JPWO2015046416A1 - Method for modifying contaminated soil - Google Patents

Method for modifying contaminated soil Download PDF

Info

Publication number
JPWO2015046416A1
JPWO2015046416A1 JP2015539375A JP2015539375A JPWO2015046416A1 JP WO2015046416 A1 JPWO2015046416 A1 JP WO2015046416A1 JP 2015539375 A JP2015539375 A JP 2015539375A JP 2015539375 A JP2015539375 A JP 2015539375A JP WO2015046416 A1 JPWO2015046416 A1 JP WO2015046416A1
Authority
JP
Japan
Prior art keywords
contaminated soil
porous carbon
carbon material
modifying
microorganism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015539375A
Other languages
Japanese (ja)
Other versions
JP6188812B2 (en
Inventor
謙三 久保田
謙三 久保田
裕介 河目
裕介 河目
吉田 和生
和生 吉田
大樹 川越
大樹 川越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiwa House Industry Co Ltd
Original Assignee
Daiwa House Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiwa House Industry Co Ltd filed Critical Daiwa House Industry Co Ltd
Publication of JPWO2015046416A1 publication Critical patent/JPWO2015046416A1/en
Application granted granted Critical
Publication of JP6188812B2 publication Critical patent/JP6188812B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/10Reclamation of contaminated soil microbiologically, biologically or by using enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character
    • B01J2220/4868Cells, spores, bacteria

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Virology (AREA)
  • Soil Sciences (AREA)
  • Mycology (AREA)
  • Inorganic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Processing Of Solid Wastes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

【課題】微生物を使用する汚染土壌の改質において、活性炭との併用時に発生する微生物の分解性能の低下を防止しつつ、活性炭の有する吸着力を発現させ、安定的かつ継続的に汚染物質の浄化を行う汚染土壌の改質方法が望まれていた。【解決手段】本発明に係る汚染土壌の改質方法は、汚染土壌中に存在する微生物および/または新たに汚染土壌中に混合する微生物と、粉状の多孔性炭素材と、栄養剤とを用いることを特徴とする。【選択図】図1[PROBLEMS] To improve the contaminated soil using microorganisms, while preventing the degradation of the decomposition performance of microorganisms generated in combination with activated carbon, and exhibiting the adsorptive power possessed by activated carbon, stably and continuously There has been a demand for a method for improving contaminated soil for purification. The method for modifying contaminated soil according to the present invention comprises a microorganism present in the contaminated soil and / or a microorganism newly mixed in the contaminated soil, a powdery porous carbon material, and a nutrient. It is characterized by using. [Selection] Figure 1

Description

本発明は、油分、揮発性有機化合物(VOC)、ベンゼン、シアン化合物、ジクロロ化合物などによって汚染された汚染土壌の改質方法に係る。
さらに詳しくは、粉状の多孔性炭素材(特に、特定の比表面積および粒径を持つ多孔性炭素材)を用いることによって、多孔性炭素材の持つ吸着能によって油臭・油膜を迅速に吸着させながら、汚染土壌中の汚染物質(特に油分)に対する微生物の分解能を低下させることなく汚染土壌の改質をすることができる方法に関するものである。
The present invention relates to a method for modifying contaminated soil contaminated with oil, volatile organic compounds (VOC), benzene, cyanide compounds, dichloro compounds and the like.
More specifically, by using a powdery porous carbon material (especially a porous carbon material having a specific specific surface area and particle size), the oily odor and oil film can be adsorbed quickly by the adsorption ability of the porous carbon material. The present invention relates to a method capable of modifying contaminated soil without reducing the ability of microorganisms to contaminate the contaminated soil (especially oil).

従来から、油分などによって汚染された汚染土壌を微生物や活性炭などを用いて改質する汚染土壌の改質方法は知られている。例えば、特許文献1には、汚染土壌中に存在する微生物を活性化させるための微生物活性剤を活性炭とともに汚染土壌に供給し、活性化させた微生物を活性炭の表面で増殖させて汚染土壌の改質を行う汚染土壌の改質方法が開示されている。   Conventionally, there is known a method for modifying contaminated soil in which contaminated soil contaminated with oil or the like is modified using microorganisms, activated carbon, or the like. For example, in Patent Document 1, a microbial activator for activating microorganisms present in contaminated soil is supplied to the contaminated soil together with activated carbon, and the activated microorganisms are grown on the surface of the activated carbon to improve the contaminated soil. A method for modifying contaminated soil that performs quality is disclosed.

特開2008−221167号公報JP 2008-221167 A

ここで、特許文献1に代表される従来の汚染土壌の改質方法においては、通常、活性炭に粉状のものが、吸着剤としての能力をより効果的に発現させる目的で使用される。
しかしながら、従来用いられる粉状の活性炭は吸着能力が強すぎることから、微生物による汚染土壌中の汚染物質の分解が始まる前に大部分の汚染物質が活性炭に吸着されてしまうことになる。そうすると汚染土壌中の微生物は汚染物質と接触できなくなることから、油臭・油膜の拡散は防止されるものの、微生物による汚染物質の分解が滞ってしまい、その結果、安定した土壌改質が行われなくなってしまうという問題があった。
Here, in the conventional method for modifying contaminated soil represented by Patent Document 1, activated carbon is usually used for the purpose of more effectively expressing the ability as an adsorbent.
However, since the powdery activated carbon used conventionally has too strong adsorption capacity, most of the pollutants are adsorbed on the activated carbon before the decomposition of the pollutants in the contaminated soil by microorganisms begins. This prevents microorganisms in the contaminated soil from coming into contact with the pollutants, which prevents the spread of oily odor and oil film, but delays the decomposition of the pollutants by the microorganisms, resulting in stable soil modification. There was a problem of disappearing.

