JPWO2015049959A1 - Method for producing alloy nanoparticles, alloy nanoparticles produced using the same, and catalyst comprising the same - Google Patents

Method for producing alloy nanoparticles, alloy nanoparticles produced using the same, and catalyst comprising the same Download PDF

Info

Publication number
JPWO2015049959A1
JPWO2015049959A1 JP2015540437A JP2015540437A JPWO2015049959A1 JP WO2015049959 A1 JPWO2015049959 A1 JP WO2015049959A1 JP 2015540437 A JP2015540437 A JP 2015540437A JP 2015540437 A JP2015540437 A JP 2015540437A JP WO2015049959 A1 JPWO2015049959 A1 JP WO2015049959A1
Authority
JP
Japan
Prior art keywords
noble metal
metal nanoparticles
nanoparticles
composite
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015540437A
Other languages
Japanese (ja)
Other versions
JP6404823B2 (en
Inventor
康裕 小西
康裕 小西
範三 斎藤
範三 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Prefecture University
Original Assignee
Osaka Prefecture University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Prefecture University filed Critical Osaka Prefecture University
Publication of JPWO2015049959A1 publication Critical patent/JPWO2015049959A1/en
Application granted granted Critical
Publication of JP6404823B2 publication Critical patent/JP6404823B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/90Regeneration or reactivation
    • B01J23/96Regeneration or reactivation of catalysts comprising metals, oxides or hydroxides of the noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/36Biochemical methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/48Liquid treating or treating in liquid phase, e.g. dissolved or suspended
    • B01J38/68Liquid treating or treating in liquid phase, e.g. dissolved or suspended including substantial dissolution or chemical precipitation of a catalyst component in the ultimate reconstitution of the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P3/00Preparation of elements or inorganic compounds except carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/009Preparation by separation, e.g. by filtration, decantation, screening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Catalysts (AREA)
  • Powder Metallurgy (AREA)

Abstract

本発明は、低エネルギーおよび低環境負荷型の簡易な処理により、効率的に複合貴金属ナノ粒子を製造する方法を提供する。本発明は、複数種の貴金属のイオンを含有する原料溶液中に、金属イオン還元細菌および電子供与体を添加し、貴金属のイオンを金属イオン還元細菌によって還元することで、1つの粒子中に複数種の貴金属を含有する複合貴金属ナノ粒子を析出させるバイオ還元工程を含む、複合貴金属ナノ粒子の製造方法である。The present invention provides a method for efficiently producing composite noble metal nanoparticles by simple processing with low energy and low environmental load. The present invention adds a metal ion reducing bacterium and an electron donor to a raw material solution containing a plurality of types of noble metal ions, and reduces the noble metal ions by the metal ion reducing bacterium, so that a plurality of ions are contained in one particle. A method for producing composite noble metal nanoparticles, comprising a bioreduction step of depositing composite noble metal nanoparticles containing seed noble metals.

Description

本発明は、複合貴金属ナノ粒子の製造方法、それを用いて製造された複合貴金属ナノ粒子、および、それを含む触媒に関する。   The present invention relates to a method for producing composite noble metal nanoparticles, composite noble metal nanoparticles produced using the same, and a catalyst containing the same.

近年、大半のガソリン車が、三元触媒コンバータを使用した排ガス浄化システムを搭載している。この三元触媒コンバータは、一酸化炭素(CO)、チッソ酸化物(NO)、未燃焼の炭化水素を、二酸化炭素、チッソ、水に変換して、ガソリンエンジンからの排ガスを浄化する。In recent years, most gasoline vehicles are equipped with an exhaust gas purification system using a three-way catalytic converter. This three-way catalytic converter converts carbon monoxide (CO), nitrogen oxide (NO x ), and unburned hydrocarbons into carbon dioxide, nitrogen, and water to purify exhaust gas from a gasoline engine.

触媒コンバータは、基本構造としてハニカム(モノリス)構造を有しており、ハニカム構造体の表面には触媒コーティングが施されている。触媒コーティングを行う際は、まず、ウォッシュコート(触媒担体保持材)の薄膜でハニカムの表面を被覆し、そのウォッシュコート上に触媒を被覆する。触媒としては、例えば、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)などの白金族金属(PGM:Platinum Group Metals)を含む貴金属系微粒子が用いられる。   The catalytic converter has a honeycomb (monolith) structure as a basic structure, and a catalytic coating is applied to the surface of the honeycomb structure. When performing catalyst coating, first, the surface of the honeycomb is covered with a thin film of a washcoat (catalyst carrier holding material), and the catalyst is covered on the washcoat. As the catalyst, for example, noble metal-based fine particles containing platinum group metals (PGM: Platinum Group Metals) such as platinum (Pt), palladium (Pd), and rhodium (Rh) are used.

従来の貴金属系微粒子を用いた排ガス浄化用触媒の製造方法としては、例えば、貴金属系微粒子を含有するコロイド溶液等を混合し、高温で加熱(焼成)する方法が知られている(例えば、特許文献1:特開2011−143339号公報)。しかし、このような方法は、工程数が多く煩雑であり、加熱のために多くのエネルギーを消費し、高温に耐え得る特別な設備が必要であるといった問題があった。   As a conventional method for producing an exhaust gas purification catalyst using noble metal-based fine particles, for example, a method is known in which a colloidal solution containing noble metal-based fine particles is mixed and heated (fired) at a high temperature (for example, patents). Literature 1: JP 2011-143339 A). However, such a method has a problem that the number of steps is complicated and a lot of energy is consumed for heating, and special equipment that can withstand high temperatures is required.

また、アスコルビン酸等の化学薬品を用いて二金属ナノ粒子(例えば、Pdからなる核の表面にPtが析出してなるコア−シェル構造の金属ナノ粒子)を合成する方法が幾つか報告されている(例えば、非特許文献1:Byungkwon Lim et al.,Pd-Pt Bimetallic Nanodendrites with High Activity for Oxygen Reduction,Science,324,1302,2009年)。しかし、この方法も工程数が多く煩雑であるという問題があった。   In addition, several methods for synthesizing bimetallic nanoparticles (for example, core-shell structured metal nanoparticles in which Pt is deposited on the surface of a nucleus made of Pd) using chemicals such as ascorbic acid have been reported. (For example, Non-Patent Document 1: Byungkwon Lim et al., Pd-Pt Bimetallic Nanodendrites with High Activity for Oxygen Reduction, Science, 324, 1302, 2009). However, this method also has a problem that the number of steps is large and complicated.

一方で、嫌気性雰囲気で白金族元素と電子供与体等を含む溶液中に鉄還元細菌を添加すると、鉄還元細菌の金属イオン還元力により、鉄還元細菌の微生物細胞表面に単一種の白金族元素からなるナノ粒子が析出することが知られている(例えば、特許文献2:特開2010−162442号公報、特許文献3:特開2011−113788号公報)。しかしながら、鉄還元細菌等の微生物を用いて、1つの粒子中に複数種の貴金属を含むナノ粒子(複合貴金属ナノ粒子)を製造する方法については、これまで知られていなかった。   On the other hand, when an iron-reducing bacterium is added to a solution containing a platinum group element and an electron donor in an anaerobic atmosphere, a single species of platinum group is formed on the microbial cell surface of the iron-reducing bacterium by the metal ion reducing power of the iron-reducing bacterium. It is known that nanoparticles composed of elements are deposited (for example, Patent Document 2: JP 2010-162442 A, Patent Document 3: JP 2011-113788 A). However, a method for producing nanoparticles (composite noble metal nanoparticles) containing a plurality of types of noble metals in one particle using a microorganism such as iron-reducing bacteria has not been known so far.

