JPWO2015019478A1 - Non-contact power feeding device - Google Patents

Non-contact power feeding device Download PDF

Info

Publication number
JPWO2015019478A1
JPWO2015019478A1 JP2015530632A JP2015530632A JPWO2015019478A1 JP WO2015019478 A1 JPWO2015019478 A1 JP WO2015019478A1 JP 2015530632 A JP2015530632 A JP 2015530632A JP 2015530632 A JP2015530632 A JP 2015530632A JP WO2015019478 A1 JPWO2015019478 A1 JP WO2015019478A1
Authority
JP
Japan
Prior art keywords
core
power supply
peripheral core
power feeding
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015530632A
Other languages
Japanese (ja)
Inventor
祐樹 河口
祐樹 河口
尊衛 嶋田
尊衛 嶋田
庄司 浩幸
浩幸 庄司
山田 正明
山田  正明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of JPWO2015019478A1 publication Critical patent/JPWO2015019478A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/18Rotary transformers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • H02J50/402Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices the two or more transmitting or the two or more receiving devices being integrated in the same unit, e.g. power mats with several coils or antennas with several sub-antennas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/40Conversion of ac power input into dc power output without possibility of reversal by combination of static with dynamic converters; by combination of dynamo-electric with other dynamic or static converters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/56Details of data transmission or power supply, e.g. use of slip rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2871Pancake coils
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • H02J2310/20The network being internal to a load
    • H02J2310/23The load being a medical device, a medical implant, or a life supporting device

Abstract

本発明の課題は、回転中における磁気特性を安定化しながら、給電トランスを軽量化できる非接触給電装置を提供することにある。上記課題を解決するために、本発明は、電源に接続された第1の回路と、給電トランスと、負荷へ電力を供給する第2の回路とを備え、前記電源の電力を前記第1の回路から前記第2の回路へ前記給電トランスを介して非接触で電力を伝送する非接触給電装置において、前記給電トランスは、円環状に巻かれた巻線と、前記巻線の内周と外周に沿うようにそれぞれ形成された内周コアと外周コアのうち少なくとも一方とからなる一対の給電コイルを、所定のギャップを挟んで対向配置した構成を備えたことを特徴とするものである。An object of the present invention is to provide a non-contact power feeding device capable of reducing the weight of a power feeding transformer while stabilizing magnetic characteristics during rotation. In order to solve the above problems, the present invention includes a first circuit connected to a power supply, a power supply transformer, and a second circuit for supplying power to a load, and the power of the power supply is supplied to the first power supply. In the non-contact power feeding device that transmits power from a circuit to the second circuit in a non-contact manner via the power feeding transformer, the power feeding transformer includes a winding wound in an annular shape, an inner circumference and an outer circumference of the winding. And a pair of power supply coils each formed of at least one of an inner peripheral core and an outer peripheral core formed so as to extend along a predetermined gap.

Description

本発明は、X線CT装置や風力発電装置など電気エネルギーを動力とする装置へ給電トランスを用いて非接触で電力を伝送する非接触給電装置に関するものである。   The present invention relates to a non-contact power supply apparatus that transmits electric power in a non-contact manner to a device powered by electric energy such as an X-ray CT apparatus or a wind power generator using a power supply transformer.

例えばX線CT装置や風力発電装置は架台固定部と、架台固定部に対して回転自在に支持された回転部を備えており、回転部に搭載された装置を駆動するには、架台固定部に配置された電源装置から回転部への電力供給が必要である。多くのX線CT装置や風力発電装置では、架台固定部と回転部との間の電力伝送手段として、スリップリングが使われている。スリップリングは、金属円環と前記金属円環上に接触させた金属ブラシを備え、例えば架台固定部に金属円環と、回転部に金属ブラシを設けた構造となる。このような構造により、回転部を回転させながら、架台固定部と回転部との間の電力伝送が可能となる。しかしながら、スリップリングでは、金属円環と金属ブラシを接触させながら回転部を回転させるため、金属円環と金属ブラシの摩耗による摩耗粉が生じ、摩耗粉の除去等のメンテナンス作業が必要となる。また、金属円環と金属ブラシの磨耗時に熱が発生するため、高速回転運動に適していないとされている。   For example, an X-ray CT apparatus and a wind power generator include a gantry fixing part and a rotating part that is rotatably supported with respect to the gantry fixing part. In order to drive the apparatus mounted on the rotating part, the gantry fixing part It is necessary to supply power to the rotating unit from the power supply device arranged in the above. In many X-ray CT apparatuses and wind power generators, slip rings are used as power transmission means between the gantry fixing part and the rotating part. The slip ring includes a metal ring and a metal brush brought into contact with the metal ring. For example, the slip ring has a structure in which a metal ring is provided on the gantry fixing portion and a metal brush is provided on the rotating portion. With such a structure, it is possible to transmit power between the gantry fixing unit and the rotating unit while rotating the rotating unit. However, in the slip ring, the rotating part is rotated while the metal ring and the metal brush are in contact with each other. Therefore, wear powder is generated due to wear of the metal ring and the metal brush, and maintenance work such as removal of the wear powder is necessary. Moreover, since heat is generated when the metal ring and the metal brush are worn, it is not suitable for high-speed rotational movement.

この課題を解決する非接触給電装置として、〔特許文献1〕が開示されている。〔特許文献1〕に記載されている非接触給電装置では、架台固定部に搭載された一次コイルと回転部に搭載された二次コイルを対向配置し、電磁誘導の利用により一次コイルから二次コイルへ非接触で電力を伝送する。一次コイル及び二次コイルは、円環状に巻かれた巻線に沿って、一体成型されたコの字型の磁性体コアを環状に配置した構成としている。さらに、一次コイルと二次コイルで配置する磁性体コアを異なる数とすることで、回転中における給電コイルの磁気特性の安定化を図っている。   [Patent Document 1] is disclosed as a non-contact power feeding apparatus that solves this problem. In the non-contact power feeding device described in [Patent Document 1], the primary coil mounted on the gantry fixing unit and the secondary coil mounted on the rotating unit are arranged to face each other, and the secondary coil is moved from the primary coil by using electromagnetic induction. Transmits electric power to the coil without contact. The primary coil and the secondary coil have a configuration in which an integrally formed U-shaped magnetic body core is annularly arranged along a winding wound in an annular shape. Furthermore, the magnetic characteristic of the power feeding coil during rotation is stabilized by using different numbers of magnetic cores arranged in the primary coil and the secondary coil.

しかしながら、給電コイル間の磁気結合を向上するためには、多数の磁性体コアを隙間なく配置する必要があるため、給電トランスの軽量化が難しい課題がある。   However, in order to improve the magnetic coupling between the power feeding coils, it is necessary to arrange a large number of magnetic cores without any gaps, and there is a problem that it is difficult to reduce the weight of the power feeding transformer.

