JPWO2014196311A1 - Method for producing complex and solution thereof, method for producing light absorption layer for solar cell, and method for producing solar cell - Google Patents

Method for producing complex and solution thereof, method for producing light absorption layer for solar cell, and method for producing solar cell Download PDF

Info

Publication number
JPWO2014196311A1
JPWO2014196311A1 JP2015521351A JP2015521351A JPWO2014196311A1 JP WO2014196311 A1 JPWO2014196311 A1 JP WO2014196311A1 JP 2015521351 A JP2015521351 A JP 2015521351A JP 2015521351 A JP2015521351 A JP 2015521351A JP WO2014196311 A1 JPWO2014196311 A1 JP WO2014196311A1
Authority
JP
Japan
Prior art keywords
group
compound
solution
metal
complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015521351A
Other languages
Japanese (ja)
Other versions
JP6012866B2 (en
Inventor
卓矢 大橋
卓矢 大橋
亮正 仲村
亮正 仲村
啓之 飯田
啓之 飯田
大 桑原
大 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Ohka Kogyo Co Ltd
Original Assignee
Tokyo Ohka Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Ohka Kogyo Co Ltd filed Critical Tokyo Ohka Kogyo Co Ltd
Application granted granted Critical
Publication of JP6012866B2 publication Critical patent/JP6012866B2/en
Publication of JPWO2014196311A1 publication Critical patent/JPWO2014196311A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02557Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/0256Selenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02568Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03923Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIBIIICVI compound materials, e.g. CIS, CIGS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

太陽電池の光吸収層の形成に用いられる錯体およびその溶液の製造方法であって、第11族金属、第12族金属、第13族金属、第14族金属、第15族元素、第11族金属化合物、第12族金属化合物、第13族金属化合物、第14族金属化合物及び第15族元素含有化合物からなる群より選ばれる少なくとも1種の単体または化合物と、メルカプト基含有有機化合物、スルフィド、ポリスルフィド、チオカルボニル基含有有機化合物、硫黄含有複素環式化合物、ヒドロセレノ基含有有機化合物、セレニド、ポリセレニド、セレノカルボニル基含有有機化合物及びセレン含有複素環式化合物からなる群より選ばれる少なくとも1種のカルコゲン元素含有有機化合物と、ルイス塩基性無機化合物と、第16族元素とを混合して反応液を得ることを含む。A method for producing a complex used for forming a light absorption layer of a solar cell and a solution thereof, comprising a Group 11 metal, Group 12 metal, Group 13 metal, Group 14 metal, Group 15 element, Group 11 At least one simple substance or compound selected from the group consisting of a metal compound, a Group 12 metal compound, a Group 13 metal compound, a Group 14 metal compound and a Group 15 element-containing compound, a mercapto group-containing organic compound, a sulfide, At least one chalcogen selected from the group consisting of polysulfides, thiocarbonyl group-containing organic compounds, sulfur-containing heterocyclic compounds, hydroseleno group-containing organic compounds, selenides, polyselenides, selenocarbonyl group-containing organic compounds, and selenium-containing heterocyclic compounds. A reaction liquid can be obtained by mixing an element-containing organic compound, a Lewis basic inorganic compound, and a Group 16 element. Including the.

Description

本発明は、太陽電池の光吸収層の形成に用いられる錯体およびその溶液の製造方法、該錯体溶液を用いた太陽電池用光吸収層の製造方法、及び該錯体溶液を用いた太陽電池の製造方法に関する。
本願は、2013年6月3日に米国に出願された、米国仮出願第61/830294号及び2014年1月9日に米国に出願された、米国仮出願第61/925621号に基づき優先権主張し、その内容をここに援用する。
The present invention relates to a complex used for forming a light absorption layer of a solar cell, a method for producing the solution, a method for producing a light absorption layer for a solar cell using the complex solution, and production of a solar cell using the complex solution. Regarding the method.
This application is based on United States provisional application 61/830294 filed in the United States on June 3, 2013 and United States provisional application 61/925621 filed in the United States on January 9, 2014. Insist and use that content here.

近年、環境への配慮から太陽電池への関心が高まっており、中でも光電変換効率が高い薄膜太陽電池であるカルコパイライト系太陽電池やインジウム等のレアメタルを他の環境に優しい金属に置き換えたケステライト系太陽電池には特に注目が集まっており、現在、研究開発が活発に行われている。   In recent years, interest in solar cells has increased due to environmental considerations. Among them, chalcopyrite solar cells, which are thin-film solar cells with high photoelectric conversion efficiency, and kesterite systems in which rare metals such as indium are replaced with other environmentally friendly metals. Solar cells are attracting particular attention, and research and development are actively underway.

カルコパイライト系太陽電池は、カルコパイライト系(黄銅鉱系)材料からなる光吸収層を、基板上に成膜して形成される太陽電池である。カルコパイライト系材料の代表的な元素は、銅(Cu)、インジウム(In)、ガリウム(Ga)、セレン(Se)及び硫黄(S)等であり、光吸収層の代表的なものとして、Cu(In,Ga)SeやCu(In,Ga)(Se,S)等があり、それぞれCIGS、CIGSS等と略称されている。また、最近ではレアメタルであるインジウムを置き換えた、例えば銅(Cu)、亜鉛(Zn)、スズ(Sn)セレン(Se)及び硫黄(S)からなるケステライト系太陽電池が検討されており、光吸収層の代表的なものとして、CuZnSnSe、CuZnSnS、CuZnSn(S,Se)等がある。A chalcopyrite solar cell is a solar cell formed by forming a light absorption layer made of a chalcopyrite (chalcopyrite) material on a substrate. Typical elements of chalcopyrite-based materials are copper (Cu), indium (In), gallium (Ga), selenium (Se), sulfur (S), and the like, and typical examples of the light absorption layer include Cu. (in, Ga) Se 2 and Cu (in, Ga) (Se , S) there are 2 or the like, and is abbreviated respectively CIGS, and CIGSS like. Recently, a kesterite solar cell made of, for example, copper (Cu), zinc (Zn), tin (Sn) selenium (Se) and sulfur (S), which replaces indium, which is a rare metal, has been studied. Typical examples of the layer include Cu 2 ZnSnSe 4 , Cu 2 ZnSnS 4 , Cu 2 ZnSn (S, Se) 4 and the like.

図1は、カルコパイライト系太陽電池又はケステライト系太陽電池の一例を示す断面模式図である。
図1に示すように、カルコパイライト系太陽電池又はケステライト系太陽電池は、基板2上に第1の電極3、CIGS又はCZTS層(光吸収層)4、バッファ層5、i−ZnO層6及び第2の電極7が、この順序で積層されて概略構成されている。なお、バッファ層としては、例えばCdS層や、ZnS層や、InS層等が知られている。
FIG. 1 is a schematic cross-sectional view showing an example of a chalcopyrite solar cell or a kesterite solar cell.
As shown in FIG. 1, the chalcopyrite solar cell or kesterite solar cell includes a first electrode 3, a CIGS or CZTS layer (light absorption layer) 4, a buffer layer 5, an i-ZnO layer 6 and a substrate 2. The second electrode 7 is schematically configured by being stacked in this order. As the buffer layer, for example, a CdS layer, a ZnS layer, an InS layer, or the like is known.

第1の電極3と第2の電極7には、それぞれ端子が接合されており、端子には、配線が接続されている。このようなカルコパイライト系又はケステライト系太陽電池1は、矢印Aの向きに入射された光が、CIGS又はCZTS層4で吸収されることにより、起電力が生じ、矢印Bの向きに電流が流れる。
なお、第2の電極7の表面は、例えばMgF層からなる反射防止膜層8によって覆われることで保護されている。
Terminals are joined to the first electrode 3 and the second electrode 7, respectively, and wiring is connected to the terminals. In such a chalcopyrite-based or kesterite-based solar cell 1, light incident in the direction of arrow A is absorbed by the CIGS or CZTS layer 4 to generate an electromotive force, and a current flows in the direction of arrow B. .
The surface of the second electrode 7 is protected by being covered with an antireflection film layer 8 made of, for example, an MgF 2 layer.

CIGS又はCZTS層4を成膜する方法としては、真空法や塗布法等の方法が知られている。もっとも、真空法を用いた場合は、装置のスケールアップにつながることから、歩留まりが悪いので、比較的安価に製造することが可能な塗布法の適用が鋭意研究されている。   As a method for forming the CIGS or CZTS layer 4, methods such as a vacuum method and a coating method are known. However, when the vacuum method is used, it leads to scale-up of the apparatus, and thus the yield is poor. Therefore, the application of a coating method that can be manufactured at a relatively low cost has been intensively studied.

塗布法は、一般に、CIGS層の場合にはCu,In,Ga,Se,及びS等の元素を特定の溶媒に溶解させて塗布液を調製し、この塗布液をスピンコーティング法、デッピング法やスリットキャスト法等を用いて基板上に塗布し、焼成してCIGS層を形成する。
そして、塗布液を調製する方法としては、溶剤としてヒドラジンを用いる方法と、ヒドラジンを用いない代わりに、溶解促進剤としてアミン類を添加する方法とが知られている(特許文献1及び2参照)。また、CZTS層の場合には、Cu、Zn、Sn、Se、及びS等の元素を特定の溶媒に溶解させて塗布液を調製し、この塗布液をスピンコーティング法、デッピング法やスリットキャスト法等を用いて基板上に塗布し、焼成してCZTS層を形成する。(特許文献3参照)。
In general, in the case of a CIGS layer, a coating solution is prepared by dissolving elements such as Cu, In, Ga, Se, and S in a specific solvent to prepare a coating solution, which is then applied to a spin coating method, a dipping method, A CIGS layer is formed by applying onto a substrate using a slit casting method or the like and baking.
And as a method of preparing a coating solution, a method using hydrazine as a solvent and a method of adding amines as a dissolution accelerator instead of using hydrazine are known (see Patent Documents 1 and 2). . In the case of a CZTS layer, a coating solution is prepared by dissolving elements such as Cu, Zn, Sn, Se, and S in a specific solvent, and this coating solution is prepared by spin coating, dipping, or slit casting. Etc. are applied onto the substrate and baked to form a CZTS layer. (See Patent Document 3).

また塗布液の調製方法として、カルコゲン元素含有有機化合物およびルイス塩基性有機化合物を含む混合溶媒に、I−B族元素およびIII−B族元素の少なくとも一方を含む金属原料を金属の状態で溶解させる方法も知られている(特許文献4参照)。   In addition, as a method for preparing the coating solution, a metal raw material containing at least one of a group IB element and a group III-B element is dissolved in a metal state in a mixed solvent containing a chalcogen element-containing organic compound and a Lewis basic organic compound. A method is also known (see Patent Document 4).

米国特許第7094651号明細書US Pat. No. 7,094,651 米国特許第7517718号明細書US Pat. No. 7,517,718 米国公開公報2011−0094557号US Publication No. 2011-0094557 米国公開公報2012−0070937号US Publication No. 2012-0070937

しかしながら、塗布液を調製する方法として、塗布溶剤にヒドラジンを用いる方法を採用した場合は、ヒドラジンの有する化学特性(爆発性、毒性)の問題から、プロセスの安全性に問題があることが従来から指摘されていた。   However, when a method using hydrazine as a coating solvent is adopted as a method for preparing a coating solution, there has been a problem in the safety of the process because of chemical properties (explosive properties, toxicity) of hydrazine. It was pointed out.

また、亜鉛カルコゲン化合物(zinc chalcogenide)、例えばZnSe等がヒドラジンに対する溶解性が低く、高濃度で均一な亜鉛錯体溶液を調製することが困難であった。また、塗布溶剤にヒドラジンを用いると、塗布液を調製後、2週間程度経過することにより、セレン化銅(CuSe)が析出してしまうため、塗布液の保存期間が短いという問題があった。Also, zinc chalcogenide compounds such as ZnSe have low solubility in hydrazine, and it has been difficult to prepare a high concentration and uniform zinc complex solution. In addition, when hydrazine is used as a coating solvent, copper selenide (Cu 2 Se) is precipitated after about 2 weeks from the preparation of the coating solution, resulting in a short storage period of the coating solution. It was.

一方、特許文献4の方法では、有機化合物を主成分として用いているため、塗布膜中の有機物含有量が多くなるおそれがある。塗布膜中に有機物が残存すると、光吸収層の結晶成長を阻害する要因となるため、好ましくない。   On the other hand, in the method of Patent Document 4, since an organic compound is used as a main component, the organic substance content in the coating film may increase. If the organic substance remains in the coating film, it becomes a factor that hinders the crystal growth of the light absorption layer, which is not preferable.

このような背景の下、金属を原料として製造可能な、太陽電池の光吸収層の形成に用いられる光吸収層形成用塗布液の製造方法が要望されていたが、有効適切なものは提供されてこなかったのが実情である。   Under such a background, there has been a demand for a method for producing a coating solution for forming a light absorption layer for use in forming a light absorption layer of a solar cell that can be produced using a metal as a raw material, but an effective and appropriate one is provided. It is the actual situation that did not come.

上記課題を解決するために、本発明は以下の構成を採用した。
すなわち、本発明の第一の態様は、太陽電池の光吸収層の形成に用いられる錯体およびその溶液の製造方法であって、第11族金属、第12族金属、第13族金属、第14族金属、第15族元素、第11族金属化合物、第12族金属化合物、第13族金属化合物、第14族金属化合物及び第15族元素含有化合物からなる群より選ばれる少なくとも1種の単体または化合物と、メルカプト基含有有機化合物、スルフィド、ポリスルフィド、チオカルボニル基含有有機化合物、硫黄含有複素環式化合物、ヒドロセレノ基含有有機化合物、セレニド、ポリセレニド、セレノカルボニル基含有有機化合物及びセレン含有複素環式化合物からなる群より選ばれる少なくとも1種のカルコゲン元素含有有機化合物と、ルイス塩基性無機化合物と、第16族元素とを混合して反応液を得ることを含む錯体およびその溶液の製造方法である。
In order to solve the above problems, the present invention employs the following configuration.
That is, the first aspect of the present invention is a method for producing a complex used for forming a light absorption layer of a solar cell and a solution thereof, which comprises a Group 11 metal, a Group 12 metal, a Group 13 metal, At least one element selected from the group consisting of Group metals, Group 15 elements, Group 11 metal compounds, Group 12 metal compounds, Group 13 metal compounds, Group 14 metal compounds, and Group 15 element-containing compounds or Compound, mercapto group-containing organic compound, sulfide, polysulfide, thiocarbonyl group-containing organic compound, sulfur-containing heterocyclic compound, hydroseleno group-containing organic compound, selenide, polyselenide, selenocarbonyl group-containing organic compound, and selenium-containing heterocyclic compound At least one chalcogen element-containing organic compound selected from the group consisting of: a Lewis basic inorganic compound; Is a complex and a manufacturing method of the solution includes obtaining mixed to the reaction solution and element.

本発明の第二の態様は、前記第一の態様に係る錯体およびその溶液の製造方法により得られた溶液を、基体に塗布し、焼成することを特徴とする太陽電池用光吸収層の製造方法である。   According to a second aspect of the present invention, there is provided a method for producing a light absorption layer for a solar cell, wherein the complex according to the first aspect and a solution obtained by the method for producing the solution are applied to a substrate and baked. Is the method.

本発明の第三の態様は、基板上に第1の電極を形成する工程と、前記第1の電極上に、第一の態様に係る錯体およびその溶液の製造方法により得られた溶液を塗布し、焼成して光吸収層を形成する工程と、前記光吸収層上にバッファ層を形成する工程と、前記バッファ層上に第2の電極を形成する工程と、を有することを特徴とする太陽電池の製造方法である。   According to a third aspect of the present invention, a step of forming a first electrode on a substrate, and a solution obtained by the complex according to the first aspect and a method for producing the solution are applied on the first electrode. And baking to form a light absorption layer, forming a buffer layer on the light absorption layer, and forming a second electrode on the buffer layer. It is a manufacturing method of a solar cell.

本発明によれば、結晶成長を阻害する要因となる有機物の含有量が低減された光吸収層を形成することが出来る。   According to the present invention, it is possible to form a light absorption layer in which the content of an organic substance that is a factor inhibiting crystal growth is reduced.

カルコパイライト系又はCZTS系太陽電池の一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example of a chalcopyrite type | system | group or a CZTS type solar cell.

[錯体および溶液の製造方法]
本発明の第一の態様は、太陽電池の光吸収層の形成に用いられる錯体およびその溶液の製造方法(以下、単に「錯体(溶液)の製造方法」という場合がある。)であって、第11族金属、第12族金属、第13族金属、第14族金属、第15族元素、第11族金属化合物、第12族金属化合物、第13族金属化合物、第14族金属化合物及び第15族元素含有化合物からなる群より選ばれる少なくとも1種の単体または化合物(以下、まとめて「単体および/または化合物」という場合がある。)と、メルカプト基含有有機化合物、スルフィド、ポリスルフィド、チオカルボニル基含有有機化合物、硫黄含有複素環式化合物、ヒドロセレノ基含有有機化合物、セレニド、ポリセレニド、セレノカルボニル基含有有機化合物及びセレン含有複素環式化合物からなる群より選ばれる少なくとも1種のカルコゲン元素含有有機化合物と、ルイス塩基性無機化合物と、第16族元素とを混合して反応液を得ることを含む。
[Production method of complex and solution]
A first aspect of the present invention is a complex used for forming a light absorption layer of a solar cell and a method for producing the complex (hereinafter sometimes simply referred to as “complex (solution) production method”), Group 11 metal, Group 12 metal, Group 13 metal, Group 14 metal, Group 15 element, Group 11 metal compound, Group 12 metal compound, Group 13 metal compound, Group 14 metal compound and Group At least one simple substance or compound selected from the group consisting of group 15 element-containing compounds (hereinafter sometimes collectively referred to as “simple and / or compounds”), mercapto group-containing organic compounds, sulfides, polysulfides, thiocarbonyls Group-containing organic compound, sulfur-containing heterocyclic compound, hydroseleno group-containing organic compound, selenide, polyselenide, selenocarbonyl group-containing organic compound, and selenium-containing complex And obtaining at least one chalcogen element-containing organic compound selected from the group consisting of Formula compound, a Lewis basic inorganic compound, mixing the reaction solution and a Group 16 element.

前記第11族金属としては、例えば、Cu元素、およびAg元素等が挙げられる。これらの中でも、Cu元素が特に好ましい。
前記第12族金属としては、例えば、Zn元素、およびCd元素等が挙げられる。これらの中でも、Zn元素が特に好ましい。
前記第13族金属としては、例えば、Al元素、Ga元素、およびIn元素等が挙げられる。これらの中でも、Ga元素およびIn元素が特に好ましい。
前記第14族金属としては、例えば、Si元素、Ge元素、およびSn元素等が挙げられる。これらの中でも、Ge元素およびSn元素が特に好ましい。
前記第15族元素としては、例えば、As元素、Sb元素、P元素、およびBi元素等が挙げられる。これらの中でも、Sb元素が特に好ましい。
Examples of the Group 11 metal include a Cu element and an Ag element. Among these, Cu element is particularly preferable.
Examples of the Group 12 metal include Zn element and Cd element. Among these, Zn element is particularly preferable.
Examples of the Group 13 metal include Al element, Ga element, and In element. Among these, Ga element and In element are particularly preferable.
Examples of the Group 14 metal include Si element, Ge element, and Sn element. Among these, Ge element and Sn element are particularly preferable.
Examples of the Group 15 element include As element, Sb element, P element, and Bi element. Among these, Sb element is particularly preferable.

前記第11族金属化合物としては、例えば、Cu(OH)、CuS、CuS、CuSe、CuSe、CuTe、CuTe、CuO、CuO、酸化銀、硫化銀、セレン化銀等が挙げられる
前記第12族金属化合物としては、例えば、ZnO、水酸化亜鉛、ZnS、ZnSe、ZnTe等が挙げられる。
前記第13族金属化合物としては、例えば、In(OH)、酸化インジウム、硫化インジウム、セレン化インジウム、テルル化インジウム、酸化ガリウム、硫化ガリウム、セレン化ガリウム、テルル化ガリウム、ホウ酸、酸化ホウ素等が挙げられる。
前記第14族金属化合物としては、例えば、SnS、SnO、SnO、SnS、SnSe、SnTe、酸化ゲルマニウム等が挙げられる。
前記第15族元素含有化合物としては、例えば、Sb、リン酸、亜リン酸、ホスフィン、砒酸、亜砒酸、硫化アンチモン、セレン化アンチモン、テルル化アンチモン等が挙げられる。
Examples of the Group 11 metal compound include Cu (OH) 2 , CuS, Cu 2 S, Cu 2 Se, CuSe, Cu 2 Te, CuTe, CuO, Cu 2 O, silver oxide, silver sulfide, and silver selenide. Examples of the Group 12 metal compound include ZnO, zinc hydroxide, ZnS, ZnSe, and ZnTe.
Examples of the Group 13 metal compound include In (OH) 3 , indium oxide, indium sulfide, indium selenide, indium telluride, gallium oxide, gallium sulfide, gallium selenide, gallium telluride, boric acid, and boron oxide. Etc.
Examples of the Group 14 metal compound include SnS, SnO, SnO 2 , SnS 2 , SnSe, SnTe, germanium oxide, and the like.
Examples of the Group 15 element-containing compound include Sb 2 O 3 , phosphoric acid, phosphorous acid, phosphine, arsenic acid, arsenous acid, antimony sulfide, antimony selenide, antimony telluride, and the like.

単体および/または化合物としては、1種を用いてもよく、2種以上を組み合わせて用いてもよい。   As a simple substance and / or a compound, 1 type may be used and 2 or more types may be used in combination.

本発明において、カルコゲン元素含有有機化合物は、メルカプト基含有有機化合物、スルフィド、ポリスルフィド、チオカルボニル基含有有機化合物、硫黄含有複素環式化合物、ヒドロセレノ基含有有機化合物、セレニド、ポリセレニド、セレノカルボニル基含有有機化合物及びセレン含有複素環式化合物からなる群より選ばれる少なくとも1種である。   In the present invention, the chalcogen element-containing organic compound is a mercapto group-containing organic compound, sulfide, polysulfide, thiocarbonyl group-containing organic compound, sulfur-containing heterocyclic compound, hydroseleno group-containing organic compound, selenide, polyselenide, or selenocarbonyl group-containing organic compound. It is at least one selected from the group consisting of a compound and a selenium-containing heterocyclic compound.