特開2011−143339号公報JP 2011-143339 A 特開2010−162442号公報JP 2010-162442 A 特開2011−113788号公報JP 2011-113788 A

Byungkwon Lim et al.,Pd-Pt Bimetallic Nanodendrites with High Activity for Oxygen Reduction,Science,324,1302,2009年Byungkwon Lim et al., Pd-Pt Bimetallic Nanodendrites with High Activity for Oxygen Reduction, Science, 324, 1302, 2009

上述のとおり、従来の貴金属系微粒子を用いた排ガス浄化用触媒の製造方法は、工程数が多く煩雑であり、製造効率が低いといった問題があった。   As described above, the conventional method for producing an exhaust gas purifying catalyst using noble metal-based fine particles has a problem that the number of steps is complicated and the production efficiency is low.

そこで、本発明の目的は、低エネルギーおよび低環境負荷型の簡易な処理により、効率的に複合貴金属ナノ粒子を製造する方法を提供することである。   Accordingly, an object of the present invention is to provide a method for efficiently producing composite noble metal nanoparticles by a simple process of low energy and low environmental load.

本発明は、複数種の貴金属のイオンを含有する原料溶液中に、金属イオン還元細菌および電子供与体を添加し、
前記貴金属のイオンを金属イオン還元細菌によって還元することで、
1つの粒子中に複数種の前記貴金属を含有する複合貴金属ナノ粒子を析出させるバイオ還元工程を含む、複合貴金属ナノ粒子の製造方法である。
In the present invention, a metal ion reducing bacterium and an electron donor are added to a raw material solution containing a plurality of kinds of noble metal ions,
By reducing the noble metal ions by metal ion reducing bacteria,
A method for producing composite noble metal nanoparticles, comprising a bioreduction step of depositing composite noble metal nanoparticles containing a plurality of types of noble metals in one particle.

前記複合貴金属ナノ粒子は、複数種の前記貴金属からなる合金であることが好ましい。また、前記貴金属は、白金族金属および金から選択されることが好ましい。前記白金族金属は、白金、パラジウムおよびロジウムから選択されることが好ましい。また、前記バイオ還元工程の温度は常温であることが好ましい。   The composite noble metal nanoparticles are preferably an alloy composed of a plurality of kinds of the noble metals. The noble metal is preferably selected from platinum group metals and gold. The platinum group metal is preferably selected from platinum, palladium and rhodium. Moreover, it is preferable that the temperature of the said bioreduction process is normal temperature.

前記バイオ還元工程の後に、
超音波破壊または化学的破壊で菌体を破壊することにより、前記金属イオン還元細菌と前記複合貴金属ナノ粒子とを分離する、分離工程を含むことが好ましい。
After the bioreduction process,
It is preferable to include a separation step of separating the metal ion-reducing bacteria and the composite noble metal nanoparticles by destroying the cells by ultrasonic destruction or chemical destruction.

また、本発明は、上記の製造方法によって製造される、複合貴金属ナノ粒子にも関する。該複合貴金属ナノ粒子の平均粒径は1〜100nmであることが好ましい。   The present invention also relates to composite noble metal nanoparticles produced by the production method described above. The composite precious metal nanoparticles preferably have an average particle size of 1 to 100 nm.

また、本発明は、上記の複合貴金属ナノ粒子を含む、触媒にも関する。   The present invention also relates to a catalyst comprising the above composite noble metal nanoparticles.

本発明の製造方法によれば、低エネルギーおよび低環境負荷型の簡易な処理により、効率的に複合貴金属ナノ粒子を製造することができる。また、本発明の製造方法で製造された複合貴金属ナノ粒子は、単一金属からなるナノ粒子に比べて触媒機能が大幅に優れており、触媒として好適に用いることができる。   According to the production method of the present invention, composite noble metal nanoparticles can be efficiently produced by a simple process with low energy and low environmental load. In addition, the composite noble metal nanoparticles produced by the production method of the present invention are significantly superior in catalytic function compared to nanoparticles made of a single metal, and can be suitably used as a catalyst.

実施例1における金属イオン還元細菌の透過電子顕微鏡写真による撮影像である。2 is a photographed image taken by a transmission electron micrograph of a metal ion reducing bacterium in Example 1. 図1の撮影像の部分拡大図である。It is the elements on larger scale of the picked-up image of FIG. 図2と同じ範囲における複合貴金属ナノ粒子のEDX元素分析に基づくRh(ロジウム)のマッピング図である。FIG. 3 is a mapping diagram of Rh (rhodium) based on EDX elemental analysis of composite noble metal nanoparticles in the same range as FIG. 2. 図2と同じ範囲における複合貴金属ナノ粒子のEDX元素分析に基づくPd(パラジウム)のマッピング図である。FIG. 3 is a mapping diagram of Pd (palladium) based on EDX elemental analysis of composite noble metal nanoparticles in the same range as FIG. 2. 図2と同じ範囲における複合貴金属ナノ粒子のEDX元素分析に基づくPt(白金)のマッピング図である。It is a mapping figure of Pt (platinum) based on the EDX elemental analysis of the composite noble metal nanoparticle in the same range as FIG. 図2と同じ範囲における複合貴金属ナノ粒子のEDX元素分析に基づくC(炭素)のマッピング図である。FIG. 3 is a mapping diagram of C (carbon) based on EDX elemental analysis of composite noble metal nanoparticles in the same range as FIG. 2. 図2と同じ範囲における複合貴金属ナノ粒子のEDX元素分析に基づくN(窒素)のマッピング図である。FIG. 3 is a mapping diagram of N (nitrogen) based on EDX elemental analysis of composite noble metal nanoparticles in the same range as FIG. 2. 図2と同じ範囲における複合貴金属ナノ粒子のEDX元素分析に基づくO(酸素)のマッピング図である。FIG. 3 is a mapping diagram of O (oxygen) based on EDX elemental analysis of composite noble metal nanoparticles in the same range as FIG. 2. 試験例1における各ナノ粒子の化学反応速度(相対値)を示すグラフである。4 is a graph showing the chemical reaction rate (relative value) of each nanoparticle in Test Example 1.

<複合貴金属ナノ粒子の製造方法>
本発明は、複合貴金属ナノ粒子の製造方法に関する。複合貴金属ナノ粒子とは、1つの粒子中に複数種の貴金属を含有するナノ粒子である。
<Method for producing composite noble metal nanoparticles>
The present invention relates to a method for producing composite noble metal nanoparticles. Composite noble metal nanoparticles are nanoparticles containing a plurality of types of noble metals in one particle.

複合貴金属ナノ粒子は、複数種の貴金属からなる合金であることが好ましい。合金とは、単一の金属元素からなる純金属とは異なり、複数種の金属元素から成るか、あるいは、少なくとも1種の金属元素と少なくとも1種の非金属元素から成る金属様のものである。合金には、金属が他の金属に溶け込んでいる固溶体、結晶レベルでは複数種の金属がそれぞれ独立している共晶合金、原子のレベルで複数種の金属が一定割合で結合した金属間化合物などが含まれる。ただし、本発明の複合貴金属ナノ粒子は、合金に限らず、ある金属の核が他の金属の層で覆われた構造(コア−シェル構造)を有する金属ナノ粒子、複数種の貴金属粒子の複合体などであってもよい。   The composite noble metal nanoparticles are preferably an alloy composed of plural kinds of noble metals. An alloy is different from a pure metal composed of a single metal element, and is composed of a plurality of metal elements or a metal-like material composed of at least one metal element and at least one non-metal element. . Alloys include solid solutions in which metals are dissolved in other metals, eutectic alloys in which multiple types of metals are independent at the crystal level, and intermetallic compounds in which multiple types of metals are bonded at a certain rate at the atomic level. Is included. However, the composite noble metal nanoparticles of the present invention are not limited to alloys, metal nanoparticles having a structure in which a core of a certain metal is covered with another metal layer (core-shell structure), and a composite of a plurality of types of noble metal particles. It may be a body.

貴金属は、白金族金属および金(Au)から選択されることが好ましい。白金族金属としては、例えば、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)、ルテニウム(Ru)、イリジウム(Ir)が挙げられる。白金族金属は、工業触媒で使用されるPt、PdおよびRhから選択されることが好ましい。   The noble metal is preferably selected from platinum group metals and gold (Au). Examples of the platinum group metal include platinum (Pt), palladium (Pd), rhodium (Rh), ruthenium (Ru), and iridium (Ir). The platinum group metal is preferably selected from Pt, Pd and Rh used in industrial catalysts.

