JPWO2015016156A1 - Dispersant-containing carbon material film containing photoresponsive dispersant, and carbon material film manufacturing method using the dispersant-containing carbon material film - Google Patents

Dispersant-containing carbon material film containing photoresponsive dispersant, and carbon material film manufacturing method using the dispersant-containing carbon material film Download PDF

Info

Publication number
JPWO2015016156A1
JPWO2015016156A1 JP2015529554A JP2015529554A JPWO2015016156A1 JP WO2015016156 A1 JPWO2015016156 A1 JP WO2015016156A1 JP 2015529554 A JP2015529554 A JP 2015529554A JP 2015529554 A JP2015529554 A JP 2015529554A JP WO2015016156 A1 JPWO2015016156 A1 JP WO2015016156A1
Authority
JP
Japan
Prior art keywords
dispersant
carbon material
material film
group
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015529554A
Other languages
Japanese (ja)
Other versions
JP6095027B2 (en
Inventor
松澤 洋子
洋子 松澤
吉田 勝
勝 吉田
近藤 直樹
直樹 近藤
秀元 木原
秀元 木原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Publication of JPWO2015016156A1 publication Critical patent/JPWO2015016156A1/en
Application granted granted Critical
Publication of JP6095027B2 publication Critical patent/JP6095027B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C237/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups
    • C07C237/28Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a non-condensed six-membered aromatic ring of the carbon skeleton
    • C07C237/40Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a non-condensed six-membered aromatic ring of the carbon skeleton having the nitrogen atom of the carboxamide group bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C245/00Compounds containing chains of at least two nitrogen atoms with at least one nitrogen-to-nitrogen multiple bond
    • C07C245/02Azo compounds, i.e. compounds having the free valencies of —N=N— groups attached to different atoms, e.g. diazohydroxides
    • C07C245/06Azo compounds, i.e. compounds having the free valencies of —N=N— groups attached to different atoms, e.g. diazohydroxides with nitrogen atoms of azo groups bound to carbon atoms of six-membered aromatic rings
    • C07C245/08Azo compounds, i.e. compounds having the free valencies of —N=N— groups attached to different atoms, e.g. diazohydroxides with nitrogen atoms of azo groups bound to carbon atoms of six-membered aromatic rings with the two nitrogen atoms of azo groups bound to carbon atoms of six-membered aromatic rings, e.g. azobenzene
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • G03F7/32Liquid compositions therefor, e.g. developers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • G03F7/32Liquid compositions therefor, e.g. developers
    • G03F7/325Non-aqueous compositions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Abstract

分散剤を全く含有しないか、含有してもその含有量が極めて少ないCNT等の炭素材料膜を容易に形成することのできる分散剤含有炭素材料膜、及び、該分散剤含有炭素材料膜を用いたパターン化炭素材料膜等の炭素材料膜の製造方法を提供することを課題とするものであり、その分散剤含有炭素材料膜は、光応答性を有し、下記一般式(I)で表されるスチルベン系又はアゾベンゼン系分散剤を含有することを特徴とする。【化1】[式中、R1〜R6は、それぞれ独立して水素又は炭素数1〜5の直鎖状若しくは炭素数3〜6の分岐状アルキル基である。Aは炭素原子又は窒素原子である。Xはアニオンである。nはnXが−2価となる数である。]【選択図】図1Use of a dispersant-containing carbon material film that can easily form a carbon material film such as CNT that does not contain a dispersant at all or contains only a small amount of the dispersant, and the dispersant-containing carbon material film It is an object of the present invention to provide a method for producing a carbon material film such as a patterned carbon material film, and the dispersant-containing carbon material film has photoresponsiveness and is represented by the following general formula (I). It contains a stilbene-based or azobenzene-based dispersant. [Wherein, R 1 to R 6 are each independently hydrogen or a linear or branched alkyl group having 1 to 5 carbon atoms or a straight chain or having 3 to 6 carbon atoms.] A is a carbon atom or a nitrogen atom. X is an anion. n is a number at which nX becomes -2 valent. [Selection] Figure 1

Description

本発明は、カーボンナノチューブ(CNT)を代表とする炭素材料の膜の作製に有用な、光応答性の炭素材料分散剤を含有する分散剤含有炭素材料膜、該分散剤含有炭素材料膜を用い、パターン化炭素材料膜を得ることができる炭素材料膜の製造方法、及び、該炭素材料膜の製造方法を含む電子・電気デバイスの製造方法に関する。   The present invention uses a dispersant-containing carbon material film containing a photoresponsive carbon material dispersant, which is useful for the production of a carbon material film typified by carbon nanotubes (CNT), and the dispersant-containing carbon material film. The present invention relates to a carbon material film manufacturing method capable of obtaining a patterned carbon material film, and an electronic / electric device manufacturing method including the carbon material film manufacturing method.

カーボンナノチューブ(CNT)は、ナノテクノロジーの新素材として近年注目を集めている。なかでも、単層カーボンナノチューブ(SWCNT)はシンプルな構造と特異な物理化学的性質により、種々の分野への応用が期待されている。   Carbon nanotubes (CNTs) have attracted attention in recent years as a new material for nanotechnology. Among them, single-walled carbon nanotubes (SWCNT) are expected to be applied in various fields due to their simple structure and unique physicochemical properties.

しかしながら、CNTは、高いvan der Waals相互作用による会合(バンドル化)が生起するため、そのCNT膜化や、所定パターンのCNT膜を得るためには、溶媒への可溶化・分散化技術やCNT膜のパターン化技術が必要不可欠となっている。   However, CNTs are associated with high van der Waals interactions (bundling). Therefore, in order to obtain CNT films and to obtain CNT films with a predetermined pattern, solubilization / dispersion techniques in solvents and CNT Film patterning technology is indispensable.

CNTを溶媒中へ可溶化・分散化する従来の技術としては、酸性溶液中でCNTを超音波処理することによって溶媒への溶解性を促進する官能基を生成させる手法、分散剤を混合することで溶媒への分散(可溶化)を促す手法が知られており、分散剤としては、イオン性の両親媒性化合物、芳香族官能基を有する化合物、天然由来高分子、合成高分子などが報告されている(特許文献1参照)。
しかしながら、その多くの場合においてCNTに吸着した分散剤は、長時間の洗浄、低温焼却、薬剤による分解除去によって除くほかなく、純粋なCNTを取り出すための簡便に除去可能な分散剤の開発は、依然課題となっている。
さらに、必要に応じて分散能制御を繰り返し行うこと、及び分散したCNTを再凝集させた後に適宜回収することで、繰り返し利用することが可能なリサイクル性をもつ分散剤の開発は、省資源の観点からも重要である。
Conventional techniques for solubilizing and dispersing CNTs in solvents include mixing CNTs with a method of generating functional groups that promote solubility in solvents by sonicating CNTs in acidic solutions. Are known to promote dispersion (solubilization) in solvents, and as dispersants, ionic amphiphilic compounds, compounds having aromatic functional groups, naturally derived polymers, synthetic polymers, etc. have been reported. (See Patent Document 1).
However, in many cases, the dispersant adsorbed on the CNTs can only be removed by long-term washing, low-temperature incineration, and decomposition and removal by chemicals. It remains a challenge.
Furthermore, the development of recyclable dispersants that can be used repeatedly by repeatedly performing dispersibility control as needed and appropriately collecting the dispersed CNTs after reaggregation is a resource-saving approach. It is also important from a viewpoint.

そのような理由で、任意の条件によって分散剤の構造や溶解性を変化させ、分散能を制御するものが数例開発されてきているが、いずれの例も解決されるべき課題が残存している。
例えば、色素であるマラカイトグリーンにポリエチレングリコールを置換した両親媒性化合物によりCNTをミセル状にして分散し、光照射によるマラカイトグリーンの光分解イオン化による溶解性変化を利用して、分散したCNTを再凝集させるもの(非特許文献1参照)については、CNTに対して重量比で10倍もの分散剤添加量を必要とし、効率的にCNTを分散しているとはいえない。
両親媒性のオリゴペプチドを分散剤として用い、CNT分散後に蛋白質分解酵素を用いて分散剤のみを生化学的に分解して、沈殿したCNTを単離するもの(特許文献2参照)については、原理的に酵素が活性を示す条件下のみに利用が制限され、また、非可逆的分解であることから、分散剤の回収再利用が困難である。
金属錯体から成る分散剤を合成し、これを用いて、中心金属の化学的酸化・還元による配座の変化(=分子構造の変化)を利用して、CNTへの親和性を制御し分散能を適宜変化させるもの(特許文献3、非特許文献2参照)については、CNTを可溶化させるために、特殊な装置を必要とする高速振動粉砕法と高出力超音波照射法を併用しており、分散液調製の手法が簡便とはいえないし、また、分散溶媒として、クロロホルムやアミド系有機溶媒等を使用しており、工業的に大量に使用する条件を考慮した場合には環境への負荷が懸念される。
For these reasons, several examples have been developed that control the dispersibility by changing the structure and solubility of the dispersant under arbitrary conditions, but there are still problems to be solved in each example. Yes.
For example, CNTs are dispersed in micellar form with an amphiphilic compound in which polyethylene glycol is substituted for malachite green, which is a pigment, and the dispersed CNTs are recycled using the solubility change caused by photolytic ionization of malachite green by light irradiation. For the agglomerated material (see Non-Patent Document 1), it is necessary to add a dispersing agent as much as 10 times by weight with respect to CNT, and it cannot be said that CNT is efficiently dispersed.
For those using an amphiphilic oligopeptide as a dispersant, biodegrading only the dispersant using a proteolytic enzyme after CNT dispersion, and isolating the precipitated CNT (see Patent Document 2), In principle, the use is limited only under conditions where the enzyme is active, and the irreversible degradation makes it difficult to recover and reuse the dispersant.
Dispersing agents composed of metal complexes are used to control the affinity for CNTs by utilizing the conformational changes (= changes in molecular structure) caused by chemical oxidation / reduction of the central metal, thereby dispersibility In order to solubilize CNTs, the high-speed vibration pulverization method that requires a special device and the high-power ultrasonic irradiation method are used in combination. However, the method of preparing the dispersion is not simple, and chloroform and amide organic solvents are used as the dispersion solvent. Is concerned.

本発明者等は、先に、CNTが環境に負荷をかけない溶媒(水)中に安定に分散しており、その分散状態が簡便になおかつ効率的・効果的に調整可能で、繰り返し分散状態を変化させ得る手法を提供することを課題として、フォトクロミックな化学構造を有するイオン性有機化合物の分散剤を開発した(特許文献4参照)。この分散剤は、CNTを水溶液中に簡便で効果的に分散し、さらには光照射による分散剤の光異性化反応により、CNTの水中における分散能を制御出来る点で優れたものである。しかしながら、分散水溶液中におけるCNTの光異性化反応による分散量低下と凝集、沈殿挙動のみを述べており、「固体膜」の形成や「固体膜」での反応性等については全く言及していない。   The inventors of the present invention have previously described that CNT is stably dispersed in a solvent (water) that does not burden the environment, and that the dispersion state can be easily and efficiently and effectively adjusted, and the repeated dispersion state In order to provide a technique that can change the ionic organic compound, a dispersant for an ionic organic compound having a photochromic chemical structure has been developed (see Patent Document 4). This dispersant is excellent in that CNT can be easily and effectively dispersed in an aqueous solution, and further, the dispersibility of CNT in water can be controlled by photoisomerization reaction of the dispersant by light irradiation. However, it only describes the dispersion reduction, aggregation, and precipitation behavior due to the photoisomerization reaction of CNTs in dispersed aqueous solution, and does not mention the formation of “solid film” or the reactivity in “solid film” at all. .

一方、所定パターン化されたCNT膜を製造する技術に関しては、従来、次の(1)〜(5)のようなものが知られている。
(1)CNT膜にレジスト材料を含ませたり、レジスト膜を積層したりするレジスト材料の塗布工程を必要とするもの(特許文献5〜8参照)。
(2)酸素プラズマや、酸、塩基等を使用するエッチング工程を必要とするもの(特許文献9〜11参照)。
(3)CNT膜上に膜除去剤を塗布したり、積層したりする工程を必要とするもの(特許文献12参照)。
(4)紫外線照射により絶縁化のみ行うもの(特許文献13参照)。
(5)CNTをレジストに分散させるもの(特許文献13〜16参照)。
On the other hand, the following (1) to (5) are known as techniques for manufacturing a CNT film having a predetermined pattern.
(1) A resist material coating process in which a resist material is included in a CNT film or a resist film is laminated (see Patent Documents 5 to 8).
(2) Those requiring an etching process using oxygen plasma, acid, base or the like (see Patent Documents 9 to 11).
(3) Those requiring a step of applying or laminating a film removing agent on the CNT film (see Patent Document 12).
(4) Insulating only by ultraviolet irradiation (see Patent Document 13).
(5) A material in which CNT is dispersed in a resist (see Patent Documents 13 to 16).

しかしながら、上記(1)については、レジスト工程が必要で工程操作が煩雑であるという問題点があり、上記(2)については、シビアなエッチング工程が必要なため、CNT膜を支持する基板を損傷するという問題点があり、上記(3)については、CNT膜の膜除去剤や種々の溶媒を用いる必要があるため、工程操作が煩雑という問題点があり、上記(4)については、不要部を除去するものではないという問題点があり、上記(5)については、多量のレジストを必要とし、膜中のCNT含有量を高濃度にできないため導電性に欠けるという問題点があることが明らかとなっている。
このように従来技術には、簡便にパターン化CNT膜を形成することの出来る手法は存在しなかったし、また、フォトレジスト作用を兼ね備えた分散剤という概念は存在しなかった。
さらに、CNT以外の炭素材料であるカーボンブラック、炭素繊維、黒鉛粒子等についても、その炭素材料膜を得るための、溶媒への可溶化・分散化技術や炭素材料膜のパターン化技術は全く報告されてこなかった。
However, the above (1) has a problem that a resist process is required and the process operation is complicated, and the above (2) requires a severe etching process, which damages the substrate supporting the CNT film. In the above (3), it is necessary to use a CNT film remover and various solvents, so there is a problem that the process operation is complicated, and the above (4) is an unnecessary part. It is clear that the above (5) has a problem that it requires a large amount of resist and lacks conductivity because the CNT content in the film cannot be made high. It has become.
As described above, in the prior art, there is no method capable of easily forming a patterned CNT film, and there is no concept of a dispersant having a photoresist function.
In addition, carbon black, carbon fiber, graphite particles, etc., which are carbon materials other than CNT, have been completely reported on solubilization / dispersion technology and carbon material film patterning technology to obtain the carbon material film. It has never been done.

特開2004−2850号公報JP 2004-2850 A 特開2007−153716号公報JP 2007-153716 A 特開2009−23886号公報JP 2009-23886 A WO2011/52604A1WO2011 / 52604A1 特許第4998619号公報Japanese Patent No. 4998619 特開平6−252056号公報JP-A-6-252056 特表2007−529884号公報Special table 2007-529884 gazette 特表2006−513557号公報JP-T-2006-513557 特開2005−347378号公報JP-A-2005-347378 特開2002−234000号公報JP 2002-234000 A 特開2000−90809号公報JP 2000-90809 A 特開2013−8897号公報JP 2013-8897 A WO2012/176905A1WO2012 / 176905A1 特開2008−177165号公報JP 2008-177165 A 特開2009−93186号公報JP 2009-93186 A 特許第4270452号公報Japanese Patent No. 4270452 特許第4632341号公報Japanese Patent No. 4632341

S.Chen,et al.,Langmuir,24,9233(2008).S. Chen, et al., Langmuir, 24, 9233 (2008). K.Nobusawa et al.,Angew.Chem.Int.Ed.,47,4577(2008).K. Nobusawa et al., Angew. Chem. Int. Ed., 47, 4577 (2008).