この課題を解決する非接触給電装置として、〔特許文献2〕又は〔特許文献3〕が開示されている。〔特許文献2〕に記載される非接触給電装置では、磁性体コアの形状を矩形の一辺を切り欠いた開放面を有するコの字型とし、磁性体コアの突端部を回転移動方向に沿って長い対向面を有する形状とすることで、磁気特性の安定化と給電トランスの軽量化を図っている。また、〔特許文献3〕に記載される非接触給電装置では、一次コイルを、円環状に巻いた巻線と、コの字型コアを環状に配置した構成とし、二次コイルを、一次コイルの円周方向に沿って複数の磁性体コアを配置し、これら複数の磁性体コアにそれぞれ巻線を巻装し、各巻線を直列接続した構成とすることで回転部に配置される二次コイルの軽量化を図っている。   As a non-contact power feeding apparatus that solves this problem, [Patent Document 2] or [Patent Document 3] is disclosed. In the non-contact power feeding device described in [Patent Document 2], the shape of the magnetic core is a U-shape having an open surface in which one side of a rectangle is cut out, and the protruding end of the magnetic core is aligned along the rotational movement direction. By adopting a shape having a long and opposed surface, the magnetic characteristics are stabilized and the feed transformer is reduced in weight. Further, in the non-contact power feeding device described in [Patent Document 3], the primary coil has a configuration in which an annular winding and a U-shaped core are annularly arranged, and the secondary coil is the primary coil. A plurality of magnetic cores are arranged along the circumferential direction of each of the coils, windings are wound around each of the plurality of magnetic cores, and the respective windings are connected in series. The coil is lightened.

特開2000−150276号公報JP 2000-150276 A 特開2001−269330号公報JP 2001-269330 A 特開2009−131618号公報JP 2009-131618 A

しかしながら、〔特許文献2〕に記載の技術では、磁性体コアの形状が複雑になる課題がある。さらに、コの字型コアの中央部に巻線を巻回した構成であるため、給電コイル間の磁気結合を向上させることが難しい課題がある。   However, the technique described in [Patent Document 2] has a problem that the shape of the magnetic core is complicated. Furthermore, since the winding is wound around the center of the U-shaped core, there is a problem that it is difficult to improve the magnetic coupling between the feeding coils.

また、〔特許文献3〕に記載の技術では、二次コイルを複数に分割して構成する必要があるため、給電トランスの構造が複雑になる課題がある。さらに、一次コイルは、多数のコの字型コアを隙間なく配置して構成されるため、一次コイルの軽量化が難しい課題がある。   Moreover, in the technique described in [Patent Document 3], since it is necessary to divide the secondary coil into a plurality of parts, there is a problem that the structure of the feed transformer is complicated. Furthermore, since the primary coil is configured by arranging a large number of U-shaped cores without any gaps, it is difficult to reduce the weight of the primary coil.

上記課題を解決するために、本発明は、電源に接続された第1の回路と、給電トランスと、負荷へ電力を供給する第2の回路とを備え、前記電源の電力を前記第1の回路から前記第2の回路へ前記給電トランスを介して非接触で電力を伝送する非接触給電装置において、前記給電トランスは、円環状に巻かれた巻線と、前記巻線の内周と外周に沿うようにそれぞれ形成された内周コアと外周コアのうち少なくとも一方とからなる一対の給電コイルを、所定のギャップを挟んで対向配置した構成であることを特徴とするものである。
In order to solve the above problems, the present invention includes a first circuit connected to a power supply, a power supply transformer, and a second circuit for supplying power to a load, and the power of the power supply is supplied to the first power supply. In the non-contact power feeding device that transmits power from a circuit to the second circuit in a non-contact manner via the power feeding transformer, the power feeding transformer includes a winding wound in an annular shape, an inner circumference and an outer circumference of the winding. A pair of power supply coils each including at least one of an inner peripheral core and an outer peripheral core formed so as to extend along a predetermined gap is disposed opposite to each other with a predetermined gap interposed therebetween.

本発明によれば、給電トランスのコア形状を単純化できるため、回転中の磁気特性を安定化しながら、給電トランスを軽量化できる非接触給電装置を提供することができる。
According to the present invention, since the core shape of the power transformer can be simplified, it is possible to provide a non-contact power feeder that can reduce the weight of the power transformer while stabilizing the magnetic characteristics during rotation.

実施例1の非接触給電装置の構成を示す概略構成図。1 is a schematic configuration diagram illustrating a configuration of a non-contact power feeding device according to Embodiment 1. FIG. 実施例1の給電トランスの構成図。1 is a configuration diagram of a power supply transformer according to Embodiment 1. FIG. 実施例1の給電トランスの構成図。1 is a configuration diagram of a power supply transformer according to Embodiment 1. FIG. 実施例2の給電トランスの構成図。FIG. 6 is a configuration diagram of a power supply transformer according to a second embodiment. 実施例3の給電トランスの構成図。FIG. 6 is a configuration diagram of a power supply transformer according to a third embodiment. 実施例4の給電トランスの構成図。FIG. 6 is a configuration diagram of a power supply transformer according to a fourth embodiment. 実施例5の給電トランスの構成図。FIG. 10 is a configuration diagram of a power supply transformer according to a fifth embodiment. 実施例5の給電トランスの構成図。FIG. 10 is a configuration diagram of a power supply transformer according to a fifth embodiment. 実施例6の給電トランスの構成図。FIG. 10 is a configuration diagram of a power supply transformer according to a sixth embodiment. 実施例7のX線CT装置602の構成を示す概略構成図。FIG. 10 is a schematic configuration diagram illustrating a configuration of an X-ray CT apparatus 602 according to a seventh embodiment. 実施例7の給電トランスの構成図。FIG. 10 is a configuration diagram of a power supply transformer according to a seventh embodiment. 実施例7の給電トランスの構成図。FIG. 10 is a configuration diagram of a power supply transformer according to a seventh embodiment. 実施例8の給電トランスの構成図。FIG. 10 is a configuration diagram of a power supply transformer according to an eighth embodiment.

以下、本発明の望ましい実施形態について図面を参照しながら詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.

図1〜図5を用いて本発明の実施例1について説明する。図1は、本発明の実施例1による非接触給電装置2の概略構成図である。この非接触給電装置2は、架台固定部4と回転部5とで構成され、給電トランスTrでの磁気的結合により、架台固定部4から回転部5へ非接触で電力を伝送する。   A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a schematic configuration diagram of a non-contact power feeding device 2 according to a first embodiment of the present invention. The non-contact power feeding device 2 includes a gantry fixing unit 4 and a rotating unit 5, and transmits electric power from the gantry fixing unit 4 to the rotating unit 5 in a non-contact manner by magnetic coupling in a power supply transformer Tr.

架台固定部4は、交流電源1の電力を入力して一次コイルT1へ高周波電力を供給する給電回路101と、一次コイルT1とを備える。給電回路101は、直流のリンク電圧を出力するAC/DCコンバータ6と、直流リンク電圧を入力として任意の周波数の交流電圧を出力することで一次コイルT1へ高周波電力を供給する高周波インバータ7と、制御手段9と、通信手段11とを備える。   The gantry fixing unit 4 includes a power supply circuit 101 that receives power from the AC power supply 1 and supplies high-frequency power to the primary coil T1, and a primary coil T1. The power supply circuit 101 includes an AC / DC converter 6 that outputs a DC link voltage, a high-frequency inverter 7 that supplies high-frequency power to the primary coil T1 by outputting an AC voltage of an arbitrary frequency with the DC link voltage as an input, Control means 9 and communication means 11 are provided.

AC/DCコンバータ6と、高周波インバータ7は、制御手段9によって制御され、直流リンク電圧及び交流電圧の周波数を任意の値に制御する。   The AC / DC converter 6 and the high frequency inverter 7 are controlled by the control means 9 and control the frequencies of the DC link voltage and the AC voltage to arbitrary values.

