JPWO2015002146A1 - Crystal of 1,1-bis (4- (2-hydroxyethoxy) phenyl) -3,3,5-trimethylcyclohexane and method for producing the same - Google Patents

Crystal of 1,1-bis (4- (2-hydroxyethoxy) phenyl) -3,3,5-trimethylcyclohexane and method for producing the same Download PDF

Info

Publication number
JPWO2015002146A1
JPWO2015002146A1 JP2015525207A JP2015525207A JPWO2015002146A1 JP WO2015002146 A1 JPWO2015002146 A1 JP WO2015002146A1 JP 2015525207 A JP2015525207 A JP 2015525207A JP 2015525207 A JP2015525207 A JP 2015525207A JP WO2015002146 A1 JPWO2015002146 A1 JP WO2015002146A1
Authority
JP
Japan
Prior art keywords
bis
trimethylcyclohexane
crystal
hydroxyethoxy
phenyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015525207A
Other languages
Japanese (ja)
Other versions
JP6713281B2 (en
Inventor
耕司 村垣
耕司 村垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honshu Chemical Industry Co Ltd
Original Assignee
Honshu Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honshu Chemical Industry Co Ltd filed Critical Honshu Chemical Industry Co Ltd
Publication of JPWO2015002146A1 publication Critical patent/JPWO2015002146A1/en
Application granted granted Critical
Publication of JP6713281B2 publication Critical patent/JP6713281B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/20Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
    • C07C43/23Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring containing hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/34Separation; Purification; Stabilisation; Use of additives
    • C07C41/40Separation; Purification; Stabilisation; Use of additives by change of physical state, e.g. by crystallisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

1,1−ビス(4−(2−ヒドロキシエトキシ)フェニル)−3,3,5−トリメチルシクロヘキサンの新規な結晶体、及びその製造方法を提供することを課題とする。解決手段としては、1,1−ビス(4−(2−ヒドロキシエトキシ)フェニル)−3,3,5−トリメチルシクロヘキサンの結晶体及び1,1−ビス(4−(2−ヒドロキシエトキシ)フェニル)−3,3,5−トリメチルシクロヘキサンの非結晶体をメタノール又はメチルエチルケトンから選ばれる少なくとも一つの溶媒に溶解させた後、該溶液から0℃以下で溶媒融点以上の温度で晶析することを特徴とする1,1−ビス(4−(2−ヒドロキシエトキシ)フェニル)−3,3,5−トリメチルシクロヘキサンの結晶体の製造方法である。It is an object of the present invention to provide a novel crystal of 1,1-bis (4- (2-hydroxyethoxy) phenyl) -3,3,5-trimethylcyclohexane and a method for producing the same. The solution includes 1,1-bis (4- (2-hydroxyethoxy) phenyl) -3,3,5-trimethylcyclohexane crystal and 1,1-bis (4- (2-hydroxyethoxy) phenyl). A non-crystal of −3,3,5-trimethylcyclohexane is dissolved in at least one solvent selected from methanol or methyl ethyl ketone, and then crystallized from the solution at a temperature not higher than 0 ° C. and not lower than the melting point of the solvent. Is a method for producing 1,1-bis (4- (2-hydroxyethoxy) phenyl) -3,3,5-trimethylcyclohexane crystal.

Description

本発明は、1,1−ビス(4−(2−ヒドロキシエトキシ)フェニル)−3,3,5−トリメチルシクロヘキサンの新規な結晶体、およびその製造方法に関する。   The present invention relates to a novel crystal of 1,1-bis (4- (2-hydroxyethoxy) phenyl) -3,3,5-trimethylcyclohexane and a method for producing the same.

1,1−ビス(4−(2−ヒドロキシエトキシ)フェニル)−3,3,5−トリメチルシクロヘキサン(以下、BPTMC−2EOと称する場合がある)は、ポリエステルに有用な化合物であることが知られている。(特許文献1、非特許文献1)
このようなBPTMC−2EOは、従来、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサンをエチレンオキサイドや炭酸エチレンと反応させて得られることが知られているが、得られたBPTMC−2EOは、いずれも示差走査熱量分析による融解吸熱ピークも確認されないなど、結晶体は得られていなかった。
このように、BPTMC−2EOの非結晶体は知られているものの、結晶体は知られておらず、加えてBPTMC−2EOを結晶体で得ることは容易ではなかった。
1,1-bis (4- (2-hydroxyethoxy) phenyl) -3,3,5-trimethylcyclohexane (hereinafter sometimes referred to as BPTMC-2EO) is known to be a useful compound for polyester. ing. (Patent Document 1, Non-Patent Document 1)
Such BPTMC-2EO is conventionally known to be obtained by reacting 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane with ethylene oxide or ethylene carbonate. In the obtained BPTMC-2EO, no crystal was obtained, such as no melting endothermic peak was confirmed by differential scanning calorimetry.
Thus, although the amorphous body of BPTMC-2EO is known, the crystalline body is not known, and in addition, it was not easy to obtain BPTMC-2EO as a crystalline body.

そして、従来の非結晶体のBPTMC−2EOは常温では固化するため、容器等に保存していたものを使用する場合には、温度を上げて再度、液状にしなければならないか、もしくは、固化温度以上の温度に保つ必要があった。
また、ある程度の大きさに切り分けたり、粒状やフレーク状に加工しても、保存中に互いにくっつきあって塊状となったり、容器にも付着してしまうため容器等から容易に取り出せなくなる場合があり、この塊は完全にくっついていないものの、取り扱い性が非常に悪く、工業的に大量に使用する際には非効率となる。例えば、非結晶体のBPTMC−2EOを粉砕したものを保管しておくと塊状となるので、容器等から取り出す際には、掻き出したり、再度粉砕したりする必要があり、作業が面倒である。
さらに、ポリエステルやポリカーボネート等の高品質の樹脂を得るためには、不純物の少ない安定した品質の高純度のBPTMC−2EOを原料として用いる必要があるが、この非結晶体のBPTMC−2EOは、カラム分離等の工業的に効率の悪い方法でしか純度を上げることができず、低純度のものとしてのみ得られるに留まっていた。
And since the conventional amorphous BPTMC-2EO is solidified at room temperature, when using the one stored in a container or the like, it must be raised to a liquid state again, or the solidification temperature. It was necessary to maintain the above temperature.
Also, even if cut into a certain size or processed into a granular or flaky shape, they may stick together during storage and become a lump or adhere to the container, making it difficult to remove from the container. Although this lump is not completely attached, the handling is very poor, and it becomes inefficient when used in large quantities industrially. For example, if the non-crystalline BPTMC-2EO is pulverized and stored, it becomes a lump, so that it is necessary to scrape or pulverize again when taking it out of a container or the like, which is troublesome.
Furthermore, in order to obtain a high-quality resin such as polyester or polycarbonate, it is necessary to use a stable and high-purity BPTMC-2EO with few impurities as a raw material, but this amorphous BPTMC-2EO is a column. The purity can be increased only by an industrially inefficient method such as separation, and it can only be obtained as a low-purity one.