また、従来の活性炭を使用する汚染物質の改質方法においては、活性炭によって汚染物質が吸着されることによって土壌中への汚染物質の拡散は防止されるものの、汚染物質そのものが除去されるわけではないという問題点もある。   Also, in the conventional method for modifying pollutants using activated carbon, although the pollutants are adsorbed by the activated carbon, the diffusion of the pollutants into the soil is prevented, but the pollutants themselves are not removed. There is also a problem of not.

本発明は、上記した従来の問題点に鑑みてなされたものであって、微生物を使用する汚染土壌の改質において、粉状の多孔性炭素材(特に、特定の比表面積および粒径を持つ多孔性炭素材)を使用することによって、多孔性炭素材との併用時に発生する微生物の分解性能の低下を防止しつつ、多孔性炭素材の有する吸着力を発現させ、安定的かつ継続的に汚染物質の浄化を行う汚染土壌の改質方法の提供を目的とする。   The present invention has been made in view of the above-described conventional problems, and in the modification of contaminated soil using microorganisms, a powdery porous carbon material (particularly, having a specific specific surface area and particle size). By using a porous carbon material, the adsorption power of the porous carbon material can be expressed stably and continuously, while preventing the degradation of the degradation of microorganisms that occur when used in combination with the porous carbon material. The purpose is to provide a method for modifying contaminated soil to purify pollutants.

上記目的を達成するために、本発明に係る汚染土壌の改質方法は、汚染土壌中に存在する微生物および/または新たに汚染土壌中に混合する微生物と、粉状の多孔性炭素材と、栄養剤とを用いることを特徴とする。   In order to achieve the above object, a method for modifying a contaminated soil according to the present invention includes a microorganism present in the contaminated soil and / or a microorganism newly mixed in the contaminated soil, a powdery porous carbon material, It is characterized by using a nutrient.

本発明に係る汚染土壌の改質方法は、多孔性炭素材が、355〜817m/gの比表面積であり、かつ150μm以下の粒径であることを特徴とする。The method for modifying contaminated soil according to the present invention is characterized in that the porous carbon material has a specific surface area of 355 to 817 m 2 / g and a particle size of 150 μm or less.

本発明に係る汚染土壌の改質方法は、多孔性炭素材を、汚染土壌に対して0.1〜5重量部添加することを特徴とする。   The method for modifying contaminated soil according to the present invention is characterized by adding 0.1 to 5 parts by weight of a porous carbon material to the contaminated soil.

本発明に係る汚染土壌の改質方法は、多孔性炭素材が、活性炭であることを特徴とする。   The method for modifying contaminated soil according to the present invention is characterized in that the porous carbon material is activated carbon.

本発明に係る汚染土壌の改質方法は、微生物が、alkB(アルカンヒドロキシラーゼ)遺伝子を有する微生物であることを特徴とする。   The method for modifying contaminated soil according to the present invention is characterized in that the microorganism is a microorganism having an alkB (alkane hydroxylase) gene.

本発明に係る汚染土壌の改質方法は、微生物が、ゴルドニア属、ロドコッカス属、シュードモナス属、バークホルデリア属、アシネトバクター属、コリネバクテリウム属、マイコバクテリウム属、ノカルディア属、アクチノマイセス属、バチルス属からなる群から選ばれる1種または2種以上の微生物であることを特徴とする。   In the method for modifying contaminated soil according to the present invention, the microorganisms are Gordonia, Rhodococcus, Pseudomonas, Burkholderia, Acinetobacter, Corynebacterium, Mycobacterium, Nocardia, Actinomyces , One or more microorganisms selected from the group consisting of the genus Bacillus.

次に、本発明の各構成要件を説明する。   Next, each component of the present invention will be described.

本発明に用いられる多孔性炭素材は、粉状のものである必要がある。従って、椰子、木などを原料とする植物系のものや石炭、石油などを原料とする鉱物系のもの、あるいはこれらのものを薬品などによって賦活させたものなど各種の多孔性炭素材を用いることができる。なお、これらの中でも、pHが中性域(具体的には、水質汚濁防止法の排水基準でもあるpH5.8〜8.6)の多孔性炭素材については、改質する土壌のpHの変動を防止することができ、また水質汚濁防止法の排水基準にも適合するので好適である。   The porous carbon material used in the present invention needs to be powdery. Therefore, use various porous carbon materials such as plants based on palm, wood, etc., minerals based on coal, petroleum, etc., or those activated by chemicals. Can do. Among these, with respect to porous carbon materials having a neutral pH (specifically, pH 5.8 to 8.6 which is also the drainage standard of the Water Pollution Control Law), the pH of the soil to be modified varies. This is preferable because it can prevent water pollution and also meets the drainage standards of the Water Pollution Control Law.