一方、回転部5は、一次コイルT1と磁気的に結合することで給電トランスTrを構成し、一次コイルT1から非接触で電力を受電する二次コイルT2と、二次コイルT2の電力を負荷3へ供給する受電回路102と、負荷3とを備える。受電回路102は、整流回路8と、制御手段10と、通信手段12とを備える。制御手段9と制御手段10は、通信手段11と通信手段12によって無線で接続される。制御手段10は、整流回路8の出力電圧や出力電流を検出する。   On the other hand, the rotating unit 5 is configured to magnetically couple with the primary coil T1 to form a power supply transformer Tr, and receives power from the primary coil T1 in a non-contact manner and receives power from the secondary coil T2. 3 and a load 3. The power receiving circuit 102 includes a rectifier circuit 8, a control unit 10, and a communication unit 12. The control means 9 and the control means 10 are wirelessly connected by the communication means 11 and the communication means 12. The control means 10 detects the output voltage and output current of the rectifier circuit 8.

次に、図2と図3を用いて給電トランスTrの構成を説明する。図2と図3は本発明の給電トランスTrの第1の実施の形態を示す構成図である。図2は給電トランスTrの分解構成図である。図3(a)は給電トランスTrを回転軸方向から見た図であり、図3(b)は図3(a)のA−B断面を矢印の方向から見た図である。   Next, the configuration of the feed transformer Tr will be described with reference to FIGS. 2 and 3. 2 and 3 are configuration diagrams showing a first embodiment of a power supply transformer Tr of the present invention. FIG. 2 is an exploded configuration diagram of the feed transformer Tr. 3A is a view of the power supply transformer Tr as viewed from the direction of the rotation axis, and FIG. 3B is a view of the A-B cross section of FIG. 3A as viewed from the direction of the arrow.

給電トランスTrは、一次コイルT1と二次コイルT2とが、回転軸方向にギャップを介して対向配置されたアキシャルギャップ構造を備える。   The power supply transformer Tr includes an axial gap structure in which a primary coil T1 and a secondary coil T2 are arranged to face each other with a gap in the rotation axis direction.

一次コイルT1は、円環状に巻かれた一次巻線N1と、一次巻線N1の内周及び外周に沿うように形成された内周コア13及び外周コア14と、内周コア13と外周コア14を磁気的に結合する底面コア15と、支持部材16とを有する。支持部材16は、内周コア13と、外周コア14と、底面コア15とを架台固定部4へ支持する。   The primary coil T1 includes a primary winding N1 wound in an annular shape, an inner peripheral core 13 and an outer peripheral core 14 formed along the inner periphery and the outer periphery of the primary winding N1, and the inner peripheral core 13 and the outer core. 14 includes a bottom core 15 that magnetically couples 14 and a support member 16. The support member 16 supports the inner peripheral core 13, the outer peripheral core 14, and the bottom core 15 to the gantry fixing portion 4.

二次コイルT2は、円環状に巻かれた二次巻線N2と、二次巻線N2の内周及び外周に沿うように形成された内周コア17及び外周コア18と、内周コア17と外周コア18を磁気的に結合する底面コア19と、支持部材20とを有する。支持部材20は、内周コア17と外周コア18と底面コア19とを回転部5へ支持する。   The secondary coil T2 includes a secondary winding N2 wound in an annular shape, an inner peripheral core 17 and an outer peripheral core 18 formed along the inner periphery and the outer periphery of the secondary winding N2, and the inner peripheral core 17. And a bottom core 19 that magnetically couples the outer peripheral core 18 and a support member 20. The support member 20 supports the inner peripheral core 17, the outer peripheral core 18, and the bottom core 19 to the rotating unit 5.

このように、一次コイルT1又は二次コイルT2の磁性体コアを、内周コアと外周コアと底面コアに分割して構成することで、コアの形状を単純化できる。これにより、コアの強度を確保できるため、一体成型されたコアを用いる場合と比べて、コアの薄型化が容易となり、給電トランスを軽量化することができる。さらに、内周コア及び/又は外周コアを対向配置することで、給電コイル間の磁気結合を向上させるとともに、回転中の磁気特性を安定化することができる。   Thus, the core shape can be simplified by dividing the magnetic core of the primary coil T1 or the secondary coil T2 into the inner peripheral core, the outer peripheral core, and the bottom core. Thereby, since the strength of the core can be ensured, it is easy to reduce the thickness of the core and reduce the weight of the feed transformer as compared with the case of using an integrally molded core. Furthermore, by arranging the inner core and / or outer core facing each other, it is possible to improve the magnetic coupling between the feeding coils and to stabilize the magnetic characteristics during rotation.

内周コア13,17、外周コア14,18、底面コア15,19に用いられる材料としては、フェライト、珪素鋼板、パーマロイ、その他の強磁性体又は常磁性体などが用いられる。   As materials used for the inner peripheral cores 13 and 17, the outer cores 14 and 18, and the bottom cores 15 and 19, ferrite, a silicon steel plate, permalloy, other ferromagnetic materials, paramagnetic materials, and the like are used.

なお、図示していないが、一次巻線N1及び二次巻線N2を支持部材16,19に固定するための固定部材を備えてもよい。一次巻線N1及び二次巻線N2にはエナメル線(単線)が用いられるが、リッツ線を用いてもよい。   Although not shown, a fixing member for fixing the primary winding N1 and the secondary winding N2 to the support members 16 and 19 may be provided. An enameled wire (single wire) is used for the primary winding N1 and the secondary winding N2, but a litz wire may be used.

本実施の形態によれば、給電トランスを構成するコアの形状を単純化することができる。これにより、磁気特性を安定化しながら、給電トランスをの軽量化を実現できる。   According to the present embodiment, it is possible to simplify the shape of the core constituting the power supply transformer. Thereby, weight reduction of a feed transformer is realizable, stabilizing a magnetic characteristic.

次に、図4を用いて本発明の第2の実施形態について説明する。図4は、本発明の実施例2による給電トランスTrの断面図である。   Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 4 is a cross-sectional view of the feed transformer Tr according to the second embodiment of the present invention.

第1の実施形態と異なる点は、底面コア115,119を,支持部材116,120の両端部まで配置した構成としている点と、一次巻線N1又は二次巻線N2と、内周コア113,117及び/又は外周コア114,118及び/又は底面コア15,19との間に絶縁体121,122を挿入している点である。   The difference from the first embodiment is that the bottom cores 115 and 119 are arranged up to both ends of the support members 116 and 120, the primary winding N1 or the secondary winding N2, and the inner peripheral core 113. , 117 and / or the outer cores 114 and 118 and / or the bottom cores 15 and 19, insulators 121 and 122 are inserted.

本実施形態によれば、一次巻線N1又は二次巻線N2とコアとの間に絶縁体を挿入することで、一次巻線N1又は二次巻線N2とコアとの絶縁を確保することができる。さらに、絶縁体を樹脂モールドとすることで、巻線をコアに支持する支持材として用いることができる。   According to the present embodiment, the insulation between the primary winding N1 or secondary winding N2 and the core is ensured by inserting an insulator between the primary winding N1 or secondary winding N2 and the core. Can do. Furthermore, by using a resin mold as the insulator, the insulator can be used as a support material for supporting the winding on the core.

次に、図5を用いて本発明の第3の実施形態について説明する。図5は、本発明の実施例3による給電トランスTrの分解構成図である。   Next, a third embodiment of the present invention will be described with reference to FIG. FIG. 5 is an exploded configuration diagram of the feed transformer Tr according to the third embodiment of the present invention.

