JPWO2014185178A1 - Heat storage system - Google Patents

Heat storage system Download PDF

Info

Publication number
JPWO2014185178A1
JPWO2014185178A1 JP2015516991A JP2015516991A JPWO2014185178A1 JP WO2014185178 A1 JPWO2014185178 A1 JP WO2014185178A1 JP 2015516991 A JP2015516991 A JP 2015516991A JP 2015516991 A JP2015516991 A JP 2015516991A JP WO2014185178 A1 JPWO2014185178 A1 JP WO2014185178A1
Authority
JP
Japan
Prior art keywords
heat storage
storage material
heat
temperature
solid phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015516991A
Other languages
Japanese (ja)
Inventor
道太郎 橋場
道太郎 橋場
秋吉 亮
亮 秋吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Publication of JPWO2014185178A1 publication Critical patent/JPWO2014185178A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/063Materials absorbing or liberating heat during crystallisation; Heat storage materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0034Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/021Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material and the heat-exchanging means being enclosed in one container
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/06Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with the heat-exchange conduits forming part of, or being attached to, the tank containing the body of fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0034Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material
    • F28D2020/0047Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material using molten salts or liquid metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Central Heating Systems (AREA)

Abstract

固相となった蓄熱材による伝熱低下を抑制可能な蓄熱システムを提供する。蓄熱最低温度がTminである蓄熱システムにおいて、蓄熱材として、蓄熱最低温度Tminにおいて固液共存状態となる非共晶組成の混合塩からなるものを用いた。Provided is a heat storage system capable of suppressing a decrease in heat transfer due to a heat storage material in a solid phase. In the heat storage system in which the minimum heat storage temperature is Tmin, a heat storage material made of a mixed salt of a non-eutectic composition that is in a solid-liquid coexistence state at the minimum heat storage temperature Tmin is used.

Description

本発明は、蓄熱システムに関するものである。   The present invention relates to a heat storage system.

集熱エリアで太陽光を集光して集熱し、この熱により水蒸気を生成して蒸気タービンを駆動し発電を行う太陽熱発電システムが知られている。太陽熱発電システムでは、夜間や日射量が得られない時間帯での発電を補い、出力電力の過渡的な変化を抑制するために、蓄熱システムが備えられるのが一般的である。   A solar thermal power generation system is known in which sunlight is collected and collected in a heat collection area, and steam is generated by this heat to drive a steam turbine to generate electric power. In a solar thermal power generation system, a heat storage system is generally provided in order to supplement power generation at night or in a time zone where the amount of solar radiation cannot be obtained and to suppress a transient change in output power.

太陽熱発電システム等に用いられる蓄熱システムとして、液体状態のソーラーソルトと呼ばれる溶融塩(硝酸カリウム(KNO3)と硝酸ナトリウム(NaNO3)の混合物、硝酸ナトリウムの質量分率は0.6)を蓄熱材として用い、顕熱により蓄熱を行うものが知られている(例えば、特許文献1参照)。As a heat storage system used for solar thermal power generation systems, etc., a molten salt called liquid solar salt (mixture of potassium nitrate (KNO 3 ) and sodium nitrate (NaNO 3 ), mass fraction of sodium nitrate is 0.6) is a heat storage material It is known that the heat is stored by sensible heat (for example, see Patent Document 1).

しかし、蓄熱量が例えば1TJと大きくなると、顕熱を用いた蓄熱システムでは蓄熱槽が大きくなりすぎ、現実的ではなくなる。そこで、蓄熱槽の寸法を現実的なものとするため、潜熱を利用した蓄熱システムが望まれる。   However, when the heat storage amount becomes as large as 1 TJ, for example, the heat storage tank using the sensible heat becomes too large, which is not realistic. Therefore, in order to make the size of the heat storage tank realistic, a heat storage system using latent heat is desired.

特開平5−256591号公報Japanese Patent Laid-Open No. 5-256591

しかしながら、潜熱を利用した従来の蓄熱システムでは、凝固時に固相となった蓄熱材が伝熱管に付着してしまい、伝熱低下が引き起こされてしまうという問題があった。   However, the conventional heat storage system using latent heat has a problem that the heat storage material that has become a solid phase at the time of solidification adheres to the heat transfer tube, causing a decrease in heat transfer.

この問題を解決するため、伝熱管を蓄熱槽内の全体に張り巡らせて、伝熱促進を図ることが考えられるが、蓄熱槽が大型である場合、蓄熱槽全体に伝熱管を張り巡らせると非常にコストが高くなってしまう。なお、潜熱を利用することにより、顕熱を利用した場合と比較して蓄熱槽を小型化することが可能であるが、この場合でも、蓄熱量が1TJ程度になると蓄熱槽の容積は1000m3のオーダーとなり、蓄熱槽全体に伝熱管を張り巡らせることは容易ではない。In order to solve this problem, it is conceivable to spread the heat transfer tubes throughout the heat storage tank to promote heat transfer. However, if the heat storage tank is large, it is The cost will be high. In addition, by using latent heat, it is possible to reduce the size of the heat storage tank as compared with the case of using sensible heat, but even in this case, the volume of the heat storage tank is 1000 m 3 when the heat storage amount is about 1 TJ. It is not easy to stretch the heat transfer tubes around the entire heat storage tank.