複合貴金属ナノ粒子に含まれる具体的な貴金属の組み合わせとしては、例えば、(1)Pt、PdおよびRh、(2)PtおよびPd、(3)PtおよびRh、または、(4)AuおよびPdが挙げられる。   Specific noble metal combinations included in the composite noble metal nanoparticles include, for example, (1) Pt, Pd and Rh, (2) Pt and Pd, (3) Pt and Rh, or (4) Au and Pd. Can be mentioned.

[バイオ還元工程]
本発明の複合貴金属ナノ粒子の製造方法は、
複数種の貴金属のイオンを含有する原料溶液中に、金属イオン還元細菌および電子供与体(例えばギ酸ナトリウム)を添加し、
前記貴金属のイオンを金属イオン還元細菌によって還元することで、複合貴金属ナノ粒子を析出させるバイオ還元工程を基本的に含む。
[Bioreduction process]
The method for producing the composite noble metal nanoparticles of the present invention includes:
A metal ion reducing bacterium and an electron donor (for example, sodium formate) are added to a raw material solution containing ions of plural kinds of noble metals,
It basically includes a bioreduction process in which composite noble metal nanoparticles are precipitated by reducing the noble metal ions by metal ion reducing bacteria.

バイオ還元工程では、原料溶液中に含まれる貴金属イオンを、金属イオン還元細菌を用いて還元することにより複合貴金属ナノ粒子を析出させる。具体的には、例えば、貴金属を含む原料溶液、電子供与体(例えばギ酸ナトリウム)、および、金属イオン還元細菌の懸濁液を嫌気性雰囲気中、常温で混合することにより、液中の白金族金属イオンが還元されて白金族金属が菌体内に析出する。   In the bioreduction step, composite noble metal nanoparticles are precipitated by reducing noble metal ions contained in the raw material solution using metal ion reducing bacteria. Specifically, for example, by mixing a raw material solution containing a noble metal, an electron donor (for example, sodium formate), and a suspension of metal ion reducing bacteria in an anaerobic atmosphere at room temperature, the platinum group in the liquid is mixed. Metal ions are reduced and platinum group metals are deposited in the cells.

(原料溶液)
原料溶液は、貴金属のイオンを含有する溶液であれば特に限定されないが、例えば、複数種の貴金属化合物を含む溶液(例えば、塩化白金、塩化パラジウムおよび塩化ロジウムの溶液、または、塩化パラジウムおよび塩化金の溶液)を用いることができる。また、原料溶液として、例えば、貴金属を含む触媒含有ウォッシュコートから得た浸出貴液(貴金属を主成分として含む溶液)等を用いることもできる。
(Raw material solution)
The raw material solution is not particularly limited as long as it contains a noble metal ion. For example, a solution containing a plurality of types of noble metal compounds (for example, a solution of platinum chloride, palladium chloride and rhodium chloride, or palladium chloride and gold chloride) Can be used. Further, as the raw material solution, for example, a leaching noble liquid (solution containing a noble metal as a main component) obtained from a catalyst-containing washcoat containing a noble metal can also be used.

原料溶液のpHは、特に限定されないが、金属イオン還元細菌の培養条件と同様であることが好ましく、例えば、pH6〜pH7である。   Although pH of a raw material solution is not specifically limited, It is preferable that it is the same as that of the culture | cultivation conditions of a metal ion reduction bacterium, for example, is pH 6-pH7.

(金属イオン還元細菌)
金属イオン還元細菌とは、金属イオンを還元する能力を有する細菌である。金属イオン還元細菌は、電子供与体から電子の供給を受けて(有機物を酸化して発生する電子を利用して)、金属イオンを金属に還元し、析出させる機能を持つ。例えば、自然界の水環境の底泥などに生息する通性嫌気性細菌が挙げられる。工業的応用では、病原性細菌ではなく安全性が確保できる点、また培養の栄養源コストが低く、増殖が速い点(低コストで迅速に菌体を供給可能)が、大きなメリットとなる。
(Metal ion reducing bacteria)
A metal ion reducing bacterium is a bacterium having the ability to reduce metal ions. The metal ion reducing bacterium has a function of receiving metal from an electron donor (using electrons generated by oxidizing an organic substance) to reduce metal ions to a metal and deposit them. For example, facultative anaerobic bacteria that inhabit the bottom mud of the natural water environment. In industrial applications, it is a great merit that it can secure safety, not pathogenic bacteria, and has a low nutrient cost for culture and quick growth (it can supply cells quickly at low cost).

金属イオン還元細菌としては、例えば、シワネラ属(Shewanella algae:シワネラ アルゲ(以下、「S.algae」という):ATCC(American Type Culture Collection)51181株、Shewanella oneidensis:シワネラ オネイデンシス:ATCC700550株など)、ゲオバクター属(代表種:Geobacter metallireducens:ゲオバクター メタリレデューセンス:TCC53774株)、デスルフォモナス属(代表種:Desulfuromonas palmitatis:デスルフォモナス パルミタティス:ATCC51701株)、デスルフォムサ属(代表種:Desulfuromusa kysingii:デスルフォムサ キシンリ:DSM(Deutsche Sammlung von Mikroorganismen und Zellkulturen)7343株)、ペロバクター属(代表種:Pelobacter venetianus:ペロバクター ベネティアヌス:ATCC2394株)、フェリモナス属(Ferrimonas balearica:フェリモナス バレアリカ:DSM9799株)、エアロモナス属(Aeromonas hydrophila:エアロモナス ヒドロフィラ:ATCC15467株)、スルフロスピリルム属(代表種:Sulfurospirillum barnesii:スルフロスピリルム バーネシイ:ATCC700032株)、ウォリネラ属(代表種:ウォリネラ スシノゲネス:Wolinella succinogenes:ATCC29543株)、デスルフォビブリオ属(代表種:Desulfovibrio desulfuricans:デスルフォビブリオ デスルフリカンス:ATCC29577株)、ゲオトリクス属(代表種:Geothrix fermentans:ゲオトリクス フェルメンタンス:ATCC700665株)、デフェリバクター属(代表種:Deferribacter thermophilus:デフェリバクター テルモフィルス:DSM14813株)、ゲオビブリオ属(代表種:Geovibrio ferrireducens:ゲオビブリオ フェリレデューセンス:ATCC51996株)、ピロバクルム属(代表種:Pyrobaculum islandicum:テルモプロテウス アイランディカム:DSM4184株)、テルモトガ属(代表種:Thermotoga maritima:テルモトガ マリティマ:DSM3109株)、アルカエグロブス属(代表種:Archaeoglobus fulgidus:アルカエグロブス フルギダス:ATCC49558株)、ピロコックス属(代表種:Pyrococcus furiosus:ピロコックス フリオサス:ATCC43587株)、ピロディクティウム属(代表種:Pyrodictium abyssi:ピロディクティウム アビーシイ:DSM6158株)が挙げられる。好ましくはシワネラ属であり、特に好ましくはS.algaeである。これらの金属イオン還元細菌は、嫌気性細菌(通性嫌気性細菌)である。   Examples of metal ion-reducing bacteria include Shewanella algae (hereinafter referred to as “S. algae”): ATCC (American Type Culture Collection) 51181 strain, Shewanella oneidensis: ATCC 700550 strain, etc. Genus (Representative species: Geobacter metalreducens: Geobacter metalreduction: TCC53774 strain), Desulfomonas spp. DSM (Deutsche Sammlung von Mikroorganismen und Zellkulturen) 7343), Perovacter genus (representative species: Pelobacter venetianus: Perovacter venetianus: ATCC 2394 strain), Ferrimonas balmonica: Ferrimonas valerica: DSM97 , Sulfurospirillum genus (representative species: Sulfurospirillum bannesii: Sulfurospirillum varnesii: ATCC 700032 strain), Worinella genus (representative species: Warinella suschinogenes: Wolinella succinogenes: ATCC 29543 strain), desulfobibrio genus (representative species) lfovivrio desulfuricans: Desulfoburibrio desulfuricans: ATCC 29577), Geotricus genus (representative species: Geothrix fermentans: Fermentans: ATCC 700665 strain), Deferbacter genus derfermter genus (Deferrter terbium deferrter terbium) , Geovibrio genus (representative species: Geovibrio ferrireducens: Geovibrio ferrireducence: ATCC 51996 strain), Pyrobaculum genus (representative species: Pyrobaculum islandicum: Thermoproteus islandicam: DSM4184 strain, representative genus Thermotoga m aritima: Thermotoga maritima: DSM3109 strain), Alkaeglobus genus (representative species: Archaeoglobus fulgidus: Alkaeglobus fulgidus: ATCC 49558 strain), Pyrococcus genus (representative species: Pyrococcus furiosus strain 35, Pyrococcus pirodianthus 35 AT (Representative species: Pyrodicium abyssi: Pyrodictium abyssi: DSM6158 strain). Preferred is the genus Shivanella, and particularly preferred is S. aureus. algae. These metal ion reducing bacteria are anaerobic bacteria (facultative anaerobic bacteria).