第1の実施形態と異なる点は、一次コイルT1の一次巻線N1及び/又は内周コア213及び/又は外周コア214と、二次コイルT2の二次巻線N1及び/又は内周コア217及び/又は外周コア218を異なる径とし、内周コア217及び外周コア218を、内周コア213及び外周コア214で覆った構成としている点である。   The difference from the first embodiment is that the primary winding N1 and / or the inner core 213 and / or the outer core 214 of the primary coil T1, and the secondary winding N1 and / or the inner core 217 of the secondary coil T2. And / or the outer peripheral core 218 has a different diameter, and the inner peripheral core 217 and the outer peripheral core 218 are covered with the inner peripheral core 213 and the outer peripheral core 214.

本実施形態によれば、一次コイルT1と二次コイルT2の対向面積を増加できるため、給電コイル間の磁気結合を向上することができる。   According to this embodiment, since the opposing area of the primary coil T1 and the secondary coil T2 can be increased, the magnetic coupling between the power feeding coils can be improved.

次に、図6を用いて本発明の第4の実施形態について説明する。図6は、本発明の実施例4による給電トランスTrの分解構成図である。   Next, a fourth embodiment of the present invention will be described with reference to FIG. FIG. 6 is an exploded configuration diagram of the feeding transformer Tr according to the fourth embodiment of the present invention.

第1の実施形態と異なる点は、一次コイルT1及び二次コイルT2の底面コア315,319を、一次巻線N1及び二次巻線N2の半径方向に分割して構成した点である。なお、本実施の形態では、一次コイルT1と二次コイルT2の底面コア315,319を同じ数に分割しているが、一次コイルT1又は二次コイルT2のどちらか一方のみの底面コア315,319を分割した構成としてもよい。また、一次コイルT1と二次コイルT2で底面コアのを異なる数に分割してもよい。また、本実施の形態では、底面コア315,319を巻線の円周方向に分割しているが、巻線の半径方向に分割してもよい。底面コアを巻線の円周方向に加え、半径方向にも分割することで、給電トランスTrを構成するコア部材をさらに小型化できるため、コアの強度を向上するこができるとともに、コアの製作が容易となり、給電トランスの製作コストを低減することができる。   The difference from the first embodiment is that the bottom cores 315 and 319 of the primary coil T1 and the secondary coil T2 are divided in the radial direction of the primary winding N1 and the secondary winding N2. In this embodiment, the bottom cores 315 and 319 of the primary coil T1 and the secondary coil T2 are divided into the same number, but the bottom core 315 of only one of the primary coil T1 and the secondary coil T2 is divided. 319 may be divided. Further, the bottom core may be divided into different numbers by the primary coil T1 and the secondary coil T2. In the present embodiment, the bottom cores 315 and 319 are divided in the circumferential direction of the winding, but may be divided in the radial direction of the winding. By adding the bottom core to the circumferential direction of the winding and also dividing it in the radial direction, the core members that make up the feed transformer Tr can be further miniaturized, so that the core strength can be improved and the core can be manufactured. This makes it easier to reduce the manufacturing cost of the feed transformer.

本実施形態によれば、底面コアを小型化できるため、第1の実施形態に比べて、コアの製作が容易となる。これにより、給電トランスの製作コストを低減するこができる。   According to this embodiment, since the bottom core can be reduced in size, it is easier to manufacture the core than in the first embodiment. Thereby, the manufacturing cost of a feed transformer can be reduced.

次に、図7、図8を用いて本発明の第5の実施形態について説明する。図7は、本発明の実施例5による給電トランスTrの分解構成図である。図8(a)は、本発明の実施例5の一次コイルT1の内周コア413と、外周コア414と、底面コア415の位置関係を示した図であり、図8(b)は、本発明の実施例5の二次コイルT2の内周コア417と、外周コア418と、底面コア419の位置関係を示した図である。第1の実施形態や第2の実施形態と異なる点は、内周コア413,417及び外周コア414,418を複数に分割している点である。   Next, a fifth embodiment of the present invention will be described with reference to FIGS. FIG. 7 is an exploded configuration diagram of the feed transformer Tr according to the fifth embodiment of the present invention. FIG. 8A is a diagram showing the positional relationship between the inner peripheral core 413, the outer peripheral core 414, and the bottom core 415 of the primary coil T1 of the fifth embodiment of the present invention, and FIG. It is the figure which showed the positional relationship of the inner peripheral core 417, the outer peripheral core 418, and the bottom face core 419 of the secondary coil T2 of Example 5 of invention. The difference from the first embodiment and the second embodiment is that the inner cores 413 and 417 and the outer cores 414 and 418 are divided into a plurality of parts.

なお、本実施の形態では、内周コア413,417と外周コア414,418のコアの分割数を同一としているが、内周コアと外周コアでコアの分割数を異なる数としてもよい。   In the present embodiment, the inner cores 413 and 417 and the outer cores 414 and 418 have the same number of divisions, but the inner and outer cores may have different numbers of core divisions.

また、本実施の形態では、底面コア415,419を、分割された内周コア413,417及び外周コア414,418の間隙部に配置した構成としているが、底面コア415,419を内周コア414,417及び外周コア414,418の中央部に配置した構成としてもよい。   In the present embodiment, the bottom cores 415 and 419 are arranged in the gap between the divided inner peripheral cores 413 and 417 and outer peripheral cores 414 and 418. It is good also as a structure arrange | positioned in the center part of 414,417 and the outer periphery cores 414,418.

本実施形態によれば、コア形状を小型・単純化することができるため、コアの製作が容易となる。コアを小型化することで、内周コアと外周コアで部材を共通化できるため、給電トランスの低コスト化を実現することができる。   According to this embodiment, since the core shape can be reduced in size and simplified, the core can be easily manufactured. By reducing the size of the core, the members can be shared by the inner peripheral core and the outer peripheral core, so that the cost of the power supply transformer can be reduced.

次に、図9を用いて本発明の第6の実施形態について説明する。図9(a)は本発明の実施例6の一次コイルT1の内周コア513と、外周コア514と、底面コア515の位置関係を示した図であり、図9(b)は本発明の実施例6の二次コイルT2の内周コア517と、外周コア518と、底面コア519の位置関係を示した図である。   Next, a sixth embodiment of the present invention will be described with reference to FIG. FIG. 9A is a diagram showing the positional relationship of the inner peripheral core 513, the outer peripheral core 514, and the bottom core 515 of the primary coil T1 of Example 6 of the present invention, and FIG. It is the figure which showed the positional relationship of the inner peripheral core 517 of the secondary coil T2 of Example 6, the outer peripheral core 518, and the bottom face core 519.

前述の第3の実施形態と異なる点は、一次コイルT1と二次コイルT2で、内周コア513,517及び外周コア514,518を異なる数に分割して構成した点である。   The difference from the third embodiment is that the inner and outer cores 513 and 517 and the outer and outer cores 514 and 518 are divided into different numbers by the primary coil T1 and the secondary coil T2.

なお、本実施形態では、一次コイルT1のコアの分割数を7(N)とし、二次コイルT2のコアの分割数を6(N−1)としているが、これに限らない。例えば、一次コイルT1のコアの分割数をN−1とし、二次コイルT2のコアの分割数をNとしてもよい。また、内周コア513,517と外周コア514,518で、異なる数に分割してもよい。   In the present embodiment, the number of divisions of the core of the primary coil T1 is set to 7 (N), and the number of divisions of the core of the secondary coil T2 is set to 6 (N-1). For example, the core division number of the primary coil T1 may be N-1, and the core division number of the secondary coil T2 may be N. Further, the inner cores 513 and 517 and the outer cores 514 and 518 may be divided into different numbers.

また、一次コイルT1と二次コイルT2で、底面コア515,519を異なる数としているが、一次コイルT1と二次コイルT2で底面コアの数を同一としてもよい。   Further, although the number of bottom cores 515 and 519 is different between the primary coil T1 and the secondary coil T2, the number of bottom cores may be the same between the primary coil T1 and the secondary coil T2.

本実施形態によれば、一次コイルT1と二次コイルT2で内周コア及び外周コアの相対的位置が完全に重なることがないため、第3の実施の形態と比べて回転中の磁気特性を安定化することができる。   According to the present embodiment, the relative positions of the inner and outer cores of the primary coil T1 and the secondary coil T2 do not completely overlap with each other. Therefore, the magnetic characteristics during rotation can be improved as compared with the third embodiment. Can be stabilized.

次に、図10〜12を用いて本発明の第7の実施形態について説明する。前述の第1の実施形態で説明した非接触給電装置2では、給電トランスを1つ配置した構成としていたが、装置によっては複数の給電トランスを必要とする場合がある。ここでは、X線CT装置を例に挙げて説明する。図10は、本発明の非接触給電装置2を採用したX線CT装置602の概略構成を示す図である。   Next, a seventh embodiment of the present invention will be described with reference to FIGS. In the non-contact power feeding device 2 described in the first embodiment, a single power transformer is disposed. However, depending on the device, a plurality of power transformers may be required. Here, an X-ray CT apparatus will be described as an example. FIG. 10 is a diagram showing a schematic configuration of an X-ray CT apparatus 602 employing the non-contact power feeding apparatus 2 of the present invention.

本実施形態のX線CT装置602は、架台固定部604と回転部605に分かれている。回転部605は、架台固定部604に対して回転自在に支持されている。   The X-ray CT apparatus 602 of this embodiment is divided into a gantry fixing unit 604 and a rotating unit 605. The rotating part 605 is supported rotatably with respect to the gantry fixing part 604.

架台固定部604は、交流電源1を入力とし、直流のリンク電圧を生成するAC/DCコンバータ606と、直流のリンク電圧を入力とし、任意の周波数の交流電圧を生成し、一次コイルT11,T12へ高周波電力を供給する高周波インバータ607、621と、一次コイルT11,T12と、制御手段609と、画像表示部630と、画像処理部631と、通信手段611,632とを備えている。   The gantry fixing unit 604 receives the AC power supply 1 as an input, generates an AC / DC converter 606 that generates a DC link voltage, and receives a DC link voltage as an input, generates an AC voltage of an arbitrary frequency, and generates primary coils T11 and T12. High-frequency inverters 607 and 621 for supplying high-frequency power to the power source, primary coils T11 and T12, a control unit 609, an image display unit 630, an image processing unit 631, and communication units 611 and 632.

回転部605は、一次コイルT11,T12と磁気的に結合することで給電トランスTr11,Tr21を構成し、一次コイルT11,T12から非接触で電力を受電する二次コイルT21,T22と、二次コイルT21の電力を整流し、負荷603であるX線管627へ高電圧の直流電圧を供給する整流回路608と、二次コイルT22の電力を整流する整流回路622と、X線管627が備える回転陽極を回転駆動させるためのステーターコイル624へ電力を供給するインバータ623と、X線管627が備える陰極を加熱するための加熱変圧器626への電力伝送を行うインバータ625と、X線検出部628と、制御手段610と、通信手段612、633とを備えている。制御手段610は、インバータ623,625の出力制御と、整流回路608の出力電圧及び出力電流を検出する。制御手段609と制御手段610は、通信手段611と制御手段612によって無線で接続される。X線検出部628と、画像処理部631は、通信手段632と通信手段633によって無線で接続される。   The rotating unit 605 constitutes power feeding transformers Tr11 and Tr21 by being magnetically coupled to the primary coils T11 and T12, and receives secondary power from the primary coils T11 and T12 in a non-contact manner, and secondary coils T21 and T22. The rectifier circuit 608 rectifies the power of the coil T21 and supplies a high DC voltage to the X-ray tube 627 serving as the load 603, the rectifier circuit 622 that rectifies the power of the secondary coil T22, and the X-ray tube 627. An inverter 623 that supplies electric power to a stator coil 624 for rotating the rotary anode, an inverter 625 that transmits electric power to a heating transformer 626 for heating a cathode included in the X-ray tube 627, and an X-ray detector 628, a control unit 610, and communication units 612 and 633. The control means 610 detects the output control of the inverters 623 and 625 and the output voltage and output current of the rectifier circuit 608. The control unit 609 and the control unit 610 are wirelessly connected by the communication unit 611 and the control unit 612. The X-ray detection unit 628 and the image processing unit 631 are wirelessly connected by the communication unit 632 and the communication unit 633.

前述の第1の実施形態と異なる点は、ステーターコイル624と、加熱変圧器626とへ電力伝送を行うために、給電トランスTrとは別系統の給電トランスTr21を備えた点である。X線管627は、整流回路608から出力された直流電圧が供給されることにより、被検体629に向けてX線を照射するものである。被検体629を透過したX線は、X線検出部628へ入射する。X線検出部628は、被検体629を透過したX線を検出するとともに、検出した信号を増幅するもので、X線管627と対向配置される。回転部に備えられたX線管とX線検出部が回転しながら、X線の照射と検出がなされることにより、様々な角度の透過X線量分布が計測できる。   The difference from the first embodiment described above is that a power supply transformer Tr21 of a system different from the power supply transformer Tr is provided in order to transmit power to the stator coil 624 and the heating transformer 626. The X-ray tube 627 emits X-rays toward the subject 629 by being supplied with the DC voltage output from the rectifier circuit 608. X-rays that have passed through the subject 629 enter the X-ray detection unit 628. The X-ray detection unit 628 detects X-rays transmitted through the subject 629 and amplifies the detected signal, and is disposed to face the X-ray tube 627. By irradiating and detecting X-rays while the X-ray tube and the X-ray detection unit provided in the rotating unit rotate, transmission X-ray dose distributions at various angles can be measured.

通信手段632、633は、X線検出部628の検出信号を回転部605から架台固定部604へ伝送する。通信手段632で受電された検出信号は、画像処理装置631へ伝送される。画像処理装置631は、伝送された検出信号を処理することで、被検体629の断層画像を生成するのである。画像表示装置630は、画像処理装置631により生成された断層画像を表示するものである。   The communication units 632 and 633 transmit the detection signal of the X-ray detection unit 628 from the rotation unit 605 to the gantry fixing unit 604. The detection signal received by the communication unit 632 is transmitted to the image processing device 631. The image processing device 631 generates a tomographic image of the subject 629 by processing the transmitted detection signal. The image display device 630 displays a tomographic image generated by the image processing device 631.

次に、図11、12を用いて給電トランスTr11,Tr21の詳細な構成について、以下で説明する。図11は給電トランスTr11,Tr21の分解構成図であり、図12は給電トランスTr11,Tr21の断面図である。   Next, a detailed configuration of the power supply transformers Tr11 and Tr21 will be described below with reference to FIGS. FIG. 11 is an exploded configuration diagram of the power supply transformers Tr11 and Tr21, and FIG. 12 is a cross-sectional view of the power supply transformers Tr11 and Tr21.

一次コイルT11は、円環状に巻かれた一次巻線N11と、一次巻線N11の内周及び外周に沿うように形成された内周コア613a及び外周コア614aと、内周コア613aと外周コア614aを磁気的に結合する底面コア615bとを備える。   The primary coil T11 includes a primary winding N11 wound in an annular shape, an inner peripheral core 613a and an outer peripheral core 614a formed along the inner periphery and the outer periphery of the primary winding N11, and the inner periphery core 613a and the outer periphery core. A bottom core 615b that magnetically couples 614a.