そこで、本発明は、上記課題を解決し、潜熱を利用した蓄熱システムにおいて、固相となった蓄熱材による伝熱低下を抑制可能な蓄熱システムを提供することを目的とする。   Then, this invention solves the said subject, and aims at providing the thermal storage system which can suppress the heat-transfer fall by the thermal storage material used as the solid phase in the thermal storage system using a latent heat.

本発明は上記目的を達成するために創案されたものであり、蓄熱最低温度がTminである蓄熱システムにおいて、蓄熱材として、蓄熱最低温度Tminにおいて固液共存状態となる非共晶組成の混合塩からなるものを用いた蓄熱システムである。The present invention has been made in order to achieve the above object, the heat storage minimum temperature in the heat storage system is a T min, as a heat storage material, the heat storage minimum temperature T becomes the solid-liquid coexistence state in min of non-eutectic composition This is a heat storage system using a mixed salt.

前記蓄熱材として、固液共存状態となる温度幅が1℃以上であるものを用いてもよい。   As the heat storage material, a material having a temperature range in which a solid-liquid coexistence state is 1 ° C. or more may be used.

蓄熱最低温度Tminが150℃以上であってもよい。The minimum heat storage temperature T min may be 150 ° C. or higher.

本発明によれば、固相となった蓄熱材による伝熱低下を抑制可能な蓄熱システムを提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the thermal storage system which can suppress the heat-transfer fall by the thermal storage material used as the solid phase can be provided.

(a)は、本発明の一実施の形態に係る蓄熱システムの模式図であり、(b)は、本発明で蓄熱材として用いるKNO3とNaNO3の混合物の状態遷移図である。(A) is a schematic diagram of a thermal storage system according to an embodiment of the present invention, (b) is a state transition diagram of a mixture of KNO 3 and NaNO 3 is used as the heat storage material in the present invention. 本発明で蓄熱材として用いるCsNO3とNaNO3の混合物の状態遷移図である。It is a state transition diagram of a mixture of CsNO 3 and NaNO 3 used as a heat storage material in the present invention. 本発明で蓄熱材として用いるLiNO3とNaNO3の混合物の状態遷移図である。Is a state transition diagram of a mixture of LiNO 3 and NaNO 3 is used as the heat storage material in the present invention. 本発明で蓄熱材として用いるNaNO3とRbNO3の混合物の状態遷移図である。It is a state transition diagram of a mixture of NaNO 3 and RbNO 3 used as a heat storage material in the present invention. 本発明で蓄熱材として用いるLiBrとNaNO3の混合物の状態遷移図である。Is a state transition diagram of a mixture of LiBr and NaNO 3 is used as the heat storage material in the present invention. 本発明の実施例で用いた実験装置の模式図である。It is a schematic diagram of the experimental apparatus used in the Example of this invention. 本発明の実施例において、蓄熱材と金属板の温度履歴を示すグラフ図であり、(a)は蓄熱材として非共晶組成のものを用いた場合、(b)は蓄熱材として共晶組成のものを用いた場合を示している。In the Example of this invention, it is a graph which shows the temperature history of a thermal storage material and a metal plate, When (a) uses the thing of a non-eutectic composition as a thermal storage material, (b) is an eutectic composition as a thermal storage material. The case where the thing of is used is shown.

以下、本発明の実施の形態を添付図面にしたがって説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図1(a)は、本実施の形態に係る蓄熱システムの模式図であり、図1(b)は、本実施の形態で蓄熱材として用いる硝酸カリウム(KNO3)と硝酸ナトリウム(NaNO3)の混合物の状態遷移図である。FIG. 1A is a schematic diagram of a heat storage system according to the present embodiment, and FIG. 1B is a diagram of potassium nitrate (KNO 3 ) and sodium nitrate (NaNO 3 ) used as heat storage materials in the present embodiment. It is a state transition diagram of a mixture.

図1(a)に示すように、蓄熱システム1は、蓄熱材2を貯留する蓄熱槽3と、蓄熱槽3内に設けられた2つの熱交換器4,5と、を備えている。   As shown in FIG. 1A, the heat storage system 1 includes a heat storage tank 3 that stores the heat storage material 2 and two heat exchangers 4 and 5 provided in the heat storage tank 3.

冷却側熱交換器4は、低温の第1熱媒体が供給され、第1熱媒体と蓄熱材2とを熱交換させることで、蓄熱材2を冷却し、熱交換により高温となった第1熱媒体を熱負荷等に出力するものである。冷却側熱交換器4は、第1熱媒体を通す伝熱管からなり、蓄熱槽3内の上部のみに設けられる。   The cooling-side heat exchanger 4 is supplied with a low-temperature first heat medium, heat-exchanges the first heat medium and the heat storage material 2, thereby cooling the heat storage material 2, and the heat-exchanged heat exchanger 4 is heated to a high temperature. The heat medium is output to a heat load or the like. The cooling side heat exchanger 4 is composed of a heat transfer tube through which the first heat medium passes, and is provided only in the upper part in the heat storage tank 3.

