top molecular weight (B) was 1.30 × 10 −3 . These results are also shown in Table 2.

ピークトップ分子量(B)を求めた方法と同様にして求めた吸光光度検出器(320nm)で測定されたピークトップ分子量(C)は50,000であった。ピークトップ分子量(A)とピークトップ分子量(C)とを下記式
(A−C)/A
に代入して得られた値は0.50であった。ピークトップ分子量(C)における吸光度は1.05×10−3であった。これらの結果を表2にも示す。
The peak top molecular weight (C) measured with an absorptiometric detector (320 nm) determined in the same manner as the method for determining the peak top molecular weight (B) was 50,000. The peak top molecular weight (A) and the peak top molecular weight (C) are expressed by the following formula (AC) / A
The value obtained by substituting for was 0.50. The absorbance at the peak top molecular weight (C) was 1.05 × 10 −3 . These results are also shown in Table 2.

得られたPVAを用いて上記した方法により、酢酸ナトリウムの含有量(ナトリウム(Na)の質量換算値)、フィルムの着色性、及びフィルムにおける界面活性剤の分散状態の各測定又は評価を行った。その結果を表2に示す。   Each measurement or evaluation of the content of sodium acetate (mass conversion value of sodium (Na)), the colorability of the film, and the dispersion state of the surfactant in the film was performed by the method described above using the obtained PVA. . The results are shown in Table 2.

[実施例2〜20、22〜24、比較例1〜21及び23〜28]
表2及び3に示す条件に変更したこと以外は実施例1と同様にして各PVAを合成し、得られたPVAを用いて実施例1と同様にして各測定又は評価を行った。その結果を表2及び3に示す。
[Examples 2 to 20, 22 to 24, Comparative Examples 1 to 21 and 23 to 28]
Except having changed into the conditions shown in Table 2 and 3, each PVA was synthesize | combined like Example 1, and each measurement or evaluation was performed like Example 1 using obtained PVA. The results are shown in Tables 2 and 3.

[実施例21]
PVAc−3の55質量%のメタノール溶液に対して、総固形分濃度(けん化濃度)が40質量%となり、且つ、PVAc−3中の酢酸ビニル単量体単位に対する水酸化ナトリウムのモル比が0.005となるように、メタノール及び水酸化ナトリウムの8%メタノール溶液を撹拌下に加え、40℃でけん化反応を開始した。なお、この際の系内の水分率を1.2%となるよう蒸留水を添加してけん化反応を行った。水酸化ナトリウムのメタノール溶液を添加してから1時間後、水酸化ナトリウムの0.8モル当量の1%酢酸水及び多量の蒸留水を添加し、けん化反応を停止した。得られた溶液を乾燥機に移し、65℃で12時間乾燥した後、100℃で2時間乾燥してPVAを得た。
[Example 21]
The total solid concentration (saponification concentration) is 40% by mass with respect to a 55% by mass methanol solution of PVAc-3, and the molar ratio of sodium hydroxide to the vinyl acetate monomer unit in PVAc-3 is 0. A saponification reaction was started at 40 ° C. by adding methanol and an 8% methanol solution of sodium hydroxide under stirring so as to obtain 0.005. Note that saponification reaction was performed by adding distilled water so that the water content in the system was 1.2%. One hour after adding the sodium hydroxide methanol solution, 0.8 molar equivalent of 1% acetic acid aqueous solution of sodium hydroxide and a large amount of distilled water were added to stop the saponification reaction. The obtained solution was transferred to a dryer, dried at 65 ° C. for 12 hours, and then dried at 100 ° C. for 2 hours to obtain PVA.

得られたPVAを用いて実施例1と同様にして各測定又は評価を行った。その結果を表3に示す。   Each measurement or evaluation was performed in the same manner as in Example 1 using the obtained PVA. The results are shown in Table 3.

[比較例22]
PVAc−3の55質量%のメタノール溶液に対して、総固形分濃度(けん化濃度)が40質量%となり、且つ、PVAc−3中の酢酸ビニル単量体単位に対する水酸化ナトリウムのモル比が0.005となるように、メタノール及び水酸化ナトリウムの8%メタノール溶液を撹拌下に加え、40℃でけん化反応を開始した。なお、この際の系内の水分率を3.0%となるよう蒸留水を添加してけん化反応を行った。水酸化ナトリウムのメタノール溶液を添加してから1時間後、水酸化ナトリウムの0.8モル当量の1%酢酸水及び多量の蒸留水を添加し、けん化反応を停止した。得られた溶液を乾燥機に移し、65℃で12時間乾燥した後、100℃で2時間乾燥してPVAを得た。
[Comparative Example 22]
The total solid concentration (saponification concentration) is 40% by mass with respect to a 55% by mass methanol solution of PVAc-3, and the molar ratio of sodium hydroxide to the vinyl acetate monomer unit in PVAc-3 is 0. A saponification reaction was started at 40 ° C. by adding methanol and an 8% methanol solution of sodium hydroxide under stirring so as to obtain 0.005. Note that saponification reaction was performed by adding distilled water so that the water content in the system was 3.0%. One hour after adding the sodium hydroxide methanol solution, 0.8 molar equivalent of 1% acetic acid aqueous solution of sodium hydroxide and a large amount of distilled water were added to stop the saponification reaction. The obtained solution was transferred to a dryer, dried at 65 ° C. for 12 hours, and then dried at 100 ° C. for 2 hours to obtain PVA.