メルカプト基含有有機化合物としては、例えばアルキルチオール(エタンチオール、プロパンチオール等)、メルカプトエタノール、メルカプトプロパノール、メルカプトエトキシエタノール、チオグリセロール、チオグリコール酸、チオ乳酸、チオリンゴ酸、チオグリコール酸メチル、チオグリコール酸エチル、エタンジチオール、プロパンジチオール、ブタンジチオール、2,3−ジメルカプト−1−プロパノール、meso−2,3−ジメルカプトこはく酸、nブチルメルカプタン、tert−ブチルメルカプタン等が挙げられる。
スルフィドとしては、例えばジブチルスルフィド、エチルメチルスルフィド、ジエチルスルフィド、チオジグリコール、2,2’−チオジグリコール、ビス(2−ヒドロキシエチル)ジサルファイド、ジチオジグリコール酸、2,2−ジチオプロピオン酸等が挙げられる。
ポリスルフィドとしては、例えばジヘプチルジスルフィド、ジエチルジスルフィド、メチルプロピルジスルフィド、2,2’−ジチオジエタノール、ジチオジグリコール酸、ビス(2−ヒドロキシエチル)ジサルファイド、ジチオジグリコール酸、2,2−ジチオプロピオン酸等が挙げられる。
チオカルボニル基含有有機化合物としては、チオ尿素、チオアセトアミド、ジメチルチオ尿素、トリメチルチオ尿素、エチレンチオ尿素、チオセミカルバジド、ジエチルジチオカルバミン酸ジエチルアンモニウム、ジメチルジチオカルバミン酸ジメチルアンモニウム、テトラメチルチウラムモノスルフィド、グアニルチオ尿素等が挙げられる。
硫黄含有複素環式化合物としては、チオフェン、2−アミノ−5−メルカプト−1,3−チアジアゾール、ビスムチオール等が挙げられる。
ヒドロセレノ基含有有機化合物としては、ベンゼンセレノール、tert−ブチルセレノール等が挙げられる。
セレニドとしては、フェニルセレニド、tert−ブチルセレニド等が挙げられる。
ポリセレニドとしては、ジフェニルジセレニド、tert−ブチルジセレニド等が挙げられる。
セレノカルボニル基含有有機化合物としては、セレノウレア、1,1−ジメチルー2−セレノウレア等が挙げられる。
セレン含有複素環式化合物としては、セレノフェン等が挙げられる。
Examples of the mercapto group-containing organic compound include alkylthiol (ethanethiol, propanethiol, etc.), mercaptoethanol, mercaptopropanol, mercaptoethoxyethanol, thioglycerol, thioglycolic acid, thiolactic acid, thiomalic acid, methyl thioglycolate, thioglycol Examples include ethyl acid, ethanedithiol, propanedithiol, butanedithiol, 2,3-dimercapto-1-propanol, meso-2,3-dimercaptosuccinic acid, n-butyl mercaptan, and tert-butyl mercaptan.
Examples of the sulfide include dibutyl sulfide, ethyl methyl sulfide, diethyl sulfide, thiodiglycol, 2,2′-thiodiglycol, bis (2-hydroxyethyl) disulfide, dithiodiglycolic acid, and 2,2-dithiopropionic acid. Etc.
Examples of the polysulfide include diheptyl disulfide, diethyl disulfide, methylpropyl disulfide, 2,2′-dithiodiethanol, dithiodiglycolic acid, bis (2-hydroxyethyl) disulfide, dithiodiglycolic acid, and 2,2-dithiopropion. An acid etc. are mentioned.
Examples of thiocarbonyl group-containing organic compounds include thiourea, thioacetamide, dimethylthiourea, trimethylthiourea, ethylenethiourea, thiosemicarbazide, diethylammonium diethyldithiocarbamate, dimethylammonium dimethyldithiocarbamate, tetramethylthiuram monosulfide, and guanylthiourea. Can be mentioned.
Examples of the sulfur-containing heterocyclic compound include thiophene, 2-amino-5-mercapto-1,3-thiadiazole, bismuthiol and the like.
Examples of the hydroseleno group-containing organic compound include benzene selenol and tert-butyl selenol.
Examples of the selenide include phenyl selenide and tert-butyl selenide.
Examples of the polyselenide include diphenyl diselenide and tert-butyl diselenide.
Examples of the selenocarbonyl group-containing organic compound include selenourea and 1,1-dimethyl-2-selenourea.
Examples of the selenium-containing heterocyclic compound include selenophene.

本発明において、カルコゲン元素含有有機化合物としては、メルカプト基含有有機化合物、スルフィド、ポリスルフィド、チオカルボニル基含有有機化合物及び硫黄含有複素環式化合物からなる群より選ばれる少なくとも1種が好ましく、メルカプト基含有有機化合物及びチオカルボニル基含有有機化合物からなる群より選ばれる少なくとも1種がより好ましく、チオグリコール酸、メルカプトエタノール、メルカプトプロパノール、メルカプトエトキシエタノール、チオグリセロール、チオ乳酸、チオリンゴ酸、tert−ブチルメルカプタン、ジエチルジチオカルバミン酸ジエチルアンモニウム、ジメチルジチオカルバミン酸ジメチルアンモニウム及びプロパンチオールからなる群より選ばれる少なくとも1種が更に好ましく、塗布膜の焼成時に除去し易く、光吸収層に残存しないという観点から、メルカプトエタノール、チオグリコール酸、アルキルチオール及びチオグリセロールからなる群より選ばれる少なくとも1種が更に好ましく、プロパンチオールが特に好ましい。   In the present invention, the chalcogen element-containing organic compound is preferably at least one selected from the group consisting of mercapto group-containing organic compounds, sulfides, polysulfides, thiocarbonyl group-containing organic compounds, and sulfur-containing heterocyclic compounds, and contains mercapto group-containing compounds. More preferably, at least one selected from the group consisting of organic compounds and thiocarbonyl group-containing organic compounds, thioglycolic acid, mercaptoethanol, mercaptopropanol, mercaptoethoxyethanol, thioglycerol, thiolactic acid, thiomalic acid, tert-butyl mercaptan, More preferably, at least one selected from the group consisting of diethylammonium diethyldithiocarbamate, dimethylammonium dimethyldithiocarbamate and propanethiol, Easily removed when formed, from the viewpoint of not remain in the light-absorbing layer, mercaptoethanol, thioglycolic acid, at least one more preferably selected from the group consisting of alkyl thiols and thioglycerol, propanethiol is especially preferred.

本発明において、カルコゲン元素含有有機化合物は水溶性であってもよい。水溶性のカルコゲン元素含有有機化合物を用いることにより、単体及び/又は化合物とカルコゲン元素含有有機化合物とを混合する際に溶媒として水を用いることが出来るので、プロセスの安全性がより高まる。
水溶性のカルコゲン元素含有有機化合物としては、例えばメルカプトエタノール、メルカプトプロパノール、メルカプトエトキシエタノール、チオグリセロール、チオ乳酸、チオリンゴ酸、チオグリコール酸、チオ尿素、チオアセトアミド等が挙げられる。これらの中でも、メルカプトエタノール、メルカプトプロパノール、メルカプトエトキシエタノール、チオ乳酸及びチオグリセロールが特に好ましい。
In the present invention, the chalcogen element-containing organic compound may be water-soluble. By using a water-soluble chalcogen element-containing organic compound, water can be used as a solvent when the simple substance and / or the compound and the chalcogen element-containing organic compound are mixed, thereby further improving the safety of the process.
Examples of the water-soluble chalcogen element-containing organic compound include mercaptoethanol, mercaptopropanol, mercaptoethoxyethanol, thioglycerol, thiolactic acid, thiomalic acid, thioglycolic acid, thiourea, and thioacetamide. Among these, mercaptoethanol, mercaptopropanol, mercaptoethoxyethanol, thiolactic acid and thioglycerol are particularly preferable.

本発明において、カルコゲン元素含有有機化合物の炭素数は4以下であってもよい。炭素数4以下のカルコゲン元素含有有機化合物としては、例えばプロパンチオール、メルカプトエタノール、メルカプトプロパノール、メルカプトエトキシエタノール、チオグリセロール、チオ乳酸、チオリンゴ酸、チオグリコール酸、チオ尿素、チオアセトアミド、チオグリコール酸メチル、チオグリコール酸エチル、エタンジチオール、プロパンジチオール、ブタンジチオール、2,3−ジメルカプト−1−プロパノール、meso−2,3−ジメルカプトこはく酸、エチルメチルスルフィド、ジエチルスルフィド、チオジグリコール、2,2’−チオジグリコール酸、チオ乳酸、ジエチルジスルフィド、メチルプロピルジスルフィド、2,2’−ジチオジエタノール、ジチオジグリコール酸、ジメチルチオ尿素、トリメチルチオ尿素、エチレンチオ尿素、ジメチルジチオカルバミン酸ジメチルアンモニウム等が挙げられる。中でも、メルカプトエタノール及びチオグリセロールが特に好ましい。   In the present invention, the chalcogen element-containing organic compound may have 4 or less carbon atoms. Examples of the organic compound containing a chalcogen element having 4 or less carbon atoms include propanethiol, mercaptoethanol, mercaptopropanol, mercaptoethoxyethanol, thioglycerol, thiolactic acid, thiomalic acid, thioglycolic acid, thiourea, thioacetamide, and methyl thioglycolate. , Ethyl thioglycolate, ethanedithiol, propanedithiol, butanedithiol, 2,3-dimercapto-1-propanol, meso-2,3-dimercaptosuccinic acid, ethyl methyl sulfide, diethyl sulfide, thiodiglycol, 2,2 ′ -Thiodiglycolic acid, thiolactic acid, diethyl disulfide, methylpropyl disulfide, 2,2'-dithiodiethanol, dithiodiglycolic acid, dimethylthiourea, trimethylthiourea, Chirenchio urea, dimethyl dithiocarbamate dimethyl ammonium and the like. Among these, mercaptoethanol and thioglycerol are particularly preferable.

本発明において、カルコゲン元素含有有機化合物は、室温(23℃)の水100gに対して1g以上溶解する化合物であってもよく、5g以上溶解する化合物であることがより好ましく、10g以上溶解する化合物であることが特に好ましい。   In the present invention, the chalcogen element-containing organic compound may be a compound that dissolves 1 g or more in 100 g of water at room temperature (23 ° C.), more preferably a compound that dissolves 5 g or more, and a compound that dissolves 10 g or more. It is particularly preferred that

本発明において、カルコゲン元素含有有機化合物は、少なくとも1つのヒドロキシ基を有するカルコゲン元素含有有機化合物であってもよい。
少なくとも1つのヒドロキシ基を有するカルコゲン元素含有有機化合物としては、例えばメルカプトエタノール、メルカプトプロパノール、メルカプトエトキシエタノール、チオグリセロール、チオ乳酸、チオリンゴ酸、チオグリコール酸、2,3−ジメルカプト−1−プロパノール、meso−2,3−ジメルカプトこはく酸、チオジグリコール、2,2’−チオジグリコール酸、2,2’−ジチオジエタノール、ジチオジグリコール酸等が挙げられる。これらの中でも、メルカプトエタノール、メルカプトプロパノール、メルカプトエトキシエタノール、チオグリセロール、チオ乳酸及びチオリンゴ酸が好ましく、メルカプトエタノール、メルカプトプロパノール、メルカプトエトキシエタノール及びチオグリセロールが特に好ましい。
In the present invention, the chalcogen element-containing organic compound may be a chalcogen element-containing organic compound having at least one hydroxy group.
Examples of the chalcogen element-containing organic compound having at least one hydroxy group include mercaptoethanol, mercaptopropanol, mercaptoethoxyethanol, thioglycerol, thiolactic acid, thiomalic acid, thioglycolic acid, 2,3-dimercapto-1-propanol, and meso. Examples include -2,3-dimercaptosuccinic acid, thiodiglycol, 2,2'-thiodiglycolic acid, 2,2'-dithiodiethanol, and dithiodiglycolic acid. Among these, mercaptoethanol, mercaptopropanol, mercaptoethoxyethanol, thioglycerol, thiolactic acid and thiomalic acid are preferable, and mercaptoethanol, mercaptopropanol, mercaptoethoxyethanol and thioglycerol are particularly preferable.

本発明において、カルコゲン元素含有有機化合物としては、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。   In the present invention, as the chalcogen element-containing organic compound, one kind may be used alone, or two or more kinds may be used in combination.

本発明において、ルイス塩基性無機化合物は特に限定されないが、アンモニア、ヒドラジン、NaOH、KOH等が挙げられる。中でも、アンモニアが好ましい。
ルイス塩基性無機化合物としては、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
In the present invention, the Lewis basic inorganic compound is not particularly limited, and examples thereof include ammonia, hydrazine, NaOH, KOH and the like. Of these, ammonia is preferable.
As the Lewis basic inorganic compound, one kind may be used alone, or two or more kinds may be used in combination.

本発明において、第16族元素としては、O、S、Se、Te等が挙げられ、S、Seから選ばれる少なくとも1種が好ましく、Seが特に好ましい。
第16族元素としては、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
In the present invention, examples of the Group 16 element include O, S, Se, Te, and the like. At least one selected from S and Se is preferable, and Se is particularly preferable.
As the group 16 element, one type may be used alone, or two or more types may be used in combination.

本発明において、前記単体および/または化合物、カルコゲン含有有機化合物、ルイス塩基性無機化合物及び第16族元素に加えて、有機溶媒を任意の割合で添加することができる。有機溶媒としては、ジメチルスルホキシド、N−メチルピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、N−メチルホルムアミド、N−メチルアセトアミド、テトラメチルグアニンジン、テトラメチル尿素などの極性の非プロトン性溶媒が好ましい。中でも、ジメチルスルホキシドが好ましい。   In the present invention, in addition to the simple substance and / or compound, the chalcogen-containing organic compound, the Lewis basic inorganic compound, and the Group 16 element, an organic solvent can be added at an arbitrary ratio. Examples of organic solvents include dimethylsulfoxide, N-methylpyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, N-methylformamide, N-methylacetamide, tetramethylguanidine, and tetramethylurea. Protic solvents are preferred. Of these, dimethyl sulfoxide is preferable.

本発明の錯体(溶液)の製造方法においては、前記反応液に前記ルイス塩基性無機化合物よりも極性の低い溶媒(以下、「貧溶媒」という場合がある。)を加えてもよい。貧溶媒を加えることにより、前記反応液を精製することができ、不純物を取り除くことできる。しかしながら、本発明の錯体(溶液)の製造方法においては、そのような精製工程は必ずしも必要ない。精製工程を省略することにより、全体のプロセスを簡略化でき、工業的に有利である。   In the method for producing a complex (solution) of the present invention, a solvent having a polarity lower than that of the Lewis basic inorganic compound (hereinafter sometimes referred to as “poor solvent”) may be added to the reaction solution. By adding a poor solvent, the reaction solution can be purified and impurities can be removed. However, such a purification step is not necessarily required in the method for producing a complex (solution) of the present invention. By omitting the purification step, the entire process can be simplified, which is industrially advantageous.

前記貧溶媒としては、前記ルイス塩基性無機化合物よりも極性の低い溶媒であれば特に限定されないが、アセトン、イソプロパノールが好ましい。
前記貧溶媒は、前記単体および/または化合物と、カルコゲン元素含有有機化合物と、ルイス塩基性無機化合物と、第16族元素と共に混合してもよいが、前記単体および/または化合物と、カルコゲン元素含有有機化合物と、ルイス塩基性無機化合物と、第16族元素とを混合して反応液を調製した後に混合することが好ましい。反応液を調製した後に貧溶媒を混合することにより、目的物である錯体を沈殿させ、未反応カルコゲン元素含有有機化合物等の不純物を上清として除去できる。錯体と不純物は、例えば遠心分離、ろ過、抽出等で分離できる。
また、不純物を上清として除去した後に、更に貧溶媒で錯体を洗浄できる。洗浄を複数回行うことにより、より確実に不純物を除去することができる。
貧溶媒としては、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
The poor solvent is not particularly limited as long as it is a solvent having a lower polarity than the Lewis basic inorganic compound, but acetone and isopropanol are preferable.
The poor solvent may be mixed with the simple substance and / or compound, the chalcogen element-containing organic compound, the Lewis basic inorganic compound, and the group 16 element, but the simple substance and / or compound and the chalcogen element are contained. It is preferable to mix the organic compound, the Lewis basic inorganic compound, and the Group 16 element after preparing a reaction solution. By preparing a reaction solution and then mixing a poor solvent, the complex as the target product can be precipitated, and impurities such as unreacted chalcogen element-containing organic compounds can be removed as a supernatant. Complexes and impurities can be separated by, for example, centrifugation, filtration, extraction, and the like.
Further, after removing impurities as a supernatant, the complex can be further washed with a poor solvent. Impurities can be more reliably removed by performing the cleaning multiple times.
As the poor solvent, one kind may be used alone, or two or more kinds may be used in combination.

本発明の錯体(溶液)の製造方法においては、水の存在下で前記反応液を得ることが好ましい。水の存在下で前記反応液を得る方法としては特に限定されないが、例えば各原料の混合溶媒として水を含む溶媒を用いることや、前記ルイス塩基性無機化合物としてルイス塩基性無機化合物水溶液を用いることが好ましい。前記ルイス塩基性無機化合物水溶液としては、アンモニア水、ヒドラジン水和物、NaOH水溶液、KOH水溶液等が挙げられ、中でも濃度28%以下のアンモニア水を用いることが好ましい。この場合、後述する溶媒を用いることが好ましく、特にジメチルスルホキシドが好ましい。   In the method for producing a complex (solution) of the present invention, it is preferable to obtain the reaction solution in the presence of water. The method for obtaining the reaction solution in the presence of water is not particularly limited. For example, a solvent containing water is used as a mixed solvent for each raw material, or a Lewis basic inorganic compound aqueous solution is used as the Lewis basic inorganic compound. Is preferred. Examples of the Lewis basic inorganic compound aqueous solution include ammonia water, hydrazine hydrate, NaOH aqueous solution, KOH aqueous solution and the like. Among them, it is preferable to use ammonia water having a concentration of 28% or less. In this case, it is preferable to use a solvent described later, and dimethyl sulfoxide is particularly preferable.

本発明の錯体(溶液)の製造方法において、単体および/または化合物と、カルコゲン元素含有有機化合物と、ルイス塩基性無機化合物と、第16族元素とを混合する方法は特に限定されない。例えば、CZTS系又はCIGS系太陽電池の光吸収層の形成に用いられる光吸収層形成用塗布液を調製する場合など、複数種類の単体および/または化合物を用いる場合、各錯体溶液(以下、「金属前駆体溶液」という場合がある)を調製した後に、各金属前駆体溶液を混合する方法(以下、「調製方法(I)」という。)、全ての原料を一括に混合する方法(以下、「調製方法(II)」という。)、少なくとも2種の第11族〜第15族金属を用いて二元または三元金属錯体溶液を調製する方法(以下、「調製方法(III)」という。)等が挙げられる。   In the method for producing a complex (solution) of the present invention, a method of mixing a simple substance and / or a compound, a chalcogen element-containing organic compound, a Lewis basic inorganic compound, and a Group 16 element is not particularly limited. For example, when a plurality of types of simple substances and / or compounds are used, such as when preparing a coating solution for forming a light absorption layer used for forming a light absorption layer of a CZTS or CIGS solar cell, each complex solution (hereinafter, “ After preparing a “metal precursor solution”, a method of mixing each metal precursor solution (hereinafter referred to as “preparation method (I)”), a method of mixing all raw materials at once (hereinafter referred to as “preparation method (I)”). "Preparation method (II)"), a method of preparing a binary or ternary metal complex solution using at least two Group 11 to Group 15 metals (hereinafter referred to as "Preparation method (III)"). ) And the like.

<調製方法(I)>
(Cu前駆体)
Cu前駆体は、例えばCu及び/又はCu化合物と、カルコゲン元素含有有機化合物と、ルイス塩基性無機化合物と、第16族元素とを混合することにより得られる。
Cu及び/又はCu化合物、カルコゲン元素含有有機化合物、ルイス塩基性無機化合物ならびに第16族元素としては、本発明の金属前駆体溶液の製造方法の説明において例示した前記Cu及び/又はCu化合物、カルコゲン元素含有有機化合物、ルイス塩基性無機化合物ならびに第16族元素を用いることができる。
Cu及び/又はCu化合物としては、Cu、Cu(OH)、CuS、CuS、CuO、CuO、CuSe、CuSe、CuTe、CuTeが好ましく、Cuがより好ましい。
Cu及び/又はCu化合物としては、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
<Preparation method (I)>
(Cu precursor)
The Cu precursor is obtained, for example, by mixing Cu and / or a Cu compound, a chalcogen element-containing organic compound, a Lewis basic inorganic compound, and a Group 16 element.
As Cu and / or Cu compound, chalcogen element-containing organic compound, Lewis basic inorganic compound and Group 16 element, the Cu and / or Cu compound, chalcogen exemplified in the description of the method for producing a metal precursor solution of the present invention Element-containing organic compounds, Lewis basic inorganic compounds and Group 16 elements can be used.
As Cu and / or a Cu compound, Cu, Cu (OH) 2 , CuS, Cu 2 S, CuO, Cu 2 O, Cu 2 Se, CuSe, Cu 2 Te, and CuTe are preferable, and Cu is more preferable.
As Cu and / or Cu compound, one kind may be used alone, or two or more kinds may be used in combination.

第16族元素の量は、Cu1モルに対し、0.5〜10モルが好ましく、0.5〜4モルがより好ましく、1〜2モルが更に好ましい。カルコゲン元素含有有機化合物の量はCu1モルに対し、0.1〜10モルが好ましく、0.5〜10モルがより好ましく、0.3〜1モルが更に好ましい。
ルイス塩基性無機化合物の量は、Cu1モルに対し、1〜20モルが好ましく、2〜10モルがより好ましく、2〜5モルが更に好ましい。
The amount of the group 16 element is preferably 0.5 to 10 mol, more preferably 0.5 to 4 mol, and still more preferably 1 to 2 mol with respect to 1 mol of Cu. The amount of the chalcogen element-containing organic compound is preferably 0.1 to 10 mol, more preferably 0.5 to 10 mol, and still more preferably 0.3 to 1 mol with respect to 1 mol of Cu.
The amount of the Lewis basic inorganic compound is preferably 1 to 20 mol, more preferably 2 to 10 mol, and still more preferably 2 to 5 mol with respect to 1 mol of Cu.

Cu及び/又はCu化合物と、カルコゲン元素含有有機化合物と、ルイス塩基性無機化合物と、第16族元素とを混合する方法は特に限定されない。例えば、Cu及び/又はCu化合物と、カルコゲン元素含有有機化合物と、ルイス塩基性無機化合物と、第16族元素とを溶媒に添加した後に撹拌する方法や、Cu及び/又はCu化合物と、カルコゲン元素含有有機化合物と、ルイス塩基性無機化合物と、第16族元素とを混合して得た反応液に溶媒を添加する方法や、反応液に前記貧溶媒を添加して得た錯体に溶媒を添加する方法等が挙げられる。また、カルコゲン元素含有有機化合物と、ルイス塩基性無機化合物と、第16族元素とを溶媒に添加して撹拌し、次いでCu及び/又はCu化合物を添加する方法も好ましい。
前記溶媒としては、例えばジメチルスルホキシド、N−メチルピロリドン(NMP)、N−メチルホルムアミド(NMF)、ジメチルホルムアミド(DMF)、テトラメチルグアニンジン、テトラメチル尿素等の非プロトン性の極性溶剤;水;エタノール、メチルジグリコール(MDG)等の水溶性の高いアルコールまたはグリコールエーテル等が挙げられる。溶媒としては、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
これらの中でも、ジメチルスルホキシド、水、又はジメチルスルホキシドと水との組み合わせが好ましい。
溶媒の量は、混合した際にCu濃度が0.1mol/L〜2.0mol/Lになる量が好ましく、0.2〜1.5mol/Lがより好ましく、0.4〜1.2mol/Lが特に好ましい。
The method of mixing Cu and / or a Cu compound, a chalcogen element-containing organic compound, a Lewis basic inorganic compound, and a Group 16 element is not particularly limited. For example, a method of stirring after adding Cu and / or a Cu compound, a chalcogen element-containing organic compound, a Lewis basic inorganic compound, and a Group 16 element to a solvent, Cu and / or a Cu compound, and a chalcogen element A method of adding a solvent to a reaction solution obtained by mixing a contained organic compound, a Lewis basic inorganic compound, and a Group 16 element, or adding a solvent to a complex obtained by adding the poor solvent to the reaction solution And the like. Also preferred is a method in which a chalcogen element-containing organic compound, a Lewis basic inorganic compound, and a Group 16 element are added to a solvent and stirred, and then Cu and / or a Cu compound is added.
Examples of the solvent include aprotic polar solvents such as dimethyl sulfoxide, N-methylpyrrolidone (NMP), N-methylformamide (NMF), dimethylformamide (DMF), tetramethylguanidine, tetramethylurea; water; Examples thereof include highly water-soluble alcohols or glycol ethers such as ethanol and methyl diglycol (MDG). As the solvent, one kind may be used alone, or two or more kinds may be used in combination.
Among these, dimethyl sulfoxide, water, or a combination of dimethyl sulfoxide and water is preferable.
The amount of the solvent is preferably such that when mixed, the Cu concentration is 0.1 to 2.0 mol / L, more preferably 0.2 to 1.5 mol / L, and 0.4 to 1.2 mol / L. L is particularly preferred.

