JPWO2015025762A1 - Rubber composition and tire - Google Patents

Rubber composition and tire Download PDF

Info

Publication number
JPWO2015025762A1
JPWO2015025762A1 JP2015532821A JP2015532821A JPWO2015025762A1 JP WO2015025762 A1 JPWO2015025762 A1 JP WO2015025762A1 JP 2015532821 A JP2015532821 A JP 2015532821A JP 2015532821 A JP2015532821 A JP 2015532821A JP WO2015025762 A1 JPWO2015025762 A1 JP WO2015025762A1
Authority
JP
Japan
Prior art keywords
rubber
mass
rubber composition
farnesene
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015532821A
Other languages
Japanese (ja)
Other versions
JP6504459B2 (en
Inventor
大輔 香田
大輔 香田
恵 平田
恵 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Amyris Inc
Original Assignee
Kuraray Co Ltd
Amyris Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd, Amyris Inc filed Critical Kuraray Co Ltd
Publication of JPWO2015025762A1 publication Critical patent/JPWO2015025762A1/en
Application granted granted Critical
Publication of JP6504459B2 publication Critical patent/JP6504459B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/18Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
    • C08L23/24Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having ten or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Abstract

転がり抵抗性能、操縦安定性、機械強度、及び耐摩耗性に優れるゴム成形品を得ることができるゴム組成物、及びこのゴム組成物を少なくとも一部に用いたタイヤを提供する。合成ゴム及び天然ゴムの少なくとも1種からなるゴム成分(A)、シリカ(B)、及び官能基を導入することにより変性したファルネセンの変性重合体(C)を含み、ゴム成分(A)100質量部に対してシリカ(B)を20〜150質量部含有し、前記シリカ(B)100質量部に対して前記変性重合体(C)を2〜10質量部含有するゴム組成物。Provided are a rubber composition capable of obtaining a rubber molded article excellent in rolling resistance performance, steering stability, mechanical strength, and wear resistance, and a tire using at least a part of the rubber composition. 100 parts by mass of a rubber component (A) comprising a rubber component (A) comprising at least one of synthetic rubber and natural rubber, silica (B), and a modified polymer (C) of farnesene modified by introducing a functional group A rubber composition containing 20 to 150 parts by mass of silica (B) with respect to parts, and 2 to 10 parts by mass of the modified polymer (C) with respect to 100 parts by mass of silica (B).

Description

本発明は、ゴム成分、シリカ、及びファルネセンの重合体を含有するゴム組成物、並びにこのゴム組成物を少なくとも一部に用いたタイヤに関する。   The present invention relates to a rubber composition containing a polymer of a rubber component, silica, and farnesene, and a tire using at least a part of the rubber composition.

近年、タイヤの低燃費性能と破壊特性とを両立するため、シリカを配合したゴム組成物が検討されている。
しかしながら、シリカはゴム組成物中における分散性が低いため、加硫後のゴム組成物において十分な転がり抵抗性能、機械強度、及び耐摩耗性が得られない場合があった。
また、シリカとゴム成分とを結合し補強性を得るため、一般的にスルフィドシラン等のシランカップリング剤が使用されるが、この場合においてもシリカとゴム成分との結合が十分得られず、ゴム組成物の剛性が低い、すなわち操縦安定性が不十分である場合があった。
この問題に対し、前記各特性をバランスよく改良したゴム組成物として、特許文献1には、ゴム成分、シリカ、及び特定の分子構造を有するシランカップリング剤を所定の割合で配合したゴム組成物が提案されている。
なお、特許文献2,3には、β−ファルネセンの重合体が記載されているが、実用的な用途については十分に検討されていない。
In recent years, rubber compositions containing silica have been studied in order to achieve both low fuel consumption performance and fracture characteristics of tires.
However, since silica has low dispersibility in the rubber composition, sufficient rolling resistance performance, mechanical strength, and abrasion resistance may not be obtained in the rubber composition after vulcanization.
In addition, in order to obtain a reinforcing property by combining silica and a rubber component, a silane coupling agent such as sulfide silane is generally used. However, in this case, a sufficient bond between silica and a rubber component cannot be obtained. In some cases, the rubber composition has low rigidity, that is, steering stability is insufficient.
In order to solve this problem, Patent Document 1 discloses a rubber composition in which a rubber component, silica, and a silane coupling agent having a specific molecular structure are blended at a predetermined ratio as a rubber composition in which each of the above characteristics is improved in a balanced manner. Has been proposed.
Although Patent Documents 2 and 3 describe polymers of β-farnesene, practical use has not been sufficiently studied.

特開2009−120819号公報JP 2009-120819 A 国際公開第2010/027463号International Publication No. 2010/027463 国際公開第2010/027464号International Publication No. 2010/027464

前記特許文献1に記載されたゴム組成物によれば、転がり抵抗性能、操縦安定性、機械強度及び耐摩耗性をある程度改良できるものの、各特性について更なる向上が望まれている。
本発明は、上記の実情に鑑みてなされたものであり、転がり抵抗性能、操縦安定性、機械強度、及び耐摩耗性に優れるゴム成形品を得ることができるゴム組成物、及びこのゴム組成物を少なくとも一部に用いたタイヤを提供する。
According to the rubber composition described in Patent Document 1, although rolling resistance performance, steering stability, mechanical strength, and wear resistance can be improved to some extent, further improvements are desired for each characteristic.
The present invention has been made in view of the above circumstances, and a rubber composition capable of obtaining a rubber molded article excellent in rolling resistance performance, steering stability, mechanical strength, and wear resistance, and the rubber composition A tire using at least a part thereof is provided.

本発明者らは、鋭意検討を行った結果、特定の構造を有する共役ジエン系重合体を用いたゴム組成物の成形品が、転がり抵抗性能、操縦安定性、機械強度、及び耐摩耗性に優れることを見出し、本発明を完成した。   As a result of intensive studies, the present inventors have found that a molded product of a rubber composition using a conjugated diene polymer having a specific structure is in rolling resistance performance, steering stability, mechanical strength, and wear resistance. As a result, the present invention was completed.

すなわち、本発明は以下[1]、[2]に関する。
[1]合成ゴム及び天然ゴムの少なくとも1種からなるゴム成分(A)、シリカ(B)、及び官能基を導入することにより変性したファルネセンの変性重合体(C)(以下、「変性重合体(C)」ともいう)を含み、ゴム成分(A)100質量部に対してシリカ(B)を20〜150質量部含有し、前記シリカ(B)100質量部に対して前記変性重合体(C)を2〜10質量部含有するゴム組成物。
[2]前記ゴム組成物を少なくとも一部に用いたタイヤ。
That is, the present invention relates to [1] and [2] below.
[1] A rubber component (A) composed of at least one of synthetic rubber and natural rubber, silica (B), and a modified polymer (C) of farnesene modified by introducing a functional group (hereinafter referred to as “modified polymer”) (C) "), 20 to 150 parts by mass of silica (B) per 100 parts by mass of rubber component (A), and the modified polymer (100 parts by mass of silica (B)). A rubber composition containing 2 to 10 parts by mass of C).
[2] A tire using at least a part of the rubber composition.

本発明によれば、転がり抵抗性能、操縦安定性、機械強度、及び耐摩耗性に優れるゴム成形品を得ることができるゴム組成物、及びこのゴム組成物を少なくとも一部に用いたタイヤを提供できる。   According to the present invention, there are provided a rubber composition capable of obtaining a rubber molded article excellent in rolling resistance performance, steering stability, mechanical strength, and wear resistance, and a tire using at least a part of the rubber composition. it can.

[ゴム組成物]
本発明のゴム組成物は、合成ゴム及び天然ゴムの少なくとも1種からなるゴム成分(A)、シリカ(B)、及び官能基を導入することにより変性したファルネセンの変性重合体(C)を含み、ゴム成分(A)100質量部に対してシリカ(B)を20〜150質量部含有し、前記シリカ(B)100質量部に対して前記変性重合体(C)を2〜10質量部含有する。
[Rubber composition]
The rubber composition of the present invention includes a rubber component (A) composed of at least one of synthetic rubber and natural rubber, silica (B), and a modified polymer (C) of farnesene modified by introducing a functional group. 20 to 150 parts by mass of silica (B) is contained with respect to 100 parts by mass of the rubber component (A), and 2 to 10 parts by mass of the modified polymer (C) with respect to 100 parts by mass of the silica (B). To do.

<ゴム成分(A)>
ゴム成分(A)としては、合成ゴム及び天然ゴムの少なくとも1種からなるゴムを用いる。スチレンブタジエンゴム(以下、「SBR」ともいう)、ブタジエンゴム、イソプレンゴム、ブチルゴム、ハロゲン化ブチルゴム、エチレンプロピレンジエンゴム、ブタジエンアクリロニトリル共重合体ゴム、クロロプレンゴム、天然ゴム等のゴムを挙げることができる。中でも、SBR、ブタジエンゴム、イソプレンゴム、天然ゴムがより好ましく、SBR、天然ゴムが更に好ましい。これらのゴムは、1種を単独で用いてもよく、2種以上を併用してもよい。
<Rubber component (A)>
As the rubber component (A), rubber composed of at least one of synthetic rubber and natural rubber is used. Examples thereof include styrene butadiene rubber (hereinafter also referred to as “SBR”), butadiene rubber, isoprene rubber, butyl rubber, halogenated butyl rubber, ethylene propylene diene rubber, butadiene acrylonitrile copolymer rubber, chloroprene rubber, natural rubber, and the like. . Among these, SBR, butadiene rubber, isoprene rubber, and natural rubber are more preferable, and SBR and natural rubber are more preferable. These rubbers may be used alone or in combination of two or more.

〔合成ゴム〕
本発明においてゴム成分(A)として合成ゴムを用いる場合、SBR、ブタジエンゴム、イソプレンゴム、ブチルゴム、ハロゲン化ブチルゴム、エチレンプロピレンジエンゴム、ブタジエンアクリロニトリル共重合体ゴム、クロロプレンゴム等が好ましく、中でも、SBR、イソプレンゴム、ブタジエンゴムがより好ましく、SBRが更に好ましい。
[Synthetic rubber]
When synthetic rubber is used as the rubber component (A) in the present invention, SBR, butadiene rubber, isoprene rubber, butyl rubber, halogenated butyl rubber, ethylene propylene diene rubber, butadiene acrylonitrile copolymer rubber, chloroprene rubber and the like are preferable. , Isoprene rubber and butadiene rubber are more preferable, and SBR is more preferable.

(SBR(A−I))
SBRとしては、タイヤ用途に用いられる一般的なものを使用できるが、具体的には、スチレン含量が0.1〜70質量%のものが好ましく、5〜50質量%のものがより好ましく、15〜35質量%のものが更に好ましい。また、ビニル含量が0.1〜60質量%のものが好ましく、0.1〜55質量%のものがより好ましい。
SBRの重量平均分子量(Mw)は、10万〜250万であることが好ましく、15万〜200万であることがより好ましく、20万〜150万であることが更に好ましい。上記の範囲である場合、加工性と機械強度を両立することができる。
なお、本明細書におけるMwは、後述の実施例に記載の方法により測定した値である。
本発明において使用するSBRの示差熱分析法により求めたガラス転移温度(Tg)は、−95〜0℃の範囲内であることが好ましく−95〜−5℃の範囲内であることがより好ましい。Tgを上記範囲にすることによって、粘度が高くなるのを抑えることができ、取り扱いが容易になる。
(SBR (AI))
As the SBR, a general one used for a tire can be used. Specifically, the styrene content is preferably 0.1 to 70% by mass, more preferably 5 to 50% by mass, and 15 More preferred is ~ 35% by mass. Moreover, the thing whose vinyl content is 0.1-60 mass% is preferable, and a 0.1-55 mass% thing is more preferable.
The weight average molecular weight (Mw) of SBR is preferably 100,000 to 2,500,000, more preferably 150,000 to 2,000,000, and even more preferably 200,000 to 1,500,000. When it is in the above range, both workability and mechanical strength can be achieved.
In addition, Mw in this specification is the value measured by the method as described in the below-mentioned Example.
The glass transition temperature (Tg) obtained by differential thermal analysis of SBR used in the present invention is preferably in the range of −95 to 0 ° C., more preferably in the range of −95 to −5 ° C. . By setting Tg within the above range, it is possible to suppress an increase in viscosity and to facilitate handling.

≪SBRの製造方法≫
本発明において用いることができるSBRは、スチレンとブタジエンとを共重合して得られる。SBRの製造方法について特に制限はなく、乳化重合法、溶液重合法、気相重合法、バルク重合法のいずれも用いることができ、特に乳化重合法、溶液重合法が好ましい。
≪SBR manufacturing method≫
The SBR that can be used in the present invention is obtained by copolymerizing styrene and butadiene. There is no restriction | limiting in particular about the manufacturing method of SBR, and any of an emulsion polymerization method, a solution polymerization method, a gas phase polymerization method, and a bulk polymerization method can be used, and an emulsion polymerization method and a solution polymerization method are especially preferable.

(i)乳化重合スチレンブタジエンゴム(E−SBR)
E−SBRは、通常の乳化重合法により製造でき、例えば、所定量のスチレン及びブタジエン単量体を乳化剤の存在下に乳化分散し、ラジカル重合開始剤により乳化重合する。
乳化剤としては、例えば、炭素数10以上の長鎖脂肪酸塩又はロジン酸塩が用いられる。具体例としては、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、オレイン酸、ステアリン酸等の脂肪酸のカリウム塩又はナトリウム塩が挙げられる。
分散剤としては通常、水が使用され、重合時の安定性が阻害されない範囲で、メタノール、エタノール等の水溶性有機溶媒を含んでいてもよい。
ラジカル重合開始剤としては、例えば、過硫酸アンモニウムや過硫酸カリウム等の過硫酸塩、有機過酸化物、過酸化水素等が挙げられる。
得られるE−SBRの分子量を調整するため、連鎖移動剤を使用することもできる。連鎖移動剤としては、例えば、t−ドデシルメルカプタン、n−ドデシルメルカプタン等のメルカプタン類;四塩化炭素、チオグリコール酸、ジテルペン、ターピノーレン、γ−テルピネン、α−メチルスチレンダイマー等が挙げられる。
(I) Emulsion polymerization styrene butadiene rubber (E-SBR)
E-SBR can be produced by an ordinary emulsion polymerization method. For example, a predetermined amount of styrene and butadiene monomers are emulsified and dispersed in the presence of an emulsifier, and emulsion polymerization is performed using a radical polymerization initiator.
As the emulsifier, for example, a long chain fatty acid salt or rosin acid salt having 10 or more carbon atoms is used. Specific examples include potassium salts or sodium salts of fatty acids such as capric acid, lauric acid, myristic acid, palmitic acid, oleic acid and stearic acid.
As the dispersant, water is usually used, and it may contain a water-soluble organic solvent such as methanol and ethanol as long as the stability during polymerization is not inhibited.
Examples of the radical polymerization initiator include persulfates such as ammonium persulfate and potassium persulfate, organic peroxides, hydrogen peroxide, and the like.
In order to adjust the molecular weight of the obtained E-SBR, a chain transfer agent can also be used. Examples of the chain transfer agent include mercaptans such as t-dodecyl mercaptan and n-dodecyl mercaptan; carbon tetrachloride, thioglycolic acid, diterpene, terpinolene, γ-terpinene, α-methylstyrene dimer, and the like.

乳化重合の温度は、使用するラジカル重合開始剤の種類によって適宜選択できるが、通常、0〜100℃が好ましく、0〜60℃がより好ましい。重合様式は、連続重合、回分重合のいずれでもよい。重合反応は、重合停止剤の添加により停止できる。
重合停止剤としては、例えば、イソプロピルヒドロキシルアミン、ジエチルヒドロキシルアミン、ヒドロキシルアミン等のアミン化合物;ヒドロキノンやベンゾキノン等のキノン系化合物、亜硝酸ナトリウム等が挙げられる。
重合反応停止後、必要に応じて老化防止剤を添加してもよい。重合反応停止後、得られたラテックスから必要に応じて未反応単量体を除去し、次いで、塩化ナトリウム、塩化カルシウム、塩化カリウム等の塩を凝固剤とし、必要に応じて硝酸、硫酸等の酸を添加して凝固系のpHを所定の値に調整しながら重合体を凝固させた後、分散溶媒を分離することによって重合体をクラムとして回収できる。クラムを水洗、次いで脱水後、バンドドライヤー等で乾燥することで、E−SBRが得られる。なお、凝固の際に、必要に応じて予めラテックスと乳化分散液にした伸展油とを混合し、油展ゴムとして回収してもよい。
E−SBRの市販品としては、JSR株式会社製、油展スチレンブタジエンゴム「JSR1723」等が挙げられる。
Although the temperature of emulsion polymerization can be suitably selected according to the kind of radical polymerization initiator to be used, 0-100 degreeC is preferable normally and 0-60 degreeC is more preferable. The polymerization mode may be either continuous polymerization or batch polymerization. The polymerization reaction can be stopped by adding a polymerization terminator.
Examples of the polymerization terminator include amine compounds such as isopropylhydroxylamine, diethylhydroxylamine, and hydroxylamine; quinone compounds such as hydroquinone and benzoquinone, and sodium nitrite.
After termination of the polymerization reaction, an antioxidant may be added as necessary. After the polymerization reaction is stopped, unreacted monomers are removed from the obtained latex as necessary, and then a salt such as sodium chloride, calcium chloride, potassium chloride is used as a coagulant, and nitric acid, sulfuric acid, etc. The polymer can be recovered as crumbs by adding the acid and coagulating the polymer while adjusting the pH of the coagulation system to a predetermined value and then separating the dispersion solvent. E-SBR can be obtained by washing the crumb with water, followed by dehydration and drying with a band dryer or the like. In addition, at the time of coagulation, if necessary, a latex and an extending oil that has been made into an emulsified dispersion may be mixed and recovered as an oil-extended rubber.
Examples of commercially available E-SBR include oil-extended styrene butadiene rubber “JSR1723” manufactured by JSR Corporation.

(ii)溶液重合スチレンブタジエンゴム(S−SBR)
S−SBRは、通常の溶液重合法により製造でき、例えば、溶媒中でアニオン重合可能な活性金属を使用して、所望により極性化合物の存在下、スチレン及びブタジエンを重合する。
アニオン重合可能な活性金属としては、例えば、リチウム、ナトリウム、カリウム等のアルカリ金属;ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム等のアルカリ土類金属;ランタン、ネオジム等のランタノイド系希土類金属等が挙げられる。中でもアルカリ金属及びアルカリ土類金属が好ましく、アルカリ金属がより好ましい。更にアルカリ金属の中でも、有機アルカリ金属化合物がより好ましく用いられる。
溶媒としては、例えば、n−ブタン、n−ペンタン、イソペンタン、n−ヘキサン、n−ヘプタン、イソオクタン等の脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロペンタン等の脂環式炭化水素;ベンゼン、トルエン等の芳香族炭化水素等が挙げられる。これらの溶媒は、単量体濃度が1〜50質量%となる範囲で用いることが好ましい。
(Ii) Solution-polymerized styrene butadiene rubber (S-SBR)
S-SBR can be produced by an ordinary solution polymerization method. For example, an active metal capable of anion polymerization in a solvent is used, and styrene and butadiene are polymerized in the presence of a polar compound as desired.
Examples of the anion-polymerizable active metal include alkali metals such as lithium, sodium and potassium; alkaline earth metals such as beryllium, magnesium, calcium, strontium and barium; lanthanoid rare earth metals such as lanthanum and neodymium . Of these, alkali metals and alkaline earth metals are preferable, and alkali metals are more preferable. Further, among alkali metals, organic alkali metal compounds are more preferably used.
Examples of the solvent include aliphatic hydrocarbons such as n-butane, n-pentane, isopentane, n-hexane, n-heptane and isooctane; alicyclic hydrocarbons such as cyclopentane, cyclohexane and methylcyclopentane; benzene, And aromatic hydrocarbons such as toluene. These solvents are preferably used in a range where the monomer concentration is 1 to 50% by mass.

有機アルカリ金属化合物としては、例えば、n−ブチルリチウム、sec−ブチルリチウム、t−ブチルリチウム、ヘキシルリチウム、フェニルリチウム、スチルベンリチウム等の有機モノリチウム化合物;ジリチオメタン、1,4−ジリチオブタン、1,4−ジリチオ−2−エチルシクロヘキサン、1,3,5−トリリチオベンゼン等の多官能性有機リチウム化合物;ナトリウムナフタレン、カリウムナフタレン等が挙げられる。中でも有機リチウム化合物が好ましく、有機モノリチウム化合物がより好ましい。有機アルカリ金属化合物の使用量は、要求されるS−SBRの分子量によって適宜決められる。
有機アルカリ金属化合物は、ジブチルアミン、ジヘキシルアミン、ジベンジルアミン等の第2級アミンと反応させて、有機アルカリ金属アミドとして使用することもできる。
極性化合物としては、アニオン重合において、反応を失活させず、ブタジエン部位のミクロ構造やスチレンの共重合体鎖中の分布を調整するために通常用いられるものであれば特に制限はなく、例えば、ジブチルエーテル、テトラヒドロフラン、エチレングリコールジエチルエーテル等のエーテル化合物;テトラメチルエチレンジアミン、トリメチルアミン等の3級アミン;アルカリ金属アルコキシド、ホスフィン化合物等が挙げられる。
Examples of the organic alkali metal compound include organic monolithium compounds such as n-butyllithium, sec-butyllithium, t-butyllithium, hexyllithium, phenyllithium, and stilbenelithium; dilithiomethane, 1,4-dilithiobutane, 1,4 -Polyfunctional organic lithium compounds such as dilithio-2-ethylcyclohexane and 1,3,5-trilithiobenzene; sodium naphthalene, potassium naphthalene and the like. Among these, an organic lithium compound is preferable, and an organic monolithium compound is more preferable. The amount of the organic alkali metal compound used is appropriately determined depending on the required molecular weight of S-SBR.
The organic alkali metal compound can also be used as an organic alkali metal amide by reacting with a secondary amine such as dibutylamine, dihexylamine, and dibenzylamine.
The polar compound is not particularly limited as long as it is usually used for adjusting the microstructure of the butadiene site and the distribution in the copolymer chain of styrene without deactivating the reaction in anionic polymerization. Examples include ether compounds such as dibutyl ether, tetrahydrofuran and ethylene glycol diethyl ether; tertiary amines such as tetramethylethylenediamine and trimethylamine; alkali metal alkoxides and phosphine compounds.

重合反応の温度は、通常、−80〜150℃、好ましくは0〜100℃、更に好ましくは30〜90℃の範囲である。重合様式は、回分式あるいは連続式のいずれでもよい。また、スチレン及びブタジエンのランダム共重合性を向上させるため、重合系中のスチレン及びブタジエンの組成比が特定範囲になるように、反応液中にスチレン及びブタジエンを連続的あるいは断続的に供給することが好ましい。
重合反応は、重合停止剤としてメタノール、イソプロパノール等のアルコールを添加して、反応を停止できる。重合停止剤を添加する前に、重合活性末端と反応し得る四塩化錫、テトラクロロシラン、テトラメトキシシラン、テトラグリシジル−1,3−ビスアミノメチルシクロヘキサン、2,4−トリレンジイソシアネート等のカップリング剤や、4,4’−ビス(ジエチルアミノ)ベンゾフェノン、N−ビニルピロリドン等の重合末端変性剤を添加してもよい。重合反応停止後の重合溶液は、直接乾燥やスチームストリッピング等により溶媒を分離して、目的のS−SBRを回収できる。なお、溶媒を除去する前に、予め重合溶液と伸展油とを混合し、油展ゴムとして回収してもよい。
The temperature of the polymerization reaction is usually in the range of −80 to 150 ° C., preferably 0 to 100 ° C., more preferably 30 to 90 ° C. The polymerization mode may be either a batch type or a continuous type. In order to improve the random copolymerization of styrene and butadiene, styrene and butadiene are continuously or intermittently supplied into the reaction solution so that the composition ratio of styrene and butadiene in the polymerization system falls within a specific range. Is preferred.
The polymerization reaction can be stopped by adding an alcohol such as methanol or isopropanol as a polymerization terminator. Coupling of tin tetrachloride, tetrachlorosilane, tetramethoxysilane, tetraglycidyl-1,3-bisaminomethylcyclohexane, 2,4-tolylene diisocyanate, etc. that can react with the polymerization active terminal before adding the polymerization terminator An agent, or a polymerization terminal modifier such as 4,4′-bis (diethylamino) benzophenone or N-vinylpyrrolidone may be added. The polymerization solution after termination of the polymerization reaction can recover the target S-SBR by separating the solvent by direct drying, steam stripping or the like. In addition, before removing the solvent, the polymerization solution and the extending oil may be mixed in advance and recovered as an oil-extended rubber.

(iii)変性スチレンブタジエンゴム(変性SBR)
本発明においては、SBRに官能基が導入された変性SBRを用いてもよい。官能基としては、例えば、アミノ基、アルコキシシリル基、ヒドロキシ基、エポキシ基、カルボキシル基等が挙げられる。
変性SBRの製造方法としては、例えば、重合停止剤を添加する前に、重合活性末端と反応し得る四塩化錫、テトラクロロシラン、ジメチルジクロロシラン、ジメチルジエトキシシラン、テトラメトキシシラン、テトラエトキシシラン、3−アミノプロピルトリエトキシシラン、テトラグリシジル−1,3−ビスアミノメチルシクロヘキサン、2,4−トリレンジイソシアネート等のカップリング剤や、4,4’−ビス(ジエチルアミノ)ベンゾフェノン、N−ビニルピロリドン等の重合末端変性剤、又は特開2011−132298号公報に記載のその他の変性剤を添加する方法が挙げられる。
この変性SBRにおいて、官能基が導入される重合体の位置については重合末端であってもよく、ポリマー鎖の側鎖であってもよい。
(Iii) Modified styrene butadiene rubber (modified SBR)
In the present invention, modified SBR in which a functional group is introduced into SBR may be used. Examples of the functional group include an amino group, an alkoxysilyl group, a hydroxy group, an epoxy group, and a carboxyl group.
As a method for producing the modified SBR, for example, before adding a polymerization terminator, tin tetrachloride, tetrachlorosilane, dimethyldichlorosilane, dimethyldiethoxysilane, tetramethoxysilane, tetraethoxysilane, which can react with a polymerization active terminal, Coupling agents such as 3-aminopropyltriethoxysilane, tetraglycidyl-1,3-bisaminomethylcyclohexane, 2,4-tolylene diisocyanate, 4,4′-bis (diethylamino) benzophenone, N-vinylpyrrolidone, etc. And a method of adding other modifiers described in JP-A-2011-132298.
In this modified SBR, the position of the polymer into which the functional group is introduced may be the polymerization terminal or the side chain of the polymer chain.

(イソプレンゴム(A−II))
イソプレンゴムとしては、例えば、四ハロゲン化チタン−トリアルキルアルミニウム系、ジエチルアルミニウムクロライド−コバルト系、トリアルキルアルミニウム−三弗化ホウ素−ニッケル系、ジエチルアルミニウムクロライド−ニッケル系等のチーグラー系触媒;トリエチルアルミニウム−有機酸ネオジウム−ルイス酸系等のランタノイド系希土類金属触媒、又はS−SBRと同様に有機アルカリ金属化合物を用いて重合された、市販のイソプレンゴムを用いることができる。チーグラー系触媒により重合されたイソプレンゴムが、シス体含量が高く好ましい。また、ランタノイド系希土類金属触媒を用いて得られる超高シス体含量のイソプレンゴムを用いてもよい。
(Isoprene rubber (A-II))
Examples of the isoprene rubber include Ziegler catalysts such as titanium tetrahalide-trialkylaluminum, diethylaluminum chloride-cobalt, trialkylaluminum-boron trifluoride-nickel, and diethylaluminum chloride-nickel; -Commercially available isoprene rubber polymerized by using a lanthanoid rare earth metal catalyst such as an organic acid neodymium-Lewis acid type or an organic alkali metal compound in the same manner as S-SBR can be used. Isoprene rubber polymerized with a Ziegler catalyst is preferred because of its high cis isomer content. Further, isoprene rubber having an ultra-high cis body content obtained using a lanthanoid rare earth metal catalyst may be used.

イソプレンゴムのビニル含量は好ましくは50質量%以下、より好ましくは40質量%以下、更に好ましくは30質量%以下である。ビニル含量が50質量%を超えると転がり抵抗性能が悪化する傾向にある。ビニル含量の下限は特に限定されない。またガラス転移温度はビニル含量によって変化するが、−20℃以下であることが好ましく、−30℃以下であることがより好ましい。
イソプレンゴムの重量平均分子量(Mw)は9万〜200万であることが好ましく、15万〜150万であることがより好ましい。Mwが上記範囲にある場合、加工性と機械強度が良好となる。
上記イソプレンゴムは、その一部が多官能型変性剤、例えば、四塩化錫、四塩化珪素、エポキシ基を分子内に有するアルコキシシラン、又はアミノ基含有アルコキシシランのような変性剤を用いることにより分岐構造又は極性官能基を有していてもよい。
The vinyl content of the isoprene rubber is preferably 50% by mass or less, more preferably 40% by mass or less, and still more preferably 30% by mass or less. When the vinyl content exceeds 50% by mass, the rolling resistance performance tends to deteriorate. The lower limit of the vinyl content is not particularly limited. The glass transition temperature varies depending on the vinyl content, but is preferably −20 ° C. or lower, and more preferably −30 ° C. or lower.
The weight average molecular weight (Mw) of isoprene rubber is preferably 90,000 to 2,000,000, and more preferably 150,000 to 1,500,000. When Mw is in the above range, workability and mechanical strength are good.
The isoprene rubber is partly composed of a polyfunctional modifier such as tin tetrachloride, silicon tetrachloride, an alkoxysilane having an epoxy group in the molecule, or an amino group-containing alkoxysilane. It may have a branched structure or a polar functional group.

(ブタジエンゴム(A−III))
ブタジエンゴムとしては、例えば、四ハロゲン化チタン−トリアルキルアルミニウム系、ジエチルアルミニウムクロライド−コバルト系、トリアルキルアルミニウム−三弗化ホウ素−ニッケル系、ジエチルアルミニウムクロライド−ニッケル系等のチーグラー系触媒;トリエチルアルミニウム−有機酸ネオジム−ルイス酸系等のランタノイド系希土類金属触媒、又はS−SBRと同様に有機アルカリ金属化合物を用いて重合された、市販のブタジエンゴムを用いることができる。チーグラー系触媒により重合されたブタジエンゴムが、シス体含量が高く好ましい。また、ランタノイド系希土類金属触媒を用いて得られる超高シス体含量のブタジエンゴムを用いてもよい。
ブタジエンゴムのビニル含量は、好ましくは50質量%以下、より好ましくは40質量%以下、更に好ましくは30質量%以下である。ビニル含量が50質量%を超えると転がり抵抗性能が悪化する傾向にある。ビニル含量の下限は特に限定されない。またガラス転移温度はビニル含量によって変化するが、−40℃以下であることが好ましく、−50℃以下であることがより好ましい。
ブタジエンゴムの重量平均分子量(Mw)は9万〜200万であることが好ましく、15万〜150万であることがより好ましい。Mwが上記範囲にある場合、加工性と機械強度が良好となる。
上記ブタジエンゴムは、その一部が多官能型変性剤、例えば、四塩化錫、四塩化珪素、エポキシ基を分子内に有するアルコキシシラン、又はアミノ基含有アルコキシシランのような変性剤を用いることにより分岐構造又は極性官能基を有していてもよい。
(Butadiene rubber (A-III))
Examples of the butadiene rubber include Ziegler catalysts such as titanium tetrahalide-trialkylaluminum, diethylaluminum chloride-cobalt, trialkylaluminum-boron trifluoride-nickel, and diethylaluminum chloride-nickel; -Commercially available butadiene rubber polymerized using a lanthanoid rare earth metal catalyst such as organic acid neodymium-Lewis acid or the like, or an organic alkali metal compound in the same manner as S-SBR can be used. Butadiene rubber polymerized with a Ziegler catalyst is preferred because of its high cis isomer content. Moreover, you may use the butadiene rubber of the ultra high cis body content obtained using a lanthanoid type rare earth metal catalyst.
The vinyl content of the butadiene rubber is preferably 50% by mass or less, more preferably 40% by mass or less, and still more preferably 30% by mass or less. When the vinyl content exceeds 50% by mass, the rolling resistance performance tends to deteriorate. The lower limit of the vinyl content is not particularly limited. The glass transition temperature varies depending on the vinyl content, but is preferably −40 ° C. or lower, and more preferably −50 ° C. or lower.
The weight average molecular weight (Mw) of the butadiene rubber is preferably 90,000 to 2,000,000, and more preferably 150,000 to 1,500,000. When Mw is in the above range, workability and mechanical strength are good.
A part of the butadiene rubber is a polyfunctional type modifier such as tin tetrachloride, silicon tetrachloride, an alkoxysilane having an epoxy group in the molecule, or an amino group-containing alkoxysilane. It may have a branched structure or a polar functional group.

SBR、イソプレンゴム、及びブタジエンゴムの少なくとも1種と共に、ブチルゴム、ハロゲン化ブチルゴム、エチレンプロピレンジエンゴム、ブタジエンアクリロニトリル共重合体ゴム、クロロプレンゴム等を1種又は2種以上を使用することができる。また、これらの製造方法は特に限定されず、市販されているものを使用できる。
本発明において、SBR、イソプレンゴム、ブタジエンゴム及びその他の合成ゴムと後述するシリカ(B)、ファルネセンの変性重合体(C)を併用することで、転がり抵抗性能や操縦安定性、機械強度、耐摩耗性を改良できる。
2種以上の合成ゴムを混合して用いる場合、その組み合わせは本発明の効果を損なわない範囲で任意に選択でき、またその組み合わせによって、転がり抵抗性能や耐摩耗性等の物性値を調整できる。
Along with at least one of SBR, isoprene rubber, and butadiene rubber, one or more of butyl rubber, halogenated butyl rubber, ethylene propylene diene rubber, butadiene acrylonitrile copolymer rubber, chloroprene rubber and the like can be used. Moreover, these manufacturing methods are not specifically limited, What is marketed can be used.
In the present invention, by using SBR, isoprene rubber, butadiene rubber and other synthetic rubbers together with silica (B) and farnesene modified polymer (C) described later, rolling resistance performance, steering stability, mechanical strength, Abrasion can be improved.
When two or more kinds of synthetic rubbers are mixed and used, the combination can be arbitrarily selected within a range not impairing the effects of the present invention, and the physical properties such as rolling resistance performance and wear resistance can be adjusted by the combination.

〔天然ゴム〕
ゴム成分(A)で用いる天然ゴムとしては、例えば、SMR、SIR、STR等のTSRや、RSS等のタイヤ工業において一般的に用いられる天然ゴム、高純度天然ゴム、エポキシ化天然ゴム、水酸基化天然ゴム、水素添加天然ゴム、グラフト化天然ゴム等の改質天然ゴムが挙げられる。中でも、品質のばらつきが少ない点、及び入手容易性の点から、SMR20、STR20やRSS#3が好ましい。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
なお、ゴム成分(A)に用いるゴムの製造方法に特に制限はなく、市販のものを用いてもよい。
本発明において、ゴム組成物中のゴム成分(A)の含有量は、20〜99.9質量%が好ましく、25〜80質量%がより好ましく、30〜70質量%が更に好ましい。
本発明において、天然ゴム、後述するシリカ(B)、及びファルネセンの変性重合体(C)を併用することで、転がり抵抗性能や操縦安定性、機械強度、耐摩耗性を改良できる。
[Natural rubber]
Examples of the natural rubber used in the rubber component (A) include TSR such as SMR, SIR, and STR, natural rubber generally used in the tire industry such as RSS, high-purity natural rubber, epoxidized natural rubber, and hydroxylation. Examples thereof include modified natural rubber such as natural rubber, hydrogenated natural rubber, and grafted natural rubber. Among these, SMR20, STR20, and RSS # 3 are preferable from the viewpoint of little variation in quality and easy availability. These may be used alone or in combination of two or more.
In addition, there is no restriction | limiting in particular in the manufacturing method of the rubber | gum used for a rubber component (A), You may use a commercially available thing.
In this invention, 20-99.9 mass% is preferable, as for content of the rubber component (A) in a rubber composition, 25-80 mass% is more preferable, and 30-70 mass% is still more preferable.
In the present invention, rolling resistance performance, steering stability, mechanical strength, and wear resistance can be improved by using natural rubber, silica (B), which will be described later, and a modified polymer (C) of farnesene.

<シリカ(B)>
シリカ(B)としては、例えば、湿式シリカ(含水ケイ酸)、乾式シリカ(無水ケイ酸)、ケイ酸カルシウム、ケイ酸アルミニウム等が挙げられる。中でも、機械強度及び耐摩耗性を一層向上させる観点から、湿式シリカが好ましい。これらは、1種を単独で用いてもよく、2種以上を併用してもよい。
シリカの平均粒径は、得られるゴム組成物の加工性、転がり抵抗性能、機械強度、及び耐摩耗性を向上する観点から、0.5〜200nmが好ましく、5〜150nmがより好ましく、10〜100nmが更に好ましい。
なお、シリカの平均粒径は、透過型電子顕微鏡により粒子の直径を測定して、その平均値を算出することにより求めることができる。
シリカ(B)の含有量は、転がり抵抗性能、機械強度、及び耐摩耗性を向上させる観点から、ゴム成分(A)100質量部に対して20〜150質量部であり、30〜130質量部が好ましく、40〜120質量部がより好ましい。
<Silica (B)>
Examples of the silica (B) include wet silica (hydrous silicic acid), dry silica (anhydrous silicic acid), calcium silicate, aluminum silicate and the like. Among these, wet silica is preferable from the viewpoint of further improving mechanical strength and wear resistance. These may be used alone or in combination of two or more.
The average particle diameter of silica is preferably from 0.5 to 200 nm, more preferably from 5 to 150 nm, from the viewpoint of improving processability, rolling resistance performance, mechanical strength, and wear resistance of the rubber composition obtained. 100 nm is more preferable.
The average particle diameter of silica can be determined by measuring the diameter of the particles with a transmission electron microscope and calculating the average value.
The content of silica (B) is 20 to 150 parts by mass and 30 to 130 parts by mass with respect to 100 parts by mass of the rubber component (A) from the viewpoint of improving rolling resistance performance, mechanical strength, and wear resistance. Is preferable, and 40-120 mass parts is more preferable.

<官能基を導入することにより変性したファルネセンの変性重合体(C)>
本発明のゴム組成物は、官能基を導入することにより変性したファルネセンの変性重合体(C)(変性重合体(C))を含有する。本発明においては、ゴム成分(A)、シリカ(B)、及び変性重合体(C)を併用するため、転がり抵抗性能、操縦安定性、機械強度、及び耐摩耗性に優れるゴム成形品を与えることができるゴム組成物を得ることができる。
本発明における変性重合体(C)を構成するファルネセンとしては、α−ファルネセン及び式(I)で示されるβ−ファルネセンの少なくとも1種を用いることができ、変性重合体の製造容易性の観点、転がり抵抗性能向上の観点から、β−ファルネセンを用いることが好ましい。
<Modified polymer of farnesene modified by introducing functional group (C)>
The rubber composition of the present invention contains a modified polymer (C) (modified polymer (C)) of farnesene modified by introducing a functional group. In the present invention, since the rubber component (A), silica (B), and modified polymer (C) are used in combination, a rubber molded product excellent in rolling resistance performance, steering stability, mechanical strength, and wear resistance is provided. A rubber composition that can be obtained can be obtained.
As farnesene constituting the modified polymer (C) in the present invention, at least one of α-farnesene and β-farnesene represented by the formula (I) can be used, from the viewpoint of ease of production of the modified polymer, From the viewpoint of improving rolling resistance performance, it is preferable to use β-farnesene.

Figure 2015025762
Figure 2015025762

前記変性重合体(C)は、例えば、ファルネセンの重合体(以下、「未変性重合体」ともいう)を製造し、この未変性重合体に官能基を導入することにより製造することができる。   The modified polymer (C) can be produced, for example, by producing a farnesene polymer (hereinafter also referred to as “unmodified polymer”) and introducing a functional group into the unmodified polymer.

(未変性重合体の製造方法)
前記未変性の重合体は、乳化重合法、又は国際公開第2010/027463号、国際公開第2010/027464号に記載の方法等により製造することができる。その中でも、乳化重合法又は溶液重合法が好ましく、溶液重合法が更に好ましい。
(Method for producing unmodified polymer)
The unmodified polymer can be produced by an emulsion polymerization method, a method described in International Publication No. 2010/027463, International Publication No. 2010/027464, or the like. Among these, an emulsion polymerization method or a solution polymerization method is preferable, and a solution polymerization method is more preferable.

未変性重合体を得るための乳化重合法としては公知の方法を適用できる。例えば、所定量のファルネセン単量体を乳化剤の存在下に乳化分散し、ラジカル重合開始剤により乳化重合する。
乳化剤としては、例えば、炭素数10以上の長鎖脂肪酸塩又はロジン酸塩が用いられる。具体例としては、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、オレイン酸、ステアリン酸等の脂肪酸のカリウム塩又はナトリウム塩が挙げられる。
分散剤としては通常、水が使用され、重合時の安定性が阻害されない範囲で、メタノール、エタノール等の水溶性有機溶媒を含んでいてもよい。
ラジカル重合開始剤としては、例えば、過硫酸アンモニウムや過硫酸カリウムのような過硫酸塩、有機過酸化物、過酸化水素等が挙げられる。
得られる未変性重合体の分子量を調整するため、連鎖移動剤を使用することもできる。連鎖移動剤としては、例えば、t−ドデシルメルカプタン、n−ドデシルメルカプタン等のメルカプタン類;四塩化炭素、チオグリコール酸、ジテルペン、ターピノーレン、γ−テルピネン、α−メチルスチレンダイマー等が挙げられる。
乳化重合温度は、使用するラジカル重合開始剤の種類によって適宜選択できるが、通常、0〜100℃が好ましく、0〜60℃がより好ましい。重合様式は、連続重合、回分重合のいずれでもよい。重合反応は、重合停止剤の添加により停止できる。
As an emulsion polymerization method for obtaining an unmodified polymer, a known method can be applied. For example, a predetermined amount of farnesene monomer is emulsified and dispersed in the presence of an emulsifier, and emulsion polymerization is performed using a radical polymerization initiator.
As the emulsifier, for example, a long chain fatty acid salt or rosin acid salt having 10 or more carbon atoms is used. Specific examples include potassium salts or sodium salts of fatty acids such as capric acid, lauric acid, myristic acid, palmitic acid, oleic acid and stearic acid.
As the dispersant, water is usually used, and it may contain a water-soluble organic solvent such as methanol and ethanol as long as the stability during polymerization is not inhibited.
Examples of the radical polymerization initiator include persulfates such as ammonium persulfate and potassium persulfate, organic peroxides, and hydrogen peroxide.
A chain transfer agent can also be used to adjust the molecular weight of the resulting unmodified polymer. Examples of the chain transfer agent include mercaptans such as t-dodecyl mercaptan and n-dodecyl mercaptan; carbon tetrachloride, thioglycolic acid, diterpene, terpinolene, γ-terpinene, α-methylstyrene dimer, and the like.
The emulsion polymerization temperature can be appropriately selected depending on the type of the radical polymerization initiator to be used, but is usually preferably 0 to 100 ° C, more preferably 0 to 60 ° C. The polymerization mode may be either continuous polymerization or batch polymerization. The polymerization reaction can be stopped by adding a polymerization terminator.

重合停止剤としては、例えば、イソプロピルヒドロキシルアミン、ジエチルヒドロキシルアミン、ヒドロキシルアミン等のアミン化合物、ヒドロキノンやベンゾキノン等のキノン系化合物、亜硝酸ナトリウム等が挙げられる。
重合反応停止後、必要に応じて老化防止剤を添加してもよい。重合反応停止後、得られたラテックスから必要に応じて未反応単量体を除去し、次いで、塩化ナトリウム、塩化カルシウム、塩化カリウム等の塩を凝固剤とし、必要に応じて硝酸、硫酸等の酸を添加して凝固系のpHを所定の値に調整しながら、未変性重合体を凝固させた後、分散溶媒を分離することによって未変性重合体を回収する。次いで水洗、及び脱水後、乾燥することで、未変性重合体が得られる。なお、凝固の際に、必要に応じて予めラテックスと乳化分散液にした伸展油とを混合し、油展の未変性重合体として回収してもよい。
Examples of the polymerization terminator include amine compounds such as isopropylhydroxylamine, diethylhydroxylamine, and hydroxylamine, quinone compounds such as hydroquinone and benzoquinone, and sodium nitrite.
After termination of the polymerization reaction, an antioxidant may be added as necessary. After the polymerization reaction is stopped, unreacted monomers are removed from the obtained latex as necessary, and then a salt such as sodium chloride, calcium chloride, potassium chloride is used as a coagulant, and nitric acid, sulfuric acid, etc. The unmodified polymer is coagulated while adjusting the pH of the coagulation system to a predetermined value by adding an acid, and then the unmodified polymer is recovered by separating the dispersion solvent. Next, after washing with water and dehydration, drying is performed to obtain an unmodified polymer. In addition, during the coagulation, if necessary, latex and an extending oil that has been made into an emulsified dispersion may be mixed and recovered as an oil-modified unmodified polymer.

未変性重合体を得るための溶液重合法としては、公知の方法を適用できる。例えば、溶媒中で、チーグラー系触媒、メタロセン系触媒、アニオン重合可能な活性金属を使用して、所望により極性化合物の存在下、ファルネセン単量体を重合する。
アニオン重合可能な活性金属としては、例えば、リチウム、ナトリウム、カリウム等のアルカリ金属;ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム等のアルカリ土類金属;ランタン、ネオジム等のランタノイド系希土類金属等が挙げられる。中でもアルカリ金属及びアルカリ土類金属が好ましく、アルカリ金属がより好ましい。更にアルカリ金属の中でも、有機アルカリ金属化合物がより好ましく用いられる。
溶媒としては、例えば、n−ブタン、n−ペンタン、イソペンタン、n−ヘキサン、n−ヘプタン、イソオクタン等の脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロペンタン等の脂環式炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素等が挙げられる。
有機アルカリ金属化合物としては、例えば、メチルリチウム、エチルリチウム、n−ブチルリチウム、sec−ブチルリチウム、t−ブチルリチウム、ヘキシルリチウム、フェニルリチウム、スチルベンリチウム等の有機モノリチウム化合物;ジリチオメタン、ジリチオナフタレン、1,4−ジリチオブタン、1,4−ジリチオ−2−エチルシクロヘキサン、1,3,5−トリリチオベンゼン等の多官能性有機リチウム化合物;ナトリウムナフタレン、カリウムナフタレン等が挙げられる。中でも有機リチウム化合物が好ましく、有機モノリチウム化合物がより好ましい。有機アルカリ金属化合物の使用量は要求されるファルネセン重合体の分子量によって適宜決められるが、ファルネセン100質量部に対して0.01〜3質量部が好ましい。
有機アルカリ金属化合物はまた、ジブチルアミン、ジヘキシルアミン、ジベンジルアミン等の第2級アミンと反応させて、有機アルカリ金属アミドとして使用することもできる。
As a solution polymerization method for obtaining an unmodified polymer, a known method can be applied. For example, a farnesene monomer is polymerized in a solvent using a Ziegler catalyst, a metallocene catalyst, and an anion-polymerizable active metal, if desired, in the presence of a polar compound.
Examples of the anion-polymerizable active metal include alkali metals such as lithium, sodium and potassium; alkaline earth metals such as beryllium, magnesium, calcium, strontium and barium; lanthanoid rare earth metals such as lanthanum and neodymium . Of these, alkali metals and alkaline earth metals are preferable, and alkali metals are more preferable. Further, among alkali metals, organic alkali metal compounds are more preferably used.
Examples of the solvent include aliphatic hydrocarbons such as n-butane, n-pentane, isopentane, n-hexane, n-heptane and isooctane; alicyclic hydrocarbons such as cyclopentane, cyclohexane and methylcyclopentane; benzene, Aromatic hydrocarbons such as toluene and xylene are exemplified.
Examples of the organic alkali metal compound include organic monolithium compounds such as methyllithium, ethyllithium, n-butyllithium, sec-butyllithium, tert-butyllithium, hexyllithium, phenyllithium, stilbenelithium; dilithiomethane, dilithionaphthalene Polyfunctional organolithium compounds such as 1,4-dilithiobutane, 1,4-dilithio-2-ethylcyclohexane, 1,3,5-trilithiobenzene; sodium naphthalene, potassium naphthalene and the like. Among these, an organic lithium compound is preferable, and an organic monolithium compound is more preferable. The amount of the organic alkali metal compound used is appropriately determined according to the required molecular weight of the farnesene polymer, but is preferably 0.01 to 3 parts by mass with respect to 100 parts by mass of farnesene.
The organic alkali metal compound can also be used as an organic alkali metal amide by reacting with a secondary amine such as dibutylamine, dihexylamine, dibenzylamine and the like.

極性化合物は、アニオン重合において、反応を失活させず、ファルネセン部位のミクロ構造を調整するため用いられ、例えば、ジブチルエーテル、テトラヒドロフラン、エチレングリコールジエチルエーテル等のエーテル化合物;テトラメチルエチレンジアミン、トリメチルアミン等の3級アミン;アルカリ金属アルコキシド、ホスフィン化合物等が挙げられる。極性化合物は、有機アルカリ金属化合物に対して好ましくは0.01〜1000モル等量の範囲で使用される。
重合反応の温度は、通常、−80〜150℃、好ましくは0〜100℃、更に好ましくは10〜90℃の範囲である。重合様式は回分式あるいは連続式のいずれでもよい。
The polar compound is used to adjust the microstructure of the farnesene moiety in anionic polymerization without deactivating the reaction. For example, ether compounds such as dibutyl ether, tetrahydrofuran, ethylene glycol diethyl ether; tetramethylethylenediamine, trimethylamine, etc. Tertiary amines; alkali metal alkoxides, phosphine compounds and the like. The polar compound is preferably used in an amount of 0.01 to 1000 molar equivalents relative to the organic alkali metal compound.
The temperature of the polymerization reaction is usually in the range of −80 to 150 ° C., preferably 0 to 100 ° C., more preferably 10 to 90 ° C. The polymerization mode may be either batch or continuous.

〔未変性重合体の構成〕
未変性重合体は、β−ファルネセンに由来する単量体単位(c1)のみで構成されてもよく、β−ファルネセンに由来する単量体単位(c1)とβ−ファルネセン以外の単量体に由来する単量体単位(c2)とで構成されてもよい。
変性重合体が共重合体である場合、β−ファルネセン以外の単量体に由来する単量体単位(c2)としては、例えば、炭素数12以下の共役ジエン及び芳香族ビニル化合物を挙げることができる。
炭素数12以下の共役ジエンとしては、例えば、ブタジエン、イソプレン、2,3−ジメチル−ブタジエン、2−フェニル−ブタジエン、1,3−ペンタジエン、2−メチル−1,3−ペンタジエン、1,3−ヘキサジエン、1,3−オクタジエン、1,3−シクロヘキサジエン、2−メチル−1,3−オクタジエン、1,3,7−オクタトリエン、ミルセン、クロロプレン等が挙げられる。これらの中ではブタジエン、イソプレン、ミルセンがより好ましい。これらの共役ジエンは、1種を単独で用いてもよく、2種以上を併用してもよい。
(Configuration of unmodified polymer)
The unmodified polymer may be composed of only the monomer unit (c1) derived from β-farnesene, and the monomer unit (c1) derived from β-farnesene and a monomer other than β-farnesene. You may be comprised with the monomer unit (c2) derived.
When the modified polymer is a copolymer, examples of the monomer unit (c2) derived from monomers other than β-farnesene include conjugated dienes having 12 or less carbon atoms and aromatic vinyl compounds. it can.
Examples of the conjugated diene having 12 or less carbon atoms include butadiene, isoprene, 2,3-dimethyl-butadiene, 2-phenyl-butadiene, 1,3-pentadiene, 2-methyl-1,3-pentadiene, 1,3- Examples include hexadiene, 1,3-octadiene, 1,3-cyclohexadiene, 2-methyl-1,3-octadiene, 1,3,7-octatriene, myrcene, chloroprene and the like. Of these, butadiene, isoprene, and myrcene are more preferable. These conjugated dienes may be used alone or in combination of two or more.

芳香族ビニル化合物としては、例えば、スチレン、α−メチルスチレン、2−メチルスチレン、3−メチルスチレン、4−メチルスチレン、4−プロピルスチレン、4−t−ブチルスチレン、4−シクロヘキシルスチレン、4−ドデシルスチレン、2,4−ジメチルスチレン、2,4−ジイソプロピルスチレン、2,4,6−トリメチルスチレン、2−エチル−4−ベンジルスチレン、4−(フェニルブチル)スチレン、1−ビニルナフタレン、2−ビニルナフタレン、ビニルアントラセン、N,N−ジエチル−4−アミノエチルスチレン、ビニルピリジン、4−メトキシスチレン、モノクロロスチレン、ジクロロスチレン、ジビニルベンゼン等の芳香族ビニル化合物等が挙げられる。これらの中では、スチレン、α−メチルスチレン、4−メチルスチレンが好ましい。   Examples of the aromatic vinyl compound include styrene, α-methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 4-propylstyrene, 4-t-butylstyrene, 4-cyclohexylstyrene, 4- Dodecylstyrene, 2,4-dimethylstyrene, 2,4-diisopropylstyrene, 2,4,6-trimethylstyrene, 2-ethyl-4-benzylstyrene, 4- (phenylbutyl) styrene, 1-vinylnaphthalene, 2- Aromatic vinyl compounds such as vinylnaphthalene, vinylanthracene, N, N-diethyl-4-aminoethylstyrene, vinylpyridine, 4-methoxystyrene, monochlorostyrene, dichlorostyrene, divinylbenzene, and the like can be given. Among these, styrene, α-methylstyrene, and 4-methylstyrene are preferable.

共重合体中におけるβ−ファルネセン以外の単量体に由来する単量体単位(c2)及びβ−ファルネセン由来の単量体単位(c1)の合計に対する単量体単位(c2)の割合は、得られるゴム組成物の加工性、及び転がり抵抗性能を向上させる観点から、1〜99質量%が好ましく、10〜80質量%がより好ましく、15〜80質量%が更に好ましい。また、耐摩耗性を向上させる観点からは、単量体単位(c2)の割合は40〜80質量%が好ましく、60〜80質量%がより好ましい。加工性を向上させる観点からは、単量体単位(c2)の割合は20〜60質量%が好ましく、20〜40質量%がより好ましい。   The ratio of the monomer unit (c2) to the total of the monomer unit (c2) derived from a monomer other than β-farnesene and the monomer unit (c1) derived from β-farnesene in the copolymer is as follows: From the viewpoint of improving the workability and rolling resistance performance of the resulting rubber composition, 1 to 99 mass% is preferable, 10 to 80 mass% is more preferable, and 15 to 80 mass% is still more preferable. Moreover, from a viewpoint of improving abrasion resistance, 40-80 mass% is preferable and, as for the ratio of a monomer unit (c2), 60-80 mass% is more preferable. From the viewpoint of improving processability, the proportion of the monomer unit (c2) is preferably 20 to 60% by mass, and more preferably 20 to 40% by mass.

β−ファルネセン以外の単量体に由来する単量体単位(c2)としては、転がり抵抗性能、耐摩耗性を向上させる観点から、ブタジエンであることがより好ましい。   The monomer unit (c2) derived from monomers other than β-farnesene is more preferably butadiene from the viewpoint of improving rolling resistance performance and wear resistance.

〔未変性重合体の変性方法〕
変性重合体(C)は、前記未変性重合体に対して、重合停止剤を添加する前に重合活性末端と反応し得るテトラエトキシシラン、二酸化炭素、酸化エチレン等の変性剤を添加する方法(I)、又は重合停止剤を添加した後、未変性重合体に無水マレイン酸等の変性剤をグラフト化する方法(II)等の変性方法により得ることができる。
[Modification method of unmodified polymer]
The modified polymer (C) is a method of adding a modifying agent such as tetraethoxysilane, carbon dioxide, ethylene oxide or the like that can react with a polymerization active terminal to the unmodified polymer before adding a polymerization terminator ( It can be obtained by a modification method such as I) or a method (II) of grafting a modifier such as maleic anhydride onto an unmodified polymer after adding a polymerization terminator.

前記未変性のファルネセン重合体に導入される官能基としては、例えば、アミノ基、アンモニウム基、アミド基、イミノ基、イミダゾール基、ウレア基、アルコキシシリル基、シラノール基、ヒドロキシ基、エポキシ基、エーテル基、カルボキシ基、カルボニル基、カルボン酸エステル基、スルホン酸基、スルホン酸エステル基、リン酸基、リン酸エステル基、メルカプト基、イソシアネート基、ニトリル基、ハロゲン化珪素基、ハロゲン化錫基、酸無水物由来の官能基等が挙げられる。これらの中でも、カルボキシ基、アミノ基、ヒドロキシ基、及び酸無水物由来の官能基から選ばれる1種又は2種以上が好ましく、酸無水物由来の官能基としては、無水マレイン酸由来の官能基がより好ましい。
なお、変性重合体において官能基が導入される重合体の位置については、重合末端であってもよく、ポリマー鎖の側鎖であってもよい。
Examples of the functional group introduced into the unmodified farnesene polymer include an amino group, an ammonium group, an amide group, an imino group, an imidazole group, a urea group, an alkoxysilyl group, a silanol group, a hydroxy group, an epoxy group, and an ether. Group, carboxy group, carbonyl group, carboxylic acid ester group, sulfonic acid group, sulfonic acid ester group, phosphoric acid group, phosphoric ester group, mercapto group, isocyanate group, nitrile group, silicon halide group, tin halide group, Examples include functional groups derived from acid anhydrides. Among these, 1 type or 2 or more types chosen from the functional group derived from a carboxy group, an amino group, a hydroxy group, and an acid anhydride are preferable, As a functional group derived from an acid anhydride, a functional group derived from maleic anhydride Is more preferable.
In addition, about the position of the polymer in which a functional group is introduce | transduced in a modified polymer, a polymerization terminal may be sufficient and the side chain of a polymer chain may be sufficient.

前記方法(I)において用いることができる前記変性剤としては、例えば、ジメチルジエトキシシラン、テトラメトキシシラン、テトラエトキシシラン、3−アミノプロピルトリエトキシシラン、テトラグリシジル−1,3−ビスアミノメチルシクロヘキサン、2,4−トリレンジイソシアネート、二酸化炭素、酸化エチレン、無水コハク酸、4,4'−ビス(ジエチルアミノ)ベンゾフェノン、N−ビニルピロリドン、N−メチルピロリドン、4−ジメチルアミノベンジリデンアニリン、ジメチルイミダゾリジノン等の変性剤、又は特開2011−132298号公報に記載のその他の変性剤が挙げられる。
上記変性剤は、有機アルカリ金属化合物に対して好ましくは0.01〜100モル等量の範囲であり、反応温度は通常−80〜150℃、好ましくは0〜100℃、更に好ましくは10〜90℃の範囲である。
また、重合停止剤を添加する前に上記変性剤を添加し未変性重合体に官能基を導入した後、更に該官能基と反応し得る変性剤を添加して別の官能基を重合体中に導入してもよい。
Examples of the modifier that can be used in the method (I) include dimethyldiethoxysilane, tetramethoxysilane, tetraethoxysilane, 3-aminopropyltriethoxysilane, tetraglycidyl-1,3-bisaminomethylcyclohexane. 2,4-tolylene diisocyanate, carbon dioxide, ethylene oxide, succinic anhydride, 4,4′-bis (diethylamino) benzophenone, N-vinylpyrrolidone, N-methylpyrrolidone, 4-dimethylaminobenzylideneaniline, dimethylimidazolide Non-modifying agents such as non-modified or other modifying agents described in JP2011-132298A can be mentioned.
The modifying agent is preferably in the range of 0.01 to 100 molar equivalents relative to the organoalkali metal compound, and the reaction temperature is usually −80 to 150 ° C., preferably 0 to 100 ° C., more preferably 10 to 90. It is in the range of ° C.
Further, before adding a polymerization terminator, after adding the above-mentioned modifier and introducing a functional group into the unmodified polymer, a modifier capable of reacting with the functional group is further added to introduce another functional group into the polymer. May be introduced.

前記方法(II)において用いることができる前記変性剤としては、無水マレイン酸、無水シトラコン酸、無水2,3−ジメチルマレイン酸、無水イタコン酸等の不飽和カルボン酸無水物;マレイン酸、フマル酸、シトラコン酸、イタコン酸等の不飽和カルボン酸;マレイン酸エステル、フマル酸エステル、シトラコン酸エステル、イタコン酸エステル等の不飽和カルボン酸エステル;マレイン酸アミド、フマル酸アミド、シトラコン酸アミド、イタコン酸アミド等の不飽和カルボン酸アミド;マレイン酸イミド、フマル酸イミド、シトラコン酸イミド、イタコン酸イミド等の不飽和カルボン酸イミド;マレイミド、ビニルトリメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン等が挙げられる。   Examples of the modifier that can be used in the method (II) include unsaturated carboxylic acid anhydrides such as maleic anhydride, citraconic anhydride, 2,3-dimethylmaleic anhydride and itaconic anhydride; maleic acid and fumaric acid Unsaturated carboxylic acids such as citraconic acid and itaconic acid; unsaturated carboxylic acid esters such as maleic acid ester, fumaric acid ester, citraconic acid ester and itaconic acid ester; maleic acid amide, fumaric acid amide, citraconic acid amide and itaconic acid Unsaturated carboxylic acid amides such as amides; Unsaturated carboxylic acid imides such as maleic imides, fumaric imides, citraconic imides, itaconic imides; maleimides, vinyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, etc. It is done.

前記方法(II)において、変性剤を未変性のファルネセン重合体にグラフト化する方法は特に限定されず、例えば、未変性のファルネセン重合体と、前記変性剤と、必要に応じてラジカル触媒を加えて、有機溶媒の存在下又は非存在下で加熱する方法を採用することができる。前記方法で使用される有機溶媒としては、一般的には炭化水素系溶媒、ハロゲン化炭化水素系溶媒が挙げられる。これらの有機溶媒の中でも、n−ブタン、n−ヘキサン、n−ヘプタン、シクロヘキサン、ベンゼン、トルエン、キシレン等の炭化水素系溶媒が好ましい。   In the method (II), the method for grafting the modifying agent to the unmodified farnesene polymer is not particularly limited. For example, the unmodified farnesene polymer, the modifying agent, and a radical catalyst as necessary are added. Thus, a method of heating in the presence or absence of an organic solvent can be employed. Examples of the organic solvent used in the above method generally include hydrocarbon solvents and halogenated hydrocarbon solvents. Among these organic solvents, hydrocarbon solvents such as n-butane, n-hexane, n-heptane, cyclohexane, benzene, toluene and xylene are preferable.

前記変性剤は未変性重合体100質量部に対して、好ましくは0.1〜100質量部、より好ましくは0.5〜50質量部の範囲で用いられる。反応温度は通常0〜200℃の範囲が好ましく、50〜200℃の範囲がより好ましい。また、変性剤を導入する反応を行う時には、副反応を抑制する観点等から老化防止剤を添加してもよい。
また、未変性重合体に変性剤をグラフト化し官能基を導入した後、更に該官能基と反応し得る変性剤を添加して別の官能基を重合体中に導入してもよい。具体的には、リビングアニオン重合して得られる未変性重合体に対し、無水カルボン酸をグラフト化した後、次いで2−ヒドロキシエチルメタクリレートやメタノール、水、アンモニア、アミン等の化合物を反応させる方法が挙げられる。
The modifier is preferably used in the range of 0.1 to 100 parts by mass, more preferably 0.5 to 50 parts by mass with respect to 100 parts by mass of the unmodified polymer. The reaction temperature is usually preferably in the range of 0 to 200 ° C, more preferably in the range of 50 to 200 ° C. Moreover, when performing reaction which introduce | transduces a modifier | denaturant, you may add an anti-aging agent from a viewpoint etc. which suppress a side reaction.
Further, after introducing a functional group by grafting a modifier to the unmodified polymer, another functional group may be introduced into the polymer by adding a modifier capable of reacting with the functional group. Specifically, after grafting a carboxylic anhydride to an unmodified polymer obtained by living anion polymerization, a method of reacting a compound such as 2-hydroxyethyl methacrylate, methanol, water, ammonia, amine, etc. Can be mentioned.

これらの化合物を反応させることにより、変性重合体(C)中の無水カルボン酸部分を開環反応させ、ジカルボン酸基、ジカルボン酸モノエステル基、ジカルボン酸モノアミド基等の官能基を有する変性重合体(C)を得ることができる。変性重合体(C)中の無水カルボン酸部分を開環反応させて二次変性した変性重合体(C)を製造する場合、開環反応に使用する上記化合物の量は、重合体中の無水カルボン酸基に対して0.5〜5mol当量が好ましく、0.8〜5mol当量がより好ましい。上記変性をすることにより、弾性率が上昇し、操縦安定性が良好となる。   A modified polymer having a functional group such as a dicarboxylic acid group, a dicarboxylic acid monoester group, or a dicarboxylic acid monoamide group by reacting these compounds to cause a ring-opening reaction of the carboxylic anhydride moiety in the modified polymer (C). (C) can be obtained. In the case of producing a modified polymer (C) obtained by subjecting the carboxylic anhydride moiety in the modified polymer (C) to a ring-opening reaction to produce a secondary modification, the amount of the above-mentioned compound used for the ring-opening reaction is the amount of anhydride in the polymer. 0.5-5 mol equivalent is preferable with respect to a carboxylic acid group, and 0.8-5 mol equivalent is more preferable. By performing the above modification, the elastic modulus is increased and the steering stability is improved.

変性重合体(C)に対する前記変性剤の反応率は、40〜100%が好ましく、60〜100%がより好ましく、80〜100%が更に好ましい。変性剤の反応率が前記範囲内であると、転がり抵抗性能、機械強度、硬度、耐摩耗性が良好となる。なお、変性剤の反応率は、変性反応時に仕込んだ全変性剤量に対する重合体中に導入された量の割合として算出できる。   The reaction rate of the modifier with respect to the modified polymer (C) is preferably 40 to 100%, more preferably 60 to 100%, and still more preferably 80 to 100%. When the reaction rate of the modifier is within the above range, rolling resistance performance, mechanical strength, hardness, and wear resistance are good. The reaction rate of the modifier can be calculated as a ratio of the amount introduced into the polymer with respect to the total amount of modifier charged during the modification reaction.

変性重合体(C)の重量平均分子量(Mw)は2千〜50万が好ましく、8千〜50万がより好ましく、1万5千〜45万が更に好ましく、3万〜30万がより更に好ましい。変性重合体(C)のMwが前記範囲内であると、本発明のゴム組成物の加工性が良好となり、また得られるゴム組成物中のシリカの分散性が向上するため、転がり抵抗性能が良好となる。
変性重合体(C)の重量平均分子量(Mw)が3万以上であると、ゴム組成物中のゴム成分との架橋が起こりやすくなるため、耐摩耗性が良好となる。
なお、本明細書において変性重合体(C)のMwは、後述する実施例に記載した方法で求めた値である。
本発明においては、Mwが異なる2種類の変性重合体(C)を併用してもよい。
変性重合体が共重合体である場合、転がり抵抗性能を更に改善する観点から、重量平均分子量(Mw)は2千〜50万が好ましく、8千〜30万がより好ましく、1万4千〜20万が更に好ましく、2万〜10万が更に好ましい。
The weight average molecular weight (Mw) of the modified polymer (C) is preferably from 2,000 to 500,000, more preferably from 8,000 to 500,000, further preferably from 15,000 to 450,000, and even more preferably from 30,000 to 300,000. preferable. When the Mw of the modified polymer (C) is within the above range, the processability of the rubber composition of the present invention is improved, and the dispersibility of silica in the resulting rubber composition is improved, so that the rolling resistance performance is improved. It becomes good.
When the weight average molecular weight (Mw) of the modified polymer (C) is 30,000 or more, crosslinking with the rubber component in the rubber composition is likely to occur, so that the wear resistance is improved.
In the present specification, the Mw of the modified polymer (C) is a value determined by the method described in Examples described later.
In the present invention, two types of modified polymers (C) having different Mw may be used in combination.
When the modified polymer is a copolymer, the weight average molecular weight (Mw) is preferably 2,000 to 500,000, more preferably 8,000 to 300,000, from the viewpoint of further improving the rolling resistance performance. 200,000 is more preferable, and 20,000 to 100,000 is more preferable.

変性重合体(C)の38℃における溶融粘度は、0.1〜3,000Pa・sが好ましく、1.0〜2,000Pa・sがより好ましく、2.5〜1,500Pa・sが更に好ましく、4.0〜1,000Pa・sがより更に好ましい。変性重合体(C)の溶融粘度が前記範囲内であると、得られるゴム組成物の混練が容易になると共に加工性が向上する。なお、本明細書において変性重合体(C)の溶融粘度は、後述する実施例に記載した方法で求めた値である。   The melt viscosity at 38 ° C. of the modified polymer (C) is preferably 0.1 to 3,000 Pa · s, more preferably 1.0 to 2,000 Pa · s, and further preferably 2.5 to 1,500 Pa · s. It is preferably 4.0 to 1,000 Pa · s. When the melt viscosity of the modified polymer (C) is within the above range, kneading of the resulting rubber composition becomes easy and processability is improved. In the present specification, the melt viscosity of the modified polymer (C) is a value determined by the method described in Examples described later.

変性重合体(C)の分子量分布(Mw/Mn)は、1.0〜8.0が好ましく、1.0〜5.0がより好ましく、1.0〜3.0がより更に好ましい。Mw/Mnが前記範囲内であると、得られる変性重合体(C)の粘度のばらつきが小さく、より好ましい。   The molecular weight distribution (Mw / Mn) of the modified polymer (C) is preferably 1.0 to 8.0, more preferably 1.0 to 5.0, and still more preferably 1.0 to 3.0. It is more preferable that Mw / Mn is in the above-mentioned range because the resulting modified polymer (C) has a small variation in viscosity.

変性重合体(C)のガラス転移温度は、−90〜10℃が好ましく、−90〜0℃がより好ましく、−90〜−5℃が更に好ましい。前記範囲であると、転がり抵抗性能が良好となる。また、粘度が高くなるのを抑えることができ取り扱いが容易になる。   The glass transition temperature of the modified polymer (C) is preferably -90 to 10 ° C, more preferably -90 to 0 ° C, still more preferably -90 to -5 ° C. When it is in the above range, the rolling resistance performance is good. Moreover, it can suppress that a viscosity becomes high and can handle it easily.

変性重合体(C)中に付加された官能基量(変性剤量)は、未変性重合体100質量部に対して0.1〜100質量部であることが好ましく、0.2〜50質量部であることが好ましい。変性重合体(C)中に付加された官能基量が上記範囲内であると、転がり抵抗性能、機械強度、硬度、耐摩耗性が良好となる。なお、変性重合体(C)中に付加された官能基量は、変性剤の反応率を基に算出することもできるし、後述する実施例に記載された方法によっても求めることもできる。   The amount of functional group (modifier amount) added to the modified polymer (C) is preferably 0.1 to 100 parts by mass, and 0.2 to 50 parts by mass with respect to 100 parts by mass of the unmodified polymer. Part. When the amount of the functional group added to the modified polymer (C) is within the above range, rolling resistance performance, mechanical strength, hardness, and wear resistance are improved. The amount of functional group added to the modified polymer (C) can be calculated based on the reaction rate of the modifier, or can be determined by the method described in the examples described later.

変性重合体(C)1分子あたりの平均官能基数は、0.1〜300個であり、3〜250個であることが好ましく、5〜200個であることがより好ましい。平均官能基数が前記範囲内にあると、得られるゴム組成物中のシリカ(B)の分散性が向上するため、その架橋物からなるタイヤ等の転がり抵抗性能が良好となり、更にタイヤの変形が小さく、操縦安定性にも優れる。加えて、ゴム組成物から得られる架橋物の耐摩耗性がより向上する。
変性重合体(C)1分子当たりの平均官能基数は、後述する1H−NMRにより求めることができる。
The average number of functional groups per molecule of the modified polymer (C) is 0.1 to 300, preferably 3 to 250, and more preferably 5 to 200. When the average number of functional groups is within the above range, the dispersibility of silica (B) in the resulting rubber composition is improved, so that the rolling resistance performance of a tire or the like made of the crosslinked product is improved, and the tire is further deformed. Small and excellent in handling stability. In addition, the wear resistance of the crosslinked product obtained from the rubber composition is further improved.
The average number of functional groups per molecule of the modified polymer (C) can be determined by 1 H-NMR described later.

また、変性重合体(C)の官能基の当量は150〜6,500g/eqの範囲であることが好ましく、200〜5,000g/eqであることがより好ましく、300〜3,000g/eqであることが更に好ましい。変性重合体(C)の官能基の当量が上記範囲にあることにより、得られるゴム組成物中のシリカ(B)の分散性が向上するため、その架橋物からなるタイヤ等の転がり抵抗性能等が良好となり、更にタイヤの変形が小さく、操縦安定性にも優れる。加えて、ゴム組成物から得られる架橋物の耐摩耗性がより向上する。
なお、本明細書における官能基の当量とは、官能基1個当たりに結合しているファルネセン及び必要に応じて含まれるファルネセン以外の他の単量体の質量を意味する。官能基の当量は、1H−NMR又は13C−NMRを用いて官能基由来のピークと重合体主鎖に由来するピークの面積比から算出するか、後述する酸価測定等により算出することができる。
The functional group equivalent of the modified polymer (C) is preferably in the range of 150 to 6,500 g / eq, more preferably 200 to 5,000 g / eq, and 300 to 3,000 g / eq. More preferably. Since the dispersibility of the silica (B) in the resulting rubber composition is improved when the equivalent of the functional group of the modified polymer (C) is in the above range, the rolling resistance performance of a tire made of the crosslinked product, etc. In addition, tire deformation is small and steering stability is excellent. In addition, the wear resistance of the crosslinked product obtained from the rubber composition is further improved.
In addition, the equivalent of the functional group in the present specification means the mass of farnesene bonded per functional group and other monomers other than farnesene contained as necessary. The equivalent of the functional group is calculated from the area ratio of the peak derived from the functional group and the peak derived from the polymer main chain using 1 H-NMR or 13 C-NMR, or calculated by acid value measurement described later. Can do.

この変性重合体(C)において、官能基が導入される位置については重合末端であってもよく、重合体鎖の側鎖であってもよいが、複数の官能基を容易に導入できるという観点で、重合鎖の側鎖であることが好ましい。また上記官能基は1種単独で含まれていてもよく2種以上含まれていてもよい。したがって、変性重合体(C)は、変性化合物1種により変性されたものであってもよく、また2種以上の変性化合物で変性されたものでもよい。   In this modified polymer (C), the position at which the functional group is introduced may be a polymerization terminal or a side chain of the polymer chain, but a viewpoint that a plurality of functional groups can be easily introduced. Thus, it is preferably a side chain of a polymer chain. Moreover, the said functional group may be contained individually by 1 type, and may be contained 2 or more types. Therefore, the modified polymer (C) may be modified with one modified compound, or may be modified with two or more modified compounds.

本発明においては、シリカ(B)100質量部に対する変性重合体(C)の含有量は、2〜10質量部であり、2.5〜9.5質量部が好ましい。変性重合体(C)の含有量が前記範囲内であると、機械強度及び転がり抵抗性能が良好となる。加えて、耐摩耗性に優れ、タイヤ等に用いた際にタイヤの変形が小さく、操縦安定性も向上させることができる。   In this invention, content of the modified polymer (C) with respect to 100 mass parts of silica (B) is 2-10 mass parts, and 2.5-9.5 mass parts is preferable. When the content of the modified polymer (C) is within the above range, the mechanical strength and rolling resistance performance are good. In addition, it has excellent wear resistance, and when used in a tire or the like, the deformation of the tire is small, and the steering stability can be improved.

<フィラー>
本発明のゴム組成物は、シリカ以外のカーボンブラック等のフィラーを含有していてもよい。
〔カーボンブラック〕
カーボンブラックとしては、例えば、ファーネスブラック、チャンネルブラック、サーマルブラック、アセチレンブラック、及びケッチェンブラック等のカーボンブラックを用いることができる。これらの中では、加硫速度や機械強度向上の観点から、ファーネスブラックが好ましい。
前記カーボンブラックの平均粒径としては、分散性、機械強度、及び硬度を向上させる観点から、5〜100nmが好ましく、5〜80nmがより好ましく、5〜70nmが更に好ましい。
平均粒径が5〜100nmであるカーボンブラックとして、ファーネスブラックの市販品としては、例えば、三菱化学株式会社「ダイヤブラック」、東海カーボン株式会社製「シースト」等が挙げられる。アセチレンブラックの市販品としては、例えば、電気化学工業株式会社製「デンカブラック」が挙げられる。ケッチェンブラックの市販品としては、例えば、ライオン株式会社製「ECP600JD」が挙げられる。
<Filler>
The rubber composition of the present invention may contain a filler such as carbon black other than silica.
〔Carbon black〕
As the carbon black, for example, carbon black such as furnace black, channel black, thermal black, acetylene black, and ketjen black can be used. Among these, furnace black is preferable from the viewpoint of improving the vulcanization speed and mechanical strength.
The average particle size of the carbon black is preferably 5 to 100 nm, more preferably 5 to 80 nm, and still more preferably 5 to 70 nm, from the viewpoint of improving dispersibility, mechanical strength, and hardness.
As carbon black having an average particle diameter of 5 to 100 nm, examples of furnace black commercial products include “Dia Black” manufactured by Mitsubishi Chemical Corporation, “Shiest” manufactured by Tokai Carbon Co., Ltd., and the like. Examples of commercially available acetylene black include “DENKA BLACK” manufactured by Denki Kagaku Kogyo Co., Ltd. Examples of commercially available ketjen black include “ECP600JD” manufactured by Lion Corporation.

上記したカーボンブラックは、ゴム成分(A)及び変性重合体(C)への濡れ性や分散性を向上させる観点から、硝酸、硫酸、塩酸又はこれらの混合酸等による酸処理や、空気存在下での熱処理による表面酸化処理を行ってもよい。また、本発明のゴム組成物の機械強度向上の観点から、黒鉛化触媒の存在下に2,000〜3,000℃で熱処理を行ってもよい。なお、黒鉛化触媒としては、ホウ素、ホウ素酸化物(例えば、B22、B23、B43、B45等)、ホウ素オキソ酸(例えば、オルトホウ酸、メタホウ酸、四ホウ酸等)及びその塩、ホウ素炭化物(例えば、B4C、B6C等)、窒化ホウ素(BN)、その他のホウ素化合物が好適に用いられる。From the viewpoint of improving the wettability and dispersibility to the rubber component (A) and the modified polymer (C), the above-described carbon black is subjected to acid treatment with nitric acid, sulfuric acid, hydrochloric acid or a mixed acid thereof, or in the presence of air. Surface oxidation treatment by heat treatment in may be performed. Moreover, you may heat-process at 2,000-3,000 degreeC in presence of a graphitization catalyst from a viewpoint of the mechanical strength improvement of the rubber composition of this invention. Examples of the graphitization catalyst include boron, boron oxide (for example, B 2 O 2 , B 2 O 3 , B 4 O 3 , B 4 O 5 ), boron oxoacid (for example, orthoboric acid, metaboric acid, Tetraboric acid etc.) and salts thereof, boron carbide (eg B 4 C, B 6 C etc.), boron nitride (BN), and other boron compounds are preferably used.

カーボンブラックは、粉砕等により粒度を調整することができる。カーボンブラックの粉砕には、高速回転粉砕機(ハンマーミル、ピンミル、ケージミル)や各種ボールミル(転動ミル、振動ミル、遊星ミル)、撹拌ミル(ビーズミル、アトライター、流通管型ミル、アニュラーミル)等が使用できる。
なお、カーボンブラックの平均粒径は、透過型電子顕微鏡により粒子の直径を測定してその平均値を算出することにより求めることができる。
The particle size of carbon black can be adjusted by pulverization or the like. For carbon black pulverization, high-speed rotary pulverizer (hammer mill, pin mill, cage mill), various ball mills (rolling mill, vibration mill, planetary mill), stirring mill (bead mill, attritor, distribution pipe mill, annular mill) Etc. can be used.
The average particle size of carbon black can be determined by measuring the particle diameter with a transmission electron microscope and calculating the average value.

〔その他のフィラー〕
本発明のゴム組成物は、機械強度の向上、硬度調整、増量剤を配合することによる経済性の改善等を目的として、必要に応じてシリカ及びカーボンブラック以外のフィラーを更に含有していてもよい。
[Other fillers]
The rubber composition of the present invention may further contain a filler other than silica and carbon black, if necessary, for the purpose of improving mechanical strength, adjusting hardness, improving economy by blending an extender, and the like. Good.

シリカ及びカーボンブラック以外のフィラーとしては、用途に応じて適宜選択されるが、例えば、有機充填剤や、クレー、タルク、マイカ、炭酸カルシウム、水酸化マグネシウム、水酸化アルミニウム、硫酸バリウム、酸化チタン、ガラス繊維、繊維状フィラー、ガラスバルーン等の無機充填剤の1種又は2種以上を使用できる。
本発明のゴム組成物が前記フィラーを含有する場合、その含有量は、ゴム成分(A)100質量部に対して、0.1〜120質量部が好ましく、5〜90質量部がより好ましく、10〜80質量部が更に好ましい。上記フィラーの含有量が前記範囲内であると、機械強度がより一層向上する。
The filler other than silica and carbon black is appropriately selected according to the application, for example, organic filler, clay, talc, mica, calcium carbonate, magnesium hydroxide, aluminum hydroxide, barium sulfate, titanium oxide, One or more inorganic fillers such as glass fiber, fibrous filler, and glass balloon can be used.
When the rubber composition of the present invention contains the filler, the content thereof is preferably 0.1 to 120 parts by mass, more preferably 5 to 90 parts by mass with respect to 100 parts by mass of the rubber component (A). 10-80 mass parts is still more preferable. When the content of the filler is within the above range, the mechanical strength is further improved.

<加硫剤>
本発明のゴム組成物は、加硫剤を含有することが好ましい。加硫剤としては、例えば、硫黄及び硫黄化合物が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。加硫剤の含有量は、ゴム成分(A)100質量部に対して、0.1〜10質量部が好ましく、0.5〜10質量部がより好ましく、0.8〜5質量部が更に好ましい。
<Vulcanizing agent>
The rubber composition of the present invention preferably contains a vulcanizing agent. Examples of the vulcanizing agent include sulfur and sulfur compounds. These may be used alone or in combination of two or more. The content of the vulcanizing agent is preferably 0.1 to 10 parts by mass, more preferably 0.5 to 10 parts by mass, and further 0.8 to 5 parts by mass with respect to 100 parts by mass of the rubber component (A). preferable.

<加硫促進剤>
本発明のゴム組成物は、加硫促進剤を含有してもよい。加硫促進剤としては、例えば、グアニジン系化合物、スルフェンアミド系化合物、チアゾール系化合物、チウラム系化合物、チオウレア系化合物、ジチオカルバミン酸系化合物、アルデヒド−アミン系化合物又はアルデヒド−アンモニア系化合物、イミダゾリン系化合物、キサンテート系化合物等が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。前記加硫促進剤を含有する場合、その含有量は、ゴム成分(A)100質量部に対して、0.1〜15質量部が好ましく、0.1〜10質量部がより好ましい。
<Vulcanization accelerator>
The rubber composition of the present invention may contain a vulcanization accelerator. Examples of the vulcanization accelerator include guanidine compounds, sulfenamide compounds, thiazole compounds, thiuram compounds, thiourea compounds, dithiocarbamic acid compounds, aldehyde-amine compounds or aldehyde-ammonia compounds, imidazolines. Compounds, xanthate compounds, and the like. These may be used alone or in combination of two or more. When it contains the said vulcanization accelerator, 0.1-15 mass parts is preferable with respect to 100 mass parts of rubber components (A), and 0.1-10 mass parts is more preferable.

<加硫助剤>
本発明のゴム組成物は、加硫助剤を含有してもよい。加硫助剤としては、例えば、ステアリン酸等の脂肪酸、亜鉛華等の金属酸化物、ステアリン酸亜鉛等の脂肪酸金属塩が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。前記加硫助剤を含有する場合、その含有量は、ゴム成分(A)100質量部に対して、0.1〜15質量部が好ましく、1〜10質量部がより好ましい。
<Vulcanization aid>
The rubber composition of the present invention may contain a vulcanization aid. Examples of the vulcanization aid include fatty acids such as stearic acid, metal oxides such as zinc white, and fatty acid metal salts such as zinc stearate. These may be used alone or in combination of two or more. When the said vulcanization | cure adjuvant is contained, 0.1-15 mass parts is preferable with respect to 100 mass parts of rubber components (A), and 1-10 mass parts is more preferable.

<シランカップリング剤>
本発明のゴム組成物では、シランカップリング剤を含有することが好ましい。シランカップリング剤としては、スルフィド系化合物、メルカプト系化合物、ビニル系化合物、アミノ系化合物、グリシドキシ系化合物、ニトロ系化合物、クロロ系化合物等が挙げられる。
スルフィド系化合物としては、例えば、ビス(3−トリエトキシシリルプロピル)テトラスルフィド、ビス(2−トリエトキシシリルエチル)テトラスルフィド、ビス(3−トリメトキシシリルプロピル)テトラスルフィド、ビス(2−トリメトキシシリルエチル)テトラスルフィド、ビス(3−トリエトキシシリルプロピル)トリスルフィド、ビス(3−トリメトキシシリルプロピル)トリスルフィド、ビス(3−トリエトキシシリルプロピル)ジスルフィド、ビス(3−トリメトキシシリルプロピル)ジスルフィド、3−トリメトキシシリルプロピル−N,N−ジメチルチオカルバモイルテトラスルフィド、3−トリエトキシシリルプロピル−N,N−ジメチルチオカルバモイルテトラスルフィド、2−トリメトキシシリルエチル−N,N−ジメチルチオカルバモイルテトラスルフィド、3−トリメトキシシリルプロピルベンゾチアゾールテトラスルフィド、3−トリエトキシシリルプロピルベンゾチアゾールテトラスルフィド、3−トリエトキシシリルプロピルメタクリレートモノスルフィド、3−トリメトキシシリルプロピルメタクリレートモノスルフィド等が挙げられる。
メルカプト系化合物としては、例えば、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシラン、2−メルカプトエチルトリメトキシシラン、2−メルカプトエチルトリエトキシシラン等が挙げられる。
ビニル系化合物としては、例えば、ビニルトリエトキシシラン、ビニルトリメトキシシラン等が挙げられる。
アミノ系化合物としては、例えば、3−アミノプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、3−(2−アミノエチル)アミノプロピルトリエトキシシラン、3−(2−アミノエチル)アミノプロピルトリメトキシシラン等が挙げられる。
グリシドキシ系化合物としては、例えば、γ−グリシドキシプロピルトリエトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、γ−グリシドキシプロピルメチルジメトキシシラン等が挙げられる。
ニトロ系化合物としては、例えば、3−ニトロプロピルトリメトキシシラン、3−ニトロプロピルトリエトキシシラン等が挙げられる。
クロロ系化合物としては、例えば、3−クロロプロピルトリメトキシシラン、3−クロロプロピルトリエトキシシラン、2−クロロエチルトリメトキシシラン、2−クロロエチルトリエトキシシラン等が挙げられる。
これらのシランカップリング剤は、1種を単独で用いてもよく、2種以上を併用してもよい。中でも、補強効果が大きい観点から、スルフィド系化合物及びメルカプト系化合物等の硫黄を含有するシランカップリング剤が好ましく、ビス(3−トリエトキシシリルプロピル)ジスルフィド、ビス(3−トリエトキシシリルプロピル)テトラスルフィド、3−メルカプトプロピルトリメトキシシランがより好ましい。
<Silane coupling agent>
The rubber composition of the present invention preferably contains a silane coupling agent. Examples of the silane coupling agent include sulfide compounds, mercapto compounds, vinyl compounds, amino compounds, glycidoxy compounds, nitro compounds, and chloro compounds.
Examples of sulfide compounds include bis (3-triethoxysilylpropyl) tetrasulfide, bis (2-triethoxysilylethyl) tetrasulfide, bis (3-trimethoxysilylpropyl) tetrasulfide, and bis (2-trimethoxy). Silylethyl) tetrasulfide, bis (3-triethoxysilylpropyl) trisulfide, bis (3-trimethoxysilylpropyl) trisulfide, bis (3-triethoxysilylpropyl) disulfide, bis (3-trimethoxysilylpropyl) Disulfide, 3-trimethoxysilylpropyl-N, N-dimethylthiocarbamoyl tetrasulfide, 3-triethoxysilylpropyl-N, N-dimethylthiocarbamoyl tetrasulfide, 2-trimethoxysilylethyl-N, -Dimethylthiocarbamoyl tetrasulfide, 3-trimethoxysilylpropyl benzothiazole tetrasulfide, 3-triethoxysilylpropyl benzothiazole tetrasulfide, 3-triethoxysilylpropyl methacrylate monosulfide, 3-trimethoxysilylpropyl methacrylate monosulfide, etc. Can be mentioned.
Examples of the mercapto compound include 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 2-mercaptoethyltrimethoxysilane, 2-mercaptoethyltriethoxysilane, and the like.
Examples of the vinyl compound include vinyl triethoxysilane and vinyl trimethoxysilane.
Examples of amino compounds include 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3- (2-aminoethyl) aminopropyltriethoxysilane, and 3- (2-aminoethyl) aminopropyltrimethoxy. Silane etc. are mentioned.
Examples of glycidoxy compounds include γ-glycidoxypropyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, and γ-glycidoxypropylmethyldimethoxysilane. Can be mentioned.
Examples of the nitro compound include 3-nitropropyltrimethoxysilane and 3-nitropropyltriethoxysilane.
Examples of the chloro compound include 3-chloropropyltrimethoxysilane, 3-chloropropyltriethoxysilane, 2-chloroethyltrimethoxysilane, 2-chloroethyltriethoxysilane, and the like.
These silane coupling agents may be used alone or in combination of two or more. Of these, silane coupling agents containing sulfur such as sulfide compounds and mercapto compounds are preferred from the viewpoint of a large reinforcing effect, and bis (3-triethoxysilylpropyl) disulfide and bis (3-triethoxysilylpropyl) tetra Sulfide and 3-mercaptopropyltrimethoxysilane are more preferable.

シリカ(B)100質量部に対する前記シランカップリング剤の含有量は、0.1〜30質量部が好ましく、0.5〜20質量部がより好ましく、1〜15質量部が更に好ましい。シランカップリング剤の含有量が前記範囲内であると、分散性、補強性、耐摩耗性が向上する。   0.1-30 mass parts is preferable, as for content of the said silane coupling agent with respect to 100 mass parts of silica (B), 0.5-20 mass parts is more preferable, and 1-15 mass parts is still more preferable. When the content of the silane coupling agent is within the above range, dispersibility, reinforcement, and abrasion resistance are improved.

<その他の成分>
本発明のゴム組成物は、発明の効果を阻害しない範囲で、加工性、流動性等の改良を目的とし、必要に応じてシリコンオイル、アロマオイル、TDAE(Treated Distilled Aromatic Extracts)、MES(Mild Extracted Solvates)、RAE(Residual Aromatic Extracts)、パラフィンオイル、ナフテンオイル等のプロセスオイル、脂肪族炭化水素樹脂、脂環族炭化水素樹脂、C9系樹脂、ロジン系樹脂、クマロン・インデン系樹脂、フェノール系樹脂等の樹脂成分、低分子量ポリブタジエン、低分子量ポリイソプレン、低分子量スチレンブタジエン共重合体、低分子量スチレンイソプレン共重合体等の液状重合体、未変性重合体を軟化剤として含有していてもよい。なお、上記共重合体はブロック又はランダム等のいずれの重合形態であってもよい。液状重合体の重量平均分子量(Mw)は500〜10万であることが加工性の観点から好ましい。本発明のゴム組成物が上記プロセスオイル、樹脂成分又は液状重合体、未変性重合体を軟化剤として含有する場合、その含有量は、ゴム成分(A)100質量部に対して50質量部より少ないことが好ましい。
<Other ingredients>
The rubber composition of the present invention is intended to improve processability, fluidity and the like within a range that does not impair the effects of the invention, and if necessary, silicon oil, aroma oil, TDAE (Treated Distilled Aromatic Extracts), MES (Mild) Extracted Solvates), RAE (Residual Aromatic Extracts), paraffin oil, naphthenic oil and other process oils, aliphatic hydrocarbon resins, alicyclic hydrocarbon resins, C9 resins, rosin resins, coumarone / indene resins, phenolic resins Resin component such as resin, low molecular weight polybutadiene, low molecular weight polyisoprene, low molecular weight styrene butadiene copolymer, liquid polymer such as low molecular weight styrene isoprene copolymer, unmodified polymer may be included as a softening agent . The copolymer may be in any polymerization form such as block or random. The weight average molecular weight (Mw) of the liquid polymer is preferably 500 to 100,000 from the viewpoint of processability. When the rubber composition of the present invention contains the above process oil, resin component or liquid polymer, and unmodified polymer as a softening agent, the content is from 50 parts by mass with respect to 100 parts by mass of the rubber component (A). Less is preferred.

本発明のゴム組成物は、発明の効果を阻害しない範囲で、耐候性、耐熱性、耐酸化性等の向上を目的として、必要に応じて老化防止剤、酸化防止剤、ワックス、滑剤、光安定剤、スコーチ防止剤、加工助剤、顔料や色素等の着色剤、難燃剤、帯電防止剤、艶消し剤、ブロッキング防止剤、紫外線吸収剤、離型剤、発泡剤、抗菌剤、防カビ剤、香料等の添加剤を1種又は2種以上含有していてもよい。
酸化防止剤としては、例えば、ヒンダードフェノール系化合物、リン系化合物、ラクトン系化合物、ヒドロキシル系化合物等が挙げられる。
老化防止剤としては、例えば、アミン−ケトン系化合物、イミダゾール系化合物、アミン系化合物、フェノール系化合物、硫黄系化合物及びリン系化合物等が挙げられる。
The rubber composition of the present invention is an anti-aging agent, an antioxidant, a wax, a lubricant, a light as needed for the purpose of improving the weather resistance, heat resistance, oxidation resistance, etc., as long as the effects of the invention are not impaired. Stabilizers, scorch inhibitors, processing aids, colorants such as pigments and dyes, flame retardants, antistatic agents, matting agents, antiblocking agents, UV absorbers, mold release agents, foaming agents, antibacterial agents, fungicides 1 type, or 2 or more types of additives, such as an agent and a fragrance | flavor, may be contained.
Examples of the antioxidant include hindered phenol compounds, phosphorus compounds, lactone compounds, hydroxyl compounds, and the like.
Examples of the antiaging agent include amine-ketone compounds, imidazole compounds, amine compounds, phenolic compounds, sulfur compounds, and phosphorus compounds.

本発明のゴム組成物は、上記加硫剤を用いて加硫する他に、架橋剤を添加して架橋して用いることもできる。架橋剤としては、例えば、酸素、有機過酸化物、フェノール樹脂及びアミノ樹脂、キノン及びキノンジオキシム誘導体、ハロゲン化合物、アルデヒド化合物、アルコール化合物、エポキシ化合物、金属ハロゲン化物及び有機金属ハロゲン化物、シラン化合物等が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。架橋剤の含有量は、ゴム成分(A)100質量部に対して0.1〜10質量部が好ましい。   The rubber composition of the present invention can be used after being vulcanized by using the above vulcanizing agent and by being crosslinked by adding a crosslinking agent. Examples of the cross-linking agent include oxygen, organic peroxide, phenol resin and amino resin, quinone and quinonedioxime derivatives, halogen compounds, aldehyde compounds, alcohol compounds, epoxy compounds, metal halides and organometallic halides, and silane compounds. Etc. These may be used alone or in combination of two or more. As for content of a crosslinking agent, 0.1-10 mass parts is preferable with respect to 100 mass parts of rubber components (A).

本発明のゴム組成物の製造方法は特に限定されず、前記各成分を均一に混合すればよい。均一に混合する方法としては、例えば、ニーダールーダー、ブラベンダー、バンバリーミキサー、インターナルミキサー等の接線式もしくは噛合式の密閉式混練機、単軸押出機、二軸押出機、ミキシングロール、ローラー等が挙げられ、通常70〜270℃の温度範囲で行うことができる。   The method for producing the rubber composition of the present invention is not particularly limited, and the components may be mixed uniformly. As a method of uniformly mixing, for example, a tangential or meshing closed kneader such as a kneader ruder, brabender, banbury mixer, internal mixer, single screw extruder, twin screw extruder, mixing roll, roller, etc. Usually, and can be performed in a temperature range of 70 to 270 ° C.

本発明のゴム組成物は、加硫することにより加硫ゴムとして利用することもできる。加硫の条件、方法に特に制限はないが、加硫金型を用いて加硫温度120〜200℃及び加硫圧力0.5〜2.0MPaの加圧加熱条件で行うことが好ましい。   The rubber composition of the present invention can also be used as a vulcanized rubber by vulcanization. There are no particular restrictions on the vulcanization conditions and method, but it is preferably carried out using a vulcanization mold under a vulcanization temperature of 120 to 200 ° C. and a vulcanization pressure of 0.5 to 2.0 MPa.

[タイヤ]
本発明のタイヤは、本発明のゴム組成物を少なくとも一部に用いる。そのため、機械強度が良好であり、また優れた転がり抵抗性能を備える。更に、本発明のゴム組成物を用いたタイヤは、長期間使用した場合でも前記機械強度等の特性を維持することができる。
[tire]
The tire of the present invention uses at least a part of the rubber composition of the present invention. Therefore, the mechanical strength is good and it has excellent rolling resistance performance. Furthermore, the tire using the rubber composition of the present invention can maintain the characteristics such as the mechanical strength even when used for a long time.

以下、実施例により本発明を説明するが、本発明はこれらの実施例に限定されるものではない。
本実施例及び比較例において使用した各成分は以下のとおりである。
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these Examples.
Each component used in the examples and comparative examples is as follows.

ゴム成分(A)
天然ゴム :「STR20」タイ製天然ゴム
油展スチレンブタジエンゴム:「JSR1723」JSR株式会社製
重量平均分子量(Mw)=85万
スチレン含有量=23.5質量%
乳化重合法で製造
オイル含量=27.3%
Rubber component (A)
Natural rubber: “STR20” natural rubber made in Thailand Oil-extended styrene butadiene rubber: “JSR1723” manufactured by JSR Corporation
Weight average molecular weight (Mw) = 850,000
Styrene content = 23.5% by mass
Manufactured by emulsion polymerization
Oil content = 27.3%

シリカ(B):「ULTRASIL7000GR」
エボニック デグサ ジャパン製
湿式シリカ:平均粒径14nm
変性重合体(C)
下記製造例1〜4、17で製造した変性ポリファルネセン(C−1)〜(C−4)、(C−17)
下記製造例5〜16で製造した変性ファルネセン共重合体(C−5)〜(C−16)
Silica (B): “ULTRASIL7000GR”
Made by Evonik Degussa Japan
Wet silica: Average particle size 14nm
Modified polymer (C)
Modified polyfarnesene (C-1) to (C-4) and (C-17) produced in the following Production Examples 1 to 4 and 17
Modified farnesene copolymers (C-5) to (C-16) produced in the following Production Examples 5 to 16

ポリイソプレン
下記比較製造例1及び2で得られたポリイソプレン(X−1)及び(X−2)
ポリファルネセン
下記比較製造例3で得られたポリファルネセン(X−3)
Polyisoprene Polyisoprene (X-1) and (X-2) obtained in Comparative Production Examples 1 and 2 below
Polyfarnesene Polyfarnesene (X-3) obtained in Comparative Production Example 3 below

TDAE :「VivaTec500」H&R製
シランカップリング剤(1):「Si75」
エボニック デグサ ジャパン製
シランカップリング剤(2):「Si69」
エボニック デグサ ジャパン製
老化防止剤(1):「ノクラック6C」
大内新興化学工業株式会社製
老化防止剤(2):「アンテージRD」
川口化学工業株式会社
ワックス:「サンタイトS」精工化学株式会社
TDAE: “VivaTec500” H & R silane coupling agent (1): “Si75”
Siphonic coupling agent made by Evonik Degussa Japan (2): “Si69”
Evonik Degussa Japan anti-aging agent (1): “NOCRACK 6C”
Anti-aging agent manufactured by Ouchi Shinsei Chemical Co., Ltd. (2): “ANTAGE RD”
Kawaguchi Chemical Industry Co., Ltd. Wax: “Santite S” Seiko Chemical Co., Ltd.

加硫剤
硫黄(微粉硫黄200メッシュ、鶴見化学工業株式会社製)
加硫促進剤
加硫促進剤(1):「ノクセラーNS−P」
大内新興化学工業株式会社製
加硫促進剤(2):「ノクセラーCZ−G」
大内新興化学工業株式会社製
加硫促進剤(3):「ノクセラーD」
大内新興化学工業株式会社製
加硫促進剤(4):「ノクセラーTBT−N」
大内新興化学工業株式会社製
加硫助剤
ステアリン酸:「ルナックS−20」花王株式会社製
亜鉛華 :「酸化亜鉛」堺化学工業株式会社製
Vulcanizing agent Sulfur (fine powder 200 mesh, manufactured by Tsurumi Chemical Co., Ltd.)
Vulcanization accelerator Vulcanization accelerator (1): "Noxeller NS-P"
Vulcanization accelerator made by Ouchi Shinsei Chemical Co., Ltd. (2): “Noxeller CZ-G”
Vulcanization accelerator made by Ouchi Shinsei Chemical Co., Ltd. (3): “Noxeller D”
Vulcanization accelerator made by Ouchi Shinsei Chemical Co., Ltd. (4): “Noxeller TBT-N”
Ouchi Shinsei Chemical Co., Ltd. Vulcanization Aid Stearic Acid: “Lunac S-20” Kao Corporation Zinc Hana: “Zinc Oxide” Sakai Chemical Industry Co., Ltd.

製造例1:無水マレイン酸変性ポリファルネセン(C−1)の製造
窒素置換し、乾燥させた耐圧容器に、溶媒としてヘキサン274g、開始剤としてn−ブチルリチウム(17質量%ヘキサン溶液)1.2gを仕込み、50℃に昇温した後、β−ファルネセン272gを加えて1時間重合した。得られた重合反応液をメタノールで処理し、水を用いて重合反応液を洗浄した。洗浄後の重合反応液と水とを分離して、70℃で12時間乾燥することにより、未変性のポリファルネセンを得た。
次いで、耐圧容器に得られた未変性のポリファルネセンを250g、老化防止剤としてノクラック6Cを0.25g、及び無水マレイン酸を1.25g仕込み、窒素置換した後、170℃まで昇温し20時間反応させることにより、表1に示す物性を有する無水マレイン酸変性ポリファルネセン(C−1)を得た。なお、変性剤の反応率は53%、変性重合体(C−1)中に付加された官能基量は未変性重合体100質量部に対し0.3質量部であった。
Production Example 1: Production of maleic anhydride-modified polyfarnesene (C-1) In a pressure-resistant container purged with nitrogen and dried, 274 g of hexane as a solvent and 1.2 g of n-butyllithium (17% by mass hexane solution) as an initiator After charging and heating to 50 ° C., 272 g of β-farnesene was added and polymerization was performed for 1 hour. The obtained polymerization reaction liquid was treated with methanol, and the polymerization reaction liquid was washed with water. The polymerization reaction solution after washing and water were separated and dried at 70 ° C. for 12 hours to obtain unmodified polyfarnesene.
Next, 250 g of the unmodified polyfarnesene obtained in the pressure vessel, 0.25 g of NOCRACK 6C as an anti-aging agent, and 1.25 g of maleic anhydride were charged, purged with nitrogen, heated to 170 ° C., and reacted for 20 hours. As a result, maleic anhydride-modified polyfarnesene (C-1) having physical properties shown in Table 1 was obtained. The reaction rate of the modifier was 53%, and the amount of the functional group added to the modified polymer (C-1) was 0.3 part by mass with respect to 100 parts by mass of the unmodified polymer.

製造例2:無水マレイン酸変性ポリファルネセン(C−2)の製造
窒素置換し、乾燥させた耐圧容器に、溶媒としてヘキサン5,755g、開始剤としてn−ブチルリチウム(17質量%ヘキサン溶液)26.5gを仕込み、50℃に昇温した後、β−ファルネセン5,709gを加えて1時間重合した。得られた重合反応液をメタノールで処理し、水を用いて重合反応液を洗浄した。洗浄後の重合反応液と水とを分離して、70℃で12時間乾燥することにより、未変性のポリファルネセンを得た。
次いで、耐圧容器に得られた未変性のポリファルネセンを500g、老化防止剤としてノクラック6Cを0.5g、及び無水マレイン酸を7.5g仕込み、窒素置換した後、170℃まで昇温し24時間反応させることにより、表1に示す物性を有する無水マレイン酸変性ポリファルネセン(C−2)を得た。なお、変性剤の反応率は87%、変性重合体(C−2)中に付加された官能基量は未変性重合体100質量部に対し1.3質量部であった。
Production Example 2: Production of maleic anhydride-modified polyfarnesene (C-2) In a pressure-resistant container purged with nitrogen and dried, 5,755 g of hexane as a solvent and n-butyllithium (17% by mass hexane solution) as an initiator 26. After charging 5 g and raising the temperature to 50 ° C., 5,709 g of β-farnesene was added and polymerization was performed for 1 hour. The obtained polymerization reaction liquid was treated with methanol, and the polymerization reaction liquid was washed with water. The polymerization reaction solution after washing and water were separated and dried at 70 ° C. for 12 hours to obtain unmodified polyfarnesene.
Next, 500 g of the unmodified polyfarnesene obtained in the pressure vessel, 0.5 g of NOCRACK 6C as an anti-aging agent, and 7.5 g of maleic anhydride were charged, purged with nitrogen, heated to 170 ° C., and reacted for 24 hours. By doing so, maleic anhydride-modified polyfarnesene (C-2) having the physical properties shown in Table 1 was obtained. The reaction rate of the modifier was 87%, and the amount of functional group added to the modified polymer (C-2) was 1.3 parts by mass with respect to 100 parts by mass of the unmodified polymer.

製造例3:無水マレイン酸変性ポリファルネセン(C−3)の製造
窒素置換し、乾燥させた耐圧容器に、溶媒としてヘキサン5,755g、開始剤としてn−ブチルリチウム(17質量%ヘキサン溶液)26.5gを仕込み、50℃に昇温した後、β−ファルネセン5,709gを加えて1時間重合した。得られた重合反応液をメタノールで処理し、水を用いて重合反応液を洗浄した。洗浄後の重合反応液と水とを分離して、70℃で12時間乾燥することにより、未変性のポリファルネセンを得た。
次いで、耐圧容器に得られた未変性のポリファルネセンを500g、老化防止剤としてノクラック6Cを0.5g、及び無水マレイン酸を25g仕込み、窒素置換した後、170℃まで昇温し24時間反応させることにより、表1に示す物性を有する無水マレイン酸変性ポリファルネセン(C−3)を得た。なお、変性剤の反応率は94%、変性重合体(C−3)中に付加された官能基量は未変性重合体100質量部に対し4.7質量部であった。
Production Example 3: Production of maleic anhydride-modified polyfarnesene (C-3) In a pressure-resistant container purged with nitrogen and dried, 5,755 g of hexane as a solvent and n-butyllithium (17% by mass hexane solution) as an initiator 26. After charging 5 g and raising the temperature to 50 ° C., 5,709 g of β-farnesene was added and polymerization was performed for 1 hour. The obtained polymerization reaction liquid was treated with methanol, and the polymerization reaction liquid was washed with water. The polymerization reaction solution after washing and water were separated and dried at 70 ° C. for 12 hours to obtain unmodified polyfarnesene.
Next, 500 g of the unmodified polyfarnesene obtained in the pressure vessel, 0.5 g of NOCRACK 6C as an anti-aging agent, and 25 g of maleic anhydride are charged, and after purging with nitrogen, the temperature is raised to 170 ° C. and reacted for 24 hours. As a result, maleic anhydride-modified polyfarnesene (C-3) having physical properties shown in Table 1 was obtained. The reaction rate of the modifier was 94%, and the amount of functional group added to the modified polymer (C-3) was 4.7 parts by mass with respect to 100 parts by mass of the unmodified polymer.

製造例4:無水マレイン酸変性ポリファルネセン(C−4)の製造
窒素置換し、乾燥させた耐圧容器に、溶媒としてシクロヘキサン1,216g、開始剤としてsec−ブチルリチウム(10.5質量%シクロヘキサン溶液)42.6gを仕込み、50℃に昇温した後、β−ファルネセン1,880gを加えて1時間重合した。得られた重合反応液をメタノールで処理し、水を用いて重合反応液を洗浄した。洗浄後の重合反応液と水とを分離して、70℃で12時間乾燥することにより、未変性のポリファルネセンを得た。
次いで、耐圧容器に得られた未変性のポリファルネセンを500g、老化防止剤としてノクラック6Cを0.5g、及び無水マレイン酸を7.5g仕込み、窒素置換した後、170℃まで昇温し24時間反応させることにより、表1に示す物性を有する無水マレイン酸変性ポリファルネセン(C−4)を得た。なお、変性剤の反応率は94%、変性重合体(C−4)中に付加された官能基量は未変性重合体100質量部に対し1.4質量部であった。
Production Example 4: Production of maleic anhydride-modified polyfarnesene (C-4) In a pressure-resistant container purged with nitrogen and dried, 1,216 g of cyclohexane as a solvent and sec-butyllithium (10.5 mass% cyclohexane solution) as an initiator 42.6 g was charged and the temperature was raised to 50 ° C., 1,880 g of β-farnesene was added and polymerization was performed for 1 hour. The obtained polymerization reaction liquid was treated with methanol, and the polymerization reaction liquid was washed with water. The polymerization reaction solution after washing and water were separated and dried at 70 ° C. for 12 hours to obtain unmodified polyfarnesene.
Next, 500 g of the unmodified polyfarnesene obtained in the pressure vessel, 0.5 g of NOCRACK 6C as an anti-aging agent, and 7.5 g of maleic anhydride were charged, purged with nitrogen, heated to 170 ° C., and reacted for 24 hours. As a result, maleic anhydride-modified polyfarnesene (C-4) having the physical properties shown in Table 1 was obtained. The reaction rate of the modifier was 94%, and the amount of the functional group added to the modified polymer (C-4) was 1.4 parts by mass with respect to 100 parts by mass of the unmodified polymer.

比較製造例1:ポリイソプレン(X−1)の製造
窒素置換し、乾燥させた耐圧容器に、ヘキサン600g、n−ブチルリチウム(17質量%ヘキサン溶液)13.9gを仕込み、70℃に昇温した後、イソプレン1370gを加えて1時間重合した。得られた重合反応液にメタノールを添加後、重合反応液を水で洗浄した。水を分離して、重合反応液を70℃で12時間乾燥することにより、表1に示す物性を有するポリイソプレン(X−1)を得た。
Comparative production example 1: Production of polyisoprene (X-1) A pressure-resistant container purged with nitrogen and dried was charged with 600 g of hexane and 13.9 g of n-butyllithium (17% by mass hexane solution) and heated to 70 ° C. Then, 1370 g of isoprene was added and polymerization was performed for 1 hour. After adding methanol to the obtained polymerization reaction solution, the polymerization reaction solution was washed with water. Water was separated, and the polymerization reaction solution was dried at 70 ° C. for 12 hours to obtain polyisoprene (X-1) having physical properties shown in Table 1.

比較製造例2:ポリイソプレン(X−2)の製造
窒素置換し、乾燥させた耐圧容器に、ヘキサン600g、n−ブチルリチウム(17質量%ヘキサン溶液)44.9gを仕込み、70℃に昇温した後、イソプレン2050gを加えて1時間重合した。得られた重合反応液にメタノールを添加後、重合反応液を水で洗浄した。水を分離して、重合反応液を70℃で12時間乾燥することにより、表1に示す物性を有するポリイソプレン(X−2)を得た。
Comparative Production Example 2: Production of polyisoprene (X-2) 600 g of hexane and 44.9 g of n-butyllithium (17% by mass hexane solution) were charged into a pressure vessel that had been purged with nitrogen and dried, and the temperature was raised to 70 ° C. Then, 2050 g of isoprene was added and polymerization was performed for 1 hour. After adding methanol to the obtained polymerization reaction solution, the polymerization reaction solution was washed with water. Water was separated, and the polymerization reaction solution was dried at 70 ° C. for 12 hours to obtain polyisoprene (X-2) having physical properties shown in Table 1.

なお、変性重合体(C)、ポリイソプレンの重量平均分子量(Mw)、分子量分布(Mw/Mn)、溶融粘度及び変性剤の反応率の測定方法は以下のとおりである。
(重量平均分子量及び分子量分布の測定方法)
変性重合体(C)及びポリイソプレンのMw及びMw/MnはGPC(ゲルパーミエーションクロマトグラフィー)により標準ポリスチレン換算分子量で求めた。測定装置及び条件は、以下の通りである。
・装置 :東ソー株式会社製GPC装置「GPC8020」
・分離カラム :東ソー株式会社製「TSKgelG4000HXL」
・検出器 :東ソー株式会社製「RI−8020」
・溶離液 :テトラヒドロフラン
・溶離液流量 :1.0ml/分
・サンプル濃度:5mg/10ml
・カラム温度 :40℃
In addition, the modified polymer (C), the weight average molecular weight (Mw) of polyisoprene, molecular weight distribution (Mw / Mn), melt viscosity, and the measuring method of the reaction rate of a modifier are as follows.
(Method of measuring weight average molecular weight and molecular weight distribution)
Mw and Mw / Mn of the modified polymer (C) and polyisoprene were determined by GPC (gel permeation chromatography) in terms of standard polystyrene equivalent molecular weight. The measuring apparatus and conditions are as follows.
・ Device: GPC device “GPC8020” manufactured by Tosoh Corporation
Separation column: “TSKgel G4000HXL” manufactured by Tosoh Corporation
Detector: “RI-8020” manufactured by Tosoh Corporation
・ Eluent: Tetrahydrofuran ・ Eluent flow rate: 1.0 ml / min ・ Sample concentration: 5 mg / 10 ml
-Column temperature: 40 ° C

(溶融粘度の測定方法)
変性重合体(C)の38℃における溶融粘度をブルックフィールド型粘度計(BROOKFIELD ENGINEERING LABS. INC.製)により測定した。
(Measuring method of melt viscosity)
The melt viscosity at 38 ° C. of the modified polymer (C) was measured with a Brookfield viscometer (manufactured by BROOKFIELD ENGINEERING LABS. INC.).

(変性剤の反応率の測定方法)
変性反応後の試料3gにトルエン180mL、エタノール20mLを加え溶解した後、0.1N水酸化カリウムのエタノール溶液で中和滴定し酸価を求めた。
酸価(mgKOH/g)=(A−B)×F×5.611/S
A:中和に要した0.1N水酸化カリウムのエタノール溶液滴下量(mL)
B:試料を含まないブランクでの0.1N水酸化カリウムのエタノール溶液滴下量(mL)
F:0.1N水酸化カリウムのエタノール溶液の力価
S:秤量した試料の質量(g)
また、変性反応後の試料をメタノールで4回洗浄(試料1gに対して5mL)して未反応の無水マレイン酸を除去した後、試料を80℃で12時間、減圧乾燥し、上記と同様の方法にて酸価を求めた。下記式に基づき変性剤の反応率を算出した。
〔変性剤の反応率〕=〔洗浄後の酸価〕/〔洗浄前の酸価〕×100
(Method for measuring reaction rate of denaturant)
To 3 g of the sample after the denaturation reaction, 180 mL of toluene and 20 mL of ethanol were added and dissolved, and then neutralization titration with an ethanol solution of 0.1 N potassium hydroxide was performed to determine the acid value.
Acid value (mgKOH / g) = (A−B) × F × 5.661 / S
A: A drop amount of ethanol solution of 0.1N potassium hydroxide required for neutralization (mL)
B: 0.1N potassium hydroxide ethanol solution drop volume in a blank containing no sample (mL)
F: Potency of ethanol solution of 0.1N potassium hydroxide S: Weight of sample weighed (g)
The sample after the denaturation reaction was washed 4 times with methanol (5 mL relative to 1 g of the sample) to remove unreacted maleic anhydride, and then the sample was dried under reduced pressure at 80 ° C. for 12 hours. The acid value was determined by the method. The reaction rate of the modifier was calculated based on the following formula.
[Modification rate of modifier] = [Acid value after washing] / [Acid value before washing] × 100

Figure 2015025762
Figure 2015025762

実施例1及び比較例1,2
表2に記載した配合割合(質量部)にしたがって、ゴム成分(A)、シリカ(B)、変性重合体(C)、ポリイソプレン、TDAE、加硫助剤及び老化防止剤を、それぞれ密閉式バンバリーミキサーに投入して開始温度75℃、樹脂温度が160℃となるように6分間混練した後、ミキサー外に取り出して室温まで冷却した。次いで、この混合物をミキシングロールに入れ、加硫剤及び加硫促進剤を加えて60℃で6分間混練することで約1.2kgのゴム組成物を得た。得られたゴム組成物のムーニー粘度を下記の方法により測定した。
また、得られたゴム組成物をプレス成形(145℃、45分)して加硫ゴムシート(厚み2mm)を作製し、下記の方法に基づき、転がり抵抗性能、硬度、及び引張破断強度を評価した。結果を表2に示す。
なお、各評価の測定方法は以下のとおりである。
Example 1 and Comparative Examples 1 and 2
According to the blending ratio (parts by mass) listed in Table 2, the rubber component (A), silica (B), modified polymer (C), polyisoprene, TDAE, vulcanization aid and anti-aging agent are each sealed. The mixture was put into a Banbury mixer and kneaded for 6 minutes so that the starting temperature was 75 ° C. and the resin temperature was 160 ° C., then taken out of the mixer and cooled to room temperature. Next, this mixture was put in a mixing roll, a vulcanizing agent and a vulcanization accelerator were added, and kneaded at 60 ° C. for 6 minutes to obtain about 1.2 kg of a rubber composition. The Mooney viscosity of the obtained rubber composition was measured by the following method.
The obtained rubber composition was press-molded (145 ° C., 45 minutes) to produce a vulcanized rubber sheet (thickness 2 mm), and the rolling resistance performance, hardness, and tensile breaking strength were evaluated based on the following methods. did. The results are shown in Table 2.
In addition, the measuring method of each evaluation is as follows.

・転がり抵抗性能
実施例及び比較例で作製したゴム組成物のシートから縦40mm×横7mmの試験片を切り出し、GABO社製動的粘弾性測定装置を用いて、測定温度60℃、周波数10Hz、静的歪み10%、動的歪み2%の条件で、tanδを測定し、転がり抵抗の指標とした。各実施例及び比較例の数値は、比較例2の値を100とした際の相対値である。なお、数値が小さいほどゴム組成物の転がり抵抗性能が良好である。
-Rolling resistance performance A test piece of 40 mm length x 7 mm width was cut out from the rubber composition sheets produced in the examples and comparative examples, and measured using a dynamic viscoelasticity measuring device manufactured by GABO at a measurement temperature of 60 ° C and a frequency of 10 Hz. Tan δ was measured under the conditions of 10% static strain and 2% dynamic strain, and used as an index of rolling resistance. The numerical value of each Example and Comparative Example is a relative value when the value of Comparative Example 2 is set to 100. In addition, the rolling resistance performance of a rubber composition is so favorable that a numerical value is small.

・硬度(操縦安定性)
実施例及び比較例で作製したゴム組成物のシートを用いて、JIS K6253に準拠して、タイプA硬度計により硬度を測定し、柔軟性の指標とした。なお、数値が50より小さい場合は、当該組成物をタイヤに用いた際にタイヤの変形が大きいため、操縦安定性が悪化する。
・ Hardness (steering stability)
Using the rubber composition sheets prepared in Examples and Comparative Examples, the hardness was measured with a type A hardness meter in accordance with JIS K6253, and used as an index of flexibility. In addition, when a numerical value is smaller than 50, since the deformation | transformation of a tire is large when the said composition is used for a tire, steering stability deteriorates.

・引張破断強度(機械強度)
実施例及び比較例で作製したゴム組成物のシートからJIS3に準じてダンベル状試験片を打ち抜き、インストロン社製引張試験機を用いて、JIS K 6251に準じて引張破断強度を測定した。各実施例及び比較例の数値は、比較例2の値を100とした際の相対値である。なお、数値が大きいほど、破断特性が良好である。
・ Tensile strength at break (mechanical strength)
Dumbbell-shaped test pieces were punched from the rubber composition sheets prepared in Examples and Comparative Examples according to JIS3, and the tensile strength at break was measured according to JIS K6251 using an Instron tensile tester. The numerical value of each Example and Comparative Example is a relative value when the value of Comparative Example 2 is set to 100. Note that the larger the numerical value, the better the breaking property.

Figure 2015025762
Figure 2015025762

実施例1のゴム組成物は、変性重合体(C)を含有しない比較例1及び2に比べ、硬度が良好であり、転がり抵抗性能及び機械強度に優れているため、タイヤ用ゴム組成物として好適に用いることができる。   The rubber composition of Example 1 has good hardness and excellent rolling resistance performance and mechanical strength as compared with Comparative Examples 1 and 2 that do not contain the modified polymer (C). It can be used suitably.

実施例2〜4、比較例3,4
表3に記載した配合割合(質量部)にしたがって、ゴム成分(A)、シリカ(B)、変性重合体(C)、ポリイソプレン、TDAE、ワックス、加硫助剤及び老化防止剤を、それぞれ密閉式バンバリーミキサーに投入して開始温度75℃、樹脂温度が160℃となるように6分間混練した後、ミキサー外に取り出して室温まで冷却した。次いで、この混合物をミキシングロールに入れ、加硫剤及び加硫促進剤を加えて60℃で6分間混練することで約1.3kgのゴム組成物を得た。
また、得られたゴム組成物をプレス成形(145℃、30分)して加硫ゴムシート(厚み2mm)を作製し、上記の方法に基づき、転がり抵抗性能、硬度、及び引張破断強度を評価した。また、下記方法に基づいて耐摩耗性、及び弾性率を評価した。結果を表3に示す。
なお、表3における転がり抵抗性能、及び引張破断強度の数値は、表3の比較例4の値を100とした際の相対値である。
Examples 2 to 4, Comparative Examples 3 and 4
According to the blending ratio (parts by mass) described in Table 3, the rubber component (A), silica (B), modified polymer (C), polyisoprene, TDAE, wax, vulcanization aid, and anti-aging agent, respectively. The mixture was put into a closed Banbury mixer and kneaded for 6 minutes so that the starting temperature was 75 ° C. and the resin temperature was 160 ° C., then taken out of the mixer and cooled to room temperature. Next, this mixture was put in a mixing roll, a vulcanizing agent and a vulcanization accelerator were added, and kneaded at 60 ° C. for 6 minutes to obtain about 1.3 kg of a rubber composition.
Further, the obtained rubber composition was press-molded (145 ° C., 30 minutes) to produce a vulcanized rubber sheet (thickness 2 mm), and the rolling resistance performance, hardness, and tensile breaking strength were evaluated based on the above methods. did. Moreover, abrasion resistance and an elastic modulus were evaluated based on the following method. The results are shown in Table 3.
In addition, the numerical values of the rolling resistance performance and the tensile strength at break in Table 3 are relative values when the value of Comparative Example 4 in Table 3 is 100.

・弾性率
実施例及び比較例で作製した加硫ゴムシートから縦40mm×横7mmの試験片を切り出し、GABO社製動的粘弾性測定装置を用いて、測定温度25℃、周波数10Hz、静的歪み10%、動的歪み2%の条件で、貯蔵弾性率E’を測定し、剛性の指標とした。各実施例及び比較例の数値は、比較例4の値を100とした際の相対値である。なお、数値が大きいほど当該ゴム組成物をタイヤに用いた際にタイヤの変形が小さく、操縦安定性が良好である。
-Elastic modulus A test piece of 40 mm length x 7 mm width was cut out from the vulcanized rubber sheet produced in Examples and Comparative Examples, and measured using a dynamic viscoelasticity measuring device manufactured by GABO at a measurement temperature of 25 ° C, a frequency of 10 Hz, and static. The storage elastic modulus E ′ was measured under the conditions of a strain of 10% and a dynamic strain of 2%, and used as an index of rigidity. The numerical value of each Example and Comparative Example is a relative value when the value of Comparative Example 4 is 100. In addition, the larger the numerical value, the smaller the deformation of the tire when the rubber composition is used for the tire, and the better the steering stability.

Figure 2015025762
Figure 2015025762

実施例2〜4のゴム組成物は、変性重合体(C)を含有しない比較例3及び4に比べ、弾性率が高く、かつ転がり抵抗性能、硬度に優れ、機械強度も良好なため、タイヤ用ゴム組成物として好適に用いることができる。   The rubber compositions of Examples 2 to 4 have higher elastic modulus, excellent rolling resistance performance and hardness, and better mechanical strength than those of Comparative Examples 3 and 4 that do not contain the modified polymer (C). It can be suitably used as a rubber composition.

製造例5:無水マレイン酸変性ファルネセン−ブタジエン共重合体(C−5)の製造
窒素置換し、乾燥させた耐圧容器に、溶媒としてヘキサン1,121g、開始剤としてsec−ブチルリチウム(10.5質量%シクロヘキサン溶液)49.2gを仕込み、50℃に昇温した後、予め調製したβ−ファルネセン(c1)とブタジエン(c2)との混合物(β−ファルネセン(c1)1,260gとブタジエン(c2)840gとをボンベ内で混合)1,430gを10ml/分で加えて1時間重合した。得られた重合反応液をメタノールで処理し、水を用いて重合反応液を洗浄した。洗浄後の重合反応液と水とを分離して、70℃で12時間乾燥することにより、未変性のファルネセン−ブタジエン共重合体を得た。
次いで、耐圧容器に得られた未変性のファルネセン−ブタジエン共重合体を500g、老化防止剤としてノクラック6Cを0.5g、及び無水マレイン酸を25g仕込み、窒素置換した後、170℃まで昇温し24時間反応させることにより、表4に示す物性を有する無水マレイン酸変性ファルネセン−ブタジエン共重合体(C−5)を得た。なお、変性剤の反応率は96%、変性重合体(C−5)中に付加された官能基量は未変性重合体100質量部に対し4.8質量部であった。
Production Example 5 Production of Maleic Anhydride Modified Farnesene-Butadiene Copolymer (C-5) In a pressure-resistant container purged with nitrogen and dried, 1,121 g of hexane as a solvent and sec-butyllithium (10.5 as an initiator) 49.2 g of a mass% cyclohexane solution) and the temperature was raised to 50 ° C., and then a previously prepared mixture of β-farnesene (c1) and butadiene (c2) (1,260 g of β-farnesene (c1) and butadiene (c2) ) 840 g was mixed in a cylinder) 1,430 g was added at 10 ml / min and polymerized for 1 hour. The obtained polymerization reaction liquid was treated with methanol, and the polymerization reaction liquid was washed with water. The polymerization reaction solution after washing and water were separated and dried at 70 ° C. for 12 hours to obtain an unmodified farnesene-butadiene copolymer.
Next, 500 g of the unmodified farnesene-butadiene copolymer obtained in the pressure vessel, 0.5 g of Nocrack 6C as an anti-aging agent, and 25 g of maleic anhydride were charged, and after nitrogen substitution, the temperature was raised to 170 ° C. By reacting for 24 hours, a maleic anhydride-modified farnesene-butadiene copolymer (C-5) having physical properties shown in Table 4 was obtained. The reaction rate of the modifier was 96%, and the amount of functional group added to the modified polymer (C-5) was 4.8 parts by mass with respect to 100 parts by mass of the unmodified polymer.

製造例6:無水マレイン酸変性ファルネセン−ブタジエン共重合体(C−6)の製造
窒素置換し、乾燥させた耐圧容器に、溶媒としてヘキサン1,137g、開始剤としてsec−ブチルリチウム(10.5質量%シクロヘキサン溶液)32.8gを仕込み、50℃に昇温した後、予め調製したβ−ファルネセン(c1)とブタジエン(c2)との混合物(β−ファルネセン(c1)1,260gとブタジエン(c2)840gとをボンベ内で混合)1,430gを10ml/分で加えて1時間重合した。得られた重合反応液をメタノールで処理し、水を用いて重合反応液を洗浄した。洗浄後の重合反応液と水とを分離して、70℃で12時間乾燥することにより、未変性のファルネセン−ブタジエン共重合体を得た。
次いで、耐圧容器に得られた未変性のファルネセン−ブタジエン共重合体を500g、老化防止剤としてノクラック6Cを0.5g、及び無水マレイン酸を25g仕込み、窒素置換した後、170℃まで昇温し24時間反応させることにより、表4に示す物性を有する無水マレイン酸変性ファルネセン−ブタジエン共重合体(C−6)を得た。なお、変性剤の反応率は97%、変性重合体(C−6)中に付加された官能基量は未変性重合体100質量部に対し4.9質量部であった。
Production Example 6 Production of Maleic Anhydride Modified Farnesene-Butadiene Copolymer (C-6) Into a pressure-resistant container purged with nitrogen and dried, 1,137 g of hexane as a solvent and sec-butyllithium (10.5 as an initiator) (Mass% cyclohexane solution) 32.8 g was charged, the temperature was raised to 50 ° C., and a mixture of β-farnesene (c1) and butadiene (c2) prepared in advance (1,260 g of β-farnesene (c1) and butadiene (c2) was prepared. ) 840 g was mixed in a cylinder) 1,430 g was added at 10 ml / min and polymerized for 1 hour. The obtained polymerization reaction liquid was treated with methanol, and the polymerization reaction liquid was washed with water. The polymerization reaction solution after washing and water were separated and dried at 70 ° C. for 12 hours to obtain an unmodified farnesene-butadiene copolymer.
Next, 500 g of the unmodified farnesene-butadiene copolymer obtained in the pressure vessel, 0.5 g of Nocrack 6C as an anti-aging agent, and 25 g of maleic anhydride were charged, and after nitrogen substitution, the temperature was raised to 170 ° C. By reacting for 24 hours, a maleic anhydride-modified farnesene-butadiene copolymer (C-6) having physical properties shown in Table 4 was obtained. The reaction rate of the modifier was 97%, and the amount of the functional group added to the modified polymer (C-6) was 4.9 parts by mass with respect to 100 parts by mass of the unmodified polymer.

製造例7:無水マレイン酸変性ファルネセン−ブタジエン共重合体(C−7)の製造
窒素置換し、乾燥させた耐圧容器に、溶媒としてヘキサン1,152g、開始剤としてsec−ブチルリチウム(10.5質量%シクロヘキサン溶液)18.5gを仕込み、50℃に昇温した後、予め調製したβ−ファルネセン(c1)とブタジエン(c2)との混合物(β−ファルネセン(c1)1,170gとブタジエン(c2)780gとをボンベ内で混合)1,430gを10ml/分で加えて1時間重合した。得られた重合反応液をメタノールで処理し、水を用いて重合反応液を洗浄した。洗浄後の重合反応液と水とを分離して、70℃で12時間乾燥することにより、未変性のファルネセン−ブタジエン共重合体を得た。
次いで、耐圧容器に得られた未変性のファルネセン−ブタジエン共重合体を500g、老化防止剤としてノクラック6Cを0.5g、及び無水マレイン酸を25g仕込み、窒素置換した後、170℃まで昇温し24時間反応させることにより、表4に示す物性を有する無水マレイン酸変性ファルネセン−ブタジエン共重合体(C−7)を得た。なお、変性剤の反応率は94%、変性重合体(C−7)中に付加された官能基量は未変性重合体100質量部に対し4.7質量部であった。
Production Example 7 Production of Maleic Anhydride Modified Farnesene-Butadiene Copolymer (C-7) In a pressure-resistant container purged with nitrogen and dried, 1,152 g of hexane as a solvent and sec-butyllithium (10.5 as an initiator) 18.5 g of a mass% cyclohexane solution) was heated to 50 ° C., and then prepared in advance was a mixture of β-farnesene (c1) and butadiene (c2) (1,170 g of β-farnesene (c1) and butadiene (c2). ) 780 g was mixed in a cylinder) 1,430 g was added at 10 ml / min and polymerized for 1 hour. The obtained polymerization reaction liquid was treated with methanol, and the polymerization reaction liquid was washed with water. The polymerization reaction solution after washing and water were separated and dried at 70 ° C. for 12 hours to obtain an unmodified farnesene-butadiene copolymer.
Next, 500 g of the unmodified farnesene-butadiene copolymer obtained in the pressure vessel, 0.5 g of Nocrack 6C as an anti-aging agent, and 25 g of maleic anhydride were charged, and after nitrogen substitution, the temperature was raised to 170 ° C. By reacting for 24 hours, a maleic anhydride-modified farnesene-butadiene copolymer (C-7) having physical properties shown in Table 4 was obtained. The reaction rate of the modifier was 94%, and the amount of functional group added to the modified polymer (C-7) was 4.7 parts by mass with respect to 100 parts by mass of the unmodified polymer.

製造例8:無水マレイン酸変性ファルネセン−ブタジエン共重合体(C−8)の製造
窒素置換し、乾燥させた耐圧容器に、溶媒としてヘキサン1,147g、開始剤としてsec−ブチルリチウム(10.5質量%シクロヘキサン溶液)22.3gを仕込み、50℃に昇温した後、予め調製したβ−ファルネセン(c1)とブタジエン(c2)との混合物(β−ファルネセン(c1)1,520gとブタジエン(c2)380gとをボンベ内で混合)1,430gを10ml/分で加えて1時間重合した。得られた重合反応液をメタノールで処理し、水を用いて重合反応液を洗浄した。洗浄後の重合反応液と水とを分離して、70℃で12時間乾燥することにより、未変性のファルネセン−ブタジエン共重合体を得た。
次いで、耐圧容器に得られた未変性のファルネセン−ブタジエン共重合体を500g、老化防止剤としてノクラック6Cを0.5g、及び無水マレイン酸を25g仕込み、窒素置換した後、170℃まで昇温し24時間反応させることにより、表4に示す物性を有する無水マレイン酸変性ファルネセン−ブタジエン共重合体(C−8)を得た。なお、変性剤の反応率は96%、変性重合体(C−8)中に付加された官能基量は未変性重合体100質量部に対し4.8質量部であった。
Production Example 8 Production of Maleic Anhydride Modified Farnesene-Butadiene Copolymer (C-8) In a pressure-resistant vessel purged with nitrogen and dried, 1,147 g of hexane as a solvent and sec-butyllithium (10.5 as an initiator) 22.3 g of a mass% cyclohexane solution), and the temperature was raised to 50 ° C., and then a mixture of β-farnesene (c1) and butadiene (c2) prepared in advance (1,520 g of β-farnesene (c1) and butadiene (c2) ) 380 g was mixed in a cylinder) 1,430 g was added at 10 ml / min and polymerized for 1 hour. The obtained polymerization reaction liquid was treated with methanol, and the polymerization reaction liquid was washed with water. The polymerization reaction solution after washing and water were separated and dried at 70 ° C. for 12 hours to obtain an unmodified farnesene-butadiene copolymer.
Next, 500 g of the unmodified farnesene-butadiene copolymer obtained in the pressure vessel, 0.5 g of Nocrack 6C as an anti-aging agent, and 25 g of maleic anhydride were charged, and after nitrogen substitution, the temperature was raised to 170 ° C. By reacting for 24 hours, a maleic anhydride-modified farnesene-butadiene copolymer (C-8) having physical properties shown in Table 4 was obtained. The reaction rate of the modifier was 96%, and the amount of the functional group added to the modified polymer (C-8) was 4.8 parts by mass with respect to 100 parts by mass of the unmodified polymer.

製造例9:無水マレイン酸変性ファルネセン−ブタジエン共重合体(C−9)の製造
窒素置換し、乾燥させた耐圧容器に、溶媒としてヘキサン1,136g、開始剤としてsec−ブチルリチウム(10.5質量%シクロヘキサン溶液)32.2gを仕込み、50℃に昇温した後、予め調製したβ−ファルネセン(c1)とブタジエン(c2)との混合物(β−ファルネセン(c1)1,000gとブタジエン(c2)1,000gとをボンベ内で混合)1,430gを10ml/分で加えて1時間重合した。得られた重合反応液をメタノールで処理し、水を用いて重合反応液を洗浄した。洗浄後の重合反応液と水とを分離して、70℃で12時間乾燥することにより、未変性のファルネセン−ブタジエン共重合体を得た。
次いで、耐圧容器に得られた未変性のファルネセン−ブタジエン共重合体を500g、老化防止剤としてノクラック6Cを0.5g、及び無水マレイン酸を25g仕込み、窒素置換した後、170℃まで昇温し24時間反応させることにより、表4に示す物性を有する無水マレイン酸変性ファルネセン−ブタジエン共重合体(C−9)を得た。なお、変性剤の反応率は94%、変性重合体(C−9)中に付加された官能基量は未変性重合体100質量部に対し4.7質量部であった。
Production Example 9 Production of Maleic Anhydride Modified Farnesene-Butadiene Copolymer (C-9) In a pressure-resistant container purged with nitrogen and dried, 1,136 g of hexane as a solvent and sec-butyllithium (10.5 as an initiator) (Mass% cyclohexane solution) 32.2 g was charged and the temperature was raised to 50 ° C., and then a pre-prepared mixture of β-farnesene (c1) and butadiene (c2) (1,000 g of β-farnesene (c1) and butadiene (c2) ) 1,000 g was mixed in a cylinder) 1,430 g was added at 10 ml / min and polymerized for 1 hour. The obtained polymerization reaction liquid was treated with methanol, and the polymerization reaction liquid was washed with water. The polymerization reaction solution after washing and water were separated and dried at 70 ° C. for 12 hours to obtain an unmodified farnesene-butadiene copolymer.
Next, 500 g of the unmodified farnesene-butadiene copolymer obtained in the pressure vessel, 0.5 g of Nocrack 6C as an anti-aging agent, and 25 g of maleic anhydride were charged, and after nitrogen substitution, the temperature was raised to 170 ° C. By reacting for 24 hours, a maleic anhydride-modified farnesene-butadiene copolymer (C-9) having physical properties shown in Table 4 was obtained. The reaction rate of the modifier was 94%, and the amount of functional group added to the modified polymer (C-9) was 4.7 parts by mass with respect to 100 parts by mass of the unmodified polymer.

製造例10:無水マレイン酸変性ファルネセン−ブタジエン共重合体(C−10)の製造
窒素置換し、乾燥させた耐圧容器に、溶媒としてヘキサン1,133g、開始剤としてsec−ブチルリチウム(10.5質量%シクロヘキサン溶液)36.9gを仕込み、50℃に昇温した後、予め調製したβ−ファルネセン(c1)とブタジエン(c2)との混合物(β−ファルネセン(c1)390gとブタジエン(c2)1,560gとをボンベ内で混合)1,430gを10ml/分で加えて1時間重合した。得られた重合反応液をメタノールで処理し、水を用いて重合反応液を洗浄した。洗浄後の重合反応液と水とを分離して、70℃で12時間乾燥することにより、未変性のファルネセン−ブタジエン共重合体を得た。
次いで、耐圧容器に得られた未変性のファルネセン−ブタジエン共重合体を500g、老化防止剤としてノクラック6Cを0.5g、及び無水マレイン酸を25g仕込み、窒素置換した後、170℃まで昇温し24時間反応させることにより、表4に示す物性を有する無水マレイン酸変性ファルネセン−ブタジエン共重合体(C−10)を得た。なお、変性剤の反応率は92%、変性重合体(C−10)中に付加された官能基量は未変性重合体100質量部に対し4.6質量部であった。
Production Example 10 Production of Maleic Anhydride Modified Farnesene-Butadiene Copolymer (C-10) In a pressure-resistant container purged with nitrogen and dried, 1,133 g of hexane as a solvent and sec-butyllithium (10.5 as an initiator) (Mass% cyclohexane solution) 36.9 g, heated to 50 ° C., and then prepared in advance, a mixture of β-farnesene (c1) and butadiene (c2) (390 g of β-farnesene (c1) and butadiene (c2) 1 , 560 g were mixed in a cylinder), 1,430 g was added at 10 ml / min and polymerized for 1 hour. The obtained polymerization reaction liquid was treated with methanol, and the polymerization reaction liquid was washed with water. The polymerization reaction solution after washing and water were separated and dried at 70 ° C. for 12 hours to obtain an unmodified farnesene-butadiene copolymer.
Next, 500 g of the unmodified farnesene-butadiene copolymer obtained in the pressure vessel, 0.5 g of Nocrack 6C as an anti-aging agent, and 25 g of maleic anhydride were charged, and after nitrogen substitution, the temperature was raised to 170 ° C. By reacting for 24 hours, a maleic anhydride-modified farnesene-butadiene copolymer (C-10) having physical properties shown in Table 4 was obtained. The reaction rate of the modifier was 92%, and the amount of functional group added to the modified polymer (C-10) was 4.6 parts by mass with respect to 100 parts by mass of the unmodified polymer.

製造例11:製造例5で得られた無水マレイン酸変性ファルネセン−ブタジエン共重合体(C−5)315gにメタノールを5.9g添加し、80℃で6時間反応させて、マレイン酸モノメチルエステル変性ファルネセン−ブタジエン共重合体(C−11)を得た。 Production Example 11: 5.9 g of methanol was added to 315 g of the maleic anhydride-modified farnesene-butadiene copolymer (C-5) obtained in Production Example 5 and reacted at 80 ° C. for 6 hours to modify the monomethyl maleate ester. A farnesene-butadiene copolymer (C-11) was obtained.

製造例12:製造例6で得られた無水マレイン酸変性ファルネセン−ブタジエン共重合体(C−6)315gにメタノールを5.9g添加し、80℃で6時間反応させて、マレイン酸モノメチルエステル変性ファルネセン−ブタジエン共重合体(C−12)を得た。 Production Example 12: 5.9 g of methanol was added to 315 g of the maleic anhydride-modified farnesene-butadiene copolymer (C-6) obtained in Production Example 6 and reacted at 80 ° C. for 6 hours to modify the maleic acid monomethyl ester. A farnesene-butadiene copolymer (C-12) was obtained.

製造例13:製造例7で得られた無水マレイン酸変性ファルネセン−ブタジエン共重合体(C−7)315gにメタノールを5.9g添加し、80℃で6時間反応させて、マレイン酸モノメチルエステル変性ファルネセン−ブタジエン共重合体(C−13)を得た。 Production Example 13: 5.9 g of methanol was added to 315 g of the maleic anhydride-modified farnesene-butadiene copolymer (C-7) obtained in Production Example 7, and reacted at 80 ° C. for 6 hours to modify the maleic acid monomethyl ester. A farnesene-butadiene copolymer (C-13) was obtained.

製造例14:製造例8で得られた無水マレイン酸変性ファルネセン−ブタジエン共重合体(C−8)315gにメタノールを5.9g添加し、80℃で6時間反応させて、マレイン酸モノメチルエステル変性ファルネセン−ブタジエン共重合体(C−14)を得た。 Production Example 14: 5.9 g of methanol was added to 315 g of the maleic anhydride-modified farnesene-butadiene copolymer (C-8) obtained in Production Example 8, and reacted at 80 ° C. for 6 hours to modify the monomethyl maleate. A farnesene-butadiene copolymer (C-14) was obtained.

製造例15:製造例9で得られた無水マレイン酸変性ファルネセン−ブタジエン共重合体(C−9)315gにメタノールを5.9g添加し、80℃で6時間反応させて、マレイン酸モノメチルエステル変性ファルネセン−ブタジエン共重合体(C−15)を得た。 Production Example 15: 5.9 g of methanol was added to 315 g of the maleic anhydride-modified farnesene-butadiene copolymer (C-9) obtained in Production Example 9 and reacted at 80 ° C. for 6 hours to modify the monomethyl maleate ester. A farnesene-butadiene copolymer (C-15) was obtained.

製造例16:製造例10で得られた無水マレイン酸変性ファルネセン−ブタジエン共重合体(C−9)315gにメタノールを5.9g添加し、80℃で6時間反応させて、マレイン酸モノメチルエステル変性ファルネセン−ブタジエン共重合体(C−10)を得た。 Production Example 16: 5.9 g of methanol was added to 315 g of the maleic anhydride-modified farnesene-butadiene copolymer (C-9) obtained in Production Example 10 and reacted at 80 ° C. for 6 hours to modify the maleic acid monomethyl ester. A farnesene-butadiene copolymer (C-10) was obtained.

製造例17:製造例4で得られた無水マレイン酸変性ポリファルネセン(C−4)315gにメタノールを5.9g添加し、80℃で6時間反応させて、マレイン酸モノメチルエステル変性ポリファルネセン(C−17)を得た。 Production Example 17: 5.9 g of methanol was added to 315 g of maleic anhydride-modified polyfarnesene (C-4) obtained in Production Example 4 and reacted at 80 ° C. for 6 hours to give a maleic acid monomethyl ester-modified polyfarnesene (C-17). )

比較製造例3:ポリファルネセン(X−3)の製造
窒素置換し、乾燥させた耐圧容器に、シクロヘキサン1,392g、sec−ブチルリチウム(10.5質量%シクロヘキサン溶液)8.0gを仕込み、50℃に昇温した後、ファルネセン1,400gを加えて1時間重合した。得られた重合反応液にメタノールを添加後、重合反応液を水で洗浄した。水を分離して、重合反応液を70℃で12時間乾燥することにより、表4に示す物性を有するポリファルネセン(X−3)を得た。
Comparative Production Example 3: Production of polyfarnesene (X-3) A pressure-resistant container purged with nitrogen and dried was charged with 1,392 g of cyclohexane and 8.0 g of sec-butyllithium (10.5 mass% cyclohexane solution), and 50 ° C. Then, 1,400 g of farnesene was added and polymerized for 1 hour. After adding methanol to the obtained polymerization reaction solution, the polymerization reaction solution was washed with water. Water was separated and the polymerization reaction solution was dried at 70 ° C. for 12 hours to obtain polyfarnesene (X-3) having physical properties shown in Table 4.

なお、製造例5〜17で得られた変性重合体(C)、比較製造例3で得られたポリファルネセンの重量平均分子量(Mw)、分子量分布(Mw/Mn)、溶融粘度は上記と同じ方法で測定した。また、ガラス転移温度、官能基の当量、付加された官能基量、重合体1分子当たりの平均官能基数の測定方法は以下のとおりである。   The weight average molecular weight (Mw), molecular weight distribution (Mw / Mn), and melt viscosity of the modified polymer (C) obtained in Production Examples 5 to 17 and the polyfarnesene obtained in Comparative Production Example 3 were the same as described above. Measured with Moreover, the measuring method of the glass transition temperature, the equivalent of a functional group, the amount of added functional groups, and the average number of functional groups per polymer molecule is as follows.

(ガラス転移温度)
変性ファルネセン重合体10mgをアルミパンに採取し、示差走査熱量測定(DSC)により10℃/分の昇温速度条件においてサーモグラムを測定し、DDSCのピークトップの値をガラス転移温度とした。
(Glass-transition temperature)
Ten mg of the modified farnesene polymer was sampled on an aluminum pan, and a thermogram was measured by a differential scanning calorimetry (DSC) under a heating rate condition of 10 ° C./min. The peak top value of DDSC was taken as the glass transition temperature.

(官能基の当量)
変性反応後の試料をメタノールで4回洗浄(試料1gに対して5mL)して不純物を除去した後、試料を80℃で12時間、減圧乾燥した。この試料3gにトルエン180mL、エタノール20mLを加え溶解した後、0.1N水酸化カリウムのエタノール溶液で中和滴定し酸価を求めた。
酸価(mgKOH/g)=(A−B)×F×5.611/S
A:中和に要した0.1N水酸化カリウムのエタノール溶液滴下量(mL)
B:試料を含まないブランクでの0.1N水酸化カリウムのエタノール溶液滴下量(mL)
F:0.1N水酸化カリウムのエタノール溶液の力価
S:秤量した試料の質量(g)
(Equivalent functional group)
The sample after the denaturation reaction was washed with methanol four times (5 mL with respect to 1 g of the sample) to remove impurities, and then the sample was dried under reduced pressure at 80 ° C. for 12 hours. To 3 g of this sample, 180 mL of toluene and 20 mL of ethanol were added and dissolved, and then neutralization titration with an ethanol solution of 0.1 N potassium hydroxide was performed to determine the acid value.
Acid value (mgKOH / g) = (A−B) × F × 5.661 / S
A: A drop amount of ethanol solution of 0.1N potassium hydroxide required for neutralization (mL)
B: 0.1N potassium hydroxide ethanol solution drop volume in a blank containing no sample (mL)
F: Potency of ethanol solution of 0.1N potassium hydroxide S: Weight of sample weighed (g)

次いで、酸価から変性重合体(C)1g当たりに含まれる官能基の質量、1g当たりに含まれる官能基以外の質量(重合体主鎖質量)を算出した。以下の式より官能基の当量(g/eq)を算出した。
〔重合体1g当たり官能基質量〕=〔酸価〕/〔56.11〕×〔官能基分子量〕/1000
〔重合体1g当たり重合体主鎖質量〕=1−〔重合体1g当たり官能基質量〕
〔官能基の当量〕=〔重合体1g当たり重合体主鎖質量〕/(〔重合体1g当たり官能基質量〕/〔官能基分子量〕
Next, the mass of the functional group contained per 1 g of the modified polymer (C) and the mass other than the functional group contained per 1 g (polymer main chain mass) were calculated from the acid value. The functional group equivalent (g / eq) was calculated from the following formula.
[Functional group mass per 1 g of polymer] = [Acid value] / [56.11] × [Functional group molecular weight] / 1000
[Polymer main chain mass per gram of polymer] = 1- [Functional group mass per gram of polymer]
[Equivalent functional group] = [polymer main chain weight per 1 g of polymer] / ([functional group weight per 1 g of polymer] / [functional group molecular weight]

(付加された官能基量)
下記式に基づき、未変性の重合体100質量部に対して付加された官能基量(変性剤量)を算出した〔質量部〕。
〔付加された官能基量〕=〔重合体1g当たり官能基質量〕/〔1g当たりの重合体主鎖質量〕×100
(Amount of functional group added)
Based on the following formula, the amount of functional group (modifier amount) added to 100 parts by mass of the unmodified polymer was calculated [parts by mass].
[Amount of functional group added] = [Functional group mass per 1 g of polymer] / [Polymer main chain mass per 1 g] × 100

(重合体1分子当たりの平均官能基数)
・製造例4〜9又は製造例10
製造例4〜9又は製造例10で得られた変性反応後の試料3gにトルエン180mL、エタノール20mLを加え、室温で30分間反応させた。その後溶液を60℃で12時間真空乾燥し、得られた試料を日本電子株式会社製1H−NMR(500MHz)を用いてサンプル/重クロロホルム=100mg/1mLの濃度、積算回数512回、測定温度30℃で測定した。得られたスペクトルのエチルエステルのメチレン基に由来するピークと重合体開始剤末端に由来するピークとの面積比から、変性重合体(C)1分子当たりの平均官能基数を算出した。
(Average number of functional groups per molecule of polymer)
Production Examples 4-9 or Production Example 10
To 3 g of the sample after the modification reaction obtained in Production Examples 4 to 9 or Production Example 10, 180 mL of toluene and 20 mL of ethanol were added and reacted at room temperature for 30 minutes. Thereafter, the solution was vacuum-dried at 60 ° C. for 12 hours, and the obtained sample was sampled using 1 H-NMR (500 MHz) manufactured by JEOL Ltd. Sample / deuterated chloroform = 100 mg / 1 mL concentration, number of integrations 512 times, measurement temperature Measured at 30 ° C. The average number of functional groups per molecule of the modified polymer (C) was calculated from the area ratio of the peak derived from the methylene group of the ethyl ester in the obtained spectrum to the peak derived from the end of the polymer initiator.

・製造例11〜16又は製造例17
製造例11〜16又は製造例17で得られた変性反応後の試料を日本電子株式会社製1H−NMR(500MHz)を用いてサンプル/重クロロホルム=100mg/1mLの濃度、積算回数512回、測定温度30℃で測定した。得られたスペクトルのメチルエステルのメチル基に由来するピークと重合体開始剤末端に由来するピークとの面積比から、変性重合体(C)1分子当たりの平均官能基数を算出した。
Production Examples 11 to 16 or Production Example 17
Samples after the denaturation reaction obtained in Production Examples 11 to 16 or Production Example 17 using 1 H-NMR (500 MHz) manufactured by JEOL Ltd., concentration of sample / deuterated chloroform = 100 mg / 1 mL, number of integrations 512 times, The measurement was performed at a measurement temperature of 30 ° C. The average number of functional groups per molecule of the modified polymer (C) was calculated from the area ratio of the peak derived from the methyl group of the methyl ester of the obtained spectrum to the peak derived from the end of the polymer initiator.

Figure 2015025762
Figure 2015025762

実施例5〜18、比較例5及び6
表5−1及び表5−2に記載した配合割合(質量部)にしたがって、ゴム成分(A)、シリカ(B)、変性重合体(C)、ポリファルネセン、ポリイソプレン、TDAE、ワックス、加硫助剤及び老化防止剤を、それぞれ密閉式バンバリーミキサーに投入して開始温度75℃、樹脂温度が160℃となるように6分間混練した後、ミキサー外に取り出して室温まで冷却した。次いで、この混合物をミキシングロールに入れ、加硫剤及び加硫促進剤を加えて60℃で6分間混練することで約1.3kgのゴム組成物を得た。実施例5〜16で得られたゴム組成物については、下記方法に基づいてムーニー粘度を評価した。
また、得られたゴム組成物をプレス成形(145℃、30分)して加硫ゴムシート(厚み2mm)を作製し、上記の方法に基づき、転がり抵抗性能、硬度、引張破断強度、及び弾性率を評価した。また、下記方法に基づいて耐摩耗性を評価した。結果を表5−1及び表5−2に示す。
なお、表5−1及び表5−2における転がり抵抗性能、引張破断強度、弾性率の数値は、表5−2の比較例6の値を100とした際の相対値である。
Examples 5-18, Comparative Examples 5 and 6
According to the blending ratio (parts by mass) described in Table 5-1 and Table 5-2, rubber component (A), silica (B), modified polymer (C), polyfarnesene, polyisoprene, TDAE, wax, vulcanization The auxiliary agent and the anti-aging agent were respectively put into a closed Banbury mixer and kneaded for 6 minutes so that the starting temperature was 75 ° C. and the resin temperature was 160 ° C., then taken out of the mixer and cooled to room temperature. Next, this mixture was put in a mixing roll, a vulcanizing agent and a vulcanization accelerator were added, and kneaded at 60 ° C. for 6 minutes to obtain about 1.3 kg of a rubber composition. About the rubber composition obtained in Examples 5-16, Mooney viscosity was evaluated based on the following method.
Further, the obtained rubber composition is press-molded (145 ° C., 30 minutes) to produce a vulcanized rubber sheet (thickness 2 mm). Based on the above methods, rolling resistance performance, hardness, tensile breaking strength, and elasticity Rate was evaluated. Moreover, abrasion resistance was evaluated based on the following method. The results are shown in Tables 5-1 and 5-2.
In addition, the numerical values of rolling resistance performance, tensile breaking strength, and elastic modulus in Table 5-1 and Table 5-2 are relative values when the value of Comparative Example 6 in Table 5-2 is set to 100.

・耐摩耗性
JIS K 6264に準拠して、10N荷重下、摩耗距離40mでのDIN摩耗量を測定し、DIN摩耗量の逆数(1/DIN摩耗量)を耐摩耗性の指標とした。表5−1及び表5−2における各実施例及び比較例の数値は、比較例6の値を100とした際の相対値である。なお、数値が大きいほど、摩耗量が少なく、耐摩耗性が良好である。
Abrasion resistance According to JIS K 6264, the DIN wear amount at a wear distance of 40 m was measured under a load of 10 N, and the reciprocal of the DIN wear amount (1 / DIN wear amount) was used as an index of wear resistance. The numerical values of Examples and Comparative Examples in Table 5-1 and Table 5-2 are relative values when the value of Comparative Example 6 is set to 100. In addition, the larger the value, the smaller the amount of wear and the better the wear resistance.

・ムーニー粘度
上記実施例5〜16で得られた加硫前のゴム組成物について、加工性の指標として、JIS K6300に準拠し、ムーニー粘度(ML1+4)を100℃で測定した。表5−1及び表5−2における各実施例の値は、実施例5の値を100とした際の相対値である。なお、数値が小さいほど加工性が良好である。
-Mooney viscosity About the rubber composition before vulcanization obtained in the said Examples 5-16, Mooney viscosity (ML1 + 4) was measured at 100 degreeC as a processability parameter | index based on JISK6300. The value of each Example in Table 5-1 and Table 5-2 is a relative value when the value of Example 5 is set to 100. In addition, workability is so favorable that a numerical value is small.

Figure 2015025762
Figure 2015025762

Figure 2015025762
Figure 2015025762

実施例5〜18のゴム組成物は、変性重合体(C)を含有しない比較例5及び6に比べ、加硫ゴムとした際に弾性率が高く操縦安定性が良好であり、かつ転がり抵抗性能、硬度に優れ、機械強度も良好なため、タイヤ用ゴム組成物として好適に用いることができる。中でも、ファルネセン以外の単量体単位(c2)としてブタジエンを含む実施例5〜16のゴム組成物は、加硫ゴムとした際により転がり抵抗性能、弾性率、耐摩耗性が優れていることが分かる。また、無水マレイン酸変性後に更にメタノールで変性した変性重合体を含む実施例11〜16及び実施例18のゴム組成物は、加硫ゴムとした際に特に弾性率が優れていることが分かる。
また、変性重合体(C)中のファルネセン以外の単量体単位(c2)の含有量を変化させた実施例8〜10及び実施例14〜16を比べると、前記単量体単位(c2)の含有量が20〜60質量%のときにムーニー粘度がより低下しており、ゴム組成物の加工性が良好となることが分かる。
The rubber compositions of Examples 5 to 18 have a high elastic modulus and good steering stability when used as vulcanized rubber as compared with Comparative Examples 5 and 6 that do not contain the modified polymer (C), and rolling resistance. Since it has excellent performance and hardness and good mechanical strength, it can be suitably used as a rubber composition for tires. Among them, the rubber compositions of Examples 5 to 16 containing butadiene as the monomer unit (c2) other than farnesene are superior in rolling resistance performance, elastic modulus, and wear resistance when used as a vulcanized rubber. I understand. It can also be seen that the rubber compositions of Examples 11 to 16 and Example 18 containing modified polymers modified with methanol after modification with maleic anhydride are particularly excellent in elastic modulus when used as vulcanized rubber.
Moreover, when Examples 8-10 and Examples 14-16 which changed content of monomer units (c2) other than farnesene in a modified polymer (C) were compared, the said monomer unit (c2) When the content of is 20 to 60% by mass, the Mooney viscosity is further reduced, which indicates that the processability of the rubber composition is improved.

Claims (11)

合成ゴム及び天然ゴムの少なくとも1種からなるゴム成分(A)、シリカ(B)、及び官能基を導入することにより変性したファルネセンの変性重合体(C)を含み、ゴム成分(A)100質量部に対してシリカ(B)を20〜150質量部含有し、前記シリカ(B)100質量部に対して前記変性重合体(C)を2〜10質量部含有するゴム組成物。   100 parts by mass of a rubber component (A) comprising a rubber component (A) comprising at least one of synthetic rubber and natural rubber, silica (B), and a modified polymer (C) of farnesene modified by introducing a functional group A rubber composition containing 20 to 150 parts by mass of silica (B) with respect to parts, and 2 to 10 parts by mass of the modified polymer (C) with respect to 100 parts by mass of silica (B). 前記変性重合体(C)の官能基が、カルボキシ基、アミノ基、ヒドロキシ基、及び酸無水物由来の官能基から選ばれる1種又は2種以上である、請求項1に記載のゴム組成物。   The rubber composition according to claim 1, wherein the functional group of the modified polymer (C) is one or two or more selected from a carboxy group, an amino group, a hydroxy group, and a functional group derived from an acid anhydride. . 前記シリカ(B)の平均粒径が0.5〜200nmである、請求項1又は2に記載のゴム組成物。   The rubber composition according to claim 1 or 2, wherein the silica (B) has an average particle size of 0.5 to 200 nm. 38℃における前記変性重合体(C)の溶融粘度が0.1〜3,000Pa・sである、請求項1〜3のいずれかに記載のゴム組成物。   The rubber composition according to any one of claims 1 to 3, wherein the modified polymer (C) at 38 ° C has a melt viscosity of 0.1 to 3,000 Pa · s. 前記変性重合体(C)の重量平均分子量(Mw)が2千〜50万である、請求項1〜4のいずれかに記載のゴム組成物。   The rubber composition according to any one of claims 1 to 4, wherein the modified polymer (C) has a weight average molecular weight (Mw) of 2,000 to 500,000. 前記変性重合体(C)が、β−ファルネセンに由来する単量体単位(c1)とβ−ファルネセン以外の単量体に由来する単量体単位(c2)とで構成された共重合体である、請求項1〜5のいずれかに記載のゴム組成物。   The modified polymer (C) is a copolymer composed of a monomer unit (c1) derived from β-farnesene and a monomer unit (c2) derived from a monomer other than β-farnesene. The rubber composition according to any one of claims 1 to 5. 前記シリカ(B)100質量部に対してシランカップリング剤を0.1〜30質量部含有する、請求項1〜6のいずれかに記載のゴム組成物。   The rubber composition in any one of Claims 1-6 which contains 0.1-30 mass parts of silane coupling agents with respect to 100 mass parts of said silica (B). 前記ゴム成分(A)が、スチレンブタジエンゴム、及び天然ゴムの少なくとも1種である、請求項1〜7のいずれかに記載のゴム組成物。   The rubber composition according to any one of claims 1 to 7, wherein the rubber component (A) is at least one of styrene butadiene rubber and natural rubber. 前記スチレンブタジエンゴムの重量平均分子量が10万〜250万である、請求項8に記載のゴム組成物。   The rubber composition according to claim 8, wherein the styrene-butadiene rubber has a weight average molecular weight of 100,000 to 2.5 million. 前記スチレンブタジエンゴムのスチレン含量が0.1〜70質量%である、請求項8又は9に記載のゴム組成物。   The rubber composition according to claim 8 or 9, wherein the styrene-butadiene rubber has a styrene content of 0.1 to 70 mass%. 請求項1〜10のいずれかに記載のゴム組成物を少なくとも一部に用いたタイヤ。   A tire using at least a part of the rubber composition according to claim 1.
JP2015532821A 2013-08-23 2014-08-11 Rubber composition and tire Active JP6504459B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013173740 2013-08-23
JP2013173740 2013-08-23
PCT/JP2014/071191 WO2015025762A1 (en) 2013-08-23 2014-08-11 Rubber composition and tire

Publications (2)

Publication Number Publication Date
JPWO2015025762A1 true JPWO2015025762A1 (en) 2017-03-02
JP6504459B2 JP6504459B2 (en) 2019-04-24

Family

ID=52483538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015532821A Active JP6504459B2 (en) 2013-08-23 2014-08-11 Rubber composition and tire

Country Status (10)

Country Link
US (1) US10550248B2 (en)
EP (1) EP3037467B1 (en)
JP (1) JP6504459B2 (en)
KR (1) KR102180162B1 (en)
CN (1) CN105705566B (en)
CA (1) CA2921890C (en)
HU (1) HUE037172T2 (en)
PT (1) PT3037467T (en)
TW (1) TWI628228B (en)
WO (1) WO2015025762A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUE054116T2 (en) 2014-03-14 2021-08-30 Kuraray Co Rubber composition
JP6562603B2 (en) * 2014-08-11 2019-08-21 株式会社クラレ Rubber composition and tire containing modified farnesene polymer, and method for producing modified farnesene polymer
JP6430854B2 (en) * 2015-02-19 2018-11-28 旭化成株式会社 Process for producing conjugated diene polymer
US9334394B1 (en) * 2015-06-03 2016-05-10 Fina Technology, Inc. Farnesene resins, rubber compositions, and tire compositions
CN104945817B (en) * 2015-06-15 2017-12-29 北京化工大学 A kind of itaconate/butadiene copolymer type biological engineering rubber and preparation method thereof
JP6430901B2 (en) * 2015-06-30 2018-11-28 株式会社クラレ Rubber composition and tire
JP6423322B2 (en) * 2015-06-30 2018-11-14 株式会社クラレ Rubber composition and tire
JP6638342B2 (en) * 2015-11-12 2020-01-29 住友ゴム工業株式会社 Rubber composition and pneumatic tire produced using the rubber composition
JP6743339B2 (en) * 2015-12-18 2020-08-19 横浜ゴム株式会社 Rubber composition and pneumatic tire
US10457752B2 (en) * 2017-06-07 2019-10-29 Fina Technology, Inc. Silane functionalized poly (farnesene) and rubber compound comprising the same
US20190100643A1 (en) * 2017-09-29 2019-04-04 Sumitomo Rubber Industries, Ltd. Tire
JP7225620B2 (en) * 2017-09-29 2023-02-21 住友ゴム工業株式会社 tire
JP7119329B2 (en) * 2017-10-12 2022-08-17 住友ゴム工業株式会社 Rubber composition for tire
CA3104993A1 (en) * 2018-06-29 2020-01-02 Kuraray Co., Ltd. Rubber compositions
FR3089975A3 (en) * 2018-12-18 2020-06-19 Michelin & Cie Copolymers of conjugated diene and ethylene
FR3100812B1 (en) * 2019-09-18 2021-09-03 Michelin & Cie Functional ethylene and 1,3-diene copolymers
US11485864B2 (en) * 2020-02-26 2022-11-01 Ppg Industries Ohio, Inc. Electrodepositable coating composition having improved crater control

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012502135A (en) * 2008-09-04 2012-01-26 アムイリス ビオテクフノロジエス,インコーポレイテッド Adhesive composition comprising polyfarnesene
JP2012502136A (en) * 2008-09-04 2012-01-26 アムイリス ビオテクフノロジエス,インコーポレイテッド Farnesene copolymer
WO2013047348A1 (en) * 2011-09-30 2013-04-04 株式会社クラレ Rubber composition and tire
WO2013047347A1 (en) * 2011-09-30 2013-04-04 株式会社クラレ Rubber composition and tire
JP2013532767A (en) * 2010-08-02 2013-08-19 アミリス, インコーポレイテッド Graft copolymer of polyfarnesene and condensation polymer

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992002348A1 (en) * 1990-08-01 1992-02-20 H.B. Fuller Licensing And Financing Inc. Method of packaging an adhesive composition and corresponding packaged article
CA2227525A1 (en) * 1995-07-26 1997-02-13 Minnesota Mining And Manufacturing Company Pressure sensitive adhesive patch
KR100800214B1 (en) * 2006-12-13 2008-02-01 제일모직주식회사 Bonding film composition for semiconductor assembly and bonding film therefrom
JP2009120819A (en) 2007-10-22 2009-06-04 Sumitomo Rubber Ind Ltd Rubber composition and pneumatic tire using it
US8592543B2 (en) * 2008-09-04 2013-11-26 Derek James McPhee Polyfarnesenes
JP2011132298A (en) 2009-12-22 2011-07-07 Sumitomo Rubber Ind Ltd Modified copolymer and rubber composition and pneumatic tire using the same
JP5904777B2 (en) 2011-12-16 2016-04-20 三菱電機株式会社 Touch panel and display device
CA3059169A1 (en) * 2012-02-24 2013-08-29 Kuraray Co., Ltd. Rubber composition comprising a farnesene polymer and tire

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012502135A (en) * 2008-09-04 2012-01-26 アムイリス ビオテクフノロジエス,インコーポレイテッド Adhesive composition comprising polyfarnesene
JP2012502136A (en) * 2008-09-04 2012-01-26 アムイリス ビオテクフノロジエス,インコーポレイテッド Farnesene copolymer
JP2013532767A (en) * 2010-08-02 2013-08-19 アミリス, インコーポレイテッド Graft copolymer of polyfarnesene and condensation polymer
WO2013047348A1 (en) * 2011-09-30 2013-04-04 株式会社クラレ Rubber composition and tire
WO2013047347A1 (en) * 2011-09-30 2013-04-04 株式会社クラレ Rubber composition and tire

Also Published As

Publication number Publication date
US10550248B2 (en) 2020-02-04
CN105705566B (en) 2018-03-02
CN105705566A (en) 2016-06-22
KR20160045721A (en) 2016-04-27
CA2921890A1 (en) 2015-02-26
HUE037172T2 (en) 2018-08-28
EP3037467A4 (en) 2017-04-12
CA2921890C (en) 2021-06-01
KR102180162B1 (en) 2020-11-19
TW201508026A (en) 2015-03-01
JP6504459B2 (en) 2019-04-24
EP3037467A1 (en) 2016-06-29
TWI628228B (en) 2018-07-01
US20160200902A1 (en) 2016-07-14
PT3037467T (en) 2018-03-28
EP3037467B1 (en) 2018-03-14
WO2015025762A1 (en) 2015-02-26

Similar Documents

Publication Publication Date Title
JP6435016B2 (en) Copolymer
JP6435014B2 (en) Copolymer
JP6131138B2 (en) Copolymer, rubber composition and tire using the same
JP6504459B2 (en) Rubber composition and tire
JP5617040B2 (en) Rubber composition and tire
JP5314811B1 (en) Rubber composition and tire
JP6457932B2 (en) Vulcanized rubber and tires
JP6423322B2 (en) Rubber composition and tire
JP2016030799A (en) Vulcanized rubber, method for producing vulcanized rubber and tire
JP6430901B2 (en) Rubber composition and tire
JP6262487B2 (en) Rubber composition and tire
JP6375174B2 (en) Modified farnesene polymer, method for producing the same, rubber composition, and tire
JP2018131501A (en) Rubber composition for high grip tire tread
JP2018131502A (en) Rubber composition for tread of passenger car summer tire
JP2018131499A (en) Rubber composition for tread of heavy-load tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190314

R150 Certificate of patent or registration of utility model

Ref document number: 6504459

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250