ドイツ公開第4138245号German Open No. 4138245

Macromolecules,44,4049〜4056(2011)Macromolecules, 44, 4049-4056 (2011)

上記背景技術を鑑みて、本発明は、保存や取り扱いが容易な安定した高純度のBPTMC−2EOの新規な結晶体の提供、および該結晶体を工業的に容易な方法で製造する方法を提供することを課題とする。   In view of the above-mentioned background art, the present invention provides a novel crystalline body of stable high-purity BPTMC-2EO that is easy to store and handle, and a method for producing the crystalline body by an industrially easy method. The task is to do.

上記課題を解決するための本発明は以下の通りである。
1.1,1−ビス(4−(2−ヒドロキシエトキシ)フェニル)−3,3,5−トリメチルシクロヘキサンの結晶体。
2.示差走査熱量分析による吸熱ピークトップ温度が75〜100℃の範囲である1に記載の結晶体。
3.1,1−ビス(4−(2−ヒドロキシエトキシ)フェニル)−3,3,5−トリメチルシクロヘキサンの非結晶体を、メタノール又はメチルエチルケトンから選ばれる少なくとも一つの溶媒に溶解させた後、該溶液を0℃以下かつ溶媒融点以上の温度として、溶解されている1,1−ビス(4−(2−ヒドロキシエトキシ)フェニル)−3,3,5−トリメチルシクロヘキサンを晶析することを特徴とする、1,1−ビス(4−(2−ヒドロキシエトキシ)フェニル)−3,3,5−トリメチルシクロヘキサンの結晶体の製造方法。
4.1,1−ビス(4−(2−ヒドロキシエトキシ)フェニル)−3,3,5−トリメチルシクロヘキサンの非結晶体が、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサンと、炭酸エチレン又はエチレンオキサイドを、触媒の存在下に反応して得られたものである、3に記載の1,1−ビス(4−(2−ヒドロキシエトキシ)フェニル)−3,3,5−トリメチルシクロヘキサンの結晶体の製造方法。
The present invention for solving the above problems is as follows.
1. Crystals of 1,1-bis (4- (2-hydroxyethoxy) phenyl) -3,3,5-trimethylcyclohexane.
2. 2. The crystal body according to 1, wherein the endothermic peak top temperature by differential scanning calorimetry is in the range of 75 to 100 ° C.
3. After dissolving an amorphous form of 1,1-bis (4- (2-hydroxyethoxy) phenyl) -3,3,5-trimethylcyclohexane in at least one solvent selected from methanol or methyl ethyl ketone, The solution is characterized by crystallizing dissolved 1,1-bis (4- (2-hydroxyethoxy) phenyl) -3,3,5-trimethylcyclohexane at a temperature not higher than 0 ° C. and not lower than the solvent melting point. A method for producing a crystal of 1,1-bis (4- (2-hydroxyethoxy) phenyl) -3,3,5-trimethylcyclohexane.
4. The amorphous form of 1,1-bis (4- (2-hydroxyethoxy) phenyl) -3,3,5-trimethylcyclohexane is 1,1-bis (4-hydroxyphenyl) -3,3,5. -1,1-bis (4- (2-hydroxyethoxy) phenyl) -3 according to 3, which is obtained by reacting trimethylcyclohexane with ethylene carbonate or ethylene oxide in the presence of a catalyst. A method for producing a crystal of 3,5-trimethylcyclohexane.

本発明により得られたBPTMC−2EOの結晶体は長期間保管していてもくっつきあって塊状にならず、容器への付着も非常に少ない。また、保存した容器等から取り出す際にも流動性がよく、保存性、作業性が良好である。
さらに、本発明に係る結晶体の製造方法により、BPTMC−2EOの高純度品を効率よく得ることができる。
The BPTMC-2EO crystals obtained according to the present invention do not stick together and form a lump even when stored for a long period of time, and have very little adhesion to the container. Moreover, when taking out from the preserve | save container etc., fluidity | liquidity is good, and preservability and workability | operativity are favorable.
Furthermore, a high purity product of BPTMC-2EO can be efficiently obtained by the method for producing a crystal according to the present invention.

実施例1のDSC測定結果DSC measurement result of Example 1 実施例2のDSC測定結果DSC measurement result of Example 2 実施例3のDSC測定結果DSC measurement result of Example 3 参考例1の粉末X線回折分析測定結果Powder X-ray diffraction analysis measurement result of Reference Example 1 実施例2のさらに乾燥して得られた結晶のDSC測定結果DSC measurement result of crystal obtained by further drying in Example 2 実施例3の粉末X線回折分析の結果Results of powder X-ray diffraction analysis of Example 3

本発明の結晶体を得るために使用する原料である、1,1−ビス(4−(2−ヒドロキシエトキシ)フェニル)−3,3,5−トリメチルシクロヘキサンの非結晶体を得る方法について述べる。
その非結晶体を得る方法については特に制限はないが、従来より、1,1−ビス(4−(2−ヒドロキシエトキシ)フェニル)−3,3,5−トリメチルシクロヘキサンは、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサンとエチレンオキサイドまたは炭酸エチレンを触媒の存在下に反応させて得られることが知られており、この方法を採用することができる。
A method for obtaining a non-crystal of 1,1-bis (4- (2-hydroxyethoxy) phenyl) -3,3,5-trimethylcyclohexane, which is a raw material used for obtaining the crystal of the present invention, will be described.
Although there is no restriction | limiting in particular about the method of obtaining the amorphous | non-crystalline substance, Conventionally, 1,1-bis (4- (2-hydroxyethoxy) phenyl) -3,3,5-trimethylcyclohexane is 1,1-bis. It is known to be obtained by reacting (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane with ethylene oxide or ethylene carbonate in the presence of a catalyst, and this method can be employed.

しかしながら、このエチレンオキサイドを用いる方法は、エチレンオキサイドが常温で気体であるため、合成時にオートクレーブ等の加圧反応装置が必要であり、さらにエチレンオキサイドが毒性や引火性、爆発性等を有するため取り扱いが困難であるといった問題点がある。   However, this method using ethylene oxide requires a pressure reactor such as an autoclave at the time of synthesis because ethylene oxide is a gas at room temperature. Further, ethylene oxide has toxicity, flammability, explosiveness, etc. There is a problem that is difficult.

一方、炭酸エチレンを用いる方法は、炭酸エチレンは低毒性であり、無臭であり、引火性が低いことから、1,1−ビス(4−(2−ヒドロキシエトキシ)フェニル)−3,3,5−トリメチルシクロヘキサンを工業的に製造することが容易である。
従って、本発明の結晶体を得るための原料である、1,1−ビス(4−(2−ヒドロキシエトキシ)フェニル)−3,3,5−トリメチルシクロヘキサンの非結晶体を得る好ましい方法は、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサンと炭酸エチレンを触媒の存在下に反応させる方法である。
On the other hand, the method using ethylene carbonate is 1,1-bis (4- (2-hydroxyethoxy) phenyl) -3,3,5 because ethylene carbonate has low toxicity, odorlessness, and low flammability. -It is easy to industrially produce trimethylcyclohexane.
Therefore, a preferable method for obtaining an amorphous body of 1,1-bis (4- (2-hydroxyethoxy) phenyl) -3,3,5-trimethylcyclohexane, which is a raw material for obtaining the crystalline body of the present invention, In this method, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane and ethylene carbonate are reacted in the presence of a catalyst.