Cu前駆体の調製における反応温度は、使用するCu及び/又はCu化合物、カルコゲン元素含有有機化合物、ルイス塩基性無機化合物、第16族元素、溶媒等の種類によっても異なるが、安全性やCu錯体の安定性の観点から、通常室温〜200℃が好ましく、室温〜150℃がより好ましく、室温〜100℃が更に好ましい。   The reaction temperature in the preparation of the Cu precursor varies depending on the type of Cu and / or Cu compound, chalcogen element-containing organic compound, Lewis basic inorganic compound, Group 16 element, solvent, etc., but safety and Cu complex From the viewpoint of stability, the temperature is usually preferably from room temperature to 200 ° C, more preferably from room temperature to 150 ° C, and still more preferably from room temperature to 100 ° C.

また、Cu前駆体の調製における反応時間は、使用するCu及び/又はCu化合物、カルコゲン元素含有有機化合物、ルイス塩基性無機化合物、第16族元素、溶媒等の種類、撹拌時間、反応温度によっても異なるが、通常1時間〜1週間が好ましく、1日〜3日がより好ましく、1日〜2日が更に好ましい。   The reaction time in the preparation of the Cu precursor also depends on the type of Cu and / or Cu compound used, chalcogen element-containing organic compound, Lewis basic inorganic compound, Group 16 element, solvent, etc., stirring time, and reaction temperature. Although it is different, it is usually preferably 1 hour to 1 week, more preferably 1 day to 3 days, and still more preferably 1 day to 2 days.

Cu前駆体の調製後、Cu前駆体に前記ルイス塩基性無機化合物よりも極性の低い溶媒(貧溶媒)を混合して不純物を除去することが好ましい。貧溶媒としては特にイソプロピルアルコールが好ましい。また、貧溶媒の混合は複数回行うことが好ましく、具体的には1回〜5回行うことが好ましい。
貧溶媒の量は、Cu前駆体に対して2〜20倍が好ましく、5〜20倍がより好ましく、7〜20倍が更に好ましい。
After preparing the Cu precursor, it is preferable to remove impurities by mixing the Cu precursor with a solvent (poor solvent) having a polarity lower than that of the Lewis basic inorganic compound. As the poor solvent, isopropyl alcohol is particularly preferable. Moreover, it is preferable to mix a poor solvent in multiple times, specifically, it is preferable to carry out 1 to 5 times.
The amount of the poor solvent is preferably 2 to 20 times, more preferably 5 to 20 times, and still more preferably 7 to 20 times the Cu precursor.

(Zn前駆体)
Zn前駆体は、例えばZn及び/又はZn化合物と、カルコゲン元素含有有機化合物と、ルイス塩基性無機化合物と、第16族元素とを混合することにより得られる。
Zn及び/又はZn化合物、カルコゲン元素含有有機化合物、ルイス塩基性無機化合物ならびに第16族元素としては、本発明の金属前駆体溶液の製造方法の説明において例示した前記Zn及び/又はZn化合物、カルコゲン元素含有有機化合物、ルイス塩基性無機化合物ならびに第16族元素を用いることができる。
Zn及び/又はZn化合物としては、Zn、ZnO、水酸化亜鉛、ZnS、ZnSe、ZnTeが好ましく、ZnおよびZnOがより好ましい。
Zn及び/又はZn化合物としては、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(Zn precursor)
The Zn precursor can be obtained, for example, by mixing Zn and / or a Zn compound, a chalcogen element-containing organic compound, a Lewis basic inorganic compound, and a Group 16 element.
Examples of Zn and / or Zn compounds, chalcogen element-containing organic compounds, Lewis basic inorganic compounds and Group 16 elements include the Zn and / or Zn compounds and chalcogens exemplified in the description of the method for producing a metal precursor solution of the present invention. Element-containing organic compounds, Lewis basic inorganic compounds and Group 16 elements can be used.
As the Zn and / or Zn compound, Zn, ZnO, zinc hydroxide, ZnS, ZnSe, and ZnTe are preferable, and Zn and ZnO are more preferable.
As Zn and / or Zn compound, one kind may be used alone, or two or more kinds may be used in combination.

第16族元素の量は、Zn1モルに対し、0.5〜10モルが好ましく、0.5〜4モルがより好ましく、1〜2モルが更に好ましい。カルコゲン元素含有有機化合物の量はZn1モルに対し、0.1〜10モルが好ましく、0.5〜10モルがより好ましく、0.3〜1モルが更に好ましい。
ルイス塩基性無機化合物の量は、Zn1モルに対し、1〜20モルが好ましく、2〜10モルがより好ましく、2〜5モルが更に好ましい。
The amount of the group 16 element is preferably 0.5 to 10 mol, more preferably 0.5 to 4 mol, and still more preferably 1 to 2 mol with respect to 1 mol of Zn. The amount of the chalcogen element-containing organic compound is preferably 0.1 to 10 mol, more preferably 0.5 to 10 mol, and still more preferably 0.3 to 1 mol with respect to 1 mol of Zn.
The amount of the Lewis basic inorganic compound is preferably 1 to 20 mol, more preferably 2 to 10 mol, and still more preferably 2 to 5 mol with respect to 1 mol of Zn.

Zn及び/又はZn化合物と、カルコゲン元素含有有機化合物と、ルイス塩基性無機化合物と、第16族元素とを混合する方法は特に限定されない。例えば、Zn及び/又はZn化合物と、カルコゲン元素含有有機化合物と、ルイス塩基性無機化合物と、第16族元素とを溶媒に添加した後に撹拌する方法や、Zn及び/又はZn化合物と、カルコゲン元素含有有機化合物と、ルイス塩基性無機化合物と、第16族元素とを混合して得た反応液に溶媒を添加する方法や、反応液に前記貧溶媒を添加して得た錯体に溶媒を添加する方法等が挙げられる。また、カルコゲン元素含有有機化合物と、ルイス塩基性無機化合物と、第16族元素とを溶媒に添加して撹拌し、次いでZn及び/又はZn化合物を添加する方法も好ましい。
前記溶媒としては、例えばジメチルスルホキシド、N−メチルピロリドン(NMP)、N−メチルホルムアミド(NMF)、ジメチルホルムアミド(DMF)、テトラメチルグアニンジン、テトラメチル尿素等の非プロトン性の極性溶剤;水;エタノール、メチルジグリコール(MDG)等の水溶性の高いアルコールまたはグリコールエーテル等が挙げられる。溶媒としては、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
これらの中でも、ジメチルスルホキシド、水、又はジメチルスルホキシドと水との組み合わせが好ましい。
溶媒の量は、混合した際にZn前駆体中のZn濃度が0.1mol/L〜2.0mol/Lになる量が好ましく、0.2〜1.5mol/Lがより好ましく、0.4〜1.2mol/Lが特に好ましい。
A method of mixing Zn and / or a Zn compound, a chalcogen element-containing organic compound, a Lewis basic inorganic compound, and a Group 16 element is not particularly limited. For example, a method of stirring after adding Zn and / or a Zn compound, a chalcogen element-containing organic compound, a Lewis basic inorganic compound, and a Group 16 element to a solvent, Zn and / or a Zn compound, and a chalcogen element A method of adding a solvent to a reaction solution obtained by mixing a contained organic compound, a Lewis basic inorganic compound, and a Group 16 element, or adding a solvent to a complex obtained by adding the poor solvent to the reaction solution And the like. Also preferred is a method in which a chalcogen element-containing organic compound, a Lewis basic inorganic compound, and a Group 16 element are added to a solvent and stirred, and then Zn and / or a Zn compound is added.
Examples of the solvent include aprotic polar solvents such as dimethyl sulfoxide, N-methylpyrrolidone (NMP), N-methylformamide (NMF), dimethylformamide (DMF), tetramethylguanidine, tetramethylurea; water; Examples thereof include highly water-soluble alcohols or glycol ethers such as ethanol and methyl diglycol (MDG). As the solvent, one kind may be used alone, or two or more kinds may be used in combination.
Among these, dimethyl sulfoxide, water, or a combination of dimethyl sulfoxide and water is preferable.
The amount of the solvent is preferably such that when mixed, the Zn concentration in the Zn precursor is 0.1 mol / L to 2.0 mol / L, more preferably 0.2 to 1.5 mol / L, 0.4 -1.2 mol / L is particularly preferred.

Zn前駆体の調製において、反応温度は使用するZn及び/又はZn化合物、カルコゲン元素含有有機化合物、ルイス塩基性無機化合物、第16族元素、溶媒等の種類によっても異なるが、安全性やZn錯体の安定性の観点から、通常室温〜200℃が好ましく、室温〜150℃がより好ましく、室温〜100℃が更に好ましい。   In the preparation of the Zn precursor, the reaction temperature varies depending on the type of Zn and / or Zn compound, chalcogen element-containing organic compound, Lewis basic inorganic compound, Group 16 element, solvent, etc. From the viewpoint of stability, the temperature is usually preferably from room temperature to 200 ° C, more preferably from room temperature to 150 ° C, and further preferably from room temperature to 100 ° C.

また、Zn前駆体の調製において、反応時間は使用するZn及び/又はZn化合物、カルコゲン元素含有有機化合物、ルイス塩基性無機化合物、第16族元素、溶媒等の種類、撹拌時間によっても異なるが、通常1時間〜1週間が好ましく、1日〜3日がより好ましく、1日〜2日が更に好ましい。   In the preparation of the Zn precursor, the reaction time varies depending on the type of Zn and / or Zn compound, chalcogen element-containing organic compound, Lewis basic inorganic compound, group 16 element, solvent, and the like used, and the stirring time. Usually, 1 hour to 1 week is preferable, 1 day to 3 days is more preferable, and 1 day to 2 days is still more preferable.

Zn前駆体の調製後、Zn前駆体に前記ルイス塩基性無機化合物よりも極性の低い溶媒(貧溶媒)を混合して不純物を除去することが好ましい。貧溶媒としては特にアセトンが好ましい。また、貧溶媒の混合は複数回行うことが好ましく、具体的には1回〜5回行うことが好ましい。
貧溶媒の量は、Zn前駆体に対して2〜20倍が好ましく、5〜20倍がより好ましく、7〜20倍が更に好ましい。
After preparing the Zn precursor, it is preferable to remove impurities by mixing the Zn precursor with a solvent (poor solvent) having a polarity lower than that of the Lewis basic inorganic compound. As the poor solvent, acetone is particularly preferable. Moreover, it is preferable to mix a poor solvent in multiple times, specifically, it is preferable to carry out 1 to 5 times.
The amount of the poor solvent is preferably 2 to 20 times, more preferably 5 to 20 times, and still more preferably 7 to 20 times the Zn precursor.

(Sn前駆体)
Sn前駆体は、例えばSn及び/又はSn化合物と、カルコゲン元素含有有機化合物と、ルイス塩基性無機化合物と、第16族元素とを混合することにより得られる。
Sn及び/又はSn化合物、カルコゲン元素含有有機化合物、ルイス塩基性無機化合物ならびに第16族元素としては、本発明の金属前駆体溶液の製造方法の説明において例示した前記Sn及び/又はSn化合物、カルコゲン元素含有有機化合物、ルイス塩基性無機化合物ならびに第16族元素を用いることができる。
Sn及び/又はSn化合物としては、Sn、SnS、SnO、SnO、SnS、SnSe、SnTeが好ましく、Snがより好ましい。
Sn及び/又はSn化合物としては、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(Sn precursor)
The Sn precursor is obtained, for example, by mixing a Sn and / or Sn compound, a chalcogen element-containing organic compound, a Lewis basic inorganic compound, and a Group 16 element.
Examples of the Sn and / or Sn compound, the chalcogen element-containing organic compound, the Lewis basic inorganic compound, and the Group 16 element include the Sn and / or Sn compound and chalcogen exemplified in the description of the method for producing the metal precursor solution of the present invention. Element-containing organic compounds, Lewis basic inorganic compounds and Group 16 elements can be used.
As the Sn and / or Sn compound, Sn, SnS, SnO, SnO 2 , SnS 2 , SnSe, SnTe are preferable, and Sn is more preferable.
As Sn and / or Sn compound, 1 type may be used independently and 2 or more types may be used in combination.

第16族元素の量は、Sn1モルに対し、0.5〜10モルが好ましく、0.5〜4モルがより好ましく、1〜2モルが更に好ましい。カルコゲン元素含有有機化合物の量はSn1モルに対し、0.1〜10モルが好ましく、0.5〜10モルがより好ましく、0.3〜1モルが更に好ましい。
ルイス塩基性無機化合物の量は、Sn1モルに対し、1〜20モルが好ましく、2〜10モルがより好ましく、2〜5モルが更に好ましい。
The amount of the group 16 element is preferably 0.5 to 10 mol, more preferably 0.5 to 4 mol, and still more preferably 1 to 2 mol with respect to 1 mol of Sn. The amount of the chalcogen element-containing organic compound is preferably from 0.1 to 10 mol, more preferably from 0.5 to 10 mol, and still more preferably from 0.3 to 1 mol, relative to 1 mol of Sn.
The amount of the Lewis basic inorganic compound is preferably 1 to 20 moles, more preferably 2 to 10 moles, and still more preferably 2 to 5 moles relative to 1 mole of Sn.

Sn及び/又はSn化合物と、カルコゲン元素含有有機化合物と、ルイス塩基性無機化合物と、第16族元素とを混合する方法は特に限定されない。例えば、Sn及び/又はSn化合物と、カルコゲン元素含有有機化合物と、ルイス塩基性無機化合物と、第16族元素とを溶媒に添加した後に撹拌する方法や、Sn及び/又はSn化合物と、カルコゲン元素含有有機化合物と、ルイス塩基性無機化合物と、第16族元素とを混合して得た反応液に溶媒を添加する方法や、反応液に前記貧溶媒を添加して得た錯体に溶媒を添加する方法等が挙げられる。また、カルコゲン元素含有有機化合物と、ルイス塩基性無機化合物と、第16族元素とを溶媒に添加して撹拌し、次いでSn及び/又はSn化合物を添加する方法も好ましい。
前記溶媒としては、例えばジメチルスルホキシド、N−メチルピロリドン(NMP)、N−メチルホルムアミド(NMF)、ジメチルホルムアミド(DMF)、テトラメチルグアニンジン、テトラメチル尿素等の非プロトン性の極性溶剤;水;エタノール、メチルジグリコール(MDG)等の水溶性の高いアルコールまたはグリコールエーテル等が挙げられる。溶媒としては、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
これらの中でも、ジメチルスルホキシド、水、又はジメチルスルホキシドと水との組み合わせが好ましい。
溶媒の量は、混合した際にSn濃度が0.1mol/L〜2.0mol/Lになる量が好ましく、0.2〜1.5mol/Lがより好ましく、0.4〜1.2mol/Lが特に好ましい。
A method of mixing the Sn and / or Sn compound, the chalcogen element-containing organic compound, the Lewis basic inorganic compound, and the Group 16 element is not particularly limited. For example, a method of stirring after adding a Sn and / or Sn compound, a chalcogen element-containing organic compound, a Lewis basic inorganic compound, and a Group 16 element to a solvent, a Sn and / or Sn compound, and a chalcogen element A method of adding a solvent to a reaction solution obtained by mixing a contained organic compound, a Lewis basic inorganic compound, and a Group 16 element, or adding a solvent to a complex obtained by adding the poor solvent to the reaction solution And the like. Also preferred is a method in which a chalcogen element-containing organic compound, a Lewis basic inorganic compound, and a Group 16 element are added to a solvent and stirred, and then Sn and / or Sn compound is added.
Examples of the solvent include aprotic polar solvents such as dimethyl sulfoxide, N-methylpyrrolidone (NMP), N-methylformamide (NMF), dimethylformamide (DMF), tetramethylguanidine, tetramethylurea; water; Examples thereof include highly water-soluble alcohols or glycol ethers such as ethanol and methyl diglycol (MDG). As the solvent, one kind may be used alone, or two or more kinds may be used in combination.
Among these, dimethyl sulfoxide, water, or a combination of dimethyl sulfoxide and water is preferable.
The amount of the solvent is preferably such that when mixed, the Sn concentration is 0.1 to 2.0 mol / L, more preferably 0.2 to 1.5 mol / L, and 0.4 to 1.2 mol / L. L is particularly preferred.

Sn前駆体の調製における反応温度は、使用するSn及び/又はSn化合物、カルコゲン元素含有有機化合物、ルイス塩基性無機化合物、第16族元素、溶媒等の種類によっても異なるが、安全性やSn錯体の安定性の観点から、通常室温〜200℃が好ましく、室温〜150℃がより好ましく、室温〜100℃が更に好ましい。   The reaction temperature in the preparation of the Sn precursor depends on the type of Sn and / or Sn compound, chalcogen element-containing organic compound, Lewis basic inorganic compound, Group 16 element, solvent, etc., but safety and Sn complex From the viewpoint of stability, the temperature is usually preferably from room temperature to 200 ° C, more preferably from room temperature to 150 ° C, and further preferably from room temperature to 100 ° C.

また、Sn前駆体の調製における反応時間は、使用するSn及び/又はSn化合物、カルコゲン元素含有有機化合物、ルイス塩基性無機化合物、第16族元素、溶媒等の種類、撹拌時間によっても異なるが、通常1時間〜1週間が好ましく、1日〜3日がより好ましく、1日〜2日が更に好ましい。   In addition, the reaction time in the preparation of the Sn precursor varies depending on the type of Sn and / or Sn compound, chalcogen element-containing organic compound, Lewis basic inorganic compound, Group 16 element, solvent, and the like used, and the stirring time. Usually, 1 hour to 1 week is preferable, 1 day to 3 days is more preferable, and 1 day to 2 days is still more preferable.

Sn前駆体の調製後、Sn前駆体に前記ルイス塩基性無機化合物よりも極性の低い溶媒(貧溶媒)を混合して不純物を除去することが好ましい。貧溶媒としては特にアセトンが好ましい。また、貧溶媒の混合は複数回行うことが好ましく、具体的には1回〜5回行うことが好ましい。
貧溶媒の量は、Sn前駆体に対して2〜20倍が好ましく、5〜20倍がより好ましく、7〜20倍が更に好ましい。
After preparing the Sn precursor, it is preferable to remove impurities by mixing the Sn precursor with a solvent (poor solvent) having a polarity lower than that of the Lewis basic inorganic compound. As the poor solvent, acetone is particularly preferable. Moreover, it is preferable to mix a poor solvent in multiple times, specifically, it is preferable to carry out 1 to 5 times.
The amount of the poor solvent is preferably 2 to 20 times, more preferably 5 to 20 times, and still more preferably 7 to 20 times the Sn precursor.

(In前駆体)
In前駆体は、例えばIn及び/又はIn化合物と、カルコゲン元素含有有機化合物と、ルイス塩基性無機化合物と、第16族元素とを混合することにより得られる。
In及び/又はIn化合物、カルコゲン元素含有有機化合物、ルイス塩基性無機化合物ならびに第16族元素としては、本発明の金属前駆体溶液の製造方法の説明において例示した前記In及び/又はIn化合物、カルコゲン元素含有有機化合物、ルイス塩基性無機化合物ならびに第16族元素を用いることができる。
In及び/又はIn化合物としては、In、In(OH)、酸化インジウム、硫化インジウム、セレン化インジウム、テルル化インジウムが好ましく、In、In(OH)、酸化インジウムがより好ましい。
In及び/又はIn化合物としては、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(In precursor)
The In precursor is obtained, for example, by mixing In and / or an In compound, a chalcogen element-containing organic compound, a Lewis basic inorganic compound, and a Group 16 element.
Examples of In and / or In compounds, chalcogen element-containing organic compounds, Lewis basic inorganic compounds, and Group 16 elements include the In and / or In compounds and chalcogens exemplified in the description of the method for producing a metal precursor solution of the present invention. Element-containing organic compounds, Lewis basic inorganic compounds and Group 16 elements can be used.
As In and / or In compounds, In, In (OH) 3 , indium oxide, indium sulfide, indium selenide, and indium telluride are preferable, and In, In (OH) 3 , and indium oxide are more preferable.
As In and / or In compounds, one kind may be used alone, or two or more kinds may be used in combination.

第16族元素の量は、In1モルに対し、0.5〜10モルが好ましく、0.5〜4モルがより好ましく、1〜2モルが更に好ましい。カルコゲン元素含有有機化合物の量はIn1モルに対し、0.1〜10モルが好ましく、0.5〜10モルがより好ましく、0.3〜1モルが更に好ましい。
ルイス塩基性無機化合物の量は、In1モルに対し、1〜20モルが好ましく、2〜10モルがより好ましく、2〜5モルが更に好ましい。
The amount of the group 16 element is preferably 0.5 to 10 mol, more preferably 0.5 to 4 mol, and still more preferably 1 to 2 mol with respect to 1 mol of In. The amount of the chalcogen element-containing organic compound is preferably 0.1 to 10 mol, more preferably 0.5 to 10 mol, and still more preferably 0.3 to 1 mol with respect to 1 mol of In.
The amount of the Lewis basic inorganic compound is preferably 1 to 20 mol, more preferably 2 to 10 mol, and still more preferably 2 to 5 mol with respect to 1 mol of In.

In及び/又はIn化合物と、カルコゲン元素含有有機化合物と、ルイス塩基性無機化合物と、第16族元素とを混合する方法は特に限定されない。例えば、In及び/又はIn化合物と、カルコゲン元素含有有機化合物と、ルイス塩基性無機化合物と、第16族元素とを溶媒に添加した後に撹拌する方法や、In及び/又はIn化合物と、カルコゲン元素含有有機化合物と、ルイス塩基性無機化合物と、第16族元素とを混合して得た反応液に溶媒を添加する方法や、反応液に前記貧溶媒を添加して得た錯体に溶媒を添加する方法等が挙げられる。また、カルコゲン元素含有有機化合物と、ルイス塩基性無機化合物と、第16族元素とを溶媒に添加して撹拌し、次いでIn及び/又はIn化合物を添加する方法も好ましい。
前記溶媒としては、例えばジメチルスルホキシド、N−メチルピロリドン(NMP)、N−メチルホルムアミド(NMF)、ジメチルホルムアミド(DMF)、テトラメチルグアニンジン、テトラメチル尿素等の非プロトン性の極性溶剤;水;エタノール、メチルジグリコール(MDG)等の水溶性の高いアルコールまたはグリコールエーテル等が挙げられる。溶媒としては、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
これらの中でも、ジメチルスルホキシド、水、又はジメチルスルホキシドと水との組み合わせが好ましい。
溶媒の量は、混合した際にIn前駆体中のIn濃度が0.1mol/L〜2.0mol/Lになる量が好ましく、0.2〜1.5mol/Lがより好ましく、0.4〜1.2mol/Lが特に好ましい。
A method of mixing In and / or an In compound, a chalcogen element-containing organic compound, a Lewis basic inorganic compound, and a Group 16 element is not particularly limited. For example, a method of stirring after adding In and / or an In compound, a chalcogen element-containing organic compound, a Lewis basic inorganic compound, and a Group 16 element to a solvent, or an In and / or In compound and a chalcogen element A method of adding a solvent to a reaction solution obtained by mixing a contained organic compound, a Lewis basic inorganic compound, and a Group 16 element, or adding a solvent to a complex obtained by adding the poor solvent to the reaction solution And the like. Also preferred is a method in which a chalcogen element-containing organic compound, a Lewis basic inorganic compound, and a Group 16 element are added to a solvent and stirred, and then In and / or an In compound are added.
Examples of the solvent include aprotic polar solvents such as dimethyl sulfoxide, N-methylpyrrolidone (NMP), N-methylformamide (NMF), dimethylformamide (DMF), tetramethylguanidine, tetramethylurea; water; Examples thereof include highly water-soluble alcohols or glycol ethers such as ethanol and methyl diglycol (MDG). As the solvent, one kind may be used alone, or two or more kinds may be used in combination.
Among these, dimethyl sulfoxide, water, or a combination of dimethyl sulfoxide and water is preferable.
The amount of the solvent is preferably such that when mixed, the In concentration in the In precursor is 0.1 mol / L to 2.0 mol / L, more preferably 0.2 to 1.5 mol / L, 0.4 -1.2 mol / L is particularly preferred.