本発明は、上述のような従来技術を背景としてなされたものであり、分散剤を全く含有しないか、含有してもその含有量が極めて少ないCNT膜等の炭素材料膜を容易に形成することのできる分散剤含有炭素材料膜を提供することを第1の課題とする。
また、本発明は、分散剤を全く含有しないか、含有してもその含有量が極めて少ないCNT膜等の炭素材料膜を容易に形成することのできる炭素材料膜又はパターン化炭素材料膜の製造方法を提供することを第2の課題とする。
また、本発明は、酸素プラズマや酸性・塩基性の現像液等の除去手法が過酷な現像手段を使用することなく、微細パターンを有するパターン化CNT膜等のパターン化炭素材料膜を容易に製造することができるパターン化炭素材料膜の製造方法を提供することを第3の課題乃至補助的な課題とする。
The present invention has been made against the background of the prior art as described above, and can easily form a carbon material film such as a CNT film that does not contain a dispersant at all or contains only a small amount of the dispersant. It is a first object to provide a dispersant-containing carbon material film that can be used.
In addition, the present invention provides a carbon material film or a patterned carbon material film that can easily form a carbon material film such as a CNT film that does not contain a dispersant at all or contains a very small amount of the dispersant. Providing a method is a second problem.
In addition, the present invention easily manufactures a patterned carbon material film such as a patterned CNT film having a fine pattern without using a developing means having a severe removal technique such as oxygen plasma or acidic / basic developer. It is a third problem or an auxiliary problem to provide a method for producing a patterned carbon material film that can be performed.

本発明者らは、先に開発したイオン性有機化合物の分散剤(上記特許文献4参照)を初めとした各種分散剤とCNT等の炭素材料との関連挙動等について、さらに研究を進める過程で、次の(ア)〜(エ)のような知見を得た。
(ア)前記イオン性有機化合物の分散剤を含有するCNT分散液から形成された分散剤含有CNT膜に対し露光処理した後、リンス液でリンス処理すると、分散剤を全く含有しないか、分散剤を含有してもその含有量が極めて少ないCNT膜が形成できる。
(イ)そのため、分散剤含有CNT膜に含まれている分散剤のほぼ全量を効率的に回収することができる。
(ウ)分散剤含有CNT膜に対し所定パターンで部分的に露光処理した後、リンス液でリンス処理すると、未露光部分はリンス液に溶解して流出し、フォトリソグラフィーと同様に、ネガ型のパターン化CNT膜が形成できる。
(エ)上記イオン性有機化合物の分散剤を用いると、カーボンブラック、炭素繊維、黒鉛粒子等の炭素材料についても、前記CNTと同様に、炭素材料分散液を調製することができるし、また、光で炭素材料の分散性を制御することができるので、CNT膜の代替などとして使用し得る。
In the course of further researching the related behaviors of various dispersants, including the previously developed dispersants of ionic organic compounds (see Patent Document 4 above) and carbon materials such as CNTs, etc. The following findings (a) to (d) were obtained.
(A) When the dispersant-containing CNT film formed from the CNT dispersion containing the dispersant of the ionic organic compound is exposed to light and then rinsed with a rinse solution, the dispersant is not contained at all. Even if it contains, a CNT film with an extremely small content can be formed.
(A) Therefore, almost the entire amount of the dispersant contained in the dispersant-containing CNT film can be efficiently recovered.
(C) After partially exposing the dispersant-containing CNT film in a predetermined pattern and rinsing with a rinsing liquid, the unexposed part dissolves in the rinsing liquid and flows out. As in photolithography, a negative type Patterned CNT film can be formed.
(D) When the above ionic organic compound dispersant is used, a carbon material dispersion can be prepared for carbon materials such as carbon black, carbon fiber, and graphite particles in the same manner as in the CNT. Since the dispersibility of the carbon material can be controlled by light, it can be used as an alternative to a CNT film.

本発明は、これら(ア)〜(エ)等の知見に基づいて完成するに至ったものである。
すなわち、この出願は以下の発明を提供するものである。
(1)光応答性を有し、下記一般式(I)で表されるスチルベン系又はアゾベンゼン系分散剤を含有する分散剤含有炭素材料膜。

Figure 2015016156
[式中、R1〜R6は、それぞれ独立して水素又は炭素数1〜5の直鎖状若しくは炭素数3〜6の分岐状アルキル基である。Aは炭素原子又は窒素原子である。Xはアニオンである。nはnXが−2価となる数である。]
(2)Xは、ハロゲン原子(F,Cl,Br,I)、テトラフルオロホウ酸基(BF4)、ヘキサフルオロリン酸(PF6)、ビス(トリフルオロメタンスルホニル)イミド、チオイソシアネート(SCN)、硝酸基(NO3)、硫酸基(SO4)、チオ硫酸基(S2O3)、炭酸基(CO3)、炭酸水素基(HCO3)、リン酸基、亜リン酸基、次亜リン酸基、各ハロゲン酸化合物酸基(AO4,AO3,AO2,AO:A=Cl,Br,I)、トリス(トリフルオロメチルスルホニル)炭素酸基、トリフルオロメチルスルホン酸基、ジシアンアミド基、酢酸基(CH3COO)、ハロゲン化酢酸基((CAnH3-n)COO,A=F,Cl,Br,I;n=1,2,3)、テトラフェニルホウ酸基(BPh4)及び、その誘導体(B(Aryl)4:Aryl=置換フェニル基)から選ばれた少なくとも1種である(1)に記載の分散剤含有炭素材料膜。
(3)基板上に形成されたものである(1)又は(2)に記載の分散剤含有炭素材料膜。
(4)前記炭素材料が、SWCNT、MWCNT、カーボンブラック、炭素繊維、黒鉛粒子からなる群から選択される1種又は2種以上である(1)〜(3)のいずれか1項に記載の分散剤含有炭素材料膜。
(5)(1)〜(4)のいずれか1項に記載の分散剤含有炭素材料膜を含む電子又は電気デバイス製造用材料。
(6)(1)〜(4)のいずれか1項に記載の分散剤含有炭素材料膜を全面露光処理、又は、所定パターンで部分露光処理する露光工程、露光処理された分散剤含有炭素材料膜をリンス液で処理することにより、未露光部分を溶解除去するとともに、露光部分の分散剤を除去するリンス工程を備えることを特徴とする、炭素材料膜又はパターン化炭素材料膜の製造方法。
(7)リンス液は、水又は有機溶媒である(6)に記載の炭素材料膜又はパターン化炭素材料膜の製造方法。
(8)(6)又は(7)に記載の炭素材料膜又はパターン化炭素材料膜の製造方法を含む電気又は電子デバイスの製造方法。The present invention has been completed based on these findings (a) to (d).
That is, this application provides the following inventions.
(1) A dispersant-containing carbon material film having photoresponsiveness and containing a stilbene-based or azobenzene-based dispersant represented by the following general formula (I).
Figure 2015016156
[In formula, R < 1 > -R < 6 > is respectively independently hydrogen or a C1-C5 linear or C3-C6 branched alkyl group. A is a carbon atom or a nitrogen atom. X is an anion. n is a number at which nX becomes -2 valent. ]
(2) X is a halogen atom (F, Cl, Br, I), tetrafluoroboric acid group (BF 4 ), hexafluorophosphoric acid (PF 6 ), bis (trifluoromethanesulfonyl) imide, thioisocyanate (SCN) , Nitrate group (NO 3 ), sulfate group (SO 4 ), thiosulfate group (S 2 O 3 ), carbonate group (CO 3 ), hydrogen carbonate group (HCO 3 ), phosphate group, phosphite group, Phosphorous acid group, each halogen acid compound acid group (AO 4 , AO 3 , AO 2 , AO: A = Cl, Br, I), tris (trifluoromethylsulfonyl) carbon acid group, trifluoromethylsulfonic acid group, Dicyanamide group, acetic acid group (CH 3 COO), halogenated acetic acid group ((CA n H 3-n ) COO, A = F, Cl, Br, I; n = 1, 2, 3), tetraphenylboric acid group The dispersant-containing carbon material film according to (1), which is at least one selected from (BPh 4 ) and derivatives thereof (B (Aryl) 4 : Aryl = substituted phenyl group).
(3) The dispersant-containing carbon material film according to (1) or (2), which is formed on a substrate.
(4) The carbon material according to any one of (1) to (3), wherein the carbon material is one or more selected from the group consisting of SWCNT, MWCNT, carbon black, carbon fiber, and graphite particles. Dispersant-containing carbon material film.
(5) A material for manufacturing an electronic or electrical device, comprising the dispersant-containing carbon material film according to any one of (1) to (4).
(6) An exposure process in which the dispersant-containing carbon material film according to any one of (1) to (4) is subjected to an overall exposure process or a partial exposure process in a predetermined pattern, and the dispersant-containing carbon material subjected to the exposure process. A method for producing a carbon material film or a patterned carbon material film, comprising a rinsing step of dissolving and removing an unexposed portion by treating the film with a rinsing liquid and removing a dispersant in the exposed portion.
(7) The method for producing a carbon material film or a patterned carbon material film according to (6), wherein the rinse liquid is water or an organic solvent.
(8) A method for producing an electrical or electronic device, comprising the method for producing a carbon material film or a patterned carbon material film according to (6) or (7).

さらに、本発明は、次のような態様を含むこともできる。
(9)R1〜R6のアルキル基が炭素数4以下のものである(1)〜(4)のいずれか1項に記載の分散剤含有炭素材料膜。
(10)炭素材料と分散剤の重量割合が1:0.5〜1:10である(1)〜(4)、(9)のいずれか1項に記載の分散剤含有炭素材料膜。
(11)炭素材料を溶解乃至分散し得る液状溶媒の含有量が5wt%未満である(1)〜(4)、(9)、(10)のいずれか1項に記載の分散剤含有炭素材料膜。
(12)炭素材料と分散剤と1wt%未満(0wt%である場合を含む)の不純物とからなる(1)〜(4)、(9)〜(11)のいずれか1項に記載の分散剤含有炭素材料膜。
(13)厚みが1nm〜100μmである(1)〜(4)、(9)〜(12)のいずれか1項に記載の分散剤含有炭素材料膜。
(14)基板が、ガラス、合成樹脂、セラミックス、金属、半導体、これらの複合体、単結晶体、又は、それらの積層物からなる(3)に記載の分散剤含有炭素材料膜。
(15)(9)〜(14)のいずれか1項に記載の分散剤含有炭素材料膜を全面露光処理、又は、所定パターンで部分露光処理する露光工程、露光処理された分散剤含有炭素材料膜をリンス液で処理することにより、未露光部分を溶解除去するとともに、露光部分の分散剤を除去するリンス工程を備えることを特徴とする、炭素材料膜又はパターン化炭素材料膜の製造方法。
(16)Xが、ハロゲン原子(F,Cl,Br,I)、硝酸基(NO3)、硫酸基(SO4)から選ばれた少なくとも1種であり、リンス液が水である(6)又は(15)に記載の炭素材料膜又はパターン化炭素材料膜の製造方法。
(17)Xが、テトラフルオロホウ酸基(BF4)、ヘキサフルオロリン酸(PF6)、テトラフェニルホウ酸基(BPh4)から選ばれた少なくとも1種であり、リンス液が、ジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF)、テトラヒドロフラン(THF)から選ばれた少なくとも1種の有機溶媒である(6)又は(15)に記載の炭素材料膜又はパターン化炭素材料膜の製造方法。
Furthermore, this invention can also include the following aspects.
(9) The dispersant-containing carbon material film according to any one of (1) to (4), wherein the alkyl group of R 1 to R 6 has 4 or less carbon atoms.
(10) The dispersant-containing carbon material film according to any one of (1) to (4) and (9), wherein a weight ratio of the carbon material and the dispersant is 1: 0.5 to 1:10.
(11) The dispersant-containing carbon material according to any one of (1) to (4), (9), and (10), wherein the content of the liquid solvent capable of dissolving or dispersing the carbon material is less than 5 wt%. film.
(12) The dispersion according to any one of (1) to (4) and (9) to (11), comprising a carbon material, a dispersant, and impurities of less than 1 wt% (including the case of 0 wt%). Agent-containing carbon material film.
(13) The dispersant-containing carbon material film according to any one of (1) to (4) and (9) to (12) having a thickness of 1 nm to 100 μm.
(14) The dispersant-containing carbon material film according to (3), wherein the substrate is made of glass, synthetic resin, ceramics, metal, semiconductor, a composite thereof, a single crystal, or a laminate thereof.
(15) An exposure process in which the dispersant-containing carbon material film according to any one of (9) to (14) is subjected to a whole surface exposure process or a partial exposure process in a predetermined pattern, and the dispersant-containing carbon material subjected to the exposure process. A method for producing a carbon material film or a patterned carbon material film, comprising a rinsing step of dissolving and removing an unexposed portion by treating the film with a rinsing liquid and removing a dispersant in the exposed portion.
(16) X is at least one selected from a halogen atom (F, Cl, Br, I), a nitrate group (NO 3 ), and a sulfate group (SO 4 ), and the rinse liquid is water (6) Or the manufacturing method of the carbon material film or patterned carbon material film as described in (15).
(17) X is at least one selected from a tetrafluoroboric acid group (BF 4 ), a hexafluorophosphoric acid (PF 6 ), and a tetraphenylboric acid group (BPh 4 ), and the rinse liquid is dimethyl sulfoxide. The method for producing a carbon material film or a patterned carbon material film according to (6) or (15), which is at least one organic solvent selected from (DMSO), dimethylformamide (DMF), and tetrahydrofuran (THF).

本発明の分散剤含有炭素材料膜を用いれば、露光処理後、水などのリンス液でリンスするだけで、分散剤を全く含有しない炭素材料だけの膜か、分散剤を含有していても、その含有量が極めて少ない炭素材料膜を容易に得ることができる。それ故、製造される炭素材料膜は、炭素材料本来の性能、特性を効果的に発揮することができる。
また、本発明の分散剤含有炭素材料膜を用いれば、所定パターンの露光工程とその後のリンス工程とを含む簡単なプロセスにより、従来のフォトリソグラフィーと同様に、任意のパターン(微細パターン)を有するパターン化炭素材料膜を製造することができる。製造されるパターン化炭素材料膜は、前述の炭素材料膜と同様に、分散剤を全く含有しないか、含有していてもその含有量が極めて少ないので、炭素材料本来の性能、特性を発揮することができる。
さらに、このパターン化炭素材料膜の製造方法は、従来のパターン化手法のように、露光後、酸素プラズマや、酸性・塩基性の現像液等の除去手法が過酷な条件である現像手段を使用しないので、炭素材料膜を支持する基板を損傷する恐れが全くない。それ故、PETのような耐溶剤性の乏しい基板であっても、損傷の恐れなく有効に使用することができる。
分散剤含有炭素材料膜から炭素材料膜やパターン化炭素材料膜を形成するリンス処理段階において、分散剤含有炭素材料膜に含まれている分散剤のほぼ全量を効率的に回収することができるので、低コストで分散剤を有効利用することができる。
前述の効果は、炭素材料がSWCNTやMWCNTのCNTである場合だけでなく、カーボンブラックや炭素繊維、黒鉛粒子などであっても得ることができる。
If the dispersant-containing carbon material film of the present invention is used, it is only necessary to rinse with a rinsing liquid such as water after the exposure process. A carbon material film having an extremely low content can be easily obtained. Therefore, the produced carbon material film can effectively exhibit the original performance and characteristics of the carbon material.
In addition, when the dispersant-containing carbon material film of the present invention is used, it has an arbitrary pattern (fine pattern) as in conventional photolithography by a simple process including an exposure process of a predetermined pattern and a subsequent rinsing process. Patterned carbon material films can be manufactured. The patterned carbon material film to be produced does not contain a dispersant at all, or even if it contains a dispersant, as in the case of the above-mentioned carbon material film, the content is extremely small, so that the original performance and characteristics of the carbon material are exhibited. be able to.
Furthermore, the method for producing the patterned carbon material film uses a developing means in which removal methods such as oxygen plasma and acidic / basic developer are severe conditions after exposure, as in the conventional patterning method. Therefore, there is no possibility of damaging the substrate supporting the carbon material film. Therefore, even a substrate having poor solvent resistance such as PET can be used effectively without fear of damage.
In the rinsing process of forming a carbon material film or a patterned carbon material film from the dispersant-containing carbon material film, almost all of the dispersant contained in the dispersant-containing carbon material film can be efficiently recovered. Therefore, the dispersant can be effectively used at low cost.
The above-described effects can be obtained not only when the carbon material is SWCNT or MWCNT CNT but also with carbon black, carbon fiber, graphite particles, or the like.