この反応については特に制限はなく、公知の方法を用いることができるが、具体的には、例えば、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサンを水酸化カリウム等の触媒の存在下、加温下に、炭酸エチレンと反応させて1,1−ビス(4−(2−ヒドロキシエトキシ)フェニル)−3,3,5−トリメチルシクロヘキサンを得る。この反応において、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサンと炭酸エチレンの原料モル比は1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン/炭酸エチレン:1/2〜1/5程度の範囲、好ましくは1/2〜1/3程度の範囲である。
ここで上記触媒としては、上記の水酸化カリウムの他にも、一般に公知のものを用いることができ、テトラエチルアンモニウムブロマイド、テトラメチルアンモニウムクロライド等の4級アンモニウム塩、ヨウ化カリウム、臭化ナトリウム等のハロゲン化アルカリ金属塩、トリフェニルホスフィン、トリブチルホスフィン等のトリオルガノホスフィン化合物、1−メチルイミダゾール等のアミン触媒、炭酸カリウム、炭酸カルシウム、炭酸マグネシウム、水酸化マグネシウム、水酸化カルシウム、水酸化ナトリウム、炭酸水素ナトリウム、メトキシナトリウム、フェノキシナトリウム等のアルカリ触媒を例示することができる。これらの触媒は、単独で用いても二種類以上を併用してもよい。
かかる触媒の使用量としては、用いる1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサンの0.001〜10重量%であり、好ましくは0.01〜1重量%である。
There is no restriction | limiting in particular about this reaction, Although a well-known method can be used, For example, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane is potassium hydroxide, for example. 1,1-bis (4- (2-hydroxyethoxy) phenyl) -3,3,5-trimethylcyclohexane is obtained by reaction with ethylene carbonate in the presence of a catalyst such as. In this reaction, the raw material molar ratio of 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane to ethylene carbonate is 1,1-bis (4-hydroxyphenyl) -3,3,5- Trimethylcyclohexane / ethylene carbonate: in the range of about 1/2 to 1/5, preferably in the range of about 1/2 to 1/3.
Here, in addition to the above potassium hydroxide, generally known catalysts can be used as the catalyst, and quaternary ammonium salts such as tetraethylammonium bromide and tetramethylammonium chloride, potassium iodide, sodium bromide and the like. Alkali metal halides, triorganophosphine compounds such as triphenylphosphine and tributylphosphine, amine catalysts such as 1-methylimidazole, potassium carbonate, calcium carbonate, magnesium carbonate, magnesium hydroxide, calcium hydroxide, sodium hydroxide, Examples of the alkali catalyst include sodium bicarbonate, sodium methoxy, and phenoxy sodium. These catalysts may be used alone or in combination of two or more.
The amount of the catalyst used is 0.001 to 10% by weight, preferably 0.01 to 1% by weight of 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane used. is there.

炭酸エチレンを過剰量使用することで反応を無溶媒で行うことも可能である。しかしながら、経済性や操作性の観点から通常は有機溶媒を用いて行われる。
反応溶媒を用いる場合、反応不活性な各種公知の溶媒を使用することができる。かかる反応溶媒としては、例えば、トルエン、キシレンなどの芳香族炭化水素、テトラヒドロフラン、ジオキサン、1,2−ジメトキシエタン等のエーテル系溶媒、アセトン、メチルイソブチルケトン等のケトン系溶媒、クロロホルム、1,2−ジクロルエタン等のハロゲン化炭化水素、ブタノール、エチレングリコール等の脂肪族アルコール、ジメチルホルムアミド、ジメチルスルホキシド等の極性溶媒などが挙げられる。
反応溶媒の使用量に関しては特に制限はないが、使用量があまりに多すぎる場合は製造効率等の面で好ましくなく、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン100重量部に対して、好ましくは50〜300重量部の範囲であり、より好ましくは、100〜200重量部の範囲である。
It is also possible to carry out the reaction without solvent by using an excessive amount of ethylene carbonate. However, it is usually carried out using an organic solvent from the viewpoint of economy and operability.
When a reaction solvent is used, various known solvents that are inert to the reaction can be used. Examples of the reaction solvent include aromatic hydrocarbons such as toluene and xylene, ether solvents such as tetrahydrofuran, dioxane, and 1,2-dimethoxyethane, ketone solvents such as acetone and methyl isobutyl ketone, chloroform, and 1,2. -Halogenated hydrocarbons such as dichloroethane, aliphatic alcohols such as butanol and ethylene glycol, and polar solvents such as dimethylformamide and dimethyl sulfoxide.
Although there is no restriction | limiting in particular regarding the usage-amount of a reaction solvent, when too much usage-amount is unpreferable in terms of production efficiency etc., 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane Preferably it is the range of 50-300 weight part with respect to 100 weight part, More preferably, it is the range of 100-200 weight part.

反応は、大気雰囲気下、あるいは、不活性ガス雰囲気下のいずれで行ってもよいが、反応生成物の着色等を抑制するために、窒素、アルゴン等の不活性ガス雰囲気下が好ましい。
反応温度は反応が進行する温度であれば特に限定はされないが、通常は加熱下に行われる。例えば、100℃〜250℃で行われ、好ましくは溶媒の還流下で行われる。
反応時間は、反応温度、使用する炭酸エチレン量、触媒の量と種類などによるが、通常は5〜24時間程度にて行われる。当該反応においては、炭酸ガスの発生がおさまった時点を反応終了の目安とすることができる。
反応終了後、常法に準じて、分離・精製することにより1,1−ビス(4−(2−ヒドロキシエトキシ)フェニル)−3,3,5−トリメチルシクロヘキサンの非結晶体を得ることができる。
The reaction may be performed in an air atmosphere or an inert gas atmosphere, but in order to suppress coloring of the reaction product, an inert gas atmosphere such as nitrogen or argon is preferable.
The reaction temperature is not particularly limited as long as the reaction proceeds. Usually, the reaction is performed under heating. For example, it is carried out at 100 ° C. to 250 ° C., preferably under reflux of the solvent.
The reaction time depends on the reaction temperature, the amount of ethylene carbonate to be used, the amount and type of the catalyst, etc., but is usually about 5 to 24 hours. In the reaction, the point at which the generation of carbon dioxide gas has stopped can be used as a measure for the completion of the reaction.
After completion of the reaction, an amorphous form of 1,1-bis (4- (2-hydroxyethoxy) phenyl) -3,3,5-trimethylcyclohexane can be obtained by separation and purification according to a conventional method. .