そして、本発明に用いられる多孔性炭素材の粒径としては、その中でも微生物の分解性能の低下を防止しつつ多孔性炭素材の有する吸着力を発現させ、汚染物質の処理効率を向上させることができることから、比表面積が355〜817m/gであり、かつ粒径が1〜150μmのものを用いることが好ましい。なお、比表面積については上記範囲の中でも、さらに355〜600m/gのものを用いることが好ましい。
ここで、比表面積の上限値を817m/gとする根拠としては、後記するように比表面積を変えた多孔性炭素材を使用した実施例1〜3の汚染土壌について、比表面積と油分分解率をグラフにプロット(図2)し、さらに全ての実施例のデータを満足する近似曲線を描いた際に、かかる曲線から50%以上の油分分解率を実現することが可能となる比表面積を根拠とするものである。
And as the particle size of the porous carbon material used in the present invention, among them, the adsorption power of the porous carbon material is expressed while preventing the degradation of microbial decomposition performance, and the processing efficiency of pollutants is improved. Therefore, it is preferable to use one having a specific surface area of 355 to 817 m 2 / g and a particle size of 1 to 150 μm. In addition, about a specific surface area, it is preferable to use the thing of 355-600m < 2 > / g among the said range.
Here, as the grounds for setting the upper limit of the specific surface area to 817 m 2 / g, the specific surface area and the oil content decomposition of the contaminated soils of Examples 1 to 3 using the porous carbon material having a changed specific surface area as described later. When plotting the rate on a graph (Fig. 2) and drawing an approximate curve that satisfies the data of all the examples, the specific surface area that makes it possible to achieve an oil content decomposition rate of 50% or more from such a curve. It is the basis.

また、本発明に用いられる多孔性炭素材(特に活性炭)の配合量としては特に限定されないが、汚染土壌に対して0.1〜5重量部添加することが好ましく、その中でも2重量部添加することが特に好ましい。配合量が0.1重量部未満の場合には吸着効果が十分ではなくなる場合があるからである。一方、配合量が5重量部を超える場合には、地盤改良の目的でセメント系固化材を用いた際にかかるセメント系固化材が有する特性である地耐力の向上効果が低下したり、土壌改質後に建造物を建設した際に地中に埋設した鉄筋などの金属が錆びやすくなったりする可能性があるからである。   Moreover, it is although it does not specifically limit as a compounding quantity of the porous carbon material (especially activated carbon) used for this invention, It is preferable to add 0.1-5 weight part with respect to a contaminated soil, Among these, 2 weight part is added. It is particularly preferred. This is because if the amount is less than 0.1 parts by weight, the adsorption effect may not be sufficient. On the other hand, when the blending amount exceeds 5 parts by weight, the effect of improving the earth strength, which is a characteristic of the cement-based solidified material when the cement-based solidified material is used for the purpose of ground improvement, is reduced, or the soil is improved. This is because there is a possibility that metals such as reinforcing bars buried in the ground will easily rust when a building is constructed after quality.

本発明に用いられる微生物としては、汚染物質の種類によって適宜選択されることになり、例えばゴルドニア属、ロドコッカス属、シュードモナス属、バチルス属、アシネトバクター属、ハロモナス属、アクロモバクター属、アルカリゲネス属、オクロバクトラム属、クルチア属、スタフィロコッカス属、セラチア属、チオバチルス属、バクテリジウム属、フラボバクテリウム属、ブレビバクテリウム属、プロタミノバクター属、ミクロコッカス属、ミコバクテリウム属、ミコプラーナ属、メタノモナス属、ロツデロマイセス属、ロドシュードモナス属などの細菌、パチソレン属、ロドスポリジウム属又はサッカロミセス属などの酵母、アスペルギルス属、ムコール属またはペニシリウム属などの糸状菌などを挙げることができる。
また、上記に列記される本発明に用いられる微生物は、新たに汚染土壌中に混合して使用する形態だけではなく、既に土壌中に存在しているこれらの菌を用いることもできる。
The microorganism used in the present invention is appropriately selected depending on the type of pollutant, for example, Gordonia, Rhodococcus, Pseudomonas, Bacillus, Acinetobacter, Halomonas, Achromobacter, Alkaligenes, Okrobactrum Genus, Kurthia, Staphylococcus, Serratia, Thiobacillus, Bacterium, Flavobacterium, Brevibacterium, Protaminobacter, Micrococcus, Mycobacterium, Mycoplana, Methanomonas And bacteria such as the genus Rodderomyces and Rhodopseudomonas, yeasts such as the genus Pachislen, genus Rhodosporidium and Saccharomyces, and filamentous fungi such as the genus Aspergillus, Mucor and Penicillium.
In addition, the microorganisms used in the present invention listed above can be used not only in a form that is newly mixed in contaminated soil but also those bacteria that are already present in the soil.

そしてこれらの中でも、汚染物質が油分である場合には、alkB(アルカンヒドロキシラーゼ)遺伝子と呼ばれる石油分解酵素遺伝子を有している微生物を使用することが好ましい。このような微生物としては、例えばゴルドニア属、ロドコッカス属、シュードモナス属、バークホルデリア属、アシネトバクター属、コリネバクテリウム属、マイコバクテリウム属、ノカルディア属、アクチノマイセス属、バチルス属などが挙げられる。
さらに、上記列記した微生物の中でもゴルドニア属、ロドコッカス属については、表1に示すようにその他の微生物よりも細胞表面の疎水性が高く(濁度の減少率の数値が高く)、多孔性炭素材に吸着された油分にも接触して微生物の分解効果が発現することから好適である。
Among these, when the pollutant is oil, it is preferable to use a microorganism having a petroleum degrading enzyme gene called alkB (alkane hydroxylase) gene. Examples of such microorganisms include Gordonia, Rhodococcus, Pseudomonas, Burkholderia, Acinetobacter, Corynebacterium, Mycobacterium, Nocardia, Actinomyces, and Bacillus. .
Furthermore, among the microorganisms listed above, the genus Gordonia and Rhodococcus have a higher cell surface hydrophobicity (higher numerical value of turbidity reduction rate) than other microorganisms as shown in Table 1, and are porous carbon materials. This is preferable because it also brings about an effect of microbial decomposition upon contact with the oil adsorbed on the surface.

