JPWO2015064721A1 - A method for producing a lithium ion secondary battery. - Google Patents

A method for producing a lithium ion secondary battery. Download PDF

Info

Publication number
JPWO2015064721A1
JPWO2015064721A1 JP2015523729A JP2015523729A JPWO2015064721A1 JP WO2015064721 A1 JPWO2015064721 A1 JP WO2015064721A1 JP 2015523729 A JP2015523729 A JP 2015523729A JP 2015523729 A JP2015523729 A JP 2015523729A JP WO2015064721 A1 JPWO2015064721 A1 JP WO2015064721A1
Authority
JP
Japan
Prior art keywords
laminated body
secondary battery
sealing
ion secondary
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015523729A
Other languages
Japanese (ja)
Other versions
JP5836542B2 (en
Inventor
克 瓶子
克 瓶子
正史 加納
正史 加納
野上 光秀
光秀 野上
小川 浩
浩 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2015523729A priority Critical patent/JP5836542B2/en
Application granted granted Critical
Publication of JP5836542B2 publication Critical patent/JP5836542B2/en
Publication of JPWO2015064721A1 publication Critical patent/JPWO2015064721A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/178Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for pouch or flexible bag cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • H01M50/557Plate-shaped terminals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

端子タブを有する電極板と半固体又は固体状の電解質層とを交互に積層させた積層体と、この積層体を内部に収容し、端子タブの一部を突出させて封止するシート状の外装材とを備え、前記外装材には、前記積層体の端縁の少なくとも一部に隣接して前記積層体を封止する積層体隣接封止部が設けられていることを特徴とするリチウムイオン二次電池。A laminated body in which electrode plates having terminal tabs and semi-solid or solid electrolyte layers are alternately laminated, and a sheet-like structure in which the laminated body is housed and a part of the terminal tab is protruded and sealed. And a laminated body adjacent sealing portion that seals the laminated body adjacent to at least a part of an edge of the laminated body. Ion secondary battery.

Description

本発明は、リチウムイオン二次電池及びリチウムイオン二次電池の製造方法に関する。
本願は、2013年10月31日に日本に出願された特願2013−227478号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a lithium ion secondary battery and a method for producing a lithium ion secondary battery.
This application claims priority based on Japanese Patent Application No. 2013-227478 for which it applied to Japan on October 31, 2013, and uses the content here.

一般に、リチウムイオン二次電池は、正極を構成する電極板と、負極を構成する電極板とを、これらの間に固体、半固体又は液体の電解質を介在させて積層し端子タブを突出させ、外装材に収容し、これを封止して構成されている。そして、積層体の外装材による封止は、端子タブの先端を外装材から突出させた状態で行っている(例えば、特許文献1)。   In general, a lithium ion secondary battery is formed by laminating an electrode plate constituting a positive electrode and an electrode plate constituting a negative electrode with a solid, semi-solid or liquid electrolyte interposed therebetween, and projecting a terminal tab, It is housed in an exterior material and sealed. And the sealing of the laminated body with the exterior material is performed in a state where the tip of the terminal tab protrudes from the exterior material (for example, Patent Document 1).

特開2013−8691号公報JP2013-8691A

ところで、従来のリチウムイオン二次電池においては、積層体と外装材の封止部との間の隙間である内部空間が形成されていたため、積層体と外装材の封止部との間に形成された隙間分だけ外装材の内部を封止する封止部若しくは積層体の相対的寸法が小さくなってしまっていた。しかし、外装材からの電解液の漏えいを確実に防止するためには、積層体の大きさは変えずに前記外装材における封止部の面積率を大きく設定することが必要であった。
そこで、本発明は、上記課題に鑑み、外装材における封止部の面積率が大きく設定されたリチウムイオン二次電池及びリチウムイオン二次電池の製造方法を提供することを課題とする。
By the way, in the conventional lithium ion secondary battery, since an internal space that is a gap between the laminate and the sealing portion of the exterior material is formed, it is formed between the laminate and the sealing portion of the exterior material. The relative dimension of the sealing part or laminated body which seals the inside of the exterior material is reduced by the amount of the gap. However, in order to reliably prevent leakage of the electrolytic solution from the exterior material, it is necessary to set a large area ratio of the sealing portion in the exterior material without changing the size of the laminate.
Then, in view of the said subject, this invention makes it a subject to provide the manufacturing method of the lithium ion secondary battery and the lithium ion secondary battery by which the area ratio of the sealing part in an exterior material was set large.

本発明は、端子タブを有する電極板と半固体又は固体状の電解質層とを交互に積層させた積層体と、この積層体を内部に収容し、端子タブの一部を突出させて封止するシート状の外装材とを備え、前記外装材には、前記積層体の端縁の少なくとも一部に隣接して前記積層体を封止する積層体隣接封止部が設けられていることを特徴とする。
この構成によれば、前記端縁の少なくとも一部において積層体を封止する封止部の面積を効果的に大きくすることができる。
The present invention provides a laminate in which electrode plates having terminal tabs and semi-solid or solid electrolyte layers are alternately laminated, and the laminate is accommodated therein, and a part of the terminal tab is protruded and sealed. A sheet-like exterior material that is provided, and the exterior material is provided with a laminate adjacent sealing portion that seals the laminate adjacent to at least a part of an edge of the laminate. Features.
According to this structure, the area of the sealing part which seals a laminated body in at least one part of the said edge can be enlarged effectively.

本発明は、前記積層体隣接封止部は、前記積層体の端縁の全周に亘ってこの端縁に隣接して設けられていることを特徴とする。
この構成によれば、前記積層体の端縁の全周に亘って積層体を封止する封止部の面積を効果的に大きくすることができる。
The present invention is characterized in that the laminated body adjacent sealing portion is provided adjacent to the end edge over the entire circumference of the edge of the laminated body.
According to this structure, the area of the sealing part which seals a laminated body over the perimeter of the edge of the said laminated body can be enlarged effectively.

本発明は、前記積層体隣接封止部は、前記外装材における前記積層体が配された領域以外の全領域に亘って設けられていることを特徴とする。
この構成によれば、封止部の面積を最も効果的に大きくすることができる。
The present invention is characterized in that the laminated body adjacent sealing portion is provided over the entire region other than the region where the laminated body is disposed in the exterior material.
According to this structure, the area of a sealing part can be enlarged most effectively.