分離・精製を行う処理としては、例えば、反応終了後反応系内に残留する過剰の炭酸エチレンを、加温下に水を加えて加水分解し、アルカリ触媒を用いている場合はこれに酸含有水(例えば、塩酸、硫酸)や酢酸、プロピオン酸等を加えて中和する。その後、必要に応じて水と分離する溶媒を加えてから、油層を複数回水洗し、水層を分離除去して得られた油層から減圧下で溶媒等の低沸点物を留出させて除去する又は乾燥する方法などを挙げることができる。
このようにして得られた本発明に係る原料の1,1−ビス(4−(2−ヒドロキシエトキシ)フェニル)−3,3,5−トリメチルシクロヘキサンの粗精製物は、示差走査熱量分析による吸熱ピークをもたない非結晶性体であり、室温では樹脂状の固体である。
そして、このBPTMC−2EOの非結晶体の純度は、通常90%以上、好ましくは95%以上、更に好ましくは97%以上である。
Examples of the treatment for separation / purification include hydrolysis of excess ethylene carbonate remaining in the reaction system after completion of the reaction by adding water under heating, and when an alkali catalyst is used, this contains an acid. Neutralize by adding water (for example, hydrochloric acid, sulfuric acid), acetic acid, propionic acid and the like. Then, if necessary, after adding a solvent that separates from water, the oil layer is washed with water several times, and the low-boiling substances such as solvent are distilled off under reduced pressure from the oil layer obtained by separating and removing the aqueous layer. Or a method of drying.
The crude purified product of 1,1-bis (4- (2-hydroxyethoxy) phenyl) -3,3,5-trimethylcyclohexane as the raw material according to the present invention thus obtained is endothermic by differential scanning calorimetry. It is an amorphous material having no peak, and is a resinous solid at room temperature.
The purity of the amorphous BPTMC-2EO is usually 90% or more, preferably 95% or more, and more preferably 97% or more.

このBPTMC−2EOの非結晶体は、驚くべきことに、その理由は定かではないが、特定の有機溶媒のみ、即ちメタノール又はメチルエチルケトンのみに加えて加熱溶解させ、これを特定温度である0℃以下かつ溶媒融点以上の温度に保持することにより結晶を析出させることができ、結果的に結晶体として取り出せる事を見出したものである。
使用するメタノール又はメチルエチルケトンの量は、BPTMC−2EOの非結晶体(但し、低純度のものは純度100%の換算量)1重量部に対し2〜10重量部、好ましくは2.5〜6重量部、より好ましくは3〜5重量部である。
BPTMC−2EOの溶解方法については特に制限はないが、例えば、攪拌下に40℃から60℃程度に加温して溶解する。その後、該溶液から0℃以下で溶媒融点以上の温度に保持して結晶を析出させる。晶析温度は、好ましくは−20℃〜0℃、より好ましくは−20℃〜−5℃の範囲である。
晶析方法については特に制限はなく、例えば、攪拌下に温度−10℃程度の温度に冷却して結晶を析出させ、その後、同温度を維持するか、もしくはさらに冷却して結晶を増加させる。結晶析出前の冷却工程において過冷却の状態、または、溶解度が飽和状態かそれに近い状態の時には、スムーズな結晶析出を促すために種晶を適量添加してもよい。また、このように種晶を用いることによって、より高純度な結晶が得られる可能性がある。(なお、種晶を用いる場合は種晶なしでの晶析濾過工程がその前に少なくとも1回必要である。)
また、効果を阻害しない範囲内で、結晶析出後に歩留まりを向上する目的でトルエン等の貧溶媒を添加してもよい。
次いで、このようにして析出させた結晶を濾別した後、乾燥することにより、本発明に係るBPTMC−2EOの高純度の結晶体を得ることができる。
Surprisingly, the non-crystalline substance of BPTMC-2EO is heated and dissolved by adding only a specific organic solvent, that is, methanol or methyl ethyl ketone, and the specific temperature is 0 ° C. or less. In addition, it has been found that crystals can be precipitated by maintaining the temperature at a temperature equal to or higher than the melting point of the solvent, and can be taken out as a crystal as a result.
The amount of methanol or methyl ethyl ketone used is 2 to 10 parts by weight, preferably 2.5 to 6 parts by weight, based on 1 part by weight of the non-crystalline BPTMC-2EO (however, the low-purity one is 100% in terms of purity). Parts, more preferably 3 to 5 parts by weight.
Although there is no restriction | limiting in particular about the melt | dissolution method of BPTMC-2EO, For example, it heats and melt | dissolves at about 40 to 60 degreeC under stirring. Thereafter, crystals are precipitated from the solution by keeping the temperature at 0 ° C. or lower and the temperature not lower than the solvent melting point. The crystallization temperature is preferably in the range of -20 ° C to 0 ° C, more preferably -20 ° C to -5 ° C.
The crystallization method is not particularly limited. For example, the crystal is precipitated by cooling to a temperature of about −10 ° C. with stirring, and then the temperature is maintained or further cooled to increase the crystal. In the cooling step before crystal precipitation, when the solution is in a supercooled state or the solubility is in a saturated state or a state close thereto, an appropriate amount of seed crystals may be added to promote smooth crystal precipitation. In addition, by using the seed crystal in this way, a higher-purity crystal may be obtained. (In the case of using seed crystals, a crystallization filtration step without seed crystals is required at least once before that.)
In addition, a poor solvent such as toluene may be added for the purpose of improving the yield after crystal precipitation within a range not inhibiting the effect.
Subsequently, the crystals thus precipitated are filtered off and dried to obtain a high-purity crystal of BPTMC-2EO according to the present invention.

この方法により得られた本発明に係るBPTMC−2EOの結晶体は、示差走査熱量分析において、吸熱ピークトップ温度が75〜100℃の範囲にある。その吸熱ピークトップ温度は、好ましくは80〜95℃の範囲、さらに好ましくは85〜92℃の範囲、特に好ましくは86〜90℃の範囲である。 The crystal of BPTMC-2EO according to the present invention obtained by this method has an endothermic peak top temperature in the range of 75 to 100 ° C. in differential scanning calorimetry. The endothermic peak top temperature is preferably in the range of 80 to 95 ° C, more preferably in the range of 85 to 92 ° C, and particularly preferably in the range of 86 to 90 ° C.

本発明に係る結晶体は、示差走査熱量分析において、吸熱ピークトップ温度が75〜100℃の範囲にある吸熱ピーク以外に、吸熱ピークが存在していてもよい。例えば、晶析条件によっては、溶媒とBPTMC−2EOの付加物からなるアダクト結晶が生成する場合があり、そのような場合には、75〜100℃の範囲に加えて、それ以外にも吸熱ピークが存在する。吸熱ピークトップ温度が75〜100℃の範囲にある吸熱ピーク以外にも吸熱ピークが存在する結晶体の場合には、吸熱ピークトップ温度が75〜100℃の範囲の吸熱ピーク面積が、それ以外のピーク面積よりも大きい結晶が好ましい。
このような本発明に係るBPTMC−2EO結晶体の純度は、通常95〜100%、好ましくは97〜100%、特に好ましくは98〜100%である
本発明に係る結晶体の製造において用いられる晶析溶媒では、種晶を用いない場合は、メチルエチルケトンではBPTMC−2EOとの付加物からなるアダクト結晶が生成する傾向がある。
In the differential scanning calorimetry, the crystal according to the present invention may have an endothermic peak in addition to the endothermic peak having an endothermic peak top temperature in the range of 75 to 100 ° C. For example, depending on the crystallization conditions, an adduct crystal composed of an adduct of a solvent and BPTMC-2EO may be generated. In such a case, in addition to the range of 75 to 100 ° C., other endothermic peaks are also present. Exists. In the case of a crystal having an endothermic peak other than an endothermic peak having an endothermic peak top temperature in the range of 75 to 100 ° C., an endothermic peak area having an endothermic peak top temperature in the range of 75 to 100 ° C. Crystals larger than the peak area are preferred.
The purity of such BPTMC-2EO crystal according to the present invention is usually 95 to 100%, preferably 97 to 100%, particularly preferably 98 to 100%. Crystals used in the production of the crystal according to the present invention When seed crystals are not used in the deposition solvent, methyl ethyl ketone tends to produce adduct crystals composed of adducts with BPMC-2EO.