また、本発明の改質方法には原則として微生物の栄養剤を用いるが、改質する土壌によっては必要に応じて栄養剤を用いないこともできる。このような微生物の栄養剤としては、LB培地、酵母エキス(イーストエクストラクト)、ミネラルなどの栄養剤、窒素、燐、カリウムなどが含まれている有機系または無機系肥料などを挙げることができる。   Moreover, although the microbial nutrient is used in principle for the modification method of the present invention, the nutrient may not be used as required depending on the soil to be modified. Examples of such microorganism nutrients include LB medium, yeast extract (yeast extract), minerals, and other organic or inorganic fertilizers containing nitrogen, phosphorus, potassium, and the like. .

なお、本発明の改質方法に使用される多孔性炭素材の汚染土壌への供給量は、改質を行う汚染土壌の汚染状況に応じて適宜決定されることになるが、より安定的かつ継続的に汚染物質の改質を行うためには、汚染土壌に対して多孔性炭素材を0.1〜5重量部供給することが好ましい。
さらに、多孔性炭素材の汚染土壌への供給方法についても、改質を行う汚染土壌の汚染状況に応じて、汚染土壌全体と混合する方法や、予め汚染土壌を所定の深さに掘った後に一定の厚みを持って多孔性炭素材などを堆積させ、その後汚染土壌などで埋め戻す方法など各種の方法を採用することができる。
The supply amount of the porous carbon material used in the reforming method of the present invention to the contaminated soil is appropriately determined according to the contamination status of the contaminated soil to be reformed. In order to continuously modify the pollutant, it is preferable to supply 0.1 to 5 parts by weight of the porous carbon material to the contaminated soil.
Furthermore, regarding the method of supplying the porous carbon material to the contaminated soil, depending on the contamination status of the contaminated soil to be modified, a method of mixing with the entire contaminated soil, or after excavating the contaminated soil to a predetermined depth in advance Various methods such as a method of depositing a porous carbon material or the like having a certain thickness and then backfilling with contaminated soil or the like can be employed.

本発明に係る汚染土壌の改質方法によれば、粉状の多孔性炭素材を用いることによって、汚染土壌中の汚染物質(特に油分)に対する微生物の分解能を低下させることなく、多孔性炭素材の持つ吸着能によって油臭・油膜を迅速(約1時間という非常に短時間)に吸着させることができる。
その結果、従来の改質方法に比べて、汚染土壌に対する添加物の量を削減しつつ、迅速に汚染物質の処理を行うことができる。
According to the method for modifying contaminated soil according to the present invention, the porous carbon material can be used without reducing the resolution of microorganisms to pollutants (especially oil) in the contaminated soil by using the powdery porous carbon material. The adsorption odor and oil film can adsorb oil odor and oil film quickly (very short time of about 1 hour).
As a result, it is possible to quickly process the pollutant while reducing the amount of additive to the contaminated soil as compared with the conventional reforming method.

本発明に係る汚染土壌の改質方法によれば、粉状の多孔性炭素材として、特定範囲の比表面積および粒径のものを用いることによって、汚染物質の処理効率をより向上させることができる。   According to the method for modifying contaminated soil according to the present invention, by using a powdery porous carbon material having a specific surface area and particle size within a specific range, the treatment efficiency of the pollutant can be further improved. .

本発明に係る汚染土壌の改質方法によれば、多孔性炭素材を特定の配合量で混合することによって、汚染物質の処理効率をより向上させることができる。   According to the method for modifying contaminated soil according to the present invention, the processing efficiency of pollutants can be further improved by mixing the porous carbon material in a specific blending amount.

本発明に係る汚染土壌の改質方法によれば、多孔性炭素材を活性炭とすることによって、油臭および油膜の処理効率をより向上させることができる。   According to the method for modifying contaminated soil according to the present invention, the treatment efficiency of oily odor and oil film can be further improved by using activated carbon as the porous carbon material.

本発明に係る汚染土壌の改質方法によれば、微生物に特定の菌種を使用することによって、汚染物質の処理効率をより向上させることができる。   According to the method for modifying contaminated soil according to the present invention, the treatment efficiency of pollutants can be further improved by using a specific fungus species for microorganisms.

本発明に係る汚染土壌の改質方法を行った際の残存油分濃度の測定結果を示すグラフである。It is a graph which shows the measurement result of the residual oil content density | concentration at the time of performing the modification | reformation method of the contaminated soil which concerns on this invention. 実施例2と実施例3の汚染土壌について、比表面積と油分分解率との関係を示すグラフである。It is a graph which shows the relationship between a specific surface area and an oil decomposition rate about the contaminated soil of Example 2 and Example 3. FIG.

本発明の汚染土壌の改質方法を実施例と比較例に基づいて説明する。なお、以下に述べる実施例は本発明を具体化した一例に過ぎず、本発明の技術的範囲を限定するものでない。   The method for modifying contaminated soil of the present invention will be described based on examples and comparative examples. In addition, the Example described below is only an example which actualized this invention, and does not limit the technical scope of this invention.

(実施例1)
多孔性炭素材に比表面積が355m/gで粒径が150μm以下の粉状の木炭を、微生物にロドコッカス・エスピー NDKK6株を、栄養剤に無機栄養塩(窒素成分:尿素、リン成分:リン酸水素二アンモニウム)を用い、A重油を2000mg/kgの濃度で混合した模擬土壌100gに、多孔性炭素材を2g、微生物106個/g−soilとなるように混合することで実施例1の汚染土壌を作製した。
Example 1
Powdered charcoal with a specific surface area of 355 m 2 / g and a particle size of 150 μm or less is used for the porous carbon material, Rhodococcus sp. NDKK6 strain is used as the microorganism, and inorganic nutrient salts (nitrogen component: urea, phosphorus component: phosphorus as nutrients) Example 1 by mixing 2 g of porous carbon material and 10 6 microorganisms / g-soil with 100 g of simulated soil in which A heavy oil was mixed at a concentration of 2000 mg / kg. Of contaminated soil.