本発明の実施態様としての、微細パターンを有するパターン化CNT膜の製造工程を示すフローチャート。The flowchart which shows the manufacturing process of the patterned CNT film | membrane which has a fine pattern as an embodiment of this invention. (1)比較例の分散剤〔式(2)、R3、R4=直鎖状C8H17〕を用いて製膜された比較例1のCNT膜の写真。(2)本発明の実施例の分散剤〔式(2)、R3、R4=直鎖状C4H9〕を用いて製膜された実施例1のCNT膜の写真。(1) A photograph of a CNT film of Comparative Example 1 formed using the dispersant of the Comparative Example [Formula (2), R 3 , R 4 = Linear C 8 H 17 ]. (2) A photograph of the CNT film of Example 1 formed using the dispersant [formula (2), R 3 , R 4 = linear C 4 H 9 ] of the example of the present invention. 実施例1に基づいて製造された分散剤含有CNT膜を未露光で水洗浄した場合の水洗浄前後における紫外可視近赤外吸収スペクトルを示す図面。点線は水洗浄前のスペクトルを、実線は水洗浄後のスペクトルを、それぞれ示す。(A)は波長200〜1800nmの全範囲を示し、(B)、(C)はその部分拡大図。(B)は分散剤の吸収領域を含む波長200〜600nmの範囲を、(C)はCNTの吸収領域を含む波長600〜1800nmの範囲を、それぞれ拡大して示す。The drawing which shows the ultraviolet visible near-infrared absorption spectrum before and behind the water washing | cleaning at the time of carrying out the water washing of the dispersing agent containing CNT film | membrane manufactured based on Example 1 unexposed. The dotted line shows the spectrum before water washing, and the solid line shows the spectrum after water washing. (A) shows the entire range of wavelengths 200 to 1800 nm, and (B) and (C) are partially enlarged views thereof. (B) is an enlarged view of the wavelength range of 200 to 600 nm including the absorption region of the dispersant, and (C) is an enlarged view of the wavelength range of 600 to 1800 nm including the absorption region of CNT. 実施例1に基づいて製造された分散剤含有CNT膜に関する紫外可視近赤外吸収スペクトルを示す図面。二点二短鎖線は製膜後のスペクトルを、点線は光照射後(385nm,100mW/cm2,1hr)のスペクトルを、実線は光照射・水洗浄後のスペクトルを、それぞれ示す。(A)は波長200〜1800nmの全範囲を示し、(B)、(C)はその部分拡大図。(B)は分散剤の吸収領域を含む波長200〜600nmの範囲を、(C)はCNTの吸収領域を含む波長600〜1800nmの範囲を、それぞれ拡大して示す。1 is a drawing showing an ultraviolet-visible near-infrared absorption spectrum for a dispersant-containing CNT film produced based on Example 1. FIG. The two-dot double-short chain line shows the spectrum after film formation, the dotted line shows the spectrum after light irradiation (385 nm, 100 mW / cm 2 , 1 hr), and the solid line shows the spectrum after light irradiation and water washing. (A) shows the entire range of wavelengths 200 to 1800 nm, and (B) and (C) are partially enlarged views thereof. (B) is an enlarged view of the wavelength range of 200 to 600 nm including the absorption region of the dispersant, and (C) is an enlarged view of the wavelength range of 600 to 1800 nm including the absorption region of CNT. 本発明の実施態様の分散剤含有CNT分散膜について、上図はマスク等を用いて部分的に光照射した状態を、下図は部分的に光照射後、水によるリンスを施した状態を、それぞれ模式的に示す図面。About the dispersant-containing CNT dispersion film of the embodiment of the present invention, the upper figure shows a state where it is partially irradiated with light using a mask or the like, and the lower figure shows a state where it is partially irradiated with light and then rinsed with water. Drawing which shows typically. 本発明の実施態様としての、パターン化CNT膜の製造工程を模式的に示す図面。BRIEF DESCRIPTION OF THE DRAWINGS Drawing which shows typically the manufacturing process of the patterned CNT film | membrane as an embodiment of this invention. 実施例1に基づき石英基板上に形成されたパターン化CNT膜の光学顕微鏡写真。3 is an optical micrograph of a patterned CNT film formed on a quartz substrate based on Example 1. FIG. 実施例2に基づきPET基板上に形成されたパターン化CNT膜の光学顕微鏡写真。3 is an optical micrograph of a patterned CNT film formed on a PET substrate based on Example 2. FIG. 実施例3で用いたアゾベンゼン系分散剤単独の水溶液中における光異性化反応(光照射前後の吸収スペクトル)を示す図面。実線は光照射前のスペクトルを、点線は光照射後(385nm,100mW/cm2,15min)のスペクトルを、それぞれ示す。2 is a drawing showing a photoisomerization reaction (absorption spectra before and after light irradiation) in an aqueous solution of an azobenzene dispersant used alone in Example 3. FIG. The solid line shows the spectrum before light irradiation, and the dotted line shows the spectrum after light irradiation (385 nm, 100 mW / cm 2 , 15 min). 実施例3に基づいて製造された分散剤含有CNT膜に関する紫外可視近赤外吸収スペクトルを示す図面。二点二短鎖線は製膜後のスペクトルを、点線は光照射後(385nm,100mW/cm2,1hr)のスペクトルを、実線は光照射・水洗浄後のスペクトルを、それぞれ示す。(A)は波長200〜1800nmの全範囲を示し、(B)、(C)はその部分拡大図。(B)は分散剤の吸収領域を含む波長200〜600nmの範囲を、(C)はCNTの吸収領域を含む波長600〜1800nmの範囲を、それぞれ拡大して示す。4 is a drawing showing an ultraviolet-visible near-infrared absorption spectrum of a dispersant-containing CNT film produced based on Example 3. FIG. The two-dot double-short chain line shows the spectrum after film formation, the dotted line shows the spectrum after light irradiation (385 nm, 100 mW / cm 2 , 1 hr), and the solid line shows the spectrum after light irradiation and water washing. (A) shows the entire range of wavelengths 200 to 1800 nm, and (B) and (C) are partially enlarged views thereof. (B) is an enlarged view of the wavelength range of 200 to 600 nm including the absorption region of the dispersant, and (C) is an enlarged view of the wavelength range of 600 to 1800 nm including the absorption region of CNT. 実施例3に基づき石英基板上に形成されたパターン化CNT膜の顕微鏡写真。4 is a micrograph of a patterned CNT film formed on a quartz substrate based on Example 3. FIG. 炭素材料がカーボンブラック#2600である場合について、(A)は分散剤としてスチルベン化合物を含有する実施例分散液の写真。(B)は実施例分散液の光照射前後の分散性を示す写真。(C)は分散剤を含有しない比較例を示す写真。When the carbon material is carbon black # 2600, (A) is a photograph of an example dispersion liquid containing a stilbene compound as a dispersant. (B) is a photograph showing the dispersibility of the Example dispersion before and after light irradiation. (C) is a photograph showing a comparative example containing no dispersant. 炭素材料がカーボンブラック#4000である場合について、(A)は分散剤としてスチルベン化合物を含有する実施例分散液の写真。(B)は実施例分散液の光照射前後の分散性を示す写真。(C)は分散剤を含有しない比較例を示す写真。(D)は前記比較例において、容器を傾け、その底部を拡大した写真。When the carbon material is carbon black # 4000, (A) is a photograph of an example dispersion liquid containing a stilbene compound as a dispersant. (B) is a photograph showing the dispersibility of the Example dispersion before and after light irradiation. (C) is a photograph showing a comparative example containing no dispersant. (D) is a photograph in which the container is tilted and its bottom is enlarged in the comparative example. 炭素材料が気相法炭素繊維VGCFである場合について、(A)は分散剤としてスチルベン化合物を含有する実施例分散液の写真。(B)は重水を用いた実施例分散液のUV-vis-NIR吸収スペクトルを示す図面。(C)は分散剤を含有しない比較例を示す写真。When the carbon material is vapor grown carbon fiber VGCF, (A) is a photograph of an example dispersion liquid containing a stilbene compound as a dispersant. (B) Drawing which shows the UV-vis-NIR absorption spectrum of the Example dispersion liquid using heavy water. (C) is a photograph showing a comparative example containing no dispersant. 炭素材料が天然高純度黒鉛粒子である場合について、(A)は分散剤としてスチルベン化合物を含有する実施例分散液の写真。(B)は重水を用いた実施例分散液のUV-vis-NIR吸収スペクトルを示す図面。(C)は分散剤を含有しない比較例を示す写真。In the case where the carbon material is natural high-purity graphite particles, (A) is a photograph of an example dispersion liquid containing a stilbene compound as a dispersant. (B) Drawing which shows the UV-vis-NIR absorption spectrum of the Example dispersion liquid using heavy water. (C) is a photograph showing a comparative example containing no dispersant. 炭素材料が名城ナノカーボンSWCNT APJである場合について、(A)は分散剤としてスチルベン化合物を含有し、重水中でバス型超音波により分散した実施例分散液の写真。(B)は重水中でバス型超音波により分散した前記実施例分散液のUV-vis-NIR吸収スペクトルを示す図面。(C)は分散剤としてスチルベン化合物を含有し、重水中でホーン型超音波により分散した実施例分散液の写真。(D)は重水中でホーン型超音波により分散した前記実施例分散液のUV-vis-NIR吸収スペクトルを示す図面。In the case where the carbon material is Meijo nanocarbon SWCNT APJ, (A) is a photograph of an example dispersion liquid containing a stilbene compound as a dispersant and dispersed in heavy water by bath-type ultrasonic waves. (B) is a drawing showing the UV-vis-NIR absorption spectrum of the dispersion liquid of the example dispersed in heavy water by bath ultrasonic waves. (C) is a photograph of an example dispersion containing a stilbene compound as a dispersant and dispersed in heavy water by horn type ultrasonic waves. (D) is a drawing showing the UV-vis-NIR absorption spectrum of the dispersion liquid of the example dispersed in heavy water by horn type ultrasonic waves. 炭素材料が名城ナノカーボンSWCNT SOである場合について、(A)は分散剤としてスチルベン化合物を含有し、重水中でバス型超音波により分散した実施例分散液の写真。(B)は重水中でバス型超音波により分散した前記実施例分散液のUV-vis-NIR吸収スペクトルを示す図面。(C)は分散剤としてスチルベン化合物を含有し、重水中でホーン型超音波により分散した実施例分散液の写真。(D)は重水中でホーン型超音波により分散した前記実施例分散液のUV-vis-NIR吸収スペクトルを示す図面。In the case where the carbon material is Meijo nanocarbon SWCNT SO, (A) is a photograph of an example dispersion liquid containing a stilbene compound as a dispersant and dispersed in heavy water by bath-type ultrasonic waves. (B) is a drawing showing the UV-vis-NIR absorption spectrum of the dispersion liquid of the example dispersed in heavy water by bath ultrasonic waves. (C) is a photograph of an example dispersion containing a stilbene compound as a dispersant and dispersed in heavy water by horn type ultrasonic waves. (D) is a drawing showing the UV-vis-NIR absorption spectrum of the dispersion liquid of the example dispersed in heavy water by horn type ultrasonic waves. 炭素材料がスーパーグロースである場合について、(A)は分散剤としてスチルベン化合物を含有し、重水中でバス型超音波により分散した実施例分散液の写真。(B)は重水中でバス型超音波により分散した前記実施例分散液のUV-vis-NIR吸収スペクトルを示す図面。(C)は分散剤としてスチルベン化合物を含有し、重水中でホーン型超音波により分散した実施例分散液の写真。(D)は重水中でホーン型超音波により分散した前記実施例分散液のUV-vis-NIR吸収スペクトルを示す図面。When the carbon material is super growth, (A) is a photograph of an example dispersion liquid containing a stilbene compound as a dispersing agent and dispersed in heavy water by bath-type ultrasonic waves. (B) is a drawing showing the UV-vis-NIR absorption spectrum of the dispersion liquid of the example dispersed in heavy water by bath ultrasonic waves. (C) is a photograph of an example dispersion containing a stilbene compound as a dispersant and dispersed in heavy water by horn type ultrasonic waves. (D) is a drawing showing the UV-vis-NIR absorption spectrum of the dispersion liquid of the example dispersed in heavy water by horn type ultrasonic waves. 炭素材料がSWeNT,SG65である場合について、(A)は分散剤としてスチルベン化合物を含有し、重水中でバス型超音波により分散した実施例分散液の写真。(B)は重水中でバス型超音波により分散した前記実施例分散液のUV-vis-NIR吸収スペクトルを示す図面。(C)は分散剤としてスチルベン化合物を含有し、重水中でホーン型超音波により分散した実施例分散液の写真。(D)は重水中でホーン型超音波により分散した前記実施例分散液のUV-vis-NIR吸収スペクトルを示す図面。When the carbon material is SWeNT, SG65, (A) is a photograph of an example dispersion liquid containing a stilbene compound as a dispersing agent and dispersed in heavy water by bath-type ultrasonic waves. (B) is a drawing showing the UV-vis-NIR absorption spectrum of the dispersion liquid of the example dispersed in heavy water by bath ultrasonic waves. (C) is a photograph of an example dispersion containing a stilbene compound as a dispersant and dispersed in heavy water by horn type ultrasonic waves. (D) is a drawing showing the UV-vis-NIR absorption spectrum of the dispersion liquid of the example dispersed in heavy water by horn type ultrasonic waves. 各種多層カーボンナノチューブについて、分散剤としてスチルベン化合物を含有する超純水中でバス型超音波により分散した実施例分散液の写真。(A)はMWCNT(ワコーケミカル,40-60 nm)、(B)はMWCNT(宇部興産,AMG)、(C)はMWCNT(C-Nano,FloTube 9000(GI))、(D)はMWCNT(川研ファインケミカル,KC-CNT)である。The photograph of the Example dispersion liquid which disperse | distributed with the bath type | mold ultrasonic wave in the ultrapure water containing a stilbene compound as a dispersing agent about various multi-walled carbon nanotubes. (A) is MWCNT (Wako Chemical, 40-60 nm), (B) is MWCNT (Ube Industries, AMG), (C) is MWCNT (C-Nano, FloTube 9000 (GI)), (D) is MWCNT ( Kawaken Fine Chemicals, KC-CNT).

本発明は、光応答性を有し、上述の一般式(I)で表されるスチルベン系又はアゾベンゼン系分散剤を含有する分散剤含有CNT膜等の分散剤含有炭素材料膜、及び、該分散剤含有炭素材料膜を用いた炭素材料膜やパターン化炭素材料膜の製造方法である。   The present invention has a photoresponsiveness, a dispersant-containing carbon material film such as a dispersant-containing CNT film containing a stilbene-based or azobenzene-based dispersant represented by the above general formula (I), and the dispersion This is a method for producing a carbon material film or a patterned carbon material film using an agent-containing carbon material film.

<<分散剤>>
一般式(I)で示される分散剤は、スチルベン系又はアゾベンゼン系のものであり、光応答性やフォトクロミック性を示すものであり、通常は非結晶性である。
該一般式(I)中、R1〜R6は、アルキル鎖が例えば直鎖状C8H17のように長いと結晶性が高くなり、不均質で光応答性が乏しくなる。そのため、本発明では、該分散剤化合物が光応答性やフォトクロミック性を示すように、R1〜R6は、それぞれ独立して水素又は炭素数1〜5の直鎖状若しくは炭素数3〜6の分岐状アルキル基から選択される。そのようなアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基、neo-ペンチル基、tert-ペンチル基、イソヘキシル基などである。
<< dispersant >>
The dispersant represented by the general formula (I) is a stilbene or azobenzene type, exhibits photoresponsiveness or photochromic properties, and is usually non-crystalline.
In the general formula (I), when R 1 to R 6 are long alkyl chains such as linear C 8 H 17 , the crystallinity is high, and the heterogeneity is poor and the photoresponsiveness is poor. Therefore, in the present invention, R 1 to R 6 are each independently hydrogen, straight chain having 1 to 5 carbon atoms or 3 to 6 carbon atoms so that the dispersant compound exhibits photoresponsiveness and photochromic properties. Selected from the following branched alkyl groups. Such alkyl groups include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, neo-pentyl, tert-pentyl. Group, isohexyl group and the like.