示差走査熱量分析(DSC)の測定条件
・示差走査熱量計:島津示差走査熱量計(型番:DSC−60)
・測定試料量:2〜3mg
・昇温速度 : 10℃/分(30℃〜200℃)
・窒素流量 : 50ml/分
<粉末X線回折分析>測定条件
粉末X線回折装置:リガク製 SmartLab
X線:CuKα線
管電圧・管電流:45kV,200mA
スキャンスピード:20.0000 deg/min
Differential scanning calorimetry (DSC) measurement conditions-Differential scanning calorimeter: Shimadzu differential scanning calorimeter (model number: DSC-60)
・ Measurement sample amount: 2-3mg
・ Temperature increase rate: 10 ° C./min (30 ° C. to 200 ° C.)
・ Nitrogen flow rate: 50 ml / min <Powder X-ray diffraction analysis> Measurement conditions Powder X-ray diffractometer: Rigaku SmartLab
X-ray: CuKα ray tube voltage and tube current: 45kV, 200mA
Scan speed: 20.0000 deg / min

参考例1(BPTMC−2EOの合成例)
攪拌翼、温度計及び還流冷却器を備えた4つ口フラスコに1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン1086.5g、純度85%の粒状水酸化カリウム11.6g、炭酸エチレン678.1g及びトルエン1629.8gを仕込み、フラスコ内を窒素置換した後、撹拌下に114℃まで昇温した。その後、撹拌下109℃〜113℃で14時間反応を続けた。反応中は炭酸ガスの発生が続いた。
反応終了後に水25.2gを加えて、110℃で1時間加水分解を行った。還流した水は系外に留出させた。さらに80℃まで冷却し、90%酢酸を加えて中和した。
その液にトルエン1267gと水700gを加えて撹拌した後、静置して水層を分離除去した。得られた油層に水700gを加えて、撹拌後に静置し、水層を分離除去する水洗操作を2回行った。得られた油層を常圧で133℃まで昇温して濃縮し、溶媒等の低沸点物を除去した。さらに減圧下に0.6kPa、140℃の条件まで濃縮を続けた。
濃縮後、得られた残液は1368gの淡黄色液体で、高速液体クロマトグラフィー法(HPLC法)により測定した純度が95.0%のBPTMC−2EOであった。
室温で放置すると液は固化し、樹脂状物となった。
得られた樹脂状物を細かく粉砕した粉末を粉末X線回折分析した。測定結果を図4に示す。
粉末X線回折分析において結晶質形態の特徴であるシャープなピークが全く無く、5°〜30°の回折角(2θ)にブロードなハローパターンを有し非晶質形態であることが分かった。
Reference Example 1 (Synthesis example of BPTMC-2EO)
In a four-necked flask equipped with a stirring blade, a thermometer, and a reflux condenser, 1086.5 g of 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, granular potassium hydroxide 11 having a purity of 85% 11 .6 g, ethylene carbonate (678.1 g) and toluene (1629.8 g) were charged, and the atmosphere in the flask was replaced with nitrogen, followed by heating to 114 ° C. with stirring. Thereafter, the reaction was continued at 109 ° C. to 113 ° C. with stirring for 14 hours. Carbon dioxide evolution continued during the reaction.
After completion of the reaction, 25.2 g of water was added and hydrolysis was performed at 110 ° C. for 1 hour. The refluxed water was distilled out of the system. The mixture was further cooled to 80 ° C. and neutralized by adding 90% acetic acid.
To the solution, 1267 g of toluene and 700 g of water were added and stirred, and then allowed to stand to separate and remove the aqueous layer. 700 g of water was added to the obtained oil layer, and the mixture was allowed to stand after stirring, and a water washing operation for separating and removing the aqueous layer was performed twice. The obtained oil layer was heated to 133 ° C. under normal pressure and concentrated to remove low-boiling substances such as a solvent. Further, the concentration was continued under reduced pressure to the conditions of 0.6 kPa and 140 ° C.
After concentration, the obtained residual liquid was 1368 g of a pale yellow liquid and was BPTMC-2EO having a purity of 95.0% as measured by a high performance liquid chromatography method (HPLC method).
When left at room temperature, the liquid solidified and became a resinous material.
Powder obtained by finely grinding the obtained resinous material was analyzed by powder X-ray diffraction. The measurement results are shown in FIG.
In the powder X-ray diffraction analysis, it was found that there was no sharp peak characteristic of the crystalline form, a broad halo pattern at a diffraction angle (2θ) of 5 ° to 30 °, and an amorphous form.

実施例1(メタノール溶媒による晶析)
参考例1で得られた純度95.0%の樹脂状BPTMC−2EO2.0gに、メタノール8.0gを加えて溶解させた後、−10℃に冷却して、同温度でさらに24時間放置した。析出した結晶を−10℃に保持した状態で濾別し、得られた結晶を乾燥させて白色結晶1.6gを得た。
得られた結晶の純度は97.2%(HPLC法)、DSCでの融解吸熱範囲は76〜92℃で吸熱最大(ピークトップ)が86℃だった。
DSC測定結果を図1に示す。
Example 1 (crystallization with methanol solvent)
After adding 8.0 g of methanol to 2.0 g of resinous BPTMC-2EO having a purity of 95.0% obtained in Reference Example 1, the mixture was cooled to −10 ° C. and left at the same temperature for another 24 hours. . The precipitated crystals were separated by filtration while maintaining at -10 ° C, and the obtained crystals were dried to obtain 1.6 g of white crystals.
The purity of the obtained crystal was 97.2% (HPLC method), the melting endothermic range by DSC was 76 to 92 ° C, and the endothermic maximum (peak top) was 86 ° C.
The DSC measurement result is shown in FIG.

実施例2(メチルエチルケトンによる晶析)
参考例1で得られた樹脂状BPTMC−2EO2.0gにメチルエチルケトン8.0gを加えて溶解させた後、−10℃まで冷却して、同温度でさらに24時間放置した。−10℃に保持した状態で析出した結晶を濾別し、減圧下に室温で2時間乾燥させて白色結晶0.61gを得た。
得られた結晶の純度は97.9%(HPLC法)で、DSCによる測定結果は、53〜62℃(ピークトップ57℃)及び77〜92℃(ピークトップ86℃)に吸熱範囲を有し、中でも融解吸熱最大が86℃であった。
DSC測定結果を図2に示す。
その得られた結晶を更に乾燥して得られた結晶をDSC測定した。DSC測定による融解吸熱範囲は78〜93℃で吸熱最大(ピークトップ)が87℃であった。
そのDSC測定結果を図5に示す。
Example 2 (crystallization with methyl ethyl ketone)
After adding 8.0 g of methyl ethyl ketone to 2.0 g of the resinous BPTMC-2EO obtained in Reference Example 1 and dissolving it, the mixture was cooled to −10 ° C. and allowed to stand at the same temperature for 24 hours. Crystals precipitated while being kept at −10 ° C. were filtered off and dried at room temperature under reduced pressure for 2 hours to obtain 0.61 g of white crystals.
The purity of the obtained crystals is 97.9% (HPLC method), and the measurement results by DSC have endothermic ranges at 53 to 62 ° C. (peak top 57 ° C.) and 77 to 92 ° C. (peak top 86 ° C.). Of these, the maximum melting endotherm was 86 ° C.
The DSC measurement result is shown in FIG.
The crystals obtained by further drying the obtained crystals were subjected to DSC measurement. The endothermic melting range as determined by DSC measurement was 78 to 93 ° C, and the maximum endotherm (peak top) was 87 ° C.
The DSC measurement result is shown in FIG.