本発明のリチウムイオン二次電池の製造方法は、端子タブを有する電極板と半固体又は固体状の電解質層とを交互に積層させた積層体を形成する積層体形成工程と、前記積層体を外装材に挟み込み、前記外装材に、端子タブの一部を突出させ、かつ、前記積層体の端縁の全周に亘ってこの端縁に隣接して前記積層体を封止する封止工程を備えていることを特徴とする。
この構成によれば、積層体を配した領域及び積層体の封止に必要な領域を含んで外装材全体を同時にラミネート融着すればよいため、リチウムイオン二次電池の封止をより強固にできることによって、品質の安定性・サイクル特性が向上する。
The method for producing a lithium ion secondary battery of the present invention includes a laminate forming step of forming a laminate in which electrode plates having terminal tabs and semi-solid or solid electrolyte layers are alternately laminated, and the laminate A sealing step of sandwiching the outer packaging material, projecting a part of the terminal tab to the outer packaging material, and sealing the laminated body adjacent to the edge over the entire circumference of the edge of the laminated body It is characterized by having.
According to this configuration, since it is only necessary to laminate and fuse the entire exterior material including the area where the laminated body is disposed and the area necessary for sealing the laminated body at the same time, the sealing of the lithium ion secondary battery is made stronger. By doing so, quality stability and cycle characteristics are improved.

本発明は、前記封止工程において、前記積層体の端縁の一部に隣接して脱気空間を形成する合紙を挟み込み、前記外装材に前記積層体と合紙の端縁の全周に亘ってこの端縁に隣接して前記積層体と合紙を封止する工程を第1の封止工程とし、この第1の封止工程と、前記第1の封止工程の後に、合紙を取り出し最終封止をする第2の封止工程と有することを特徴とする。
この構成によれば、リチウムイオン二次電池の初期充電時に発生し得るガスを取り除くことができる。
In the sealing step, the present invention sandwiches a slip sheet that forms a deaeration space adjacent to a part of the edge of the laminate, and the outer periphery of the laminate and the entire periphery of the edge of the slip sheet. The step of sealing the laminated body and the interleaf paper adjacent to the edge is defined as a first sealing step, and after the first sealing step and the first sealing step, A second sealing step for taking out paper and final sealing is provided.
According to this configuration, it is possible to remove gas that may be generated during the initial charging of the lithium ion secondary battery.

本発明は、前記第1の封止工程は、真空ラミネータ,ローラー又は真空包装機を用いて行うことを特徴とする。
この構成によれば、上記リチウムイオン二次電池の製造を効率よく行うことができる。
The present invention is characterized in that the first sealing step is performed using a vacuum laminator, a roller, or a vacuum packaging machine.
According to this configuration, the lithium ion secondary battery can be manufactured efficiently.

本発明によれば、外装材の封止部の面積を効果的に大きく設定することができるリチウムイオン二次電池及びリチウムイオン二次電池の製造方法を提供することができるという効果を奏する。   Advantageous Effects of Invention According to the present invention, there is an effect that it is possible to provide a lithium ion secondary battery and a method for manufacturing a lithium ion secondary battery that can effectively set the area of the sealing portion of the exterior material.

本発明の第1の実施態様として示したリチウムイオン二次電池の平面図である。1 is a plan view of a lithium ion secondary battery shown as a first embodiment of the present invention. 本発明の第1の実施態様として示したリチウムイオン二次電池の正極板を示す平面図である。It is a top view which shows the positive electrode plate of the lithium ion secondary battery shown as the 1st embodiment of this invention. 本発明の第1の実施態様として示したリチウムイオン二次電池の負極板を示す平面図である。It is a top view which shows the negative electrode plate of the lithium ion secondary battery shown as the 1st embodiment of this invention. 図1のリチウムイオン二次電池をY1−Y2線で矢視した状態を模式的に示した断面図である。It is sectional drawing which showed typically the state which looked at the lithium ion secondary battery of FIG. 1 by the Y1-Y2 line. 本発明の第1の実施態様として示したリチウムイオン二次電池の積層体を示す平面図である。It is a top view which shows the laminated body of the lithium ion secondary battery shown as the 1st embodiment of this invention. 本発明の第1の実施態様として示したリチウムイオン二次電池の製造工程の一部を示す平面図である。It is a top view which shows a part of manufacturing process of the lithium ion secondary battery shown as the 1st embodiment of this invention. 本発明の第1の実施態様として示したリチウムイオン二次電池を示す平面図である。It is a top view which shows the lithium ion secondary battery shown as a 1st embodiment of this invention.

以下、図を参照して本発明のリチウムイオン二次電池及びリチウムイオン二次電池の製造方法について説明する。   Hereinafter, the lithium ion secondary battery and the method for producing the lithium ion secondary battery of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態の製造方法により製造されたリチウムイオン二次電池1の概略構成を示した平面図である。
この図に示すように、本発明の一実施形態の製造方法の対象となるリチウムイオン二次電池1は、電解液が塗工されて固体又はゲル状の電解質層(本図においては不図示)が形成された正極板(電極板)2と、電解液が塗工されて固体又はゲル状の電解質層(本図においては不図示)が形成された負極板(電極板)3とを交互に積層し、正極板2の端部7から端子タブ4を突出させるとともに、負極板3の端部11から端子タブ5を突出させて形成されたものである。
なお、固体又はゲル状の電解質層は、正極板2又は負極板3のいずれか一方の両面に形成され、正極板2、電解質層、負極板3が交互に積層されたものであってもよい。
FIG. 1 is a plan view showing a schematic configuration of a lithium ion secondary battery 1 manufactured by the manufacturing method of one embodiment of the present invention.
As shown in this figure, a lithium ion secondary battery 1 that is an object of the manufacturing method according to an embodiment of the present invention is a solid or gel electrolyte layer (not shown in the figure) coated with an electrolyte. Alternately, a positive electrode plate (electrode plate) 2 on which is formed and a negative electrode plate (electrode plate) 3 on which a solid or gel electrolyte layer (not shown in the figure) is formed by applying an electrolyte The terminal tabs 4 are protruded from the end 7 of the positive electrode plate 2 and the terminal tabs 5 are protruded from the end 11 of the negative electrode plate 3.
The solid or gel electrolyte layer may be formed on either one of the positive electrode plate 2 or the negative electrode plate 3, and the positive electrode plate 2, the electrolyte layer, and the negative electrode plate 3 may be alternately stacked. .