該一般式(I)中、Xはアニオンであり、通常、1価のものが好適に使用できるが、アニオン交換によって1価以外のアニオンも使用し得る。該アニオンXは、例えば、ハロゲン原子(F,Cl,Br,I)、テトラフルオロホウ酸基(BF4)、ヘキサフルオロリン酸(PF6)、ビス(トリフルオロメタンスルホニル)イミド、チオイソシアネート(SCN)、硝酸基(NO3)、硫酸基(SO4)、チオ硫酸基(S2O3)、炭酸基(CO3)、炭酸水素基(HCO3)、リン酸基、亜リン酸基、次亜リン酸基、各ハロゲン酸化合物酸基(AO4,AO3,AO2,AO:A=Cl,Br,I)、トリス(トリフルオロメチルスルホニル)炭素酸基、トリフルオロメチルスルホン酸基、ジシアンアミド基、酢酸基(CH3COO)、ハロゲン化酢酸基((CAnH3-n)COO,A=F,Cl,Br,I;n=1,2,3)、テトラフェニルホウ酸基(BPh4)及びその誘導体(B(Aryl)4:Aryl=置換フェニル基)から選択される。
好ましいアニオンは、Cl等のハロゲン原子である。
In the general formula (I), X is an anion, and usually a monovalent one can be preferably used, but an anion other than a monovalent can also be used by anion exchange. The anion X is, for example, a halogen atom (F, Cl, Br, I), a tetrafluoroboric acid group (BF 4 ), hexafluorophosphoric acid (PF 6 ), bis (trifluoromethanesulfonyl) imide, thioisocyanate (SCN) ), Nitrate group (NO 3 ), sulfate group (SO 4 ), thiosulfate group (S 2 O 3 ), carbonate group (CO 3 ), bicarbonate group (HCO 3 ), phosphate group, phosphite group, Hypophosphorous acid group, each halogen acid compound acid group (AO 4 , AO 3 , AO 2 , AO: A = Cl, Br, I), tris (trifluoromethylsulfonyl) carbon acid group, trifluoromethylsulfonic acid group , Dicyanamide group, acetic acid group (CH 3 COO), halogenated acetic acid group ((CA n H 3-n ) COO, A = F, Cl, Br, I; n = 1, 2, 3), tetraphenylboric acid It is selected from the group (BPh 4 ) and its derivatives (B (Aryl) 4 : Aryl = substituted phenyl group).
A preferred anion is a halogen atom such as Cl.

<<炭素材料>>
本発明で使用する炭素材料としては、各種CNTの外、カーボンブラック、炭素繊維、黒鉛粒子などが挙げられる。本発明で使用する原料の炭素材料は、上記イオン性有機化合物の分散剤を用いて少なくとも一部が溶媒中に分散できるものであれば良く、溶媒中に分散した炭素材料が分散剤含有炭素材料膜やそれから作成される炭素材料膜の炭素材料となり得る。そのため、原料の炭素材料は、粒子状である場合、溶媒中に分散可能な粒子径が50μm以下の粒子を含むもの(例えば、レーザー回折散乱法を用いて測定した体積基準の平均粒子径D50が100μm以下、好ましくは50μm以下であるもの等。なお、分散性の観点から見て平均粒子径の下限は限定する必要はないが、通常、0.5nm以上である。)、繊維状である場合、溶媒中に分散可能な繊維長が50μm以下の繊維を含むもの(例えば、平均繊維長が50μm以下、好ましくは30μm以下であるもの等。なお、分散性の観点から見て平均繊維長の下限は限定する必要はないが、通常、5nm以上である。)などである。
本発明で使用するCNTは、HiPco法、アーク法、レーザーアブレーション法、CVD法、スーパーグロースCVD法、DIPS法等の如何なる製造方法で製造されたものでも良いし、また、単層のもの(SWCNT)、二層(DWCNT)等の多層のもの(MWCAT)、それらの混合物でも良い。さらに、CNTの製造後、半導体性、金属性等の性質や構造、サイズ等による分離、及び/又は、不純物除去用の精製を行ったものでも良い。
<< carbon material >>
Examples of the carbon material used in the present invention include various CNTs, carbon black, carbon fibers, and graphite particles. The raw material carbon material used in the present invention may be any material as long as at least a part of the carbon material can be dispersed in a solvent using the ionic organic compound dispersant, and the carbon material dispersed in the solvent is a dispersant-containing carbon material. It can be a carbon material of a film or a carbon material film formed therefrom. Therefore, when the raw material carbon material is in the form of particles, it contains particles having a particle diameter of 50 μm or less that can be dispersed in a solvent (for example, a volume-based average particle diameter D 50 measured using a laser diffraction scattering method). Is 100 μm or less, preferably 50 μm or less, etc. Note that the lower limit of the average particle diameter is not necessarily limited from the viewpoint of dispersibility, but is usually 0.5 nm or more. In addition, fibers containing fibers having a fiber length of 50 μm or less that can be dispersed in a solvent (for example, fibers having an average fiber length of 50 μm or less, preferably 30 μm or less, etc. In addition, from the viewpoint of dispersibility, the lower limit of the average fiber length Is not necessarily limited, but is usually 5 nm or more.
The CNT used in the present invention may be produced by any production method such as HiPco method, arc method, laser ablation method, CVD method, super growth CVD method, DIPS method, etc. ), Multiple layers (MWCAT) such as two-layer (DWCNT), or a mixture thereof. Further, after the production of CNTs, the product may be separated by properties such as semiconductivity and metallic properties, structure, size, and / or purified for impurity removal.

<<分散剤含有炭素材料膜、その製造>>
本発明の分散剤含有炭素材料膜は、その製造方法は限定されないが、例えば、次のような工程で製造することができる(炭素材料の代表例としてCNTを用いた図1参照)。
(1)炭素材料分散液調製工程
(1−1)分散剤溶液の調製
(1−2)分散剤溶液と炭素材料との混合
(2)分散剤含有炭素材料膜形成工程
<< Dispersant-containing carbon material film, production thereof >>
Although the manufacturing method of the dispersant-containing carbon material film of the present invention is not limited, for example, it can be manufactured by the following steps (see FIG. 1 using CNT as a representative example of the carbon material).
(1) Carbon material dispersion preparation step (1-1) Preparation of dispersant solution (1-2) Mixing of dispersant solution and carbon material (2) Dispersant-containing carbon material film formation step

分散剤溶液の溶媒としては、分散剤のアニオンXの親水性の程度に応じて、水や各種の有機溶媒が使用できる。
例えば、ハロゲン原子(F,Cl,Br,I)、硝酸基(NO3)、硫酸基(SO4)のように親水性が特に高いアニオンXの分散剤については、水が好適に使用できる。
他方、テトラフルオロホウ酸基(BF4)、ヘキサフルオロリン酸(PF6)、テトラフェニルホウ酸基(BPh4)のように親水性がハロゲン原子等よりも相対的に低いアニオンXの分散剤については、例えば、ジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF)、テトラヒドロフラン(THF)等の極性有機溶媒が好適に使用できる。
As a solvent for the dispersant solution, water or various organic solvents can be used depending on the hydrophilicity of the anion X of the dispersant.
For example, water can be suitably used for an anionic X dispersant having a particularly high hydrophilicity, such as a halogen atom (F, Cl, Br, I), a nitrate group (NO 3 ), and a sulfate group (SO 4 ).
On the other hand, a dispersing agent for anion X, such as tetrafluoroboric acid group (BF 4 ), hexafluorophosphoric acid (PF 6 ), and tetraphenylboric acid group (BPh 4 ), which is relatively less hydrophilic than halogen atoms and the like. For example, polar organic solvents such as dimethyl sulfoxide (DMSO), dimethylformamide (DMF), and tetrahydrofuran (THF) can be preferably used.

炭素材料と分散剤との混合割合(重量ベース)は、限定するものではないが、1:0.5〜1:10、好ましくは1:0.7〜1:8、より好ましくは1:0.8〜1:5、さらに好ましくは1:0.9〜1:3である。
分散剤溶液と炭素材料とは、混合が均一となるように、公知の適宜の超音波装置を用いて超音波分散処理を行うことが好ましい。炭素材料の種類や形状、径、長さ等によっては、出力や出力周波数等が適切な超音波装置を選択することにより分散可能となる場合も存在する。
また、使用するCNTについて予め充分に分離精製していない場合などにおいては、混合、分散処理後、金属触媒、アモルファスカーボン等の不純物を除去するため、遠心分離等の分離工程を付加することもできる。例えば、遠心分離の場合、不純物を沈殿させ、上澄み液全部乃至その70〜95%程度(好ましくは75〜85%程度)を回収することにより不純物の除去されたCNT分散液を得ることができる。
The mixing ratio (weight basis) of the carbon material and the dispersant is not limited, but is 1: 0.5 to 1:10, preferably 1: 0.7 to 1: 8, more preferably 1: 0. .8 to 1: 5, more preferably 1: 0.9 to 1: 3.
The dispersing agent solution and the carbon material are preferably subjected to ultrasonic dispersion treatment using a known appropriate ultrasonic device so that the mixing is uniform. Depending on the type, shape, diameter, length, and the like of the carbon material, there may be a case where the output, the output frequency, and the like can be dispersed by selecting an appropriate ultrasonic device.
In addition, when the CNT to be used is not sufficiently separated and purified in advance, a separation step such as centrifugation can be added to remove impurities such as metal catalyst and amorphous carbon after mixing and dispersion treatment. . For example, in the case of centrifugation, impurities can be precipitated, and the CNT dispersion from which impurities have been removed can be obtained by collecting the entire supernatant and about 70 to 95% (preferably about 75 to 85%) of the supernatant.

炭素材料分散液は、キャスト法、塗布法(コーティング法)等、公知の製膜手段を用いて分散剤含有炭素材料膜に形成することができる。該分散剤含有炭素材料膜が形成される基板としては限定するものではないが、ガラス(例えば、溶融石英等の石英ガラス)、合成樹脂(例えば、PET等のポリエステル樹脂、ポリイミド、フッ素系樹脂など)、セラミックス、金属、半導体、これらの複合体、単結晶体、又は、それらの積層物からなるものが使用できる。前記単結晶体としては、紫外・可視・近赤外領域において透明な単結晶、例えば、フッ化カルシウム、サファイアなどが挙げられる。該基板は、分散剤含有炭素材料膜が剥離できないように接合するものでも良いし、接合強度が増加するように表面が前処理されたものでも良いし、製膜後容易に剥離できるような材質のものでも良いし、表面が剥離処理されたものでも良い。   The carbon material dispersion can be formed into a dispersant-containing carbon material film using a known film forming means such as a casting method or a coating method (coating method). The substrate on which the dispersant-containing carbon material film is formed is not limited, but glass (for example, quartz glass such as fused silica), synthetic resin (for example, polyester resin such as PET, polyimide, fluorine-based resin, etc. ), Ceramics, metals, semiconductors, composites, single crystals, or laminates thereof can be used. Examples of the single crystal include single crystals that are transparent in the ultraviolet, visible, and near infrared regions, such as calcium fluoride and sapphire. The substrate may be bonded so that the dispersant-containing carbon material film cannot be peeled, or the surface may be pretreated so as to increase the bonding strength, or a material that can be easily peeled after film formation. The thing of which the surface was peeled off may be sufficient.

例えばキャスト法で製膜する場合には、基板表面にキャスト用の透孔を有するシートを密着させ、基板表面を底面とする前記透孔を成形空間として、前述の炭素材料分散液を注入してキャストすることができる。該シートは、限定するものではないが、厚さが形成する膜より厚い0.1〜1mm程度(好ましくは0.2〜0.8mm程度)で、基板に対する密着性、分散剤含有炭素材料膜に対する離型性の良好な材料製のものとするのが好ましい。該シートの好適な材料としては、限定するものではないが、例えば、シリコンゴム、熱可塑性エラストマ等の各種ゴム、フッ素系樹脂などを挙げることができる。
このような成形空間の枠となるシートを用いる替わりに、表面に成形空間となる凹部を有する基板を用いることもできる。
For example, in the case of forming a film by the casting method, a sheet having cast through holes is brought into close contact with the substrate surface, and the above carbon material dispersion is injected with the through hole having the substrate surface as a bottom surface as a molding space. Can be cast. The sheet is not limited, but is about 0.1 to 1 mm thick (preferably about 0.2 to 0.8 mm) thicker than the film to be formed, and has adhesion to the substrate and releasability to the dispersant-containing carbon material film. It is preferably made of a good material. Suitable materials for the sheet include, but are not limited to, various rubbers such as silicon rubber and thermoplastic elastomer, and fluorine resins.
Instead of using a sheet serving as a frame for such a molding space, a substrate having a concave portion serving as a molding space on the surface can be used.

成形空間に注入された炭素材料分散液は、減圧乾燥等、適宜の乾燥手段乃至溶媒除去手段により、溶媒の全部乃至大部分が除去され、分散剤含有炭素材料膜に形成される。その際、膜形状が保持されるように、溶媒の含有量は、5wt%以下(好ましくは1wt%以下、さらに好ましくは0.1wt%以下、最も好ましくは0wt%)に設定される。
分散剤含有炭素材料膜は、炭素材料、分散剤、溶媒以外の成分を含有しないことが望ましいが、分散剤の光応答性やリンス液によるリンス処理を阻害しない範囲で(例えば、5wt%以下、好ましくは2wt%以下、より好ましくは1wt%以下)他の成分の含有を許容しうる。
The carbon material dispersion injected into the forming space is formed into a dispersant-containing carbon material film by removing all or most of the solvent by an appropriate drying means or solvent removal means such as drying under reduced pressure. At this time, the content of the solvent is set to 5 wt% or less (preferably 1 wt% or less, more preferably 0.1 wt% or less, most preferably 0 wt%) so that the film shape is maintained.
The dispersant-containing carbon material film preferably does not contain components other than the carbon material, the dispersant, and the solvent, but in a range that does not hinder the responsiveness of the dispersant and the rinse treatment with the rinse liquid (for example, 5 wt% or less, (Preferably 2 wt% or less, more preferably 1 wt% or less) The inclusion of other components is acceptable.

製膜された、分散剤含有炭素材料膜は、目的、用途等に応じて、どのような平面形状、広さを有していても良い。分散剤含有炭素材料膜の厚みは、限定するものではないが、基板に接合した炭素材料膜を形成する場合には、表面に照射される光が裏面側(基板表面に近い側)の分散剤にも到達して照射されるように、1nm〜300μm(例えば、10nm〜200μm、20nm〜100μm等の範囲内)であることが好ましい。
比較的厚い分散剤含有炭素材料膜を形成するため、上記(2)の工程により最初の分散剤含有炭素材料一次薄膜を形成した後、上記(2)の工程を複数回繰り返し、前記炭素材料一次薄膜上に炭素材料一次薄膜を複数回積層して形成しても良い。
The formed dispersant-containing carbon material film may have any planar shape and width depending on the purpose and application. The thickness of the dispersant-containing carbon material film is not limited, but when forming a carbon material film bonded to the substrate, the light irradiated on the front surface is the dispersant on the back surface side (side closer to the substrate surface). 1 nm to 300 μm (e.g., within a range of 10 nm to 200 μm, 20 nm to 100 μm, etc.) so that the light reaches and is irradiated.
In order to form a relatively thick dispersant-containing carbon material film, the first dispersant-containing carbon material primary thin film is formed by the step (2), and then the step (2) is repeated a plurality of times. The carbon material primary thin film may be laminated on the thin film a plurality of times.