実施例3
攪拌翼、温度計及び還流冷却器を備えた4つ口フラスコに1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン93.0g、炭酸エチレン58.1g、純度85%の粒状水酸化カリウム0.99g、テトラブチルアンモニウムブロミド0.97g及びトルエン140gを仕込み、フラスコ内を窒素置換した後、撹拌下に109℃まで昇温した。その後、撹拌下109℃〜114℃で10時間反応を続けた。
反応終了液に水1.1gを加えて、110℃で1時間加水分解を行った。さらに80℃まで冷却して、酢酸を加えて中和した。
その液にトルエン140g及び水50gを加えて70℃で1時間撹拌した後、静置して水層を分離除去した。得られた油層に水50gを加えて、70℃で1時間撹拌した後に静置し、水層を分離除去する水洗操作を2回行った。
得られた油層を濃縮して、溶媒等の低沸点物を除去した。濃縮は2.0kPa、130℃(残液温度)まで続けた。
Example 3
In a four-necked flask equipped with a stirring blade, a thermometer, and a reflux condenser, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane 93.0 g, ethylene carbonate 58.1 g, purity 85% Were charged with 0.99 g of granular potassium hydroxide, 0.97 g of tetrabutylammonium bromide, and 140 g of toluene. After the atmosphere in the flask was replaced with nitrogen, the temperature was raised to 109 ° C. with stirring. Thereafter, the reaction was continued at 109 ° C. to 114 ° C. for 10 hours with stirring.
1.1 g of water was added to the reaction completion solution, and hydrolysis was performed at 110 ° C. for 1 hour. The mixture was further cooled to 80 ° C. and neutralized by adding acetic acid.
140 g of toluene and 50 g of water were added to the solution, and the mixture was stirred at 70 ° C. for 1 hour, and then allowed to stand to separate and remove the aqueous layer. 50 g of water was added to the obtained oil layer, and the mixture was stirred at 70 ° C. for 1 hour and then allowed to stand, and a water washing operation for separating and removing the aqueous layer was performed twice.
The resulting oil layer was concentrated to remove low-boiling substances such as solvents. Concentration was continued up to 2.0 kPa and 130 ° C. (residual liquid temperature).

得られた残液114.9gは純度95.6%(HPLC法)のBPTMC−2EOであり、この残液20gにメタノール80gを加え、60℃に昇温して溶解した。撹拌下にこの溶液を−10℃まで冷却し、この温度で24時間撹拌を続けた後、析出した結晶を濾別、乾燥して、純度97.9%(HPLC法)の結晶13.4gを得た。この結晶にメタノール54gを加え、60℃に昇温して溶解した。撹拌下にこの溶液を−10℃まで冷却し、この温度で24時間撹拌を続けた後、析出した結晶を濾別、乾燥して、純度98.8%(HPLC法)の結晶9.7gを得た。この結晶にさらにメタノール39gを加え、60℃に昇温して溶解した。撹拌下にこの溶液を−10℃まで冷却し、この温度で24時間撹拌を続けた後、析出した結晶を濾別、乾燥して純度99.1%(HPLC法)の白色結晶6.7gを得た。
この結晶をDSC測定したところ、70〜95℃に吸熱ピークがあり、その吸熱最大(ピークトップ)が88.4℃であった。DSC測定結果を図3、粉末X線回折分析の結果を図6に示す。
114.9 g of the obtained residual liquid was BPTMC-2EO having a purity of 95.6% (HPLC method). 80 g of methanol was added to 20 g of the residual liquid, and the mixture was heated to 60 ° C. and dissolved. The solution was cooled to −10 ° C. with stirring, and the stirring was continued at this temperature for 24 hours. The precipitated crystals were separated by filtration and dried to obtain 13.4 g of crystals having a purity of 97.9% (HPLC method). Obtained. 54 g of methanol was added to the crystals, and the mixture was heated to 60 ° C. and dissolved. The solution was cooled to −10 ° C. with stirring, and the stirring was continued at this temperature for 24 hours. Then, the precipitated crystals were separated by filtration and dried to obtain 9.7 g of crystals having a purity of 98.8% (HPLC method). Obtained. 39 g of methanol was further added to the crystals, and the mixture was heated to 60 ° C. and dissolved. The solution was cooled to −10 ° C. with stirring, and the stirring was continued at this temperature for 24 hours. The precipitated crystals were separated by filtration and dried to obtain 6.7 g of white crystals having a purity of 99.1% (HPLC method). Obtained.
When this crystal was subjected to DSC measurement, there was an endothermic peak at 70 to 95 ° C., and the endothermic maximum (peak top) was 88.4 ° C. The DSC measurement result is shown in FIG. 3, and the powder X-ray diffraction analysis result is shown in FIG.

比較例1(メタノール溶媒・高温)
冷却温度を2℃にした以外は、実施例1と同様に行ったが、結晶の析出は確認できなかった。
Comparative Example 1 (Methanol solvent / high temperature)
Although it carried out like Example 1 except having made cooling temperature 2 ° C, precipitation of a crystal was not able to be checked.

比較例2(メチルエチルケトン溶媒・高温)
冷却温度を2℃にした以外は、実施例2と同様に行ったが、結晶の析出は確認できなかった。
Comparative Example 2 (Methyl ethyl ketone solvent / high temperature)
Although it carried out like Example 2 except having made cooling temperature 2 ° C, precipitation of a crystal was not able to be checked.

比較例3(トルエン溶媒)
溶媒にトルエンを使用し、室温(25〜30℃)で放置した以外は実施例1と同様に行ったが、結晶は析出しなかった。また、冷却温度を2℃とする以外は上記と同様におこなったが、結晶は析出しなかった。
さらに冷却温度を−10℃とする以外は上記と同様におこなったが、分離層が生成しただけで結晶は析出しなかった。
Comparative Example 3 (Toluene solvent)
Although it carried out like Example 1 except having used toluene as a solvent and leaving it to stand at room temperature (25-30 ° C), a crystal did not precipitate. Moreover, although it carried out like the above except having made cooling temperature 2 degreeC, the crystal | crystallization did not precipitate.
Further, except that the cooling temperature was −10 ° C., it was carried out in the same manner as described above. However, crystals were not precipitated just by forming a separation layer.