一次コイルT12は、空隙部634を介して一次巻線N11の内周に沿うように円環状に巻かれた一次巻線N12と、一次巻線N12の内周及び外周に沿うように形成された内周コア613bと外周コア614bと、内周コア613bと外周コア614bとを磁気的に結合する底面コア615bとを備える。内周コア613a,613bと、外周コア614a,614bと、底面コア615a,615bは、支持部材616により架台固定部604に固定される。   The primary coil T12 is formed so as to be along the inner periphery and the outer periphery of the primary winding N12, and the primary winding N12 wound in an annular shape along the inner periphery of the primary winding N11 via the gap 634. An inner circumferential core 613b and an outer circumferential core 614b, and a bottom core 615b that magnetically couples the inner circumferential core 613b and the outer circumferential core 614b are provided. The inner cores 613a and 613b, the outer cores 614a and 614b, and the bottom cores 615a and 615b are fixed to the gantry fixing portion 604 by the support member 616.

一方、二次コイルT21は、円環状に巻かれた二次巻線N21と、二次巻線N21の内周及び外周に沿うように形成された内周コア617a及び外周コア618aと、内周コア617aと外周コア618aを磁気的に結合する底面コア619bとを備える。   On the other hand, the secondary coil T21 includes an annularly wound secondary winding N21, an inner peripheral core 617a and an outer peripheral core 618a formed along the inner periphery and the outer periphery of the secondary winding N21, A core 617a and a bottom core 619b that magnetically couples the outer core 618a are provided.

二次コイルT22は、空隙部635を介して二次巻線N21の内周に沿うように円環状に巻かれた二次巻線N22と、二次巻線N22の内周及び外周に沿うように形成された内周コア617bと外周コア618bと、内周コア617bと外周コア618bとを磁気的に結合する底面コア619bとを備える。内周コア617a,617bと、外周コア618a,618bと、底面コア619a,619bは、支持部材620により回転部605に固定される。   The secondary coil T22 has a secondary winding N22 wound in an annular shape along the inner periphery of the secondary winding N21 via the gap 635, and extends along the inner periphery and the outer periphery of the secondary winding N22. And an inner core 617b and an outer core 618b, and a bottom core 619b that magnetically couples the inner core 617b and the outer core 618b. The inner peripheral cores 617a and 617b, the outer peripheral cores 618a and 618b, and the bottom cores 619a and 619b are fixed to the rotating portion 605 by a support member 620.

なお、一次コイルT11の内周コア613aと一次コイルT12の外周コア614bに共通のコアを用いてもよい。二次コイル21,T22についても同様に、内周コア617aと外周コア618bに共通のコアを用いてもよい。また、本実施形態では、一次コイル11の底面コア615aと一次コイルT12の底面コア615bにそれぞれ分割したコアを用いているが、共通のコアを用いてもよい。二次コイルT21,T22についても同様に、底面コア619aと底面コア619bに共通のコアを用いてもよい。このように、コアを共用することで、給電トランスを構成する部品点数を低減できるため、給電トランスTr11及び給電トランスTr12の組み立て工数を低減することができる。   A common core may be used for the inner peripheral core 613a of the primary coil T11 and the outer peripheral core 614b of the primary coil T12. Similarly for the secondary coils 21 and T22, a common core may be used for the inner peripheral core 617a and the outer peripheral core 618b. In the present embodiment, the cores divided into the bottom core 615a of the primary coil 11 and the bottom core 615b of the primary coil T12 are used, but a common core may be used. Similarly, for the secondary coils T21 and T22, a common core may be used for the bottom core 619a and the bottom core 619b. Thus, by sharing the core, the number of parts constituting the power supply transformer can be reduced, so that the number of assembling steps of the power supply transformer Tr11 and the power supply transformer Tr12 can be reduced.

本実施形態によれば、前述の第1の実施形態と同様に、給電トランスを構成するコアの形状を単純化することができる。これにより、磁気特性を安定化しながら、給電トランスを軽量化することができる。   According to the present embodiment, the shape of the core constituting the feed transformer can be simplified as in the first embodiment described above. Thereby, it is possible to reduce the weight of the power supply transformer while stabilizing the magnetic characteristics.

次に、図13を用いて本発明の第8の実施形態について説明する。図13は本発明の実施例8による給電トランスTr12,Tr22の断面図である。   Next, an eighth embodiment of the present invention will be described with reference to FIG. FIG. 13 is a cross-sectional view of power supply transformers Tr12 and Tr22 according to an eighth embodiment of the present invention.

第7の実施の形態と異なる点は、給電トランスTr12と給電トランスTr22で一次コイルT13を共用した点と、二次コイルT23と二次コイルT24で底面コア719を共用し、二次コイルT23は二次巻線N23と、内周コア717とを備え、二次コイルT24は二次巻線N24と、外周コア718とを備えた構成とした点である。一次コイルT13は、一次巻線N13と、内周コア713と、外周コア714と、底面コア715と、支持部材716とを備えている。   The difference from the seventh embodiment is that the primary transformer T13 is shared by the feed transformer Tr12 and the feed transformer Tr22, the bottom core 719 is shared by the secondary coil T23 and the secondary coil T24, and the secondary coil T23 is A secondary winding N23 and an inner peripheral core 717 are provided, and the secondary coil T24 is configured to include a secondary winding N24 and an outer peripheral core 718. The primary coil T13 includes a primary winding N13, an inner peripheral core 713, an outer peripheral core 714, a bottom core 715, and a support member 716.

本実施形態によれば、複数の給電トランスで一次コイルT13を共用化することで、架台固定部に配置される給電トランスの重量を低減することができる。また、給電トランスの部品点数を削減することができ、非接触給電装置を低コスト化することができる。
According to this embodiment, by sharing the primary coil T13 with a plurality of power supply transformers, it is possible to reduce the weight of the power supply transformer disposed on the gantry fixing portion. Moreover, the number of parts of the power supply transformer can be reduced, and the cost of the non-contact power supply device can be reduced.

以上、本発明の実施形態を述べたが、本発明はこれらに限定されるものではない。例えば、第7の実施形態では、2つの給電トランスを備えた非接触給電装置について述べたが、3つ以上の給電トランスを備えた非接触給電装置であっても本発明を適用することは可能である。全ての実施形態において、固定部から回転部へ電力伝送される場合について説明したが、回転部から固定部へ電力伝送される場合や、回転部から回転部へ電力を伝送される場合においても本発明を適用することは可能である。
As mentioned above, although embodiment of this invention was described, this invention is not limited to these. For example, in the seventh embodiment, the contactless power supply device including two power supply transformers has been described. However, the present invention can also be applied to a contactless power supply device including three or more power supply transformers. It is. In all the embodiments, the case where power is transmitted from the fixed unit to the rotating unit has been described. It is possible to apply the invention.

産業上の利用の可能性Industrial applicability

本発明の非接触給電装置は、X線CT装置に用いられる電源装置や、風力発電機の電源装置や、監視カメラに用いられる電源装置などに適用できる。
The non-contact power supply device of the present invention can be applied to a power supply device used for an X-ray CT apparatus, a power supply device for a wind power generator, a power supply device used for a monitoring camera, and the like.