加熱側熱交換器5は、高温の第2熱媒体が供給され、第2熱媒体と蓄熱材2とを熱交換させることで、蓄熱材2を加熱して蓄熱させるものである。加熱側熱交換器5は、第2熱媒体を通す流路が内部に設けられた板状の熱交換器であるホットプレートからなり、蓄熱槽3の底面に設けられる。   The heating-side heat exchanger 5 is supplied with a high-temperature second heat medium and heat-exchanges the second heat medium and the heat storage material 2 to heat and store the heat storage material 2. The heating side heat exchanger 5 includes a hot plate that is a plate-like heat exchanger in which a flow path for passing the second heat medium is provided, and is provided on the bottom surface of the heat storage tank 3.

図示していないが、蓄熱槽3内には、蓄熱材2を撹拌する撹拌手段を備えてもよい。また、蓄熱槽3には、固相となった蓄熱材2を冷却側熱交換器4の表面から強制的に剥落させる手段を備えてもよい。   Although not shown, the heat storage tank 3 may be provided with stirring means for stirring the heat storage material 2. Further, the heat storage tank 3 may be provided with means for forcibly removing the heat storage material 2 in the solid phase from the surface of the cooling side heat exchanger 4.

本実施の形態では、太陽熱発電システム等の高温のシステムに適用することを想定しているため、蓄熱最低温度Tminは150℃以上、好ましくは200℃以上とする。ここでは、一例として、蓄熱システム1の蓄熱最高温度Tmaxが400℃、蓄熱最低温度Tminが250℃である場合を説明する。In this embodiment, since it is assumed that the present invention is applied to a high-temperature system such as a solar thermal power generation system, the minimum heat storage temperature T min is 150 ° C. or higher, preferably 200 ° C. or higher. Here, the case where the heat storage maximum temperature Tmax of the heat storage system 1 is 400 degreeC and the heat storage minimum temperature Tmin is 250 degreeC is demonstrated as an example.

さて、本実施の形態に係る蓄熱システム1では、蓄熱材2として、蓄熱最低温度Tminにおいて固液共存状態となる非共晶組成の混合塩からなるものを用いる。Now, in the heat storage system 1 according to this embodiment, as a heat storage material 2, used as comprising a mixed salt of a non-eutectic composition as the solid-liquid coexisting state at the heat storage minimum temperature T min.

ここでは、蓄熱材2として、硝酸カリウム(KNO3)と硝酸ナトリウム(NaNO3)とを非共晶となる組成で混合した2成分混合塩を用いる場合を説明する。Here, a case where a binary mixed salt in which potassium nitrate (KNO 3 ) and sodium nitrate (NaNO 3 ) are mixed in a non-eutectic composition is used as the heat storage material 2 will be described.

図1(b)に示すように、硝酸カリウムと硝酸ナトリウムの混合物では、硝酸ナトリウムのモル分率が0.49となる組成で共晶となる。よって、この共晶となる組成以外の組成とし、かつ、蓄熱最低温度Tminである250℃において固液共存状態となるように、組成を決定する必要がある。As shown in FIG.1 (b), in the mixture of potassium nitrate and sodium nitrate, it becomes a eutectic with the composition in which the molar fraction of sodium nitrate becomes 0.49. Therefore, it is necessary to determine the composition so as to be in a solid-liquid coexistence state at 250 ° C., which is the lowest heat storage temperature T min , and a composition other than the composition that becomes eutectic.

本実施の形態では、図1(b)に太線破線で示した組成、すなわち硝酸ナトリウムのモル分率が0.786(質量分率が0.755)となる組成のものを蓄熱材2として用いた。   In the present embodiment, the composition indicated by the thick broken line in FIG. 1B, that is, the composition having a sodium nitrate molar fraction of 0.786 (mass fraction of 0.755) is used as the heat storage material 2. It was.

この場合、蓄熱材2は、蓄熱最高温度Tmaxである400℃から徐々に冷却していくと、274℃で固相が生じ、さらに冷却されると固相率を徐々に増加させながら蓄熱最低温度Tminである250℃に至る。このとき、最も低温となる冷却面(冷却側熱交換器4である伝熱管の表面)にて固相が発生し、その固相が冷却面に沿って成長するが、固相は冷却面に密着しないため、蓄熱材2の流動等によってはがれ落ちる。なお、蓄熱最低温度Tminである250℃からさらに冷却すると、234℃で蓄熱材2は完全に固相になる。つまり、図示太線実線で示す温度領域が固液共存状態となる。In this case, when the heat storage material 2 is gradually cooled from the heat storage maximum temperature T max of 400 ° C., a solid phase is generated at 274 ° C., and when further cooled, the heat storage minimum is increased while gradually increasing the solid phase rate. It reaches a temperature T min of 250 ° C. At this time, a solid phase is generated at the coldest cooling surface (the surface of the heat transfer tube as the cooling side heat exchanger 4), and the solid phase grows along the cooling surface. Since it does not adhere, it peels off due to the flow of the heat storage material 2 or the like. In addition, if it cools further from 250 degreeC which is the heat storage minimum temperature Tmin , the heat storage material 2 will be in a solid phase completely at 234 degreeC. That is, the temperature region indicated by the bold solid line in the figure is in a solid-liquid coexistence state.

蓄熱材2の固相率は、温度により制御することができる。固液共存状態となる温度幅が狭すぎると所望の固相率に制御することが困難になるので、固液共存状態となる温度幅が1℃以上となるように組成を決定することが望ましい。なお、特許文献1のように固相と液相で物質が異なる固液共存状態となる蓄熱材を用いた場合には、温度による固相率の制御は困難である。   The solid phase rate of the heat storage material 2 can be controlled by temperature. Since it becomes difficult to control to a desired solid phase ratio if the temperature range in which the solid-liquid coexistence state is too narrow, it is desirable to determine the composition so that the temperature range in which the solid-liquid coexistence state coexists is 1 ° C. or more. . In addition, when a heat storage material that is in a solid-liquid coexistence state in which substances are different between a solid phase and a liquid phase is used as in Patent Document 1, it is difficult to control the solid fraction by temperature.

上述のように、非共晶組成の2成分混合塩を蓄熱材2として用いると、凝固して固相となった蓄熱材2が冷却面(冷却側熱交換器4である伝熱管の表面)に強く付着せず、容易にはがれ落ちるようになる。   As described above, when a two-component mixed salt having a non-eutectic composition is used as the heat storage material 2, the heat storage material 2 solidified into a solid phase is the cooling surface (the surface of the heat transfer tube that is the cooling side heat exchanger 4). It does not adhere strongly to the surface and easily comes off.

これは、凝固しはじめる際に冷却面付近の固相率が局所的に大きくなるため、融点が比較的低い液相の溶融塩が冷却面と固相の間に入り込みながら凝固が進行するためだと考えられ、非共晶の溶融塩の固液共存領域が温度幅をもって存在することに起因すると考えられる。したがって、液相の状態から徐々に固相が増加するように(つまり徐々に温度を低下させるように)制御を行うことで、固相となった蓄熱材2が冷却面に密着してしまうことを抑制可能になる。   This is because the solid fraction near the cooling surface increases locally when it begins to solidify, and solidification proceeds while the molten salt in the liquid phase with a relatively low melting point enters between the cooling surface and the solid phase. It is considered that the solid-liquid coexistence region of non-eutectic molten salt exists with a temperature range. Therefore, by controlling so that the solid phase gradually increases from the liquid phase state (that is, gradually lowering the temperature), the heat storage material 2 that has become the solid phase is in close contact with the cooling surface. Can be suppressed.

蓄熱材2の流動や撹拌等によりはがれ落ちた固相の蓄熱材2は、液相の蓄熱材2よりも比重が大きいため、蓄熱槽3の下部に沈降する。よって、蓄熱槽3の上部に冷却側熱交換器4を設けることで、液相の蓄熱材2を効率よく冷却することが可能になる。また、蓄熱槽3の底面に加熱側熱交換器5を設けることで、固相の蓄熱材2が自重により加熱側熱交換器5に押しつけられることになり、固相の蓄熱材2を効率よく加熱することが可能になる。   The solid-phase heat storage material 2 that has been peeled off due to the flow or stirring of the heat storage material 2 has a higher specific gravity than the liquid-phase heat storage material 2, and thus settles in the lower part of the heat storage tank 3. Therefore, by providing the cooling side heat exchanger 4 in the upper part of the heat storage tank 3, the liquid phase heat storage material 2 can be efficiently cooled. Also, by providing the heating side heat exchanger 5 on the bottom surface of the heat storage tank 3, the solid phase heat storage material 2 is pressed against the heating side heat exchanger 5 by its own weight, and the solid phase heat storage material 2 is efficiently used. It becomes possible to heat.

本実施の形態では、蓄熱材2として硝酸カリウムと硝酸ナトリウムの混合物を用いたが、これに限らず、蓄熱最低温度Tminにおいて固液共存状態となる非共晶組成の混合塩であれば、蓄熱材2として使用可能である。In the present embodiment uses a mixture of potassium nitrate and sodium nitrate as the thermal storage material 2 is not limited to this, if the mixed salt of a non-eutectic composition as the solid-liquid coexisting state at the heat storage minimum temperature T min, heat storage It can be used as the material 2.

例えば、Tmax=400℃、Tmin=250℃に設定する場合、蓄熱材2として、CsNO3とNaNO3の混合物、LiNO3とNaNO3の混合物、NaNO3とRbNO3の混合物を用いることが可能である。また、Tmin=280℃に設定する場合、蓄熱材2として、LiBrとNaNO3の混合物等を用いることが可能である。それぞれの平衡状態図を図2〜5に示す。For example, when T max = 400 ° C. and T min = 250 ° C., a mixture of CsNO 3 and NaNO 3, a mixture of LiNO 3 and NaNO 3, and a mixture of NaNO 3 and RbNO 3 are used as the heat storage material 2. Is possible. Further, when T min = 280 ° C., a mixture of LiBr and NaNO 3 or the like can be used as the heat storage material 2. The respective equilibrium diagrams are shown in FIGS.