<<炭素材料膜、又は、パターン化炭素材料膜の製造>>
上述のように製膜された分散剤含有炭素材料膜を用いると、次のような工程によって、炭素材料膜又はパターン化炭素材料膜を容易に製造することができる。
(3)露光処理工程(膜全面露光、又は、所定パターンでの部分露光)
(4)リンス工程
<< Production of carbon material film or patterned carbon material film >>
When the dispersant-containing carbon material film formed as described above is used, the carbon material film or the patterned carbon material film can be easily manufactured by the following steps.
(3) Exposure processing step (entire film exposure or partial exposure with a predetermined pattern)
(4) Rinsing process

前記露光処理工程により、露光された部分の分散剤は光応答性を発現し、E体(トランス体)からZ体(シス体)へと異性化する。
露光処理工程に用いる光としては、E-Z異性化を行うことができるものであれば可視紫外領域の光(約200nm〜600nm)を用いることができるが、好適には200〜400nmの紫外光(例えば、365nmバンドパスフィルタや385nmバンドパスフィルタを通過したもの、単色LED光源等)である。
Through the exposure processing step, the exposed part of the dispersant develops photoresponsiveness and isomerizes from E form (trans form) to Z form (cis form).
As light used in the exposure processing step, light in the visible ultraviolet region (about 200 nm to 600 nm) can be used as long as it can perform EZ isomerization, but preferably ultraviolet light of 200 to 400 nm (for example, , 365nm bandpass filter or 385nm bandpass filter, monochromatic LED light source, etc.).

所定パターンでの露光処理は、分散剤含有炭素材料膜を所定パターンが形成されたマスクで覆い、マスク上から光照射することにより行うことができるし〔図5上、図6(3)参照〕、また、マスクを用いることなく、所定領域のみを光照射する照射手段を所定パターンに沿って分散剤含有炭素材料膜に対し相対的に移動させる直接露光方式により行っても良い。   The exposure process with the predetermined pattern can be performed by covering the dispersant-containing carbon material film with a mask on which the predetermined pattern is formed and irradiating light from above the mask (see FIG. 5 and FIG. 6 (3)). Further, the direct exposure method may be used in which the irradiation means for irradiating only a predetermined region is moved relative to the dispersant-containing carbon material film along a predetermined pattern without using a mask.

露光処理後の分散剤含有炭素材料膜をリンス液で処理すると、露光部分ではE-Z異性化により分散剤は炭素材料との親和性を失って炭素材料から剥がれるため、リンス液に満たされても炭素材料は溶解性を失い、相互に会合(バンドル化)した状態となって基板上に炭素材料膜として残存する。炭素材料との親和性を失った分散剤は、リンス液に溶解されリンス液とともに流出する。それ故、露光部分は、分散剤を全く含有しないか(分散剤含有量が0wt%)、又は、分散剤を含有してもその含有量が極めて少ない炭素材料膜(リンス処理のリンス液流量や処理時間の程度に応じて分散剤含有量が1wt%未満、好ましくは0.1wt%未満、より好ましくは0.01wt%未満)が形成され、全面露光した場合には、全面がそのような炭素材料膜となる。
一方、未露光部分が存在すると、その未露光部分では、分散剤はE体のままで炭素材料との親和性を維持するため、分散剤の吸着した炭素材料はリンス液中に溶解乃至分散し、リンス液とともに流出してしまって炭素材料膜が全く形成されない。それ故、ネガ型のフォトリソグラフィーと同様に、ネガ型のパターン化炭素材料膜が形成されることになる。
When the dispersion-containing carbon material film after exposure treatment is treated with a rinse liquid, the dispersant loses affinity with the carbon material due to EZ isomerization in the exposed part and is peeled off from the carbon material. The material loses solubility and remains in a state of being associated (bundled) with each other as a carbon material film on the substrate. The dispersant that has lost its affinity with the carbon material is dissolved in the rinse liquid and flows out together with the rinse liquid. Therefore, the exposed portion does not contain any dispersant (dispersant content is 0 wt%), or even if it contains a dispersant, the carbon material film has a very low content (such as a rinse liquid flow rate for rinsing) Depending on the degree of processing time, the dispersant content is less than 1 wt%, preferably less than 0.1 wt%, more preferably less than 0.01 wt%). It becomes.
On the other hand, if there is an unexposed part, the dispersant remains in the E form and maintains affinity with the carbon material in the unexposed part. Therefore, the carbon material adsorbed by the dispersant is dissolved or dispersed in the rinse liquid. The carbon material film is not formed at all because it flows out together with the rinse liquid. Therefore, a negative patterned carbon material film is formed as in the negative photolithography.

リンス工程で用いるリンス液としては、分散剤のアニオンXの親水性の程度に応じて、水や各種の有機溶媒が使用できる。
例えば、ハロゲン原子(F,Cl,Br,I)、硝酸基(NO3)、硫酸基(SO4)のように親水性が特に高いアニオンXの分散剤については、水が好適に使用できる。
他方、テトラフルオロホウ酸基(BF4)、ヘキサフルオロリン酸(PF6)、テトラフェニルホウ酸基(BPh4)等のように親水性がハロゲン原子等よりも相対的に低いアニオンXの分散剤については、例えば、ジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF)、テトラヒドロフラン(THF)等の極性有機溶媒が好適に使用できる。
As the rinsing liquid used in the rinsing step, water or various organic solvents can be used depending on the hydrophilicity of the anion X of the dispersant.
For example, water can be suitably used for an anionic X dispersant having a particularly high hydrophilicity, such as a halogen atom (F, Cl, Br, I), a nitrate group (NO 3 ), and a sulfate group (SO 4 ).
On the other hand, dispersion of anions X such as tetrafluoroboric acid group (BF 4 ), hexafluorophosphoric acid (PF 6 ), tetraphenylboric acid group (BPh 4 ), etc., which is relatively less hydrophilic than halogen atoms etc. As the agent, for example, a polar organic solvent such as dimethyl sulfoxide (DMSO), dimethylformamide (DMF), tetrahydrofuran (THF) and the like can be suitably used.

このように本発明では、上述の分散剤含有炭素材料膜を用いることにより、分散剤を含まないか、又は、分散剤を含有してもその含有量が極めて少ない炭素材料膜やパターン化炭素材料膜を簡単に製造することができる。
製造された炭素材料膜やパターン化炭素材料膜は、限定するものではないが、配線回路、パッド電極やキャパシタ電極等の電極など、電気又は電子デバイス等の技術分野を初めとして幅広く使用することができる。
As described above, in the present invention, by using the above-described dispersant-containing carbon material film, a carbon material film or a patterned carbon material that does not contain a dispersant or has a very small content even if it contains a dispersant. The membrane can be easily manufactured.
The produced carbon material film and the patterned carbon material film are not limited, but may be widely used in technical fields such as electrical circuits and electronic devices such as wiring circuits, electrodes such as pad electrodes and capacitor electrodes. it can.

次に、実施例により本発明を更に詳細に説明するが、本発明はこれらの実施例により何ら限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these Examples.

(実施例1)
<スチルベン系分散剤を用いた分散剤含有CNT膜、該分散剤含有CNT膜を用いたパターン化CNT膜の製造>
・CNT分散液の調製
下記一般式(II)で示され、式中のR3とR4がブチル基であるスチルベン系化合物を3mg秤量し、3mlの超純水(Purelab/ELGAによって精製された水)に溶解して分散剤水溶液を調製した。SWCNT(HiPco法によって作成されたもの/NanoIntegris)を1mg秤量し、前記分散剤水溶液と混合した。混合水溶液はバス型超音波(37kHz,80W,1hr)により処理されCNTの分散を促した。得られた黒色液体を遠心分離(25000xg,4hrs,5417R/eppendorf)することにより、触媒金属、アモルファスカーボン等の不純物を沈殿させ、上澄みの80%を回収して、前記不純物を除去したCNT分散液とした。

Figure 2015016156
Example 1
<Production of dispersant-containing CNT film using stilbene-based dispersant and patterned CNT film using the dispersant-containing CNT film>
Preparation of CNT dispersion 3 mg of a stilbene compound represented by the following general formula (II), in which R 3 and R 4 are butyl groups, was weighed and purified with 3 ml of ultrapure water (Purelab / ELGA) Dispersed in water) to prepare a dispersant aqueous solution. 1 mg of SWCNT (prepared by HiPco method / NanoIntegris) was weighed and mixed with the aqueous dispersant solution. The mixed aqueous solution was treated with bath-type ultrasonic waves (37kHz, 80W, 1hr) to promote CNT dispersion. The resulting black liquid is centrifuged (25000xg, 4hrs, 5417R / eppendorf) to precipitate impurities such as catalytic metals and amorphous carbon, and 80% of the supernatant is recovered to remove the impurities. It was.
Figure 2015016156

・分散剤含有CNT膜の調製
横3cm×縦3cm×厚み1mmの溶融石英基板(以下石英基板)をエタノールで超音波洗浄した(37kHz,80W,1hr)。その後減圧乾燥することで清浄な基板表面を得た。φ16mmの穴を開けた横3cm×縦3cm×厚み0.5mmのシリコンゴムシートを用意し、前述の石英基板に密着させた。石英基板とシリコンゴムシートに囲まれた凹み(成形空間)に、上述のCNT分散液を300μl注いだ。得られた液膜をデシケータ中で減圧し、溶媒を除去してキャストされた分散剤含有CNT膜を得た(分散剤含有CNT膜におけるCNTと分散剤の重量割合が約1:3、液状溶媒の含有量が0.1wt%未満)。
Preparation of dispersant-containing CNT film A fused quartz substrate (hereinafter referred to as quartz substrate) measuring 3 cm wide × 3 cm long × 1 mm thick was ultrasonically cleaned with ethanol (37 kHz, 80 W, 1 hr). Thereafter, the substrate was dried under reduced pressure to obtain a clean substrate surface. A silicon rubber sheet having a width of 3 cm, a length of 3 cm, and a thickness of 0.5 mm, with a hole of φ16 mm, was prepared and adhered to the quartz substrate described above. 300 μl of the above CNT dispersion was poured into a recess (molding space) surrounded by a quartz substrate and a silicon rubber sheet. The obtained liquid film was decompressed in a desiccator, and the solvent was removed to obtain a cast dispersant-containing CNT film (weight ratio of CNT to dispersant in the dispersant-containing CNT film was about 1: 3, liquid solvent Content is less than 0.1 wt%).

・光照射による溶解性変化の検討
得られた分散剤含有CNT膜について光照射の有無による膜の溶解性の違いを調べた。未露光膜を超純水ですすぐと、分散剤含有CNT膜は溶解した。紫外可視近赤外吸収スペクトル測定結果を図3に示す。水洗浄により、分散剤とCNTに起因する吸収が減少し、分散剤含有CNT膜が基板上から除かれたことが分かった。次に、光照射の効果を調べた。光照射前、照射後、水洗浄後の膜の紫外可視近赤外吸収スペクトル(385nm,100mW/cm2,1hr)を図4に示す。光照射することで膜中の分散剤の光反応は十分進行した。さらに、光照射したあと水洗浄すると分散剤が除去されることが分かった(CNT膜における分散剤含有量が0.1wt%未満)。一方、分散剤が剥がれたCNTは溶解性を失うために、水洗浄しても基板上に残った。以上の結果から、露光部と未露光部は水への溶解性が異なる(露光部:不溶化、未露光部:溶解)ことが判明した。炭素材料の代表例としてCNTを用い、メカニズムを模式的に表したものを図5に示す。
-Examination of change in solubility due to light irradiation Regarding the obtained dispersant-containing CNT film, the difference in solubility of the film with and without light irradiation was investigated. When the unexposed film was rinsed with ultrapure water, the dispersant-containing CNT film dissolved. FIG. 3 shows the measurement results of the ultraviolet visible near infrared absorption spectrum. It was found that the water washing reduced absorption due to the dispersant and CNT, and the dispersant-containing CNT film was removed from the substrate. Next, the effect of light irradiation was investigated. FIG. 4 shows ultraviolet-visible near-infrared absorption spectra (385 nm, 100 mW / cm 2 , 1 hr) of the film before irradiation, after irradiation, and after washing with water. The photoreaction of the dispersing agent in the film proceeded sufficiently by irradiation with light. Furthermore, it was found that the dispersant was removed by washing with water after light irradiation (dispersant content in the CNT film was less than 0.1 wt%). On the other hand, since the CNT from which the dispersant was peeled lost its solubility, it remained on the substrate even after washing with water. From the above results, it was found that the exposed portion and the unexposed portion have different solubility in water (exposed portion: insolubilized, unexposed portion: dissolved). FIG. 5 shows a schematic representation of the mechanism using CNT as a representative example of the carbon material.

・マスク露光によるパターン形成
上述で得られた知見をマスク露光による微細構造形成に応用した。炭素材料の代表例としてCNTを用いたマスク露光の工程を図6に示す。上述の工程に従って作製したキャスト膜(分散剤含有CNT膜)に、凸版印刷製のテストパターンを介してマスク露光を行った(385nm,100mW/cm2,1hr)。露光後、水でリンスし、未露光部を洗い流すことでネガ型のパターン化CNT膜が形成された〔図7参照、図中、「L/S:数値μm」は、パターンにおける配線幅(L)と間隔(S)がその数値(μm)であることを意味する。以下の図8、図11についても同じ〕。スクリーン印刷では難しい10μm以下の線幅も加工可能であることが分かった。
ここで用いるCNTは、単層でも多層でもよい。また、CNTは作製方法によらずいずれのCNTも用いることができる。
-Pattern formation by mask exposure The knowledge obtained above was applied to fine structure formation by mask exposure. FIG. 6 shows a mask exposure process using CNT as a representative example of the carbon material. The cast film (dispersant-containing CNT film) produced according to the above-mentioned process was subjected to mask exposure through a test pattern made by letterpress printing (385 nm, 100 mW / cm 2 , 1 hr). After the exposure, rinsing with water and washing away the unexposed part formed a negative type patterned CNT film [see FIG. 7, “L / S: numerical value μm” is the wiring width (L ) And the interval (S) are the numerical values (μm). The same applies to FIGS. 8 and 11 below). It was found that line widths of 10 μm or less, which is difficult with screen printing, can be processed.
The CNT used here may be a single layer or a multilayer. In addition, any CNT can be used regardless of the production method.

(比較例1)
上記一般式(II)式中のR3とR4が直鎖状C8H17である以外は、実施例1と同様にして、CNT分散液の調製、分散剤含有CNT膜の調製を行った。R3とR4が直鎖状C8H17のようにアルキル鎖が長いと結晶性が高くなり、不均質で光応答性の乏しい膜となった〔図2(1)参照〕。
(Comparative Example 1)
A CNT dispersion liquid and a dispersant-containing CNT film were prepared in the same manner as in Example 1 except that R 3 and R 4 in the general formula (II) were linear C 8 H 17. It was. When R 3 and R 4 are long alkyl chains such as linear C 8 H 17 , the crystallinity becomes high, resulting in a heterogeneous film with poor photoresponsiveness (see FIG. 2 (1)).