比較例4(エタノール溶媒)
溶媒にエタノールを使用した以外は比較例3と同様に行ったが、いずれも結晶は析出しなかった。
Comparative Example 4 (ethanol solvent)
Although it carried out similarly to the comparative example 3 except having used ethanol for the solvent, the crystal | crystallization did not precipitate in all.

比較例5(メチルイソブチルケトン溶媒)
溶媒にメチルイソブチルケトンを用いた以外は比較例3と同様に行ったが、いずれも結晶は析出しなかった。
Comparative Example 5 (methyl isobutyl ketone solvent)
Although it carried out similarly to the comparative example 3 except having used methyl isobutyl ketone for the solvent, neither crystal | crystallization precipitated.

比較例6(ヘプタン溶媒)
溶媒にヘプタンを使用した以外は比較例3と同様に行ったが、いずれも分離層が生成して結晶は析出しなかった。
Comparative Example 6 (heptane solvent)
Except that heptane was used as a solvent, the same procedure as in Comparative Example 3 was performed, but in any case, a separation layer was formed and no crystals were precipitated.

(保存性・取り扱い性の確認)
参考例1で得られた非結晶体(樹脂状BPTMC−2EO)を細かく粉砕した。その粉砕した非結晶体1.0gと、実施例3で得られた純度99.1%の結晶体1.0gの粉体を、それぞれ20ml容量のガラス製サンプル瓶に入れ、蓋をして24時間放置した。
その後、蓋を開けて、サンプル瓶を逆さにして、流動性を確認した。実施例3の結晶体はサンプル瓶から1.0gすべて出たが、参考例1により得られた非結晶体は、サンプル瓶の壁面に付着し、更に互いにくっつきあって塊状化しており、サンプル瓶からまったく出ず、瓶の底を叩いても、まったく落下しなかった。
さらに、実施例2で得られた純度97.9%、DSCによる吸熱範囲が、53〜62℃(ピークトップ57℃)及び77〜92℃(ピークトップ86℃)である結晶体0.5gの粉体を用いた以外は上記と同様に流動性の確認を行った。この実施例2の結晶体も、実施例3の結晶体と同様にサンプル瓶から0.5gすべて出た。
この結果によると、参考例1による非結晶体よりも、本発明の結晶体は、粉体として保存しても流動性を失わず、瓶から取り出して取り扱う際の取り扱い性にも優れる。
(Confirmation of storage and handling)
The amorphous body (resinous BPTMC-2EO) obtained in Reference Example 1 was finely pulverized. 1.0 g of the pulverized non-crystalline substance and 1.0 g of the 99.1% pure crystalline substance obtained in Example 3 were placed in a 20 ml glass sample bottle, capped, and 24 g. Left for hours.
Thereafter, the lid was opened and the sample bottle was turned upside down to confirm the fluidity. Although 1.0 g of the crystal body of Example 3 all came out of the sample bottle, the non-crystal body obtained in Reference Example 1 adhered to the wall surface of the sample bottle and further adhered to each other to form a lump. I didn't get out of it at all, and when I hit the bottom of the bottle, it didn't fall at all.
Furthermore, the purity obtained in Example 2 was 97.9%, and the endothermic range by DSC was 53 to 62 ° C. (peak top 57 ° C.) and 77 to 92 ° C. (peak top 86 ° C.). The fluidity was confirmed in the same manner as described above except that powder was used. In the same manner as the crystal body of Example 3, all the 0.5 g of the crystal body of Example 2 came out of the sample bottle.
According to this result, the crystalline material of the present invention does not lose fluidity even when stored as a powder, and is superior in handling property when taken out from a bottle and handled than the amorphous material according to Reference Example 1.

Claims (4)

1,1−ビス(4−(2−ヒドロキシエトキシ)フェニル)−3,3,5−トリメチルシクロヘキサンの結晶体。   Crystalline of 1,1-bis (4- (2-hydroxyethoxy) phenyl) -3,3,5-trimethylcyclohexane. 示差走査熱量分析による吸熱ピークトップ温度が75〜100℃の範囲である請求項1に記載の結晶体。   The endothermic peak top temperature according to differential scanning calorimetry is in the range of 75 to 100 ° C. 1,1−ビス(4−(2−ヒドロキシエトキシ)フェニル)−3,3,5−トリメチルシクロヘキサンの非結晶体を、メタノール又はメチルエチルケトンから選ばれる少なくとも一つの溶媒に溶解させた後、該溶液を0℃以下かつ溶媒融点以上の温度として、溶解されている1,1−ビス(4−(2−ヒドロキシエトキシ)フェニル)−3,3,5−トリメチルシクロヘキサンを晶析することを特徴とする、1,1−ビス(4−(2−ヒドロキシエトキシ)フェニル)−3,3,5−トリメチルシクロヘキサンの結晶体の製造方法。   An amorphous form of 1,1-bis (4- (2-hydroxyethoxy) phenyl) -3,3,5-trimethylcyclohexane is dissolved in at least one solvent selected from methanol or methyl ethyl ketone, and then the solution is used. Crystallized dissolved 1,1-bis (4- (2-hydroxyethoxy) phenyl) -3,3,5-trimethylcyclohexane at a temperature of 0 ° C. or lower and a solvent melting point or higher, A method for producing a crystal of 1,1-bis (4- (2-hydroxyethoxy) phenyl) -3,3,5-trimethylcyclohexane. 1,1−ビス(4−(2−ヒドロキシエトキシ)フェニル)−3,3,5−トリメチルシクロヘキサンの非結晶体が、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサンと、炭酸エチレン又はエチレンオキサイドを、触媒の存在下に反応して得られたものである、請求項3に記載の1,1−ビス(4−(2−ヒドロキシエトキシ)フェニル)−3,3,5−トリメチルシクロヘキサンの結晶体の製造方法。   The amorphous form of 1,1-bis (4- (2-hydroxyethoxy) phenyl) -3,3,5-trimethylcyclohexane is 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethyl. The 1,1-bis (4- (2-hydroxyethoxy) phenyl) -3, 3, which is obtained by reacting cyclohexane with ethylene carbonate or ethylene oxide in the presence of a catalyst. A method for producing a crystal of 3,5-trimethylcyclohexane.
JP2015525207A 2013-07-03 2014-06-30 Crystal of 1,1-bis(4-(2-hydroxyethoxy)phenyl)-3,3,5-trimethylcyclohexane and method for producing the same Active JP6713281B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013139505 2013-07-03
JP2013139505 2013-07-03
PCT/JP2014/067411 WO2015002146A1 (en) 2013-07-03 2014-06-30 1, 1-bis (4-(2-hydroxyethoxy) phenyl)-3, 3, 5 - trimethylcyclohexane crystalline body and production method therefor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019076355A Division JP6714749B2 (en) 2013-07-03 2019-04-12 Method for producing 1,1-bis(4-(2-hydroxyethoxy)phenyl)-3,3,5-trimethylcyclohexane

Publications (2)

Publication Number Publication Date
JPWO2015002146A1 true JPWO2015002146A1 (en) 2017-02-23
JP6713281B2 JP6713281B2 (en) 2020-06-24