得られたPVAを用いて実施例1と同様にして各測定又は評価を行おうとしたが、得られたPVAは水に対して不溶であったことから、GPC測定のためのフィルムが準備できなかったため、一部の評価結果のみ表2に示した。   Although each measurement or evaluation was attempted in the same manner as in Example 1 using the obtained PVA, since the obtained PVA was insoluble in water, a film for GPC measurement could not be prepared. Therefore, only some evaluation results are shown in Table 2.

Figure 2015093499
Figure 2015093499

Figure 2015093499
Figure 2015093499

以上の結果からも明らかなように、本発明のフィルムは、加熱による着色が少なく、界面活性剤を含む場合であってもその分散状態に優れる。   As is clear from the above results, the film of the present invention is less colored by heating and is excellent in its dispersed state even when it contains a surfactant.

Claims (11)

けん化度が50〜99.99モル%、粘度平均重合度が200〜5,000であるポリビニルアルコールを含み、カルボン酸のアルカリ金属塩の含有量がアルカリ金属の質量換算で0.5質量%以下であるフィルムであって、
120℃において3時間加熱された前記ポリビニルアルコールをゲルパーミエーションクロマトグラフィー測定したときの、示差屈折率検出器で測定されるピークトップ分子量(A)と、吸光光度検出器(測定波長280nm)で測定されるピークトップ分子量(B)が下記式(1)
(A−B)/A<0.75 (1)
を満たし、かつピークトップ分子量(B)における吸光度が0.25×10−3〜3.00×10−3となる、フィルム。
It contains polyvinyl alcohol having a saponification degree of 50 to 99.99 mol% and a viscosity average polymerization degree of 200 to 5,000, and the content of alkali metal salt of carboxylic acid is 0.5% by mass or less in terms of mass of alkali metal. A film that is
When the polyvinyl alcohol heated at 120 ° C. for 3 hours is measured by gel permeation chromatography, the peak top molecular weight (A) measured by a differential refractive index detector and measured by an absorptiometric detector (measurement wavelength: 280 nm) The peak top molecular weight (B) is expressed by the following formula (1)
(AB) / A <0.75 (1)
And the absorbance at the peak top molecular weight (B) is 0.25 × 10 −3 to 3.00 × 10 −3 .
前記ゲルパーミエーションクロマトグラフィー測定における、示差屈折率検出器で測定されるピークトップ分子量(A)と、吸光光度検出器(測定波長320nm)で測定されるピークトップ分子量(C)が下記式(2)
(A−C)/A<0.75 (2)
を満たす、請求項1に記載のフィルム。
In the gel permeation chromatography measurement, the peak top molecular weight (A) measured with a differential refractive index detector and the peak top molecular weight (C) measured with an absorptiometric detector (measurement wavelength 320 nm) are expressed by the following formula (2). )
(AC) / A <0.75 (2)
The film according to claim 1, wherein
前記ゲルパーミエーションクロマトグラフィー測定における、吸光光度検出器(測定波長320nm)で測定されるピークトップ分子量(C)における吸光度が0.20×10−3〜2.90×10−3となる、請求項1又は2に記載のフィルム。In the gel permeation chromatography measurement, the absorbance at the peak top molecular weight (C) measured by an absorptiometric detector (measurement wavelength: 320 nm) is 0.20 × 10 −3 to 2.90 × 10 −3. Item 3. The film according to Item 1 or 2. 前記ゲルパーミエーションクロマトグラフィー測定における、示差屈折率検出器によって求められる、前記ポリビニルアルコールの数平均分子量Mnに対する重量平均分子量Mwの比Mw/Mnが2.2〜6.0となる、請求項1〜3のいずれかに記載のフィルム。   The ratio Mw / Mn of the weight average molecular weight Mw to the number average molecular weight Mn of the polyvinyl alcohol obtained by a differential refractive index detector in the gel permeation chromatography measurement is 2.2 to 6.0. The film in any one of -3. 界面活性剤を更に含む、請求項1〜4のいずれかに記載のフィルム。   The film according to any one of claims 1 to 4, further comprising a surfactant. 120℃において3時間加熱したときのYI値が7以下である、請求項1〜5のいずれかに記載のフィルム。   The film in any one of Claims 1-5 whose YI value when heated at 120 degreeC for 3 hours is 7 or less. けん化度が50〜99.99モル%、粘度平均重合度が200〜5,000であるポリビニルアルコールを含む製膜原液を乾燥する工程を有する、カルボン酸のアルカリ金属塩の含有量がアルカリ金属の質量換算で0.5質量%以下であるフィルムの製造方法であって、
120℃において3時間加熱された前記ポリビニルアルコールをゲルパーミエーションクロマトグラフィー測定したときの、示差屈折率検出器で測定されるピークトップ分子量(A)と、吸光光度検出器(測定波長280nm)で測定されるピークトップ分子量(B)が下記式(1)
(A−B)/A<0.75 (1)
を満たし、かつピークトップ分子量(B)における吸光度が0.25×10−3〜3.00×10−3となる、製造方法。
The content of the alkali metal salt of the carboxylic acid has a step of drying a film-forming stock solution containing polyvinyl alcohol having a saponification degree of 50 to 99.99 mol% and a viscosity average polymerization degree of 200 to 5,000. It is a manufacturing method of the film which is 0.5 mass% or less in terms of mass,
When the polyvinyl alcohol heated at 120 ° C. for 3 hours is measured by gel permeation chromatography, the peak top molecular weight (A) measured by a differential refractive index detector and measured by an absorptiometric detector (measurement wavelength: 280 nm) The peak top molecular weight (B) is expressed by the following formula (1)
(AB) / A <0.75 (1)
And the absorbance at the peak top molecular weight (B) is 0.25 × 10 −3 to 3.00 × 10 −3 .
前記ゲルパーミエーションクロマトグラフィー測定における、示差屈折率検出器で測定されるピークトップ分子量(A)と、吸光光度検出器(測定波長320nm)で測定されるピークトップ分子量(C)が下記式(2)
(A−C)/A<0.75 (2)
を満たす、請求項7に記載の製造方法。
In the gel permeation chromatography measurement, the peak top molecular weight (A) measured with a differential refractive index detector and the peak top molecular weight (C) measured with an absorptiometric detector (measurement wavelength 320 nm) are expressed by the following formula (2). )
(AC) / A <0.75 (2)
The manufacturing method of Claim 7 which satisfy | fills.
前記ゲルパーミエーションクロマトグラフィー測定における、吸光光度検出器(測定波長320nm)で測定されるピークトップ分子量(C)における吸光度が0.20×10−3〜2.90×10−3となる、請求項7又は8に記載の製造方法。In the gel permeation chromatography measurement, the absorbance at the peak top molecular weight (C) measured by an absorptiometric detector (measurement wavelength: 320 nm) is 0.20 × 10 −3 to 2.90 × 10 −3. Item 9. The manufacturing method according to Item 7 or 8. 前記ゲルパーミエーションクロマトグラフィー測定における、示差屈折率検出器によって求められる、前記ポリビニルアルコールの数平均分子量Mnに対する重量平均分子量Mwの比Mw/Mnが2.2〜6.0となる、請求項7〜9のいずれかに記載の製造方法。   The ratio Mw / Mn of the weight average molecular weight Mw to the number average molecular weight Mn of the polyvinyl alcohol obtained by a differential refractive index detector in the gel permeation chromatography measurement is 2.2 to 6.0. The manufacturing method in any one of -9. 前記製膜原液が界面活性剤を更に含む、請求項7〜10のいずれかに記載の製造方法。   The manufacturing method in any one of Claims 7-10 in which the said film-forming stock solution further contains surfactant.
JP2015526812A 2013-12-19 2014-12-17 the film Active JP6472380B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013262015 2013-12-19
JP2013262015 2013-12-19
PCT/JP2014/083327 WO2015093499A1 (en) 2013-12-19 2014-12-17 Film

Publications (2)

Publication Number Publication Date
JPWO2015093499A1 true JPWO2015093499A1 (en) 2017-03-16
JP6472380B2 JP6472380B2 (en) 2019-02-20

Family

ID=53402844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015526812A Active JP6472380B2 (en) 2013-12-19 2014-12-17 the film

Country Status (5)