1・・・交流電源、2・・・非接触給電装置、3,603・・・負荷、4,604・・・架台固定部、5,605・・・回転部、6,606・・・AC/DCコンバータ、7,607・・・高周波インバータ、8,608,622・・・整流回路、9,10,609,610・・・制御手段、11,12,611,612,632,633・・・通信手段、602・・・X線CT装置、623,625・・・インバータ,624・・・ステーターコイル、625・・・加熱変圧器、627・・・X線管、628・・・X線検出部、629・・・被検体、630・・・画像表示装置、631・・・画像処理装置、13,113,213,313,413,513,613a,613b,17,117,217,317,417,517,617a,617b,713,717・・・内周コア、14,114,214,314,414,514,614a,614b,18,118,218,318,418,518,618a,618b,714,718・・・外周コア,15,115,215,315,415,515,615a,615b,19,119,219,319,419,519,619a,619b,715,719・・・底面コア、16,116,216,316,416,516,616a,616b,20,120,220,320,420,520,620a,620b,716,720・・・支持部材、101・・・給電回路、102・・・受電回路、121,122・・・絶縁体、634,635・・・空隙部、Tr,Tr11,Tr12,Tr21,Tr22・・・給電トランス、T1,T11,T12,T13・・・一次コイル、T2,T21,T22,T23,T24・・・二次コイル、N1,N11,N12,N13・・・一次巻線、N2,N21,N22,N23,N24・・・二次巻線 DESCRIPTION OF SYMBOLS 1 ... AC power source, 2 ... Non-contact electric power feeder, 3,603 ... Load, 4,604 ... Mount fixing | fixed part, 5,605 ... Rotation part, 6,606 ... AC DC converter, 7,607 ... high frequency inverter, 8, 608, 622 ... rectifier circuit, 9, 10, 609, 610 ... control means, 11, 12, 611, 612, 632, 633 ...・ Communication means, 602... X-ray CT apparatus, 623, 625... Inverter, 624... Stator coil, 625... Heating transformer, 627. Detection unit, 629 ... subject, 630 ... image display device, 631 ... image processing device, 13, 113, 213, 313, 413, 513, 613a, 613b, 17, 117, 217, 317, 417, 517, 617 , 617b, 713, 717 ... inner core, 14, 114, 214, 314, 414, 514, 614a, 614b, 18, 118, 218, 318, 418, 518, 618a, 618b, 714, 718,. Outer core, 15, 115, 215, 315, 415, 515, 615a, 615b, 19, 119, 219, 319, 419, 519, 619a, 619b, 715, 719 ... bottom core, 16, 116, 216 , 316, 416, 516, 616a, 616b, 20, 120, 220, 320, 420, 520, 620a, 620b, 716, 720 ... supporting member, 101 ... power feeding circuit, 102 ... power receiving circuit, 121, 122 ... insulator, 634, 635 ... gap, Tr, Tr11, Tr12, Tr21, r22 ... feed transformer, T1, T11, T12, T13 ... primary coil, T2, T21, T22, T23, T24 ... secondary coil, N1, N11, N12, N13 ... primary winding, N2, N21, N22, N23, N24 ... Secondary winding

Claims (16)

電源に接続された第1の回路と、給電トランスと、負荷へ電力を供給する第2の回路とを備え、前記電源の電力を前記第1の回路から前記第2の回路へ前記給電トランスを介して非接触で電力を伝送する非接触給電装置において、
前記給電トランスは、円環状に巻かれた巻線と、前記巻線の内周と外周に沿うようにそれぞれ形成された内周コアと外周コアのうち少なくとも一方とからなる一対の給電コイルを、所定のギャップを挟んで対向配置した構成であることを特徴とする非接触給電装置。
A first circuit connected to a power supply; a power supply transformer; and a second circuit for supplying power to a load. The power of the power supply is transferred from the first circuit to the second circuit. In a non-contact power feeding device that transmits power in a non-contact manner,
The power supply transformer includes a pair of power supply coils including a winding wound in an annular shape, and at least one of an inner peripheral core and an outer peripheral core formed respectively along an inner periphery and an outer periphery of the winding. A non-contact power feeding apparatus having a configuration in which a predetermined gap is interposed therebetween.
請求項1の非接触給電装置において、前記内周コアと前記外周コアの両方を備えたことを特徴とする非接触給電装置。   The contactless power supply device according to claim 1, comprising both the inner peripheral core and the outer peripheral core. 請求項2の非接触給電装置において、前記巻線の対向面と反対側に、前記内周コアと前記外周コアとを磁気的に結合する底面コアを備えたことを特徴とする非接触給電装置。   3. The non-contact power feeding apparatus according to claim 2, further comprising a bottom core that magnetically couples the inner and outer peripheral cores on a side opposite to the facing surface of the winding. . 請求項1〜3のうちの1つの非接触給電装置において、前記非接触給電装置は、架台固定部と、前記架台固定部に対して回転自在に支持された回転部とを有し、前記架台固定部は、前記第1の回路と、前記給電コイルの一方とを備え、前記回転部は、前記給電コイルの他方と、前記第2の回路と、前記負荷とを備えたことを特徴とする非接触給電装置。   The non-contact power feeding device according to claim 1, wherein the non-contact power feeding device includes a gantry fixing portion and a rotating portion that is rotatably supported with respect to the gantry fixing portion. The fixing unit includes the first circuit and one of the feeding coils, and the rotating unit includes the other of the feeding coil, the second circuit, and the load. Non-contact power feeding device. 請求項1〜4のうちの1つの非接触給電装置において、前記給電コイルの一方の前記巻線及び/又は前記内周コア及び/又は前記内周コアと、前記給電コイルの他方の前記巻線及び/又は内周コア及び/又は前記外周コアを、それぞれ概ね等しい径としたことを特徴とする非接触給電装置。   5. The non-contact power feeding device according to claim 1, wherein one of the windings of the feeding coil and / or the inner circumferential core and / or the inner circumferential core and the other winding of the feeding coil. And / or the inner peripheral core and / or the outer peripheral core have substantially the same diameter, respectively. 請求項1〜4のうちの1つの非接触給電装置において、前記給電コイルの一方が備えた前記巻線及び/又は内周コア及び/又は前記外周コアと、前記給電コイルの他方が備えた前記巻線及び/又は内周コア及び/又は前記外周コアを、それぞれ異なる径としたことを特徴とする非接触給電装置。   In the non-contact electric power feeder in any one of Claims 1-4, the said winding and / or the inner periphery core and / or the said outer periphery core with which one of the said power supply coils was provided, and the said other with which the said power supply coil was provided A non-contact power feeding device, wherein the winding and / or the inner peripheral core and / or the outer peripheral core have different diameters. 請求項3〜6のうちの1つの非接触給電装置において、前記底面コアを、前記巻線の円周方向に分割したことを特徴とする非接触給電装置。   The contactless power supply device according to claim 3, wherein the bottom core is divided in a circumferential direction of the winding. 請求項1〜7のうちの1つの非接触給電装置において、前記内周コア及び/又は前記外周コアを、前記巻線の円周方向に分割したことを特徴とする非接触給電装置。   The contactless power feeding device according to claim 1, wherein the inner peripheral core and / or the outer peripheral core is divided in a circumferential direction of the winding. 請求項8の非接触給電装置において、分割して配置された前記内周コア及び/又は前記外周コアの間隙部に、前記底面コアを配置したことを特徴とする非接触給電装置。   9. The non-contact power feeding device according to claim 8, wherein the bottom core is disposed in a gap between the inner peripheral core and / or the outer peripheral core that are separately disposed. 請求項8又は9のいずれかの非接触給電装置において、前記給電コイルの一方が備えた前記内周コア及び/又は前記外周コアと、前記給電コイルの他方が備えた前記内周コア及び/又は前記外周コアを、異なる数に分割したことを特徴とする非接触給電装置。   The contactless power supply device according to claim 8 or 9, wherein the inner peripheral core and / or the outer peripheral core provided in one of the power supply coils, and the inner peripheral core provided in the other of the power supply coil and / or The non-contact electric power feeder characterized by dividing the said outer periphery core into a different number. 請求項10の非接触給電装置において、前記給電コイルの一方が備えた前記内周コア及び/又は前記外周コアの分割数をNとし、前記給電コイルの他方が備えた前記内周コア及び/又は前記外周コアの分割数をN−1としたことを特徴とする非接触給電装置。   The contactless power supply device according to claim 10, wherein a division number of the inner peripheral core and / or the outer peripheral core provided in one of the power supply coils is N, and the inner peripheral core provided in the other of the power supply coil and / or A non-contact power feeding device, wherein the number of divisions of the outer peripheral core is N-1. 請求項3〜11のうちの1つのの非接触給電装置において、前記巻線と、前記内周コアと、前記外周コアと、前記底面コアとを支持する支持部材を備えることを特徴とする非接触給電装置。   The non-contact power feeding device according to claim 3, further comprising a support member that supports the winding, the inner peripheral core, the outer peripheral core, and the bottom core. Contact power supply device. 請求項3〜12のうちの1つの非接触給電装置において、前記巻線と、前記内周コア及び/又は前記外周コア及び/又は前記底面コアとの間に絶縁体を挿入したことを特徴とする非接触給電装置。   The non-contact power feeding device according to claim 3, wherein an insulator is inserted between the winding and the inner and / or outer and / or bottom cores. A non-contact power feeding device. 請求項1〜13のうちの1つの非接触給電装置において、前記給電トランスを複数備えたことを特徴とする非接触給電装置。   The contactless power feeding device according to claim 1, comprising a plurality of the power feeding transformers. 請求項14の非接触給電装置において、前記給電コイルの一方を複数の前記給電トランスで共用したことを特徴とする非接触給電装置。   The contactless power supply device according to claim 14, wherein one of the power supply coils is shared by the plurality of power supply transformers. 請求項1〜15のうちの1つの非接触給電装置を搭載したX線CT装置。   An X-ray CT apparatus equipped with one non-contact power feeding device according to claim 1.
JP2015530632A 2013-08-09 2013-08-09 Non-contact power feeding device Pending JPWO2015019478A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/071585 WO2015019478A1 (en) 2013-08-09 2013-08-09 Contactless electric supply device