(実施例2)
多孔性炭素材に比表面積が600m/gで粒径が150μm以下の粉状の活性炭を使用した以外は実施例1と同様にして、実施例2の汚染土壌を作製した。
(Example 2)
A contaminated soil of Example 2 was prepared in the same manner as Example 1 except that powdered activated carbon having a specific surface area of 600 m 2 / g and a particle size of 150 μm or less was used as the porous carbon material.

(実施例3)
多孔性炭素材に比表面積が950m/gで粒径が150μm以下の粉状の活性炭を使用した以外は実施例1と同様にして、実施例3の汚染土壌を作製した。
(Example 3)
A contaminated soil of Example 3 was prepared in the same manner as Example 1 except that powdered activated carbon having a specific surface area of 950 m 2 / g and a particle size of 150 μm or less was used as the porous carbon material.

(比較例)
多孔性炭素材を使用しない以外は実施例1と同様にして比較例の汚染土壌を作製した。
(Comparative example)
A contaminated soil of a comparative example was prepared in the same manner as in Example 1 except that no porous carbon material was used.

(参考例)
多孔性炭素材に平均粒径が1.3mmの粒状活性炭を、微生物にロドコッカス・エスピー NDKK6株を、栄養剤に無機栄養塩(窒素成分:尿素、リン成分:リン酸水素二アンモニウム)を用い、A重油を2000mg/kgの濃度で混合した模擬土壌100gに、多孔性炭素材を2g、微生物106個/g−soilとなるように混合することで参考例の汚染土壌を作製した。
(Reference example)
Using granular activated carbon with an average particle size of 1.3 mm for porous carbon material, Rhodococcus sp. NDKK6 strain for microorganisms, and inorganic nutrient salts (nitrogen component: urea, phosphorus component: diammonium hydrogen phosphate) for nutrients, The contaminated soil of the reference example was prepared by mixing 2 g of a porous carbon material and 10 6 microorganisms / g-soil with 100 g of simulated soil in which A heavy oil was mixed at a concentration of 2000 mg / kg.

次に、上記した実施例、比較例、参考例の汚染土壌について油臭および油膜の解消効果と油分の残存率の評価を行った。   Next, the effects of eliminating the oily odor and oil film and the residual ratio of the oil were evaluated for the contaminated soils of the above-described Examples, Comparative Examples, and Reference Examples.

(油臭の解消効果の評価)
油臭の解消効果については、混合後1時間後、2日目、7日目、14日目、21日目、28日目の油臭を官能評価によって評価した。具体的には、油汚染対策ガイドライン(2006年、環境省発行)に準拠した0〜5までの6段階で臭気を評価し、2以下の臭気しか感じなかった場合を油臭の解消効果ありと認定した。結果を表2に示す。
(Evaluation of oil odor elimination effect)
About the effect of eliminating the oily odor, the oily odor on the 2nd day, 7th day, 14th day, 21st day, and 28th day was evaluated by sensory evaluation 1 hour after mixing. Specifically, the odor is evaluated in 6 stages from 0 to 5 in accordance with the Oil Pollution Countermeasure Guidelines (issued by the Ministry of the Environment in 2006). Certified. The results are shown in Table 2.

(油膜の解消効果の評価)
油膜の解消効果については、混合後1時間後、2日目、28日目の油膜を官能評価によって評価した。具体的には、油汚染対策ガイドラインに記載されているシャーレ法を行った後、目視によって0〜3までの4段階で油膜を評価し、1以下の油膜しか確認できなかった場合を油膜の解消効果ありと認定した。結果を表2に示す。
(Evaluation of oil film elimination effect)
About the cancellation | release effect of an oil film, after 1 hour after mixing, the oil film of the 2nd day and the 28th day was evaluated by sensory evaluation. Specifically, after performing the petri dish method described in the Guidelines for Countermeasures against Oil Contamination, visually evaluate the oil film in four stages from 0 to 3, and if only 1 or less oil film can be confirmed, eliminate the oil film Certified as effective. The results are shown in Table 2.

(油分の残存率の測定)
油分の残存率については、混合後1日目、14日目、28日目の汚染土壌からサンプリングした汚染土壌中の油分を溶剤(H−997、旭硝子社製)で抽出することによって油分量を測定し、混合後1日目の油分量を100としたときの残存率によって評価を行った。結果を表2および図1に示す。
(Measurement of residual ratio of oil)
About the residual rate of oil, the oil content is extracted by extracting the oil in the contaminated soil sampled from the contaminated soil on the 1st, 14th, and 28th day after mixing with a solvent (H-997, manufactured by Asahi Glass Co., Ltd.). It was measured and evaluated by the residual ratio when the oil content on the first day after mixing was taken as 100. The results are shown in Table 2 and FIG.

まず、油臭の解消効果については、表2の結果から多孔性炭素材を用いた実施例の汚染土壌は混合直後から多孔性炭素材による吸着能が発現し、油臭が解消しているとの評価となった。
一方、多孔性炭素材を使用しない比較例の汚染土壌については、油臭の解消効果が21日目においても認められなかった。
First, regarding the effect of eliminating the oily odor, the contaminated soil of the examples using the porous carbon material developed the adsorbing ability by the porous carbon material immediately after mixing, and the oily odor was eliminated from the results of Table 2. It became evaluation of.
On the other hand, in the contaminated soil of the comparative example not using the porous carbon material, the effect of eliminating the oily odor was not observed even on the 21st day.