図2に示すように、正極板2は、略長方形の一端に端子タブ4との接合用領域となる端部7が形成されたアルミニウム箔からなる集電体6が用いられ、この集電体6に端部7を残して両面に正極活物質層8を形成したものである。
正極活物質層8は、例えば正極活物質と、導電助剤、バインダーとなる結着剤を溶媒に分散させてなる正極用スラリーを集電体上に途工し、乾燥して得られるものである。
As shown in FIG. 2, the positive electrode plate 2 uses a current collector 6 made of an aluminum foil in which an end 7 serving as a joining region with the terminal tab 4 is formed at one end of a substantially rectangular shape. 6, the positive electrode active material layer 8 is formed on both surfaces with the end 7 being left.
The positive electrode active material layer 8 is obtained by, for example, preparing a positive electrode slurry in which a positive electrode active material, a conductive auxiliary agent, and a binder serving as a binder are dispersed in a solvent, on a current collector and drying. is there.

正極活物質としては、例えば一般式LiMxOy(ただし、Mは金属であり、x及びyは金属Mと酸素Oの組成比である)で表される金属酸リチウム化合物を用いることができる。具体的には、金属酸リチウム化合物としては、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、リン酸鉄リチウム等を用いることができる。
導電助剤としてはアセチレンブラック等が用いられ、結着剤としてはポリフッ化ビニリデン等を用いることができる。
As the positive electrode active material, for example, a lithium metal acid compound represented by the general formula LiMxOy (where M is a metal, and x and y are composition ratios of the metal M and oxygen O) can be used. Specifically, lithium cobaltate, lithium nickelate, lithium manganate, lithium iron phosphate, or the like can be used as the metal acid lithium compound.
Acetylene black or the like is used as the conductive assistant, and polyvinylidene fluoride or the like can be used as the binder.

正極板2の端子タブ4は、端部7に接合されて外方に突出するように設けられたものであり、例えばアルミニウム等により形成することができる。   The terminal tab 4 of the positive electrode plate 2 is provided so as to be joined to the end portion 7 and protrude outward, and can be formed of aluminum or the like, for example.

また、負極板3は、図3に示すように、例えば略長方形の一端に端子タブ5との接合用領域となる端部11が形成された銅(Cu)からなる集電体10を用いることができ、この集電体10に端部11を残して両面に負極活物質層12を形成したものである。   Moreover, as shown in FIG. 3, the negative electrode plate 3 uses the collector 10 which consists of copper (Cu) by which the edge part 11 used as the area | region for joining with the terminal tab 5 was formed in the substantially rectangular end, for example. The negative electrode active material layer 12 is formed on both surfaces of the current collector 10 with the end 11 remaining.

負極活物質層12は、例えば負極活物質と、バインダーとなる結着剤、必要に応じて加えられた導電助剤を溶媒に分散させてなる負極用スラリーを集電体上に途工し、乾燥して得ることができる。
負極活物質としては、例えば炭素粉末や黒鉛粉末等からなる炭素材料やチタン酸リチウム等の金属酸化物を用いることができる。
結着材には、例えばポリフッ化ビニリデン等を用いることができ、導電助剤にはアセチレンブラック等を用いることができる。
負極板3の端子タブ5は、端部11に接合されて外方に突出するように設けられたものであり、例えばニッケル等により形成することができる。
The negative electrode active material layer 12 is prepared by, for example, preparing a negative electrode slurry in which a negative electrode active material, a binder serving as a binder, and a conductive additive added as necessary are dispersed in a solvent on a current collector, It can be obtained by drying.
As the negative electrode active material, for example, a carbon material made of carbon powder or graphite powder, or a metal oxide such as lithium titanate can be used.
For example, polyvinylidene fluoride or the like can be used as the binder, and acetylene black or the like can be used as the conductive auxiliary agent.
The terminal tab 5 of the negative electrode plate 3 is provided so as to be joined to the end portion 11 and project outward, and can be formed of nickel or the like, for example.

図4に示す電解質層13は、正極板2及び負極板3の各両板面に塗工された液状の電解質が、ゲル化又は固体化したものである。この電解質層13は、正極板2及び負極板3の各片面に塗工されていてもよいが両面に設けられていることがより好ましい。
なお、固体又はゲル状の電解質層は、正極板2又は負極板3のいずれか一方の両面に形成され、正極板2、電解質層、負極板3が交互に積層されたものであってもよい。
The electrolyte layer 13 shown in FIG. 4 is obtained by gelling or solidifying a liquid electrolyte applied to both plate surfaces of the positive electrode plate 2 and the negative electrode plate 3. The electrolyte layer 13 may be coated on one side of each of the positive electrode plate 2 and the negative electrode plate 3, but is preferably provided on both sides.
The solid or gel electrolyte layer may be formed on either one of the positive electrode plate 2 or the negative electrode plate 3, and the positive electrode plate 2, the electrolyte layer, and the negative electrode plate 3 may be alternately stacked. .

電解質層は、公知の電解質を用いることが出来できる。例えば、高分子マトリックス及び非水電解質液(すなわち、非水溶媒及び電解質塩)からなり、ゲル化されて表面に粘着性を生じるもの、又は、高分子マトリックス及び非水溶媒からなり、固体電解質となるものを用いて形成することができる。また、電解質層は、電解質が、多孔質体に担持された構造を有していてもよい。いずれの電解質層であっても、電解質が正極板2又は負極板3に塗工された際に粘着性を有するものが好ましい。また、電解質層は、正極板2又は負極板3の板面から分離しない自立膜を形成するものであることが好ましい。   A known electrolyte can be used for the electrolyte layer. For example, a polymer matrix and a non-aqueous electrolyte solution (that is, a non-aqueous solvent and an electrolyte salt) that are gelled to cause stickiness on the surface, or a polymer matrix and a non-aqueous solvent that are made of a solid electrolyte and Can be formed. Further, the electrolyte layer may have a structure in which the electrolyte is supported on the porous body. Whichever electrolyte layer is used, those having adhesiveness when the electrolyte is applied to the positive electrode plate 2 or the negative electrode plate 3 are preferable. The electrolyte layer preferably forms a free-standing film that does not separate from the plate surface of the positive electrode plate 2 or the negative electrode plate 3.

高分子マトリックスとしては、ポリフッ化ビニリデン(PVDF)、ヘキサフルオロプロピレン共重合体(PVDF−HFP)、ポリアクリロニトリル、ポリアルキレンエーテル(ポリエチレンオキシドやポリプロピレンオキシド等)をはじめ、ポリエステル、ポリアミン、ポリフォスファゼン、ポリシロキサン等を用いることができる。   Polymer matrices include polyvinylidene fluoride (PVDF), hexafluoropropylene copolymer (PVDF-HFP), polyacrylonitrile, polyalkylene ether (polyethylene oxide, polypropylene oxide, etc.), polyester, polyamine, polyphosphazene, Polysiloxane or the like can be used.