In前駆体の調製において、反応温度は使用するIn及び/又はIn化合物、カルコゲン元素含有有機化合物、ルイス塩基性無機化合物、第16族元素、溶媒等の種類によっても異なるが、安全性やIn錯体の安定性の観点から、通常室温〜200℃が好ましく、室温〜150℃がより好ましく、室温〜100℃が更に好ましい。   In the preparation of the In precursor, the reaction temperature varies depending on the type of In and / or In compound, chalcogen element-containing organic compound, Lewis basic inorganic compound, Group 16 element, solvent, etc. to be used. From the viewpoint of stability, the temperature is usually preferably from room temperature to 200 ° C, more preferably from room temperature to 150 ° C, and still more preferably from room temperature to 100 ° C.

また、In前駆体の調製において、反応時間は使用するIn及び/又はIn化合物、カルコゲン元素含有有機化合物、ルイス塩基性無機化合物、第16族元素、溶媒等の種類、撹拌時間によっても異なるが、通常1時間〜1週間が好ましく、1日〜3日がより好ましく、1日〜2日が更に好ましい。   In the preparation of the In precursor, the reaction time varies depending on the type of In and / or In compound, chalcogen element-containing organic compound, Lewis basic inorganic compound, Group 16 element, solvent, and the like used, and the stirring time. Usually, 1 hour to 1 week is preferable, 1 day to 3 days is more preferable, and 1 day to 2 days is still more preferable.

In前駆体の調製後、In前駆体に前記ルイス塩基性無機化合物よりも極性の低い溶媒(貧溶媒)を混合して不純物を除去することが好ましい。貧溶媒としては特にアセトンが好ましい。また、貧溶媒の混合は複数回行うことが好ましく、具体的には1回〜5回行うことが好ましい。
貧溶媒の量は、In前駆体に対して2〜20倍が好ましく、5〜20倍がより好ましく、7〜20倍が更に好ましい。
After the preparation of the In precursor, it is preferable to remove impurities by mixing the In precursor with a solvent (poor solvent) having a polarity lower than that of the Lewis basic inorganic compound. As the poor solvent, acetone is particularly preferable. Moreover, it is preferable to mix a poor solvent in multiple times, specifically, it is preferable to carry out 1 to 5 times.
The amount of the poor solvent is preferably 2 to 20 times, more preferably 5 to 20 times, and still more preferably 7 to 20 times that of the In precursor.

(Ga前駆体)
Ga前駆体は、例えばGa及び/又はGa化合物と、カルコゲン元素含有有機化合物と、ルイス塩基性無機化合物と、第16族元素とを混合することにより得られる。
Ga及び/又はGa化合物、カルコゲン元素含有有機化合物、ルイス塩基性無機化合物ならびに第16族元素としては、本発明の金属前駆体溶液の製造方法の説明において例示した前記Ga及び/又はGa化合物、カルコゲン元素含有有機化合物、ルイス塩基性無機化合物ならびに第16族元素を用いることができる。
Ga及び/又はGa化合物としては、Ga、酸化ガリウム、硫化ガリウム、セレン化ガリウム、テルル化ガリウムが好ましく、Ga、酸化ガリウムがより好ましい。
Ga及び/又はGa化合物としては、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(Ga precursor)
The Ga precursor is obtained, for example, by mixing Ga and / or a Ga compound, a chalcogen element-containing organic compound, a Lewis basic inorganic compound, and a Group 16 element.
Examples of Ga and / or Ga compounds, chalcogen element-containing organic compounds, Lewis basic inorganic compounds and Group 16 elements include the Ga and / or Ga compounds and chalcogens exemplified in the description of the method for producing a metal precursor solution of the present invention. Element-containing organic compounds, Lewis basic inorganic compounds and Group 16 elements can be used.
As Ga and / or Ga compounds, Ga, gallium oxide, gallium sulfide, gallium selenide, and gallium telluride are preferable, and Ga and gallium oxide are more preferable.
As Ga and / or Ga compounds, one kind may be used alone, or two or more kinds may be used in combination.

第16族元素の量は、Ga1モルに対し、0.5〜10モルが好ましく、0.5〜4モルがより好ましく、1〜2モルが更に好ましい。カルコゲン元素含有有機化合物の量はGa1モルに対し、0.1〜10モルが好ましく、0.5〜10モルがより好ましく、0.3〜1モルが更に好ましい。
ルイス塩基性無機化合物の量は、Ga1モルに対し、1〜20モルが好ましく、2〜10モルがより好ましく、2〜5モルが更に好ましい。
The amount of the group 16 element is preferably 0.5 to 10 mol, more preferably 0.5 to 4 mol, and still more preferably 1 to 2 mol with respect to 1 mol of Ga. The amount of the chalcogen element-containing organic compound is preferably 0.1 to 10 mol, more preferably 0.5 to 10 mol, and still more preferably 0.3 to 1 mol with respect to 1 mol of Ga.
The amount of the Lewis basic inorganic compound is preferably 1 to 20 moles, more preferably 2 to 10 moles, and still more preferably 2 to 5 moles relative to 1 mole of Ga.

Ga及び/又はGa化合物と、カルコゲン元素含有有機化合物と、ルイス塩基性無機化合物と、第16族元素とを混合する方法は特に限定されない。例えば、Ga及び/又はGa化合物と、カルコゲン元素含有有機化合物と、ルイス塩基性無機化合物と、第16族元素とを溶媒に添加した後に撹拌する方法や、Ga及び/又はGa化合物と、カルコゲン元素含有有機化合物と、ルイス塩基性無機化合物と、第16族元素とを混合して得た反応液に溶媒を添加する方法や、反応液に前記貧溶媒を添加して得た錯体に溶媒を添加する方法等が挙げられる。また、カルコゲン元素含有有機化合物と、ルイス塩基性無機化合物と、第16族元素とを溶媒に添加して撹拌し、次いでGa及び/又はGa化合物を添加する方法も好ましい。
前記溶媒としては、例えばジメチルスルホキシド、N−メチルピロリドン(NMP)、N−メチルホルムアミド(NMF)、ジメチルホルムアミド(DMF)、テトラメチルグアニンジン、テトラメチル尿素等の非プロトン性の極性溶剤;水;エタノール、メチルジグリコール(MDG)等の水溶性の高いアルコールまたはグリコールエーテル等が挙げられる。溶媒としては、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
これらの中でも、ジメチルスルホキシド、水、又はジメチルスルホキシドと水との組み合わせが好ましい。
溶媒の量は、混合した際にGa前駆体中のGa濃度が0.1mol/L〜2.0mol/Lになる量が好ましく、0.2〜1.5mol/Lがより好ましく、0.4〜1.2mol/Lが特に好ましい。
The method of mixing Ga and / or a Ga compound, a chalcogen element-containing organic compound, a Lewis basic inorganic compound, and a Group 16 element is not particularly limited. For example, a method of stirring after adding Ga and / or Ga compound, chalcogen element-containing organic compound, Lewis basic inorganic compound, and Group 16 element to the solvent, Ga and / or Ga compound, and chalcogen element A method of adding a solvent to a reaction solution obtained by mixing a contained organic compound, a Lewis basic inorganic compound, and a Group 16 element, or adding a solvent to a complex obtained by adding the poor solvent to the reaction solution And the like. Also preferred is a method in which a chalcogen element-containing organic compound, a Lewis basic inorganic compound, and a Group 16 element are added to a solvent and stirred, and then Ga and / or a Ga compound is added.
Examples of the solvent include aprotic polar solvents such as dimethyl sulfoxide, N-methylpyrrolidone (NMP), N-methylformamide (NMF), dimethylformamide (DMF), tetramethylguanidine, tetramethylurea; water; Examples thereof include highly water-soluble alcohols or glycol ethers such as ethanol and methyl diglycol (MDG). As the solvent, one kind may be used alone, or two or more kinds may be used in combination.
Among these, dimethyl sulfoxide, water, or a combination of dimethyl sulfoxide and water is preferable.
The amount of the solvent is preferably such that when mixed, the Ga concentration in the Ga precursor is 0.1 mol / L to 2.0 mol / L, more preferably 0.2 to 1.5 mol / L, 0.4 -1.2 mol / L is particularly preferred.

Ga前駆体の調製において、反応温度は使用するGa及び/又はGa化合物、カルコゲン元素含有有機化合物、ルイス塩基性無機化合物、第16族元素、溶媒等の種類によっても異なるが、安全性やGa錯体の安定性の観点から、通常通常室温〜200℃が好ましく、室温〜150℃がより好ましく、室温〜100℃が更に好ましい。   In the preparation of the Ga precursor, the reaction temperature varies depending on the type of Ga and / or Ga compound, chalcogen element-containing organic compound, Lewis basic inorganic compound, Group 16 element, solvent, etc. From the viewpoint of the stability, usually room temperature to 200 ° C is preferable, room temperature to 150 ° C is more preferable, and room temperature to 100 ° C is more preferable.

また、Ga前駆体の調製において、反応時間は使用するGa及び/又はGa化合物、カルコゲン元素含有有機化合物、ルイス塩基性無機化合物、第16族元素、溶媒等の種類、撹拌時間によっても異なるが、通常1時間〜1週間が好ましく、1日〜3日がより好ましく、1日〜2日が更に好ましい。   Further, in the preparation of Ga precursor, the reaction time varies depending on the type of Ga and / or Ga compound, chalcogen element-containing organic compound, Lewis basic inorganic compound, Group 16 element, solvent, etc. used, and the stirring time. Usually, 1 hour to 1 week is preferable, 1 day to 3 days is more preferable, and 1 day to 2 days is still more preferable.

Ga前駆体の調製後、Ga前駆体に前記ルイス塩基性無機化合物よりも極性の低い溶媒(貧溶媒)を混合して不純物を除去することが好ましい。貧溶媒としては特にアセトンが好ましい。また、貧溶媒の混合は複数回行うことが好ましく、具体的には1回〜5回行うことが好ましい。
貧溶媒の量は、Ga前駆体に対して2〜20倍が好ましく、5〜20倍がより好ましく、7〜20倍が更に好ましい。
After the preparation of the Ga precursor, it is preferable to remove impurities by mixing the Ga precursor with a solvent (poor solvent) having a polarity lower than that of the Lewis basic inorganic compound. As the poor solvent, acetone is particularly preferable. Moreover, it is preferable to mix a poor solvent in multiple times, specifically, it is preferable to carry out 1 to 5 times.
The amount of the poor solvent is preferably 2 to 20 times, more preferably 5 to 20 times, and still more preferably 7 to 20 times the Ga precursor.

(Sb前駆体)
Sb前駆体は、例えばSb及び/又はSb化合物と、カルコゲン元素含有有機化合物と、ルイス塩基性無機化合物と、第16族元素とを混合することにより得られる。
Sb及び/又はSb化合物、カルコゲン元素含有有機化合物、ルイス塩基性無機化合物ならびに第16族元素としては、本発明の金属前駆体溶液の製造方法の説明において例示した前記Sb及び/又はSb化合物、カルコゲン元素含有有機化合物、ルイス塩基性無機化合物ならびに第16族元素を用いることができる。
Sb及び/又はSb化合物としては、Sb、Sb、硫化アンチモン、セレン化アンチモン、テルル化アンチモンが好ましく、Sb、Sbがより好ましい。
Sb及び/又はSb化合物としては、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(Sb precursor)
The Sb precursor is obtained, for example, by mixing an Sb and / or Sb compound, a chalcogen element-containing organic compound, a Lewis basic inorganic compound, and a Group 16 element.
Examples of the Sb and / or Sb compound, the chalcogen element-containing organic compound, the Lewis basic inorganic compound, and the Group 16 element include the Sb and / or Sb compound and chalcogen exemplified in the description of the method for producing the metal precursor solution of the present invention. Element-containing organic compounds, Lewis basic inorganic compounds and Group 16 elements can be used.
As the Sb and / or Sb compound, Sb, Sb 2 O 3 , antimony sulfide, antimony selenide, and antimony telluride are preferable, and Sb and Sb 2 O 3 are more preferable.
As the Sb and / or Sb compound, one kind may be used alone, or two or more kinds may be used in combination.

第16族元素の量は、Sb1モルに対し、0.5〜10モルが好ましく、0.5〜4モルがより好ましく、1〜2モルが更に好ましい。カルコゲン元素含有有機化合物の量はSb1モルに対し、0.1〜10モルが好ましく、0.5〜10モルがより好ましく、0.3〜1モルが更に好ましい。
ルイス塩基性無機化合物の量は、Sb1モルに対し、1〜20モルが好ましく、2〜10モルがより好ましく、2〜5モルが更に好ましい。
The amount of the group 16 element is preferably 0.5 to 10 mol, more preferably 0.5 to 4 mol, and still more preferably 1 to 2 mol with respect to 1 mol of Sb. The amount of the chalcogen element-containing organic compound is preferably 0.1 to 10 mol, more preferably 0.5 to 10 mol, and still more preferably 0.3 to 1 mol, relative to 1 mol of Sb.
The amount of the Lewis basic inorganic compound is preferably 1 to 20 moles, more preferably 2 to 10 moles, and still more preferably 2 to 5 moles relative to 1 mole of Sb.

Sb及び/又はSb化合物と、カルコゲン元素含有有機化合物と、ルイス塩基性無機化合物と、第16族元素とを混合する方法は特に限定されない。例えば、Sb及び/又はSb化合物と、カルコゲン元素含有有機化合物と、ルイス塩基性無機化合物と、第16族元素とを溶媒に添加した後に撹拌する方法や、Sb及び/又はSb化合物と、カルコゲン元素含有有機化合物と、ルイス塩基性無機化合物と、第16族元素とを混合して得た反応液に溶媒を添加する方法や、反応液に前記貧溶媒を添加して得た錯体に溶媒を添加する方法等が挙げられる。また、カルコゲン元素含有有機化合物と、ルイス塩基性無機化合物と、第16族元素とを溶媒に添加して撹拌し、次いでSb及び/又はSb化合物を添加する方法も好ましい。
前記溶媒としては、例えばジメチルスルホキシド、N−メチルピロリドン(NMP)、N−メチルホルムアミド(NMF)、ジメチルホルムアミド(DMF)、テトラメチルグアニンジン、テトラメチル尿素等の非プロトン性の極性溶剤;水;エタノール、メチルジグリコール(MDG)等の水溶性の高いアルコールまたはグリコールエーテル等が挙げられる。溶媒としては、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
これらの中でも、ジメチルスルホキシド、水、又はジメチルスルホキシドと水との組み合わせが好ましい。
溶媒の量は、混合した際にSb前駆体中のSb濃度が0.1mol/L〜2.0mol/Lになる量が好ましく、0.2〜1.5mol/Lがより好ましく、0.4〜1.2mol/Lが特に好ましい。
The method for mixing the Sb and / or Sb compound, the chalcogen element-containing organic compound, the Lewis basic inorganic compound, and the Group 16 element is not particularly limited. For example, a method of stirring after adding a Sb and / or Sb compound, a chalcogen element-containing organic compound, a Lewis basic inorganic compound, and a Group 16 element to a solvent, a Sb and / or Sb compound, and a chalcogen element A method of adding a solvent to a reaction solution obtained by mixing a contained organic compound, a Lewis basic inorganic compound, and a Group 16 element, or adding a solvent to a complex obtained by adding the poor solvent to the reaction solution And the like. Also preferred is a method in which a chalcogen element-containing organic compound, a Lewis basic inorganic compound, and a Group 16 element are added to a solvent and stirred, and then Sb and / or an Sb compound are added.
Examples of the solvent include aprotic polar solvents such as dimethyl sulfoxide, N-methylpyrrolidone (NMP), N-methylformamide (NMF), dimethylformamide (DMF), tetramethylguanidine, tetramethylurea; water; Examples thereof include highly water-soluble alcohols or glycol ethers such as ethanol and methyl diglycol (MDG). As the solvent, one kind may be used alone, or two or more kinds may be used in combination.
Among these, dimethyl sulfoxide, water, or a combination of dimethyl sulfoxide and water is preferable.
The amount of the solvent is preferably such that when mixed, the Sb concentration in the Sb precursor is 0.1 mol / L to 2.0 mol / L, more preferably 0.2 to 1.5 mol / L, 0.4 -1.2 mol / L is particularly preferred.

Sb前駆体の調製において、反応温度は使用するSb及び/又はSb化合物、カルコゲン元素含有有機化合物、ルイス塩基性無機化合物、第16族元素、溶媒等の種類によっても異なるが、安全性やSb錯体の安定性の観点から、通常室温〜200℃が好ましく、室温〜150℃がより好ましく、室温〜100℃が更に好ましい。   In the preparation of the Sb precursor, the reaction temperature depends on the type of Sb and / or Sb compound, chalcogen element-containing organic compound, Lewis basic inorganic compound, Group 16 element, solvent, etc. used, but the safety and Sb complex From the viewpoint of stability, the temperature is usually preferably from room temperature to 200 ° C, more preferably from room temperature to 150 ° C, and further preferably from room temperature to 100 ° C.

また、Sb前駆体の調製において、反応時間は使用するSb及び/又はSb化合物、カルコゲン元素含有有機化合物、ルイス塩基性無機化合物、第16族元素、溶媒等の種類、撹拌時間によっても異なるが、通常1時間〜1週間が好ましく、1日〜3日がより好ましく、1日〜2日が更に好ましい。   In the preparation of the Sb precursor, the reaction time varies depending on the type of Sb and / or Sb compound, chalcogen element-containing organic compound, Lewis basic inorganic compound, Group 16 element, solvent, and the like used, and the stirring time. Usually, 1 hour to 1 week is preferable, 1 day to 3 days is more preferable, and 1 day to 2 days is still more preferable.

Sb前駆体の調製後、Sb前駆体に前記ルイス塩基性無機化合物よりも極性の低い溶媒(貧溶媒)を混合して不純物を除去することが好ましい。貧溶媒としては特にアセトンが好ましい。また、貧溶媒の混合は複数回行うことが好ましく、具体的には1回〜5回行うことが好ましい。
貧溶媒の量は、Sb前駆体に対して2〜20倍が好ましく、5〜20倍がより好ましく、7〜20倍が更に好ましい。
After the preparation of the Sb precursor, it is preferable to remove impurities by mixing the Sb precursor with a solvent (poor solvent) having a polarity lower than that of the Lewis basic inorganic compound. As the poor solvent, acetone is particularly preferable. Moreover, it is preferable to mix a poor solvent in multiple times, specifically, it is preferable to carry out 1 to 5 times.
The amount of the poor solvent is preferably 2 to 20 times, more preferably 5 to 20 times, and still more preferably 7 to 20 times the Sb precursor.

上記のように得られた各前駆体を混合する方法は特に限定されない。例えば、各前駆体を溶媒に添加した後に撹拌する方法、各前駆体を混合した後に溶媒を添加する方法、各前駆体を減圧乾燥して固体錯体とした後に各固体錯体を溶媒に添加して錯体溶液を得て、得られた錯体溶液を混合する方法等が挙げられる。
前記溶媒としては、例えばジメチルスルホキシド、N−メチルピロリドン(NMP)、N−メチルホルムアミド(NMF)、ジメチルホルムアミド(DMF)、テトラメチルグアニンジン、テトラメチル尿素等の非プロトン性の極性溶剤;水;エタノール、メチルジグリコール(MDG)等の水溶性の高いアルコールまたはグリコールエーテル等が挙げられる。溶媒としては、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
これらの中でも、ジメチルスルホキシド、水、又はジメチルスルホキシドと水との組み合わせが好ましい。
溶媒の量は、例えばCZTS系太陽電池用の光吸収層に用いる場合、Cu、Zn、Sn、Se各金属の合計量または、500℃以上で加熱した際に残る固形分濃度が3%以上になる量が好ましく、5%以上がより好ましく、10%以上が特に好ましい。
また、例えばCIGS系太陽電池用の光吸収層に用いる場合、Cu、In、Ga、Se各金属の合計量または、500℃以上で加熱した際に残る固形分濃度が3%以上になる量が好ましく、5%以上がより好ましく、10%以上が特に好ましい。
The method for mixing the precursors obtained as described above is not particularly limited. For example, a method of stirring after adding each precursor to a solvent, a method of adding a solvent after mixing each precursor, drying each precursor under reduced pressure to form a solid complex, and then adding each solid complex to the solvent The method etc. which obtain a complex solution and mix the obtained complex solution are mentioned.
Examples of the solvent include aprotic polar solvents such as dimethyl sulfoxide, N-methylpyrrolidone (NMP), N-methylformamide (NMF), dimethylformamide (DMF), tetramethylguanidine, tetramethylurea; water; Examples thereof include highly water-soluble alcohols or glycol ethers such as ethanol and methyl diglycol (MDG). As the solvent, one kind may be used alone, or two or more kinds may be used in combination.
Among these, dimethyl sulfoxide, water, or a combination of dimethyl sulfoxide and water is preferable.
For example, when used in a light absorbing layer for CZTS solar cells, the amount of the solvent is such that the total amount of each metal of Cu, Zn, Sn, and Se, or the solid content concentration remaining when heated at 500 ° C. or higher is 3% or higher. Is preferably 5% or more, more preferably 10% or more.
For example, when used for a light absorption layer for CIGS solar cells, the total amount of each metal of Cu, In, Ga, and Se, or the amount of solid content remaining when heated at 500 ° C. or more is 3% or more. Preferably, 5% or more is more preferable, and 10% or more is particularly preferable.

<調製方法(II)>
調製方法(II)における単体及び/又は化合物、カルコゲン元素含有有機化合物、ルイス塩基性無機化合物ならびに第16族元素としては、本発明の金属前駆体溶液の製造方法の説明において例示した前記単体及び/又は化合物、カルコゲン元素含有有機化合物、ルイス塩基性無機化合物ならびに第16族元素を用いることができる。
各原料の好ましい例としては、前記調製方法(I)と同様のものが挙げられる。
<Preparation method (II)>
As the simple substance and / or compound, the chalcogen element-containing organic compound, the Lewis basic inorganic compound, and the Group 16 element in the preparation method (II), the simple substance and / or the compound exemplified in the explanation of the method for producing the metal precursor solution of the present invention Alternatively, a compound, a chalcogen element-containing organic compound, a Lewis basic inorganic compound, and a Group 16 element can be used.
Preferable examples of each raw material include the same as in the preparation method (I).