本発明で用いる金属イオン還元細菌は、当該細菌に適した培地を用いて、増殖および維持を行うことができる。増殖および維持のための培地のpHは、好ましくは、pH6〜pH7である。培地は、電子供与体および電子受容体を含有することが好ましい。具体的な培地としては、例えば、pHが7.0で、電子供与体として乳酸ナトリウム(32mol/m)と、電子受容体としてFe(III)イオン(56mol/m)とを含むクエン酸第二鉄培地(ATCC No.1931)を用いることができる。The metal ion reducing bacterium used in the present invention can be grown and maintained using a medium suitable for the bacterium. The pH of the medium for growth and maintenance is preferably pH 6 to pH 7. The medium preferably contains an electron donor and an electron acceptor. Specific examples of the medium include citric acid having a pH of 7.0 and containing sodium lactate (32 mol / m 3 ) as an electron donor and Fe (III) ions (56 mol / m 3 ) as an electron acceptor. A ferric medium (ATCC No. 1931) can be used.

例えば、S.algaeは、pHが7.0で、電子供与体として乳酸ナトリウム(32mol/m)、電子受容体としてFe(III)イオン(56mol/m)を含むクエン酸第二鉄培地(ATCC No.1931)を用いて、嫌気性雰囲気下で回分培養して増殖させ、維持することができる。鉄イオンの塩は、この例では、クエン酸塩であるが、使用する培地、使用する金属イオン還元細菌の種類により、適宜選択すればよい。また、S.algaeは、好気培養することもできる。好気培養に用いる培地としては、例えば、TSB(トリプトソイブロス)液体培地(pH7.2)が挙げられる。For example, S.M. algae has a pH of 7.0, ferric citrate medium (ATCC No. 2) containing sodium lactate (32 mol / m 3 ) as an electron donor and Fe (III) ions (56 mol / m 3 ) as an electron acceptor. 1931) can be grown and maintained in batch cultures under anaerobic atmosphere. In this example, the iron ion salt is citrate, but may be appropriately selected depending on the medium used and the type of metal ion reducing bacteria used. S. algae can also be aerobically cultured. Examples of the medium used for aerobic culture include TSB (tryptosoy broth) liquid medium (pH 7.2).

なお、S.algaeは、バイオセ−フティが「レベル1」と安全であるとともに、培養するための栄養源コストが低く抑えられ、増殖が速いことから、安全かつ低コストで迅速に菌体を供給できる、工業的応用に適した微生物である。   S. algae is an industrial product that can safely supply cells at a low cost, safely and at low cost, since biosafety is safe at "level 1" and the cost of nutrients for culturing is kept low and growth is fast. It is a microorganism suitable for application.

一方、バイオ還元工程のための培地(例えば、原料溶液と金属イオン還元細菌の懸濁液との混合液)のpHは、好ましくは、pH6〜pH7である。   On the other hand, the pH of the medium for the bioreduction step (for example, a mixed solution of the raw material solution and the suspension of metal ion reducing bacteria) is preferably pH 6 to pH 7.

また、前記バイオ還元工程の温度は、常温(例えば、5〜35℃)であることが好ましく、より好ましくは20〜30℃である。金属イオン還元細菌を添加した後は、基本的には放置しておけば、貴金属イオンが還元され複合貴金属ナノ粒子が菌体中(特に細胞膜付近)に析出する。本発明では、このような低エネルギーおよび低環境負荷型の簡易な処理により、複合貴金属ナノ粒子を製造することができる。ただし、必要に応じて撹拌等の操作を行ってもよい。   Moreover, it is preferable that the temperature of the said bioreduction process is normal temperature (for example, 5-35 degreeC), More preferably, it is 20-30 degreeC. After the addition of the metal ion reducing bacteria, basically, if left unattended, the noble metal ions are reduced and the composite noble metal nanoparticles are deposited in the cells (particularly in the vicinity of the cell membrane). In the present invention, composite noble metal nanoparticles can be produced by such a low energy and low environmental load simple treatment. However, operations such as stirring may be performed as necessary.

本工程で用いる金属イオン還元細菌の数は、特には制限されない。一般的に細胞数が多いほど、処理時間が短くなる。金属イオン還元細菌の懸濁液と原料溶液との混合液中の細菌数(細胞濃度)は、好ましくは1.0×1014cells/m〜1.0×1016cells/m、より好ましくは1.0×1015cells/m〜8.0×1015cells/mである。The number of metal ion reducing bacteria used in this step is not particularly limited. In general, the greater the number of cells, the shorter the processing time. The number of bacteria (cell concentration) in the mixed solution of the suspension of metal ion reducing bacteria and the raw material solution is preferably from 1.0 × 10 14 cells / m 3 to 1.0 × 10 16 cells / m 3 . preferably 1.0 × 10 15 cells / m 3 ~8.0 × 10 15 cells / m 3.

金属イオン還元細菌の懸濁液の調製においては、例えば、まず指数増殖末期に達した金属イオン還元細菌培養液を、窒素ガスにより嫌気状態にしたグローブボックス内で採取し、遠心分離機で集菌する。集菌した菌液を、水(蒸留水、イオン交換水、純水などを含む)を用いて所定の濃度に調整する。   In preparing a suspension of metal ion-reducing bacteria, for example, a metal ion-reducing bacterial culture that has reached the end of exponential growth is first collected in a glove box that has been anaerobic with nitrogen gas, and collected by a centrifuge. To do. The collected bacterial solution is adjusted to a predetermined concentration using water (including distilled water, ion-exchanged water, pure water, etc.).

原料溶液と金属イオン還元細菌の懸濁液との混合液中には、電子供与体が添加されていることが好ましい。電子供与体としては、例えば、有機酸塩が挙げられる。有機酸塩としては、例えば、炭素数1〜7のカルボン酸塩(ギ酸塩、酢酸塩など)、芳香族カルボン酸塩(脂式カルボン酸塩(脂肪酸塩)、安息香酸塩など)、オキソカルボン酸塩(ピルビン酸塩など)、その他のカルボン酸塩(乳酸塩など)が挙げられる。また、有機酸塩以外の電子供与体としては、例えば、アルコール(エタノールなど)、不飽和芳香族(トルエンフェノールなど)、水素ガス(分子状水素)が挙げられる。なお、アルコールおよび不飽和脂肪酸の炭素数は、好ましくは1〜7である。   An electron donor is preferably added to the mixed solution of the raw material solution and the suspension of metal ion reducing bacteria. Examples of the electron donor include organic acid salts. Examples of the organic acid salt include C1-C7 carboxylate (formate, acetate, etc.), aromatic carboxylate (aliphatic carboxylate (fatty acid salt), benzoate, etc.), oxocarboxylic acid, etc. Acid salts (such as pyruvate) and other carboxylates (such as lactate). Examples of electron donors other than organic acid salts include alcohols (such as ethanol), unsaturated aromatics (such as toluene phenol), and hydrogen gas (molecular hydrogen). In addition, carbon number of alcohol and unsaturated fatty acid becomes like this. Preferably it is 1-7.