非水溶媒は、γ−ブチロラクトン等のラクトン化合物;エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート等の炭酸エステル化合物;ギ酸メチル、酢酸メチル、プロピオン酸メチル等のカルボン酸エステル化合物;テトラヒドロフラン、ジメトキシエタン等のエーテル化合物;アセトニトリル等のニトリル化合物;スルホラン等のスルホン化合物、ジメチルホルムアミド等のアミド化合物等、単独または2種類以上を混合して調製することができる。   The non-aqueous solvent is a lactone compound such as γ-butyrolactone; a carbonic acid ester compound such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, or methyl ethyl carbonate; a carboxylic acid ester compound such as methyl formate, methyl acetate, or methyl propionate; It can be prepared by mixing an ether compound such as tetrahydrofuran or dimethoxyethane; a nitrile compound such as acetonitrile; a sulfone compound such as sulfolane; an amide compound such as dimethylformamide;

また、電解液を固体電解質にする場合には、アセトニトリル等のニトリル化合物;テトラヒドロフラン等のエーテル化合物:ジメチルホルムアミド等のアミド系化合物を単独または2種類以上を混合して調製することができる。
電解質塩としては、特に限定されないが六フッ化リン酸リチウム、過塩素酸リチウム、四フッ化ホウ酸リチウム等のリチウム塩等が使用できる。
Moreover, when making electrolyte solution into a solid electrolyte, nitrile compounds, such as acetonitrile; Ether compounds, such as tetrahydrofuran: Amide type compounds, such as a dimethylformamide, can be prepared individually or in mixture of 2 or more types.
The electrolyte salt is not particularly limited, and lithium salts such as lithium hexafluorophosphate, lithium perchlorate, and lithium tetrafluoroborate can be used.

以上の構成の下に、負極板3、固体又は半固体の電解質層13、正極板2がこの順に積層され、図5に示すように、端子タブ4,5を突出させて積層体15を形成している。   Under the above configuration, the negative electrode plate 3, the solid or semi-solid electrolyte layer 13, and the positive electrode plate 2 are laminated in this order, and as shown in FIG. 5, the terminal tabs 4 and 5 are projected to form a laminated body 15. doing.

図4に示す外装材16としては、可撓性のあるラミネートフィルム(アルミ箔と樹脂フィルムの複合材であるアルミラミネートフィルム等)、SUSシート、水蒸気バリアフィルム等が好適に用いられる。
外装材16は、図1及び図4に示すように、積層体15を内包して封止できる大きさに形成されている。そして、外装材16は、積層体15の端縁15a,15a・・に沿って、積層体15の端縁15aとの間に可及的に隙間を形成しないように隣接する領域を含み、積層体15が配置された領域以外の略全領域(すなわち対向配置されたシート状の外装材16,16が互いに直接当接し得る領域)を封止部Pとしている。
As the exterior material 16 shown in FIG. 4, a flexible laminate film (such as an aluminum laminate film that is a composite material of an aluminum foil and a resin film), a SUS sheet, a water vapor barrier film, or the like is preferably used.
As shown in FIGS. 1 and 4, the exterior material 16 is formed in a size that can enclose and seal the laminate 15. And the exterior | packing material 16 contains the area | region which adjoins so that a clearance gap may not be formed as much as possible between the edge 15a of the laminated body 15 along the edge 15a, 15a ... of the laminated body 15. Substantially the entire region other than the region where the body 15 is disposed (that is, the region in which the sheet-like exterior materials 16 and 16 disposed opposite to each other can directly contact each other) is used as the sealing portion P.

ここで可及的に隙間を形成しないように隣接する領域とは、積層体15の端縁15aの間際まで加熱及び加圧した際に、物理的に発生し得る隙間を挟んで積層体15の端縁15aを取り囲む領域を意味する。具体的には、本実施形態でいう「物理的に発生し得る隙間」とは、例えば真空ラミネータ,ローラー又は真空包装機により加熱及び加圧した際に積層体15の端縁15aの周囲に2mm以内、好ましくは1.3mm以内、より好ましくは0.8mm以内で形成されるものをいう。
なお、セパレータ(不図示)は介装されていることが好ましい。セパレータには、不織布等が用いられている。
Here, the adjacent region so as not to form a gap as much as possible means that the laminate 15 is sandwiched by a gap that can be physically generated when heated and pressed to the edge 15a of the laminate 15 to the middle. It means a region surrounding the end edge 15a. Specifically, the “physical gap that can be generated” as used in the present embodiment is, for example, 2 mm around the edge 15a of the laminate 15 when heated and pressurized by a vacuum laminator, roller, or vacuum packaging machine. Or less, preferably within 1.3 mm, more preferably within 0.8 mm.
In addition, it is preferable that the separator (not shown) is interposed. A nonwoven fabric or the like is used for the separator.

次に、本発明の一実施形態に係るリチウムイオン二次電池1の製造方法について図4〜図7を用いて説明する。このリチウムイオン二次電池1の製造方法は、以下の工程を備えている。
(1)端子タブ4,5を有する電極板(正極板2、負極板3)と半固体又は固体状の電解質層13とを交互に積層させ、積層体15を形成する積層体形成工程、
(2)積層体15と脱気空間を形成する合紙17とを外装材16に挟み込み、この外装材16に、端子タブ4,5の一部を突出させ、かつ、積層体15の端縁15aと合紙17の端縁の全周(積層体15と合紙17との隣接部は除く)に亘ってこの端縁に隣接して封止する第1の封止工程、及び
(3)封止工程の後に、合紙17を取り出し最終封止をする第2の封止工程。
Next, the manufacturing method of the lithium ion secondary battery 1 which concerns on one Embodiment of this invention is demonstrated using FIGS. The manufacturing method of the lithium ion secondary battery 1 includes the following steps.
(1) Laminate forming step of alternately laminating electrode plates (positive electrode plate 2, negative electrode plate 3) having terminal tabs 4 and 5 and semi-solid or solid electrolyte layer 13 to form laminate 15;
(2) The laminate 15 and the interleaving paper 17 forming the deaeration space are sandwiched between the exterior materials 16, and part of the terminal tabs 4, 5 are projected from the exterior material 16, and the edges of the laminate 15 15a and the first sealing step of sealing adjacent to this edge over the entire circumference of the edge of the interleaf 17 (excluding the adjacent portion of the laminate 15 and interleaf 17), and (3) A second sealing step in which the interleaf paper 17 is taken out and finally sealed after the sealing step.