図2に示すように、蓄熱材2としてCsNO3とNaNO3の混合物を用いる場合、NaNO3のモル分率を0.902(質量分率を0.801)とすることで、Tmin=250℃において固液共存状態とすることができる。同様に、図3のLiNO3とNaNO3の混合物を蓄熱材2として用いる場合はNaNO3のモル分率を0.877(質量分率を0.898)、図4のNaNO3とRbNO3の混合物を蓄熱材2として用いる場合はRbNO3のモル分率を0.105(質量分率を0.169)とすることで、Tmin=250℃において固液共存状態とすることができる。また、図5のLiBrとNaNO3の混合物を蓄熱材2として用いる場合はNaNO3のモル分率を0.964(質量分率を0.963)とすることで、Tmin=280℃において固液共存状態とすることができる。なお、図2〜5においても、図1(b)と同様に、固液共存状態となる温度領域を太線実線で表している。As shown in FIG. 2, when a mixture of CsNO 3 and NaNO 3 is used as the heat storage material 2, T min = 250 by setting the molar fraction of NaNO 3 to 0.902 (mass fraction of 0.801). It can be in a solid-liquid coexistence state at ° C. Similarly, when the mixture of LiNO 3 and NaNO 3 in FIG. 3 is used as the heat storage material 2, the molar fraction of NaNO 3 is 0.877 (the mass fraction is 0.898), and the NaNO 3 and RbNO 3 in FIG. When the mixture is used as the heat storage material 2, the solid-liquid coexistence state can be obtained at T min = 250 ° C. by setting the molar fraction of RbNO 3 to 0.105 (the mass fraction is 0.169). Further, when the mixture of LiBr and NaNO 3 in FIG. 5 is used as the heat storage material 2, the solid fraction at T min = 280 ° C. is obtained by setting the molar fraction of NaNO 3 to 0.964 (mass fraction of 0.963). It can be in a liquid coexistence state. 2 to 5, similarly to FIG. 1B, the temperature region in which the solid-liquid coexistence state exists is indicated by a bold solid line.

また、蓄熱材2としては、蓄熱最低温度Tminにおいて固液共存状態となる非共晶組成の混合塩であれば、3成分以上のものを用いることも可能である。As the heat storage material 2, as long as it is a non-eutectic salt mixture of the solid-liquid coexisting state at the heat storage minimum temperature T min, it is also possible to use more than three components.

例えば、3成分系溶融塩として、ヒートトランスファーソルト(HTS)と呼称されるNaNO3とKNO3とNaNO2の混合塩が知られている。このHTSの組成を一般的に使用されている共晶組成(NaNO3:7mol%、KNO3:44mol%、NaNO2:49mol%、融点は142℃)から変化させ、NaNO3:7mol%、KNO3:70mol%、NaNO2:23mol%と非共晶組成にして凝固実験を行った。その結果、固相となった蓄熱材2は、冷却面から小さな粒子状となって剥離し、冷却面から固相が剥離し易くなっていることが確認された。For example, a mixed salt of NaNO 3 , KNO 3 and NaNO 2 called heat transfer salt (HTS) is known as a ternary molten salt. The composition of this HTS was changed from the commonly used eutectic composition (NaNO 3 : 7 mol%, KNO 3 : 44 mol%, NaNO 2 : 49 mol%, melting point 142 ° C.), NaNO 3 : 7 mol%, KNO The solidification experiment was conducted with a non-eutectic composition of 3:70 mol% and NaNO 2 : 23 mol%. As a result, it was confirmed that the heat storage material 2 that became a solid phase peeled off as small particles from the cooling surface, and the solid phase easily separated from the cooling surface.

以上説明したように、本実施の形態に係る蓄熱システム1では、蓄熱材2として、蓄熱最低温度Tminにおいて固液共存状態となる非共晶組成の混合塩からなるものを用いている。As described above, in the thermal storage system 1 according to this embodiment, as the thermal storage material 2 is used one made of a mixed salt of a non-eutectic composition as the solid-liquid coexisting state at the heat storage minimum temperature T min.

これにより、凝固して固相となった蓄熱材2が冷却面に強く付着せずに、容易にはがれ落ちるようになるため、固相となった蓄熱材2による伝熱低下を抑制可能になる。その結果、蓄熱槽3全体に伝熱管を張り巡らせずとも潜熱を利用することが可能になり、低コスト化および蓄熱量の向上が可能になる。   As a result, the heat storage material 2 that has solidified to become a solid phase does not adhere strongly to the cooling surface, but easily peels off, so that it is possible to suppress a decrease in heat transfer due to the heat storage material 2 that has become a solid phase. . As a result, it is possible to use latent heat without stretching the heat transfer tube around the entire heat storage tank 3, thereby reducing the cost and improving the amount of heat storage.

さらに、蓄熱システム1では、蓄熱材2が冷却面に強く付着せずはがれ落ちるため、従来よりも蓄熱最低温度Tminでの固相率を高く設定しても伝熱低下を抑制できることになり、蓄熱量をさらに向上させることが可能になる。Furthermore, in the heat storage system 1, since the heat storage material 2 does not adhere strongly to the cooling surface and peels off, even if the solid phase ratio at the heat storage minimum temperature Tmin is set higher than before, a decrease in heat transfer can be suppressed. It becomes possible to further improve the heat storage amount.

蓄熱最低温度Tminが150℃以上となるような蓄熱システム1において、固液共存状態で使用でき、かつ、固相の冷却面への付着を抑制できるような蓄熱材2は従来見出されていなかったため、本発明は、高温領域で使用される蓄熱システム1の発展に大きく寄与すると考えられる。In the heat storage system 1 in which the minimum heat storage temperature T min is 150 ° C. or higher, a heat storage material 2 that can be used in a solid-liquid coexistence state and that can suppress adhesion of the solid phase to the cooling surface has been conventionally found. Therefore, it is considered that the present invention greatly contributes to the development of the heat storage system 1 used in a high temperature region.

本発明は上記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更を加え得ることは勿論である。   The present invention is not limited to the above-described embodiment, and it is needless to say that various modifications can be made without departing from the spirit of the present invention.

固相が冷却面に固着するか、あるいは離脱し得るかを実験的に把握するため、図6に示すような実験装置61を作成し、実験を実施した。   In order to experimentally grasp whether the solid phase is fixed to the cooling surface or can be detached, an experimental apparatus 61 as shown in FIG. 6 was created and the experiment was performed.

実験装置61は、ビーカー63内に貯留された蓄熱材2に、金属板64の一端部を浸漬すると共に、金属板64の他端部を蓄熱材2から露出させて冷却するように構成されている。ビーカー63の下に配置したヒータ67の温度を徐々に下げ、金属板64の長手方向の温度分布および蓄熱材2の温度を熱電対65とデータロガー66で計測しつつ、固相が生成する様相を観察した。なお、図示していないが、観測を容易とするため、金属板64の蓄熱材2から露出した他端部を保温して固相の生成を遅くした。   The experimental device 61 is configured to immerse one end portion of the metal plate 64 in the heat storage material 2 stored in the beaker 63 and to cool the other end portion of the metal plate 64 exposed from the heat storage material 2. Yes. The temperature of the heater 67 arranged under the beaker 63 is gradually lowered, and the temperature distribution in the longitudinal direction of the metal plate 64 and the temperature of the heat storage material 2 are measured by the thermocouple 65 and the data logger 66 while the solid phase is generated. Was observed. Although not shown, in order to facilitate observation, the other end of the metal plate 64 exposed from the heat storage material 2 was kept warm to slow down the generation of the solid phase.

蓄熱材2としては、図1(b)の硝酸カリウムと硝酸ナトリウムの混合物を用いた。蓄熱では比熱が大きい方が有利なため、通常、硝酸カリウムと硝酸ナトリウムの混合物は、共晶となる組成(硝酸ナトリウムのモル分率が0.49)よりも硝酸ナトリウムが多い組成、具体的には硝酸ナトリウムのモル分率が0.64となる組成(ソーラーソルトと呼ばれる)で使用されている。ここでは、ソーラーソルトよりさらに硝酸ナトリウムが多い図1(b)に太線破線で示した組成、すなわち硝酸ナトリウムのモル分率が0.786(質量分率が0.755)となる非共晶の組成で用いた。   As the heat storage material 2, a mixture of potassium nitrate and sodium nitrate shown in FIG. For heat storage, it is advantageous to have a large specific heat. Therefore, a mixture of potassium nitrate and sodium nitrate usually has a composition containing more sodium nitrate than a composition that becomes a eutectic (sodium nitrate molar fraction is 0.49), specifically, It is used in a composition (called solar salt) in which the molar fraction of sodium nitrate is 0.64. Here, the composition shown by the thick broken line in FIG. 1 (b) has more sodium nitrate than solar salt, that is, a non-eutectic crystal having a sodium nitrate molar fraction of 0.786 (mass fraction of 0.755). Used in composition.

蓄熱材2の温度を徐々に下げると、最も低温となる金属板64のメニスカス付近に固相が発生し、金属板64の表面に沿って成長したが、固相は金属板64に密着しておらず、撹拌されている液相の蓄熱材2の流動によってはがれた。また、金属板64の表面に沿って成長した固相は半透明であり、デンドライト状(樹枝状)の凹凸が認められ、凸部は薄い箇所より透明度が低かった。図7(a)に、このときの温度履歴を示す。図7(a)に示すように、蓄熱材2の温度低下に伴い金属板64の温度も低下したが、その温度差はほぼ一定であった。   When the temperature of the heat storage material 2 is gradually lowered, a solid phase is generated in the vicinity of the meniscus of the metal plate 64 having the lowest temperature and grows along the surface of the metal plate 64. The liquid phase heat storage material 2 being stirred was peeled off. Further, the solid phase grown along the surface of the metal plate 64 was translucent, dendrite-like (dendritic) irregularities were observed, and the convex portions were less transparent than the thin portions. FIG. 7A shows the temperature history at this time. As shown in FIG. 7 (a), the temperature of the metal plate 64 decreased with the temperature decrease of the heat storage material 2, but the temperature difference was substantially constant.