各原料の量は、各原料の種類によって適宜調整することができる。例えばCZTS系太陽電池用の光吸収層に用いる場合(塗布液が後述する一般式(2)で表される化合物を含む場合)、各金属のモル比で、Cu/(Zn+Sn)=0.5〜1.0、Zn/(Zn+Sn)=0.4〜0.6、Sn/(Zn+Sn)=0.4〜0.6の範囲となるように調製することが好ましい。
Cu、Zn、Sn各金属の合計量1モルに対し、第16族元素の量は0.5〜10当量が好ましく、0.5〜4当量がより好ましく、1〜2当量が更に好ましい。カルコゲン元素含有有機化合物の量は、金属に対して0.1〜10当量が好ましく、0.5〜10当量がより好ましく、0.3〜1当量が更に好ましい。
ルイス塩基性無機化合物の量は、1〜20モルであることが好ましく、好ましくは2〜10モルがより好ましく、2〜5当量が更に好ましい。
また、例えばCIGS系太陽電池用の光吸収層に用いる場合(塗布液が後述する一般式(1)で表される化合物を含む場合)、各金属のモル比で、Cu/(In+Ga)=0.5〜1.0、In/(In+Ga)=0.0〜1.0、Ga/(In+Ga)=0.0〜1.0の範囲となるように調製することが好ましい。
Cu、In、Ga各金属の合計量1モルに対し、第16族元素の量は0.5〜10当量が好ましく、0.5〜4当量がより好ましく、1〜2当量が更に好ましい。カルコゲン元素含有有機化合物の量は、金属に対して0.1〜10当量が好ましく、0.5〜10当量がより好ましく、0.3〜1当量が更に好ましい。
ルイス塩基性無機化合物の量は、1〜20モルであることが好ましく、好ましくは2〜10モルがより好ましく、2〜5モルが更に好ましい。
The amount of each raw material can be appropriately adjusted depending on the type of each raw material. For example, when used for a light absorption layer for a CZTS solar cell (when the coating solution contains a compound represented by the general formula (2) described later), Cu / (Zn + Sn) = 0.5 in terms of the molar ratio of each metal. -1.0, Zn / (Zn + Sn) = 0.4-0.6, and Sn / (Zn + Sn) = 0.4-0.6 are preferably prepared.
The amount of the group 16 element is preferably 0.5 to 10 equivalents, more preferably 0.5 to 4 equivalents, and even more preferably 1 to 2 equivalents with respect to 1 mol of the total amount of each metal of Cu, Zn and Sn. 0.1-10 equivalent is preferable with respect to a metal, as for the quantity of a chalcogen element containing organic compound, 0.5-10 equivalent is more preferable, and 0.3-1 equivalent is still more preferable.
The amount of the Lewis basic inorganic compound is preferably 1 to 20 moles, preferably 2 to 10 moles, more preferably 2 to 5 equivalents.
For example, when used for a light absorption layer for CIGS solar cells (when the coating solution contains a compound represented by the general formula (1) described later), Cu / (In + Ga) = 0 in terms of molar ratio of each metal. It is preferable to prepare so that it may become the range of 0.5-1.0, In / (In + Ga) = 0.0-1.0, Ga / (In + Ga) = 0.0-1.0.
The amount of the group 16 element is preferably 0.5 to 10 equivalents, more preferably 0.5 to 4 equivalents, and even more preferably 1 to 2 equivalents with respect to 1 mol of the total amount of each metal of Cu, In and Ga. 0.1-10 equivalent is preferable with respect to a metal, as for the quantity of a chalcogen element containing organic compound, 0.5-10 equivalent is more preferable, and 0.3-1 equivalent is still more preferable.
The amount of the Lewis basic inorganic compound is preferably 1 to 20 mol, preferably 2 to 10 mol, more preferably 2 to 5 mol.

調製方法(II)において、各原料を混合する方法は特に限定されないが、例えば各原料を溶媒に添加した後に撹拌する方法や、各原料を混合した後に溶媒を添加する方法等が挙げられる。また、カルコゲン元素含有有機化合物と、ルイス塩基性無機化合物と、第16族元素とを溶媒に添加して撹拌し、次いで単体及び/又は化合物を添加する方法も好ましい。
前記溶媒としては、例えばジメチルスルホキシド、N−メチルピロリドン(NMP)、N−メチルホルムアミド(NMF)、ジメチルホルムアミド(DMF)、テトラメチルグアニンジン、テトラメチル尿素等の非プロトン性の極性溶剤;水;エタノール、メチルジグリコール(MDG)等の水溶性の高いアルコールまたはグリコールエーテル等が挙げられる。溶媒としては、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
これらの中でも、ジメチルスルホキシド、水、又はジメチルスルホキシドと水との組み合わせが好ましい。
溶媒の量は、使用する各原料の種類によって異なるが、熱重量測定で500℃で加熱したときの残渣成分を固形分としたとき、固形分濃度が1〜30重量%になるよう調製することが好ましく、5〜20重量%がより好ましい。
In the preparation method (II), a method of mixing each raw material is not particularly limited, and examples thereof include a method of stirring after adding each raw material to a solvent, a method of adding a solvent after mixing each raw material, and the like. Also preferred is a method in which a chalcogen element-containing organic compound, a Lewis basic inorganic compound, and a Group 16 element are added to a solvent and stirred, and then a simple substance and / or a compound are added.
Examples of the solvent include aprotic polar solvents such as dimethyl sulfoxide, N-methylpyrrolidone (NMP), N-methylformamide (NMF), dimethylformamide (DMF), tetramethylguanidine, tetramethylurea; water; Examples thereof include highly water-soluble alcohols or glycol ethers such as ethanol and methyl diglycol (MDG). As the solvent, one kind may be used alone, or two or more kinds may be used in combination.
Among these, dimethyl sulfoxide, water, or a combination of dimethyl sulfoxide and water is preferable.
The amount of the solvent varies depending on the type of each raw material used, but when the residual component when heated at 500 ° C. by thermogravimetry is defined as the solid content, the solid content concentration should be adjusted to 1 to 30% by weight. Is preferable, and 5 to 20 weight% is more preferable.

調製方法(II)における反応温度は、使用する各原料の種類によって異なるが、安全性や錯体の安定性の観点から、通常室温〜200℃が好ましく、室温〜150℃がより好ましく、室温〜100℃が更に好ましい。   Although the reaction temperature in preparation method (II) changes with kinds of each raw material to be used, from a safety | security and the stability viewpoint of a complex, normally room temperature-200 degreeC is preferable, room temperature-150 degreeC is more preferable, and room temperature-100 More preferred is ° C.

調製方法(II)における反応時間は、使用する各原料の種類、撹拌時間によって異なるが、通常1時間〜1週間が好ましく、1日〜3日がより好ましく、1日〜2日が更に好ましい。   The reaction time in the preparation method (II) varies depending on the types of raw materials used and the stirring time, but is usually preferably 1 hour to 1 week, more preferably 1 day to 3 days, and even more preferably 1 day to 2 days.

<調製方法(III)>
調製方法(III)における単体及び/又は化合物、カルコゲン元素含有有機化合物、ルイス塩基性無機化合物ならびに第16族元素としては、本発明の金属前駆体溶液の製造方法の説明において例示した前記単体及び/又は化合物、カルコゲン元素含有有機化合物、ルイス塩基性無機化合物ならびに第16族元素を用いることができる。
各原料の好ましい例としては、前記調製方法(I)と同様のものが挙げられる。
<Preparation method (III)>
As the simple substance and / or compound, the chalcogen element-containing organic compound, the Lewis basic inorganic compound, and the Group 16 element in the preparation method (III), the simple substance and / or the compound exemplified in the description of the method for producing the metal precursor solution of the present invention can be used. Alternatively, a compound, a chalcogen element-containing organic compound, a Lewis basic inorganic compound, and a Group 16 element can be used.
Preferable examples of each raw material include the same as in the preparation method (I).

調製方法(III)において、例えば、少なくとも2種の第11族〜第15族金属と、カルコゲン元素含有有機化合物と、ルイス塩基性無機化合物と、第16族元素とを混合することにより、二元又は三元金属錯体溶液を得ることが出来る。
各原料の好ましい例としては、前記調製方法(I)と同様のものが挙げられる。
In the preparation method (III), for example, by mixing at least two types of Group 11 to Group 15 metals, chalcogen element-containing organic compounds, Lewis basic inorganic compounds, and Group 16 elements, Alternatively, a ternary metal complex solution can be obtained.
Preferable examples of each raw material include the same as in the preparation method (I).

各原料の量は、各原料の種類によって適宜調整することができる。例えばCZTS系太陽電池用の光吸収層に用いる場合(塗布液が後述する一般式(2)で表される化合物を含む場合)、Cu元素及び/又はCu化合物、Zn元素及び/又はZn化合物、並びにSn元素及び/又はSn化合物の少なくとも2種(以下、まとめて「CZTS金属」という場合がある。)を用いることが出来る。この場合、各金属のモル比が後述する一般式(2)で規定される範囲内となるように塗布液を調製することが好ましい。
CZTS金属の合計量1モルに対し、第16族元素の量は0.5〜10当量が好ましく、0.5〜4当量がより好ましく、1〜2当量が更に好ましい。カルコゲン元素含有有機化合物の量は、CZTS金属の合計量1モルに対し、0.1〜10当量が好ましく、0.5〜10当量がより好ましく、0.3〜1当量が更に好ましい。
ルイス塩基性無機化合物の量は、CZTS金属の合計量1モルに対し、1〜20モルであることが好ましく、好ましくは2〜10モルがより好ましく、2〜5モルが更に好ましい。
また、例えばCIGS系太陽電池用の光吸収層に用いる場合(塗布液が後述する一般式(1)で表される化合物を含む場合)、Cu元素及び/又はCu化合物、In元素及び/又はIn化合物、並びにGa元素及び/又はGa化合物の少なくとも2種(以下、まとめて「CIGS金属」という場合がある。)を用いることが出来る。この場合、各金属のモル比が後述する一般式(1)で規定される範囲内となるように塗布液を調製することが好ましい。
CIGS金属の合計量1モルに対し、第16族元素の量は0.5〜10モルが好ましく、0.5〜5モルがより好ましく、1〜3モルが更に好ましい。カルコゲン元素含有有機化合物の量は、金属に対して0.05〜5モルが好ましく、0.1〜2モルがより好ましく、0.25〜0.75モルが更に好ましい。
ルイス塩基性無機化合物の量は、1〜20モルであることが好ましく、好ましくは1〜10モルがより好ましく、2〜6当量が更に好ましい。
The amount of each raw material can be appropriately adjusted depending on the type of each raw material. For example, when used for a light absorption layer for CZTS solar cells (when the coating solution contains a compound represented by the general formula (2) described later), Cu element and / or Cu compound, Zn element and / or Zn compound, In addition, at least two kinds of Sn elements and / or Sn compounds (hereinafter sometimes collectively referred to as “CZTS metal”) can be used. In this case, it is preferable to prepare the coating solution so that the molar ratio of each metal is within the range defined by the general formula (2) described later.
The amount of the group 16 element is preferably 0.5 to 10 equivalents, more preferably 0.5 to 4 equivalents, and even more preferably 1 to 2 equivalents with respect to 1 mol of the total amount of CZTS metal. The amount of the chalcogen element-containing organic compound is preferably from 0.1 to 10 equivalents, more preferably from 0.5 to 10 equivalents, still more preferably from 0.3 to 1 equivalent, based on 1 mol of the total amount of CZTS metal.
The amount of the Lewis basic inorganic compound is preferably 1 to 20 mol, preferably 2 to 10 mol, more preferably 2 to 5 mol, per 1 mol of the total amount of CZTS metal.
For example, when used for a light absorption layer for a CIGS solar cell (when the coating solution contains a compound represented by the general formula (1) described later), Cu element and / or Cu compound, In element and / or In A compound and at least two kinds of Ga element and / or Ga compound (hereinafter, sometimes collectively referred to as “CIGS metal”) can be used. In this case, it is preferable to prepare the coating solution so that the molar ratio of each metal is within the range defined by the general formula (1) described later.
The amount of the group 16 element is preferably 0.5 to 10 mol, more preferably 0.5 to 5 mol, and still more preferably 1 to 3 mol with respect to 1 mol of the total amount of CIGS metal. 0.05-5 mol is preferable with respect to a metal, as for the quantity of a chalcogen element containing organic compound, 0.1-2 mol is more preferable, and 0.25-0.75 mol is still more preferable.
The amount of the Lewis basic inorganic compound is preferably 1 to 20 mol, preferably 1 to 10 mol, more preferably 2 to 6 equivalents.

調製方法(III)において、各原料を混合する方法は特に限定されないが、例えば各原料を溶媒に添加した後に撹拌する方法や、各原料を混合した後に溶媒を添加する方法等が挙げられる。また、カルコゲン元素含有有機化合物と、ルイス塩基性無機化合物と、第16族元素とを溶媒に添加して撹拌し、次いで単体及び/又は化合物を添加する方法も好ましい。
前記溶媒としては、例えばジメチルスルホキシド、N−メチルピロリドン(NMP)、N−メチルホルムアミド(NMF)、ジメチルホルムアミド(DMF)、テトラメチルグアニンジン、テトラメチル尿素等の非プロトン性の極性溶剤;水;エタノール、メチルジグリコール(MDG)等の水溶性の高いアルコールまたはグリコールエーテル等が挙げられる。溶媒としては、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
これらの中でも、ジメチルスルホキシド、水、又はジメチルスルホキシドと水との組み合わせが好ましい。
溶媒の量は、使用する各原料の種類によって異なるが、熱重量測定で500℃で加熱したときの残渣成分を固形分としたとき、固形分濃度が1〜30重量%になるよう調製することが好ましく、5〜20重量%がより好ましい。
In preparation method (III), the method of mixing each raw material is not particularly limited, and examples thereof include a method of stirring after adding each raw material to a solvent, and a method of adding a solvent after mixing each raw material. Also preferred is a method in which a chalcogen element-containing organic compound, a Lewis basic inorganic compound, and a Group 16 element are added to a solvent and stirred, and then a simple substance and / or a compound are added.
Examples of the solvent include aprotic polar solvents such as dimethyl sulfoxide, N-methylpyrrolidone (NMP), N-methylformamide (NMF), dimethylformamide (DMF), tetramethylguanidine, tetramethylurea; water; Examples thereof include highly water-soluble alcohols or glycol ethers such as ethanol and methyl diglycol (MDG). As the solvent, one kind may be used alone, or two or more kinds may be used in combination.
Among these, dimethyl sulfoxide, water, or a combination of dimethyl sulfoxide and water is preferable.
The amount of the solvent varies depending on the type of each raw material used, but when the residual component when heated at 500 ° C. by thermogravimetry is defined as the solid content, the solid content concentration should be adjusted to 1 to 30% by weight. Is preferable, and 5 to 20 weight% is more preferable.

調製方法(III)における反応温度は、使用する各原料の種類によって異なるが、安全性や錯体の安定性の観点から、通常室温〜200℃が好ましく、室温〜150℃がより好ましく、室温〜100℃が更に好ましい。   Although the reaction temperature in preparation method (III) changes with kinds of each raw material to be used, from the viewpoint of safety | security and stability of a complex, normally room temperature-200 degreeC is preferable, room temperature-150 degreeC is more preferable, and room temperature-100 More preferred is ° C.

調製方法(III)における反応時間は、使用する各原料の種類、撹拌時間によって異なるが、通常1時間〜1週間が好ましく、1日〜3日がより好ましく、1日〜2日が更に好ましい。   The reaction time in the preparation method (III) varies depending on the types of raw materials used and the stirring time, but is usually preferably 1 hour to 1 week, more preferably 1 day to 3 days, and still more preferably 1 day to 2 days.

本発明の製造方法により得られた光吸収層形成用塗布液は、直接光吸収層形成に用いることができるし、減圧蒸留により濃縮して濃縮液とすることも可能である。光吸収層形成用塗布液を濃縮することにより、未反応ルイス塩基性無機化合物、溶媒、水、未反応カルコゲン元素含有有機化合物等を除去することができる。
更に、上記濃縮液を溶媒に溶解して希釈することにより、均一な光吸収層形成用塗布液を得ることができる。前記溶媒としては、水、ジメチルスルホキシド、ヒドラジン等があげられる。溶媒としては、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらの中でも水及びジメチルスルホキシドが好ましい。
The coating solution for forming a light absorbing layer obtained by the production method of the present invention can be used directly for forming a light absorbing layer, or can be concentrated by vacuum distillation to obtain a concentrated solution. By concentrating the coating solution for forming the light absorption layer, unreacted Lewis basic inorganic compound, solvent, water, unreacted chalcogen element-containing organic compound and the like can be removed.
Furthermore, a uniform coating solution for forming a light absorption layer can be obtained by dissolving the concentrated solution in a solvent and diluting it. Examples of the solvent include water, dimethyl sulfoxide, hydrazine and the like. As the solvent, one kind may be used alone, or two or more kinds may be used in combination. Among these, water and dimethyl sulfoxide are preferable.

また、本発明の製造方法により得られた光吸収層形成用塗布液は、Na、K、Cs、Sb及びBiからなる群より選ばれる少なくとも1種(以下、まとめて「添加金属」という場合がある。)を添加することも好ましい。添加金属を添加することにより、光吸収層の結晶成長を促進することができる。また、添加金属は溶液に溶解して添加してもよい。
Na液をとしては、セレン化ナトリウム、セレンをDMSOに溶解したもの等が挙げられる。
Naの添加量は、例えばCZTS系太陽電池用の光吸収層に用いる場合、CZTSの金属モル量に対して0.1〜10atomic%が好ましく、0.1〜2atomic%が更に好ましい。
また、例えばCIGS系太陽電池用の光吸収層に用いる場合、CIGSの金属モル量に対して、0.1〜10atomic%が好ましく、0.1〜2atomic%が更に好ましい。
In addition, the light absorbing layer forming coating solution obtained by the production method of the present invention is at least one selected from the group consisting of Na, K, Cs, Sb and Bi (hereinafter sometimes collectively referred to as “added metal”). It is also preferred to add. The crystal growth of the light absorption layer can be promoted by adding the additive metal. Further, the added metal may be added after being dissolved in a solution.
Examples of the Na solution include sodium selenide and those obtained by dissolving selenium in DMSO.
The amount of Na added is, for example, preferably from 0.1 to 10 atomic%, more preferably from 0.1 to 2 atomic%, based on the metal molar amount of CZTS when used in a light absorbing layer for CZTS solar cells.
Moreover, when using for the light absorption layer for CIGS type | system | group solar cells, for example, 0.1-10 atomic% is preferable with respect to the metal molar amount of CIGS, and 0.1-2 atomic% is still more preferable.

また、本発明の製造方法により得られた光吸収層形成用塗布液は、Sbを添加することも好ましい。
Sbの添加量は、例えばCZTS系太陽電池用の光吸収層に用いる場合、CZTSの金属モル量に対して0.1〜2atomic%が好ましく、0.1〜0.5atomic%がより好ましい。
また、例えばCIGS系太陽電池用の光吸収層に用いる場合、CIGSの金属モル量に対して、CIGSの金属モル量に対して0.1〜2atomic%が好ましく、0.1〜0.5atomic%がより好ましい。
Moreover, it is also preferable that Sb is added to the coating solution for forming a light absorption layer obtained by the production method of the present invention.
The amount of Sb added is, for example, preferably from 0.1 to 2 atomic%, more preferably from 0.1 to 0.5 atomic%, based on the metal molar amount of CZTS when used in a light absorption layer for CZTS solar cells.
For example, when used for a light absorption layer for CIGS solar cells, 0.1 to 2 atomic% is preferable with respect to the metal molar amount of CIGS, and 0.1 to 0.5 atomic% with respect to the metal molar amount of CIGS. Is more preferable.

本発明の錯体(溶液)の製造方法において、錯体またはその溶液は、カルコパイライト系太陽電池又はケステライト系太陽電池の光吸収層の形成に用いられることが好ましい。この場合、前記反応液は、下記一般式(1)又は(2)で表される化合物を含有することが好ましい。   In the method for producing a complex (solution) of the present invention, the complex or a solution thereof is preferably used for forming a light absorption layer of a chalcopyrite solar cell or a kesterite solar cell. In this case, the reaction solution preferably contains a compound represented by the following general formula (1) or (2).

Figure 2014196311
[式中、0≦w≦1、0≦x≦1、0≦y≦1、0<z≦1、Aは少なくとも1種の16族元素である。
Figure 2014196311
[Wherein, 0 ≦ w ≦ 1, 0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 <z ≦ 1, and A is at least one group 16 element.

Figure 2014196311
[式中、0≦a≦1、0≦b≦1、0≦c≦1、及び−1≦d≦1である。]
Figure 2014196311
[Where 0 ≦ a ≦ 1, 0 ≦ b ≦ 1, 0 ≦ c ≦ 1, and −1 ≦ d ≦ 1. ]

前記一般式(1)中、0≦w≦1、好ましくは0.75≦w≦1である。0≦x≦1、好ましくは0.1≦x≦0.5である。0≦y≦1である。0<z≦1である。Aは少なくとも1種の16族元素であり、好ましくはSe及び/又はSである。
前記一般式(2)中、0≦a≦1、0≦b≦1、0≦c≦1、及び−1≦d≦1である。
In the general formula (1), 0 ≦ w ≦ 1, preferably 0.75 ≦ w ≦ 1. 0 ≦ x ≦ 1, preferably 0.1 ≦ x ≦ 0.5. 0 ≦ y ≦ 1. 0 <z ≦ 1. A is at least one group 16 element, preferably Se and / or S.
In the general formula (2), 0 ≦ a ≦ 1, 0 ≦ b ≦ 1, 0 ≦ c ≦ 1, and −1 ≦ d ≦ 1.

本発明の第一の態様に係る錯体(溶液)の製造方法によれば、結晶成長を阻害する要因となる有機物の含有量が低減された光吸収層を形成することが出来る。
上記効果が得られる理由は明らかではないが、以下のように推測される。太陽電池の光吸収層の形成に用いられる金属前駆体溶液の調製においてカルコゲン元素含有有機化合物を用いた場合、カルコゲン元素含有有機化合物が配位した金属錯体が形成されると推測される。そのため、光吸収層をカルコゲン元素含有有機化合物単体の沸点以上の温度に加熱した場合であっても、カルコゲン元素含有有機化合物が一部光吸収層に残留してしまい、結晶成長を阻害する要因となる。
これに対し、本発明においては、カルコゲン元素含有有機化合物と共に第16族元素を混合する。そのため、カルコゲン元素含有有機化合物は第16族元素の還元剤として作用し、第16族元素はイオン化されると推測される。イオン化された第16族元素は金属に配位して金属錯体を形成するので、金属に配位するカルコゲン元素含有有機化合物の量を低減させることが出来る。その結果、結晶成長を阻害する要因となる有機物の含有量が低減された光吸収層を形成することが出来ると推測される。
また、本発明の第一の態様に係る製造方法により得られた錯体溶液は、塗布溶剤としてヒドラジンが含まれていないので、光吸収層を形成する際に、ヒドラジンの化学特性(爆発性、毒性)が問題とならなくなり、製造プロセスの安全性が向上する。
According to the method for producing a complex (solution) according to the first aspect of the present invention, it is possible to form a light absorption layer in which the content of an organic substance that is a factor inhibiting crystal growth is reduced.
The reason why the above effect is obtained is not clear, but is presumed as follows. When the chalcogen element-containing organic compound is used in the preparation of the metal precursor solution used for forming the light absorption layer of the solar cell, it is presumed that a metal complex in which the chalcogen element-containing organic compound is coordinated is formed. Therefore, even when the light absorption layer is heated to a temperature equal to or higher than the boiling point of the chalcogen element-containing organic compound alone, part of the chalcogen element-containing organic compound remains in the light absorption layer, which is a factor that inhibits crystal growth. Become.
In contrast, in the present invention, the group 16 element is mixed together with the chalcogen element-containing organic compound. Therefore, it is estimated that the chalcogen element-containing organic compound acts as a reducing agent for the group 16 element, and the group 16 element is ionized. Since the ionized group 16 element coordinates to the metal to form a metal complex, the amount of the chalcogen element-containing organic compound coordinated to the metal can be reduced. As a result, it is presumed that a light absorption layer in which the content of organic substances that cause crystal growth inhibition is reduced can be formed.
Further, since the complex solution obtained by the production method according to the first aspect of the present invention does not contain hydrazine as a coating solvent, the chemical properties (explosiveness, toxicity) of hydrazine are formed when the light absorption layer is formed. ) Is no longer a problem and the safety of the manufacturing process is improved.