<積層体15形成工程>
積層体形成工程では、図4に示すように、負極板3と正極板2とを半固体又は固体の電解質層13を間に介装させながら積層させ積層体15とする。この際、各正極板2及び各負極板3から突出させた端子タブ4,5は、それぞれ束ねて溶接し、向きは特に限定されるわけではないが、本実施形態ではそれぞれ同方向を向くように突出させている。なお、積層体15の最上層と最下層に位置する電極板は、負極板3とすることが好ましい。
<Laminated body 15 formation process>
In the laminated body forming step, as shown in FIG. 4, the negative electrode plate 3 and the positive electrode plate 2 are laminated with a semi-solid or solid electrolyte layer 13 interposed therebetween to form a laminated body 15. At this time, the terminal tabs 4 and 5 protruded from each positive electrode plate 2 and each negative electrode plate 3 are bundled and welded, and the direction is not particularly limited, but in this embodiment, the terminal tabs 4 and 5 are directed in the same direction. Protruding. The electrode plates located in the uppermost layer and the lowermost layer of the laminate 15 are preferably the negative electrode plate 3.

<第1の封止工程>
第1の封止工程では、図6に示すように、積層体15と脱気空間を形成する合紙17とを隣接させて外装材16,16に挟み込み、端子タブ4,5を外装材16から突出させた状態で外装材16を積層体15の端縁15aの全周に亘ってこの端縁15aに隣接して封止する。ここで「脱気空間」とは、後述する初期充電時において発生したガスを抜き取るために設けられる空間を意味する。なお、積層体15と合紙17との間は、これらの間を封止させない限り僅かな隙間が形成されていてもよい。また、必須ではないが、端子タブ4,5は、それぞれ例えばポリプロピレンにより形成された封止フィルム20,20により外装材16に固定されていることが好ましい。
<First sealing step>
In the first sealing step, as shown in FIG. 6, the laminated body 15 and the interleaf paper 17 forming the deaeration space are adjacent to each other and sandwiched between the exterior materials 16, 16, and the terminal tabs 4, 5 are disposed in the exterior material 16. The exterior material 16 is sealed adjacent to the end edge 15a over the entire periphery of the end edge 15a of the laminated body 15 in a state of protruding from the edge. Here, the “degassing space” means a space provided for extracting gas generated during initial charging described later. A slight gap may be formed between the laminate 15 and the interleaf paper 17 as long as the gap between them is not sealed. Moreover, although it is not essential, it is preferable that the terminal tabs 4 and 5 are being fixed to the exterior | packing material 16 with the sealing films 20 and 20 formed, for example with the polypropylene, respectively.

この際、外装材16における積層体15及び合紙17が配された以外の全領域が融着されて封止部Pとなるように、真空ラミネータ、ローラー又は真空包装機を用いて封止部Pとする領域をほぼ同時に加熱及び加圧して融着する。この際、積層体15を構成する電解質層が軟化されている状態で、外装部16,16間を加圧しながら、封止することが好ましい。これにより、電極との界面部分に生じる電解質層の凹凸がより平坦化されるため、積層体と外装材との隙間を減少させることができる。このように製造されることで、均一な充放電を行うことが可能となる。またサイクル特性を向上させることが可能となる。外装部16,16間を加圧するに際しては、積層体15の全面に均一な加圧を行うのが好ましく、平滑平板を用いて加圧することがより好ましい。電解質層が軟化するように加熱する方法は特に限定されず、予め積層体15を加熱したり、真空ラミネーターのラミネート板やローラーを加熱する等の方法が例示できる。   At this time, the sealing portion is used by using a vacuum laminator, a roller, or a vacuum packaging machine so that the entire region of the exterior material 16 other than the laminated body 15 and the interleaf paper 17 is fused and becomes the sealing portion P. The region to be P is fused by heating and pressing almost simultaneously. At this time, it is preferable that sealing is performed while pressurizing between the exterior parts 16 and 16 in a state where the electrolyte layer constituting the laminated body 15 is softened. Thereby, since the unevenness | corrugation of the electrolyte layer which arises in the interface part with an electrode is planarized more, the clearance gap between a laminated body and an exterior material can be reduced. By being manufactured in this manner, uniform charge / discharge can be performed. In addition, the cycle characteristics can be improved. When pressurizing between the exterior parts 16, 16, it is preferable to apply uniform pressure over the entire surface of the laminate 15, and it is more preferable to apply pressure using a smooth flat plate. The method of heating so that the electrolyte layer is softened is not particularly limited, and examples thereof include a method of heating the laminate 15 in advance or heating a laminate plate or a roller of a vacuum laminator.

具体的には、真空ラミネータ―を用いる場合には、例えば載置する外装材16の面積よりも大きい面積を有する膨張及び収縮自在な2枚のゴム板を対向配置させ、これらのゴム板間に積層体15を配置させた外装材16,16を挟み込む。そして、一方のゴム板に圧縮空気を送り込んで膨張させるとともにゴム板を例えば100℃〜200℃に加熱し、ゴム板間に挟んだ外装材16,16を加熱及び加圧して、外装材16,16間を脱気して真空にしつつ同時に加熱する。この状態を数十秒保持して積層体15が配された以外の外装材16,16同士が当接した全領域を封止し、封止部Pとすることで封止が完了する。   Specifically, in the case of using a vacuum laminator, for example, two rubber plates having an area larger than the area of the outer packaging material 16 to be placed are arranged so as to be opposed to each other, and the rubber plates are placed between these rubber plates. The packaging materials 16 and 16 on which the laminated body 15 is arranged are sandwiched. Then, compressed air is fed into one rubber plate to expand it, and the rubber plate is heated to, for example, 100 ° C. to 200 ° C., and the exterior materials 16, 16 sandwiched between the rubber plates are heated and pressurized, It heats simultaneously, deaerating between 16 and making it vacuum. Sealing is completed by sealing this entire state where the exterior materials 16 and 16 other than the laminated body 15 are in contact with each other for several tens of seconds and forming the sealing portion P.