非共晶組成では、固液共存状態となる領域は温度幅をもって存在し、その温度における固相率は一意に定まる。凝固し始める際は金属板64の表面付近の固相率が局所的に大きくなるため、融点が比較的低い液相の蓄熱材2が金属面と固相の間に入り込みながら凝固が進行すると考えられる。それゆえ、温度が十分に低下するまで固相となった蓄熱材2が金属板64に密着せず、はがれやすくなっていると考えられる。   In the non-eutectic composition, a region that is in a solid-liquid coexistence state exists with a temperature range, and the solid phase ratio at that temperature is uniquely determined. When solidification starts, the solid phase ratio in the vicinity of the surface of the metal plate 64 is locally increased, so that the solidification proceeds while the liquid heat storage material 2 having a relatively low melting point enters between the metal surface and the solid phase. It is done. Therefore, it is considered that the heat storage material 2 that has become a solid phase does not adhere to the metal plate 64 until the temperature is sufficiently lowered and is easily peeled off.

他方、比較のために、共晶組成の蓄熱材を徐々に冷却して観察を行った。蓄熱材に浸漬している金属板64の表面には透明な薄い膜状の固相が発生し、徐々に厚さが増加し、撹拌されている液相の蓄熱材の流動によってもはがれることはなかった。図7(b)に、このときの温度履歴を示す。図7(b)に示すように、凝固時、蓄熱材はほぼ一定の温度を保つが、金属板64の温度は固相の成長と共に大きく低下し、温度差は拡大した。   On the other hand, for comparison, the heat storage material having the eutectic composition was gradually cooled and observed. A transparent thin film-like solid phase is generated on the surface of the metal plate 64 immersed in the heat storage material, the thickness gradually increases, and it is peeled off by the flow of the liquid heat storage material being stirred. There wasn't. FIG. 7B shows the temperature history at this time. As shown in FIG. 7 (b), the heat storage material maintained a substantially constant temperature during solidification, but the temperature of the metal plate 64 greatly decreased with the growth of the solid phase, and the temperature difference increased.

以上説明したように、蓄熱材2として非共晶組成のものを用いた場合は、金属面に生成した固相が撹拌されている液相の蓄熱材2の流動によりはがれ落ちたが、共晶組成でははがれ落ちなかった。固相の金属面への付着性の違いは、非共晶の溶融塩の固液共存領域が温度幅をもって存在することに起因すると考えられる。   As described above, when a heat storage material 2 having a non-eutectic composition is used, the solid phase generated on the metal surface is peeled off due to the flow of the liquid heat storage material 2 being stirred. The composition did not peel off. The difference in adhesion of the solid phase to the metal surface is thought to be due to the existence of a solid-liquid coexistence region of non-eutectic molten salt with a temperature range.

したがって、蓄熱材2として、蓄熱最低温度Tminにおいて固液共存状態となる非共晶組成の混合塩からなるものを用いることで、固相となった蓄熱材2が冷却面に強く付着せずに容易にはがれ落ちるようになり、固相となった蓄熱材2による伝熱低下を抑制可能になる。Therefore, as the heat storage material 2, the heat storage material 2 in the solid phase does not adhere strongly to the cooling surface by using a mixed salt of a non-eutectic composition that is in a solid-liquid coexistence state at the minimum heat storage temperature T min . It becomes easy to peel off, and it becomes possible to suppress a decrease in heat transfer due to the heat storage material 2 in the solid phase.

1 蓄熱システム
2 蓄熱材
3 蓄熱槽
4 冷却側熱交換器
5 加熱側熱交換器
DESCRIPTION OF SYMBOLS 1 Thermal storage system 2 Thermal storage material 3 Thermal storage tank 4 Cooling side heat exchanger 5 Heating side heat exchanger

Claims (3)

蓄熱最低温度がTminである蓄熱システムにおいて、
蓄熱材として、蓄熱最低温度Tminにおいて固液共存状態となる非共晶組成の混合塩からなるものを用いた
ことを特徴とする蓄熱システム。
In a heat storage system with a minimum heat storage temperature of T min ,
A heat storage system using a non-eutectic mixed salt that is in a solid-liquid coexistence state at the minimum heat storage temperature T min as the heat storage material.
前記蓄熱材として、固液共存状態となる温度幅が1℃以上であるものを用いる
請求項1記載の蓄熱システム。
The heat storage system according to claim 1, wherein a material having a temperature range of 1 ° C. or higher is used as the heat storage material.
蓄熱最低温度Tminが150℃以上である
請求項1または2記載の蓄熱システム。
The heat storage system according to claim 1 or 2, wherein the minimum heat storage temperature T min is 150 ° C or higher.
JP2015516991A 2013-05-17 2014-03-28 Heat storage system Pending JPWO2014185178A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013105261 2013-05-17
JP2013105261 2013-05-17
PCT/JP2014/059293 WO2014185178A1 (en) 2013-05-17 2014-03-28 Heat storage system