好適な電子供与体は、使用する金属イオン還元細菌の種類により異なり、適宜選択すればよい。例えば、S.algaeについては、有機酸塩を電子供与体として好適に用いることができる。電子供与体の混合液中の初期濃度は、好ましくは10〜1000mMであり、より好ましくは20〜200mMである。   A suitable electron donor varies depending on the type of metal ion reducing bacterium to be used, and may be appropriately selected. For example, S.M. For algae, an organic acid salt can be suitably used as an electron donor. The initial concentration of the electron donor in the mixed solution is preferably 10 to 1000 mM, more preferably 20 to 200 mM.

バイオ還元工程の処理時間は、特に制限はされないが、処理効率を考慮し、原料溶液中の貴金属の濃度と使用する金属イオン還元細菌の数を調整して、複合貴金属ナノ粒子の製造効率が高くなるように調整すればよい。なお、一般的な製造効率の観点から、回分操作の処理時間は3時間以下であることが好ましい。   The treatment time of the bioreduction process is not particularly limited, but considering the treatment efficiency, the concentration of noble metal in the raw material solution and the number of metal ion reducing bacteria used are adjusted to increase the production efficiency of composite noble metal nanoparticles. It may be adjusted so that In addition, from the viewpoint of general production efficiency, it is preferable that the processing time of the batch operation is 3 hours or less.

[分離工程]
本発明の複合貴金属ナノ粒子の製造方法は、バイオ還元工程の後に、さらに、金属イオン還元細菌と複合貴金属ナノ粒子とを分離する、分離工程を含むことが好ましい。
[Separation process]
The method for producing composite noble metal nanoparticles of the present invention preferably further includes a separation step of separating the metal ion-reducing bacteria and the composite noble metal nanoparticles after the bioreduction step.

金属イオン還元細菌と複合貴金属ナノ粒子とは、例えば、菌体を遠心分離やろ過等により液中から分離した後に、種々公知の方法で分離することができる。菌体からの複合貴金属ナノ粒子の分離は、超音波破壊や、アルカリ溶液(NaOH水溶液など)を用いた化学的破壊で菌体を破壊することにより実施することが好ましい。一方、焼成等により菌体等の有機物を除去する方法は、貴金属合金等からなる複合貴金属ナノ粒子同士が結合することで、粒子径が大きくなってしまう恐れがあるため、望ましくない。   The metal ion-reducing bacteria and the composite noble metal nanoparticles can be separated by various known methods after, for example, separating the cells from the liquid by centrifugation or filtration. Separation of the composite noble metal nanoparticles from the microbial cells is preferably carried out by destroying the microbial cells by ultrasonic destruction or chemical destruction using an alkaline solution (NaOH aqueous solution or the like). On the other hand, a method of removing organic substances such as bacterial cells by firing or the like is not desirable because composite noble metal nanoparticles made of noble metal alloys or the like may be bonded to increase the particle diameter.

上記の製造方法によって製造される複合貴金属ナノ粒子の平均粒径は1〜100nmであることが好ましく、より好ましくは1〜10nmである。これにより、触媒として使用される際の反応表面積を大きくすることができ、高い活性を有する触媒を得ることができる。また、従来の方法では、特に10nm以下のナノ粒子を得ることは難しかった。なお、ここでいう平均粒径とは、例えば、高分解能STEM像より求められる、平均粒径である。   The average particle size of the composite noble metal nanoparticles produced by the above production method is preferably 1 to 100 nm, more preferably 1 to 10 nm. Thereby, the reaction surface area at the time of using as a catalyst can be enlarged, and the catalyst which has high activity can be obtained. In addition, with the conventional method, it has been particularly difficult to obtain nanoparticles of 10 nm or less. Note that the average particle diameter here is, for example, an average particle diameter obtained from a high-resolution STEM image.

<触媒>
本発明の複合貴金属ナノ粒子は、製造が簡単であり、触媒活性に優れているため、自動車の排ガス除去用触媒(3元触媒など)や、工場の排気ガス処理用触媒、化学合成用の工業触媒、燃料電池用触媒等の多くの用途に利用することができる。特に、酸化還元反応の触媒として用いることができる。
<Catalyst>
Since the composite noble metal nanoparticles of the present invention are easy to manufacture and have excellent catalytic activity, automobile exhaust gas removal catalysts (three-way catalysts, etc.), factory exhaust gas treatment catalysts, chemical synthesis industries It can be used for many applications such as catalysts and catalysts for fuel cells. In particular, it can be used as a catalyst for redox reaction.

本発明の複合貴金属ナノ粒子は、種々公知の方法により触媒として用いることができ、例えば、ウォッシュコート(触媒担体保持材)の表面に担持することにより、3元触媒として使用することができる。   The composite noble metal nanoparticles of the present invention can be used as a catalyst by various known methods, and for example, can be used as a three-way catalyst by being supported on the surface of a washcoat (catalyst carrier holding material).

以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited to these.

なお、以下の実施例において、金属イオン還元細菌の懸濁液の調製は、まず指数増殖末期に達した金属イオン還元細菌培養液を、窒素ガスにより嫌気状態にしたグローブボックス内で採取し、遠心分離機で集菌した。次に、集菌した菌液をイオン交換水で再懸濁し所定の濃度に調整した。   In the following examples, the suspension of metal ion-reducing bacteria was prepared by first collecting the metal ion-reducing bacteria culture solution that had reached the end of exponential growth in a glove box that was anaerobic with nitrogen gas, and centrifuge. Bacteria were collected using a separator. Next, the collected bacterial solution was resuspended with ion-exchanged water and adjusted to a predetermined concentration.

[実施例1]
なお、本実施例では、触媒ウォッシュコート等から回収した貴金属の浸出貴液を、複合貴金属ナノ粒子の原料溶液として用いた。このように、触媒ウォッシュコートを再利用して複合貴金属ナノ粒子を製造する場合において、さらに全体の工程が簡略化され、製造効率が高められる。
[Example 1]
In this example, a noble metal leaching noble liquid recovered from a catalyst washcoat or the like was used as a raw material solution for composite noble metal nanoparticles. Thus, in the case of producing composite noble metal nanoparticles by reusing the catalyst washcoat, the entire process is further simplified and the production efficiency is increased.

なお、ウォッシュコートの材質としては、コンバータの触媒能(反応が起きる表面積)を大きくするために通常、多孔質の無機酸化物(アルミナ、チタニア、ジルコニア、シリカ−アルミナなどの一般に触媒担体として用いられる無機酸化物)が用いられ、特に、活性アルミナが多く使われている。活性アルミナは、ランタンやセリウム等の希土類元素やバリウム等のアルカリ土類元素を含んでいる場合も多い。   The material of the washcoat is generally used as a catalyst carrier such as a porous inorganic oxide (alumina, titania, zirconia, silica-alumina, etc.) in order to increase the catalytic ability (surface area where the reaction occurs) of the converter. Inorganic oxides) are used, and in particular, activated alumina is often used. Activated alumina often contains rare earth elements such as lanthanum and cerium and alkaline earth elements such as barium.

(原料溶液の調製)
まず、使用済み自動車用触媒コンバータから回収した粉末状の触媒含有ウォッシュコート(Al:29%,Ce:14%,Fe:0.97%,La:5.9%,Pd:0.24%,Pt:0.40%,Rh:0.083%)を用意した。なお、触媒含有ウォッシュコート中の各金属含有率は、王水で溶解させた後、溶液中の金属濃度を誘導結合プラズマ(ICP:Inductively Coupled Plasma)発光分光法により測定して求めた値である。
(Preparation of raw material solution)
First, a powdered catalyst-containing washcoat recovered from a used automobile catalytic converter (Al: 29%, Ce: 14%, Fe: 0.97%, La: 5.9%, Pd: 0.24%, Pt: 0.40%, Rh: 0.083%). In addition, each metal content rate in a catalyst containing washcoat is the value calculated | required by measuring the metal concentration in a solution by inductively coupled plasma (ICP: Inductively Coupled Plasma) emission spectroscopy after making it melt | dissolve with aqua regia. .