また、ローラーを用いる場合には、例えば所定の直径(例えば3cm)の複数本のローラーを所定の間隔を空けて上下方向に平行に配置して加熱する。前記所定の間隔は、リチウムイオン二次電池1として所望する厚さ寸法と同寸法に設定する。
これらのローラー間に積層体15を挟持させた外装材16,16を通過させ、ローラーにより外装材16,16間の空気を押し出して脱気するとともに、加熱及び加圧して積層体15が配された箇所以外の外装材16,16同士が当接した全領域を封止し、封止部Pとすることで封止が完了する。
When using rollers, for example, a plurality of rollers having a predetermined diameter (for example, 3 cm) are arranged in parallel in the vertical direction with a predetermined interval and heated. The predetermined interval is set to the same dimension as the thickness dimension desired for the lithium ion secondary battery 1.
The exterior material 16, 16 having the laminate 15 sandwiched between these rollers is passed, the air between the exterior materials 16, 16 is pushed out by the roller to deaerate, and the laminate 15 is arranged by heating and pressurizing. Sealing is completed by sealing the entire region where the outer packaging materials 16, 16 other than the above-mentioned portions are in contact with each other and forming the sealing portion P.

第2の封止工程では、第1の封止工程で外装材16が封止された状態で初期充電を行い、初期充電時において発生したガスを抜く。ガス抜きは、初期充電の終了後に、真空環境下で外装材16の封止を一部切断し外装材16を開口させて合紙17を取り出し、合紙17が配されていた領域を再びラミネート融着させ、最終封止をすることにより行う。
この際、積層体15を構成する電解質層が軟化されている状態で、外装部16,16間を加圧しながら、封止することが好ましい。これにより、電極との界面部分に生じる電解質層の凹凸がより平坦化されるため、積層体と外装材との隙間を減少することができる。このように製造されることで、均一な充放電を行うことが可能となる。またサイクル特性を向上することが可能となる。外装部16,16間を加圧するに際しては、積層体15の全面に均一な加圧を行うのが好ましく、平滑平板を用いて加圧することがより好ましい。電解質層が軟化するように加熱する方法は特に限定されず、予め積層体15を加熱したり、真空ラミネーターのラミネート板やローラーを加熱する等の方法が例示できる。
なお、電解質層が軟化状態で、外装部16,16間を加圧する工程は、第1、第2の封止工程のいずれか一方、又は両方で行ってよい。当該加圧工程は第2の封止工程でのみ行うことが好ましい。第1の封止工程で、電極との界面部分に生じる電解質層の凹凸をより平坦化させないことで、第2封止工程の初期充電時に発生するガスが、積層体間に滞留しにくくなる効果が期待できる。
以上の工程により、図1又は図7に示したリチウムイオン二次電池1が完成する。
In the second sealing step, initial charging is performed in a state where the exterior material 16 is sealed in the first sealing step, and the gas generated during the initial charging is removed. In the degassing, after completion of the initial charging, the sealing of the outer packaging material 16 is partially cut in a vacuum environment, the outer packaging material 16 is opened, the interleaf paper 17 is taken out, and the region where the interleaf paper 17 is disposed is laminated again. It is performed by fusing and final sealing.
At this time, it is preferable that sealing is performed while pressurizing between the exterior parts 16 and 16 in a state where the electrolyte layer constituting the laminated body 15 is softened. Thereby, since the unevenness | corrugation of the electrolyte layer which arises in the interface part with an electrode is planarized more, the clearance gap between a laminated body and an exterior material can be reduced. By being manufactured in this manner, uniform charge / discharge can be performed. Further, cycle characteristics can be improved. When pressurizing between the exterior parts 16, 16, it is preferable to apply uniform pressure over the entire surface of the laminate 15, and it is more preferable to apply pressure using a smooth flat plate. The method of heating so that the electrolyte layer is softened is not particularly limited, and examples thereof include a method of heating the laminate 15 in advance or heating a laminate plate or a roller of a vacuum laminator.
In addition, you may perform the process of pressurizing between the exterior parts 16 and 16 in any one or both of a 1st, 2nd sealing process, when an electrolyte layer is a softened state. The pressurizing step is preferably performed only in the second sealing step. The effect that the gas generated during the initial charging in the second sealing step is less likely to stay between the laminates by not flattening the unevenness of the electrolyte layer generated at the interface with the electrode in the first sealing step. Can be expected.
Through the above steps, the lithium ion secondary battery 1 shown in FIG. 1 or FIG. 7 is completed.

本発明のリチウムイオン二次電池によれば、積層体15の端縁15aに沿って、この端縁15aと実質的に隙間を形成することなく外装材16により封止されている。したがって、外装材16に積層体15を収容できる空間を最大限確保しつつ、かつ外装材16の封止部Pをより大きく形成することができる。すなわち、外装材16内に封入する積層体15の表面積を相対的に小さくしてしまうことなく封止部Pを可及的に大きく形成することにより、気密性の点で信頼性の高いリチウムイオン二次電池1とすることができるという効果が得られる。   According to the lithium ion secondary battery of the present invention, the laminate 15 is sealed by the exterior material 16 along the edge 15a of the laminate 15 without substantially forming a gap with the edge 15a. Therefore, it is possible to make the sealing part P of the exterior material 16 larger while ensuring the maximum space in which the laminate 15 can be accommodated in the exterior material 16. That is, by forming the sealing portion P as large as possible without relatively reducing the surface area of the laminate 15 encapsulated in the exterior material 16, lithium ion that is highly reliable in terms of airtightness. The effect that it can be set as the secondary battery 1 is acquired.

また、積層体15の形状に合わせて外装材16の封止部Pを最大限に確保する構成であるため、積層体15の積層状態が外装材16の内部で位置ずれ等することを抑制することができるという効果が得られる。
また、積層体15を外装材16内にフィットさせた状態で封止しているため、無駄な電解質の使用を防止して材料コストを抑えることができるという効果が得られる。
In addition, since the sealing portion P of the exterior material 16 is maximally secured according to the shape of the laminate 15, it is possible to prevent the laminated state of the laminate 15 from being misaligned inside the exterior material 16. The effect that it can be obtained.
Moreover, since the laminated body 15 is sealed in a state in which the laminate 15 is fitted in the exterior material 16, an effect that the use of a useless electrolyte can be prevented and the material cost can be suppressed can be obtained.