また、本発明の錯体(溶液)の製造方法において、1種の単体および/または化合物を用いて各金属錯体溶液を調製することができる。あるいは、2種以上の単体および/または化合物を用いて二元または三元金属錯体溶液を調製することもできる。従って、形成する光吸収層の要求に応じ、金属錯体溶液の組成を自由に選択することができる。このように金属錯体溶液の組成を自由に選択できることにより、光吸収層における金属の配列を確実にデザインでき、光吸収層の構造を確実に制御できることが期待される。   Further, in the method for producing a complex (solution) of the present invention, each metal complex solution can be prepared using one kind of simple substance and / or compound. Alternatively, a binary or ternary metal complex solution can be prepared using two or more kinds of simple substances and / or compounds. Therefore, the composition of the metal complex solution can be freely selected according to the requirements of the light absorption layer to be formed. Thus, it can be expected that the composition of the metal complex solution can be freely selected, so that the arrangement of metals in the light absorption layer can be reliably designed and the structure of the light absorption layer can be reliably controlled.

[太陽電池用光吸収層の製造方法]
本発明の第二の態様は、前記第一の態様に係る錯体(溶液)の製造方法により得られた溶液を、基体に塗布し、焼成することを特徴とする太陽電池用光吸収層の製造方法である。
本発明の太陽電池用光吸収層の製造方法は、本発明の第三の態様に係る太陽電池の製造方法における光吸収層を形成する工程と同様である。
[Method for producing light absorption layer for solar cell]
According to a second aspect of the present invention, there is provided a method for producing a light-absorbing layer for a solar cell, wherein a solution obtained by the method for producing a complex (solution) according to the first aspect is applied to a substrate and fired. Is the method.
The manufacturing method of the light absorption layer for solar cells of this invention is the same as the process of forming the light absorption layer in the manufacturing method of the solar cell which concerns on the 3rd aspect of this invention.

本発明の太陽電池用光吸収層の製造方法において、光吸収層はカルコパイライト系太陽電池用又はケステライト系太陽電池用であることが好ましい。その場合、前記光吸収層は、前記一般式(1)又は(2)で表される化合物を含むことが好ましい。   In the method for producing a light absorption layer for a solar cell of the present invention, the light absorption layer is preferably for a chalcopyrite solar cell or a kesterite solar cell. In that case, it is preferable that the said light absorption layer contains the compound represented by the said General formula (1) or (2).

[太陽電池の製造方法]
本発明の第三の態様は、基板上に第1の電極を形成する工程と、前記第1の電極上に、第一の態様に係る錯体(溶液)の製造方法により得られた溶液を塗布し、焼成して光吸収層を形成する工程と、前記光吸収層上にバッファ層を形成する工程と、前記バッファ層上に第2の電極を形成する工程と、を有することを特徴とする太陽電池の製造方法である。
[Method for manufacturing solar cell]
In a third aspect of the present invention, a step is performed in which a first electrode is formed on a substrate, and a solution obtained by the method for producing a complex (solution) according to the first aspect is applied on the first electrode. And baking to form a light absorption layer, forming a buffer layer on the light absorption layer, and forming a second electrode on the buffer layer. It is a manufacturing method of a solar cell.

本発明の太陽電池の製造方法において、第1の電極上に光吸収層を形成する工程以外は、従来から知られている適宜の方法を用いて形成すればよい。例えば、基板上に第1の電極を形成する際は、窒素をスパッタガスとして、スパッタ法によって例えばMo層を成膜すればよい。また、バッファ層は、例えばCdS層として形成すればよく、例えば、ケミカルバスデポション法を用いて成膜すればよい。また、第2の電極を形成する際は、適宜の材料を用いて透明電極として成膜すればよい。   In the method for manufacturing a solar cell of the present invention, a method known in the art may be used except for the step of forming the light absorption layer on the first electrode. For example, when forming the first electrode on the substrate, for example, a Mo layer may be formed by sputtering using nitrogen as a sputtering gas. The buffer layer may be formed as a CdS layer, for example, and may be formed using a chemical bath deposition method, for example. Further, when the second electrode is formed, the transparent electrode may be formed using an appropriate material.

光吸収層を形成する際には、まず、第1の電極(基体)上に、前記第一の態様に係る錯体(溶液)の製造方法により得られた金属前駆体溶液(光吸収層形成用塗布液)を塗布する。塗布の方法としてはスピンコート法、ディップコート法、ドクターブレード(アプリケーター)法、カーテン/スリットキャスト法、印刷法、スプレー法等を用いることができる。
塗布条件は、所望の膜厚、材料の濃度などに応じて適宜設定すればよい。
When forming the light absorption layer, first, a metal precursor solution (for light absorption layer formation) obtained by the method for producing a complex (solution) according to the first aspect is formed on the first electrode (substrate). (Coating solution) is applied. As a coating method, a spin coating method, a dip coating method, a doctor blade (applicator) method, a curtain / slit casting method, a printing method, a spray method, or the like can be used.
The application conditions may be set as appropriate according to the desired film thickness, material concentration, and the like.

例えば、スピンコーティング法を用いる場合には、基体をスピンコーターにセットし、塗布液を塗布する。この際の塗布条件は、形成しようとする膜厚に応じて適宜設定すればよく、例えば回転速度は、300〜3000rpmで、10〜180秒間維持することにより形成することができる。塗布は所望の膜厚が得られるまで、繰り返し行うことができる。
また、ディップ法を用いる場合には、塗布液が入った容器中に、基体を浸漬させることにより行うことができ、浸漬回数は1回でもよいし、複数回行ってもよい。
なお、基体上に光吸収層形成用塗布液を塗布した後に、真空乾燥を行っても構わない。
For example, when the spin coating method is used, the substrate is set on a spin coater and a coating solution is applied. The coating conditions at this time may be appropriately set according to the film thickness to be formed. For example, the rotation speed is 300 to 3000 rpm and the film can be formed by maintaining for 10 to 180 seconds. Application can be repeated until a desired film thickness is obtained.
Moreover, when using a dip method, it can carry out by immersing a base | substrate in the container containing a coating liquid, and the frequency | count of immersion may be 1 time and may be performed in multiple times.
In addition, after apply | coating the coating liquid for light absorption layer formation on a base | substrate, you may vacuum-dry.

次に、基体上に塗布液を塗布した後は、基体を焼成して光吸収層を形成する。
焼成条件は、所望の膜厚、材料の種類などに応じて適宜設定することができる。例えば、ホットプレート上でソフトベーク(前焼成)を行った後に、オーブン中で焼成(アニーリング)を行う2段階工程とすることができる。
Next, after coating the coating solution on the substrate, the substrate is baked to form a light absorption layer.
Firing conditions can be appropriately set according to the desired film thickness, material type, and the like. For example, it can be a two-stage process in which baking (annealing) is performed in an oven after soft baking (pre-baking) on a hot plate.

この場合、例えば、ホットプレート上に、基体を配置して保持した後、ホットプレートの温度を100〜500℃として1〜300秒ソフトベークを行い、基体を室温付近まで冷却した後、再び塗布を行う。所望の膜厚が得られた後、ホットプレートまたはオーブン内部をを300〜700℃に上昇させて1〜180分間保持することでアニーリングを行う。
これにより、光吸収層が硬化される。
In this case, for example, after placing and holding the substrate on a hot plate, the temperature of the hot plate is set to 100 to 500 ° C., and soft baking is performed for 1 to 300 seconds. Do. After a desired film thickness is obtained, annealing is performed by raising the inside of the hot plate or oven to 300 to 700 ° C. and holding it for 1 to 180 minutes.
Thereby, the light absorption layer is cured.

なお、上記焼成の各温度は、一条件を示したものであり、これに限られるものではない。例えば、ホットプレートの温度は段階的に上げてもよいし、これらの加熱工程はグローブボックス中の不活性ガス雰囲気下で行ってもよい。また、硫化水素、セレン化水素、固体硫黄、固体セレンをソフトベイク、アニール時に雰囲気中に共存させてもよい。   In addition, each temperature of the said baking shows one condition, and is not restricted to this. For example, the temperature of the hot plate may be increased stepwise, and these heating steps may be performed in an inert gas atmosphere in a glove box. Further, hydrogen sulfide, hydrogen selenide, solid sulfur, and solid selenium may be coexisted in the atmosphere during soft baking and annealing.

本発明の太陽電池の製造方法において、太陽電池はカルコパイライト系太陽電池又はケステライト系太陽電池であることが好ましい。その場合、光吸収層は、前記一般式(1)又は(2)で表される化合物を含むことが好ましい。   In the solar cell production method of the present invention, the solar cell is preferably a chalcopyrite solar cell or a kesterite solar cell. In that case, it is preferable that a light absorption layer contains the compound represented by the said General formula (1) or (2).

前記調製方法(III)により調製した2以上の金属錯体溶液を用いる場合、第1の錯体溶液を基体に塗布し、ベークして第1層を形成し、次いで第1の錯体溶液とは異なる金属組成を有する第2の錯体溶液を第1層に塗布し、ベークして第2層を形成できる。その後、第1層及び第2層をアニールすることにより、所望の組成を有する単一の光吸収層又は所望の金属組成比勾配を有する多層光吸収層を形成することができる。この場合、光吸収層における金属の配列を確実にデザインでき、光吸収層の構造を確実に制御できることが期待される。   When two or more metal complex solutions prepared by the preparation method (III) are used, the first complex solution is applied to a substrate, baked to form a first layer, and then a metal different from the first complex solution A second complex solution having a composition can be applied to the first layer and baked to form the second layer. Thereafter, by annealing the first layer and the second layer, a single light absorption layer having a desired composition or a multilayer light absorption layer having a desired metal composition ratio gradient can be formed. In this case, it is expected that the arrangement of metals in the light absorption layer can be reliably designed and the structure of the light absorption layer can be reliably controlled.

以上のようにして、本実施形態の太陽電池を製造することができる。そして、本実施形態の製造方法によって製造された太陽電池は、光吸収層形成用塗布液にヒドラジンが含まれていないので、プロセスの安全性が向上する。   As described above, the solar cell of this embodiment can be manufactured. And since the solar cell manufactured with the manufacturing method of this embodiment does not contain hydrazine in the coating liquid for light absorption layer formation, the safety | security of a process improves.

以上、本発明を実施形態に基づき説明したが、本発明は、上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。
上記実施形態では、光吸収層形成用塗布液の調製方法として、調製方法(I)、調製方法(II)及び調製方法(III)について説明したが、本発明はこれらに限定されるものではない。例えば、一部の金属成分については金属前駆体を調製しておき、調製した金属錯体と、他の金属成分と、カルコゲン元素含有有機化合物と、ルイス塩基性無機化合物と、第16族元素と、その他所望の成分とを混合することもできる。また、例えば調製方法(II)において、一部の原料を先に混合した後に、残りの原料を添加することもできる。
As mentioned above, although this invention was demonstrated based on embodiment, it cannot be overemphasized that this invention can be variously changed in the range which is not limited to the said embodiment and does not deviate from the summary.
In the said embodiment, although preparation method (I), preparation method (II), and preparation method (III) were demonstrated as a preparation method of the coating liquid for light absorption layer formation, this invention is not limited to these. . For example, a metal precursor is prepared for some metal components, the prepared metal complex, other metal components, a chalcogen element-containing organic compound, a Lewis basic inorganic compound, a Group 16 element, Other desired components can also be mixed. Further, for example, in the preparation method (II), after a part of the raw materials are mixed first, the remaining raw materials can be added.

次に、実施例により本発明をさらに詳細に説明するが、本発明はこれらの例によって限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited by these examples.

<反応液の調製>
(実施例1)
Cu1.311g(20mmol)、Se6.317g(80mmol)、チオグリセロール10.816g(100mmol)、NH28%水溶液6.082g(NH換算で100mmol)及びジメチルスルホキシド(DMSO)25.474gを混合し、23℃で3日間撹拌後Cu反応液を得た。
<Preparation of reaction solution>
Example 1
Cu 1.311 g (20 mmol), Se 6.317 g (80 mmol), thioglycerol 10.816 g (100 mmol), NH 3 28% aqueous solution 6.082 g (100 mmol in terms of NH 3 ) and dimethyl sulfoxide (DMSO) 25.474 g were mixed. After stirring at 23 ° C. for 3 days, a Cu reaction solution was obtained.

(実施例2−1)
Zn1.308g(20mmol)Se2.369g(30mmol)、チオグリセロール10.816g(100mmol)、NH28%水溶液6.082g(NH換算で100mmol)及び水19.425gを混合し、23℃で3日間撹拌後、Zn反応液を得た。
(Example 2-1)
Zn 1.308 g (20 mmol) Se 2.369 g (30 mmol), thioglycerol 10.816 g (100 mmol), NH 3 28% aqueous solution 6.082 g (100 mmol in terms of NH 3 ), and 19.425 g of water were mixed and mixed at 23 ° C. After stirring for days, a Zn reaction solution was obtained.

(実施例2−2)
ZnO1.628g(20mmol)、Se2.369g(30mmol)、チオグリセロール10.816g(100mmol)、NH28%水溶液6.082g(NH換算で100mmol)及び水19.425gを混合し、23℃で3日間撹拌後、Zn反応液を得た。
(Example 2-2)
ZnO 1.628 g (20 mmol), Se 2.369 g (30 mmol), thioglycerol 10.816 g (100 mmol), NH 3 28% aqueous solution 6.082 g (100 mmol in terms of NH 3 ) and 19.425 g of water were mixed at 23 ° C. After stirring for 3 days, a Zn reaction solution was obtained.

(実施例3)
Sn2.374g(20mmol)、Se5.527g(70mmol)、チオグリセロール10.816g(100mmol)、NH28%水溶液6.082g(NH換算で100mmol)、水15.201gを混合し、23℃で3日間撹拌後に、Sn反応液を得た。
(Example 3)
Sn2.374 g (20 mmol), Se5.527 g (70 mmol), thioglycerol 10.816 g (100 mmol), NH 3 28% aqueous solution 6.082 g (100 mmol in terms of NH 3 ), and water 15.201 g were mixed at 23 ° C. After stirring for 3 days, an Sn reaction solution was obtained.

(実施例4−1)
In(OH)3.317g(20mmol)、Se3.948g(50mmol)、チオグリセロール10.816g(100mmol)、NH28%水溶液6.082g(NH換算で100mmol)及び水15.837gを混合し、23℃で3日間撹拌後、In反応液を得た。
(Example 4-1)
In (OH) 3 3.317 g (20 mmol), Se 3.948 g (50 mmol), thioglycerol 10.816 g (100 mmol), NH 3 28% aqueous solution 6.082 g (100 mmol in terms of NH 3 ) and water 15.837 g are mixed. After stirring at 23 ° C. for 3 days, an In reaction solution was obtained.

(実施例4−2)
In5.552g(20mmol)、Se3.948g(50mmol)、チオグリセロール10.816g(100mmol)、NH28%水溶液6.082g(NH換算で100mmol)及び水15.837gを混合し、23℃で3日間撹拌後、In反応液を得た。
(Example 4-2)
In 2 O 3 5.552 g (20 mmol), Se 3.948 g (50 mmol), thioglycerol 10.816 g (100 mmol), NH 3 28% aqueous solution 6.082 g (100 mmol in terms of NH 3 ) and water 15.837 g were mixed. After stirring at 23 ° C. for 3 days, an In reaction solution was obtained.

(実施例5−1)
Ga1.394g(20mmol)、Se3.948g(50mmol)、チオグリセロール10.816g(100mmol)、NH28%水溶液6.082g(NH換算で100mmol)及び水17.759gを混合し、23℃で3日間撹拌後、Ga反応液を得た。
(Example 5-1)
Ga1.394 g (20 mmol), Se 3.948 g (50 mmol), thioglycerol 10.816 g (100 mmol), NH 3 28% aqueous solution 6.082 g (100 mmol in terms of NH 3 ) and 17.759 g of water are mixed at 23 ° C. After stirring for 3 days, a Ga reaction solution was obtained.

(実施例5−2)
Ga3.749g(20mmol)、Se3.948g(50mmol)、チオグリセロール10.816g(100mmol)、NH28%水溶液6.082g(NH換算で100mmol)及び水17.759gを混合し、23℃で3日間撹拌後、Ga反応液を得た。
(Example 5-2)
Ga 2 O 3 3.749 g (20 mmol), Se 3.948 g (50 mmol), thioglycerol 10.816 g (100 mmol), NH 3 28% aqueous solution 6.082 g (100 mmol in terms of NH 3 ) and 17.759 g of water were mixed. After stirring at 23 ° C. for 3 days, a Ga reaction solution was obtained.

(実施例6−1)
Sb1.218g(10mmol)、Se1.974g(25mmol)、チオグリセロール5.408g(50mmol)、NH28%水溶液3.041g(NH換算で50mmol)及び水8.359gを混合し、23℃で3日間撹拌後、Sb反応液を得た。
(Example 6-1)
Sb1.218 g (10 mmol), Se 1.974 g (25 mmol), thioglycerol 5.408 g (50 mmol), NH 3 28% aqueous solution 3.041 g (50 mmol in terms of NH 3 ) and water 8.359 g were mixed at 23 ° C. After stirring for 3 days, an Sb reaction solution was obtained.

(実施例6−2)
Sb2.916g(10mmol)、Se1.974g(25mmol)、チオグリセロール5.408g(50mmol)、NH28%水溶液3.041g(NH換算で50mmol)及び水8.359gを混合し、23℃で3日間攪拌後、Sb反応液を得た。
(Example 6-2)
2.916 g (10 mmol) of Sb 2 O 3 , 1.974 g (25 mmol) of Se, 5.408 g (50 mmol) of thioglycerol, 3.041 g of NH 3 28% aqueous solution (50 mmol in terms of NH 3 ) and 8.359 g of water were mixed. After stirring at 23 ° C. for 3 days, an Sb reaction solution was obtained.

<反応液の精製>
(実施例7)
実施例1で調製したCu反応液に過剰のイソプロピルアルコールを添加して沈殿物を生成し、遠心分離(5000rpm、10min)後に上澄み液を取り除き、再度イソプロピルアルコールを添加する工程を3回行った。さらに減圧乾燥を一晩行い、粉末固体のCu金属錯体1を得た。
<Purification of reaction solution>
(Example 7)
Excess isopropyl alcohol was added to the Cu reaction solution prepared in Example 1 to produce a precipitate, the supernatant was removed after centrifugation (5000 rpm, 10 min), and isopropyl alcohol was added again three times. Further, drying under reduced pressure was performed overnight to obtain powdered solid Cu metal complex 1.

(実施例8−1)
実施例2−1で調製したZn反応液に過剰のアセトンを添加することで沈殿物を生成し、遠心分離(5000rpm,10min)後に上澄み液を取り除き、再度アセトンを添加する工程を3回行った。さらに減圧乾燥を一晩行い、粉末固体のZn金属錯体1を得た。
(Example 8-1)
A precipitate was generated by adding excess acetone to the Zn reaction solution prepared in Example 2-1, the supernatant was removed after centrifugation (5000 rpm, 10 min), and acetone was added again three times. . Further, drying under reduced pressure was carried out overnight to obtain powdered Zn metal complex 1.

(実施例8−2)
実施例2−2で調製したZn反応液に過剰のアセトンを添加することで沈殿物を生成し、遠心分離(5000rpm,10min)後に上澄み液を取り除き、再度アセトンを添加する工程を3回行った。さらに減圧乾燥を一晩行い、粉末固体のZn金属錯体2を得た。
(Example 8-2)
Excess acetone was added to the Zn reaction solution prepared in Example 2-2 to generate a precipitate. After centrifugation (5000 rpm, 10 min), the supernatant was removed, and acetone was added again three times. . Further, drying under reduced pressure was carried out overnight to obtain powdered solid Zn metal complex 2.

(実施例9)
実施例2−1で調製したZn反応液の替わりに実施例3で調製したSn前駆体溶液を用いた以外は実施例8−1と同様の操作を行い、粉末固体のSn金属錯体1を得た。
Example 9
A powdered solid Sn metal complex 1 was obtained in the same manner as in Example 8-1 except that the Sn precursor solution prepared in Example 3 was used instead of the Zn reaction solution prepared in Example 2-1. It was.

(実施例10−1)
実施例2−1で調製したZn反応液の替わりに実施例4−1で調製したIn反応液を用いた以外は実施例8−1と同様の操作を行い、粉末固体のIn金属錯体1を得た。
(Example 10-1)
The same procedure as in Example 8-1 was performed except that the In reaction solution prepared in Example 4-1 was used instead of the Zn reaction solution prepared in Example 2-1, and the powdered solid In metal complex 1 was obtained. Obtained.

(実施例10−2)
実施例2−1で調製したZn反応液の替わりに実施例4−2で調製したIn反応液を用いた以外は実施例8−1と同様の操作を行い、粉末固体のIn金属錯体2を得た。
(Example 10-2)
The same operation as in Example 8-1 was performed except that the In reaction solution prepared in Example 4-2 was used instead of the Zn reaction solution prepared in Example 2-1, and the powdered solid In metal complex 2 was obtained. Obtained.

(実施例11−1)
実施例2−1で調製したZn反応液の替わりに実施例5−1で調製したGa反応液を用いた以外は実施例8−1と同様の操作を行い、粉末固体のGa金属錯体1を得た。
(Example 11-1)
The same operation as in Example 8-1 was carried out except that the Ga reaction solution prepared in Example 5-1 was used instead of the Zn reaction solution prepared in Example 2-1, and the powdered solid Ga metal complex 1 was obtained. Obtained.

(実施例11−2)
実施例2−1で調製したZn反応液の替わりに実施例5−2で調製したGa反応液を用いた以外は実施例8−1と同様の操作を行い、粉末固体のGa金属錯体2を得た。
(Example 11-2)
The same operation as in Example 8-1 was carried out except that the Ga reaction solution prepared in Example 5-2 was used instead of the Zn reaction solution prepared in Example 2-1, and the powdered solid Ga metal complex 2 was obtained. Obtained.

(実施例12−1)
実施例2−1で調製したZn反応液の替わりに実施例6−1で調製したSb前駆体溶液を用いた以外は実施例8−1と同様の操作を行い、粉末固体のSb金属錯体1を得た。
(Example 12-1)
A powdered solid Sb metal complex 1 was prepared in the same manner as in Example 8-1, except that the Sb precursor solution prepared in Example 6-1 was used instead of the Zn reaction solution prepared in Example 2-1. Got.

(実施例12−2)
実施例2−1で調製したZn反応液の替わりに実施例6−2で調製したSb前駆体溶液を用いた以外は実施例8−1と同様の操作を行い、粉末固体のSb金属錯体2を得た。
(Example 12-2)
A powdered solid Sb metal complex 2 was prepared in the same manner as in Example 8-1, except that the Sb precursor solution prepared in Example 6-2 was used instead of the Zn reaction solution prepared in Example 2-1. Got.

[ICP測定]
実施例7、実施例8−1、実施例9、実施例10−1、実施例11−1、及び実施例12−1で精製した各金属錯体(粉末固体)を王水に溶解し、水で希釈後ICP測定を行った。ICP測定結果から各金属錯体の金属、セレン、硫黄のモル比を計算した。なお、硫黄はチオグリセロールに由来する。結果を表1に示す。
[ICP measurement]
Each metal complex (powder solid) refine | purified in Example 7, Example 8-1, Example 9, Example 10-1, Example 11-1, and Example 12-1 is melt | dissolved in aqua regia, and water The ICP measurement was performed after dilution. From the ICP measurement results, the molar ratio of metal, selenium, and sulfur of each metal complex was calculated. Sulfur is derived from thioglycerol. The results are shown in Table 1.