Publications (1)

Publication Number Publication Date
JPWO2015019478A1 true JPWO2015019478A1 (en) 2017-03-02

Family

ID=52460845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015530632A Pending JPWO2015019478A1 (en) 2013-08-09 2013-08-09 Non-contact power feeding device

Country Status (2)

Country Link
JP (1) JPWO2015019478A1 (en)
WO (1) WO2015019478A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113874970A (en) * 2019-05-24 2021-12-31 株式会社电装 Magnetic member and power conversion device including the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115346752A (en) 2016-08-03 2022-11-15 模拟技术公司 Power coupling device
JP6945188B2 (en) 2016-11-30 2021-10-06 パナソニックIpマネジメント株式会社 Wireless power supply unit, power transmission module, power receiving module and wireless power transmission system
JP7174991B2 (en) * 2018-08-01 2022-11-18 ひだかや株式会社 natural power generator
JP7252740B2 (en) * 2018-11-22 2023-04-05 Ntn株式会社 wind turbine
CN112022184B (en) * 2019-06-04 2023-12-19 台达电子工业股份有限公司 Computer fault scanning system and its connecting assembly structure

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5797919U (en) * 1980-12-05 1982-06-16
JPS59166421U (en) * 1983-04-25 1984-11-08 ソニー株式会社 rotary transformer
JPS62193712U (en) * 1986-05-30 1987-12-09
JPH02249103A (en) * 1989-03-23 1990-10-04 Sharp Corp Magnetic recording and reproducing device
JPH03148102A (en) * 1989-11-02 1991-06-24 Matsushita Electric Ind Co Ltd Rotatable transformer and manufacture thereof
JPH09275027A (en) * 1996-04-03 1997-10-21 Sony Corp Rotary transformer
JP2001338820A (en) * 2000-05-29 2001-12-07 Hitachi Medical Corp Gapped transformer and non-contact power transmitting equipment using the same and x-ray ct device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000150276A (en) * 1998-11-17 2000-05-30 Dainippon Printing Co Ltd Power transmission apparatus and rotary joint
JP2001269330A (en) * 2000-01-17 2001-10-02 Toshiba Corp X-ray ct device
JP2002134340A (en) * 2000-10-20 2002-05-10 Shinko Electric Co Ltd Non-contact power supply transformer
JP2008243985A (en) * 2007-03-26 2008-10-09 Nitta Ind Corp Core object of power transfer unit

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5797919U (en) * 1980-12-05 1982-06-16
JPS59166421U (en) * 1983-04-25 1984-11-08 ソニー株式会社 rotary transformer
JPS62193712U (en) * 1986-05-30 1987-12-09
JPH02249103A (en) * 1989-03-23 1990-10-04 Sharp Corp Magnetic recording and reproducing device
JPH03148102A (en) * 1989-11-02 1991-06-24 Matsushita Electric Ind Co Ltd Rotatable transformer and manufacture thereof
JPH09275027A (en) * 1996-04-03 1997-10-21 Sony Corp Rotary transformer
JP2001338820A (en) * 2000-05-29 2001-12-07 Hitachi Medical Corp Gapped transformer and non-contact power transmitting equipment using the same and x-ray ct device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113874970A (en) * 2019-05-24 2021-12-31 株式会社电装 Magnetic member and power conversion device including the same
CN113874970B (en) * 2019-05-24 2023-12-05 株式会社电装 Magnetic member and power conversion device including the same

Also Published As

Publication number Publication date
WO2015019478A1 (en) 2015-02-12

Similar Documents

Publication Publication Date Title
JPWO2015019478A1 (en) Non-contact power feeding device
JP5839020B2 (en) Power transmission coil unit and wireless power transmission device
EP2109866B1 (en) Shielded power coupling device
JP5929493B2 (en) Power receiving device and power supply system
US10014105B2 (en) Coil unit and wireless power transmission device
US11087921B2 (en) Inductive rotary joint with U-shaped ferrite cores
US20090060123A1 (en) X-ray ct device and method of imaging using the same
CN111092493A (en) Wireless power supply device
EP2924842B1 (en) Coil unit and wireless power transmission device
JP6179375B2 (en) Coil unit
JP2014193056A (en) Wireless power transmission device
JP4785126B2 (en) X-ray CT system
CN102640235A (en) Easily installed rotary transformer
JPH07204192A (en) X-ray ct system
US20170125162A1 (en) System and method for increasing coupling of an axle rotary transformer
JPH08336521A (en) X-ray ct system
JP2001338820A (en) Gapped transformer and non-contact power transmitting equipment using the same and x-ray ct device
JP2015106938A (en) Power transmission coil unit and wireless power transmission device
EP3214628B1 (en) Line-frequency rotary transformer for computed tomography gantry
JP2019170017A (en) Wireless power transmission system
CN111788647B (en) System for supplying a rotating device with electrical energy wirelessly
JP2010075018A (en) Contactless power supply system
EP2940696A1 (en) Cable
JP4008010B2 (en) X-ray CT system
JP2006296944A (en) Multi-channel noncontact power transmission system for computerized tomography

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170111

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170405

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171003