また、従来は、電解液の漏洩を防ぐために、外装材の3辺を溶着して袋状にしたものに積層体15を入れた後、電解液を注入して最終封止を行う方法を採用してため、リチウムイオン二次電池の製造に時間やコストがかかっていた。しかし、本発明のリチウムイオン二次電池の製造方法によれば、固体状又はゲル状の電解質層を介装させた積層体15を取り囲む封止部Pを真空ラミネータ、ローラー又は真空包装機等により同時に封止することができるため、第1の封止工程を極めて効率よく行うことができるという効果が得られる。   Conventionally, in order to prevent leakage of the electrolytic solution, a method is employed in which the laminate 15 is put in a bag shape by welding three sides of the exterior material, and then the electrolyte is injected to perform final sealing. Therefore, it takes time and cost to manufacture the lithium ion secondary battery. However, according to the method for manufacturing a lithium ion secondary battery of the present invention, the sealing portion P surrounding the laminated body 15 with the solid or gel electrolyte layer interposed is removed by a vacuum laminator, a roller, a vacuum packaging machine, or the like. Since it can seal simultaneously, the effect that a 1st sealing process can be performed very efficiently is acquired.

なお、上記実施形態では、積層体15が配された領域以外の全領域が封止部Pとされた構成となっているが、本発明は、封止部Pが積層体15の端縁15aに可及的に近接して十分な幅寸法(封止寸法)を以って設けられている限り、積層体15が配された領域以外の一部が封止部Pとされていないことを妨げるものではない。   In addition, in the said embodiment, although it becomes the structure by which all area | regions other than the area | region where the laminated body 15 was distribute | arranged were used as the sealing part P, this invention is the edge 15a of the laminated body 15 in the sealing part P. As long as it is provided as close as possible with a sufficient width dimension (sealing dimension), a part other than the region where the laminated body 15 is disposed is not the sealing portion P. It does not prevent it.

また、上記実施形態においては、合紙17を配置して積層体15を封止する第1の封止工程と、ガスを放出させた後、合紙17を取り出して最終封止をする第2の封止工程とを備えた製造方法を例示したが、本発明は、合紙17を配さずに積層体15を最終封止してしまう封止工程としたものであってもよい。   Further, in the above embodiment, the first sealing step in which the interleaf paper 17 is disposed and the laminated body 15 is sealed, and after the gas is released, the interleaf paper 17 is taken out and the second sealing is performed. However, the present invention may be a sealing step in which the laminated body 15 is finally sealed without providing the interleaf paper 17.

また、上記実施形態において電極が配された部分には加熱され難いように加熱及び加圧時にカバーを設けたり、封止部にのみに加熱されるようにヒーターの形などを変形させたりしてもよい。   Further, in the above embodiment, a cover is provided at the time of heating and pressurizing so that the electrode is not easily heated, or the shape of the heater is deformed so as to be heated only at the sealing portion. Also good.

また、上記実施形態では、正極板2及び負極板3を略矩形に形成し、積層体15が平面視で矩形に形成された構成となっているが、本発明の積層体15の形状は矩形に限定されるものではなく、円形又は多角形その他の所望の形状に自由に設定することができる。
本発明のリチウムイオン二次電池の製造方法は、積層体15の外形を円形,多角形その他の複雑な形状とした場合であっても、真空ラミネータ等を用いて外装材16,16の表面全体をほぼ同時に加熱及び加圧することにより、積層体15の端縁15aに隣接するように封止部Pを形成することができるという有利な機能を有する。そして、上記した実施形態と同様の効果を発揮することができるという効果が得られる。
Moreover, in the said embodiment, although the positive electrode plate 2 and the negative electrode plate 3 are formed in the substantially rectangular shape, and the laminated body 15 becomes a rectangle by planar view, the shape of the laminated body 15 of this invention is a rectangle. It is not limited to this, and it can be freely set to a circular, polygonal or other desired shape.
The method for manufacturing a lithium ion secondary battery according to the present invention uses the vacuum laminator or the like to cover the entire surface of the exterior materials 16 and 16 even when the outer shape of the laminate 15 is circular, polygonal, or other complicated shapes. The sealing part P can be formed so as to be adjacent to the edge 15a of the laminated body 15 by heating and pressurizing substantially simultaneously. And the effect that the effect similar to above-mentioned embodiment can be exhibited is acquired.

1 リチウムイオン二次電池
2 正極板(電極板)
3 負極板(電極板)
13 固体又はゲル状の電解質層
15 積層体
15a 端縁
16 外装材
17 合紙
P 封止部
1 Lithium ion secondary battery 2 Positive electrode plate (electrode plate)
3 Negative electrode plate (electrode plate)
13 Solid or Gel Electrolyte Layer 15 Laminate 15a Edge 16 Exterior Material 17 Interleaf P Sealing Part

Claims (6)

端子タブを有する電極板と半固体又は固体状の電解質層とを交互に積層させた積層体と、この積層体を内部に収容し、端子タブの一部を突出させて封止するシート状の外装材とを備え、
前記外装材には、前記積層体の端縁の少なくとも一部に隣接して前記積層体を封止する積層体隣接封止部が設けられていることを特徴とするリチウムイオン二次電池。
A laminated body in which electrode plates having terminal tabs and semi-solid or solid electrolyte layers are alternately laminated, and a sheet-like structure in which the laminated body is housed and a part of the terminal tab is protruded and sealed. With exterior materials,
The lithium ion secondary battery, wherein the exterior material is provided with a laminated body adjacent sealing portion that seals the laminated body adjacent to at least a part of an edge of the laminated body.
前記積層体隣接封止部は、前記積層体の端縁の全周に亘ってこの端縁に隣接して設けられていることを特徴とする請求項1に記載のリチウムイオン二次電池。   2. The lithium ion secondary battery according to claim 1, wherein the stacked body adjacent sealing portion is provided adjacent to the edge of the entire periphery of the edge of the stacked body. 前記積層体隣接封止部は、前記外装材における前記積層体が配された領域以外の全領域に亘って設けられていることを特徴とする請求項1又は2に記載のリチウムイオン二次電池。   3. The lithium ion secondary battery according to claim 1, wherein the laminated body adjacent sealing portion is provided over the entire region other than the region where the laminated body is disposed in the exterior material. . 端子タブを有する電極板と半固体又は固体状の電解質層とを交互に積層させた積層体を形成する積層体形成工程と、
前記積層体を外装材に挟み込み、前記外装材に、端子タブの一部を突出させ、かつ、前記積層体の端縁の全周に亘ってこの端縁に隣接して前記積層体を封止する封止工程を備えていることを特徴とするリチウムイオン二次電池の製造方法。
A laminate forming step of forming a laminate in which electrode plates having terminal tabs and semi-solid or solid electrolyte layers are alternately laminated;
The laminated body is sandwiched between exterior materials, a part of a terminal tab is protruded from the exterior material, and the laminated body is sealed adjacent to the edge of the entire edge of the laminated body. The manufacturing method of the lithium ion secondary battery characterized by including the sealing process to perform.
前記封止工程において、前記積層体の端縁の一部に隣接して脱気空間を形成する合紙を挟み込み、前記外装材に前記積層体と合紙の端縁の全周に亘ってこの端縁に隣接して前記積層体と合紙を封止する工程を第1の封止工程とし、この第1の封止工程と、
前記第1の封止工程の後に、合紙を取り出し最終封止をする第2の封止工程と有することを特徴とする請求項4に記載のリチウムイオン二次電池の製造方法。
In the sealing step, a slip sheet that forms a deaeration space adjacent to a part of the edge of the laminated body is sandwiched, and the outer covering material covers the entire periphery of the edge of the laminated body and the slip sheet. The step of sealing the laminate and interleaf paper adjacent to the edge is the first sealing step, and this first sealing step,
5. The method of manufacturing a lithium ion secondary battery according to claim 4, further comprising a second sealing step in which a slip sheet is taken out and finally sealed after the first sealing step.
前記第1の封止工程は、真空ラミネータ、ローラー又は真空包装機を用いて行うことを特徴とする請求項4又は5に記載のリチウムイオン二次電池の製造方法。   The method for producing a lithium ion secondary battery according to claim 4 or 5, wherein the first sealing step is performed using a vacuum laminator, a roller, or a vacuum packaging machine.
JP2015523729A 2013-10-31 2014-10-30 A method for producing a lithium ion secondary battery. Active JP5836542B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015523729A JP5836542B2 (en) 2013-10-31 2014-10-30 A method for producing a lithium ion secondary battery.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013227478 2013-10-31
JP2013227478 2013-10-31
JP2015523729A JP5836542B2 (en) 2013-10-31 2014-10-30 A method for producing a lithium ion secondary battery.
PCT/JP2014/078992 WO2015064721A1 (en) 2013-10-31 2014-10-30 Lithium ion secondary cell and method for producing lithium ion secondary cell