Figure 2014196311
Figure 2014196311

いずれの金属錯体も、反応工程ではチオグリセロールの量がセレンの量より大きいが、最終的に得られた金属錯体はいずれもセレンの含有量がチオグリセロールの含有量より大きいことが確認された
これは、金属錯体の反応工程において、チオグリセロールがセレンの還元剤として作用し、イオン化セレンが金属に配位するためと推測される。
In any reaction, the amount of thioglycerol was greater than the amount of selenium in the reaction process, but the final metal complexes were confirmed to have a selenium content greater than that of thioglycerol. This is presumably because thioglycerol acts as a selenium reducing agent and ionized selenium coordinates to the metal in the reaction step of the metal complex.

<金属錯体溶液の調製>
(実施例13)
実施例7〜12で得られた各金属錯体の熱重量測定を行い、500℃時点の残渣量を固形分と仮定した。
実施例7〜12で得られた各金属錯体をそれぞれ固形分濃度10%になるようにDMSOに溶解し、0.1um PTFEフィルタでろ過して金属錯体溶液をそれぞれ調製した(Cu金属錯体1溶液、Zn金属錯体1溶液、Zn金属錯体2溶液、Sn金属錯体1溶液、In金属錯体1溶液、In金属錯体2溶液、Ga金属錯体1溶液、Ga金属錯体2溶液、Sb金属錯体1溶液及びSb金属錯体2溶液)。
<Preparation of metal complex solution>
(Example 13)
Thermogravimetry of each metal complex obtained in Examples 7 to 12 was performed, and the amount of residue at the time of 500 ° C. was assumed to be a solid content.
Each metal complex obtained in Examples 7 to 12 was dissolved in DMSO so as to have a solid content concentration of 10%, and was filtered through a 0.1 um PTFE filter to prepare a metal complex solution (Cu metal complex 1 solution). Zn metal complex 1 solution, Zn metal complex 2 solution, Sn metal complex 1 solution, In metal complex 1 solution, In metal complex 2 solution, Ga metal complex 1 solution, Ga metal complex 2 solution, Sb metal complex 1 solution and Sb Metal complex 2 solution).

<光吸収層形成用塗布液の調製>
(実施例14)
実施例13で作成したCu金属錯体1溶液と、Zn金属錯体1溶液と、Sn金属錯体1溶液とを、金属比率がCu/(Zn+Sn)=0.78、Zn/(Zn+Sn)=0.51、Sn/(Zn+Sn)=0.49になるよう混合し、CZTS塗布液を調製した。
<Preparation of coating solution for forming light absorption layer>
(Example 14)
The metal ratio of Cu / (Zn + Sn) = 0.78 and Zn / (Zn + Sn) = 0.51 in the Cu metal complex 1 solution, Zn metal complex 1 solution, and Sn metal complex 1 solution prepared in Example 13. , Sn / (Zn + Sn) = 0.49 was mixed to prepare a CZTS coating solution.

(実施例15)
実施例13で作成したCu金属錯体1溶液と、In金属錯体1溶液と、Ga金属錯体1溶液とを、金属比率がCu/(In+Ga)=0.92、In/(In+Ga)=0.72、Ga/(In+Ga)=0.28になるよう混合した。
さらに、実施例13で作成したSb金属錯体1溶液をSb/(Cu+In+Ga)=0.005(5atomic%)になるよう混合し、CIGS塗布液を調製した。
(Example 15)
In the Cu metal complex 1 solution, the In metal complex 1 solution, and the Ga metal complex 1 solution prepared in Example 13, the metal ratios are Cu / (In + Ga) = 0.92, In / (In + Ga) = 0.72. , Ga / (In + Ga) = 0.28.
Further, the Sb metal complex 1 solution prepared in Example 13 was mixed so that Sb / (Cu + In + Ga) = 0.005 (5 atomic%) to prepare a CIGS coating solution.

<光吸収層の形成>
(実施例16)
実施例14で調製したCZTS塗布液をMo蒸着したガラス基板上に塗布し、400℃で3分間のソフトベイクを行った。この工程を合計15回行った後、少量のセレン存在下で、580℃で10分間アニーリングを行うことにより、CZTS層が成膜されたCZTS基板を作成した。
上記で作成したCZTS基板をSEMで観察したところ、CZTSのグレイン成長が確認された。
更に、上記で作成したCZTS基板をXRD測定したところ、2θ=約27゜、45゜および53〜54゜にそれぞれ、CZTSの(112)面、(220)/(204)面、(312)/(116)面に相当する強いピークが確認された。これらはスパッタ法(R. A. Wibowo et al., Journal of Physics and Chemistry of Solids, 68, 1908−1913 (2007))や同時蒸着法(G. S. Babu et al, Journal of Physics D: Applied Physics, 41, 205305 (2008)およびG. S. Babu et al, Semiconductor Science and Technology, 23, 085023 (2008))などの真空法にて報告されているXRD測定結果と良い一致を示すことから、CZTS膜の生成を確認した。
<Formation of light absorption layer>
(Example 16)
The CZTS coating solution prepared in Example 14 was applied on a Mo-deposited glass substrate, and soft baking was performed at 400 ° C. for 3 minutes. After performing this step 15 times in total, annealing was performed at 580 ° C. for 10 minutes in the presence of a small amount of selenium, thereby producing a CZTS substrate on which a CZTS layer was formed.
When the CZTS substrate prepared above was observed with an SEM, grain growth of CZTS was confirmed.
Furthermore, when the CZTS substrate prepared above was measured by XRD, 2θ = about 27 °, 45 ° and 53-54 °, respectively, the (112) plane, (220) / (204) plane, (312) / A strong peak corresponding to the (116) plane was confirmed. These include sputtering (R. A. Wibowo et al., Journal of Physics and Chemistry of Solids, 68, 1908-1913 (2007)) and co-evaporation (G. S. Buba et al. Physics, 41, 205305 (2008) and GS Babu et al, Semiconductor Science and Technology, 23, 085023 (2008)), etc., show good agreement with the results of XRD measurement. Formation of a CZTS film was confirmed.

(実施例17)
実施例15で作成したCIGS塗布液をMo蒸着したガラス基板上に塗布し、300℃で3分間のソフトベイクを行った。この工程を合計15回行った後、少量のセレン存在下で、540℃で30分間アニーリングを行うことにより、CIGS層が成膜されたCIGS基板を作成した。
上記で作成したCIGS基板をSEMで観察したところ、CIGSのグレイン成長が確認された。
更に、上記で作成したCIGS基板をXRD測定したところ、2θ=約27゜、45゜および52〜53゜にそれぞれ、CIGSの(112)面、(220)/(204)面、(312)/(116)面に相当する強いピークが確認された。これらは既存のCIGS膜の結果(Souilah, M. , Lafond, A. , Guillot Deudon, C. , Harel, S. , Evain, M. J.Solid State Chem. 183 (2010) 2274)と良い一致を示すことから、CIGS膜の生成を確認した。
(Example 17)
The CIGS coating solution prepared in Example 15 was applied on a Mo-deposited glass substrate, and soft baking was performed at 300 ° C. for 3 minutes. After performing this process 15 times in total, annealing was performed at 540 ° C. for 30 minutes in the presence of a small amount of selenium to produce a CIGS substrate on which a CIGS layer was formed.
When the CIGS substrate created above was observed with an SEM, the grain growth of CIGS was confirmed.
Further, when the CIGS substrate prepared above was measured by XRD, the CIGS (112) plane, (220) / (204) plane, (312) / A strong peak corresponding to the (116) plane was confirmed. These are the results of existing CIGS films (Souilah, M., Lafondo, A., Guillot Deudon, C., Harel, S., Evain, M. J. Solid State Chem. 183 (2010) 2274). As shown, the generation of the CIGS film was confirmed.

<光吸収層形成用塗布液の調製>
(実施例18)
実施例13で作成したCu金属錯体1溶液と、In金属錯体1溶液と、Ga金属錯体1溶液とを、金属比率がCu/(In+Ga)=0.92、In/(In+Ga)=0.72、Ga/(In+Ga)=0.28になるよう混合した。
<Preparation of coating solution for forming light absorption layer>
(Example 18)
In the Cu metal complex 1 solution, the In metal complex 1 solution, and the Ga metal complex 1 solution prepared in Example 13, the metal ratios are Cu / (In + Ga) = 0.92, In / (In + Ga) = 0.72. , Ga / (In + Ga) = 0.28.

(実施例19)
更にNa1.0atomic%を混合したこと以外は実施例18と同様にしてCIGS塗布液を調製した。
(Example 19)
Further, a CIGS coating solution was prepared in the same manner as in Example 18 except that Na 1.0 atomic% was mixed.

(比較例1)
米国公開公報2012−0070937号の実施例を参照してCIGS塗布液を調製した。ベンゼンセレノール4.949g(47.1mmol)とピリジン3.726g(47.1mmol)とを混合して混合溶媒を調製した。この混合溶媒に、固形分濃度14%、金属比率がCu/(In+Ga)=0.78、In/(In+Ga)=0.60、Ga/(In+Ga)=0.40となるように、Cu0.230g(3.619mmol)と、In0.320g (2.787mmol)と、Ga0.130g(1.865mmol)と、Se0.720g(9.119mmol)とを混合し、室温で2週間撹拌した。
得られた溶液の上澄み液の金属比率をICPで確認したところ、Cu/(In+Ga)=0.93、In/(In+Ga)=0.62、Ga/(In+Ga)=0.38であった。
(Comparative Example 1)
A CIGS coating solution was prepared with reference to Examples in US Publication No. 2012-0070937. A mixed solvent was prepared by mixing 4.949 g (47.1 mmol) of benzeneselenol and 3.726 g (47.1 mmol) of pyridine. In this mixed solvent, Cu 0 .. so that the solid content concentration was 14%, the metal ratio was Cu / (In + Ga) = 0.78, In / (In + Ga) = 0.60, and Ga / (In + Ga) = 0.40. 230 g (3.619 mmol), In 0.320 g (2.787 mmol), Ga 0.130 g (1.865 mmol), and Se 0.720 g (9.119 mmol) were mixed and stirred at room temperature for 2 weeks.
When the metal ratio of the supernatant of the obtained solution was confirmed by ICP, it was Cu / (In + Ga) = 0.93, In / (In + Ga) = 0.62, and Ga / (In + Ga) = 0.38.

<光吸収層の形成>
(実施例20)
実施例18で調製したCIGS塗布液をMo蒸着したガラス基板上に塗布し、120℃で1分間、300℃で3分間ソフトベイクを行って膜厚約0.3μmの塗布膜を形成した。この工程を合計5回行った後、少量のセレン存在下で、540℃で30分間アニーリングを行うことにより、CIGS層が成膜されたCIGS基板を作成した。
<Formation of light absorption layer>
(Example 20)
The CIGS coating solution prepared in Example 18 was coated on a Mo-deposited glass substrate, and soft-baked at 120 ° C. for 1 minute and 300 ° C. for 3 minutes to form a coating film having a thickness of about 0.3 μm. After performing this process 5 times in total, annealing was performed at 540 ° C. for 30 minutes in the presence of a small amount of selenium, thereby producing a CIGS substrate on which a CIGS layer was formed.

(実施例21)
実施例18で調製したCIGS塗布液の替わりに実施例19で調製したCIGS塗布液を用いた以外は実施例20と同様にCIGS層が成膜されたCIGS基板を作成した。
(Example 21)
A CIGS substrate having a CIGS layer formed thereon was prepared in the same manner as in Example 20 except that the CIGS coating solution prepared in Example 19 was used instead of the CIGS coating solution prepared in Example 18.

(比較例2)
比較例1で調製したCIGS塗布液をMo蒸着したガラス基板上に塗布し、120℃で1分間、300℃で3分間ソフトベイクを行った。その後、少量のセレン存在下で、540℃で30分間アニーリングを行うことにより、CIGS層が成膜されたCIGS基板を作成した。
(Comparative Example 2)
The CIGS coating solution prepared in Comparative Example 1 was coated on a Mo-deposited glass substrate and soft-baked at 120 ° C. for 1 minute and at 300 ° C. for 3 minutes. Then, the CIGS board | substrate with which the CIGS layer was formed was created by performing annealing for 30 minutes at 540 degreeC in the presence of a small amount of selenium.

(比較例3)
比較例1で調製したCIGS塗布液をMo蒸着したガラス基板上に塗布し、120℃で1分間、300℃で3分間ソフトベイクを行った。この工程を合計2回行った後、少量のセレン存在下で、540℃で30分間アニーリングを行うことにより、CIGS層が成膜されたCIGS基板を作成した。
(Comparative Example 3)
The CIGS coating solution prepared in Comparative Example 1 was coated on a Mo-deposited glass substrate and soft-baked at 120 ° C. for 1 minute and at 300 ° C. for 3 minutes. After performing this process twice in total, the CIGS substrate in which the CIGS layer was formed was produced by performing 30 minutes annealing at 540 degreeC in presence of a small amount of selenium.

[XRD測定]
実施例20〜21、比較例2〜3で作成したCIGS基板をXRD測定したところ、実施例20〜21のCIGS基板では、CIGSの(112)面に相当するピークの強度が比較例2〜3のCIGS基板よりも強いことが確認された。実施例20及び比較例2についてのXRD測定における膜厚、積分強度、半値幅を表2に示す。
[XRD measurement]
When the CIGS substrates prepared in Examples 20 to 21 and Comparative Examples 2 to 3 were subjected to XRD measurement, in the CIGS substrates of Examples 20 to 21, the peak intensity corresponding to the (112) plane of CIGS was Comparative Examples 2 to 3. It was confirmed that it was stronger than the CIGS substrate. Table 2 shows the film thickness, integrated intensity, and full width at half maximum in XRD measurement for Example 20 and Comparative Example 2.

Figure 2014196311
Figure 2014196311

[ラマン分光測定]
実施例20〜21、比較例2〜3で作成したCIGS基板について、ラマンスペクトルのアモルファス炭素ピークから有機物残存量を見積もったところ、実施例20〜21のCIGS基板では、有機物残存量が比較例2〜3のCIGS基板よりも少ないことが確認された。
[Raman spectroscopy measurement]
For the CIGS substrates prepared in Examples 20 to 21 and Comparative Examples 2 to 3, the residual amount of organic matter was estimated from the amorphous carbon peak of the Raman spectrum. In the CIGS substrates of Examples 20 to 21, the residual amount of organic matter was Comparative Example 2. It was confirmed that there were fewer than ~ 3 CIGS substrates.

<反応液の調製(金属錯体塗布液)>
(実施例22)
3.158g(40mmol)のSe、1.563g(20mmol)の2−メルカプトエタノール、3.041gの28wt%NH水溶液(NH換算で50mmol)及び22gのジメチルスルホキシド(DMSO)を混合し、23℃で6時間撹拌した。その後、1.311g(20mmol)のCuを反応液に添加し、23℃で1日撹拌し、PTFE 0.45umフィルターでろ過を行い、Cu反応液を得た。
<Preparation of reaction solution (metal complex coating solution)>
(Example 22)
3. 158 g (40 mmol) of Se, 1.563 g (20 mmol) of 2-mercaptoethanol, 3.041 g of 28 wt% NH 3 aqueous solution (50 mmol in terms of NH 3 ) and 22 g of dimethyl sulfoxide (DMSO) were mixed. Stir at 6 ° C. for 6 hours. Thereafter, 1.311 g (20 mmol) of Cu was added to the reaction solution, stirred at 23 ° C. for 1 day, and filtered through a PTFE 0.45 um filter to obtain a Cu reaction solution.

(実施例23)
2.369g(30mmol)のSe、1.563g(20mmol)の2−メルカプトエタノール、4.866gの28wt%NH水溶液(NH換算で80mmol)及び16gのジメチルスルホキシド(DMSO)を混合し、23℃で6時間撹拌した。その後、1.38g(12mmol)のIn及び0.84g(12mmol)のGaを反応液に添加し、23℃で3日撹拌し、PTFE 0.45umフィルターでろ過を行い、In−Ga反応液を得た。
(Example 23)
2.369 g (30 mmol) of Se, 1.563 g (20 mmol) of 2-mercaptoethanol, 4.866 g of 28 wt% NH 3 aqueous solution (80 mmol in terms of NH 3 ) and 16 g of dimethyl sulfoxide (DMSO) were mixed. Stir at 6 ° C. for 6 hours. Thereafter, 1.38 g (12 mmol) of In and 0.84 g (12 mmol) of Ga were added to the reaction solution, stirred at 23 ° C. for 3 days, filtered through a PTFE 0.45 um filter, and the In—Ga reaction solution was added. Obtained.

(実施例24)
2.685g(34mmol)のSe、1.117g(14.3mmol)の2−メルカプトエタノール、4.136gの28wt%NH水溶液(NH換算で68mmol)及び15gのジメチルスルホキシド(DMSO)を混合し、23℃で6時間撹拌した。その後、0.279g(4.25mmol)のCu、0.42g(4mmol)のIn及び0.46g(6mmol)のGaを反応液に添加し、23℃で1日撹拌した。その後、0.279g(4.25mmol)のCuを添加し、23℃で6時間、70℃で1日の順で撹拌し、PTFE0.45umフィルターでろ過を行い、金属比Cu/(In+Ga)=0.85、In/(In+Ga)=0.40、Ga/(In+Ga)=0.60のCu−In−Ga反応液を得た。
(Example 24)
2.685 g (34 mmol) of Se, 1.117 g (14.3 mmol) of 2-mercaptoethanol, 4.136 g of 28 wt% NH 3 aqueous solution (68 mmol in terms of NH 3 ) and 15 g of dimethyl sulfoxide (DMSO) were mixed. , And stirred at 23 ° C. for 6 hours. Thereafter, 0.279 g (4.25 mmol) of Cu, 0.42 g (4 mmol) of In and 0.46 g (6 mmol) of Ga were added to the reaction solution and stirred at 23 ° C. for 1 day. Thereafter, 0.279 g (4.25 mmol) of Cu was added, stirred at 23 ° C. for 6 hours and then at 70 ° C. for 1 day, filtered through a PTFE 0.45 um filter, and the metal ratio Cu / (In + Ga) = A Cu—In—Ga reaction solution of 0.85, In / (In + Ga) = 0.40, and Ga / (In + Ga) = 0.60 was obtained.

(実施例25)
2.685g(34mmol)のSe、1.117g(14.3mmol)の2−メルカプトエタノール、4.136gの28wt%NH水溶液(NH換算で68mmol)及び15gのジメチルスルホキシド(DMSO)を混合し、23℃で6時間撹拌した。その後、0.279g(4.25mmol)のCu、0.805g(7mmol)のIn及び0.21g(3mmol)のGaを反応液に添加し、23℃で1日撹拌した。その後、0.279g(4.25mmol)のCuを添加し、23℃で6時間、70℃で1日の順で撹拌し、PTFE0.45umフィルターでろ過を行い、金属比Cu/(In+Ga)=0.85、In/(In+Ga)=0.70、Ga/(In+Ga)=0.30のCu−In−Ga反応液を得た。
(Example 25)
2.685 g (34 mmol) of Se, 1.117 g (14.3 mmol) of 2-mercaptoethanol, 4.136 g of 28 wt% NH 3 aqueous solution (68 mmol in terms of NH 3 ) and 15 g of dimethyl sulfoxide (DMSO) were mixed. , And stirred at 23 ° C. for 6 hours. Thereafter, 0.279 g (4.25 mmol) of Cu, 0.805 g (7 mmol) of In and 0.21 g (3 mmol) of Ga were added to the reaction solution and stirred at 23 ° C. for 1 day. Thereafter, 0.279 g (4.25 mmol) of Cu was added, stirred at 23 ° C. for 6 hours and then at 70 ° C. for 1 day, filtered through a PTFE 0.45 um filter, and the metal ratio Cu / (In + Ga) = A Cu—In—Ga reaction solution of 0.85, In / (In + Ga) = 0.70, and Ga / (In + Ga) = 0.30 was obtained.

[ICP測定]
実施例22〜25で得られた各反応液(金属錯体)を王水に溶解し、水で希釈後ICP測定を行った。ICP測定結果から各金属錯体の金属及びセレンのモル比を計算した。結果を表3に示す。
[ICP measurement]
Each reaction solution (metal complex) obtained in Examples 22 to 25 was dissolved in aqua regia, diluted with water, and then subjected to ICP measurement. From the ICP measurement results, the molar ratio of metal and selenium of each metal complex was calculated. The results are shown in Table 3.

Figure 2014196311
Figure 2014196311

<光吸収層の形成>
(実施例26)
実施例22及び23で調製した金属錯体塗布液(反応液)を用いて光吸収層を形成した。第1の工程において、In−Ga錯体塗布液をMo蒸着したガラス基板上に塗布し、350℃で2分間ソフトベイクを行った。第1の工程を8回繰り返し、In−Ga錯体層を形成した。第2の工程において、Cu錯体塗布液をIn−Ga錯体層の上に塗布し、350℃で2分間ソフトベイクを行った。第2の工程を10回繰り返し、Cu錯体層を形成した。第3の工程において、In−Ga錯体塗布液をCu錯体層の上に塗布し、350℃で2分間ソフトベイクを行った。第3の工程を2回繰り返した。第1の工程、第2の工程及び第3の工程における合計塗布工程数は20回であった。次いで、少量のセレン存在下で、590℃で30分間アニーリングを行うことにより、CIGS層が成膜されたCIGS基板を作成した。
<Formation of light absorption layer>
(Example 26)
A light absorption layer was formed using the metal complex coating solution (reaction solution) prepared in Examples 22 and 23. In the first step, an In—Ga complex coating solution was coated on a Mo-deposited glass substrate and soft baked at 350 ° C. for 2 minutes. The first step was repeated 8 times to form an In—Ga complex layer. In the second step, a Cu complex coating solution was applied on the In—Ga complex layer and soft baked at 350 ° C. for 2 minutes. The second step was repeated 10 times to form a Cu complex layer. In the third step, the In—Ga complex coating solution was coated on the Cu complex layer and soft baked at 350 ° C. for 2 minutes. The third step was repeated twice. The total number of coating steps in the first step, the second step, and the third step was 20 times. Next, annealing was performed at 590 ° C. for 30 minutes in the presence of a small amount of selenium to produce a CIGS substrate on which a CIGS layer was formed.

(実施例27)
実施例24及び25で調製した金属錯体塗布液(反応液)を用いて光吸収層を形成した。第1の工程において、実施例24で得られたCu−In−Ga錯体塗布液をMo蒸着したガラス基板上に塗布し、350℃で2分間ソフトベイクを行った。第1の工程を10回繰り返し、第1のCu−In−Ga錯体層を形成した。第2の工程において、実施例25で得られたCu−In−Ga錯体塗布液を第1のCu−In−Ga錯体層の上に塗布し、350℃で2分間ソフトベイクを行った。第2の工程を10回繰り返し、第1のCu−In−Ga錯体層の上に第2のCu−In−Ga錯体層を形成した。第1の工程及び第2の工程における合計塗布工程数は20回であった。次いで、少量のセレン存在下で、590℃で30分間アニーリングを行うことにより、CIGS層が成膜されたCIGS基板を作成した。
(Example 27)
A light absorption layer was formed using the metal complex coating solution (reaction solution) prepared in Examples 24 and 25. In the first step, the Cu—In—Ga complex coating solution obtained in Example 24 was applied onto a Mo-deposited glass substrate and soft baked at 350 ° C. for 2 minutes. The first step was repeated 10 times to form a first Cu—In—Ga complex layer. In the second step, the Cu—In—Ga complex coating solution obtained in Example 25 was applied onto the first Cu—In—Ga complex layer, and soft baking was performed at 350 ° C. for 2 minutes. The 2nd process was repeated 10 times and the 2nd Cu-In-Ga complex layer was formed on the 1st Cu-In-Ga complex layer. The total number of coating steps in the first step and the second step was 20 times. Next, annealing was performed at 590 ° C. for 30 minutes in the presence of a small amount of selenium to produce a CIGS substrate on which a CIGS layer was formed.