次に、油膜の解消効果については、表2の結果から粉状の多孔性炭素材を用いた実施例の汚染土壌は混合直後から多孔性炭素材による吸着能が発現し、油膜が解消しているとの評価となった。
なお、粒状の活性炭を用いた参考例の汚染土壌については、混合後2日目においても油膜が解消されていないとの評価となった。また、多孔性炭素材を使用しない比較例の汚染土壌についても、参考例と同様の結果であった。
Next, regarding the effect of eliminating the oil film, from the results of Table 2, the contaminated soil of the example using the powdery porous carbon material developed the adsorbing ability by the porous carbon material immediately after mixing, and the oil film was eliminated. It became evaluation that there was.
In addition, about the contaminated soil of the reference example using granular activated carbon, it became evaluation that the oil film was not eliminated also in the 2nd day after mixing. Moreover, it was the same result as the reference example also about the contaminated soil of the comparative example which does not use a porous carbon material.

次に、油分の残存率については、表2の結果から実施例1、2および参考例の汚染土壌は、比較例の汚染土壌と同等の油分の分解率を示した。なお、実施例3の汚染土壌については、実施例1、2の汚染土壌に比べると分解効率は劣るものの、28日目において30%強の油分を分解する結果となった。   Next, regarding the residual rate of oil, the contaminated soils of Examples 1 and 2 and the reference example showed a decomposition rate of oil equivalent to that of the comparative example from the results shown in Table 2. In addition, about the contaminated soil of Example 3, although the decomposition | disassembly efficiency was inferior compared with the contaminated soil of Example 1, 2, it resulted in decomposing | disassembling 30% of oil content in the 28th day.

ここで比較例の汚染土壌は、多孔性炭素材を配合しない微生物と栄養塩のみが配合された汚染土壌であることから、微生物が本来有する分解能が発現される汚染土壌となっている。
従って、かかる比較例と同等の油分の分解率を示す実施例1および2の汚染土壌は、微生物が本来有する分解能が発現されていることがわかった。
Here, the contaminated soil of the comparative example is a contaminated soil in which only microorganisms not containing the porous carbon material and nutrient salts are mixed, and therefore, the contaminated soil in which the resolution inherent to the microorganisms is expressed.
Therefore, it was found that the contaminated soils of Examples 1 and 2 showing the oil decomposition rate equivalent to that of the comparative example exhibited the inherent resolution of microorganisms.

また、比表面積を変えた多孔性炭素材を使用した実施例1〜3の汚染土壌について、比表面積と油分分解率との関係のグラフ化を行った。結果を図2に示す。
そして、図2に示す通り、プロットした2つのデータを基に油分分解率が50%となる比表面積の値を計算したところ、50%以上の油分分解率を実現することが可能な比表面積の上限値は817m/gとなることがわかった。
Moreover, about the contaminated soil of Examples 1-3 which used the porous carbon material which changed the specific surface area, the graph of the relationship between a specific surface area and an oil decomposition rate was performed. The results are shown in FIG.
Then, as shown in FIG. 2, when the specific surface area value at which the oil content decomposition rate is 50% is calculated based on the two plotted data, the specific surface area that can realize the oil content decomposition rate of 50% or more is obtained. The upper limit was found to be 817 m 2 / g.

以上、実施例および比較例の結果から、本発明の汚染土壌の改質方法は、粉状の多孔性炭素材(特に、特定の比表面積および粒径を持つ多孔性炭素材)を微生物とともに使用することによって、油臭・油膜の拡散を迅速に防止しつつ、微生物の分解能を低下させることなく、安定的かつ継続的に汚染物質の浄化を行うことができるものであることがわかった。
As described above, from the results of Examples and Comparative Examples, the method for modifying contaminated soil of the present invention uses a powdery porous carbon material (particularly, a porous carbon material having a specific surface area and particle size) together with microorganisms. By doing so, it was found that the pollutant can be stably and continuously purified without reducing the resolution of microorganisms while quickly preventing the odor and oil film from spreading.

上記目的を達成するために、本発明に係る汚染土壌の改質方法は、汚染土壌中に存在する微生物および/または新たに汚染土壌中に混合する微生物と、粉状の多孔性炭素材と、栄養剤とを土壌中に混合し、多孔性炭素材が、355〜817m /gの比表面積であり、かつ150μm以下の粒径であることを特徴とする
In order to achieve the above object, a method for modifying a contaminated soil according to the present invention includes a microorganism present in the contaminated soil and / or a microorganism newly mixed in the contaminated soil, a powdery porous carbon material, a nutrient mixed into the soil, the porous carbon material, a specific surface area of 355~817m 2 / g, and characterized by the following particle size der Rukoto 150μm

上記目的を達成するために、本発明に係る汚染土壌の改質方法は、汚染土壌中に存在する微生物および/または新たに汚染土壌中に混合する微生物と、粉状の多孔性炭素材と、栄養剤とを土壌中に同時または別々に混合し、多孔性炭素材が、355〜817m/gの比表面積であり、かつ150μm以下の粒径であることを特徴とする
In order to achieve the above object, a method for modifying a contaminated soil according to the present invention includes a microorganism present in the contaminated soil and / or a microorganism newly mixed in the contaminated soil, a powdery porous carbon material, A nutrient is mixed with soil simultaneously or separately, and the porous carbon material has a specific surface area of 355 to 817 m 2 / g and a particle size of 150 μm or less.

上記目的を達成するために、本発明に係る汚染土壌の改質方法は、汚染土壌中に存在する微生物および/または新たに汚染土壌中に混合する微生物と、粉状の多孔性炭素材と、栄養剤とを土壌中に同時または別々に混合し、多孔性炭素材が、355〜817m/gの比表面積であり、かつ150μm以下の粒径であり、さらに微生物を予め担持しないものであることを特徴とする。
In order to achieve the above object, a method for modifying a contaminated soil according to the present invention includes a microorganism present in the contaminated soil and / or a microorganism newly mixed in the contaminated soil, a powdery porous carbon material, a nutrient mixed simultaneously or separately into the soil, the porous carbon material, a specific surface area of 355~817m 2 / g, and 150μm Ri particle size of less than der, as it does not further advance carrying microorganisms Oh, wherein the Rukoto.

Claims (6)

汚染土壌の改質方法であって、
前記汚染土壌中に存在する微生物および/または新たに前記汚染土壌中に混合する微生物と、
粉状の多孔性炭素材と、
栄養剤とを用いることを特徴とする汚染土壌の改質方法。
A method for modifying contaminated soil,
Microorganisms present in the contaminated soil and / or microorganisms newly mixed in the contaminated soil;
Powdered porous carbon material,
A method for modifying contaminated soil, characterized by using a nutrient.
前記多孔性炭素材が、
355〜817m/gの比表面積であり、かつ150μm以下の粒径であることを特徴とする請求項1に記載の汚染土壌の改質方法。
The porous carbon material is
The method for modifying contaminated soil according to claim 1, wherein the method has a specific surface area of 355 to 817 m 2 / g and a particle size of 150 μm or less.
前記多孔性炭素材を、
汚染土壌に対して0.1〜5重量部添加することを特徴とする請求項1または請求項2に記載の汚染土壌の改質方法。
The porous carbon material,
The method for modifying contaminated soil according to claim 1 or 2, wherein 0.1 to 5 parts by weight is added to the contaminated soil.
前記多孔性炭素材が、
活性炭であることを特徴とする請求項1から請求項3のいずれか一項に記載の汚染土壌の改質方法。
The porous carbon material is
The method for reforming contaminated soil according to any one of claims 1 to 3, wherein the method is activated carbon.
前記微生物が、
alkB(アルカンヒドロキシラーゼ)遺伝子を有する微生物であることを特徴とする請求項1から請求項4のいずれか一項に記載の汚染土壌の改質方法。
The microorganism is
The method for modifying contaminated soil according to any one of claims 1 to 4, wherein the microorganism has an alkB (alkane hydroxylase) gene.
前記微生物が、
ゴルドニア属、ロドコッカス属、シュードモナス属、バークホルデリア属、アシネトバクター属、コリネバクテリウム属、マイコバクテリウム属、ノカルディア属、アクチノマイセス属、バチルス属からなる群から選ばれる1種または2種以上の微生物であることを特徴とする請求項1から請求項5のいずれか一項に記載の汚染土壌の改質方法。
The microorganism is
One or more selected from the group consisting of Gordonia, Rhodococcus, Pseudomonas, Burkholderia, Acinetobacter, Corynebacterium, Mycobacterium, Nocardia, Actinomyces, and Bacillus The method for modifying contaminated soil according to any one of claims 1 to 5, wherein the microorganism is a microorganism.
JP2015539375A 2013-09-27 2014-09-26 Method for modifying contaminated soil Active JP6188812B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013200978 2013-09-27
JP2013200978 2013-09-27
PCT/JP2014/075605 WO2015046416A1 (en) 2013-09-27 2014-09-26 Method for modifying polluted soil

Publications (2)

Publication Number Publication Date
JPWO2015046416A1 true JPWO2015046416A1 (en) 2017-03-09
JP6188812B2 JP6188812B2 (en) 2017-08-30

Family

ID=52743542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015539375A Active JP6188812B2 (en) 2013-09-27 2014-09-26 Method for modifying contaminated soil

Country Status (2)

Country Link
JP (1) JP6188812B2 (en)
WO (1) WO2015046416A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6750865B2 (en) * 2016-03-11 2020-09-02 有限会社エコルネサンス・エンテック Countermeasures against soil pollutants
JPWO2020009097A1 (en) * 2018-07-06 2021-08-26 Igaバイオリサーチ株式会社 Decontamination methods and materials used for environments contaminated by petroleum-related substances
RU2688282C1 (en) 2018-07-23 2019-05-21 Юрий Борисович Толкачников Method for remediation of contaminated land
FR3106991B1 (en) * 2020-02-06 2022-01-28 Inerta Phytoremediation process for polluted sands
KR102503291B1 (en) * 2021-03-15 2023-02-23 인하대학교 산학협력단 Composition for neutralizing acidic soil comprising microbial culture, and use thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06508553A (en) * 1991-06-21 1994-09-29 プラント リサーチ ラボラトリーズ Use of metal peroxides in bioimprovement
JPH07299483A (en) * 1994-05-11 1995-11-14 Canon Inc Diffusion suppression of underground pollutant and its purifying method
JP2004075775A (en) * 2002-08-13 2004-03-11 Kurita Water Ind Ltd Detoxicating agent against halogenated aromatic compound and detoxication method
JP2006116420A (en) * 2004-10-21 2006-05-11 Japan Organo Co Ltd Method for treating chemical contaminant
JP2007014202A (en) * 2005-01-26 2007-01-25 National Institute For Agro-Environmental Science Support for holding cumulated multiple degrading bacteria and manufacturing method thereof, new bacteria, method for cleaning pollution environment and apparatus thereof
JP2008289445A (en) * 2007-05-28 2008-12-04 Tosoh Corp Petroleum-decomposing microorganism, microorganism consortium, and method for cleaning petroleum-contaminated soil by using the same
JP2010220498A (en) * 2009-03-19 2010-10-07 Ritsumeikan Method for evaluating environmental impact in bioaugmentation
JP2011005371A (en) * 2009-06-23 2011-01-13 Arthur:Kk System for cleaning soil and groundwater
JP2012201765A (en) * 2011-03-24 2012-10-22 Daiwa House Industry Co Ltd Soil-modifying composition and method for modifying soil