Family

ID=52143721

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2015525207A Active JP6713281B2 (en) 2013-07-03 2014-06-30 Crystal of 1,1-bis(4-(2-hydroxyethoxy)phenyl)-3,3,5-trimethylcyclohexane and method for producing the same
JP2019076355A Active JP6714749B2 (en) 2013-07-03 2019-04-12 Method for producing 1,1-bis(4-(2-hydroxyethoxy)phenyl)-3,3,5-trimethylcyclohexane

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2019076355A Active JP6714749B2 (en) 2013-07-03 2019-04-12 Method for producing 1,1-bis(4-(2-hydroxyethoxy)phenyl)-3,3,5-trimethylcyclohexane

Country Status (4)

Country Link
JP (2) JP6713281B2 (en)
KR (2) KR20210034129A (en)
CN (1) CN105339335B (en)
WO (1) WO2015002146A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021187075A1 (en) * 2020-03-19 2021-09-23 帝人株式会社 Polycyclic aromatic hydrocarbon compound, crystal thereof and production method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4138245A1 (en) * 1991-11-21 1993-05-27 Bayer Ag New bis:hydroxy-alkoxy-di:phenyl-cycloalkane cpds. - for prepn. of thermoplastic polyester(s) and co-polyester(s) with impact resistance, prepd. by reacting bisphenol and dioxolone
US5288923A (en) * 1991-01-31 1994-02-22 Bayer Aktiengesellschaft Preparation of ethers of diphenols
JPH0769986A (en) * 1993-07-21 1995-03-14 Bayer Ag Acrylate and methacrylate based on cyclohexyl-diphenol
JPH10330306A (en) * 1997-05-30 1998-12-15 Honshu Chem Ind Co Ltd Etherification of phenols
JP2000001448A (en) * 1998-06-15 2000-01-07 Honshu Chem Ind Co Ltd New polynuclear skeletal polyphenol compound
JP2009107991A (en) * 2007-10-31 2009-05-21 Honshu Chem Ind Co Ltd New hydroxymethyl-substituted or alkoxymethyl-substituted bisphenol compound
WO2012164198A1 (en) * 2011-05-31 2012-12-06 Cecalc Method for preparing alkoxylated bisphenol derivatives

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH599979A5 (en) 1976-12-21 1978-06-15 Alusuisse

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5288923A (en) * 1991-01-31 1994-02-22 Bayer Aktiengesellschaft Preparation of ethers of diphenols
DE4138245A1 (en) * 1991-11-21 1993-05-27 Bayer Ag New bis:hydroxy-alkoxy-di:phenyl-cycloalkane cpds. - for prepn. of thermoplastic polyester(s) and co-polyester(s) with impact resistance, prepd. by reacting bisphenol and dioxolone
JPH0769986A (en) * 1993-07-21 1995-03-14 Bayer Ag Acrylate and methacrylate based on cyclohexyl-diphenol
JPH10330306A (en) * 1997-05-30 1998-12-15 Honshu Chem Ind Co Ltd Etherification of phenols
JP2000001448A (en) * 1998-06-15 2000-01-07 Honshu Chem Ind Co Ltd New polynuclear skeletal polyphenol compound
JP2009107991A (en) * 2007-10-31 2009-05-21 Honshu Chem Ind Co Ltd New hydroxymethyl-substituted or alkoxymethyl-substituted bisphenol compound
WO2012164198A1 (en) * 2011-05-31 2012-12-06 Cecalc Method for preparing alkoxylated bisphenol derivatives

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HIGH PERFORMANCE POLYMERS, vol. 17(3), JPN6018008051, 2005, pages 361-376 *
MACROMOLECULES, vol. 44, JPN6018008053, 2011, pages 4049-4056 *
平山 令明, 有機化合物結晶作製ハンドブック −原理とノウハウ−, JPN6019000201, 25 July 2008 (2008-07-25), JP, pages 17−18頁 *
新実験化学講座1 基本操作I, JPN6019000202, 20 September 1975 (1975-09-20), JP, pages 318−325頁 *

Also Published As

Publication number Publication date
JP6714749B2 (en) 2020-06-24
KR20210034129A (en) 2021-03-29
CN105339335B (en) 2019-01-04
WO2015002146A1 (en) 2015-01-08
KR102236738B1 (en) 2021-04-05
JP6713281B2 (en) 2020-06-24
CN105339335A (en) 2016-02-17
JP2019131604A (en) 2019-08-08
KR20160029062A (en) 2016-03-14

Similar Documents

Publication Publication Date Title
JP6426226B2 (en) Crystal form of 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene
US9611226B2 (en) Preparation method for azoxystrobin
TW200848398A (en) Polymorphic crystals of fluorene derivative and method for preparing same
US8962832B2 (en) Process for the preparation of ambrisentan and novel intermediates thereof
US20220144787A1 (en) Process for Preparing 1-deoxy-1-methylamino-D-glucitol 2-(3,5-dichlorophenyl)-6-benzoxazolecarboxylate
JP6714749B2 (en) Method for producing 1,1-bis(4-(2-hydroxyethoxy)phenyl)-3,3,5-trimethylcyclohexane
JP5962929B2 (en) Integrated production method of diallyl bisphenols
WO2021015083A1 (en) Crystal of 2, 2&#39;-bis(ethoxycarbonylmethoxy)-1, 1&#39;-binaphthyl
JP2011006379A (en) Method for recrystallizing {2-amino-1,4-dihydro-6-methyl-4-(3-nitrophenyl)-3,5-pyridine dicarboxylic acid-3-[1-(diphenylmethyl)azetidin-3-yl]ester-5-isopropyl ester}(azelnidipine), isopropyl alcohol adduct of azelnidipine, and method for producing azelnidipine
JPH09255609A (en) Production of 9,9-bis(4-(2-hydroxyethoxy)phenyl)fluorene
WO2022138178A1 (en) Crystal of 1,1,1-tris(4-hydroxy-3,5-dimethylphenyl)ethane and production method therefor
WO2020256045A1 (en) Hexamethyl-substituted/dimethyl-substituted 4,4&#39;-bis(2-propene-1-yloxy)-1,1&#39;-biphenyl crystal
ES2557893T3 (en) 4- (6-Chloro-3-methyl-4,10-dihydro-3H-2,3,4,9-tetrabenzo [f] azulene-9-carbonyl) -2-fluorobenzylamide cyclopropanecarboxylic acid tosylate salt
JP2009001506A (en) Production method of trihydroxybenzophenone
JP2006282527A (en) Cyclohexane derivative and method for producing the same
JP4220619B2 (en) Method for producing indene carbonate
US10508076B2 (en) Method for resolution of citalopram intermediate 5-cyano diol
JP5569397B2 (en) Method for producing 2-hydroxymethylmorpholine salt
JP5525216B2 (en) Method for producing trimellitic anhydride diester
JP2020075866A (en) Bisphenol compound having fluorene skeleton
WO2016021524A1 (en) Method for producing optically active 2-methylpiperazine
JP2012041277A (en) Improved method for producing 1, 3-disubstituted pyrrolidine compound or salt thereof
WO2015029519A1 (en) Method for producing triazole compound
JP2011126828A (en) Improved method for producing 1,3-disubstituted pyrrolidine compound or salt thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180306

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180705

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190412

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190425

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20190614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200603

R150 Certificate of patent or registration of utility model

Ref document number: 6713281

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250