(実施例2)
<スチルベン系分散剤を用いた分散剤含有CNT膜、該分散剤含有CNT膜を用いたパターン化CNT膜の製造>
実施例1に示した手法において、上記化合物を光応答性CNT分散剤として用い、SWCNTとしてHiPcoを用いてPET(東レルミラーU35、易接未処理面)基板上に分散剤含有CNT膜の作製(分散剤含有CNT膜におけるCNTと分散剤の重量割合が約1:3、液状溶媒の含有量が0.1wt%未満)及びマスク露光を介した微細加工を行った(パターン化CNT膜における分散剤含有量が0.1wt%未満)。PETのような親水性の乏しい基板(CNT分散液の濡れが悪い基板)でも、Siゴムシートにより枠をつくることで、容易にキャスト膜を作製することができた。得られた微細加工膜の光学顕微鏡観察の結果を図8に示す。スクリーン印刷では難しい10μm以下の線幅も加工可能であることが分かった。
ここで用いるCNTは、単層でも多層でもよい。また、CNTは作製方法によらずいずれのCNTも用いることができる。
(Example 2)
<Production of dispersant-containing CNT film using stilbene-based dispersant and patterned CNT film using the dispersant-containing CNT film>
In the method shown in Example 1, the above compound was used as a photoresponsive CNT dispersant, and HiPco was used as a SWCNT to produce a dispersant-containing CNT film on a PET (East Lermir U35, readily accessible untreated surface) substrate ( The weight ratio of CNT and dispersant in the dispersant-containing CNT film was about 1: 3, and the liquid solvent content was less than 0.1 wt%) and fine processing was performed through mask exposure (containing the dispersant in the patterned CNT film) The amount is less than 0.1wt%). Even with a poorly hydrophilic substrate such as PET (a substrate with poor CNT dispersion), a cast film could be easily produced by forming a frame with a Si rubber sheet. The result of the optical microscope observation of the obtained finely processed film is shown in FIG. It was found that line widths of 10 μm or less, which is difficult with screen printing, can be processed.
The CNT used here may be a single layer or a multilayer. In addition, any CNT can be used regardless of the production method.

(実施例3)
<アゾベンゼン系分散剤を用いた分散剤含有CNT膜、該分散剤含有CNT膜を用いたパターン化CNT膜の製造>
実施例1に示した手法において、一般式(II)のスチルベン系化合物の替わりに下記一般式(III)に示すアゾベンゼン系化合物(式中、R3及びR4はエチル基)を光応答性CNT分散剤として用い、SWCNTとしてHiPcoを用い、溶融石英基板上に分散剤含有CNT膜の作製(分散剤含有CNT膜におけるCNTと分散剤の重量割合が約1:3、液状溶媒の含有量が0.1wt%未満)及びマスク露光を介した微細加工を行った(パターン化CNT膜における分散剤含有量が0.1wt%未満)。一般式(III)に示す化合物は図9のスペクトルに示すように、385nmの光を照射することでE-Z異性化し、暗所で速やかにE体へと戻る。得られたCNT膜について光照射の効果を調べた。光照射前、照射後、水洗浄後の膜の紫外可視近赤外吸収スペクトル(385nm,100mW/cm2,1hr)を図10に示す。光照射することで膜中の分散剤の光反応は十分進行した。さらに、光照射したあと水洗浄すると分散剤が除去されることが分かった。一方、分散剤が剥がれたCNTは溶解性を失うために、水洗浄しても基板上に残った。前記アゾベンゼン系化合物のE-Z光異性化反応を利用しても、上記スチルベン系化合物のような効果が得られることが分かった。分散剤含有CNT膜にマスク露光して得られた微細加工膜の光学顕微鏡観察の結果を図11に示す。
ここで用いるCNTは、単層でも多層でもよい。また、CNTは作製方法によらずいずれのCNTも用いることができる。

Figure 2015016156
(Example 3)
<Manufacture of a dispersant-containing CNT film using an azobenzene-based dispersant and a patterned CNT film using the dispersant-containing CNT film>
In the method shown in Example 1, instead of the stilbene compound of the general formula (II), an azobenzene compound represented by the following general formula (III) (wherein R 3 and R 4 are ethyl groups) is a photoresponsive CNT. Used as a dispersant, HiPco as SWCNT, and produced a dispersant-containing CNT film on a fused quartz substrate (weight ratio of CNT and dispersant in the dispersant-containing CNT film was about 1: 3, and the content of liquid solvent was 0.1 less than wt%) and fine processing via mask exposure (dispersant content in the patterned CNT film is less than 0.1 wt%). As shown in the spectrum of FIG. 9, the compound represented by the general formula (III) undergoes EZ isomerization by irradiation with 385 nm light, and quickly returns to the E form in the dark. The effect of light irradiation was investigated on the obtained CNT film. FIG. 10 shows ultraviolet-visible near-infrared absorption spectra (385 nm, 100 mW / cm 2 , 1 hr) of the film before irradiation, after irradiation, and after washing with water. The photoreaction of the dispersing agent in the film proceeded sufficiently by irradiation with light. Furthermore, it was found that the dispersant was removed by washing with water after light irradiation. On the other hand, since the CNT from which the dispersant was peeled lost its solubility, it remained on the substrate even after washing with water. It has been found that even when the EZ photoisomerization reaction of the azobenzene compound is used, an effect similar to that of the stilbene compound can be obtained. The result of optical microscope observation of the microfabricated film obtained by mask exposure of the dispersant-containing CNT film is shown in FIG.
The CNT used here may be a single layer or a multilayer. In addition, any CNT can be used regardless of the production method.
Figure 2015016156

(実施例4)
・カーボンブラック分散液の調製
実施例1で使用した一般式(II)で示され、式中のR3とR4がブチル基であるスチルベン化合物を2.96mg秤量し、3mlの超純水(Purelab/ELGAによって精製された水)に溶解して分散剤水溶液を調製した。カーボンブラック(三菱化学製#2600,算術平均粒子径13nm)を0.95mg秤量し、前記分散剤水溶液と混合した。混合水溶液はバス型超音波(37kHz,80W,1hr)により処理されカーボンブラックの分散を促した。得られた黒色液体をカーボンブラック分散液とした。分散液の様子を図12(A)に示す。
Example 4
Preparation of carbon black dispersion 2.96 mg of a stilbene compound represented by the general formula (II) used in Example 1, wherein R 3 and R 4 are butyl groups, was weighed and 3 ml of ultrapure water (Purelab Dissolving agent in water / ELGA purified water) to prepare a dispersant aqueous solution. 0.95 mg of carbon black (Mitsubishi Chemical # 2600, arithmetic average particle size 13 nm) was weighed and mixed with the aqueous dispersant solution. The mixed aqueous solution was treated with bath-type ultrasonic waves (37kHz, 80W, 1hr) to promote the dispersion of carbon black. The resulting black liquid was used as a carbon black dispersion. The state of the dispersion is shown in FIG.

・カーボンブラック分散液の光による分散制御
上記で得られたカーボンブラック分散液を透析チューブ(SPECTRUM,Spectra por7,membrane1000)に注入し、超純水(Purelab/ELGAによって精製された水)で一晩透析操作を行った。この操作により余剰な分散剤を除去することができ、次に行う光反応操作をスムーズに進行させることができる。
透析操作後のカーボンブラック分散液をPMMAセルに移し、撹拌しながら光照射(365nm,50mW/cm2,7hr)すると、スチルベン化合物の光反応により分散性を失ったカーボンブラックが沈殿した(図12(B)参照)。
・ Dispersion control by light of carbon black dispersion liquid The carbon black dispersion liquid obtained above is injected into a dialysis tube (SPECTRUM, Spectra por7, membrane 1000), and then ultra-pure water (water purified by Purelab / ELGA) overnight. Dialysis operation was performed. By this operation, excess dispersant can be removed, and the next photoreaction operation can proceed smoothly.
When the carbon black dispersion liquid after dialysis was transferred to a PMMA cell and irradiated with light (365 nm, 50 mW / cm 2, 7 hours), carbon black that lost dispersibility due to the photoreaction of the stilbene compound was precipitated (FIG. 12 ( See B)).

(比較例2)
実施例4でスチルベン化合物を含まない超純水を用いる他は、実施例4と同様にして、カーボンブラック(三菱化学製#2600,1.03mg)の分散を促した。この場合、カーボンブラック同士の強い凝集によりカーボンブラック分散液を得ることはできなかった(図12(C)参照)。
(Comparative Example 2)
The dispersion of carbon black (Mitsubishi Chemical # 2600, 1.03 mg) was promoted in the same manner as in Example 4 except that ultrapure water containing no stilbene compound was used in Example 4. In this case, a carbon black dispersion liquid could not be obtained due to strong aggregation of the carbon blacks (see FIG. 12C).

(実施例5)
・カーボンブラック分散液の調製
実施例4に示した手法において、#2600の替わりに#4000B(1.04mg,算術平均粒子径24nm)を用いる他(分散剤:2.96mg使用)は、実施例4と同様にしてカーボンブラック分散液を得た。分散液の様子を図13(A)に示す。
(Example 5)
-Preparation of carbon black dispersion In the method shown in Example 4, # 4000B (1.04 mg, arithmetic average particle size 24 nm) was used instead of # 2600 (dispersant: 2.96 mg used). Similarly, a carbon black dispersion was obtained. The state of the dispersion is shown in FIG.

・カーボンブラック分散液の光による分散制御
実施例4に示した手法において、#2600の替わりに#4000Bを用いる他は、実施例4と同様にしてカーボンブラックの分散性を光で制御することができた。図13(B)参照。
-Dispersion control by light of carbon black dispersion liquid The dispersibility of carbon black can be controlled by light in the same manner as in Example 4 except that # 4000B is used instead of # 2600. did it. See FIG.

(比較例3)
実施例5でスチルベン化合物を含まない超純水を用いる他は、実施例5と同様にして、カーボンブラック(#4000B,1.17mg)の分散を促した。この場合、油膜状の析出物や、沈殿などが確認され、均質なカーボンブラック分散液を得ることはできなかった(図13(C)参照)。
(Comparative Example 3)
The dispersion of carbon black (# 4000B, 1.17 mg) was promoted in the same manner as in Example 5 except that ultrapure water containing no stilbene compound was used in Example 5. In this case, oil film-like precipitates, precipitates, and the like were confirmed, and a homogeneous carbon black dispersion could not be obtained (see FIG. 13C).

(実施例6)
・気相法炭素繊維VGCF分散液の調製
実施例1で使用した一般式(II)で示され、式中のR3とR4がブチル基であるスチルベン化合物を31.35mg秤量し、20mlの超純水(Purelab/ELGAによって精製された水)に溶解して分散剤水溶液を調製した。気相法炭素繊維VGCF(昭和電工,VGCF-H,繊維径150nm、以下、「VGCF」という。)を10.43mg秤量し、前記分散剤水溶液と混合した。混合水溶液はバス型超音波(37kHz,80W,1hr)により前処理したあと、ホーン型超音波(19kHz,60W,10h)によりVGCFの分散を促した。得られた黒色液体をVGCF分散液とした。分散液の様子を図14(A)に示す。また、同様の操作を重水を用いて行い、UV-vis-NIR吸収スペクトルを測定した(図14(B)参照)。
(Example 6)
-Preparation of gas-phase-process carbon fiber VGCF dispersion 31.35 mg of a stilbene compound represented by the general formula (II) used in Example 1, wherein R 3 and R 4 are butyl groups, was weighed in excess of 20 ml. Dispersant aqueous solution was prepared by dissolving in pure water (water purified by Purelab / ELGA). 10.43 mg of vapor grown carbon fiber VGCF (Showa Denko, VGCF-H, fiber diameter 150 nm, hereinafter referred to as “VGCF”) was weighed and mixed with the aqueous dispersant solution. The mixed aqueous solution was pretreated with bath-type ultrasonic waves (37 kHz, 80 W, 1 hr), and then promoted dispersion of VGCF by horn-type ultrasonic waves (19 kHz, 60 W, 10 h). The obtained black liquid was used as a VGCF dispersion. The state of the dispersion is shown in FIG. Further, the same operation was performed using heavy water, and a UV-vis-NIR absorption spectrum was measured (see FIG. 14B).

(参考例1)
実施例1で使用した一般式(II)で示され、式中のR3とR4がブチル基であるスチルベン化合物3 を3.41mg秤量し、3mlの超純水(Purelab/ELGAによって精製された水)に溶解して分散剤水溶液を調製した。VGCF(昭和電工、VGCF-H)を1.18mg秤量し、前記分散剤水溶液と混合した。混合水溶液はバス型超音波(37kHz,80W,1hr)により処理したが、出力周波数が低いため沈殿が生じ、良好な分散液を得ることはできなかった(図14(C)参照)。
(Reference Example 1)
3.41 mg of stilbene compound 3 represented by the general formula (II) used in Example 1, wherein R 3 and R 4 are butyl groups, was weighed and purified by 3 ml of ultrapure water (Purelab / ELGA). Dispersed in water) to prepare a dispersant aqueous solution. 1.18 mg of VGCF (Showa Denko, VGCF-H) was weighed and mixed with the aqueous dispersant solution. The mixed aqueous solution was treated with bath-type ultrasonic waves (37 kHz, 80 W, 1 hr), but precipitation occurred due to the low output frequency, and a good dispersion could not be obtained (see FIG. 14C).

(実施例7)
・天然高純度黒鉛粒子分散液の調製
実施例1で使用した一般式(II)で示され、式中のR3とR4がブチル基であるスチルベン化合物を30.00mg秤量し、20mlの超純水(Purelab/ELGAによって精製された水)に溶解して分散剤水溶液を調製した。天然高純度黒鉛粒子(SECカーボン、SNO-30、粒子径約30μm程度の粒子を含むもの)を11.45mg秤量し、前記分散剤水溶液と混合した。混合水溶液はバス型超音波(37kHz,80W,1hr)により前処理したあと、ホーン型超音波(19kHz,60W,10hr)により天然高純度黒鉛粒子の分散を促した。得られた黒色液体を天然高純度黒鉛分散液とした。分散液の様子を図15(A)に示す。また、同様の操作を重水を用いて行い、UV-vis-NIR吸収スペクトルを測定した(図15(B)参照)。
(Example 7)
-Preparation of natural high-purity graphite particle dispersion 30.00 mg of a stilbene compound represented by the general formula (II) used in Example 1, wherein R 3 and R 4 are butyl groups, was weighed and 20 ml of ultrapure Dispersant aqueous solution was prepared by dissolving in water (water purified by Purelab / ELGA). 11.45 mg of natural high-purity graphite particles (SEC carbon, SNO-30, containing particles having a particle size of about 30 μm) were weighed and mixed with the aqueous dispersant solution. The mixed aqueous solution was pretreated with bath-type ultrasonic waves (37 kHz, 80 W, 1 hr), and then promoted dispersion of natural high-purity graphite particles by horn-type ultrasonic waves (19 kHz, 60 W, 10 hr). The resulting black liquid was used as a natural high purity graphite dispersion. The state of the dispersion is shown in FIG. Further, the same operation was performed using heavy water, and a UV-vis-NIR absorption spectrum was measured (see FIG. 15B).

(参考例2)
実施例1で使用した一般式(II)で示され、式中のR3とR4がブチル基であるスチルベン化合物を30.58mg秤量し、20mlの超純水(Purelab/ELGAによって精製された水)に溶解して分散剤水溶液を調製した。天然高純度黒鉛粒子(SECカーボン、SNO-30)を9.89mg秤量し、前記分散剤水溶液と混合した。混合水溶液はバス型超音波(37kHz,80W,1hr)により処理したが、出力周波数が低いため沈殿が生じ、良好な分散液を得ることはできなかった(図15(C)参照)。
(Reference Example 2)
30.58 mg of a stilbene compound represented by the general formula (II) used in Example 1, wherein R 3 and R 4 are butyl groups, was weighed, and 20 ml of ultrapure water (water purified by Purelab / ELGA) ) To prepare a dispersant aqueous solution. 9.89 mg of natural high purity graphite particles (SEC carbon, SNO-30) were weighed and mixed with the aqueous dispersant solution. The mixed aqueous solution was treated with bath-type ultrasonic waves (37 kHz, 80 W, 1 hr), but precipitation occurred due to the low output frequency, and a good dispersion could not be obtained (see FIG. 15C).