Publications (1)

Publication Number Publication Date
JPWO2014185178A1 true JPWO2014185178A1 (en) 2017-02-23

Family

ID=51898161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015516991A Pending JPWO2014185178A1 (en) 2013-05-17 2014-03-28 Heat storage system

Country Status (5)

Country Link
US (1) US20160060499A1 (en)
EP (1) EP2998674A1 (en)
JP (1) JPWO2014185178A1 (en)
AU (1) AU2014266637A1 (en)
WO (1) WO2014185178A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3282215A1 (en) 2013-05-17 2018-02-14 IHI Corporation Heat storage system
WO2017016647A1 (en) * 2015-07-30 2017-02-02 Linde Aktiengesellschaft Heat transfer tube, heat reservoir and method for producing a heat transfer tube

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05256591A (en) * 1992-03-10 1993-10-05 Chugoku Electric Power Co Inc:The Heat accumulating tank using solid/liquid mixture heat accumulating material
JPH1144494A (en) * 1997-07-23 1999-02-16 Mitsubishi Chem Eng Corp Heat storage device
JP2007107773A (en) * 2005-10-12 2007-04-26 Matsushita Electric Ind Co Ltd Heat accumulator, heat pump system and solar system
JP2007204517A (en) * 2006-01-31 2007-08-16 Matsushita Electric Ind Co Ltd Heat storage material, heat storage apparatus, heat pump system and solar system
JP2011524966A (en) * 2008-02-22 2011-09-08 ダウ グローバル テクノロジーズ エルエルシー Thermal energy storage material
JP2013040224A (en) * 2011-08-11 2013-02-28 Ihi Corp Heat storage material and heat storage system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05256591A (en) * 1992-03-10 1993-10-05 Chugoku Electric Power Co Inc:The Heat accumulating tank using solid/liquid mixture heat accumulating material
JPH1144494A (en) * 1997-07-23 1999-02-16 Mitsubishi Chem Eng Corp Heat storage device
JP2007107773A (en) * 2005-10-12 2007-04-26 Matsushita Electric Ind Co Ltd Heat accumulator, heat pump system and solar system
JP2007204517A (en) * 2006-01-31 2007-08-16 Matsushita Electric Ind Co Ltd Heat storage material, heat storage apparatus, heat pump system and solar system
JP2011524966A (en) * 2008-02-22 2011-09-08 ダウ グローバル テクノロジーズ エルエルシー Thermal energy storage material
JP2013040224A (en) * 2011-08-11 2013-02-28 Ihi Corp Heat storage material and heat storage system

Also Published As

Publication number Publication date
AU2014266637A1 (en) 2015-12-03
EP2998674A1 (en) 2016-03-23
US20160060499A1 (en) 2016-03-03
WO2014185178A1 (en) 2014-11-20

Similar Documents

Publication Publication Date Title
Wang et al. Heat transfer enhancement of phase change composite material: Copper foam/paraffin
Ge et al. Low melting point liquid metal as a new class of phase change material: An emerging frontier in energy area
Zhang et al. Experiment on heat storage characteristic of microencapsulated phase change material slurry
JP6132015B2 (en) Heat storage system
Hamed et al. Numerical analysis of an integrated storage solar heater
Li et al. Preparation and investigation of multicomponent alkali nitrate/nitrite salts for low temperature thermal energy storage
Derby et al. Heat transfer analysis and design for bulk crystal growth: Perspectives on the Bridgman method
WO2014185178A1 (en) Heat storage system
JP2006232940A (en) Thermal storage medium and solar cell panel using the same
Paria et al. Performance evaluation of latent heat energy storage in horizontal shell-and-finned tube for solar application
JP6147258B2 (en) Heat storage material composition, auxiliary heat source and heat supply method using the same
Li et al. Experimental study on the solidification and melting performances of magnetic NEPCMs composited with optimized filling metal foam in a uniform magnetic field
Houchens et al. Crystal growth of bulk ternary semiconductors: comparison of GaInSb growth by horizontal Bridgman and horizontal traveling heater method
JP6630946B2 (en) Latent heat storage device
Yu et al. Influence of nanoparticles and graphite foam on the supercooling of acetamide
JP5923619B2 (en) Thermal storage system, power generation system
Cui et al. Fabrication of CaCl2· 6H2O/Na2SiO3· 9H2O composite phase change material for floor heating system
AU2018276134B2 (en) Active crystallisation control in phase change material thermal storage systems
JP2015183973A (en) Supercooling-type latent heat storage material composition and heat storage system
CN103774214A (en) Method for growing large-size oxide crystal
Kavitha et al. Performance of paraffin as PCM solar thermal energy storage
CN107201548A (en) The preparation method of zinc telluridse monocrystalline
JP2009103341A (en) Heat storage device
CN102732951A (en) Method for solidifying gallium-rich gallium arsenide melt used for liquid phase epitaxy
JP2017122555A (en) Heat storage device and heat storage method

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161122