以上、本発明の好ましい実施例を説明したが、本発明はこれら実施例に限定されることはない。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。本発明は前述した説明によって限定されることはなく、添付のクレームの範囲によってのみ限定される。   The preferred embodiments of the present invention have been described above, but the present invention is not limited to these embodiments. Additions, omissions, substitutions, and other modifications can be made without departing from the spirit of the present invention. The present invention is not limited by the above description, but only by the scope of the appended claims.

上記課題を解決するために、本発明は以下の構成を採用した。
すなわち、本発明の第一の態様は、太陽電池の光吸収層の形成に用いられる錯体およびその溶液の製造方法であって、第11族金属、第12族金属、第13族金属、第14族金属、第15族元素、第11族金属化合物、第12族金属化合物、第13族金属化合物、第14族金属化合物及び第15族元素含有化合物からなる群より選ばれる少なくとも1種の単体または化合物と、メルカプト基含有有機化合物、スルフィド、ポリスルフィド、チオカルボニル基含有有機化合物及び硫黄含有複素環式化合物からなる群より選ばれる少なくとも1種のカルコゲン元素含有有機化合物と、ルイス塩基性無機化合物と、第16族元素とを混合して反応液を得ることを含む錯体およびその溶液の製造方法である。
In order to solve the above problems, the present invention employs the following configuration.
That is, the first aspect of the present invention is a method for producing a complex used for forming a light absorption layer of a solar cell and a solution thereof, which comprises a Group 11 metal, a Group 12 metal, a Group 13 metal, At least one element selected from the group consisting of Group metals, Group 15 elements, Group 11 metal compounds, Group 12 metal compounds, Group 13 metal compounds, Group 14 metal compounds, and Group 15 element-containing compounds or and compounds, mercapto-containing organic compounds, sulfide, polysulfide, and at least one chalcogen element-containing organic compound selected from the thiocarbonyl group-containing organic compounds and sulfur-containing heterocyclic compounds or Ranaru group, a Lewis basic inorganic compound And a group 16 element are mixed to obtain a reaction liquid, and a method for producing the solution.

上記課題を解決するために、本発明は以下の構成を採用した。
すなわち、本発明の第一の態様は、太陽電池の光吸収層の形成に用いられる錯体およびその溶液の製造方法であって、Cu、Cu化合物、Zn、Zn化合物、Sn、Sn化合物、In、In化合物、Ga、Ga化合物、Sb及びSb化合物からなる群より選ばれる少なくとも1種の金属又は金属化合物と、メルカプトエタノール、チオグリコール酸およびチオグリセロールからなる群より選ばれる少なくとも1種のカルコゲン元素含有有機化合物を前記金属又は金属化合物1モルに対し、0.1〜10モルと、アンモニアと、S、Seから選ばれる少なくとも1種の第16族元素とを混合して反応液を得ることを含む錯体およびその溶液の製造方法である。
In order to solve the above problems, the present invention employs the following configuration.
That is, the first aspect of the present invention is a method for producing a complex used for forming a light absorption layer of a solar cell and a solution thereof, including Cu, Cu compound, Zn, Zn compound, Sn, Sn compound, In, Contains at least one metal or metal compound selected from the group consisting of In compound, Ga, Ga compound, Sb and Sb compound, and at least one chalcogen element selected from the group consisting of mercaptoethanol, thioglycolic acid and thioglycerol Including mixing 0.1 to 10 mol of an organic compound with respect to 1 mol of the metal or metal compound , ammonia, and at least one group 16 element selected from S and Se to obtain a reaction solution. It is a manufacturing method of a complex and its solution.

Claims (20)

太陽電池の光吸収層の形成に用いられる錯体およびその溶液の製造方法であって、
第11族金属、第12族金属、第13族金属、第14族金属、第15族元素、第11族金属化合物、第12族金属化合物、第13族金属化合物、第14族金属化合物及び第15族元素含有化合物からなる群より選ばれる少なくとも1種の単体または化合物と、メルカプト基含有有機化合物、スルフィド、ポリスルフィド、チオカルボニル基含有有機化合物、硫黄含有複素環式化合物、ヒドロセレノ基含有有機化合物、セレニド、ポリセレニド、セレノカルボニル基含有有機化合物及びセレン含有複素環式化合物からなる群より選ばれる少なくとも1種のカルコゲン元素含有有機化合物と、ルイス塩基性無機化合物と、第16族元素とを混合して反応液を得ることを含む錯体およびその溶液の製造方法。
A method for producing a complex used for forming a light absorption layer of a solar cell and a solution thereof,
Group 11 metal, Group 12 metal, Group 13 metal, Group 14 metal, Group 15 element, Group 11 metal compound, Group 12 metal compound, Group 13 metal compound, Group 14 metal compound and Group At least one element or compound selected from the group consisting of Group 15 element-containing compounds, mercapto group-containing organic compounds, sulfides, polysulfides, thiocarbonyl group-containing organic compounds, sulfur-containing heterocyclic compounds, hydroseleno group-containing organic compounds, A mixture of at least one chalcogen element-containing organic compound selected from the group consisting of selenide, polyselenide, selenocarbonyl group-containing organic compound and selenium-containing heterocyclic compound, a Lewis basic inorganic compound, and a Group 16 element A complex comprising obtaining a reaction solution and a method for producing the solution.
前記太陽電池がカルコパイライト系太陽電池又はケステライト系太陽電池である請求項1に記載の錯体およびその溶液の製造方法。   The method for producing a complex and a solution thereof according to claim 1, wherein the solar cell is a chalcopyrite solar cell or a kesterite solar cell. 前記反応液が、下記一般式(1)又は(2)で表される化合物を含有する請求項2に記載の錯体およびその溶液の製造方法。
Figure 2014196311
[式中、0≦w≦1、0≦x≦1、0≦y≦1、0<z≦1、Aは少なくとも1種の16族元素、0≦a≦1、0≦b≦1、0≦c≦1、及び−1≦d≦1である。]
The complex according to claim 2, wherein the reaction solution contains a compound represented by the following general formula (1) or (2) and a method for producing the solution.
Figure 2014196311
[Wherein, 0 ≦ w ≦ 1, 0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 <z ≦ 1, A is at least one group 16 element, 0 ≦ a ≦ 1, 0 ≦ b ≦ 1, 0 ≦ c ≦ 1 and −1 ≦ d ≦ 1. ]
第11族金属、第12族金属、第13族金属、第14族金属、第15族元素、第11族金属化合物、第12族金属化合物、第13族金属化合物、第14族金属化合物及び第15族元素含有化合物からなる群より選ばれる少なくとも2種の単体または化合物と、メルカプト基含有有機化合物、スルフィド、ポリスルフィド、チオカルボニル基含有有機化合物、硫黄含有複素環式化合物、ヒドロセレノ基含有有機化合物、セレニド、ポリセレニド、セレノカルボニル基含有有機化合物及びセレン含有複素環式化合物からなる群より選ばれる少なくとも1種のカルコゲン元素含有有機化合物と、ルイス塩基性無機化合物と、第16族元素とを混合して反応液を得ることを含む請求項1〜3のいずれか一項に記載の錯体およびその溶液の製造方法。   Group 11 metal, Group 12 metal, Group 13 metal, Group 14 metal, Group 15 element, Group 11 metal compound, Group 12 metal compound, Group 13 metal compound, Group 14 metal compound and Group At least two simple substances or compounds selected from the group consisting of Group 15 element-containing compounds, mercapto group-containing organic compounds, sulfides, polysulfides, thiocarbonyl group-containing organic compounds, sulfur-containing heterocyclic compounds, hydroseleno group-containing organic compounds, A mixture of at least one chalcogen element-containing organic compound selected from the group consisting of selenide, polyselenide, selenocarbonyl group-containing organic compound and selenium-containing heterocyclic compound, a Lewis basic inorganic compound, and a Group 16 element The manufacturing method of the complex as described in any one of Claims 1-3 including obtaining a reaction liquid, and its solution. 前記16族元素が、S、Seから選ばれる少なくとも1種である請求項1〜4のいずれか一項に記載の錯体およびその溶液の製造方法。   The said group 16 element is at least 1 sort (s) chosen from S and Se, The manufacturing method of the complex as described in any one of Claims 1-4, and its solution. 水の存在下で前記反応液を得る請求項1〜5のいずれか一項に記載の錯体およびその溶液の製造方法。   The complex according to any one of claims 1 to 5 and a method for producing the solution thereof, wherein the reaction solution is obtained in the presence of water. 前記カルコゲン元素含有有機化合物がメルカプト基含有有機化合物、スルフィド、ポリスルフィド、チオカルボニル基含有有機化合物及び硫黄含有複素環式化合物からなる群より選ばれる少なくとも1種である請求項1〜6のいずれか一項に記載の錯体およびその溶液の製造方法。   7. The chalcogen element-containing organic compound is at least one selected from the group consisting of mercapto group-containing organic compounds, sulfides, polysulfides, thiocarbonyl group-containing organic compounds, and sulfur-containing heterocyclic compounds. A method for producing the complex according to the item and a solution thereof. 前記カルコゲン元素含有有機化合物がメルカプトエタノール、チオグリコール酸、アルキルチオールおよびチオグリセロールからなる群より選ばれる少なくとも1種である請求項1〜7のいずれか一項に記載の錯体およびその溶液の製造方法。   The said chalcogen element containing organic compound is at least 1 sort (s) chosen from the group which consists of mercaptoethanol, thioglycolic acid, alkylthiol, and thioglycerol, The manufacturing method of the complex as described in any one of Claims 1-7, and its solution . 前記ルイス塩基性無機化合物がアンモニアである請求項1〜8のいずれか一項に記載の錯体およびその溶液の製造方法。   The said Lewis basic inorganic compound is ammonia, The manufacturing method of the complex as described in any one of Claims 1-8, and its solution. 更にNa、K、Cs、Sb及びBiからなる群より選ばれる少なくとも1種を添加することを含む請求項1〜9のいずれか一項に記載の錯体およびその溶液の製造方法。     Furthermore, the manufacturing method of the complex as described in any one of Claims 1-9 including adding at least 1 sort (s) chosen from the group which consists of Na, K, Cs, Sb, and Bi. 請求項1〜10のいずれか一項に記載の錯体およびその溶液の製造方法により得られた溶液を、基体に塗布し、焼成することを特徴とする太陽電池用光吸収層の製造方法。   The manufacturing method of the light absorption layer for solar cells characterized by apply | coating to the base | substrate and baking the solution obtained by the manufacturing method of the complex as described in any one of Claims 1-10, and its solution. 前記太陽電池がカルコパイライト系太陽電池又はケステライト系太陽電池である請求項11に記載の太陽電池用光吸収層の製造方法。   The method for producing a light absorption layer for a solar cell according to claim 11, wherein the solar cell is a chalcopyrite solar cell or a kesterite solar cell. 前記光吸収層が、下記一般式(1)又は(2)で表される化合物を含有する請求項12に記載の太陽電池用光吸収層の製造方法。
Figure 2014196311
[式中、0≦w≦1、0≦x≦1、0≦y≦1、0<z≦1、Aは少なくとも1種の16族元素、0≦a≦1、0≦b≦1、0≦c≦1、及び−1≦d≦1である。]
The manufacturing method of the light absorption layer for solar cells of Claim 12 in which the said light absorption layer contains the compound represented by the following general formula (1) or (2).
Figure 2014196311
[Wherein, 0 ≦ w ≦ 1, 0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 <z ≦ 1, A is at least one group 16 element, 0 ≦ a ≦ 1, 0 ≦ b ≦ 1, 0 ≦ c ≦ 1 and −1 ≦ d ≦ 1. ]
請求項1〜10のいずれか一項に記載の錯体およびその溶液の製造方法により得られた第1の錯体溶液を、基体に塗布し、焼成して第1層を形成し、
請求項1〜10のいずれか一項に記載の錯体およびその溶液の製造方法により得られた第2の錯体溶液を前記第1層に塗布し、焼成することを含み、
前記第1の錯体溶液および前記第2の錯体溶液が異なる金属組成を有する請求項11〜13のいずれか一項に記載の太陽電池用光吸収層の製造方法。
The first complex solution obtained by the complex according to any one of claims 1 to 10 and the method for producing the solution thereof is applied to a substrate and baked to form a first layer,
Applying the second complex solution obtained by the complex according to any one of claims 1 to 10 and a method for producing the solution thereof to the first layer and baking the complex solution;
The manufacturing method of the light absorption layer for solar cells as described in any one of Claims 11-13 in which a said 1st complex solution and a said 2nd complex solution have a different metal composition.
請求項1〜10のいずれか一項に記載の錯体およびその溶液の製造方法により得られた第1の錯体溶液を、基体に塗布し、焼成して第1層を形成し、
請求項1〜10のいずれか一項に記載の錯体およびその溶液の製造方法により得られた第2の錯体溶液を前記第1層に塗布し、焼成することを含み、
前記第1の錯体溶液および前記第2の錯体溶液がそれぞれ第11族金属、第12族金属、第13族金属、第14族金属、第15族元素、第11族金属化合物、第12族金属化合物、第13族金属化合物、第14族金属化合物及び第15族元素含有化合物からなる群より選ばれる少なくとも2種の単体または化合物を含み、
前記第1の錯体溶液および前記第2の錯体溶液が同じ金属組成および異なる金属比率を有する請求項11〜13のいずれか一項に記載の太陽電池用光吸収層の製造方法。
The first complex solution obtained by the complex according to any one of claims 1 to 10 and the method for producing the solution thereof is applied to a substrate and baked to form a first layer,
Applying the second complex solution obtained by the complex according to any one of claims 1 to 10 and a method for producing the solution thereof to the first layer and baking the complex solution;
The first complex solution and the second complex solution are respectively Group 11 metal, Group 12 metal, Group 13 metal, Group 14 metal, Group 15 element, Group 11 metal compound, Group 12 metal. Including at least two kinds of simple substances or compounds selected from the group consisting of a compound, a Group 13 metal compound, a Group 14 metal compound and a Group 15 element-containing compound,
The manufacturing method of the light absorption layer for solar cells as described in any one of Claims 11-13 with which the said 1st complex solution and the said 2nd complex solution have the same metal composition and a different metal ratio.
基板上に第1の電極を形成する工程と、
前記第1の電極上に、請求項1〜10のいずれか一項に記載の錯体およびその溶液の製造方法により得られた溶液を塗布し、焼成して光吸収層を形成する工程と、
前記光吸収層上にバッファ層を形成する工程と、
前記バッファ層上に第2の電極を形成する工程と、を有することを特徴とする太陽電池の製造方法。
Forming a first electrode on a substrate;
Applying the solution obtained by the method according to any one of claims 1 to 10 and the solution thereof on the first electrode, and baking to form a light absorption layer;
Forming a buffer layer on the light absorbing layer;
And a step of forming a second electrode on the buffer layer.
前記太陽電池がカルコパイライト系太陽電池又はケステライト系太陽電池である請求項16に記載の太陽電池の製造方法。   The method for manufacturing a solar cell according to claim 16, wherein the solar cell is a chalcopyrite solar cell or a kesterite solar cell. 前記反応液が、下記一般式(1)又は(2)で表される化合物を含有する請求項17に記載の太陽電池の製造方法。
Figure 2014196311
[式中、0≦w≦1、0≦x≦1、0≦y≦1、0<z≦1、Aは少なくとも1種の16族元素、0≦a≦1、0≦b≦1、0≦c≦1、及び−1≦d≦1である。]
The method for producing a solar cell according to claim 17, wherein the reaction solution contains a compound represented by the following general formula (1) or (2).
Figure 2014196311
[Wherein, 0 ≦ w ≦ 1, 0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 <z ≦ 1, A is at least one group 16 element, 0 ≦ a ≦ 1, 0 ≦ b ≦ 1, 0 ≦ c ≦ 1 and −1 ≦ d ≦ 1. ]
前記光吸収層が、請求項14に記載の太陽電池用光吸収層の製造方法によって形成される請求項16〜18のいずれか一項に記載の太陽電池の製造方法。   The said light absorption layer is a manufacturing method of the solar cell as described in any one of Claims 16-18 formed by the manufacturing method of the light absorption layer for solar cells of Claim 14. 前記光吸収層が、請求項15に記載の太陽電池用光吸収層の製造方法によって形成される請求項16〜18のいずれか一項に記載の太陽電池の製造方法。   The said light absorption layer is a manufacturing method of the solar cell as described in any one of Claims 16-18 formed by the manufacturing method of the light absorption layer for solar cells of Claim 15.
JP2015521351A 2013-06-03 2014-05-09 Method for producing complex and solution thereof, method for producing light absorption layer for solar cell, and method for producing solar cell Expired - Fee Related JP6012866B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201361830294P 2013-06-03 2013-06-03
US61/830,294 2013-06-03
US201461925621P 2014-01-09 2014-01-09
US61/925,621 2014-01-09
PCT/JP2014/062476 WO2014196311A1 (en) 2013-06-03 2014-05-09 Method for producing complex and solution thereof, method for producing light-absorbing layer for solar cell, and method for producing solar cell

Publications (2)

Publication Number Publication Date
JP6012866B2 JP6012866B2 (en) 2016-10-25
JPWO2014196311A1 true JPWO2014196311A1 (en) 2017-02-23

Family

ID=52007964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015521351A Expired - Fee Related JP6012866B2 (en) 2013-06-03 2014-05-09 Method for producing complex and solution thereof, method for producing light absorption layer for solar cell, and method for producing solar cell

Country Status (4)

Country Link
JP (1) JP6012866B2 (en)
CN (1) CN105308760B (en)
TW (1) TWI594952B (en)
WO (1) WO2014196311A1 (en)

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07133102A (en) * 1993-11-04 1995-05-23 Asahi Chem Ind Co Ltd Production of metallic chalcogenide film
AT503837B1 (en) * 2006-06-22 2009-01-15 Isovolta METHOD FOR PRODUCING PHOTOACTIVE LAYERS AND COMPONENTS COMPRISING THIS LAYER (DE)
CN101471394A (en) * 2007-12-29 2009-07-01 中国科学院上海硅酸盐研究所 Method for preparing optical absorption layer of copper indium gallium sulphur selenium film solar battery
WO2009111052A1 (en) * 2008-03-05 2009-09-11 Global Solar Energy, Inc. Heating for buffer layer deposition
CN102439096A (en) * 2009-05-21 2012-05-02 纳幕尔杜邦公司 Processes for preparing copper tin sulfide and copper zinc tin sulfide films
AT508283A1 (en) * 2009-06-02 2010-12-15 Isovoltaic Gmbh COMPOSITE MATERIAL COMPRISING NANOPARTICLES AND MANUFACTURING PHOTOACTIVE LAYERS CONTAINING QUATERNARY, PENTANIC AND HIGHER ASSEMBLED SEMICONDUCTOR APPLICATIONS
JP5340314B2 (en) * 2009-07-30 2013-11-13 京セラ株式会社 Compound semiconductor manufacturing method, photoelectric conversion device manufacturing method, and semiconductor forming solution
US8309179B2 (en) * 2009-09-28 2012-11-13 Rohm And Haas Electronics Materials Llc Selenium/group 1b ink and methods of making and using same
US20110094557A1 (en) * 2009-10-27 2011-04-28 International Business Machines Corporation Method of forming semiconductor film and photovoltaic device including the film
WO2011052646A1 (en) * 2009-10-28 2011-05-05 京セラ株式会社 Photoelectric conversion device, photoelectric conversion module, and method for manufacturing photoelectric conversion device
JP5495849B2 (en) * 2010-02-25 2014-05-21 京セラ株式会社 Manufacturing method of semiconductor layer and manufacturing method of photoelectric conversion device
JP5566335B2 (en) * 2010-12-27 2014-08-06 京セラ株式会社 Method for manufacturing photoelectric conversion device
JP2012169485A (en) * 2011-02-15 2012-09-06 Kyocera Corp Production method of compound for forming semiconductor, production method of semiconductor layer and manufacturing method of photoelectric conversion device
JP2012250889A (en) * 2011-06-06 2012-12-20 Toyota Motor Corp Semiconductor particle, and method for producing the same
JP2013189328A (en) * 2012-03-13 2013-09-26 Toyota Motor Corp Method for producing czts particle
TWI586773B (en) * 2012-07-26 2017-06-11 東京應化工業股份有限公司 Method for producing coating solution for forming light-absorbing layer

Also Published As

Publication number Publication date
CN105308760A (en) 2016-02-03
CN105308760B (en) 2019-06-18
WO2014196311A1 (en) 2014-12-11
TW201509819A (en) 2015-03-16
JP6012866B2 (en) 2016-10-25
TWI594952B (en) 2017-08-11

Similar Documents

Publication Publication Date Title
US20140220728A1 (en) Methods of forming semiconductor films including i2-ii-iv-vi4 and i2-(ii,iv)-iv-vi4 semiconductor films and electronic devices including the semiconductor films
TWI662094B (en) Coating solution and production method thereof, light-absorbing layer of solar cell and production method thereof, and solar cell and production method thereof
WO2012169621A1 (en) Application liquid for forming light-absorbing layer, and method for producing application liquid for forming light-absorbing layer
JP6155264B2 (en) Method for producing coating solution for forming light absorption layer
JP6554332B2 (en) Homogeneous coating liquid and method of manufacturing the same, light absorbing layer for solar cell and method of manufacturing the same, and solar cell and method of manufacturing the same
JP6012866B2 (en) Method for producing complex and solution thereof, method for producing light absorption layer for solar cell, and method for producing solar cell
WO2012169617A1 (en) HYDRAZINE-COORDINATED Cu CHALCOGENIDE COMPLEX AND METHOD FOR PRODUCING SAME, APPLICATION LIQUID FOR FORMING LIGHT-ABSORBING LAYER, AND METHOD FOR PRODUCING APPLICATION LIQUID FOR FORMING LIGHT-ABSORBING LAYER
JP5775955B2 (en) Method for producing metal chalcogenide dispersion, metal chalcogenide dispersion, method for producing light absorption layer for solar cell, and method for producing solar cell
JP2017212404A (en) Method of manufacturing homogeneous coating liquid, method of manufacturing light-absorbing layer for solar battery, and method of manufacturing solar battery
Cooper et al. An innovative approach for fabrication of Cu2ZnSnSe4 absorber layers using solutions of elemental metal powders
JP6996946B2 (en) Uniform coating liquid and its manufacturing method, and coating film and its forming method
JP6169283B2 (en) Morpholine bath and method for chemically depositing layers
WO2016068155A1 (en) Homogeneous application liquid and production method for same, light-absorbing layer for solar cell and production method for same, and solar cell and production method for same
JP2017212398A (en) Method of manufacturing homogeneous coating liquid, method of forming light-absorbing layer for solar battery, and method of manufacturing solar battery
JP6184602B2 (en) Persulfate bath and method for chemically depositing layers
WO2014052899A1 (en) Soluble precursors and solution-based processes for photovoltaics
COOPER An innovative approach for fabrica-tion of Cu< inf> 2</inf> ZnSnSe< inf> 4</inf> absorber layers using solutions of elemental metal powders

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160920

R150 Certificate of patent or registration of utility model

Ref document number: 6012866

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees