JPWO2015079677A1 - Optical material - Google Patents

Optical material Download PDF

Info

Publication number
JPWO2015079677A1
JPWO2015079677A1 JP2015550562A JP2015550562A JPWO2015079677A1 JP WO2015079677 A1 JPWO2015079677 A1 JP WO2015079677A1 JP 2015550562 A JP2015550562 A JP 2015550562A JP 2015550562 A JP2015550562 A JP 2015550562A JP WO2015079677 A1 JPWO2015079677 A1 JP WO2015079677A1
Authority
JP
Japan
Prior art keywords
group
optical material
material according
functional group
curable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015550562A
Other languages
Japanese (ja)
Other versions
JP6427107B2 (en
Inventor
和彦 兒島
和彦 兒島
大川 直
直 大川
晴彦 古川
晴彦 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DuPont Toray Specialty Materials KK
Original Assignee
Dow Corning Toray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Corning Toray Co Ltd filed Critical Dow Corning Toray Co Ltd
Publication of JPWO2015079677A1 publication Critical patent/JPWO2015079677A1/en
Application granted granted Critical
Publication of JP6427107B2 publication Critical patent/JP6427107B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/56Organo-metallic compounds, i.e. organic compounds containing a metal-to-carbon bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/16Polysiloxanes containing silicon bound to oxygen-containing groups to hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/18Polysiloxanes containing silicon bound to oxygen-containing groups to alkoxy or aryloxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/008Additives improving gas barrier properties

Abstract

ガス透過性が低く、且つ、耐熱性が良好なポリオルガノシロキサン組成物を用いた光学材料を提供する。硬化性ポリオルガノシロキサン組成物、及び、イオン性官能基を有する化合物で処理された層状粘土鉱物からなる光学材料。Provided is an optical material using a polyorganosiloxane composition having low gas permeability and good heat resistance. An optical material comprising a curable polyorganosiloxane composition and a layered clay mineral treated with a compound having an ionic functional group.

Description

本発明は、優れたガスバリア性及び耐熱性を備える光学材料に関する。   The present invention relates to an optical material having excellent gas barrier properties and heat resistance.

フォトカプラー、発光ダイオード、固体撮像素子等の光半導体装置における半導体素子の保護剤や光半導体の封止剤として硬化性ポリオルガノシロキサンが用いられている(特許文献1、2)。硬化性ポリオルガノシロキサンは、耐光性、耐熱変色性、耐衝撃性には優れるが、ガス透過性が高い。 Curable polyorganosiloxane is used as a protective agent for a semiconductor element and a sealing agent for an optical semiconductor in an optical semiconductor device such as a photocoupler, a light emitting diode, and a solid-state imaging element (Patent Documents 1 and 2). The curable polyorganosiloxane is excellent in light resistance, heat discoloration, and impact resistance, but has high gas permeability.

通常、発光ダイオード等の発光装置では、銀或いは銀合金からなる光反射膜を設けることにより光の取り出し効率の向上が図られているが、銀及び銀合金は化学的に非常に不安定であるため、空気中の酸素、水分、硫化水素、亜硫酸ガス等と反応すると、酸化銀や硫化銀を生成して表面が褐色若しくは黒色に変色し、輝度を低下させ、半導体装置の信頼性が低下するという問題があった。ポリオルガノシロキサンの中でも、フェニル系シリコーン組成物はメチル系シリコーン組成物よりガス透過性が低いとされているものの、それでも十分ではなく、また、フェニル系及びメチル系シリコーンの両者のガス透過性を低くできる技術が望まれている。 Usually, in a light emitting device such as a light emitting diode, the light extraction efficiency is improved by providing a light reflecting film made of silver or a silver alloy. However, silver and silver alloys are chemically very unstable. Therefore, when it reacts with oxygen, moisture, hydrogen sulfide, sulfurous acid gas, etc. in the air, silver oxide or silver sulfide is generated and the surface turns brown or black, lowering the luminance and reducing the reliability of the semiconductor device. There was a problem. Among polyorganosiloxanes, phenyl silicone compositions are said to have lower gas permeability than methyl silicone compositions, but this is not sufficient, and the gas permeability of both phenyl and methyl silicones is low. A technology that can be used is desired.

特許文献3及び特許文献4には、銀あるいは銀合金からなる光反射膜をガスバリア性の表面処理剤で処理することで、銀腐食を抑制する方法が記載されているが、これらの処理剤は、粘土鉱物であるスメクタイトに、カルボキシメチルセルロース塩などの水溶性有機高分子を配合したものであり、光の強度が強く発熱が大きい高輝度LEDに使用する場合、耐熱性が不十分である。 Patent Document 3 and Patent Document 4 describe a method of suppressing silver corrosion by treating a light reflecting film made of silver or a silver alloy with a gas barrier surface treatment agent. In addition, smectite, a clay mineral, is blended with a water-soluble organic polymer such as carboxymethylcellulose salt, and when used in a high-brightness LED having high light intensity and large heat generation, heat resistance is insufficient.

また、特許文献5及び特許文献6には、ポリオルガノシロキサンに粘土鉱物などの層状の無機ナノ微粒子を配合した無機―有機ナノ複合体を含む硬化型シーリング材組成物を含有する断熱ガラスユニットについて記載されているが、光学材料に関しては一切記載されていない。 Patent Document 5 and Patent Document 6 describe a heat insulating glass unit containing a curable sealing material composition containing an inorganic-organic nanocomposite in which layered inorganic nanoparticles such as clay minerals are blended with polyorganosiloxane. However, it does not describe any optical materials.

特開2010−1335号公報JP 2010-1335 A 特表2009−527622号公報Special table 2009-527622 gazette 特開2012−251204号公報JP 2012-251204 A 特開2012−251205号公報JP 2012-251205 A 特開2009−523691号公報JP 2009-523691 A 特開2009−523892号公報JP 2009-523892 A

本発明は、従来のポリオルガノシロキサンの問題点を解決し、ガス透過性が低く、且つ、耐熱性が良好なポリオルガノシロキサン組成物を用いた光学材料を提供することを目的とする。   An object of the present invention is to solve the problems of conventional polyorganosiloxanes and to provide an optical material using a polyorganosiloxane composition having low gas permeability and good heat resistance.

本発明の目的は、
硬化性ポリオルガノシロキサン組成物、及び、
イオン性官能基を有する化合物で処理された層状粘土鉱物
からなる光学材料によって達成される。
The purpose of the present invention is to
A curable polyorganosiloxane composition, and
This is achieved by an optical material composed of a layered clay mineral treated with a compound having an ionic functional group.

前記硬化性ポリオルガノシロキサン組成物はヒドロシリル化反応硬化性又は縮合反応硬化性であることが好ましい。 The curable polyorganosiloxane composition is preferably hydrosilylation reaction curable or condensation reaction curable.

前記層状粘土鉱物は、モンモリロナイト、ナトリウムモンモリロナイト、カルシウムモンモリロナイト、マグネシウムモンモリロナイト、ノントロナイト、ベイデルライト、ボルコンスコイト、ラポナイト、ヘクトライト、サポナイト、ソーコナイト、マガダイト、ケニアイト、ソボクカイト、スビンドルダイト、スチーブンサイト、バーミキュライト、ハロイサイト、アルミナートオキシド、ハイドロタルサイト、イライト、レクトライト、タロソバイト、レディカイト、カオリナイト、及び、これらの混合物からなる群から選択されることが好ましい。 The layered clay minerals include montmorillonite, sodium montmorillonite, calcium montmorillonite, magnesium montmorillonite, nontronite, bedellite, vorconskite, laponite, hectorite, saponite, soconite, magadite, kenyaite, sobokite, subindulite, stevensite It is preferably selected from the group consisting of vermiculite, halloysite, aluminate oxide, hydrotalcite, illite, rectolite, tarosovite, ladykite, kaolinite, and mixtures thereof.

前記イオン性官能基はカチオン性基であることが好ましい。 The ionic functional group is preferably a cationic group.

前記カチオン性基がアンモニウム、ホスホニウム、イミダゾリウム、及び、ピリジニウムからなる群から選択されることが好ましい。 Preferably, the cationic group is selected from the group consisting of ammonium, phosphonium, imidazolium, and pyridinium.

前記イオン性官能基を有する化合物は、下記平均構造式

(R SiO1/2)(R SiO2/2)(RSiO3/2)(SiO4/2)

{式中、
、R及びRは、各々独立して、一価炭化水素基、水素原子、水酸基、アルコキシ基、及び、−Z−(Q)、(式中、Zは(n+1)価の官能基又はケイ素原子への直接結合であり、nは1以上の数であり、Qはイオン性官能基である)、又は、他のシロキサン単位のSi原子に結合した2価の官能基であり、但し、全てのR、R及びRのうち、50モル%以上が一価炭化水素基であり、また、分子中に、少なくとも1つの−Z−(Q)で示される基を含み、
a、b、c及びdは、各々独立して、0又は正数であり、a+b+c+dは2〜1000の範囲の数である}
で表されるシリコーンであることが好ましい。
The compound having an ionic functional group has the following average structural formula

(R M 3 SiO 1/2 ) a (R D 2 SiO 2/2 ) b (R T SiO 3/2 ) c (SiO 4/2 ) d

{Where
R M , R D, and R T are each independently a monovalent hydrocarbon group, a hydrogen atom, a hydroxyl group, an alkoxy group, and —Z— (Q) n , wherein Z is an (n + 1) valent group. A functional group or a direct bond to a silicon atom, n is a number of 1 or more, and Q is an ionic functional group), or a divalent functional group bonded to the Si atom of another siloxane unit However, of all R M , R D and R T , 50 mol% or more is a monovalent hydrocarbon group, and at least one group represented by —Z— (Q) n is present in the molecule. Including
a, b, c and d are each independently 0 or a positive number, and a + b + c + d is a number in the range of 2 to 1000}
It is preferable that it is silicone represented by these.

前記Qはカチオン性基であることが好ましい。 Q is preferably a cationic group.

前記Qはアンモニウム、ホスホニウム、イミダゾリウム、及び、ピリジニウムからなる群から選択されることが好ましい。 The Q is preferably selected from the group consisting of ammonium, phosphonium, imidazolium, and pyridinium.

前記平均構造式中のa〜dが、a=2、2<b<1000、c=0及びd=0であり、Rの少なくとも1つが―Z−(Q)であることが好ましい。In the average structural formula, a to d are preferably a = 2, 2 <b <1000, c = 0, and d = 0, and at least one of R M is preferably —Z— (Q) n .

本発明の光学材料は蛍光体を更に含有することが好ましい。   The optical material of the present invention preferably further contains a phosphor.

本発明の光学材料は光半導体用であることが好ましい。 The optical material of the present invention is preferably for an optical semiconductor.

本発明の光学材料は、光半導体の封止剤、光半導体素子の保護剤、又は、光反射膜の保護剤として使用されることが好ましい。 The optical material of the present invention is preferably used as an optical semiconductor sealing agent, an optical semiconductor element protective agent, or a light reflecting film protective agent.

本発明は、上記の光学材料又はその硬化物を備える光学物品にも関する。 The present invention also relates to an optical article provided with the above optical material or a cured product thereof.

また、本発明は、硬化性ポリオルガノシロキサン組成物からなる光学材料のガスバリア性を改善するための、イオン性官能基を有する化合物で処理された層状粘土鉱物の使用にも関する。 The present invention also relates to the use of a layered clay mineral treated with a compound having an ionic functional group for improving the gas barrier property of an optical material comprising a curable polyorganosiloxane composition.

更に、本発明は、硬化性ポリオルガノシロキサン組成物からなる光学材料のガスバリア性を改善する方法であって、前記硬化性ポリオルガノシロキサン組成物にイオン性官能基を有する化合物で処理された層状粘土鉱物を配合する方法にも関する。   Furthermore, the present invention is a method for improving gas barrier properties of an optical material comprising a curable polyorganosiloxane composition, wherein the curable polyorganosiloxane composition is treated with a compound having an ionic functional group. It also relates to the method of blending minerals.

本発明の光学材料はガス透過性が低く、且つ、耐熱性も良好である。したがって、本発明により、ガス透過性が低く、且つ、耐熱性が良好な光学材料を提供することができる。 The optical material of the present invention has low gas permeability and good heat resistance. Therefore, according to the present invention, an optical material having low gas permeability and good heat resistance can be provided.

本発明の光学材料は、例えば、光半導体の封止剤、光半導体素子の保護膜、又は、光反射膜の保護剤として使用可能である。本発明の光学物品は前記光学材料又はその硬化物を備えており、ガス透過性が低く、且つ、耐熱性が良好である。 The optical material of the present invention can be used, for example, as an optical semiconductor sealing agent, an optical semiconductor element protective film, or a light reflecting film protective agent. The optical article of the present invention includes the optical material or a cured product thereof, has low gas permeability, and good heat resistance.

本発明によれば、例えば、電子部品、発光ダイオードを備える照明機器等に使用される銀又は銀合金の変色や腐食を十分に防止することができる。特に、本発明によれば、銀蒸着面に優れた耐変色性を与えることのできる表面処理剤を提供することが可能となる。そして、本発明によれば、銀又は銀合金からなり、耐変色性に優れた光反射膜を有する基板を提供することができ、発光ダイオード等の発光装置の光取り出し効率の向上と長期安定化を図ることができる。 According to the present invention, for example, discoloration or corrosion of silver or a silver alloy used in an electronic device, a lighting device including a light emitting diode, or the like can be sufficiently prevented. In particular, according to the present invention, it is possible to provide a surface treating agent capable of giving excellent color fastness to a silver vapor deposition surface. According to the present invention, it is possible to provide a substrate made of silver or a silver alloy and having a light reflection film excellent in color fastness, and to improve light extraction efficiency and long-term stabilization of a light emitting device such as a light emitting diode. Can be achieved.

本発明者らは鋭意検討の結果、硬化性ポリオルガノシロキサン組成物とイオン性官能基を有する化合物で処理された層状粘土鉱物とを組み合わせて使用することによって、これらを含む光学材料のガスガリア性を改善できることを見出し、本発明を完成した。   As a result of intensive studies, the present inventors have used a curable polyorganosiloxane composition and a layered clay mineral treated with a compound having an ionic functional group in combination, thereby improving the gas gallicity of an optical material including these. As a result, the present invention has been completed.

[硬化性ポリオルガノシロキサン組成物]
本発明の光学材料は硬化性ポリオルガノシロキサン組成物を含む。ポリオルガノシロキサン組成物の硬化型は特に限定されるものではなく、例えば、過酸化物硬化型、ヒドロシリル化反応(付加反応)硬化型、縮合反応硬化型、紫外線硬化型等の公知の硬化型であってよいが、前記硬化性ポリオルガノシロキサン組成物はヒドロシリル化反応硬化性又は縮合反応硬化性であることが好ましい。
[Curable polyorganosiloxane composition]
The optical material of the present invention contains a curable polyorganosiloxane composition. The curing type of the polyorganosiloxane composition is not particularly limited, and examples thereof include known curing types such as peroxide curing type, hydrosilylation reaction (addition reaction) curing type, condensation reaction curing type, and ultraviolet curing type. However, the curable polyorganosiloxane composition is preferably hydrosilylation reaction curable or condensation reaction curable.

ヒドロシリル化反応硬化性の場合、前記硬化性ポリオルガノシロキサン組成物は、一般的には、(A)1分子中に少なくとも2個のアルケニル基を含有するポリオルガノシロキサン、(B)1分子中に少なくとも2個のケイ素原子結合水素原子を有するポリオルガノシロキサン、(C)ヒドロシリル化反応触媒を含む。 In the case of hydrosilylation reaction curable, the curable polyorganosiloxane composition is generally (A) a polyorganosiloxane containing at least two alkenyl groups in one molecule, and (B) in one molecule. A polyorganosiloxane having at least two silicon-bonded hydrogen atoms, (C) a hydrosilylation reaction catalyst.

(A)成分のポリオルガノシロキサンは前記硬化性ポリオルガノシロキサン組成物の主成分であり、1分子中に少なくとも2個のケイ素原子結合アルケニル基を有する。アルケニル基としては、ビニル基、アリル基、プロペニル基等が例示され、アルケニル基以外の有機基としてはメチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、ドデシル基等で例示されるアルキル基;フェニル基、トリル基等で例示されるアリール基;ベンジル基、β−フェニルエチル基等のアラルキル基;3,3,3−トリフロロプロピル基、3−クロロプロピル基等で例示されるハロゲン置換アルキル基等が挙げられる。(A)成分の分子構造は直鎖状、分岐を含む直鎖状、環状、網目状のいずれであってもよく、2種以上のポリオルガノシロキサンを併用してもよい。(A)成分の分子量は特に限定はなく、粘度の低い液状のものから粘度の高い生ゴム状のものまで使用することができる。   The (A) component polyorganosiloxane is a main component of the curable polyorganosiloxane composition, and has at least two silicon atom-bonded alkenyl groups in one molecule. Examples of the alkenyl group include a vinyl group, an allyl group, and a propenyl group. Examples of the organic group other than the alkenyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, an octyl group, a decyl group, Alkyl groups exemplified by dodecyl group and the like; aryl groups exemplified by phenyl group and tolyl group; aralkyl groups such as benzyl group and β-phenylethyl group; 3,3,3-trifluoropropyl group, 3-chloro And halogen-substituted alkyl groups exemplified by propyl group. The molecular structure of the component (A) may be linear, branched linear, cyclic, or network, and two or more polyorganosiloxanes may be used in combination. The molecular weight of the component (A) is not particularly limited, and it can be used from a liquid having a low viscosity to a raw rubber having a high viscosity.

(B)成分のポリオルガノシロキサンは前記硬化性ポリオルガノシロキサン組成物の架橋剤であり、(C)ヒドロシリル化反応触媒存在下、(B)成分中のケイ素原子結合水素原子が、(A)成分中のケイ素原子結合アルケニル基と付加反応することで架橋し硬化するものである。(B)成分のポリオルガノシロキサン(オルガノハイドロジェンポリシロキサン)は1分子中に少なくとも2個のケイ素原子結合水素原子を有する。ケイ素原子結合水素原子以外の有機基としてはメチル基、エチル基、プロピル基等で例示されるアルキル基;フェニル基、トリル基等で例示されるアリール基;3,3,3−トリフロロルロピル基、3−クロロプロピル基等で例示される置換アルキル基等が挙げられる。(B)成分の分子構造としては直鎖状、分岐を含む直鎖状、環状、網目状のいずれでもよく、2種以上のポリオルガノシロキサンを併用してもよい。 The (B) component polyorganosiloxane is a crosslinking agent for the curable polyorganosiloxane composition. (C) In the presence of a hydrosilylation reaction catalyst, the silicon-bonded hydrogen atom in the (B) component is replaced by the (A) component. It crosslinks and cures by addition reaction with the silicon-bonded alkenyl group. The polyorganosiloxane (organohydrogenpolysiloxane) as the component (B) has at least two silicon-bonded hydrogen atoms in one molecule. Examples of organic groups other than silicon-bonded hydrogen atoms include alkyl groups exemplified by methyl, ethyl, propyl, etc .; aryl groups exemplified by phenyl, tolyl, etc .; 3,3,3-trifluorolopyr And a substituted alkyl group exemplified by a group, 3-chloropropyl group and the like. The molecular structure of component (B) may be linear, branched linear, cyclic, or network, and two or more polyorganosiloxanes may be used in combination.

(B)成分の分子量は特に限定はないが、25℃における粘度が3〜10,000センチポイズの範囲であることが好ましい。また、(B)成分の配合量は、(B)成分中のケイ素原子結合水素原子のモル数と(A)成分中のケイ素原子結合アルケニル基のモル数の比が(0.5:1)〜(20:1)となるような量であり、好ましくは(1:1)〜(3:1)が好ましい。これは(A)成分中のケイ素原子結合アルケニル基のモル数1に対して(B)成分中のケイ素原子結合水素原子のモル数が0.5より小さいと組成物が充分に硬化することができず、20より大きいと硬化物が発泡することがあるからである。 The molecular weight of the component (B) is not particularly limited, but the viscosity at 25 ° C. is preferably in the range of 3 to 10,000 centipoise. The blending amount of the component (B) is such that the ratio of the number of moles of silicon-bonded hydrogen atoms in the component (B) to the number of moles of silicon-bonded alkenyl groups in the component (A) is (0.5: 1). It is the quantity which becomes-(20: 1), Preferably (1: 1)-(3: 1) is preferable. This is because if the number of moles of silicon-bonded hydrogen atoms in component (B) is less than 0.5 relative to the number of moles of silicon-bonded alkenyl groups in component (A), the composition can be cured sufficiently. This is because the cured product may foam if it is not greater than 20.

(C)ヒドロシリル化反応触媒はヒドロシリル化反応(付加反応)硬化型のシリコーン組成物を硬化させるための触媒である。(C)成分のヒドロシリル化反応触媒は従来公知のものを使用することができ、例えば、塩化白金酸、塩化白金酸のアルコール溶液、塩化白金酸とオレフィン類、ビニルシロキサン又はアセチレン化合物との錯化合物、白金黒、白金を固体表面に担持させたもの等の白金系触媒;テトラキス(トリフェニルホスフィン)パラジウム等のパラジウム系触媒;クロロトリス(トリフェニルホスフィン)ロジウム等のロジウム系触媒が例示される。中でも白金系触媒であることが好ましい。 (C) The hydrosilylation reaction catalyst is a catalyst for curing a hydrosilylation reaction (addition reaction) curable silicone composition. As the hydrosilylation reaction catalyst of component (C), a conventionally known catalyst can be used. For example, chloroplatinic acid, an alcohol solution of chloroplatinic acid, a complex compound of chloroplatinic acid and olefins, vinyl siloxane or acetylene compound Examples thereof include platinum catalysts such as platinum black and platinum supported on a solid surface; palladium catalysts such as tetrakis (triphenylphosphine) palladium; rhodium catalysts such as chlorotris (triphenylphosphine) rhodium. Of these, platinum-based catalysts are preferred.

(C)成分の配合量は(A)成分と(B)成分の合計量100万質量部に対して触媒金属元素換算で0.1〜500質量部が好ましい。これは0.1質量部未満では硬化が充分に進行せず、500質量部を超えると不経済となる恐れがあるためである。 (C) The compounding quantity of a component has 0.1-500 mass parts in conversion of a catalyst metal element with respect to 1 million mass parts of total amounts of (A) component and (B) component. This is because if the amount is less than 0.1 parts by mass, curing does not proceed sufficiently, and if it exceeds 500 parts by mass, it may be uneconomical.

ヒドロシリル化反応(付加反応)硬化性の場合の硬化性ポリオルガノシロキサン組成物は、その硬化速度又は作業可使時間を調整するために、硬化遅延剤を含んでもよい。硬化遅延剤としては、例えば、3−メチル−1−ブチン−3−オール、3,5−ジメチル−1−ヘキシン−3−オール、フェニルブチノール、1−エチニル−1−シクロヘキサノール等の炭素−炭素三重結合を有するアルコール誘導体;3−メチル−3−ペンテン−1−イン、3,5−ジメチル−3−ヘキセン−1−イン等のエンイン化合物;テトラメチルテトラビニルシクロテトラシロキサン、テトラメチルテトラヘキセニルシクロテトラシロキサン等のアルケニル基含有低分子量シロキサン;メチル−トリス(3−メチル−1−ブチン−3−オキシ)シラン、ビニル−トリス(3−メチル−1−ブチン−3−オキシ)シラン等のアルキン含有シランが例示される。 In the case of hydrosilylation reaction (addition reaction) curable, the curable polyorganosiloxane composition may contain a curing retarder in order to adjust its curing rate or working life. Examples of the curing retarder include carbon such as 3-methyl-1-butyn-3-ol, 3,5-dimethyl-1-hexyn-3-ol, phenylbutynol, 1-ethynyl-1-cyclohexanol, and the like. Alcohol derivatives having a carbon triple bond; enyne compounds such as 3-methyl-3-penten-1-yne and 3,5-dimethyl-3-hexen-1-yne; tetramethyltetravinylcyclotetrasiloxane, tetramethyltetrahexenyl Alkenyl such as methyl-tris (3-methyl-1-butyne-3-oxy) silane and vinyl-tris (3-methyl-1-butyne-3-oxy) silane Illustrative examples include silanes.

硬化遅延剤の配合量は、ヒドロシリル化反応(付加反応)硬化型の上記組成物の使用方法、成形方法等に応じて適宜選択される。一般的な配合量は、ヒドロシリル化反応(付加反応)硬化型の組成物の全質量を基準にして、0.001%〜5質量%の範囲である。 The blending amount of the curing retarder is appropriately selected according to the method of using the hydrosilylation reaction (addition reaction) curable composition, the molding method, and the like. The general blending amount is in the range of 0.001% to 5% by mass based on the total mass of the hydrosilylation reaction (addition reaction) curable composition.

縮合反応硬化性の場合、前記硬化性ポリオルガノシロキサン組成物は、例えば、(D)分子鎖末端がシラノール基又はケイ素原子結合加水分解性基で封鎖されたジオルガノポリシロキサン、又は、ケイ素原子結合加水分解性基を有するオルガノシランの部分加水分解縮合物、(E)(D)成分を架橋するのに十分な量のケイ素原子結合加水分解性基を有するオルガノシラン系又はオルガノシロキサン系架橋剤、及び、(F)必要量の縮合反応促進触媒を含む。その硬化物は、例えば、当該組成物を室温で又は加熱により硬化することによって得ることができる。 In the case of condensation reaction curable, the curable polyorganosiloxane composition is, for example, (D) a diorganopolysiloxane having a molecular chain terminal blocked with a silanol group or a silicon atom-bonded hydrolyzable group, or a silicon atom bond A partially hydrolyzed condensate of an organosilane having a hydrolyzable group, an organosilane-based or organosiloxane-based crosslinking agent having a sufficient amount of silicon-bonded hydrolyzable groups to crosslink the components (E) and (D), And (F) a necessary amount of the condensation reaction accelerating catalyst. The cured product can be obtained, for example, by curing the composition at room temperature or by heating.

(D)成分におけるケイ素原子結合加水分解性基としては、ジメチルケトキシモ基、メチルエチルケトキシモ基等のケトキシモ基[ケトキシミノ基と称されることもあり、一般式:-O-N=CR’R”で示される基(式中、R’及びR”は同一又は異なるアルキル基であり、炭素原子数1〜6のアルキル基が好適である);メトキシ基、エトキシ基等のアルコキシ基;アセトキシ基等のアシロキシ基;N−ブチルアミノ基、N、N−ジエチルアミノ基等のアルキルアミノ基;N−メチルアセトアミド基等のアシルアミド基;N、N−ジエチルアミノキシ基等のN,N−ジアルキルアミノキシ基;プロペノキシ基等のアルケニロキシ基が例示される。これらの中でも、アルコキシ基及びケトキシモ基が好ましい。 The silicon-bonded hydrolyzable group in component (D) is sometimes referred to as a ketoximo group [ketoximino group such as dimethylketoximo group or methylethylketoximo group, and has a general formula: —O—N═CR′R A group represented by “(wherein R ′ and R” are the same or different alkyl groups, preferably an alkyl group having 1 to 6 carbon atoms); an alkoxy group such as a methoxy group or an ethoxy group; an acetoxy group An acyloxy group such as N-butylamino group, N, N-diethylamino group; an acylamide group such as N-methylacetamide group; an N, N-dialkylaminoxy group such as N, N-diethylaminoxy group An alkenyloxy group such as a propenoxy group is exemplified. Among these, an alkoxy group and a ketoximo group are preferable.

(D)成分として、具体的には、分子鎖両末端がシラノール基、ケイ素原子結合メトキシ基又はエトキシ基で封鎖されたジメチルポリシロキサン、メチルアルキルポリシロキサン、ジメチルシロキサン・メチルフェニルシロキサンコポリマー、メチル(3,3,3-トリフルオロプロピル)ポリシロキサン、或いは、アルコキシシランの部分加水分解縮合物等が例示されるが、硬化物の性状と経済性の点でジメチルポリシロキサン又はアルコキシシランの部分加水分解縮合物が好ましい。なお、ケイ素原子結合メトキシ基又はエトキシ基で封鎖されたジメチルポリシロキサンの末端基としては、メチルジメトキシシロキシ基、メチルジエトキシシロキシ基、トリメトキシシロキシ基、トリエトキシシロキシ基、メチルジメトキシシリルエチル(ジメチル)シロキシ基、トリメトキシシリルエチル(ジメチル)シロキシ基等が例示される。 As the component (D), specifically, dimethylpolysiloxane, methylalkylpolysiloxane, dimethylsiloxane / methylphenylsiloxane copolymer, methyl (both ends of the molecular chain blocked with silanol groups, silicon atom-bonded methoxy groups or ethoxy groups, methyl ( 3,3,3-trifluoropropyl) polysiloxane or partially hydrolyzed condensate of alkoxysilane, etc. are exemplified, but partial hydrolysis of dimethylpolysiloxane or alkoxysilane in terms of properties and economy of the cured product Condensates are preferred. The terminal group of dimethylpolysiloxane blocked with a silicon atom-bonded methoxy group or ethoxy group includes methyldimethoxysiloxy group, methyldiethoxysiloxy group, trimethoxysiloxy group, triethoxysiloxy group, methyldimethoxysilylethyl (dimethyl). ) Siloxy group, trimethoxysilylethyl (dimethyl) siloxy group and the like.

(D)成分として、ジオルガノポリシロキサン又はオルガノシランの部分加水分解縮合物を2種類以上併用してもよい。例えば、(D−1)25℃における粘度が20〜100mPa・sである分子鎖両末端がシラノール基で封鎖されたジメチルポリシロキサンと(D−2)25℃における粘度が1000〜5000mPa・sである分子鎖両末端がシラノール基で封鎖されたジメチルポリシロキサンの混合物が挙げられる。ここで成分(D−1)と成分(D−2)の配合比は質量比で1/99〜10/90の範囲にあることが好ましい。 As the component (D), two or more kinds of partial hydrolysis condensates of diorganopolysiloxane or organosilane may be used in combination. For example, (D-1) dimethylpolysiloxane having both molecular chain ends blocked with silanol groups at 25 ° C. and a viscosity of 20 to 100 mPa · s and (D-2) viscosity at 25 ° C. of 1000 to 5000 mPa · s Examples thereof include a mixture of dimethylpolysiloxanes in which both ends of a molecular chain are blocked with silanol groups. Here, the mixing ratio of the component (D-1) and the component (D-2) is preferably in the range of 1/99 to 10/90 in terms of mass ratio.

(E)成分は、(D)成分の架橋剤であり、ケイ素原子結合加水分解性基を少なくとも2個有し、好ましくは3個又は4個有する。一般式:RSiX4−yで表される(式中、Rは炭素原子数1〜10の一価炭化水素基であり、Xはケイ素原子結合加水分解性基であり、yは0又は1である)オルガノシラン又は該オルガノシランの部分加水分解縮合物であるオルガノシロキサンオリゴマーが代表的である。なお、一価炭化水素基の定義及び例示は後述のとおりである。ケイ素原子結合加水分解性基としては、ジメチルケトキシモ基、メチルエチルケトキシモ基等のケトキシモ基[ケトキシミノ基と称されることもあり、一般式:-O-N=CR’R”で示される基(式中、R’及びR”は同一又は異なるアルキル基であり、炭素原子数1〜6のアルキル基が好適である);メトキシ基、エトキシ基等のアルコキシ基;アセトキシ基等のアシロキシ基;N−ブチルアミノ基、N、N−ジエチルアミノ基等のアルキルアミノ基;N−メチルアセトアミド基等のアシルアミド基;N、N−ジエチルアミノキシ基等のN,N−ジアルキルアミノキシ基;プロペノキシ基等のアルケニロキシ基が例示される。これらの中でも、アルコキシ基及びケトキシモ基が好ましい。Component (E) is a crosslinking agent for component (D) and has at least two, preferably three or four silicon atom-bonded hydrolyzable groups. General formula: R y SiX 4-y (wherein R is a monovalent hydrocarbon group having 1 to 10 carbon atoms, X is a silicon atom-bonded hydrolyzable group, and y is 0 or 1)) or an organosiloxane oligomer that is a partial hydrolysis condensate of the organosilane. In addition, the definition and illustration of a monovalent hydrocarbon group are as follows. The silicon atom-bonded hydrolyzable group is a ketoximo group such as a dimethylketoximo group or a methylethylketoximo group [sometimes called a ketoximino group, a group represented by the general formula: —O—N═CR′R ″. (Wherein R ′ and R ″ are the same or different alkyl groups, preferably alkyl groups having 1 to 6 carbon atoms); alkoxy groups such as methoxy groups and ethoxy groups; acyloxy groups such as acetoxy groups; Alkylamino groups such as N-butylamino group and N, N-diethylamino group; acylamide groups such as N-methylacetamide group; N, N-dialkylaminoxy groups such as N, N-diethylaminoxy group; propenoxy groups and the like An alkenyloxy group is exemplified. Among these, an alkoxy group and a ketoximo group are preferable.

(E)成分としては、例えば、テトラメトキシシラン、テトラエトキシシラン、n−プロピルオルソシリケート、メチルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ビニルトリメトキシシラン、ビニルトリス(2−メトキシエトキシ)シラン、3−アミノプロピルトリエトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、ビス−〔3−(トリエトキシシリル)−プロピル〕テトラスルフィド、ビス−〔3−(トリエトキシシリル)−プロピル〕ジスルフィド、トリエトキシシリルプロピル−メタクリレート−モノスルフィド、テトラキス(メチルエチルケトキシモ)シラン、メチルトリス(メチルエチルケトキシモ)シラン、ビニルトリス(メチルエチルケトキシモ)シラン、メチルトリアセトキシシラン、エチルトリアセトキシシラン、メチルトリイソプロペノキシシラン、テトライソプロペノキシシラン、メチルトリ(N,N−ジエチルアミノ)シランが例示される。 Examples of the component (E) include tetramethoxysilane, tetraethoxysilane, n-propyl orthosilicate, methyltrimethoxysilane, methyltriethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, vinyltrimethoxysilane, vinyltris (2 -Methoxyethoxy) silane, 3-aminopropyltriethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, bis- [3- (triethoxysilyl) -propyl] tetrasulfide, bis- [3- (triethoxysilyl) -Propyl] disulfide, triethoxysilylpropyl-methacrylate-monosulfide, tetrakis (methylethylketoximo) silane, methyltris (methylethylketoximo) silane, vinyltris (methylethylketo ) Silane, methyltriacetoxysilane, ethyltriacetoxysilane, methyl tri isopropenoxysilane silane, tetra isopropenoxysilane silane, methyltri (N, N-diethylamino) silane.

(E)成分の配合量は、(D)成分を硬化させるのに十分な量であり、組成物が一液型である場合は、湿気遮断下で長期間保存可能であり、湿気にさらされると常温で硬化可能となる量であり、通常、2〜30質量%の範囲内である。具体的には、(E)成分の配合量は、例えば(D)成分100質量部当り5〜100質量部であり、硬化性の面から8〜40質量部の範囲が好ましい。 The amount of component (E) is sufficient to cure component (D). If the composition is a one-component composition, it can be stored for a long period of time under moisture shielding and is exposed to moisture. And an amount that can be cured at room temperature, and is usually in the range of 2 to 30% by mass. Specifically, the amount of component (E) is, for example, 5 to 100 parts by mass per 100 parts by mass of component (D), and a range of 8 to 40 parts by mass is preferable from the viewpoint of curability.

(F)成分としては、従来公知の縮合反応促進触媒を使用することができる。具体例としては、ジブチルスズジアセテ−ト、ジブチルスズジオクテ−ト、ジブチルスズジラウレート、ジブチルスズジマレート、ジオクチルスズジラウレート、ジオクチルスズジマレート、オクチル酸スズ等の有機スズ化合物;テトラ(i−プロピル)チタネート、テトラ(n−ブチル)チタネート、ジブトキシビス(アセチルアセトナート)チタン、イソプロピルトリイソステアロイルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート等の有機チタネート化合物;テトラブチルジルコネート、テトラキス(アセチルアセトナート)ジルコニウム、テトライソブチルジルコネート、ブトキシトリス(アセチルアセトナート)ジルコニウム、ナフテン酸ジルコニウム等の有機ジルコニウム化合物;トリス(エチルアセトアセテート)アルミニウム、トリス(アセチルアセトナート)アルミニウム等の有機アルミニウム化合物;ナフテン酸亜鉛、ナフテン酸コバルト、オクチル酸コバルト等の有機酸金属塩;ジエタノ−ルアミン、トリエタノ−ルアミン等のアミン系触媒が挙げられる。なお、脱アルコール型の縮合反応硬化型の組成物には有機錫化合物又は有機チタネート化合物が適しており、脱オキシム型の縮合反応硬化型の組成物には有機チタネート化合物が適している。 As the component (F), a conventionally known condensation reaction promoting catalyst can be used. Specific examples include organobutyl compounds such as dibutyltin diacetate, dibutyltin dioctate, dibutyltin dilaurate, dibutyltin dimaleate, dioctyltin dilaurate, dioctyltin dimaleate, tin octylate; tetra (i-propyl) titanate, Organic titanate compounds such as tetra (n-butyl) titanate, dibutoxybis (acetylacetonate) titanium, isopropyltriisostearoyl titanate, isopropyltris (dioctylpyrophosphate) titanate, bis (dioctylpyrophosphate) oxyacetate titanate; tetrabutylzirconate , Tetrakis (acetylacetonato) zirconium, tetraisobutylzirconate, butoxytris (acetylacetonato) zirconium Organic zirconium compounds such as zirconium naphthenate; Organoaluminum compounds such as tris (ethylacetoacetate) aluminum and tris (acetylacetonate) aluminum; Organic acid metal salts such as zinc naphthenate, cobalt naphthenate, and cobalt octylate; Examples thereof include amine catalysts such as ruamine and triethanolamine. An organotin compound or an organic titanate compound is suitable for a dealcoholization type condensation reaction curable composition, and an organic titanate compound is suitable for a deoxime type condensation reaction curable composition.

(F)成分の配合量は、(D)成分及び(E)成分の縮合反応を促進するのに十分な量であり、例えば0.1〜15質量%であり、1〜8質量%であることが好ましい。 The blending amount of the component (F) is an amount sufficient to promote the condensation reaction of the component (D) and the component (E), for example, 0.1 to 15% by mass, and 1 to 8% by mass. It is preferable.

この他に、本発明の硬化性ポリオルガノシロキサン組成物には種々の添加剤を本発明の目的および効果を損なわない範囲において添加することができる。添加剤としては例えば、酸化チタン、酸化アルミニウム、シリカ又は石英ガラス等の酸化ケイ素、タルク、炭酸カルシウム、メラミン樹脂、CTUグアナミン樹脂、ベンゾグアナミン樹脂等のような各種無機あるいは有機光拡散材;ガラス、アルミノシリケート等の金属酸化物、窒化アルミニウム、窒化ボロン等の金属窒化物等の放熱材;その他に、老化防止剤、ラジカル禁止剤、紫外線吸収剤、接着性改良剤、難燃剤、界面活性剤、保存安定改良剤、オゾン劣化防止剤、光安定剤、増粘剤、可塑剤、酸化防止剤、熱安定剤、導電性付与剤、帯電防止剤、放射線遮断剤、核剤、リン系過酸化物分解剤、滑剤、顔料、金属不活性化剤、物性調整剤等を挙げることができる。 In addition, various additives can be added to the curable polyorganosiloxane composition of the present invention as long as the objects and effects of the present invention are not impaired. Examples of additives include silicon oxide such as titanium oxide, aluminum oxide, silica or quartz glass, various inorganic or organic light diffusing materials such as talc, calcium carbonate, melamine resin, CTU guanamine resin and benzoguanamine resin; glass, alumino Heat dissipation materials such as metal oxides such as silicates, metal nitrides such as aluminum nitride and boron nitride; in addition, anti-aging agents, radical inhibitors, UV absorbers, adhesion improvers, flame retardants, surfactants, storage Stabilizer, ozone degradation inhibitor, light stabilizer, thickener, plasticizer, antioxidant, thermal stabilizer, conductivity imparting agent, antistatic agent, radiation blocker, nucleating agent, phosphorus peroxide decomposition Agents, lubricants, pigments, metal deactivators, physical property modifiers and the like.

これらの添加剤の添加量は特に限定されるものではないが、組成物の全質量に基づき1〜50重量%が好ましく、1〜30重量%がより好ましく、1〜10重量%がより好ましい。各添加剤は1種類のみを使用してもよく、あるいは、2種類以上を組み合わせて添加してもよい。2種類以上を添加する場合は、各添加剤の量は同一としてもよく、また、異ならせてもよい。 The addition amount of these additives is not particularly limited, but is preferably 1 to 50% by weight, more preferably 1 to 30% by weight, and more preferably 1 to 10% by weight based on the total mass of the composition. Each additive may be used alone or in combination of two or more. When two or more types are added, the amount of each additive may be the same or different.

[イオン性官能基を有する化合物で処理された層状粘土鉱物]
本発明の光学材料はイオン性官能基を有する化合物で処理された層状粘土鉱物を含む。イオン性官能基を有する化合物中のイオン性官能基の数は1又は複数であってよい。層状粘土鉱物を処理するイオン性官能基を有する化合物は1又は複数であってよい。
[Layered clay mineral treated with a compound having an ionic functional group]
The optical material of the present invention includes a layered clay mineral treated with a compound having an ionic functional group. The number of ionic functional groups in the compound having an ionic functional group may be one or more. The compound having an ionic functional group for treating the layered clay mineral may be one or more.

本発明で使用可能な層状粘土鉱物は、天然又は合成のフィロシリケート(phyllosilicates)であり、特にモンモリロナイト(montmorillonite)、ナトリウムモンモリロナイト(sodium montmorillonite)、カルシウムモンモリロナイト(calcium montmorillonite)、マグネシウムモンモリロナイト(magnesium montmorillonite)、ノントロナイト(nontronite)、ベイデルライト(beidellite)、ボルコンスコイト(volkonskoite)、ラポナイト(laponite)、ヘクトライト(hectorite)、サポナイト(saponite)、ソーコナイト(sauconite)、マガダイト(magadite)、ケニヤイト(kenyaite)、ソボクカイト(sobockite)、スビンドルダイト(svindordite)、スチーブンサイト(stevensite)、滑石、雲母、カオリナイト(kaolinite)、バーミキュライト(vermiculite)、ハロイサイト(halloysite)、アルミナートオキシド(aluminate oxides)、又はハイドロタルサイト(hydrotalcites)、及びそれらの混合物のようなスメクチック粘土(smectic clays)である。他の実施形態においては、有用なナノ粘土は、イライト(illite)のような雲母質鉱物、及びレクトライト(rectorite)、タロソバイト(tarosovite)、レディカイト(ledikite)、そしてイライトと上述の粘土鉱物の一つ以上との混合物のような混合層状イライト/スメクタイト鉱物である。有機分子を十分に吸着して、隣接するフィロシリケートプレートレットの間の層間空間を少なくとも約5オングストローム、又は少なくとも約10オングストローム(フィロシリケートを乾燥状態で測定したとき)に増大させる任意の膨潤可能な層状物質を使用できる。粘土鉱物は、天然または合成のどちらも使用可能であるが、不純物による着色の観点から、合成品の方がより好ましい。 Layered clay minerals that can be used in the present invention are natural or synthetic phyllosilicates, in particular montmorillonite, sodium montmorillonite, calcium montmorillonite, magnesium montmorillonite, Nontronite, beidellite, volkonskoite, laponite, hectorite, saponite, sauconite, magadite, kenyaite ), Sobockite, svindordite, stevensite, talc, mica, kaolinite, vermiculite, halloysite, alumina Oxide (aluminate oxides), or hydrotalcite (hydrotalcites), and a smectic clay, such as a mixture thereof (smectic clays). In other embodiments, useful nanoclays include micaceous minerals such as illite, and rectorite, tarosovite, ledikite, and illite and the clay minerals described above. Mixed layered illite / smectite minerals such as mixtures with one or more. Any swellable that fully adsorbs organic molecules and increases the interlayer space between adjacent phyllosilicate platelets to at least about 5 angstroms, or at least about 10 angstroms (when the phyllosilicate is measured in the dry state) Layered materials can be used. As the clay mineral, either natural or synthetic can be used, but a synthetic product is more preferable from the viewpoint of coloring by impurities.

前記層状粘土鉱物は、モンモリロナイト、ナトリウムモンモリロナイト、カルシウムモンモリロナイト、マグネシウムモンモリロナイト、ノントロナイト、ベイデルライト、ボルコンスコイト、ラポナイト、ヘクトライト、サポナイト、ソーコナイト、マガダイト、ケニアイト、ソボクカイト、スビンドルダイト、スチーブンサイト、バーミキュライト、ハロイサイト、アルミナートオキシド、ハイドロタルサイト、イライト、レクトライト、タロソバイト、レディカイト、カオリナイト、及び、これらの混合物からなる群から選択される少なくとも一つであることが好ましい。 The layered clay minerals include montmorillonite, sodium montmorillonite, calcium montmorillonite, magnesium montmorillonite, nontronite, bedellite, vorconskite, laponite, hectorite, saponite, soconite, magadite, kenyaite, sobokite, subindulite, stevensite And at least one selected from the group consisting of vermiculite, halloysite, aluminate oxide, hydrotalcite, illite, rectolite, talosobite, readykite, kaolinite, and mixtures thereof.

これらの層状粘土鉱物は、未処理であってもよく、また、公知のシリル化剤により処理を行ったものであってもよい。粘土鉱物の末端には、水酸基が存在し、この水酸基と添加したシリル化剤が反応して、末端を疎水化することが可能である。この場合、シリル化剤の種類、導入割合によって、親水性/ 疎水性をコントロールすることが可能である。 These layered clay minerals may be untreated or treated with a known silylating agent. A hydroxyl group exists at the terminal of the clay mineral, and the hydroxyl group and the added silylating agent react to make the terminal hydrophobic. In this case, the hydrophilicity / hydrophobicity can be controlled by the type and introduction ratio of the silylating agent.

公知のシリル化剤としては、特に制限されるものではないが、メチルトリメトキシシラン、メチルトリエトキシシラン、プロピルトリメトキシシラン、ブチルトリメトキシシラン、ヘキシルトリメトキシシラン、オクチルトリメトキシシラン、ドデシルトリメトキシシラン、オクタデシルトリメトキシシラン、その他の官能基を有するアルコキシシラン類を例示することができる。粘土へのシリル化剤の導入方法としては、例えば、原料粘土とシリル化剤を混合し、機械的手段を用いて混合することにより製造される。これらのシリル化剤による処理は、後述のイオン性処理剤による処理と組み合わせて使用することも可能である。なお、公知のシリル化された層状粘土鉱物は、シラン処理モンモリロナイト、またはシラン処理有機ベントナイト等としてホージュン等から入手可能である。 Known silylating agents are not particularly limited, but include methyltrimethoxysilane, methyltriethoxysilane, propyltrimethoxysilane, butyltrimethoxysilane, hexyltrimethoxysilane, octyltrimethoxysilane, and dodecyltrimethoxy. Examples include silane, octadecyltrimethoxysilane, and other alkoxysilanes having a functional group. As a method for introducing a silylating agent into clay, for example, it is produced by mixing raw clay and a silylating agent and mixing them using mechanical means. The treatment with these silylating agents can be used in combination with the treatment with an ionic treating agent described later. In addition, a well-known silylated layered clay mineral is available from Hojung etc. as silane-treated montmorillonite or silane-treated organic bentonite.

本発明で使用される層状粘土鉱物は、硬化性ポリオルガノシロキサン組成物との親和性を向上させるため、イオン性官能基を有する化合物で処理されており、変性粘土とされている。 In order to improve the affinity with the curable polyorganosiloxane composition, the layered clay mineral used in the present invention is treated with a compound having an ionic functional group to be a modified clay.

本発明の変性粘土は、交換可能なイオン、例えば、Na、Ca2+、Al3+、Fe2+、Fe3+及びMg2+、を有する層状粘土鉱物を、少なくとも1つのイオン性官能基を有する少なくとも1種の化合物(イオン性処理剤)と接触させることによって得ることができる。これにより、層状粘土鉱物に含まれる上記イオンがイオン性官能基由来のイオンに置換される。イオン性官能基を有する化合物は好適には塩の形態である。The modified clay of the present invention is a layered clay mineral having exchangeable ions, for example, Na + , Ca 2+ , Al 3+ , Fe 2+ , Fe 3+ and Mg 2+ , and at least one having at least one ionic functional group. It can be obtained by contacting with a seed compound (ionic treatment agent). Thereby, the said ion contained in a layered clay mineral is substituted by the ion derived from an ionic functional group. The compound having an ionic functional group is preferably in the form of a salt.

イオン性処理剤としては、非シリコーン系イオン性処理剤及びシリコーン系イオン性処理剤並びにこれらの混合物が挙げられる。特に、非シリコーン系イオン性処理剤とシリコーン系イオン性処理剤の組み合わせや一種類または二種類以上の分子量の異なる前記処理剤を組み合わせにより、硬化性シリコーンに対する相溶性と分散性が改善され、イオン性処理剤の使用量を低減し、組成設計の自由度を広げることが可能になる。 Examples of the ionic treatment agent include non-silicone ionic treatment agents, silicone ionic treatment agents, and mixtures thereof. In particular, the combination of a non-silicone ionic treatment agent and a silicone ionic treatment agent or a combination of one or two or more kinds of treatment agents having different molecular weights improves the compatibility and dispersibility for curable silicones. It is possible to reduce the amount of the chemical treatment agent used and to increase the degree of freedom in composition design.

(非シリコーン系イオン性処理剤)
非シリコーン系イオン性処理剤中のイオン性官能基はカチオン性基であることが好ましい。
(Non-silicone ionic treatment agent)
The ionic functional group in the non-silicone ionic treatment agent is preferably a cationic group.

前記カチオン性基はアンモニウム、ホスホニウム、イミダゾリウム及びピリジニウムからなる群から選択されることが好ましい。 The cationic group is preferably selected from the group consisting of ammonium, phosphonium, imidazolium and pyridinium.

(第4級)アンモニウムとしては、例えば、トリメチルオクチルアンモニウム、トリメチルデシルアンモニウム、トリメチルドデシルアンモニウム、トリメチルテトラデシルアンモニウム、トリメチルヘキサメチルアンモニウム、トリメチルオクタデシルアンモニウム、トリメチルエイコサニルアンモニウム、トリメチルオクタデセニルアンモニウム、等のトリメチルアルキルアンモニウム、ジメチルジオクチルアンモニウム、ジメチルジデシルアンモニウム、ジメチルジオクタデシルアンモニウム、ジメチルジオクタデセニルアンモニウム、ジメチルジオクタデカジエニルアンモニウム等のジメチルジアルキルアンモニウム、例えば、メチルベンジルヘキサデシルアンモニウム、ジメチルオクタデシルベンジルアンモニウム、等のベンジルトリアルキルアンモニウム、ジベンジルジヘキサデシルアンモニウム、等のジベンジルジアルキルアンモニウム、トリオクチルメチルアンモニウム、トリデシルメチルアンモニウム、トリデシルメチルアンモニウム、トリテトラデシルメチルアンモニウム、トリオクタデシルメチルアンモニウム等のトリアルキルメチルアンモニウム等、例えば、モノヒドロキシポリオキシエチレントリアルキルアンモニウム、ジヒドロキシポリオキシエチレンジアルキルアンモニウム、トリヒドロキシポリオキシエチレンアルキルアンモニウム等のポリオキシエチル基含有アンモニウム等を挙げることができる。 Examples of (quaternary) ammonium include trimethyloctyl ammonium, trimethyl decyl ammonium, trimethyl dodecyl ammonium, trimethyl tetradecyl ammonium, trimethyl hexamethyl ammonium, trimethyl octadecyl ammonium, trimethyl eicosanyl ammonium, trimethyl octadecenyl ammonium, Dimethyldialkylammonium such as trimethylalkylammonium, dimethyldioctylammonium, dimethyldidecylammonium, dimethyldioctadecylammonium, dimethyldioctadecenylammonium, dimethyldioctadecadienylammonium, for example, methylbenzylhexadecylammonium, dimethyl Benzyl such as octadecylbenzylammonium Dialkyldialkylammonium such as realkylammonium and dibenzyldihexadecylammonium, trialkylmethylammonium such as trioctylmethylammonium, tridecylmethylammonium, tridecylmethylammonium, tritetradecylmethylammonium and trioctadecylmethylammonium Examples thereof include polyoxyethyl group-containing ammonium such as monohydroxy polyoxyethylene trialkyl ammonium, dihydroxy polyoxyethylene dialkyl ammonium, and trihydroxy polyoxyethylene alkyl ammonium.

第4級アンモニウムを含む層状珪酸塩の調製は、例えば、特開平6−24732号公報の記載に準じて行えばよい。具体的には、大量の水中に予め分散させてある層状珪酸塩に第4級アンモニウム塩を加え、撹拌することで、層状珪酸塩に含まれるアルカリ金属イオン、アルカリ土類金属イオン等のカチオンを第4級アンモニウムに交換する方法等を挙げることができる。   Preparation of the layered silicate containing quaternary ammonium may be performed according to the description of JP-A-6-24732, for example. Specifically, a quaternary ammonium salt is added to a layered silicate that has been dispersed in a large amount of water in advance, and the mixture is stirred, so that cations such as alkali metal ions and alkaline earth metal ions contained in the layered silicate can be obtained. Examples include a method of exchanging with quaternary ammonium.

第4級アンモニウムを含む層状珪酸塩における第4級アンモニウムの含有量としては、層状珪酸塩がもつカチオン交換容量に対して、例えば、0.1〜200%の割合を挙げることができる。   As content of the quaternary ammonium in the layered silicate containing a quaternary ammonium, the ratio of 0.1 to 200% can be mentioned with respect to the cation exchange capacity which a layered silicate has, for example.

第4級アンモニウムで処理された粘土鉱物として、例えば、天然モンモリロナイトにジメチルオクタデシルベンジル4級アンモニウムイオンを導入したエスベンNZ70(株式会社ホージュン製)等の市販品を使用することも可能である。 As the clay mineral treated with quaternary ammonium, for example, a commercially available product such as Sven NZ70 (manufactured by Hojun Co., Ltd.) in which dimethyloctadecylbenzyl quaternary ammonium ion is introduced into natural montmorillonite can be used.

ホスホニウムの具体例としては、トリブチルヘキサデシルホスホニウム、ベンジルトリフェニルホスホニウム、メチルトリフェニルホスホニウム、ビス(ヒドロキシプロピル)オクタデシルイソブチルホスホニウム、トリフェニル(テトラデシル)ホスホニウム、テトラフェニルホスホニウム、ドデシルトリス(4−フェノキシフェニル)ホスホニウム、オクタデシルトリス(4−フェノキシフェニル)ホスホニウムなどが例示される。 Specific examples of phosphonium include tributylhexadecylphosphonium, benzyltriphenylphosphonium, methyltriphenylphosphonium, bis (hydroxypropyl) octadecylisobutylphosphonium, triphenyl (tetradecyl) phosphonium, tetraphenylphosphonium, dodecyltris (4-phenoxyphenyl) Examples include phosphonium and octadecyltris (4-phenoxyphenyl) phosphonium.

イミダゾリウムの具体例としては、1−エチル−3-メチルイミダゾリウム、1−プルピル−3−メチルイミダゾリウム、1−ブチル−3−メチルイミダゾリウム、1−ヘキシル−3−メチルイミダゾリウム、1−ヘキサデシル−3−メチルイミダゾリウムなどが例示される。 Specific examples of imidazolium include 1-ethyl-3-methylimidazolium, 1-propyl-3-methylimidazolium, 1-butyl-3-methylimidazolium, 1-hexyl-3-methylimidazolium, 1-ethyl-3-methylimidazolium, 1-hexyl-3-methylimidazolium, Examples include hexadecyl-3-methylimidazolium.

上記のイオン性官能基は、硬化性ポリオルガノシロキサンとの相溶性の観点から、分子中に1つ以上の炭素数10以上の長鎖アルキル基、若しくは、芳香族基を含有することが好ましい。炭素数10以上の長鎖アルキル基としては、C10〜C30アルキル基が挙げられる。芳香族基としては、フェニル基、トリル基等で例示されるアリール基;ベンジル基、β−フェニルエチル基等のアラルキル基;フェニレン基等のアリーレン基が挙げられる。From the viewpoint of compatibility with the curable polyorganosiloxane, the ionic functional group preferably contains one or more long-chain alkyl groups having 10 or more carbon atoms or an aromatic group in the molecule. Examples of the long chain alkyl group having 10 or more carbon atoms include C 10 to C 30 alkyl groups. Examples of the aromatic group include aryl groups exemplified by phenyl group, tolyl group and the like; aralkyl groups such as benzyl group and β-phenylethyl group; and arylene groups such as phenylene group.

(シリコーン系イオン性処理剤)
シリコーン系イオン性処理剤中のイオン性官能基はカチオン性基であることが好ましい。
(Silicone-based ionic treatment agent)
The ionic functional group in the silicone-based ionic treatment agent is preferably a cationic group.

前記カチオン性基はアンモニウム、ホスホニウム、イミダゾリウム及びピリジニウムからなる群から選択されることが好ましい。 The cationic group is preferably selected from the group consisting of ammonium, phosphonium, imidazolium and pyridinium.

シリコーン系イオン性処理剤としてアンモニウム含有ポリオルガノシロキサンを使用することができる。   An ammonium-containing polyorganosiloxane can be used as the silicone-based ionic treatment agent.

アンモニウム含有ポリオルガノシロキサンとしては、例えば、米国特許第5,130,396号公報に記載された化合物が挙げられ、これらは市販品を含む既知の物質から調製可能である。米国特許第5,130,396号公報の内容はここに参照として取り込まれる。   As an ammonium containing polyorganosiloxane, the compound described in the US Patent 5,130,396 is mentioned, for example, These can be prepared from the known substance containing a commercial item. The contents of US Pat. No. 5,130,396 are incorporated herein by reference.

米国特許第5,130,396号公報のアンモニウム含有ポリオルガノシロキサンは、以下の一般式(I)によって表わされる:

Figure 2015079677
〔式中、R及びRは、同一でも異なってもよく、以下の式(II)の基を表わす:
Figure 2015079677
{ここで、式(I)の窒素原子はR基を介して式(II)のケイ素原子と結合し、
は、炭素数1〜10のアルキレン基、炭素数5〜8のシクロアルキレン基又は下記の一般式の単位を表わす:
Figure 2015079677
(式中、nは、1〜6の数であり且つ窒素の位置におけるメチレン基の数を示し、mは、0〜6までの数である)
そして、ケイ素原子に結合した酸素原子の自由原子価は、式(II)の他の基のケイ素原子によって、及び/又は、一つ又は複数の下記式の架橋性結合によって、シリカ骨格における場合のように飽和されており、
Figure 2015079677

(式中、Mは、ケイ素原子、チタン原子又はジルコニウム原子であり、
R’は、炭素数1〜5の直鎖状又は分岐状のアルキル基である)
そして、式(II)の基のケイ素原子対上記式の架橋性結合中の金属原子の比は、1:0〜1:10である}
そして、式中、
は、R又はRと同じであるか、或いは、水素、炭素数1〜20の直鎖状若しくは分岐状のアルキル基、炭素数5〜8のシクロアルキル基、又は、ベンジル基であり、
は、水素、炭素数1〜20の直鎖状若しくは分岐状のアルキル基又は炭素数5〜8のシクロアルキル基、ベンジル基、アルキル基、プロパルギル基、クロロエチル基、ヒドロキシエチル基、又は、クロロプロピル基であり、
Xは、1から3に等しい価数xの陰イオンであり、ハロゲン化物イオン、次亜塩素酸イオン、硫酸イオン、硫酸水素イオン、亜硝酸イオン、硝酸イオン、リン酸イオン、リン酸二水素イオン、リン酸水素イオン、炭酸イオン、炭酸水素イオン、水酸化物イオン、塩素酸イオン、過塩素酸イオン、クロム酸イオン、二クロム酸イオン、シアン化物イオン、シアン酸イオン、ロダン化物イオン、硫化物イオン、硫化水素イオン、セレン化物イオン、テルル化物イオン、ホウ酸イオン、メタホウ酸イオン、アジ化物イオン、テトラフルオロホウ酸イオン、テトラフェニルホウ酸塩イオン、ヘキサフルオロリン酸イオン、ギ酸イオン、酢酸イオン、プロピオン酸イオン、シュウ酸イオン、トリフルオロ酢酸イオン、トリクロロ酢酸イオン又は安息香酸イオンの群から選択される。〕The ammonium-containing polyorganosiloxane of US Pat. No. 5,130,396 is represented by the following general formula (I):
Figure 2015079677
[Wherein R 1 and R 2 may be the same or different and represent a group of the following formula (II):
Figure 2015079677
{Wherein the nitrogen atom of formula (I) is bonded to the silicon atom of formula (II) via the R 5 group,
R 5 represents an alkylene group having 1 to 10 carbon atoms, a cycloalkylene group having 5 to 8 carbon atoms, or a unit of the following general formula:
Figure 2015079677
(In the formula, n is a number from 1 to 6 and indicates the number of methylene groups at the nitrogen position, and m is a number from 0 to 6).
And the free valence of the oxygen atom bonded to the silicon atom is as determined by the silicon atom of the other group of formula (II) and / or by the crosslinkable bond of one or more of the following formulas in the silica skeleton: Is saturated and
Figure 2015079677

(In the formula, M is a silicon atom, a titanium atom or a zirconium atom,
R ′ is a linear or branched alkyl group having 1 to 5 carbon atoms)
And the ratio of the silicon atom of the group of formula (II) to the metal atom in the crosslinkable bond of the above formula is 1: 0 to 1:10}
And in the formula:
R 3 is the same as R 1 or R 2 , or is hydrogen, a linear or branched alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 5 to 8 carbon atoms, or a benzyl group. Yes,
R 4 is hydrogen, a linear or branched alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 5 to 8 carbon atoms, a benzyl group, an alkyl group, a propargyl group, a chloroethyl group, a hydroxyethyl group, or A chloropropyl group,
X is an anion having a valence x equal to 1 to 3, halide ion, hypochlorite ion, sulfate ion, hydrogen sulfate ion, nitrite ion, nitrate ion, phosphate ion, dihydrogen phosphate ion , Hydrogen phosphate ion, carbonate ion, bicarbonate ion, hydroxide ion, chlorate ion, perchlorate ion, chromate ion, dichromate ion, cyanide ion, cyanate ion, rhodanide ion, sulfide Ion, hydrogen sulfide ion, selenide ion, telluride ion, borate ion, metaborate ion, azide ion, tetrafluoroborate ion, tetraphenylborate ion, hexafluorophosphate ion, formate ion, acetate ion , Propionate ion, oxalate ion, trifluoroacetate ion, trichloroacetate ion or benzoic acid It is selected from the group of on. ]

アンモニウム含有ポリオルガノシロキサンを調製する一つの方法は、任意に触媒存在下で、少なくとも一つの加水分解が可能なアルコキシ基を有する第一級、第二級、又は第三級のアミノシランと水との反応により、シランの加水分解と、次に起こる縮合を行ってアミン末端オルガノポリシランを生成させ、その後、鉱酸及び/又はハロゲン化アルキルのような適切な四級化試薬で四級化して、アンモニウム含有ポリオルガノシロキサンを得るものである。このタイプの方法は、前述した米国特許第5,130,396号公報に記載されている。これに関して、米国特許第6,730,766号公報には、エポキシ官能性ポリシロキサンの反応による四級化ポリシロキサンの製造プロセスが記載されており、米国特許第6,730,766号公報の内容はここに参照として取り込まれる。   One method of preparing ammonium-containing polyorganosiloxanes is to combine a primary, secondary, or tertiary aminosilane with water and at least one hydrolyzable alkoxy group, optionally in the presence of a catalyst, with water. The reaction involves hydrolysis of the silane and subsequent condensation to produce an amine-terminated organopolysilane, which is then quaternized with a suitable quaternizing reagent such as mineral acid and / or alkyl halide to produce ammonium. A polyorganosiloxane containing product is obtained. This type of method is described in the aforementioned US Pat. No. 5,130,396. In this regard, US Pat. No. 6,730,766 describes a process for the production of quaternized polysiloxanes by reaction of epoxy functional polysiloxanes, the contents of US Pat. No. 6,730,766. Is incorporated herein by reference.

この方法の変更形態においては、加水分解可能なアルコキシ基を有する第一級、第二級、又は第三級のアミノシランは、ポリオルガノシロキサンを与える加水分解縮合反応に先立って第四級化される。例えば、アンモニウム含有N−トリメトキシシリルプロピル−N,N,N−トリメチルアンモニウムクロリド、N−トリメトキシシリルプロピル−N,N,N−トリ−n−ブチルアンモニウムクロリド、そして市販品のアンモニウム含有トリアルコキシシランであるオクタデシルジメチル(3−トリメトキシシリルプロピル)アンモニウムクロリド(ゲレスト社(Gelest, Inc)から入手できる)であり、続く加水分解/縮合は、本書で使用するアンモニウム含有ポリオルガノシロキサンを与える。 In this process variant, a primary, secondary, or tertiary aminosilane having a hydrolyzable alkoxy group is quaternized prior to the hydrolytic condensation reaction to give a polyorganosiloxane. . For example, ammonium-containing N-trimethoxysilylpropyl-N, N, N-trimethylammonium chloride, N-trimethoxysilylpropyl-N, N, N-tri-n-butylammonium chloride, and commercial ammonium-containing trialkoxy The silane octadecyldimethyl (3-trimethoxysilylpropyl) ammonium chloride (available from Gelest, Inc) and subsequent hydrolysis / condensation gives the ammonium-containing polyorganosiloxane used herein.

アンモニウム含有ポリオルガノシロキサンを調製するのに有用な、他の適切な第三級アミノシランとしては、トリス(トリエトキシシリルプロピル)アミン、トリス(トリメトキシシリルプロピル)アミン、トリス(ジエトキシメチルシリルプロピル)アミン、トリス(トリプロポキシシリルプロピル)アミン、トリス(エトキシジメチルシリルプロピル)アミン、トリス(トリエトキシフェニルシリルプロピル)アミンなどが挙げられる。 Other suitable tertiary aminosilanes useful for preparing ammonium-containing polyorganosiloxanes include tris (triethoxysilylpropyl) amine, tris (trimethoxysilylpropyl) amine, tris (diethoxymethylsilylpropyl). Examples include amines, tris (tripropoxysilylpropyl) amine, tris (ethoxydimethylsilylpropyl) amine, and tris (triethoxyphenylsilylpropyl) amine.

アンモニウム含有ポリオルガノシロキサンを調製する更に他の方法では、第四級化試薬を用いて、第一級、第二級、又は第三級のアミン含有ポリオルガノシロキサンを四級化することが必要とされる。有用なアミン含有ポリオルガノシロキサンは、以下の一般式の化合物を含む:

Figure 2015079677
(式中、R、R、R及びRは、個々独立して、H、炭素数30以下の炭化水素基(例えば、アルキル、シクロアルキル、アリール、脂肪族基置換アリール(alkaryl)、芳香族基置換アルキル(aralkyl)など)であり、又はRとRは共に、又はRとRは共に、炭素数12以下の二価の架橋基を形成し、R及びRは、個々独立して炭素数30以下の二価の炭化水素架橋基であり、任意に1つ以上の酸素原子及び/又はチッ素原子を鎖の中に含有することができ、例えば、−CH−、−CHCH−、−CHCHCH−、−CHC(CH)−CH−、−CHCHCHCH−などのような炭素数1〜8の直鎖状又は分岐状のアルキレンであり、Rは、個々独立してアルキル基であり、そしてnは1〜20であり、好ましくは6〜12である。)Yet another method of preparing ammonium-containing polyorganosiloxanes requires quaternization of primary, secondary, or tertiary amine-containing polyorganosiloxanes with a quaternizing reagent. Is done. Useful amine-containing polyorganosiloxanes include compounds of the general formula:
Figure 2015079677
Wherein R 1 , R 2 , R 6 and R 7 are each independently H, a hydrocarbon group having 30 or less carbon atoms (for example, alkyl, cycloalkyl, aryl, aliphatic group-substituted aryl (alkaryl) R 1 and R 2 , or R 6 and R 7 together form a divalent bridging group having 12 or less carbon atoms, and R 3 and R 2. 5 are each independently a divalent hydrocarbon bridging group having 30 or less carbon atoms, and can optionally contain one or more oxygen atoms and / or nitrogen atoms in the chain. CH 2 -, - CH 2 CH 2 -, - CH 2 CH 2 CH 2 -, - CH 2 C (CH 3) -CH 2 -, - CH 2 CH 2 CH 2 CH 2 - carbon atoms, such as 1 8 is a linear or branched alkylene, R 4 is alkyl and each independently , And the and n is 1-20, preferably 6-12.)

これらの及び類似のアミン含有ポリオルガノシロキサンは、既知の、そして汎用の手順によって、例えば、米国特許第5,026,890号公報に記載されたように、白金含有ヒドロシリル化触媒のようなヒドロシリル化触媒の存在下において、アリルアミンのようなオレフィンアミンをSi−H結合を有するポリジオルガノシロキサンと反応させることによって得ることができ、米国特許第5,026,890号公報の内容はここに参照として取り込まれる。   These and similar amine-containing polyorganosiloxanes can be synthesized by known and conventional procedures, such as hydrosilylation, such as platinum-containing hydrosilylation catalysts, as described in US Pat. No. 5,026,890. It can be obtained by reacting an olefin amine such as allylamine with a polydiorganosiloxane having a Si-H bond in the presence of a catalyst, the contents of US Pat. No. 5,026,890 incorporated herein by reference. It is.

アンモニウム含有ポリオルガノシロキサンを調製するために有用な具体的なアミン含有ポリオルガノシロキサンとしては、以下の市販の混合物が挙げられる。

Figure 2015079677
Specific amine-containing polyorganosiloxanes useful for preparing ammonium-containing polyorganosiloxanes include the following commercially available mixtures.
Figure 2015079677

シリコーン系イオン性処理剤としてホスホニウム含有ポリオルガノシロキサンを使用することができる。ホスホニウム含有ポリオルガノシロキサンは、下記のような一般式で表すことができる。

Figure 2015079677
(式中、R、R、R、R、X、xは、上記と同じである。)A phosphonium-containing polyorganosiloxane can be used as the silicone-based ionic treatment agent. The phosphonium-containing polyorganosiloxane can be represented by the following general formula.
Figure 2015079677
(Wherein R 1 , R 2 , R 3 , R 4 , X, x are the same as above)

シリコーン系イオン性処理剤としてイミダゾリウム含有ポリオルガノシロキサンを使用することができる。イミダゾリウム含有ポリオルガノシロキサンは、下記のような一般式で表すことができる。

Figure 2015079677
(式中、R、X、xは、上記と同じである。)An imidazolium-containing polyorganosiloxane can be used as the silicone-based ionic treatment agent. The imidazolium-containing polyorganosiloxane can be represented by the following general formula.
Figure 2015079677
(In the formula, R 1 , X and x are the same as above.)

シリコーン系イオン性処理剤としてピリジニウム含有ポリオルガノシロキサンを使用することができる。ピリジニウム含有ポリオルガノシロキサンは、下記のような一般式で表すことができる。

Figure 2015079677
(式中、R、R、X、xは、上記と同じである。)Pyridinium-containing polyorganosiloxane can be used as the silicone-based ionic treatment agent. The pyridinium-containing polyorganosiloxane can be represented by the following general formula.
Figure 2015079677
(In the formula, R 1 , R 2 , X and x are the same as above.)

シリコーン系イオン性処理剤としては、好ましくは、下記平均構造式

(R SiO1/2)(R SiO2/2)(RSiO3/2)(SiO4/2)

{式中、
、R及びRは、各々独立して、一価炭化水素基、水素原子、水酸基、アルコキシ基、及び、−Z−(Q)、(式中、Zは(n+1)価の官能基又はケイ素原子への直接結合であり、nは1以上の数であり、Qはイオン性官能基である)、又は、他のシロキサン単位のSi原子に結合した2価の官能基であり、但し、全てのR、R及びRのうち、50モル%以上が一価炭化水素基であり、また、分子中に、少なくとも1つの−Z−(Q)で示される基を含み、
a、b、c及びdは、各々独立して、0又は正数であり、a+b+c+dは2〜1000の範囲の数である}
で表されるシリコーン類を使用することができる。
The silicone-based ionic treatment agent is preferably the following average structural formula

(R M 3 SiO 1/2 ) a (R D 2 SiO 2/2 ) b (R T SiO 3/2 ) c (SiO 4/2 ) d

{Where
R M , R D, and R T are each independently a monovalent hydrocarbon group, a hydrogen atom, a hydroxyl group, an alkoxy group, and —Z— (Q) n , wherein Z is an (n + 1) valent group. A functional group or a direct bond to a silicon atom, n is a number of 1 or more, and Q is an ionic functional group), or a divalent functional group bonded to the Si atom of another siloxane unit However, of all R M , R D and R T , 50 mol% or more is a monovalent hydrocarbon group, and at least one group represented by —Z— (Q) n is present in the molecule. Including
a, b, c and d are each independently 0 or a positive number, and a + b + c + d is a number in the range of 2 to 1000}
Can be used.

前記一価炭化水素基は、直鎖状、一部分枝を有する直鎖状、分枝鎖状、網状若しくは樹枝状、置換若しくは非置換であり、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等のアルキル基;ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基等のアルケニル基;フェニル基、トリル基、キシリル基等のアリール基;ベンジル基、フェネチル基等のアラルキル基;3−クロロプロピル基、3,3,3−トリフルオロプロピル基等のハロゲン化アルキル基が例示される。一価炭化水素基の炭素数は特に限定されるものではないが、1〜30が好ましく、1〜10がより好ましく、1〜6が更により好ましい。 The monovalent hydrocarbon group is linear, partially branched, branched, network or dendritic, substituted or unsubstituted, methyl group, ethyl group, propyl group, butyl group, pentyl Group, hexyl group and other alkyl groups; vinyl group, allyl group, butenyl group, pentenyl group, hexenyl group, heptenyl group and other alkenyl groups; phenyl group, tolyl group, xylyl group and other aryl groups; benzyl group, phenethyl group and the like And haloalkyl groups such as 3-chloropropyl group and 3,3,3-trifluoropropyl group. Although carbon number of a monovalent hydrocarbon group is not specifically limited, 1-30 are preferable, 1-10 are more preferable, and 1-6 are still more preferable.

前記平均構造式中のa〜dは、a=2、2<b<1000、c=0及びd=0であり、Rの少なくとも1つが―Z−(Q)であることが好ましい。また、この場合bは2〜1000であれば十分であるが、2〜500であることが好ましく、2〜250であることがより好ましく、2〜100であることがさらに好ましく、2〜50であることがなお好ましい。In the average structural formula, a to d are a = 2, 2 <b <1000, c = 0 and d = 0, and at least one of R M is preferably —Z— (Q) n . In this case, it is sufficient that b is 2 to 1000, but it is preferably 2 to 500, more preferably 2 to 250, still more preferably 2 to 100, and 2 to 50. Even more preferably.

前記Qはカチオン性基であることが好ましい。 Q is preferably a cationic group.

前記Qはアンモニウム、ホスホニウム、イミダゾリウム及びピリジニウムからなる群から選択されることが好ましい。 Q is preferably selected from the group consisting of ammonium, phosphonium, imidazolium and pyridinium.

このような構造のシリコーン系イオン性処理剤としては、下記のものが例示される。

Figure 2015079677
Figure 2015079677
Figure 2015079677
Figure 2015079677
The following are illustrated as a silicone type ionic processing agent of such a structure.
Figure 2015079677
Figure 2015079677
Figure 2015079677
Figure 2015079677

[光学材料]
本発明の光学材料は、硬化性ポリオルガノシロキサン組成物とイオン性官能基を有する化合物で処理された層状粘土鉱物とを混合することによって製造可能である。
[Optical materials]
The optical material of the present invention can be produced by mixing a curable polyorganosiloxane composition and a layered clay mineral treated with a compound having an ionic functional group.

前記硬化性ポリオルガノシロキサンとイオン性官能基を有する化合物で処理された層状粘土鉱物との混合比は特に限定されるものではないが、硬化性ポリオルガノシロキサン:イオン性官能基を有する化合物で処理された層状粘土鉱物の質量(重量)比は1:99〜95:5の範囲が好ましく、2.5:97.5〜90:10の範囲、5:95〜85:15の範囲、7.5:92.5〜80:20の範囲、10:90〜75:25の範囲、12.5:87.5〜70:30の範囲が更に好ましい。 The mixing ratio of the curable polyorganosiloxane and the layered clay mineral treated with the compound having an ionic functional group is not particularly limited, but curable polyorganosiloxane: treated with a compound having an ionic functional group The mass (weight) ratio of the layered clay mineral is preferably in the range of 1:99 to 95: 5, in the range of 2.5: 97.5 to 90:10, in the range of 5:95 to 85:15. A range of 5: 92.5 to 80:20, a range of 10:90 to 75:25, and a range of 12.5: 87.5 to 70:30 are more preferable.

本発明の光学材料は少なくとも1種の蛍光体を含むことができる。 The optical material of the present invention can contain at least one phosphor.

蛍光体は、紫外又は可視の励起光を入射すると、当該励起光の波長よりも長波長の蛍光を発する無機微粒子、ナノ結晶構造又は量子ドット等であり、特に、波長300〜500nmに励起帯を有し波長380〜780nmに発光ピークを有するもの、特に青色(波長440〜480nm)、緑色(波長500〜540nm)、黄色(波長540〜595nm)、又は赤色(波長600〜700nm)に発光する蛍光体微粒子を用いることが好ましい。一般に市場で入手可能な蛍光体微粒子として、YAG等のガーネット系やその他の酸化物、窒化物、酸窒化物、硫化物、酸硫化物、希土類硫化物、YAl12:Ce、(Y,Gd)Al12:Ce、Y(Al,Ga)12:Ce等で表されるCe等のランタノイド系元素で主に賦活される希土類系アルミン酸塩化物、ハロリン酸塩化物などからなるものが挙げられる。これらの蛍光体微粒子の具体例として、例えば、特開2012−052018号公報に開示された無機蛍光体微粒子が挙げられる。The phosphor is an inorganic fine particle, nanocrystal structure, quantum dot or the like that emits fluorescence having a wavelength longer than the wavelength of the excitation light when ultraviolet or visible excitation light is incident. In particular, the phosphor has an excitation band at a wavelength of 300 to 500 nm. Fluorescence which has a light emission peak at a wavelength of 380 to 780 nm, particularly blue (wavelength of 440 to 480 nm), green (wavelength of 500 to 540 nm), yellow (wavelength of 540 to 595 nm), or red (wavelength of 600 to 700 nm) It is preferable to use body fine particles. As phosphor fine particles generally available on the market, garnets such as YAG and other oxides, nitrides, oxynitrides, sulfides, oxysulfides, rare earth sulfides, Y 3 Al 5 O 12 : Ce, ( Y, Gd) 3 Al 5 O 12 : Ce, Y 3 (Al, Ga) 5 O 12 : Rare earth aluminate chlorides and halophosphoric acid mainly activated by lanthanoid elements such as Ce represented by Ce The thing which consists of chlorides etc. is mentioned. Specific examples of these phosphor fine particles include inorganic phosphor fine particles disclosed in JP2012-052018A.

蛍光体は、平均粒子径が0.1〜300μmの範囲である微粒子の形態であることが一般的であり、ガラスビーズ等のガラスパウダーとの混合物の状態で処理してもよい。さらに、励起光や発光の波長域に合わせて、複数の蛍光体微粒子からなる混合物の処理に用いても良い。例えば、紫外域の励起光を照射して白色光を得る場合は、青色、緑色、黄色、及び赤色の蛍光を発する蛍光体微粒子の混合物を表面処理することが望ましい。 The phosphor is generally in the form of fine particles having an average particle diameter in the range of 0.1 to 300 μm, and may be treated in a state of a mixture with glass powder such as glass beads. Furthermore, it may be used for processing a mixture of a plurality of phosphor fine particles in accordance with the wavelength range of excitation light or light emission. For example, when white light is obtained by irradiating ultraviolet excitation light, it is desirable to surface-treat a mixture of phosphor fine particles that emit blue, green, yellow, and red fluorescence.

本発明の側面は、硬化性ポリオルガノシロキサン組成物からなる光学材料のガスバリア性を改善するための、イオン性官能基を有する化合物で処理された層状粘土鉱物の使用である。 An aspect of the present invention is the use of a layered clay mineral treated with a compound having an ionic functional group for improving the gas barrier property of an optical material comprising a curable polyorganosiloxane composition.

本発明の更なる他の側面は、硬化性ポリオルガノシロキサン組成物からなる光学材料のガスバリア性を改善する方法であって、前記硬化性ポリオルガノシロキサン組成物にイオン性官能基を有する化合物で処理された層状粘土鉱物を配合する方法である。 Still another aspect of the present invention is a method for improving gas barrier properties of an optical material comprising a curable polyorganosiloxane composition, wherein the curable polyorganosiloxane composition is treated with a compound having an ionic functional group. This is a method of blending the layered clay mineral.

本発明の使用及び方法により、硬化性ポリオルガノシロキサン組成物の硬化物からなる光学材料のガスバリア性を改善することができる。 The use and method of the present invention can improve the gas barrier properties of an optical material comprising a cured product of a curable polyorganosiloxane composition.

本発明の光学材料は、任意の光学用途に使用することができるが、光半導体用として使用することが好ましい。特に、本発明の光学材料は、光半導体の封止剤、光半導体素子の保護膜、又は、光反射膜の保護剤として好適に使用可能である。 The optical material of the present invention can be used for any optical application, but is preferably used for an optical semiconductor. In particular, the optical material of the present invention can be suitably used as a sealing agent for an optical semiconductor, a protective film for an optical semiconductor element, or a protective agent for a light reflecting film.

光半導体又は光半導体素子としては、具体的には、発光ダイオード(LED)素子、半導体レーザ素子、有機EL、フォトダイオード素子、フォトトランジスタ素子、固体撮像素子、フォトカプラー用発光素子、受光素子等が例示される。 Specific examples of optical semiconductors or optical semiconductor elements include light emitting diode (LED) elements, semiconductor laser elements, organic EL, photodiode elements, phototransistor elements, solid-state imaging elements, light emitting elements for photocouplers, light receiving elements, and the like. Illustrated.

特に、本発明の光学材料は光半導体装置に好適に使用可能である。本発明の光学材料が使用された光半導体装置では、基板上の光半導体素子又は筺体内の光半導体素子が、本発明の光学材料により封止若しくは保護されている、又は、光反射膜が本発明の光学材料により表面処理され、保護されていることが好ましい。 In particular, the optical material of the present invention can be suitably used for an optical semiconductor device. In the optical semiconductor device using the optical material of the present invention, the optical semiconductor element on the substrate or the optical semiconductor element in the housing is sealed or protected by the optical material of the present invention, or the light reflecting film is the main film. It is preferable that the surface is treated and protected by the optical material of the invention.

また、本発明の光学材料を硬化させることによって、優れたガスバリア性と耐熱性を備える光学物品を製造することができる。本発明の光学材料中の硬化性ポリオルガノシロキサン組成物の硬化型により、通常の態様に基づいて、例えば、室温又は加熱下で硬化を実施することができる。光学物品としては、例えば、発光ダイオード、有機EL等が挙げられる。 Further, by curing the optical material of the present invention, an optical article having excellent gas barrier properties and heat resistance can be produced. According to the curing type of the curable polyorganosiloxane composition in the optical material of the present invention, curing can be performed, for example, at room temperature or under heating, based on a normal mode. As an optical article, a light emitting diode, organic EL, etc. are mentioned, for example.

以下、本発明を実施例に基づいて更に詳細に説明するが、本発明はこれらの実施例によってなんら限定されるものではない。なお、実施例中の化学式において、「Me」はメチル基であり、「Ph」はフェニル基であり、「Vi」はビニル基である。 EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited at all by these Examples. In the chemical formulas in the examples, “Me” is a methyl group, “Ph” is a phenyl group, and “Vi” is a vinyl group.

[水蒸気透過性]
硬化性ポリオルガノシロキサン組成物を150℃で2時間加熱して、厚み1mmの硬化物を作製した。イリノイインスツルメンツ社製水蒸気透過率測定装置を用い、前記硬化物の水蒸気透過度を40℃で測定した。
また、実施例14,15における薄膜の硬化物については、PETフィルム上で硬化させた薄膜の硬化物状の硬化物について水蒸気透過率を測定した。下記計算式により硬化物の1mm厚換算の水蒸気透過度を求めた。

Figure 2015079677

(上式中、n層からなる多層コート(厚みL)において、第n層の厚みと水蒸気透過率をそれぞれ、l.Pとしたときにフィルム全体の水蒸気透過率Ptotalは、上記式より算出することができる。参考文献:高分子と水分 第7章 高分子学会編 幸書房(1973))[Water vapor permeability]
The curable polyorganosiloxane composition was heated at 150 ° C. for 2 hours to prepare a cured product having a thickness of 1 mm. The water vapor permeability of the cured product was measured at 40 ° C. using a water vapor permeability measuring device manufactured by Illinois Instruments.
Moreover, about the hardened | cured material of the thin film in Examples 14 and 15, the water-vapor-permeation rate was measured about the hardened | cured material of the thin film hardened | cured on the PET film. The water vapor permeability in terms of 1 mm thickness of the cured product was determined by the following formula.
Figure 2015079677

(In the above formula, in the multilayer coat consisting of n layers (thickness L), when the thickness of the nth layer and the water vapor transmission rate are respectively l 1 .P n , the water vapor transmission rate P total of the entire film is the above formula. References: Polymers and moisture Chapter 7: The Society of Polymer Science, Koshobo (1973))

[耐熱性]
硬化性ポリオルガノシロキサン組成物を150℃で2時間加熱して、光路長0.2mmの硬化物を作製した。この硬化物の波長600nmにおける光透過率を測定した。さらに、この硬化物を150℃で24時間加熱し、再度、波長600nmにおける光透過率を測定した。下記式による光透過率の保持率から耐熱性を評価した。

耐熱性(光透過率の保持率)=
(150℃で24時間経過後の透過率/直後の透過率)×100
[Heat-resistant]
The curable polyorganosiloxane composition was heated at 150 ° C. for 2 hours to produce a cured product having an optical path length of 0.2 mm. The light transmittance of the cured product at a wavelength of 600 nm was measured. Furthermore, this hardened | cured material was heated at 150 degreeC for 24 hours, and the light transmittance in wavelength 600nm was measured again. The heat resistance was evaluated from the light transmittance retention by the following formula.

Heat resistance (retention rate of light transmittance) =
(Transmittance after 24 hours at 150 ° C./Transmittance immediately after) x 100

[実施例1]
変性粘土として、天然モンモリロナイトにジメチルオクタデシルベンジル4級アンモニウムイオンを導入した市販品エスベンNZ70(株式会社ホージュン製、ジメチルオクタデシルベンジル4級アンモニウムイオン交換変性粘土)を用いた。1gの上記変性粘土に30.75gのトルエンを添加し、均一にした。その後、9gのフェニル系ヒドロシリル化反応硬化性シリコーン組成物であるOE−6630(東レ・ダウコーニング株式会社製、水蒸気透過度12.5g/m day)を添加し、均一にした。テフロン(登録商標)製のカップに移し、室温で24時間静置することでトルエンを除去後、150℃で2時間加熱し、硬化物を得た。得られた硬化物の水蒸気透過度は、8.9g/m・dayであり、 変性粘土を添加していないフェニル系ヒドロシリル化反応硬化性シリコーン組成物よりガスバリア性が向上した。また、150℃で24時間加熱後の光透過率の保持率は100%であり、耐熱性は良好であった。水蒸気透過度及び耐熱性の測定結果を表1に示す。
[Example 1]
As the modified clay, a commercially available product esben NZ70 (produced by Hojun Co., Ltd., dimethyloctadecylbenzyl quaternary ammonium ion exchange modified clay) in which dimethyloctadecylbenzyl quaternary ammonium ion was introduced into natural montmorillonite was used. 30.75 g of toluene was added to 1 g of the modified clay to make it uniform. Thereafter, 9 g of a phenyl hydrosilylation reaction-curable silicone composition OE-6630 (manufactured by Toray Dow Corning Co., Ltd., water vapor permeability of 12.5 g / m 2 day) was added and made uniform. It moved to the cup made from Teflon (trademark), and after removing toluene by leaving still at room temperature for 24 hours, it heated at 150 degreeC for 2 hours, and obtained hardened | cured material. The water vapor permeability of the obtained cured product was 8.9 g / m 2 · day, and the gas barrier property was improved as compared with the phenyl hydrosilylation reaction curable silicone composition to which no modified clay was added. Further, the light transmittance retention after heating at 150 ° C. for 24 hours was 100%, and the heat resistance was good. Table 1 shows the measurement results of water vapor permeability and heat resistance.

[実施例2]
エスベンNZ70を2g、トルエンを61.5g、OE−6630を8gに変更した以外は、実施例1と同様の手順で、硬化物を得た。得られた硬化物の水蒸気透過度は、7.6g/m・dayであり、 変性粘土を添加していないフェニル系ヒドロシリル化反応硬化性シリコーン組成物よりガスバリア性が向上した。また、150℃で24時間加熱後の光透過率の保持率は100%であり、耐熱性は良好であった。水蒸気透過度及び耐熱性の測定結果を表1に示す。
[Example 2]
A cured product was obtained in the same procedure as in Example 1 except that 2 g of Sven NZ70, 61.5 g of toluene, and 8 g of OE-6630 were changed. The water vapor permeability of the obtained cured product was 7.6 g / m 2 · day, and the gas barrier property was improved as compared with the phenyl hydrosilylation reaction curable silicone composition to which no modified clay was added. Further, the light transmittance retention after heating at 150 ° C. for 24 hours was 100%, and the heat resistance was good. Table 1 shows the measurement results of water vapor permeability and heat resistance.

[実施例3]
エスベンNZ70を3g、トルエンを92.25g、OE−6630を7gに変更した以外は、実施例1と同様の手順で、硬化物を得た。得られた硬化物の水蒸気透過度は、4.7g/m・dayであり、 変性粘土を添加していないフェニル系ヒドロシリル化反応硬化性シリコーン組成物よりガスバリア性が向上した。また、150℃で24時間加熱後の光透過率の保持率は100%であり、耐熱性は良好であった。水蒸気透過度及び耐熱性の測定結果を表1に示す。
[Example 3]
A cured product was obtained in the same procedure as in Example 1 except that 3 g of Sven NZ70, 92.25 g of toluene and 7 g of OE-6630 were changed. The water vapor permeability of the obtained cured product was 4.7 g / m 2 · day, and the gas barrier property was improved as compared with the phenyl hydrosilylation reaction curable silicone composition to which no modified clay was added. Further, the light transmittance retention after heating at 150 ° C. for 24 hours was 100%, and the heat resistance was good. Table 1 shows the measurement results of water vapor permeability and heat resistance.

[実施例4]
変性粘土として、天然モンモリロナイトにジメチルオクタデシルベンジル4級アンモニウムイオンを導入した市販品エスベンNZ70(株式会社ホージュン製)を用いた。2gの上記変性粘土に61.5gのトルエンを添加し、均一にした。その後、11.4gの平均構造式(PhSiO3/2)0.41(PhMeSiO2/2)0.59で示されるフェニル系縮合反応硬化性シリコーン組成物(水蒸気透過度16.3g/m day)の70重量%トルエン溶液を添加し、均一にした。テフロン(登録商標)製のカップに移し、室温で24時間静置することでトルエンを除去後、170℃で2時間加熱し、硬化物を得た。得られた硬化物の水蒸気透過度は、3.4g/m・dayであり、 変性粘土を添加していないフェニル系縮合反応硬化性シリコーン組成物よりガスバリア性が向上した。また、150℃で24時間加熱後の光透過率の保持率は100%であり、耐熱性は良好であった。水蒸気透過度及び耐熱性の測定結果を表2に示す。
[Example 4]
As the modified clay, a commercially available product Sven NZ70 (manufactured by Hojun Co., Ltd.) in which dimethyloctadecylbenzyl quaternary ammonium ion was introduced into natural montmorillonite was used. 61.5 g of toluene was added to 2 g of the modified clay to make it uniform. Thereafter, 11.4 g of a phenyl condensation reaction-curable silicone composition (water vapor permeability 16.3 g / m 2 day) represented by an average structural formula (PhSiO 3/2 ) 0.41 (PhMeSiO 2/2 ) 0.59 % Toluene solution was added to make uniform. It moved to the cup made from Teflon (trademark), and after removing toluene by leaving still at room temperature for 24 hours, it heated at 170 degreeC for 2 hours, and obtained hardened | cured material. The water vapor permeability of the obtained cured product was 3.4 g / m 2 · day, and the gas barrier property was improved as compared with the phenyl condensation reaction curable silicone composition to which no modified clay was added. Further, the light transmittance retention after heating at 150 ° C. for 24 hours was 100%, and the heat resistance was good. The measurement results of water vapor permeability and heat resistance are shown in Table 2.

[実施例5]
<変性粘土の作成1>
0.625gのベントナイトであるクニピアF(クニミネ工業製、カチオン交換能:115meq/100g)を25gの水に分散させた。次に、0.325gの1−ヘキサデシル3−メチルイミダゾリウムクロライドを8gの水に溶解させた溶液を攪拌しながら少量ずつ滴下した。20gの水を追加し、3時間攪拌を行い、粘土の層間を1−ヘキサデシル 3−メチルイミダゾリウムイオンに交換した。次に、遠心分離で固液を分離し、20gの水で3回洗浄を行った。得られた生成物をオーブンで十分に乾燥後、粉砕して1−ヘキサデシル 3−メチルイミダゾリウムイオン交換変性粘土を得た。
[Example 5]
<Creation of modified clay 1>
0.625 g of bentonite, Kunipia F (Kunimine Kogyo Co., Ltd., cation exchange capacity: 115 meq / 100 g) was dispersed in 25 g of water. Next, a solution obtained by dissolving 0.325 g of 1-hexadecyl 3-methylimidazolium chloride in 8 g of water was added dropwise little by little with stirring. 20 g of water was added, and the mixture was stirred for 3 hours to exchange the clay layer with 1-hexadecyl 3-methylimidazolium ion. Next, the solid-liquid was separated by centrifugation and washed 3 times with 20 g of water. The obtained product was sufficiently dried in an oven and pulverized to obtain 1-hexadecyl 3-methylimidazolium ion-exchanged modified clay.

<硬化物の作成1>
0.1gの上記で得られた1−ヘキサデシル3−メチルイミダゾリウムイオン交換変性粘土を1.9gのトルエンに分散させた。その後、0.57gの平均構造式(PhSiO3/2)0.41(PhMeSiO2/2)0.59で示される縮合反応硬化性シリコーン組成物(水蒸気透過度16.3g/m day)の70重量%トルエン溶液を添加し、均一にした。テフロン(登録商標)製のカップに移し、室温で24時間静置することでトルエンを除去後、170℃で2時間加熱し、硬化物を得た。得られた硬化物の150℃で24時間加熱後の光透過率の保持率は100%であり、耐熱性は良好であった。耐熱性の測定結果を表2に示す。
<Creation of cured product 1>
0.1 g of 1-hexadecyl 3-methylimidazolium ion exchange modified clay obtained above was dispersed in 1.9 g of toluene. Thereafter, 0.57 g of 70 wt% toluene of a condensation reaction curable silicone composition (water vapor permeability 16.3 g / m 2 day) represented by an average structural formula (PhSiO 3/2 ) 0.41 (PhMeSiO 2/2 ) 0.59 The solution was added and made uniform. It moved to the cup made from Teflon (trademark), and after removing toluene by leaving still at room temperature for 24 hours, it heated at 170 degreeC for 2 hours, and obtained hardened | cured material. The obtained cured product had a light transmittance retention of 100% after being heated at 150 ° C. for 24 hours, and had good heat resistance. Table 2 shows the measurement results of heat resistance.

[実施例6]
<変性粘土の作成2>
0.625gのベントナイトであるクニピアF(クニミネ工業製、カチオン交換能:115meq/100g)を25gの水に分散させた。次に、0.48gのトリブチルヘキサデシルホスホニウムブロミドを8gの水に溶解させた溶液を攪拌しながら少量ずつ滴下した。20gの水を追加し、3時間攪拌を行い、粘土の層間をトリブチルヘキサデシルホスホニウムイオンに交換した。次に、遠心分離で固液を分離し、20gの水で3回洗浄を行った。得られた生成物をオーブンで十分に乾燥後、粉砕してトリブチルヘキサデシルホスホニウムイオン交換変性粘土を得た。
[Example 6]
<Creation of modified clay 2>
0.625 g of bentonite, Kunipia F (Kunimine Kogyo Co., Ltd., cation exchange capacity: 115 meq / 100 g) was dispersed in 25 g of water. Next, a solution obtained by dissolving 0.48 g of tributylhexadecylphosphonium bromide in 8 g of water was added dropwise little by little while stirring. 20 g of water was added, and the mixture was stirred for 3 hours to exchange the clay layer with tributylhexadecylphosphonium ions. Next, the solid-liquid was separated by centrifugation and washed 3 times with 20 g of water. The obtained product was sufficiently dried in an oven and pulverized to obtain tributylhexadecylphosphonium ion exchange modified clay.

<硬化物の作成2>
0.1gの上記で得られたトリブチルヘキサデシルホスホニウムイオン交換変性粘土を1.9gのトルエンに分散させた。その後、0.57gの平均構造式(PhSiO3/2)0.41(PhMeSiO2/2)0.59で示される縮合反応硬化性シリコーン組成物(水蒸気透過度16.3g/m day)の70重量%トルエン溶液を添加し、均一にした。テフロン(登録商標)製のカップに移し、室温で24時間静置することでトルエンを除去後、170℃で2時間加熱し、硬化物を得た。また、得られた硬化物の150℃で24時間加熱後の光透過率の保持率は98%であり、耐熱性は良好であった。耐熱性の測定結果を表2に示す。
<Creation of cured product 2>
0.1 g of the tributylhexadecylphosphonium ion exchange modified clay obtained above was dispersed in 1.9 g of toluene. Thereafter, 0.57 g of 70 wt% toluene of a condensation reaction curable silicone composition (water vapor permeability 16.3 g / m 2 day) represented by an average structural formula (PhSiO 3/2 ) 0.41 (PhMeSiO 2/2 ) 0.59 The solution was added and made uniform. It moved to the cup made from Teflon (trademark), and after removing toluene by leaving still at room temperature for 24 hours, it heated at 170 degreeC for 2 hours, and obtained hardened | cured material. The obtained cured product had a light transmittance retention of 98% after being heated at 150 ° C. for 24 hours, and had good heat resistance. Table 2 shows the measurement results of heat resistance.

[実施例7]
<変性粘土の作成3>
実施例6の<変性粘土の作成2>で使用した0.48gのトリブチルヘキサデシルホスホニウムブロミドを0.51gのトリフェニル(テトラデシル)ホスホニウムブロミドに変更した以外は、実施例6と同様の手順で、トリフェニル(テトラデシル)ホスホニウムイオン交換変性粘土を得た。
[Example 7]
<Creation of modified clay 3>
Except for changing 0.48 g of tributylhexadecylphosphonium bromide used in <Creation of modified clay 2> of Example 6 to 0.51 g of triphenyl (tetradecyl) phosphonium bromide, Triphenyl (tetradecyl) phosphonium ion exchange modified clay was obtained.

<硬化物の作成3>
実施例6の<硬化物の作成2>で使用したトリブチルヘキサデシルホスホニウムイオン交換変性粘土を、<変性粘土の作成3>で得られたトリフェニル(テトラデシル)ホスホニウムイオン交換粘土に変更した以外は、実施例6と同様の手順で硬化物を得た。得られた硬化物の150℃で24時間加熱後の光透過率の保持率は96%であり、耐熱性は良好であった。耐熱性の測定結果を表2に示す。
<Creation of cured product 3>
Except for changing the tributylhexadecylphosphonium ion exchange modified clay used in <Creation of cured product 2> in Example 6 to triphenyl (tetradecyl) phosphonium ion exchange clay obtained in <Creation of modified clay 3>, A cured product was obtained in the same procedure as in Example 6. The obtained cured product had a light transmittance retention of 96% after being heated at 150 ° C. for 24 hours, and had good heat resistance. Table 2 shows the measurement results of heat resistance.

[実施例8]
<アンモニウム変性シリコーンの合成1>
9gの下記式

Figure 2015079677

で表される片末端アミノシリコーンを15gのイソプロピルアルコールに分散させた。[Example 8]
<Synthesis of ammonium-modified silicone 1>
9g following formula
Figure 2015079677

Was dispersed in 15 g of isopropyl alcohol.

得られた分散液に、0.31gの35%塩酸を10gの水に溶解させた水溶液を滴下し、30分攪拌することで、下記式

Figure 2015079677

で示されるアンモニウム変性シリコーン溶液を得た。An aqueous solution prepared by dissolving 0.31 g of 35% hydrochloric acid in 10 g of water was added dropwise to the obtained dispersion, and the mixture was stirred for 30 minutes to obtain the following formula.
Figure 2015079677

An ammonium-modified silicone solution represented by

<変性粘土の作成4>
2.1gのベントナイトであるクニピアF(クニミネ工業製、カチオン交換能:115meq/100g)を60gの水に分散させた。次に、上記で得られたアンモニウム変性シリコーン溶液34.3gを攪拌しながら少量ずつ滴下した。20gの水を追加し、3時間攪拌を行い、粘土の層間を上記アンモニウム変性シリコーンに交換した。次に、遠心分離で固液を分離し、20gのイソプロピルアルコールで3回洗浄後、さらに水で3回洗浄を行った。得られた生成物をオーブンで十分に乾燥後、粉砕してアンモニウム変性シリコーン交換変性粘土(1)を得た。
<Creation of modified clay 4>
2.1 g of bentonite, Kunipia F (manufactured by Kunimine Kogyo Co., Ltd., cation exchange capacity: 115 meq / 100 g) was dispersed in 60 g of water. Next, 34.3 g of the ammonium-modified silicone solution obtained above was added dropwise little by little with stirring. 20 g of water was added and the mixture was stirred for 3 hours, and the clay layer was replaced with the ammonium-modified silicone. Next, the solid and liquid were separated by centrifugation, washed 3 times with 20 g of isopropyl alcohol, and further washed 3 times with water. The obtained product was sufficiently dried in an oven and pulverized to obtain an ammonium-modified silicone exchange-modified clay (1).

<硬化物の作成4>
0.5gの上記で得られたアンモニウム変性シリコーン交換変性粘土(1)を5gのトルエンに分散させた。その後、4.5gのメチル系ヒドロシリル化反応硬化性シリコーン組成物であるOE−6370M(東レ・ダウコーニング株式会社製、水蒸気透過度69.8g/m day)を添加し、均一にした。テフロン(登録商標)製のカップに移し、室温で24時間静置することでトルエンを除去後、150℃で2時間加熱し、硬化物を得た。得られた硬化物の水蒸気透過度は、62.1g/m・dayであり、 変性粘土を添加していないメチル系ヒドロシリル化反応硬化性シリコーン組成物よりガスバリア性が向上した。また、150℃で24時間加熱後の光透過率の保持率は98%であり、耐熱性は良好であった。水蒸気透過度及び耐熱性の測定結果を表3に示す。
<Creation of cured product 4>
0.5 g of the ammonium-modified silicone exchange-modified clay (1) obtained above was dispersed in 5 g of toluene. Thereafter, OE-6370M (manufactured by Toray Dow Corning Co., Ltd., water vapor transmission rate 69.8 g / m 2 day), which is a methyl hydrosilylation reaction-curable silicone composition, was added and made uniform. It moved to the cup made from Teflon (trademark), and after removing toluene by leaving still at room temperature for 24 hours, it heated at 150 degreeC for 2 hours, and obtained hardened | cured material. The water vapor permeability of the obtained cured product was 62.1 g / m 2 · day, and the gas barrier property was improved as compared with the methyl hydrosilylation reaction curable silicone composition to which no modified clay was added. Further, the light transmittance retention after heating at 150 ° C. for 24 hours was 98%, and the heat resistance was good. Table 3 shows the measurement results of water vapor permeability and heat resistance.

[実施例9]
実施例8で使用したアンモニウム変性シリコーン交換変性粘土(1)の量を1g、OE−6370Mの量を4gに変更した以外は、実施例8と同様の手順で硬化物を得た。得られた硬化物の水蒸気透過度は、63.7g/m・dayであり、 変性粘土を添加していないメチル系ヒドロシリル化反応硬化性シリコーン組成物よりガスバリア性が向上した。また、また、150℃で24時間加熱後の光透過率の保持率は97%であり、耐熱性は良好であった。水蒸気透過度及び耐熱性の測定結果を表3に示す。
[Example 9]
A cured product was obtained in the same procedure as in Example 8, except that the amount of the ammonium-modified silicone exchange-modified clay (1) used in Example 8 was changed to 1 g and the amount of OE-6370M was changed to 4 g. The water vapor permeability of the obtained cured product was 63.7 g / m 2 · day, and the gas barrier property was improved as compared with the methyl hydrosilylation reaction curable silicone composition to which no modified clay was added. Further, the light transmittance retention after heating at 150 ° C. for 24 hours was 97%, and the heat resistance was good. Table 3 shows the measurement results of water vapor permeability and heat resistance.

[実施例10]
実施例8で使用したアンモニウム変性シリコーン交換変性粘土(1)の量を1.5g、OE−6370Mの量を3.5gに変更した以外は、実施例8と同様の手順で硬化物を得た。得られた硬化物の水蒸気透過度は、51.1g/m・dayであり、 変性粘土を添加していないメチル系ヒドロシリル化反応硬化性シリコーン組成物よりガスバリア性が向上した。また、150℃で24時間加熱後の光透過率の保持率は94%であり、耐熱性は良好であった。水蒸気透過度及び耐熱性の測定結果を表3に示す。
[Example 10]
A cured product was obtained in the same procedure as in Example 8, except that the amount of the ammonium-modified silicone exchange-modified clay (1) used in Example 8 was changed to 1.5 g and the amount of OE-6370M was changed to 3.5 g. . The water vapor permeability of the obtained cured product was 51.1 g / m 2 · day, and the gas barrier property was improved as compared with the methyl hydrosilylation reaction curable silicone composition to which no modified clay was added. Further, the light transmittance retention after heating at 150 ° C. for 24 hours was 94%, and the heat resistance was good. Table 3 shows the measurement results of water vapor permeability and heat resistance.

[実施例11]
ビニルベンジルクロライド8.49g(55.5ミリモル)とトルエン30グラムの混合物に白金金属量が固形分の2ppmになるように白金と1,3-ジビニルテトラメチルジシロキサンとの錯体を投入した。80℃まで加熱し、一般式:Me3Si(OSiMe2)6OSiMe2Hで表わされる片末端SiH官能性ヘプタデカメチルオクタシロキサン30g(50.7ミリモル)を滴下し、滴下終了後105℃で1時間加熱攪拌した。サンプリングして赤外吸光分析にて分析したところ、SiH基の吸収は消失し、反応が完結していることがわかった。低沸点物を加熱減圧留去し、35.2g(収率93.3%)の白濁した淡褐色の液体を得た。0.2μmのメンブレンフィルターで2回ろ過することにより下記式

Figure 2015079677

で表されるクロロメチルフェニル変性ジメチルオクタシロキサンを淡褐色の透明液体として得た。[Example 11]
A mixture of platinum and 1,3-divinyltetramethyldisiloxane was added to a mixture of 8.49 g (55.5 mmol) of vinylbenzyl chloride and 30 g of toluene so that the amount of platinum metal was 2 ppm of solid content. Heat to 80 ° C., add 30 g (50.7 mmol) of one-end SiH functional heptadecamethyloctasiloxane represented by the general formula: Me 3 Si (OSiMe 2 ) 6 OSiMe 2 H, and drop at 105 ° C. for 1 hour. Stir with heating. Sampling and analysis by infrared absorption analysis revealed that the absorption of SiH groups disappeared and the reaction was complete. The low boiling point substances were distilled off under reduced pressure by heating to obtain 35.2 g (yield 93.3%) of a cloudy light brown liquid. The following formula is obtained by filtering twice with a 0.2 μm membrane filter.
Figure 2015079677

Was obtained as a light brown transparent liquid.

上記クロロメチルフェニル変性ジメチルオクタシロキサン10グラム(13.43ミリモル)、トリメチルアミン水溶液2.91グラム(トリメチルアミン:0.87グラム(14.8ミリモル)及びエタノール10グラムを混合し、65-70℃で2時間加熱攪拌した。さらにエタノール10グラムとトリメチルアミン水溶液3.2グラム(トリメチルアミン:0.96グラム(16.2ミリモル)を追加し、4.5時間加熱攪拌した。低沸点物を加熱減圧留去し、9.34グラム(収率:86,6%)の下記式

Figure 2015079677
で表されるベンジルトリメチルアンモニウム塩変性ヘプタデカメチルオクタシロキサンを粘稠な液体として得た。10 grams (13.43 mmol) of the above chloromethylphenyl-modified dimethyloctasiloxane, 2.91 grams of trimethylamine aqueous solution (trimethylamine: 0.87 grams (14.8 mmol)) and 10 grams of ethanol were mixed and stirred with heating at 65-70 ° C. for 2 hours. Gram and 3.2 g of trimethylamine aqueous solution (trimethylamine: 0.96 g (16.2 mmol) were added and stirred for 4.5 hours. Low boiling point substances were distilled off under reduced pressure by heating, and 9.34 g (yield: 86,6%) of the following formula
Figure 2015079677
A benzyltrimethylammonium salt-modified heptadecamethyloctasiloxane represented by the following formula was obtained as a viscous liquid.

<変性粘土の作成5>
4.87gのベントナイトであるクニピアF(クニミネ工業製、カチオン交換能:115meq/100g)を200gの水に分散させた。次に、上記で得られたベンジルトリメチルアンモニウム塩変性ヘプタデカメチルオクタシロキサン5gを15gの水に分散させた水溶液を少量ずつ滴下した。50gの水を追加し、3時間攪拌を行い、粘土の層間をベンジルトリメチルアンモニウム塩変性ヘプタデカメチルオクタシロキサンに交換した。次に、遠心分離で固液を分離し、20gのイソプロピルアルコールで3回洗浄後、さらに水で3回洗浄を行った。得られた生成物をオーブンで十分に乾燥後、粉砕してアンモニウム変性シリコーン交換変性粘土(2)を得た。
<Making modified clay 5>
4.87 g of bentonite, Kunipia F (manufactured by Kunimine Kogyo Co., Ltd., cation exchange capacity: 115 meq / 100 g) was dispersed in 200 g of water. Next, an aqueous solution in which 5 g of the benzyltrimethylammonium salt-modified heptadecamethyloctasiloxane obtained above was dispersed in 15 g of water was added dropwise little by little. 50 g of water was added, and the mixture was stirred for 3 hours to exchange the clay layer with benzyltrimethylammonium salt-modified heptadecamethyloctasiloxane. Next, the solid and liquid were separated by centrifugation, washed 3 times with 20 g of isopropyl alcohol, and further washed 3 times with water. The obtained product was sufficiently dried in an oven and pulverized to obtain an ammonium-modified silicone exchange-modified clay (2).

<硬化物の作成5>
0.083gの上記で得られたアンモニウム変性シリコーン交換変性粘土(2)を1.7gのトルエンに分散させた。その後、1.58gのメチル系ヒドロシリル化反応硬化性シリコーン組成物であるOE−6370M(東レ・ダウコーニング株式会社製、水蒸気透過度69.8g/m day)を添加し、均一にした。テフロン(登録商標)製のカップに移し、室温で24時間静置することでトルエンを除去後、150℃で2時間加熱し、硬化物を得た。得られた硬化物の水蒸気透過度は、53.2g/m・dayであり、 変性粘土を添加していないメチル系ヒドロシリル化反応硬化性シリコーン組成物よりガスバリア性が向上した。また、150℃で24時間加熱後の光透過率の保持率は100%であり、耐熱性は良好であった。水蒸気透過度及び耐熱性の測定結果を表4に示す。
<Creation of cured product 5>
0.083 g of the ammonium modified silicone exchange modified clay (2) obtained above was dispersed in 1.7 g of toluene. Then, OE-6370M (manufactured by Toray Dow Corning Co., Ltd., water vapor permeability 69.8 g / m 2 day), which is a methyl-based hydrosilylation reaction-curable silicone composition, was added to make uniform. It moved to the cup made from Teflon (trademark), and after removing toluene by leaving still at room temperature for 24 hours, it heated at 150 degreeC for 2 hours, and obtained hardened | cured material. The water vapor permeability of the obtained cured product was 53.2 g / m 2 · day, and the gas barrier property was improved as compared with the methyl hydrosilylation reaction curable silicone composition to which no modified clay was added. Further, the light transmittance retention after heating at 150 ° C. for 24 hours was 100%, and the heat resistance was good. Table 4 shows the measurement results of water vapor permeability and heat resistance.

[実施例12]
実施例11で得られたアンモニウム変性シリコーン交換変性粘土(2)を0.17g、OE−6370Mを1.5gに変更した以外は、実施例11と同様の手順で硬化物を得た。得られた硬化物の水蒸気透過度は、46.9g/m・dayであり、 変性粘土を添加していないメチル系ヒドロシリル化反応硬化性シリコーン組成物よりガスバリア性が向上した。また、150℃で24時間加熱後の光透過率の保持率は89%であり、耐熱性は良好であった。水蒸気透過度及び耐熱性の測定結果を表4に示す。
[Example 12]
A cured product was obtained in the same procedure as in Example 11, except that 0.17 g of the ammonium-modified silicone exchange-modified clay (2) obtained in Example 11 and 0.1 g of OE-6370M were changed. The water vapor permeability of the obtained cured product was 46.9 g / m 2 · day, and the gas barrier property was improved as compared with the methyl hydrosilylation reaction curable silicone composition to which no modified clay was added. Further, the light transmittance retention after heating at 150 ° C. for 24 hours was 89%, and the heat resistance was good. Table 4 shows the measurement results of water vapor permeability and heat resistance.

[比較例1]
フェニル系ヒドロシリル化反応硬化性シリコーン組成物であるOE−6630(東レ・ダウコーニング株式会社製)の水蒸気透過度を測定した結果、12.5g/m dayであった。水蒸気透過度の測定結果を表1に示す。
[Comparative Example 1]
It was 12.5 g / m < 2 > day as a result of measuring the water-vapor permeability of OE-6630 (made by Toray Dow Corning Co., Ltd.) which is a phenyl-type hydrosilylation reaction curable silicone composition. Table 1 shows the measurement results of water vapor permeability.

[比較例2]
平均構造式(PhSiO3/2)0.41(PhMeSiO2/2)0.59で示されるフェニル系縮合反応硬化性シリコーン組成物の水蒸気透過度を測定した結果、16.3g/m dayであった。水蒸気透過度の測定結果を表2に示す。
[Comparative Example 2]
The water vapor permeability of the phenyl condensation reaction curable silicone composition represented by the average structural formula (PhSiO 3/2 ) 0.41 (PhMeSiO 2/2 ) 0.59 was measured and found to be 16.3 g / m 2 day. The measurement results of water vapor permeability are shown in Table 2.

[比較例3]
メチル系ヒドロシリル化反応硬化性シリコーン組成物であるOE−6370M(東レ・ダウコーニング株式会社製)の水蒸気透過度を測定した結果、69.8g/m dayであった。水蒸気透過度の測定結果を表3に示す。
[Comparative Example 3]
It was 69.8 g / m < 2 > day as a result of measuring the water-vapor permeability of OE-6370M (made by Toray Dow Corning Co., Ltd.) which is a methyl-type hydrosilylation reaction curable silicone composition. Table 3 shows the measurement results of water vapor permeability.

[比較例4]
カルボキシメチルセルロースであるカーボボール Ultrez10(日光ケミカルズ製)0.3gを20gの水に分散させた。テフロン(登録商標)製のカップに移し、室温で3日間静置することで水を除去した。150℃で24時間加熱し、耐熱性を評価したところ、明かに着色が起こることが分かった。耐熱性の測定結果を表1〜3に示す。
[Comparative Example 4]
Carboball Ultrez 10 (manufactured by Nikko Chemicals), which is carboxymethyl cellulose, was dispersed in 20 g of water. It moved to the cup made from Teflon (trademark), and water was removed by leaving still at room temperature for 3 days. When heated at 150 ° C. for 24 hours and evaluated for heat resistance, it was clearly found that coloring occurred. The measurement results of heat resistance are shown in Tables 1-3.

[比較例5]
粘土鉱物のサポナイトであるスメクトンSA(クニミネ工業株式会社製)0.3g、カルボキシメチルセルロースであるカーボボール Ultrez10(日光ケミカルズ製)0.2gを20gの水に均一に分散させ、テフロン(登録商標)製のカップに移し、50℃で3日間静置することで水を除去した。150℃で24時間加熱し、耐熱性を評価したところ、明らかに着色が起こることが分かった。耐熱性の測定結果を表1〜3に示す。
[Comparative Example 5]
A clay mineral saponite, Smecton SA (manufactured by Kunimine Kogyo Co., Ltd.) 0.3 g, and carboxymethyl cellulose, carboball Ultrez 10 (manufactured by Nikko Chemicals) 0.2 g, are uniformly dispersed in 20 g of water and made of Teflon (registered trademark). It was transferred to a cup and left to stand at 50 ° C. for 3 days to remove water. When heated at 150 ° C. for 24 hours and evaluated for heat resistance, it was clearly found that coloring occurred. The measurement results of heat resistance are shown in Tables 1-3.

なお、表1〜3中の各成分の配合量は、特記しない限り「質量部」(「重量部」)を表す。 In addition, unless otherwise indicated, the compounding quantity of each component in Tables 1-3 represents a "mass part" ("weight part").

Figure 2015079677

(1)OE−6630(東レ・ダウコーニング株式会社製)
(4)カーボボール Ultrez10(日光ケミカルズ製)
(5)エスベンNZ70(株式会社ホージュン製)
(6)スメクトンSA(クニミネ工業株式会社製)
Figure 2015079677

(1) OE-6630 (Toray Dow Corning Co., Ltd.)
(4) Carboball Ultrez10 (Nikko Chemicals)
(5) Sven NZ70 (manufactured by Hojun Co., Ltd.)
(6) Smecton SA (Kunimine Industry Co., Ltd.)

実施例1〜3及び比較例1の結果から、本発明の光学材料がより低い水蒸気透過度を有することが分かる。また、実施例1〜3並びに比較例4及び5の結果から、本発明の光学材料が優れた耐熱性を備えることが分かる。

Figure 2015079677

(2)(PhSiO3/2)0.41(PhMeSiO2/2)0.59
(4)カーボボール Ultrez10(日光ケミカルズ製)
(5)エスベンNZ70(株式会社ホージュン製)
(6)スメクトンSA(クニミネ工業株式会社製)
From the results of Examples 1 to 3 and Comparative Example 1, it can be seen that the optical material of the present invention has a lower water vapor permeability. Moreover, from the results of Examples 1 to 3 and Comparative Examples 4 and 5, it can be seen that the optical material of the present invention has excellent heat resistance.
Figure 2015079677

(2) (PhSiO 3/2 ) 0.41 (PhMeSiO 2/2 ) 0.59
(4) Carboball Ultrez10 (Nikko Chemicals)
(5) Sven NZ70 (manufactured by Hojun Co., Ltd.)
(6) Smecton SA (Kunimine Industry Co., Ltd.)

実施例4〜7及び比較例2の結果から、本発明の光学材料がより低い水蒸気透過度を有することが分かる。また、実施例4〜7並びに比較例4及び5の結果から、本発明に係る光学材料が優れた耐熱性を備えることが分かる。

Figure 2015079677

(3)OE−6370M(東レ・ダウコーニング株式会社製)
(4)カーボボール Ultrez10(日光ケミカルズ製)
(6)スメクトンSA(クニミネ工業株式会社製)
From the results of Examples 4 to 7 and Comparative Example 2, it can be seen that the optical material of the present invention has a lower water vapor permeability. Moreover, from the results of Examples 4 to 7 and Comparative Examples 4 and 5, it can be seen that the optical material according to the present invention has excellent heat resistance.
Figure 2015079677

(3) OE-6370M (Toray Dow Corning Co., Ltd.)
(4) Carboball Ultrez10 (Nikko Chemicals)
(6) Smecton SA (Kunimine Industry Co., Ltd.)

実施例8〜12及び比較例3の結果から、本発明の光学材料がより低い水蒸気透過度を有することが分かる。また、実施例8〜12並びに比較例4及び5の結果から、本発明の光学材料が優れた耐熱性を備えることが分かる。 From the results of Examples 8 to 12 and Comparative Example 3, it can be seen that the optical material of the present invention has a lower water vapor permeability. Moreover, from the results of Examples 8 to 12 and Comparative Examples 4 and 5, it can be seen that the optical material of the present invention has excellent heat resistance.

[実施例13]
<ベンジルトリフェニルホスホニウム変性オクタシロキサンの製造例>
実施例11と同様にして、クロロメチルフェニル変性ジメチルオクタシロキサンを得た。当該クロロメチルフェニル変性ジメチルオクタシロキサン30グラム(40.3ミリモル)、トリフェニルホスフィン10.6グラム(40.3ミリモル)、エタノール60グラム及び水6gを混合し、72℃で14.5時間加熱攪拌した。低沸点物を加熱減圧留去し、33.8グラム(収率:83.3%)の下記式

Figure 2015079677


で表されるベンジルトリフェニルホスホニウム塩変性ヘプタデカメチルオクタシロキサン(以下、ホスホニウム変性シリコーン)を固体状ペーストとして得た。[Example 13]
<Example of production of benzyltriphenylphosphonium-modified octasiloxane>
In the same manner as in Example 11, chloromethylphenyl-modified dimethyloctasiloxane was obtained. 30 g (40.3 mmol) of the chloromethylphenyl-modified dimethyloctasiloxane, 10.6 g (40.3 mmol) of triphenylphosphine, 60 g of ethanol and 6 g of water were mixed and stirred while heating at 72 ° C. for 14.5 hours. Low-boiling substances are distilled off under reduced pressure by heating, and the following formula of 33.8 grams (yield: 83.3%)
Figure 2015079677


A benzyltriphenylphosphonium salt-modified heptadecamethyloctasiloxane (hereinafter referred to as phosphonium-modified silicone) represented by the following formula was obtained as a solid paste.

<変性粘土の作成:ホスホニウム変性シリコーン交換変性粘土>
0.7gのベントナイトであるクニピアF(クニミネ工業製、カチオン交換能:115meq/100g)を25gの水に分散させた。次に、上記で得られたホスホニウム変性シリコーン0.97gを18.5gの水に分散させた水溶液を少量ずつ滴下した。50gの水を追加し、3時間攪拌を行い、粘土の層間をホスホニウム変性シリコーンに交換した。次に、遠心分離で固液を分離し、20gのイソプロピルアルコールで3回洗浄後、さらに水で3回洗浄を行った。得られた生成物をオーブンで十分に乾燥後、粉砕してホスホニウム変性シリコーン交換変性粘土を得た。
<Creation of modified clay: phosphonium modified silicone exchange modified clay>
0.7 g of bentonite, Kunipia F (Kunimine Kogyo Co., Ltd., cation exchange capacity: 115 meq / 100 g) was dispersed in 25 g of water. Next, an aqueous solution in which 0.97 g of the phosphonium-modified silicone obtained above was dispersed in 18.5 g of water was added dropwise little by little. 50 g of water was added, and the mixture was stirred for 3 hours to exchange the clay layer with phosphonium-modified silicone. Next, the solid and liquid were separated by centrifugation, washed 3 times with 20 g of isopropyl alcohol, and further washed 3 times with water. The obtained product was sufficiently dried in an oven and then pulverized to obtain a phosphonium-modified silicone exchange-modified clay.

得られたホスホニウム変性シリコーン交換変性粘土は、実施例11又は実施例12におけるアンモニウムシリコーン交換変性粘土(2)同様に、ヒドロシリル化反応硬化性シリコーン組成物に添加することができ、ガスバリア性、耐熱性に優れた光学材料を得ることができる。 The obtained phosphonium-modified silicone exchange-modified clay can be added to the hydrosilylation reaction-curable silicone composition in the same manner as the ammonium silicone exchange-modified clay (2) in Example 11 or Example 12, and has gas barrier properties and heat resistance. Can be obtained.

[実施例14]
<硬化物の作製6>
上記で得られたホスホニウム変性シリコーン交換変性粘土0.2gに2gのトルエンを添加し、均一にした。その後、平均単位式:
ViMeSiO(PhMeSiO)20SiMeVi
で表されるオルガノポリシロキサン0.178g、平均単位式:
(HMeSiO1/2)0.60(PhSiO3/2)0.40
で表されるオルガノポリシロキサン0.022g、
白金の1,3−ジビニルテトラメチルジシロキサン錯体を白金金属がシリコーン分に対して重量単位で100ppmになる量を添加し、均一に混合することで、変性粘土を50重量%含有した硬化性組成物を得た。
当該硬化性組成物をPETフィルム上にコーティングし、室温で24時間静置することでトルエンを除去後、150℃で2時間加熱し、40μmの膜厚の硬化物を得た。
得られた硬化物(薄膜)の1mm厚換算の水蒸気透過度は、1.01g/m・dayであった。
また、150℃で24時間加熱後の光透過率の保持率は100%であり、耐熱性は良好であった。
[Example 14]
<Production of cured product 6>
2 g of toluene was added to 0.2 g of the phosphonium-modified silicone exchange-modified clay obtained above to make it uniform. Then average unit formula:
ViMe 2 SiO (PhMeSiO) 20 SiMe 2 Vi
0.178 g of an organopolysiloxane represented by the formula:
(HMe 2 SiO 1/2 ) 0.60 (PhSiO 3/2 ) 0.40
0.022 g of an organopolysiloxane represented by
A curable composition containing 50% by weight of denatured clay by adding 1,3-divinyltetramethyldisiloxane complex of platinum in such an amount that platinum metal is 100 ppm by weight with respect to the silicone content and mixing uniformly. I got a thing.
The curable composition was coated on a PET film and allowed to stand at room temperature for 24 hours to remove toluene, and then heated at 150 ° C. for 2 hours to obtain a cured product having a thickness of 40 μm.
The obtained cured product (thin film) had a water vapor permeability in terms of 1 mm thickness of 1.01 g / m 2 · day.
Further, the light transmittance retention after heating at 150 ° C. for 24 hours was 100%, and the heat resistance was good.

[実施例15]
<硬化物の作製7>
上記で得られたホスホニウム変性シリコーン交換変性粘土0.3gに3gのトルエンを添加し、均一にした。その後、平均単位式:
ViMeSiO(PhMeSiO)20SiMeVi
で表されるオルガノポリシロキサン0.089g、平均単位式:
(HMeSiO1/2)0.60(PhSiO3/2)0.40
で表されるオルガノポリシロキサン0.011g、
白金の1,3−ジビニルテトラメチルジシロキサン錯体を白金金属がシリコーン分に対して重量単位で100ppmになる量を添加し、均一に混合することで、変性粘土を75重量%含有した組成物を得た。
当該硬化性組成物をPETフィルム上にコーティングし、室温で24時間静置することでトルエンを除去後、150℃で2時間加熱し、50μmの膜厚の硬化物を得た。
得られた硬化物(薄膜)の1mm厚換算の水蒸気透過度は、0.93g/m・dayであった。
また、150℃で24時間加熱後の光透過率の保持率は80%であり、耐熱性は良好であった。
[Example 15]
<Preparation of cured product 7>
3 g of toluene was added to 0.3 g of the phosphonium-modified silicone exchange-modified clay obtained above to make it uniform. Then average unit formula:
ViMe 2 SiO (PhMeSiO) 20 SiMe 2 Vi
0.089 g of an organopolysiloxane represented by the formula:
(HMe 2 SiO 1/2 ) 0.60 (PhSiO 3/2 ) 0.40
0.011 g of an organopolysiloxane represented by
A composition containing 75% by weight of denatured clay was obtained by adding 1,3-divinyltetramethyldisiloxane complex of platinum in such an amount that platinum metal was 100 ppm by weight with respect to the silicone content, and mixing uniformly. Obtained.
The curable composition was coated on a PET film and allowed to stand at room temperature for 24 hours to remove toluene and then heated at 150 ° C. for 2 hours to obtain a cured product having a thickness of 50 μm.
The obtained cured product (thin film) had a water vapor permeability in terms of 1 mm thickness of 0.93 g / m 2 · day.
Further, the light transmittance retention after heating at 150 ° C. for 24 hours was 80%, and the heat resistance was good.

Claims (15)

硬化性ポリオルガノシロキサン組成物、及び、
イオン性官能基を有する化合物で処理された層状粘土鉱物
を含む光学材料。
A curable polyorganosiloxane composition, and
An optical material comprising a layered clay mineral treated with a compound having an ionic functional group.
前記硬化性ポリオルガノシロキサン組成物がヒドロシリル化反応硬化性又は縮合反応硬化性である、請求項1記載の光学材料。 The optical material according to claim 1, wherein the curable polyorganosiloxane composition is hydrosilylation reaction curable or condensation reaction curable. 前記層状粘土鉱物が、モンモリロナイト、ナトリウムモンモリロナイト、カルシウムモンモリロナイト、マグネシウムモンモリロナイト、ノントロナイト、ベイデルライト、ボルコンスコイト、ラポナイト、ヘクトライト、サポナイト、ソーコナイト、マガダイト、ケニアイト、ソボクカイト、スビンドルダイト、スチーブンサイト、バーミキュライト、ハロイサイト、アルミナートオキシド、ハイドロタルサイト、イライト、レクトライト、タロソバイト、レディカイト、カオリナイト、及び、これらの混合物からなる群から選択される、請求項1又は2記載の光学材料。 The layered clay mineral is montmorillonite, sodium montmorillonite, calcium montmorillonite, magnesium montmorillonite, nontronite, bedellite, vorconskite, laponite, hectorite, saponite, sauconite, magadite, kenyaite, sobokite, subindordite, stevensite The optical material according to claim 1, wherein the optical material is selected from the group consisting of: vermiculite, halloysite, aluminate oxide, hydrotalcite, illite, rectolite, talosobite, ladykite, kaolinite, and mixtures thereof. 前記イオン性官能基がカチオン性基である、請求項1〜3のいずれかに記載の光学材料。 The optical material according to claim 1, wherein the ionic functional group is a cationic group. 前記カチオン性基がアンモニウム、ホスホニウム、イミダゾリウム、及び、ピリジニウムからなる群から選択される、請求項4記載の光学材料。 The optical material according to claim 4, wherein the cationic group is selected from the group consisting of ammonium, phosphonium, imidazolium, and pyridinium. 前記イオン性官能基を有する化合物が、下記平均構造式

(R SiO1/2)(R SiO2/2)(RSiO3/2)(SiO4/2)

{式中、
、R及びRは、各々独立して、一価炭化水素基、水素原子、水酸基、アルコキシ基、及び、−Z−(Q)、(式中、Zは(n+1)価の官能基またはケイ素原子への直接結合であり、nは1以上の数であり、Qはイオン性官能基である)、又は、他のシロキサン単位のSi原子に結合した2価の官能基であり、但し、全てのR、R及びRのうち、50モル%以上が一価炭化水素基であり、また、分子中に、少なくとも1つの―Z−(Q)で示される基を含み、
a、b、c及びdは、各々独立して、0又は正数であり、a+b+c+dは2〜1000の範囲の数である。}
で表されるシリコーンである、請求項1〜5のいずれかに記載の光学材料。
The compound having the ionic functional group has the following average structural formula

(R M 3 SiO 1/2 ) a (R D 2 SiO 2/2 ) b (R T SiO 3/2 ) c (SiO 4/2 ) d

{Where
R M , R D, and R T are each independently a monovalent hydrocarbon group, a hydrogen atom, a hydroxyl group, an alkoxy group, and —Z— (Q) n , wherein Z is an (n + 1) valent group. A functional group or a direct bond to a silicon atom, n is a number of 1 or more, and Q is an ionic functional group), or a divalent functional group bonded to the Si atom of another siloxane unit However, 50 mol% or more of all R M , R D and R T are monovalent hydrocarbon groups, and at least one group represented by —Z— (Q) n is present in the molecule. Including
a, b, c and d are each independently 0 or a positive number, and a + b + c + d is a number in the range of 2 to 1000. }
The optical material according to claim 1, which is a silicone represented by the formula:
前記Qがカチオン性基である、請求項6記載の光学材料。 The optical material according to claim 6, wherein Q is a cationic group. 前記Qがアンモニウム、ホスホニウム、イミダゾリウム、及び、ピリジニウムからなる群から選択される、請求項6又は7記載の光学材料。 The optical material according to claim 6 or 7, wherein Q is selected from the group consisting of ammonium, phosphonium, imidazolium, and pyridinium. 前記平均構造式中のa〜dが、a=2、2<b<1000、c=0及びd=0であり、Rの少なくとも1つが―Z−(Q)である、請求項6〜8のいずれかに記載の光学材料。In the average structural formula, a to d are a = 2, 2 <b <1000, c = 0 and d = 0, and at least one of R M is —Z— (Q) n. The optical material in any one of -8. 蛍光体を更に含有する、請求項1〜9のいずれかに記載の光学材料。 The optical material according to claim 1, further comprising a phosphor. 光半導体用である、請求項1〜10のいずれかに記載の光学材料。 The optical material according to claim 1, which is used for an optical semiconductor. 光半導体の封止剤、光半導体素子の保護剤、又は、光反射膜の保護剤である、請求項1〜11のいずれかに記載の光学材料。 The optical material according to any one of claims 1 to 11, which is an optical semiconductor sealing agent, an optical semiconductor element protective agent, or a light reflecting film protective agent. 請求項1〜12のいずれかに記載の光学材料又はその硬化物を備える光学物品。 An optical article comprising the optical material according to claim 1 or a cured product thereof. 硬化性ポリオルガノシロキサン組成物からなる光学材料のガスバリア性を改善するための、イオン性官能基を有する化合物で処理された層状粘土鉱物の使用。 Use of a layered clay mineral treated with a compound having an ionic functional group for improving gas barrier properties of an optical material comprising a curable polyorganosiloxane composition. 硬化性ポリオルガノシロキサン組成物からなる光学材料のガスバリア性を改善する方法であって、前記硬化性ポリオルガノシロキサン組成物にイオン性官能基を有する化合物で処理された層状粘土鉱物を配合する方法。 A method for improving gas barrier properties of an optical material comprising a curable polyorganosiloxane composition, wherein a lamellar clay mineral treated with a compound having an ionic functional group is added to the curable polyorganosiloxane composition.
JP2015550562A 2013-11-29 2014-11-25 Optical material Active JP6427107B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2013247679 2013-11-29
JP2013247679 2013-11-29
JP2014137335 2014-07-03
JP2014137335 2014-07-03
PCT/JP2014/005888 WO2015079677A1 (en) 2013-11-29 2014-11-25 Optical material

Publications (2)

Publication Number Publication Date
JPWO2015079677A1 true JPWO2015079677A1 (en) 2017-03-16
JP6427107B2 JP6427107B2 (en) 2018-11-21

Family

ID=53198643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015550562A Active JP6427107B2 (en) 2013-11-29 2014-11-25 Optical material

Country Status (3)

Country Link
JP (1) JP6427107B2 (en)
TW (1) TWI647280B (en)
WO (1) WO2015079677A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019131656A (en) * 2018-01-30 2019-08-08 住友化学株式会社 Composition, film, laminate structure, light-emitting device and display
CN108715685A (en) * 2018-06-15 2018-10-30 广州市瑞合新材料科技有限公司 Low permeability rate add-on type liquid silicon rubber and preparation method thereof
WO2020080081A1 (en) * 2018-10-18 2020-04-23 東亞合成株式会社 Silsesquioxane derivative composition and use of same
JP7322157B2 (en) * 2019-01-31 2023-08-07 エルケム・シリコーンズ・シャンハイ・カンパニー・リミテッド Curable silicone composition with excellent flame retardancy
CN112898780A (en) * 2019-12-04 2021-06-04 明基材料股份有限公司 Silica gel film with water and gas blocking characteristic

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003286348A (en) * 2002-03-28 2003-10-10 Toyota Central Res & Dev Lab Inc Method for producing composite resin material
JP2008045088A (en) * 2006-08-21 2008-02-28 Sekisui Chem Co Ltd Thermosetting composition for optical semiconductor, sealant for optical semiconductor element, die bond material for optical semiconductor element, underfill material for optical semiconductor element and optical semiconductor device
JP2009137898A (en) * 2007-12-07 2009-06-25 Lion Corp Hair cosmetic
JP2013091705A (en) * 2011-10-25 2013-05-16 Nitto Denko Corp Silicone resin composition, encapsulating layer, reflector, and optical semiconductor device
JP2013159776A (en) * 2012-02-09 2013-08-19 Adeka Corp Silicon-containing curable white resin composition, cured product thereof, and optical semiconductor package and reflecting material using the cured product

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003286348A (en) * 2002-03-28 2003-10-10 Toyota Central Res & Dev Lab Inc Method for producing composite resin material
JP2008045088A (en) * 2006-08-21 2008-02-28 Sekisui Chem Co Ltd Thermosetting composition for optical semiconductor, sealant for optical semiconductor element, die bond material for optical semiconductor element, underfill material for optical semiconductor element and optical semiconductor device
JP2009137898A (en) * 2007-12-07 2009-06-25 Lion Corp Hair cosmetic
JP2013091705A (en) * 2011-10-25 2013-05-16 Nitto Denko Corp Silicone resin composition, encapsulating layer, reflector, and optical semiconductor device
JP2013159776A (en) * 2012-02-09 2013-08-19 Adeka Corp Silicon-containing curable white resin composition, cured product thereof, and optical semiconductor package and reflecting material using the cured product

Also Published As

Publication number Publication date
TW201525072A (en) 2015-07-01
JP6427107B2 (en) 2018-11-21
WO2015079677A1 (en) 2015-06-04
TWI647280B (en) 2019-01-11

Similar Documents

Publication Publication Date Title
JP6082267B2 (en) Branched polysiloxanes and their use
JP4636242B2 (en) Optical semiconductor element sealing material and optical semiconductor element
CA2637151C (en) Sealant composition containing inorganic-organic nanocomposite filler
CA2636163C (en) Room temperature curable organopolysiloxane composition
JP6427107B2 (en) Optical material
JP6764376B2 (en) Silicone composition and its manufacturing method
JP5589856B2 (en) Thermally conductive silicone composition and cured product excellent in transparency
CN101616961B (en) Silicon-containing compound, curable composition and cured product
EP3101062B1 (en) Nanoparticle, method for producing nanoparticle, addition curing silicone resin composition, and semiconductor apparatus
WO2014017598A1 (en) Curable organopolysiloxane composition, method for producing same, method for producing cured organopolysiloxane, method for condensing organopolysiloxane, optical semiconductor package, and condensation catalyst for organopolysiloxanes
EP1227133A1 (en) Room temperature curable silicone rubber composition
JP2010248413A (en) Addition-curable silicone resin composition and optical semiconductor device
JP5500037B2 (en) Flame retardant organopolysiloxane composition
JP2016204426A (en) Addition curing type silicone composition and semiconductor device
WO2015136820A1 (en) Curable resin composition
Kopylov et al. Silica fillers for silicone rubber
CN110741048B (en) Silicone composition and method for preparing the same
JP2007191697A (en) Epoxy/silicone hybrid resin composition and photosemiconductor device
JP2010132865A (en) Flame-retardant organopolysiloxane composition
JP6393659B2 (en) Addition-curing silicone composition and semiconductor device
JP2019194293A (en) Silicone rubber composition and silicone rubber
JP2002356616A (en) Room temperature-curable silicone rubber composition
JP6927655B2 (en) Room temperature curable organopolysiloxane composition for protection of electrical and electronic components
JP6863878B2 (en) Additive-curable silicone compositions, cured products, and optics
TW202409206A (en) Addition-cure silicone rubber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181026

R150 Certificate of patent or registration of utility model

Ref document number: 6427107

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20190329

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250