(実施例8)
・名城ナノカーボンSWCNT APJ分散液の調製
実施例1で使用した一般式(II)で示され、式中のR3とR4がブチル基であるスチルベン化合物を3.36mg秤量し、3mlの重水に溶解して分散剤水溶液を調製した。単層カーボンナノチューブ(名城ナノカーボン,APJ,φ1.4 nm,長さ1-5μm)を1.01mg秤量し、前記分散剤水溶液と混合した。混合水溶液はバス型超音波(37kHz,80W,1hr)により黒色液とした。この黒色液体を遠心分離(25000xg,4hrs,5417R/eppendorf)により処理し、CNTの分散液とした。分散液の様子を図16(A)に示す。また、UV-vis-NIR吸収スペクトルを測定した(図16(B)参照)。
また、実施例1で使用した一般式(II)で示され、式中のR3とR4がブチル基であるスチルベン化合物を9.99mg秤量し、20mlの重水に溶解して分散剤水溶液を調製した。単層カーボンナノチューブ(名城ナノカーボン,APJ)を6.69mg秤量し、前記分散剤水溶液と混合した。混合水溶液はホーン型超音波(19kHz,20W,4hr)により黒色液とした。この黒色液体を遠心分離(25000xg,4hrs,5417R/eppendorf)により処理し、CNTの分散液とした。分散液の様子を図16(C)に示す。また、UV-vis-NIR吸収スペクトルを測定した(図16(D)参照)。
(Example 8)
・ Preparation of Meijo Nanocarbon SWCNT APJ Dispersion Weighed 3.36 mg of a stilbene compound represented by the general formula (II) used in Example 1, wherein R 3 and R 4 are butyl groups, and added to 3 ml of heavy water. Dissolved to prepare a dispersant aqueous solution. Single-walled carbon nanotubes (Meijo Nanocarbon, APJ, φ1.4 nm, length 1-5 μm) were weighed 1.01 mg and mixed with the aqueous dispersant solution. The mixed aqueous solution was made into a black liquid by bath-type ultrasonic waves (37 kHz, 80 W, 1 hr). This black liquid was processed by centrifugation (25000 × g, 4 hrs, 5417R / eppendorf) to obtain a CNT dispersion. The state of the dispersion is shown in FIG. In addition, a UV-vis-NIR absorption spectrum was measured (see FIG. 16B).
Further, 9.99 mg of a stilbene compound represented by the general formula (II) used in Example 1, wherein R 3 and R 4 are butyl groups, is weighed and dissolved in 20 ml of heavy water to prepare a dispersant aqueous solution. did. 6.69 mg of single-walled carbon nanotubes (Meijo Nanocarbon, APJ) were weighed and mixed with the aqueous dispersant solution. The mixed aqueous solution was made into a black liquid by horn type ultrasonic waves (19 kHz, 20 W, 4 hr). This black liquid was processed by centrifugation (25000 × g, 4 hrs, 5417R / eppendorf) to obtain a CNT dispersion. The state of the dispersion is shown in FIG. In addition, a UV-vis-NIR absorption spectrum was measured (see FIG. 16D).

(実施例9)
・名城ナノカーボンSWCNT SO分散液の調製
実施例1で使用した一般式(II)で示され、式中のR3とR4がブチル基であるスチルベン化合物を3.62mg秤量し、3mlの重水に溶解して分散剤水溶液を調製した。単層カーボンナノチューブ(名城ナノカーボン,SO,φ1-2.5 nm,長さ-10μm)を0.98mg秤量し、前記分散剤水溶液と混合した。混合水溶液はバス型超音波(37kHz,80W,1hr)により黒色液とした。この黒色液体を遠心分離(25000xg,4hrs,5417R/eppendorf)により処理し、CNTの分散液とした。分散液の様子を図17(A)に示す。また、UV-vis-NIR吸収スペクトルを測定した(図17(B)参照)。
また、実施例1で使用した一般式(II)で示され、式中のR3とR4がブチル基であるスチルベン化合物を10.03mg秤量し、20mlの重水に溶解して分散剤水溶液を調製した。単層カーボンナノチューブ(名城ナノカーボン,APJ)を6.72mg秤量し、前記分散剤水溶液と混合した。混合水溶液はホーン型超音波(19kHz,20W,4hr)により黒色液とした。この黒色液体を遠心分離(25000xg,4hrs,5417R/eppendorf)により処理し、CNTの分散液とした。分散液の様子を図17(C)に示す。また、UV-vis-NIR吸収スペクトルを測定した(図17(D)参照)。
Example 9
・ Preparation of Meijo Nanocarbon SWCNT SO Dispersion 3.62 mg of stilbene compound represented by the general formula (II) used in Example 1, wherein R 3 and R 4 are butyl groups, was weighed into 3 ml of heavy water. Dissolved to prepare a dispersant aqueous solution. 0.98 mg of single-walled carbon nanotubes (Meijo Nanocarbon, SO, φ1-2.5 nm, length—10 μm) was weighed and mixed with the aqueous dispersant solution. The mixed aqueous solution was made into a black liquid by bath-type ultrasonic waves (37 kHz, 80 W, 1 hr). This black liquid was processed by centrifugation (25000 × g, 4 hrs, 5417R / eppendorf) to obtain a CNT dispersion. The state of the dispersion is shown in FIG. In addition, a UV-vis-NIR absorption spectrum was measured (see FIG. 17B).
Further, 10.03 mg of a stilbene compound represented by the general formula (II) used in Example 1, wherein R 3 and R 4 are butyl groups, is weighed and dissolved in 20 ml of heavy water to prepare an aqueous dispersion solution. did. 6.72 mg of single-walled carbon nanotube (Meijo Nanocarbon, APJ) was weighed and mixed with the aqueous dispersant solution. The mixed aqueous solution was made into a black liquid by horn type ultrasonic waves (19 kHz, 20 W, 4 hr). This black liquid was processed by centrifugation (25000 × g, 4 hrs, 5417R / eppendorf) to obtain a CNT dispersion. The state of the dispersion is shown in FIG. In addition, a UV-vis-NIR absorption spectrum was measured (see FIG. 17D).

(実施例10)
・スーパーグロース分散液の調製
実施例1で使用した一般式(II)で示され、式中のR3とR4がブチル基であるスチルベン化合物を3.57mg秤量し、3mlの重水に溶解して分散剤水溶液を調製した。単層カーボンナノチューブ(スーパーグロース、直径ならびに長さは不明です。)を1.01mg秤量し、前記分散剤水溶液と混合した。混合水溶液はバス型超音波(37kHz,80W,1hr)により黒色液とした。この黒色液体を遠心分離(25000xg,4hrs,5417R/eppendorf)により処理し、CNTの分散液とした。分散液の様子を図18(A)に示す。また、UV-vis-NIR吸収スペクトルを測定した(図18(B)参照)。
また、実施例1で使用した一般式(II)で示され、式中のR3とR4がブチル基であるスチルベン化合物を10.02mg秤量し、20mlの重水に溶解して分散剤水溶液を調製した。単層カーボンナノチューブ(スーパーグロース)を6.72mg秤量し、前記分散剤水溶液と混合した。混合水溶液はホーン型超音波(19kHz,20W,4hr)により黒色液とした。この黒色液体を遠心分離(25000xg,4hrs,5417R/eppendorf)により処理し、CNTの分散液とした。分散液の様子を図18(C)に示す。また、UV-vis-NIR吸収スペクトルを測定した(図18(D)参照)。
(Example 10)
-Preparation of Super Growth Dispersion Weighed 3.57 mg of a stilbene compound represented by the general formula (II) used in Example 1, wherein R 3 and R 4 are butyl groups, and dissolved in 3 ml of heavy water. A dispersant aqueous solution was prepared. Single-walled carbon nanotubes (supergrowth, diameter and length are unknown) were weighed 1.01 mg and mixed with the aqueous dispersant solution. The mixed aqueous solution was made into a black liquid by bath-type ultrasonic waves (37 kHz, 80 W, 1 hr). This black liquid was processed by centrifugation (25000 × g, 4 hrs, 5417R / eppendorf) to obtain a CNT dispersion. The state of the dispersion is shown in FIG. In addition, a UV-vis-NIR absorption spectrum was measured (see FIG. 18B).
Further, 10.02 mg of a stilbene compound represented by the general formula (II) used in Example 1, wherein R 3 and R 4 are butyl groups, is weighed and dissolved in 20 ml of heavy water to prepare an aqueous dispersion solution. did. 6.72 mg of single-walled carbon nanotubes (Super Growth) was weighed and mixed with the aqueous dispersant solution. The mixed aqueous solution was made into a black liquid by horn type ultrasonic waves (19 kHz, 20 W, 4 hr). This black liquid was processed by centrifugation (25000 × g, 4 hrs, 5417R / eppendorf) to obtain a CNT dispersion. The state of the dispersion is shown in FIG. In addition, a UV-vis-NIR absorption spectrum was measured (see FIG. 18D).

(実施例11)
・SWeNT SG65分散液の調製
実施例1で使用した一般式(II)で示され、式中のR3とR4がブチル基であるスチルベン化合物を3.58mg秤量し、3mlの重水に溶解して分散剤水溶液を調製した。単層カーボンナノチューブ(SWeNT,SG65,φ0.78 nm,長さ1.5μm)を1.02mg秤量し、前記分散剤水溶液と混合した。混合水溶液はバス型超音波(37kHz,80W,1hr)により黒色液とした。この黒色液体を遠心分離(25000xg,4hrs,5417R/eppendorf)により処理し、CNTの分散液とした。分散液の様子を図19(A)に示す。また、UV-vis-NIR吸収スペクトルを測定した(図19(B)参照)。
また、実施例1で使用した一般式(II)で示され、式中のR3とR4がブチル基であるスチルベン化合物を9.97mg秤量し、20mlの重水に溶解して分散剤水溶液を調製した。単層カーボンナノチューブ(SWeNT,SG65)を6.68mg秤量し、前記分散剤水溶液と混合した。混合水溶液はホーン型超音波(19kHz,20W,4hr)により黒色液とした。この黒色液体を遠心分離(25000xg,4hrs,5417R/eppendorf)により処理し、CNTの分散液とした。分散液の様子を図19(C)に示す。また、UV-vis-NIR吸収スペクトルを測定した(図19(D)参照)。
(Example 11)
-Preparation of SWeNT SG65 dispersion 3.58 mg of a stilbene compound represented by the general formula (II) used in Example 1, wherein R 3 and R 4 are butyl groups, was dissolved in 3 ml of heavy water. A dispersant aqueous solution was prepared. Single-walled carbon nanotubes (SWeNT, SG65, φ0.78 nm, length 1.5 μm) were weighed in 1.02 mg and mixed with the aqueous dispersant solution. The mixed aqueous solution was made into a black liquid by bath-type ultrasonic waves (37 kHz, 80 W, 1 hr). This black liquid was processed by centrifugation (25000 × g, 4 hrs, 5417R / eppendorf) to obtain a CNT dispersion. The state of the dispersion is shown in FIG. In addition, a UV-vis-NIR absorption spectrum was measured (see FIG. 19B).
Further, 9.97 mg of a stilbene compound represented by the general formula (II) used in Example 1, wherein R 3 and R 4 are butyl groups, is weighed and dissolved in 20 ml of heavy water to prepare an aqueous dispersion solution. did. 6.68 mg of single-walled carbon nanotube (SWeNT, SG65) was weighed and mixed with the aqueous dispersant solution. The mixed aqueous solution was made into a black liquid by horn type ultrasonic waves (19 kHz, 20 W, 4 hr). This black liquid was processed by centrifugation (25000 × g, 4 hrs, 5417R / eppendorf) to obtain a CNT dispersion. The state of the dispersion is shown in FIG. In addition, a UV-vis-NIR absorption spectrum was measured (see FIG. 19D).

(実施例12)
・多層カーボンナノチューブ(MWCNT)分散液の調製
実施例1で使用した一般式(II)で示され、式中のR3とR4がブチル基であるスチルベン化合物を3.61mg秤量し、3mlの超純水(Purelab/ELGAによって精製された水)に溶解して分散剤水溶液を調製した。MWCNT(ワコーケミカル,φ40-60 nm,長さ5-15μm)を0.98mg秤量し、前記分散剤水溶液と混合した。混合水溶液はバス型超音波(37kHz,80W,1hr)により処理されMWCNTの分散を促した。得られた黒色液体をMWCNT分散液とした。分散液の様子を図20(A)に示す。
(Example 12)
-Preparation of multi-walled carbon nanotube (MWCNT) dispersion 3.61 mg of stilbene compound represented by the general formula (II) used in Example 1, wherein R 3 and R 4 are butyl groups, was weighed and more than 3 ml Dispersant aqueous solution was prepared by dissolving in pure water (water purified by Purelab / ELGA). 0.98 mg of MWCNT (Wako Chemical, φ40-60 nm, length 5-15 μm) was weighed and mixed with the aqueous dispersant solution. The mixed aqueous solution was treated with bath-type ultrasonic waves (37kHz, 80W, 1hr) to promote dispersion of MWCNT. The obtained black liquid was used as a MWCNT dispersion. The state of the dispersion is shown in FIG.

(実施例13)
・多層カーボンナノチューブ(MWCNT)分散液の調製
実施例1で使用した一般式(II)で示され、式中のR3とR4がブチル基であるスチルベン化合物を3.57mg秤量し、3mlの超純水(Purelab/ELGAによって精製された水)に溶解して分散剤水溶液を調製した。MWCNT(宇部興産,AMG,φ11nm,長さ20μm)を1.03mg秤量し、前記分散剤水溶液と混合した。混合水溶液はバス型超音波(37kHz,80W,1hr)により処理されMWCNTの分散を促した。得られた黒色液体をMWCNT分散液とした。分散液の様子を図20(B)に示す。
(Example 13)
-Preparation of multi-wall carbon nanotube (MWCNT) dispersion 3.57 mg of a stilbene compound represented by the general formula (II) used in Example 1, wherein R 3 and R 4 are butyl groups, was weighed in excess of 3 ml. Dispersant aqueous solution was prepared by dissolving in pure water (water purified by Purelab / ELGA). 1.03 mg of MWCNT (Ube Industries, AMG, φ11 nm, length 20 μm) was weighed and mixed with the aqueous dispersant solution. The mixed aqueous solution was treated with bath-type ultrasonic waves (37kHz, 80W, 1hr) to promote dispersion of MWCNT. The obtained black liquid was used as a MWCNT dispersion. The state of the dispersion is shown in FIG.

(実施例14)
・多層カーボンナノチューブ(MWCNT)分散液の調製
実施例1で使用した一般式(II)で示され、式中のR3とR4がブチル基であるスチルベン化合物を3.59mg秤量し、3mlの超純水(Purelab/ELGAによって精製された水)に溶解して分散剤水溶液を調製した。MWCNT(C-Nano,FloTube 9000(GI) ,φ11nm,長さ10μm)を1.03mg秤量し、前記分散剤水溶液と混合した。混合水溶液はバス型超音波(37kHz,80W,1hr)により処理されMWCNTの分散を促した。得られた黒色液体をMWCNT分散液とした。分散液の様子を図20(C)に示す。
(Example 14)
Preparation of multi-wall carbon nanotube (MWCNT) dispersion 3.59 mg of a stilbene compound represented by the general formula (II) used in Example 1, wherein R 3 and R 4 are butyl groups, was weighed over 3 ml. Dispersant aqueous solution was prepared by dissolving in pure water (water purified by Purelab / ELGA). 1.03 mg of MWCNT (C-Nano, FloTube 9000 (GI), φ11 nm, length 10 μm) was weighed and mixed with the aqueous dispersant solution. The mixed aqueous solution was treated with bath-type ultrasonic waves (37kHz, 80W, 1hr) to promote dispersion of MWCNT. The obtained black liquid was used as a MWCNT dispersion. The state of the dispersion is shown in FIG.