次に、触媒含有ウォッシュコート中の約6割を占めるAlを白金族金属から分離するための操作を行った。具体的には、触媒ウォッシュコートの粉末を4kmol/mの水酸化ナトリウム水溶液中に、初期固液混合比率が58.8kg/mとなるように添加した。その後、オートクレーブを用い、温度160℃、圧力5.8atmで、3時間の回分操作を行った。そして、浸出残渣をろ過により回収した。Next, an operation for separating Al occupying about 60% of the catalyst-containing washcoat from the platinum group metal was performed. Specifically, the catalyst washcoat powder was added to a 4 kmol / m 3 aqueous sodium hydroxide solution so that the initial solid-liquid mixing ratio was 58.8 kg / m 3 . Thereafter, using an autoclave, batch operation for 3 hours was performed at a temperature of 160 ° C. and a pressure of 5.8 atm. And the leaching residue was recovered by filtration.

次に、回収した浸出残渣に対して、王水(濃塩酸と濃硝酸とを3:1の体積比で混合した液)による白金族金属の浸出を行った。なお、濃塩酸とは35w/v%HCl水溶液であり、濃硝酸とは60w/v%HNO水溶液である。王水に対する浸出残渣の混合比率(初期固液混合比率)は25kg/mとした。温度90℃、大気圧下で、3時間の操作を行った。なお、浸出貴液中の各白金族金属濃度を誘導結合プラズマ(ICP)発光分光法により測定し、2時間後に白金族金属(Pd、Pt、Rh)の大部分が浸出貴液中に浸出していることを確認した。Next, leaching of the platinum group metal with aqua regia (a liquid in which concentrated hydrochloric acid and concentrated nitric acid were mixed at a volume ratio of 3: 1) was performed on the recovered leaching residue. Concentrated hydrochloric acid is a 35 w / v% aqueous HCl solution, and concentrated nitric acid is a 60 w / v% HNO 3 aqueous solution. The mixing ratio of the leach residue to the aqua regia (initial solid-liquid mixing ratio) was 25 kg / m 3 . The operation was performed for 3 hours at a temperature of 90 ° C. and atmospheric pressure. The concentration of each platinum group metal in the leached noble liquid was measured by inductively coupled plasma (ICP) emission spectroscopy, and after 2 hours, most of the platinum group metal (Pd, Pt, Rh) leached into the leached noble liquid. Confirmed that.

次に、得られた浸出貴液に、該浸出貴液中の重金属成分(Al,Fe,Ce,La)のモル数の和の5倍以上の量のリン酸二水素カリウム(KHPO)を添加した後、さらに水酸化ナトリウム溶液を添加してpHが6付近になるように調整した。なお、このpH調整工程により、白金族金属以外の重金属成分の大部分を沈殿除去でき、この沈殿に伴う白金族金属の共沈殿はほとんど生じない。Next, potassium dihydrogen phosphate (KH 2 PO 4 ) in an amount of 5 or more times the sum of the number of moles of heavy metal components (Al, Fe, Ce, La) in the leached noble liquid is added to the obtained leached noble liquid. ) Was added, and a sodium hydroxide solution was further added to adjust the pH to around 6. By this pH adjustment step, most of heavy metal components other than platinum group metals can be removed by precipitation, and coprecipitation of platinum group metals accompanying this precipitation hardly occurs.

(バイオ還元工程)
以上のようにして得られたpH調整後の浸出貴液を原料溶液として用い、白金族金属(Pt,Pd,Rh)のバイオ還元工程を回分操作で行った。
(Bioreduction process)
A bioreduction process of platinum group metals (Pt, Pd, Rh) was performed by a batch operation using the pH-adjusted leached noble solution obtained as described above as a raw material solution.

すなわち、浸出貴液、電子供与体(ギ酸ナトリウム)、金属イオン還元細菌の懸濁液とを混合した。金属イオン還元細菌としては、S. algae(ATCC51181株)を用いた。バイオ還元工程の主な操作条件は、細胞濃度:5.0×1015cells/m、電子供与体(ギ酸塩)初期濃度:100mol/m、溶液pH6、室温、嫌気環境下、操作時間:2hとした。That is, a leaching noble solution, an electron donor (sodium formate), and a suspension of metal ion reducing bacteria were mixed. Examples of metal ion reducing bacteria include S. cerevisiae. algae (ATCC 51181 strain) was used. The main operating conditions of the bioreduction process are: cell concentration: 5.0 × 10 15 cells / m 3 , electron donor (formate) initial concentration: 100 mol / m 3 , solution pH 6, room temperature, anaerobic environment, operating time : 2h.

図1に、実施例1におけるバイオ還元工程後の金属イオン還元細菌の透過電子顕微鏡(STEM)写真による撮影像を示す。楕円形の金属イオン還元細菌の細胞内の白点が、複合貴金属ナノ粒子である。また、図2に、図1の撮影像の部分拡大図を示す。高分解能STEM像で認められる複合貴金属ナノ粒子の粒子径は、1.5〜4nm程度であった。   In FIG. 1, the picked-up image by the transmission electron microscope (STEM) photograph of the metal ion reduction bacteria after the bioreduction process in Example 1 is shown. The white spots in the cells of the elliptical metal ion reducing bacteria are composite noble metal nanoparticles. FIG. 2 shows a partially enlarged view of the photographed image of FIG. The particle diameter of the composite noble metal nanoparticles observed in the high resolution STEM image was about 1.5 to 4 nm.

また、図3〜図8に、図2と同じ範囲における複合貴金属ナノ粒子のEDX元素分析に基づく各元素(Rh、Pd、Pt、C、N、O)のマッピング図を示す。図2に示される複合貴金属ナノ粒子の位置と、図3〜5に示される各元素(Rh、Pd、Pt)の位置が一致している。また、ナノ粒子の中央部と端部で組成比の大きな違いは認められなかった。また、図2では、ナノ粒子の結晶格子縞が認められる。これらのことから、実施例1で得られた複合貴金属ナノ粒子は、3種の元素(Rh、Pd、Pt)からなる合金であると考えられる。一方、図6〜8に示されるように、菌体の構成元素であるC、NおよびOは、複合貴金属ナノ粒子の位置とは関係なく全体的に分布している。   Moreover, the mapping figure of each element (Rh, Pd, Pt, C, N, O) based on the EDX elemental analysis of the composite noble metal nanoparticle in the same range as FIG. 2 is shown in FIGS. The position of the composite noble metal nanoparticle shown in FIG. 2 and the position of each element (Rh, Pd, Pt) shown in FIGS. Moreover, the big difference of a composition ratio was not recognized by the center part and edge part of the nanoparticle. Moreover, in FIG. 2, the crystal lattice stripe of a nanoparticle is recognized. From these things, the composite noble metal nanoparticles obtained in Example 1 are considered to be an alloy composed of three kinds of elements (Rh, Pd, Pt). On the other hand, as shown in FIGS. 6 to 8, C, N, and O that are constituent elements of the fungus body are generally distributed regardless of the position of the composite noble metal nanoparticles.

[実施例2]
(原料溶液の調製)
原料溶液として、塩化パラジウムおよび塩化金の溶液を用いることにより、等モル量(0.5mol/m)のAuイオンおよびPdイオンを含有する水溶液を調製した。
[Example 2]
(Preparation of raw material solution)
An aqueous solution containing equimolar amounts (0.5 mol / m 3 ) of Au ions and Pd ions was prepared by using a solution of palladium chloride and gold chloride as a raw material solution.