Publications (2)

Publication Number Publication Date
JP5836542B2 JP5836542B2 (en) 2015-12-24
JPWO2015064721A1 true JPWO2015064721A1 (en) 2017-03-09

Family

ID=53004318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015523729A Active JP5836542B2 (en) 2013-10-31 2014-10-30 A method for producing a lithium ion secondary battery.

Country Status (5)

Country Link
JP (1) JP5836542B2 (en)
KR (1) KR20160082490A (en)
CN (1) CN105164848B (en)
TW (1) TWI645598B (en)
WO (1) WO2015064721A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6828240B2 (en) * 2016-01-12 2021-02-10 トヨタ自動車株式会社 Manufacturing method of all-solid-state battery
GB2584344A (en) * 2019-05-31 2020-12-02 Oxis Energy Ltd Battery cell
JP7125685B1 (en) 2022-03-06 2022-08-25 マグネデザイン株式会社 Magnetic denture attachment with sleeve and manufacturing method thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4997732A (en) * 1989-03-30 1991-03-05 Mhb Joint Venture Battery in a vacuum sealed enveloping material and a process for making the same
CA2011720C (en) * 1989-03-30 1999-11-30 Robert A. Austin Battery in a vacuum sealed enveloping material and a process for making the same
JPH11260408A (en) * 1998-03-06 1999-09-24 Hitachi Maxell Ltd Manufacture of polymer electrolyte battery
US6267790B1 (en) * 1998-03-18 2001-07-31 Ntk Powerdex, Inc. Treatment of conductive feedthroughs for battery packaging
JP4449109B2 (en) * 1999-08-12 2010-04-14 株式会社ジーエス・ユアサコーポレーション Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP4720065B2 (en) * 2001-09-04 2011-07-13 日本電気株式会社 Film outer battery and battery pack
WO2010101384A2 (en) 2009-03-02 2010-09-10 주식회사 엘지화학 Pouch, and secondary battery comprising same
JP5353435B2 (en) * 2009-05-18 2013-11-27 トヨタ自動車株式会社 All solid battery
KR101334623B1 (en) * 2010-12-02 2013-11-29 주식회사 엘지화학 Degassing Method of Secondary Battery Using Centrifugal Force
JP2013131427A (en) * 2011-12-22 2013-07-04 Panasonic Corp Laminated battery

Also Published As

Publication number Publication date
TW201526354A (en) 2015-07-01
JP5836542B2 (en) 2015-12-24
CN105164848B (en) 2018-02-02
TWI645598B (en) 2018-12-21
CN105164848A (en) 2015-12-16
WO2015064721A1 (en) 2015-05-07
KR20160082490A (en) 2016-07-08

Similar Documents

Publication Publication Date Title
JP3745593B2 (en) Battery and manufacturing method thereof
JP5918914B2 (en) Multilayer battery manufacturing method and manufacturing apparatus
JP5787750B2 (en) Method for producing multilayer membrane electrode assembly
JP2010073421A (en) Bipolar electrode and its manufacturing method
JP7002094B2 (en) Electrodes for electrochemical devices, electrochemical devices, and their manufacturing methods
JP2004071301A (en) Manufacturing method of case for storage element
JP6757318B2 (en) How to manufacture electrochemical devices
JP6539080B2 (en) Method of manufacturing secondary battery
US10847779B2 (en) Film-covered battery production method and film-covered battery
JP2005158816A (en) Electrochemical device and manufacturing method thereof
JP2005277064A (en) Electrode and method for manufacturing the same and method for manufacturing electrochemical device and electrochemical device
JP2009146602A (en) Method for manufacturing lamination type secondary battery
JP2013097931A (en) Manufacturing method of electrochemical element of thin film type
JP5836542B2 (en) A method for producing a lithium ion secondary battery.
JP2011048967A (en) Laminated secondary battery and manufacturing method
JP2003272595A (en) Manufacturing method for electrochemical device, manufacturing equipment, and electrochemical device
JP6302307B2 (en) Sheet laminated lithium ion secondary battery
JP2006278141A (en) Thin battery
JP2018142483A (en) Secondary battery
JP2002216854A (en) Manufacturing method of bipolar secondary cell, and bipolar secondary cell
JP7024540B2 (en) Electrochemical element
JP2003086172A (en) Secondary battery and its method of manufacture
JP2006286471A (en) Manufacturing method of battery, and battery
JP2019153427A (en) Method and device for manufacturing lithium ion secondary battery
JP2018156725A (en) Manufacturing method of nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151102

R151 Written notification of patent or utility model registration

Ref document number: 5836542

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151