Country Link
JP (1) JP6472380B2 (en)
KR (1) KR102341903B1 (en)
CN (1) CN105814123B (en)
TW (1) TWI650364B (en)
WO (1) WO2015093499A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019031581A (en) * 2015-12-28 2019-02-28 株式会社クラレ Low polymerization degree vinyl alcohol-based polymer powder having excellent color tone and production method thereof
JP7326670B2 (en) * 2018-04-10 2023-08-16 株式会社アイセロ water soluble film
CN113227857B (en) * 2018-12-28 2023-06-27 株式会社可乐丽 Polyvinyl alcohol film and method for producing polarizing film using same
JPWO2022145488A1 (en) * 2020-12-28 2022-07-07
WO2022145487A1 (en) * 2020-12-28 2022-07-07 株式会社クラレ Polyvinyl alcohol film and polarizing film obtained therefrom

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010041620A1 (en) * 2008-10-08 2010-04-15 株式会社クラレ Polyvinyl chloride resin compositions and manufacturing method therefor
WO2013146458A1 (en) * 2012-03-30 2013-10-03 株式会社クラレ Polyvinyl alcohol-type polymer film and polarizing film
WO2014192773A1 (en) * 2013-05-31 2014-12-04 株式会社クラレ Polyvinyl alcohol and paper coating agent containing same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05320219A (en) 1991-06-05 1993-12-03 Denki Kagaku Kogyo Kk Production of polyvinyl alcohol resin
KR101226875B1 (en) * 2006-07-27 2013-01-25 닛폰고세이가가쿠고교 가부시키가이샤 Polyvinyl alcohol-based film for optical uses and polarizing membrane and polarizing plate
JP5638533B2 (en) * 2010-04-20 2014-12-10 株式会社クラレ Polyvinyl alcohol polymer film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010041620A1 (en) * 2008-10-08 2010-04-15 株式会社クラレ Polyvinyl chloride resin compositions and manufacturing method therefor
WO2013146458A1 (en) * 2012-03-30 2013-10-03 株式会社クラレ Polyvinyl alcohol-type polymer film and polarizing film
WO2014192773A1 (en) * 2013-05-31 2014-12-04 株式会社クラレ Polyvinyl alcohol and paper coating agent containing same

Also Published As

Publication number Publication date
WO2015093499A1 (en) 2015-06-25
CN105814123A (en) 2016-07-27
CN105814123B (en) 2019-10-25
KR102341903B1 (en) 2021-12-21
TWI650364B (en) 2019-02-11
TW201546143A (en) 2015-12-16
JP6472380B2 (en) 2019-02-20
KR20160101912A (en) 2016-08-26

Similar Documents

Publication Publication Date Title
JP6472380B2 (en) the film
CN106029714B (en) Modified polyvinylalcohol and water-solubility membrane containing it
WO2014192773A1 (en) Polyvinyl alcohol and paper coating agent containing same
TWI655215B (en) Dispersing agent for suspension polymerization of vinyl compound
TWI834601B (en) Polyvinyl alcohol resin, dispersant and dispersant for suspension polymerization
JP2013177646A (en) Vinyl alcohol-based polymer
JP7375808B2 (en) Polyvinyl alcohol resin, manufacturing method of polyvinyl alcohol resin, dispersant, and dispersant for suspension polymerization
TWI748930B (en) Method of making a branched polymer, a branched polymer and uses of such a polymer
CA2964205A1 (en) Carboxyl group-containing polymer composition
JP6981258B2 (en) Polyvinyl alcohol resin, dispersant and dispersant for suspension polymerization
CA3074170A1 (en) Carboxyl group-containing polymer composition and method for producing same
JP6979320B2 (en) Polyvinyl alcohol
JP6955435B2 (en) Dispersion stabilizer for aqueous emulsion compositions
JP4132467B2 (en) Production method of vinyl alcohol polymer
JP6221146B2 (en) Dispersant for emulsion polymerization and use thereof
JP6221147B2 (en) Binder for ink or paint and its use
JPH11279210A (en) Production of polyvinyl alcohol excellent in stability of viscosity at low temperature
JP2013105121A (en) Polarizing film using carbon monoxide-vinyl alcohol copolymer
JP2015151500A (en) radical polymerizable resin composition
JP2019066533A (en) Raw material film for production of optical film and production method of optical film using the same
TW201400510A (en) Polyvinyl alcohol and its production method
JP4781694B2 (en) Aqueous emulsion
JP4381569B2 (en) Vinyl ester resin emulsion
JP2001234144A (en) Adhesive for carpentry
WO2024075829A1 (en) Composition, dispersing agent for suspension polymerization, and method for producing vinyl-based polymer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180724

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190122

R150 Certificate of patent or registration of utility model

Ref document number: 6472380

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150