(バイオ還元工程)
原料溶液、電子供与体(ギ酸ナトリウム)、および、金属イオン還元細菌の懸濁液を混合した。金属イオン還元細菌としては、S. oneidensis(ATCC700550株)を用いた。バイオ還元工程の主な操作条件は、細胞濃度:5.0×1015cells/m、電子供与体(ギ酸塩)初期濃度:50mol/m、溶液pH7、室温、嫌気環境下、操作時間:2hとした。
(Bioreduction process)
The raw material solution, the electron donor (sodium formate), and the suspension of metal ion reducing bacteria were mixed. Examples of metal ion reducing bacteria include S. cerevisiae. Oneidensis (ATCC 700550 strain) was used. The main operating conditions of the bioreduction process are: cell concentration: 5.0 × 10 15 cells / m 3 , electron donor (formate) initial concentration: 50 mol / m 3 , solution pH 7, room temperature, anaerobic environment, operating time : 2h.

<試験例1>
上記実施例2のPd/Au合金ナノ粒子(上述のバイオ調製により製造され、細菌細胞に担持された状態)、Auナノ粒子(バイオ調製により製造され、細菌細胞に担持された状態)および市販Pdナノ粒子(製品名:パラジウム担持活性炭触媒、和光純薬工業株式会社社製)について、化学反応速度を測定した。Auナノ粒子は、原料溶液に含有されるAuイオンの組成が1mol/mである以外は、実施例2と同様にして製造されたナノ粒子である。
<Test Example 1>
Pd / Au alloy nanoparticles of Example 2 (produced by the above biopreparation and supported on bacterial cells), Au nanoparticles (produced by biopreparation and supported on bacterial cells), and commercially available Pd The chemical reaction rate was measured about the nanoparticle (Product name: Palladium carrying activated carbon catalyst, Wako Pure Chemical Industries Ltd. make). The Au nanoparticles are nanoparticles produced in the same manner as in Example 2 except that the composition of Au ions contained in the raw material solution is 1 mol / m 3 .

化学反応速度の相対値は、モデル化学反応(4−ニトロフェノール還元脱色反応、室温)における触媒能(反応速度)の比較により求めた。   The relative value of the chemical reaction rate was obtained by comparing the catalytic ability (reaction rate) in the model chemical reaction (4-nitrophenol reductive decolorization reaction, room temperature).

図9は、試験例1における各ナノ粒子の化学反応速度(相対値)を示すグラフである。図9に示されるように、実施例2のPd/Au合金ナノ粒子の化学反応速度は、Auナノ粒子および市販Pdナノ粒子の3倍程度であり、本発明の複合貴金属ナノ粒子が高い活性を有していることが分かる。   FIG. 9 is a graph showing the chemical reaction rate (relative value) of each nanoparticle in Test Example 1. As shown in FIG. 9, the chemical reaction rate of the Pd / Au alloy nanoparticles of Example 2 is about three times that of Au nanoparticles and commercially available Pd nanoparticles, and the composite noble metal nanoparticles of the present invention have high activity. You can see that

今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

【0001】
技術分野
[0001]
本発明は、合金ナノ粒子の製造方法、それを用いて製造された合金ナノ粒子、および、それを含む触媒に関する。
背景技術
[0002]
近年、大半のガソリン車が、三元触媒コンバータを使用した排ガス浄化システムを搭載している。この三元触媒コンバータは、一酸化炭素(CO)、チッソ酸化物(NOx)、未燃焼の炭化水素を、二酸化炭素、チッソ、水に変換して、ガソリンエンジンからの排ガスを浄化する。
[0003]
触媒コンバータは、基本構造としてハニカム(モノリス)構造を有しており、ハニカム構造体の表面には触媒コーティングが施されている。触媒コーティングを行う際は、まず、ウォッシュコート(触媒担体保持材)の薄膜でハニカムの表面を被覆し、そのウォッシュコート上に触媒を被覆する。触媒としては、例えば、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)などの白金族金属(PGM:Platinum Group Metals)を含む貴金属系微粒子が用いられる。
[0004]
従来の貴金属系微粒子を用いた排ガス浄化用触媒の製造方法としては、例えば、貴金属系微粒子を含有するコロイド溶液等を混合し、高温で加熱(焼成)する方法が知られている(例えば、特許文献1:特開2011−143339号公報)。しかし、このような方法は、工程数が多く煩雑であり、加熱のために多くのエネルギーを消費し、高温に耐え得る特別な設備が必要であるといった問題があった。
[0005]
また、アスコルビン酸等の化学薬品を用いて二金属ナノ粒子(例えば、Pdからなる核の表面にPtが析出してなるコアーシェル構造の金属ナノ粒子
[0001]
Technical field [0001]
The present invention relates to a method for producing alloy nanoparticles, an alloy nanoparticle produced using the method, and a catalyst including the same.
Background art [0002]
In recent years, most gasoline vehicles are equipped with an exhaust gas purification system using a three-way catalytic converter. This three-way catalytic converter converts carbon monoxide (CO), nitrogen oxide (NOx), and unburned hydrocarbons into carbon dioxide, nitrogen, and water to purify exhaust gas from a gasoline engine.
[0003]
The catalytic converter has a honeycomb (monolith) structure as a basic structure, and a catalytic coating is applied to the surface of the honeycomb structure. When performing catalyst coating, first, the surface of the honeycomb is covered with a thin film of a washcoat (catalyst carrier holding material), and the catalyst is covered on the washcoat. As the catalyst, for example, noble metal-based fine particles containing platinum group metals (PGM: Platinum Group Metals) such as platinum (Pt), palladium (Pd), and rhodium (Rh) are used.
[0004]
As a conventional method for producing an exhaust gas purification catalyst using noble metal-based fine particles, for example, a method is known in which a colloidal solution containing noble metal-based fine particles is mixed and heated (fired) at a high temperature (for example, patents). Literature 1: JP 2011-143339 A). However, such a method has a problem that the number of steps is complicated and a lot of energy is consumed for heating, and special equipment that can withstand high temperatures is required.
[0005]
In addition, bimetallic nanoparticles (for example, metal nanoparticles having a core-shell structure in which Pt is deposited on the surface of a nucleus made of Pd using a chemical such as ascorbic acid)

Claims (9)

複数種の貴金属のイオンを含有する原料溶液中に、金属イオン還元細菌および電子供与体を添加し、
前記貴金属のイオンを金属イオン還元細菌によって還元することで、
1つの粒子中に複数種の前記貴金属を含有する複合貴金属ナノ粒子を析出させるバイオ還元工程を含む、複合貴金属ナノ粒子の製造方法。
In a raw material solution containing ions of a plurality of types of precious metals, metal ion reducing bacteria and an electron donor are added,
By reducing the noble metal ions by metal ion reducing bacteria,
A method for producing composite noble metal nanoparticles, comprising a bioreduction step of precipitating composite noble metal nanoparticles containing a plurality of kinds of the noble metals in one particle.
前記複合貴金属ナノ粒子は、複数種の前記貴金属からなる合金である、請求項1に記載の製造方法。   The manufacturing method according to claim 1, wherein the composite noble metal nanoparticles are an alloy made of a plurality of types of the noble metals. 前記貴金属は、白金族金属および金から選択される、請求項1または2に記載の製造方法。   The manufacturing method according to claim 1, wherein the noble metal is selected from a platinum group metal and gold. 前記白金族金属は、白金、パラジウムおよびロジウムから選択される、請求項3に記載の製造方法。   The method according to claim 3, wherein the platinum group metal is selected from platinum, palladium, and rhodium. 前記バイオ還元工程の温度は常温である、請求項1〜3のいずれか1項に記載の製造方法。   The manufacturing method according to any one of claims 1 to 3, wherein the temperature of the bioreduction step is normal temperature. 前記バイオ還元工程の後に、
超音波破壊または化学的破壊で菌体を破壊することにより、前記金属イオン還元細菌と前記複合貴金属ナノ粒子とを分離する、分離工程を含む、請求項1〜5のいずれか1項に記載の製造方法。
After the bioreduction process,
The method according to any one of claims 1 to 5, further comprising a separation step of separating the metal ion-reducing bacteria and the composite noble metal nanoparticles by destroying the cells by ultrasonic destruction or chemical destruction. Production method.
請求項1〜6のいずれか1項に記載の製造方法によって製造される、複合貴金属ナノ粒子。   Composite noble metal nanoparticles produced by the production method according to claim 1. 平均粒径が1〜100nmである、請求項7に記載の複合貴金属ナノ粒子。   The composite noble metal nanoparticles according to claim 7, wherein the average particle diameter is 1 to 100 nm. 請求項7または8に記載の複合貴金属ナノ粒子を含む、触媒。   A catalyst comprising the composite noble metal nanoparticles according to claim 7 or 8.
JP2015540437A 2013-10-02 2014-09-09 Method for producing alloy nanoparticles Active JP6404823B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013207465 2013-10-02
JP2013207465 2013-10-02
PCT/JP2014/073741 WO2015049959A1 (en) 2013-10-02 2014-09-09 Method for producing composite noble metal nanoparticles, composite noble metal nanoparticles produced using same, and catalyst containing same