(実施例15)
・多層カーボンナノチューブ(MWCNT)分散液の調製
実施例1で使用した一般式(II)で示され、式中のR3とR4がブチル基であるスチルベン化合物を3.57mg秤量し、3mlの超純水(Purelab/ELGAによって精製された水)に溶解して分散剤水溶液を調製した。MWCNT(川研ファインケミカル,KC-CNT,φ70nm,長さ50μm)を1.02mg秤量し、前記分散剤水溶液と混合した。混合水溶液はバス型超音波(37kHz,80W,1hr)により処理されMWCNTの分散を促した。得られた黒色液体をMWCNT分散液とした。分散液の様子を図20(D)に示す。
(Example 15)
-Preparation of multi-wall carbon nanotube (MWCNT) dispersion 3.57 mg of a stilbene compound represented by the general formula (II) used in Example 1, wherein R 3 and R 4 are butyl groups, was weighed in excess of 3 ml. Dispersant aqueous solution was prepared by dissolving in pure water (water purified by Purelab / ELGA). 1.02 mg of MWCNT (Kawaken Fine Chemicals, KC-CNT, φ70 nm, length 50 μm) was weighed and mixed with the aqueous dispersant solution. The mixed aqueous solution was treated with bath-type ultrasonic waves (37kHz, 80W, 1hr) to promote dispersion of MWCNT. The obtained black liquid was used as a MWCNT dispersion. The state of the dispersion is shown in FIG.

上記実施例4〜15で用いたカーボンブラック、炭素繊維等の炭素材料に関しては、分散剤含有炭素材料膜の製造や、該分散剤含有炭素材料膜を用いた炭素材料膜の製造について具体例を記載していないが、実施例1〜3で用いたCNTと同様にスチルベン系分散剤を用いて炭素材料分散液を調製できたこと、実施例4,5のカーボンブラックについては、実施例1〜3で用いたCNTと同様に、光照射によって分散性を制御できたこと等を考慮すると、上記実施例4〜15で用いたカーボンブラック、炭素繊維、黒鉛粒子、単層カーボンナノチューブ、多層カーボンナノチューブ等の炭素材料についての分散剤含有炭素材料膜の製造や、該分散剤含有炭素材料膜を用いた炭素材料膜の製造は、実施例1〜3のCNTと同様にして当業者が容易に実施できることは明らかである。   Regarding carbon materials such as carbon black and carbon fibers used in Examples 4 to 15 above, specific examples of the production of a dispersant-containing carbon material film and the production of a carbon material film using the dispersant-containing carbon material film Although not described, the carbon material dispersions could be prepared using the stilbene dispersant in the same manner as the CNTs used in Examples 1 to 3, and the carbon blacks of Examples 4 and 5 were In consideration of the dispersibility being controlled by light irradiation in the same manner as the CNT used in 3, carbon black, carbon fiber, graphite particles, single-walled carbon nanotubes, multi-walled carbon nanotubes used in Examples 4 to 15 above Production of a dispersant-containing carbon material film or a carbon material film using the dispersant-containing carbon material film is easily performed by those skilled in the art in the same manner as in the CNTs of Examples 1 to 3. Can It is clear.

本発明の分散剤含有炭素材料膜を用いれば、分散剤を全く含有しないか、分散剤を含有していても、その含有量が極めて少ないSWCNT、MWCNT、 炭素繊維、黒鉛粒子等の炭素材料膜やパターン化炭素材料膜を簡単に製造できるので、電気・電子デバイスの製造など、炭素材料膜が必要とされる分野に幅広く応用することが可能である。   If the dispersant-containing carbon material film of the present invention is used, a carbon material film such as SWCNT, MWCNT, carbon fiber, graphite particles, etc., which contains no dispersant or contains a dispersant at a very low content. And a patterned carbon material film can be easily manufactured, and thus can be widely applied to fields where a carbon material film is required, such as manufacturing of electric / electronic devices.

Claims (8)

光応答性を有し、下記一般式(I)で表されるスチルベン系又はアゾベンゼン系分散剤を含有する分散剤含有炭素材料膜。
Figure 2015016156
[式中、R1〜R6は、それぞれ独立して水素又は炭素数1〜5の直鎖状若しくは炭素数3〜6の分岐状アルキル基である。Aは炭素原子又は窒素原子である。Xはアニオンである。nはnXが−2価となる数である。]
A dispersant-containing carbon material film having photoresponsiveness and containing a stilbene-based or azobenzene-based dispersant represented by the following general formula (I).
Figure 2015016156
[In formula, R < 1 > -R < 6 > is respectively independently hydrogen or a C1-C5 linear or C3-C6 branched alkyl group. A is a carbon atom or a nitrogen atom. X is an anion. n is a number at which nX becomes -2 valent. ]
Xは、ハロゲン原子(F,Cl,Br,I)、テトラフルオロホウ酸基(BF4)、ヘキサフルオロリン酸(PF6)、ビス(トリフルオロメタンスルホニル)イミド、チオイソシアネート(SCN)、硝酸基(NO3)、硫酸基(SO4)、チオ硫酸基(S2O3)、炭酸基(CO3)、炭酸水素基(HCO3)、リン酸基、亜リン酸基、次亜リン酸基、各ハロゲン酸化合物酸基(AO4,AO3,AO2,AO:A=Cl,Br,I)、トリス(トリフルオロメチルスルホニル)炭素酸基、トリフルオロメチルスルホン酸基、ジシアンアミド基、酢酸基(CH3COO)、ハロゲン化酢酸基((CAnH3-n)COO,A=F,Cl,Br,I;n=1,2,3)、テトラフェニルホウ酸基(BPh4)及びその誘導体(B(Aryl)4:Aryl=置換フェニル基)から選ばれた少なくとも1種である請求項1に記載の分散剤含有炭素材料膜。X is a halogen atom (F, Cl, Br, I), tetrafluoroboric acid group (BF 4 ), hexafluorophosphoric acid (PF 6 ), bis (trifluoromethanesulfonyl) imide, thioisocyanate (SCN), nitric acid group (NO 3 ), sulfate group (SO 4 ), thiosulfate group (S 2 O 3 ), carbonate group (CO 3 ), bicarbonate group (HCO 3 ), phosphate group, phosphite group, hypophosphorous acid Group, each halogen acid compound acid group (AO 4 , AO 3 , AO 2 , AO: A = Cl, Br, I), tris (trifluoromethylsulfonyl) carbon acid group, trifluoromethylsulfonic acid group, dicyanamide group, Acetic acid group (CH 3 COO), halogenated acetic acid group ((CA n H 3-n ) COO, A = F, Cl, Br, I; n = 1, 2, 3), tetraphenylboric acid group (BPh 4 And a derivative thereof (B (Aryl) 4 : Aryl = substituted phenyl group). The dispersant-containing carbon material film according to claim 1. 基板上に形成されたものである請求項1又は2に記載の分散剤含有炭素材料膜。   The dispersant-containing carbon material film according to claim 1 or 2, which is formed on a substrate. 前記炭素材料が、SWCNT、MWCNT、カーボンブラック、炭素繊維、黒鉛粒子からなる群から選択される1種又は2種以上である請求項1〜3のいずれか1項に記載の分散剤含有炭素材料膜。   The dispersant-containing carbon material according to any one of claims 1 to 3, wherein the carbon material is one or more selected from the group consisting of SWCNT, MWCNT, carbon black, carbon fiber, and graphite particles. film. 請求項1〜4のいずれか1項に記載の分散剤含有炭素材料膜を含む電子又は電気デバイス製造用材料。   The material for electronic or electrical device manufacture containing the dispersing agent containing carbon material film | membrane of any one of Claims 1-4. 請求項1〜4のいずれか1項に記載の分散剤含有炭素材料膜を全面露光処理、又は、所定パターンで部分露光処理する露光工程、露光処理された分散剤含有炭素材料膜をリンス液で処理することにより、未露光部分を溶解除去するとともに、露光部分の分散剤を除去するリンス工程を備えることを特徴とする、炭素材料膜又はパターン化炭素材料膜の製造方法。   5. An exposure process in which the dispersant-containing carbon material film according to claim 1 is exposed entirely or partially exposed in a predetermined pattern, and the dispersant-containing carbon material film subjected to the exposure process is rinsed. A method for producing a carbon material film or a patterned carbon material film, comprising a rinsing step of dissolving and removing an unexposed portion by treatment and removing a dispersant in the exposed portion. リンス液は、水又は有機溶媒である請求項6に記載の炭素材料膜又はパターン化炭素材料膜の製造方法。   The method for producing a carbon material film or a patterned carbon material film according to claim 6, wherein the rinse liquid is water or an organic solvent. 請求項6又は7に記載の炭素材料膜又はパターン化炭素材料膜の製造方法を含む電気又は電子デバイスの製造方法。   The manufacturing method of the electric or electronic device containing the manufacturing method of the carbon material film or patterned carbon material film of Claim 6 or 7.
JP2015529554A 2013-08-02 2014-07-25 Dispersant-containing carbon material film containing photoresponsive dispersant, and carbon material film manufacturing method using the dispersant-containing carbon material film Active JP6095027B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013161056 2013-08-02
JP2013161056 2013-08-02
PCT/JP2014/069753 WO2015016156A1 (en) 2013-08-02 2014-07-25 Dispersant-containing carbon material film containing light-responsive dispersant, and method for producing carbon material film using said dispersant-containing carbon material film

Publications (2)

Publication Number Publication Date
JPWO2015016156A1 true JPWO2015016156A1 (en) 2017-03-02
JP6095027B2 JP6095027B2 (en) 2017-03-15

Family

ID=52431691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015529554A Active JP6095027B2 (en) 2013-08-02 2014-07-25 Dispersant-containing carbon material film containing photoresponsive dispersant, and carbon material film manufacturing method using the dispersant-containing carbon material film

Country Status (4)

Country Link
JP (1) JP6095027B2 (en)
KR (1) KR20160040547A (en)
CN (1) CN105431379A (en)
WO (1) WO2015016156A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017187985A1 (en) * 2016-04-26 2017-11-02 国立研究開発法人産業技術総合研究所 Ionic compound and photoresponsive nano carbon material dispersant
JP2017210563A (en) * 2016-05-26 2017-11-30 国立研究開発法人産業技術総合研究所 Ink for forming conductive film containing photoresponsive dispersant and high crystal long sized carbon nanotube as main components and thin film thereof
JP6870860B2 (en) * 2016-11-07 2021-05-12 国立研究開発法人産業技術総合研究所 Manufacturing method and equipment for nanocarbon material membrane
CN114773222B (en) * 2022-05-16 2024-04-09 宁波大学 Synthesis method of azo micromolecules for zinc oxide nanoparticle stable ligand

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005007281A (en) * 2003-06-18 2005-01-13 Japan Science & Technology Agency Single layer carbon nanohorn adsorbent and manufacturing method therefor
JP2009203118A (en) * 2008-02-28 2009-09-10 Fujifilm Corp Nanocarbon film, electrode using it, and its manufacturing method
WO2011052604A1 (en) * 2009-10-26 2011-05-05 独立行政法人産業技術総合研究所 Photoresponsive ionic organic compound, production method therefor, and photoresponsive carbon nanotube dispersant comprising said ionic organic compound
JP2011236066A (en) * 2010-05-06 2011-11-24 Kyoto Univ Method of producing film containing carbon nanotube, carbon nanotube dispersion
JP2012082120A (en) * 2010-10-15 2012-04-26 Fukuoka Prefecture New nanocarbon dispersant, nanocarbon fluid dispersion, and method for manufacturing nanocarbon thin film using those and nanocarbon thin film
JP2013095821A (en) * 2011-10-31 2013-05-20 Fujifilm Corp Conductive composition, and conductive film and conductive laminate using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009128717A (en) * 2007-11-26 2009-06-11 Kyocera Mita Corp Single-layer electrophotographic photoreceptor and image forming apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005007281A (en) * 2003-06-18 2005-01-13 Japan Science & Technology Agency Single layer carbon nanohorn adsorbent and manufacturing method therefor
JP2009203118A (en) * 2008-02-28 2009-09-10 Fujifilm Corp Nanocarbon film, electrode using it, and its manufacturing method
WO2011052604A1 (en) * 2009-10-26 2011-05-05 独立行政法人産業技術総合研究所 Photoresponsive ionic organic compound, production method therefor, and photoresponsive carbon nanotube dispersant comprising said ionic organic compound
JP2011236066A (en) * 2010-05-06 2011-11-24 Kyoto Univ Method of producing film containing carbon nanotube, carbon nanotube dispersion
JP2012082120A (en) * 2010-10-15 2012-04-26 Fukuoka Prefecture New nanocarbon dispersant, nanocarbon fluid dispersion, and method for manufacturing nanocarbon thin film using those and nanocarbon thin film
JP2013095821A (en) * 2011-10-31 2013-05-20 Fujifilm Corp Conductive composition, and conductive film and conductive laminate using the same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MATSUZAWA,Y. ET AL: "Photochemical dispersibility tuning of carbon nanotubes by photocyclization of a water-soluble stilb", 第41回フラーレン・ナノチューブ・グラフェン総合シンポジウム 講演要旨集, JPN6014037887, 5 September 2011 (2011-09-05), pages 17, ISSN: 0003387074 *
MATSUZAWA,Y. ET AL: "Photoinduced Dispersibility Tuning of Carbon Nanotubes by a Water-Soluble Stilbene as a Dispersant", ADVANCED MATERIALS, vol. 23, JPN6014037888, 26 July 2011 (2011-07-26), pages 3922 - 3925, ISSN: 0003387075 *
UMEYAMA,T. ET AL: "Dispersion of carbon nanotubes by photo- and thermal-responsive polymers containing azobenzene unit", CHEMICAL COMMUNICATIONS, vol. 46, no. 32, JPN6014037889, 28 August 2010 (2010-08-28), pages 5969 - 5971, ISSN: 0003387076 *

Also Published As

Publication number Publication date
JP6095027B2 (en) 2017-03-15
WO2015016156A1 (en) 2015-02-05
KR20160040547A (en) 2016-04-14
CN105431379A (en) 2016-03-23

Similar Documents

Publication Publication Date Title
Georgakilas Functionalization of graphene
Pan et al. Wrinkle engineering: a new approach to massive graphene nanoribbon arrays
Geng et al. A simple approach for preparing transparent conductive graphene films using the controlled chemical reduction of exfoliated graphene oxide in an aqueous suspension
Lee et al. Selective-area fluorination of graphene with fluoropolymer and laser irradiation
Zhu et al. Argon plasma induced phase transition in monolayer MoS2
Deng et al. Graphene wrinkles enable spatially defined chemistry
Hansora et al. Graphite to graphene via graphene oxide: an overview on synthesis, properties, and applications
Lee et al. Chemically isolated graphene nanoribbons reversibly formed in fluorographene using polymer nanowire masks
Wu et al. Controlled chlorine plasma reaction for noninvasive graphene doping
Kim et al. Fabrication and characterization of large-area, semiconducting nanoperforated graphene materials
Kim et al. Surface energy modification by spin-cast, large-area graphene film for block copolymer lithography
JP6095027B2 (en) Dispersant-containing carbon material film containing photoresponsive dispersant, and carbon material film manufacturing method using the dispersant-containing carbon material film
Erickson et al. Longitudinal splitting of boron nitride nanotubes for the facile synthesis of high quality boron nitride nanoribbons
Fukaya et al. One-step sub-10 μm patterning of carbon-nanotube thin films for transparent conductor applications
Li et al. Langmuir− Blodgett assembly of densely aligned single-walled carbon nanotubes from bulk materials
Yang et al. UV/O3 generated graphene nanomesh: formation mechanism, properties, and FET studies
Li et al. Structural and electronic properties of graphane nanoribbons
Kim et al. Fermi level engineering of single-walled carbon nanotubes by AuCl3 doping
Cote et al. Langmuir− Blodgett assembly of graphite oxide single layers
Wei et al. Evolution of graphene patterning: from dimension regulation to molecular engineering
Pal et al. Dry functionalization and doping of single-walled carbon nanotubes by ozone
Eom et al. Coffee-ring structure from dried graphene derivative solutions: a facile one-step fabrication route for all graphene-based transistors
Zhang et al. Photo‐induced free radical modification of graphene
Yoon et al. Thermal conversion of electronic and electrical properties of AuCl3-Doped single-walled carbon nanotubes
Kumar et al. Optical unzipping of carbon nanotubes in liquid media

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170207

R150 Certificate of patent or registration of utility model

Ref document number: 6095027

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250