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004016859A (en) * 2002-06-13 2004-01-22 Kajima Corp In situ purification method of polluted soil
JP4359174B2 (en) * 2004-03-29 2009-11-04 パナソニック株式会社 Environmental purification method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06508553A (en) * 1991-06-21 1994-09-29 プラント リサーチ ラボラトリーズ Use of metal peroxides in bioimprovement
JPH07299483A (en) * 1994-05-11 1995-11-14 Canon Inc Diffusion suppression of underground pollutant and its purifying method
JP2004075775A (en) * 2002-08-13 2004-03-11 Kurita Water Ind Ltd Detoxicating agent against halogenated aromatic compound and detoxication method
JP2006116420A (en) * 2004-10-21 2006-05-11 Japan Organo Co Ltd Method for treating chemical contaminant
JP2007014202A (en) * 2005-01-26 2007-01-25 National Institute For Agro-Environmental Science Support for holding cumulated multiple degrading bacteria and manufacturing method thereof, new bacteria, method for cleaning pollution environment and apparatus thereof
JP2008289445A (en) * 2007-05-28 2008-12-04 Tosoh Corp Petroleum-decomposing microorganism, microorganism consortium, and method for cleaning petroleum-contaminated soil by using the same
JP2010220498A (en) * 2009-03-19 2010-10-07 Ritsumeikan Method for evaluating environmental impact in bioaugmentation
JP2011005371A (en) * 2009-06-23 2011-01-13 Arthur:Kk System for cleaning soil and groundwater
JP2012201765A (en) * 2011-03-24 2012-10-22 Daiwa House Industry Co Ltd Soil-modifying composition and method for modifying soil

Also Published As

Publication number Publication date
WO2015046416A1 (en) 2015-04-02
JP6188812B2 (en) 2017-08-30

Similar Documents

Publication Publication Date Title
JP6188812B2 (en) Method for modifying contaminated soil
Haritash et al. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review
Yu et al. Natural attenuation, biostimulation and bioaugmentation on biodegradation of polycyclic aromatic hydrocarbons (PAHs) in mangrove sediments
Qin et al. Effect of salinity on the bioremediation of petroleum hydrocarbons in a saline‐alkaline soil
Jiang et al. Phenol degradation by halophilic fungal isolate JS4 and evaluation of its tolerance of heavy metals
Sahu et al. Biological perchlorate reduction in packed bed reactors using elemental sulfur
Elcey et al. Substantially enhanced degradation of hexachlorocyclohexane isomers by a microbial consortium on acclimation
Olaniran et al. Quantitative assessment of the toxic effects of heavy metals on 1, 2-dichloroethane biodegradation in co-contaminated soil under aerobic condition
Gupta et al. Biodegradation of polycyclic aromatic hydrocarbons by microbial consortium: a distinctive approach for decontamination of soil
Lee et al. Construction and evaluation of a Korean native microbial consortium for the bioremediation of diesel fuel-contaminated soil in Korea
Takáčová et al. DEGRADATION OF BTEX BY MICROALGAE Parachlorella kessleri.
Long et al. Enhanced reductive dechlorination of polychlorinated biphenyl-contaminated soil by in-vessel anaerobic composting with zero-valent iron
Tsai et al. Kinetics of xenobiotic biodegradation by the Pseudomonas sp. YATO411 strain in suspension and cell-immobilized beads
Wang et al. Enhanced bioremediation of field agricultural soils contaminated with PAHs and OCPs
Wang et al. Combination of zero-valent iron and anaerobic microorganisms immobilized in luffa sponge for degrading 1, 1, 1-trichloroethane and the relevant microbial community analysis
Zhai et al. A comparative study of bacterial and fungal‐bacterial steady‐state stages of a biofilter in gaseous toluene removal: performance and microbial community
Corseuil et al. Implications of the presence of ethanol on intrinsic bioremediation of BTX plumes in Brazil
Zhang et al. Sustained and efficient remediation of biochar immobilized with Sphingobium abikonense on phenanthrene-copper co-contaminated soil and microbial preferences of the bacteria colonized in biochar
Oh et al. Biochar enhance functional stability of ammonia-oxidizing bioprocess against toxic chemical loading
Dave et al. Copper remediation by Eichhornia spp. and sulphate-reducing bacteria
Lin et al. Effect of metals on biodegradation kinetics for methyl tert-butyl ether
Raïssa et al. Naphthalene biodegradation by microbial consortia isolated from soils in Ngaoundere (Cameroon)
Zhang et al. Enhanced bioremediation of soil from Tianjin, China, contaminated with polybrominated diethyl ethers
JP6693687B2 (en) Method of modifying contaminated soil
Zhang et al. Degradation of MTBE and TEA by a new isolate from MTBE-contaminated soil

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170801

R150 Certificate of patent or registration of utility model

Ref document number: 6188812

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250