Publications (2)

Publication Number Publication Date
JPWO2015049959A1 true JPWO2015049959A1 (en) 2017-03-09
JP6404823B2 JP6404823B2 (en) 2018-10-17

Family

ID=52778555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015540437A Active JP6404823B2 (en) 2013-10-02 2014-09-09 Method for producing alloy nanoparticles

Country Status (2)

Country Link
JP (1) JP6404823B2 (en)
WO (1) WO2015049959A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015227474A (en) * 2014-05-30 2015-12-17 公立大学法人大阪府立大学 Separation recovery method of platinum group metal
JP6606684B2 (en) * 2015-07-09 2019-11-20 公立大学法人大阪 Metal recovery bag, metal recovery package, and metal recovery method
JP6707250B2 (en) * 2015-11-17 2020-06-10 公立大学法人大阪 Method for recovering radioactive Pd and method for producing Pd
WO2020031090A1 (en) * 2018-08-06 2020-02-13 King Abdullah University Of Science And Technology Single metal atom or bimetallic alloy heterogeneous catalysts on a carbonaceous support produced by metal precursor deposition on exoelectrogen bacteria and pyrolyzing
CN109439691B (en) * 2018-10-31 2021-11-23 华南理工大学 Gold nanoparticles prepared by biological method and application thereof
JP2019104989A (en) * 2019-01-15 2019-06-27 株式会社新光化学工業所 Core-shell type metal nanoparticle, and method for producing the same
JP7029190B2 (en) * 2020-04-27 2022-03-03 公立大学法人大阪 How to recover radioactive platinum group metals
CN113186228B (en) * 2021-05-12 2023-01-17 天津城建大学 Microbial supported palladium-gold bimetallic nano-catalyst and preparation method and application thereof
CN113842955A (en) * 2021-11-03 2021-12-28 西安石油大学 Precious metal nanoparticle composite material and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007113116A (en) * 2005-09-26 2007-05-10 Osaka Prefecture Univ Method for recovering metal
JP2010162442A (en) * 2009-01-13 2010-07-29 Japan Atomic Energy Agency Platinum-group nanoparticle support material, method of producing the same, method for precipitating platinum-group nanoparticle, and catalyst material
JP2012107294A (en) * 2010-11-18 2012-06-07 Osaka Prefecture Univ Method for recovering platinum group metal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007113116A (en) * 2005-09-26 2007-05-10 Osaka Prefecture Univ Method for recovering metal
JP2010162442A (en) * 2009-01-13 2010-07-29 Japan Atomic Energy Agency Platinum-group nanoparticle support material, method of producing the same, method for precipitating platinum-group nanoparticle, and catalyst material
JP2012107294A (en) * 2010-11-18 2012-06-07 Osaka Prefecture Univ Method for recovering platinum group metal

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BAHARAK HOSSEINKHANI, LINA SVEIDAI SOBJERG, AMELIA-ELENA ROTARU, GITI EMTIAZI, TROELS SKYDSTRUP, RIK: "Microbially Supported Synthesis of Catalytically Active Bimetallic Pd-Au Nanoparticles", BIOTECHNOLOGY AND BIOENGINEERING, vol. 109, no. 1, JPN6014048948, January 2012 (2012-01-01), US, pages 45 - 52 *
小西康裕: "金属イオン還元細菌を用いるバイオミネラリゼーションによる貴金属ナノ粒子触媒の創製", 触媒, vol. 第55巻 第4号, JPN6014048946, 10 August 2013 (2013-08-10), JP, pages 232 - 238 *

Also Published As

Publication number Publication date
JP6404823B2 (en) 2018-10-17
WO2015049959A1 (en) 2015-04-09

Similar Documents

Publication Publication Date Title
JP6404823B2 (en) Method for producing alloy nanoparticles
Ahmed et al. Synthesis of ultra-small platinum, palladium and gold nanoparticles by Shewanella loihica PV-4 electrochemically active biofilms and their enhanced catalytic activities
Zhen et al. Fabrication of low adsorption energy Ni–Mo cluster cocatalyst in metal–organic frameworks for visible photocatalytic hydrogen evolution
Darabdhara et al. Dual responsive magnetic Au@ Ni nanostructures loaded reduced graphene oxide sheets for colorimetric detection and photocatalytic degradation of toxic phenolic compounds
JP5090697B2 (en) Metal recovery method
Zhang et al. Unsupported nanoporous gold for heterogeneous catalysis
Khan et al. Electrochemically active biofilm mediated bio-hydrogen production catalyzed by positively charged gold nanoparticles
Capeness et al. Nickel and platinum group metal nanoparticle production by Desulfovibrio alaskensis G20
Li et al. Ultrafast hydrogen generation from the hydrolysis of ammonia borane catalyzed by highly efficient bimetallic RuNi nanoparticles stabilized on Ti3C2X2 (X= OH and/or F)
Teng et al. Research progress on Cu-based catalysts for electrochemical nitrate reduction reaction to ammonia
Hosseinkhani et al. Microbially supported synthesis of catalytically active bimetallic Pd‐Au nanoparticles
Ibupoto et al. NiCo2O4 nanostructures loaded onto pencil graphite rod: An advanced composite material for oxygen evolution reaction
Xiao et al. Self-assembly of complex hollow CuS nano/micro shell by an electrochemically active bacterium Shewanella oneidensis MR-1
CN107456985B (en) Catalyst for selectively oxidizing CO, preparation method and application thereof
Yang et al. Interface engineering cerium-doped copper nanocrystal for efficient electrochemical nitrate-to-ammonia production
JP5629193B2 (en) Method for recovering platinum group metals
CA2350428A1 (en) Water-soluble nanostructured metal-oxide colloids and method for preparing the same
WO2014178360A1 (en) Microorganism having ability to elute rare earth element, method for eluting rare earth element, microorganism having ability to solidify rare earth element and method for solidifying rare earth element
JP2013255887A (en) Gold cluster catalyst and production method thereof
Chen et al. Pd nanoparticles confined in the porous graphene-like carbon nanosheets for olefin hydrogenation
Qin et al. Selective synthesis and characterization of metallic cobalt, cobalt/platinum, and platinum microspheres
Jimenez-Sandoval et al. Facile biological-based synthesis of size-controlled palladium nanoclusters anchored on the surface of geobacter sulfurreducens and their application in electrocatalysis
JP5235140B2 (en) Platinum group nanoparticle carrying material and method for producing the same, platinum group nanoparticle deposition method, catalyst material
Chang et al. Green, energy-efficient preparation of CDs-embedded BiPO4 heterostructure for better light harvesting and conversion
Fu et al. The preparation and performance of Au loads TiO2 nanomaterials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180913

R150 Certificate of patent or registration of utility model

Ref document number: 6404823

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250