JPH05256591A - Heat accumulating tank using solid/liquid mixture heat accumulating material - Google Patents

Heat accumulating tank using solid/liquid mixture heat accumulating material

Info

Publication number
JPH05256591A
JPH05256591A JP4051951A JP5195192A JPH05256591A JP H05256591 A JPH05256591 A JP H05256591A JP 4051951 A JP4051951 A JP 4051951A JP 5195192 A JP5195192 A JP 5195192A JP H05256591 A JPH05256591 A JP H05256591A
Authority
JP
Japan
Prior art keywords
heat storage
solid
storage material
heat
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4051951A
Other languages
Japanese (ja)
Other versions
JP2736580B2 (en
Inventor
Tsuneo Takagi
恒雄 高木
Takao Asakawa
孝夫 浅川
Fumio Yoshiya
文雄 吉屋
Tetsuyoshi Ishida
哲義 石田
Hidenori Hidaka
秀則 日高
Nobuo Morimoto
信夫 森本
Masaru Morikawa
優 森川
Tadayuki Fujiwara
忠幸 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK, Chugoku Electric Power Co Inc filed Critical Babcock Hitachi KK
Priority to JP4051951A priority Critical patent/JP2736580B2/en
Publication of JPH05256591A publication Critical patent/JPH05256591A/en
Application granted granted Critical
Publication of JP2736580B2 publication Critical patent/JP2736580B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Resistance Heating (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To obtain a heat accumulating tank using solid/liquid mixture heat accumulating material of a structure in which a casing is not damaged even if the material having a large volume change in the case of a phase change of solidifying.melting of nitrate or the like is used for the tank. CONSTITUTION:A solid heat accumulating material and a heat accumulating material which is solid at the ambient temperature and becomes liquid at an elevated temperature in a heat accumulating temperature range are filled in a heat accumulating tank 11, and solid/liquid mixture heat accumulating material 12 having an electric heater 14 of a heating source arranged to the heat accumulating material 12 and a heat transfer tube 13 in which liquid is introduced is used. The heater 14 is inserted from an upper part of the tank 11 into the material 12.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は固液混合蓄熱材を用いた
蓄熱槽に係り、より詳しくは凝固・融解における体積変
化が大きい蓄熱材を使用するのに好適な蓄熱槽に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat storage tank using a solid-liquid mixed heat storage material, and more particularly to a heat storage tank suitable for using a heat storage material having a large volume change in solidification and melting.

【0002】[0002]

【従来の技術】従来より、蓄熱温度が100℃以上の蓄
熱槽において、蓄熱材にはマグネシアまたは硝酸塩が主
に使用されていた。マグネシア等の固体蓄熱材を用いた
蓄熱槽は、大きな蓄熱容量を有しているが、入出熱の繰
返しによって固体蓄熱材に亀裂が生じ、伝熱特性が低下
する問題を有していた。また、硝酸塩は、142℃(融
解温度)以上600℃(熱分解温度)以下の液体状態で
使用され、この液体蓄熱材を用いた蓄熱槽は、流動でき
ることから伝熱特性が優れているが、蓄熱容量がマグネ
シアより少なく、これを用いると蓄熱容量が減少する問
題を有していた。そこで、両者の長所を取り入れ、固体
のマグネシアをクリンカ(小片)状にし、マグネシアク
リンカの隙間に液体の硝酸塩を浸透させた固液混合蓄熱
材を用いた蓄熱槽について、本出願人は先に特願平2−
84505号(特開平3−282101号)を出願し
た。
2. Description of the Related Art Conventionally, magnesia or nitrate has been mainly used as a heat storage material in a heat storage tank having a heat storage temperature of 100 ° C. or more. A heat storage tank using a solid heat storage material such as magnesia has a large heat storage capacity, but has a problem that cracks occur in the solid heat storage material due to repeated heat input and output, and heat transfer characteristics deteriorate. Further, nitrate is used in a liquid state of 142 ° C. (melting temperature) or more and 600 ° C. (pyrolysis temperature) or less, and a heat storage tank using this liquid heat storage material has excellent heat transfer characteristics because it can flow. Since the heat storage capacity is smaller than that of magnesia, there is a problem that the heat storage capacity is reduced by using this. Therefore, the applicant of the present invention has previously proposed a heat storage tank using a solid-liquid mixed heat storage material in which solid magnesia is made into a clinker (small piece) shape, and liquid nitrate is permeated into the gaps of the magnesia clinker by taking advantage of both of them. Wishhei 2-
No. 84505 (Japanese Patent Laid-Open No. 282101) was filed.

【0003】このような従来の蓄熱槽は図4に示される
構成となっている。図4において、蓄熱槽11には、上
記固液混合蓄熱材12が充填されており、その内部に伝
熱管13および加熱源である電気ヒータ14が配設され
ている。電気ヒータ14は、蓄熱槽11内の比較的下部
に横方向から設置され、伝熱管13はミアンダ構造に形
成され固液混合蓄熱材12内に全体的に配置されてい
る。この蓄熱槽11内の固液混合蓄熱材12は、電気ヒ
ータ14からの加熱によって高温となる。そして、出熱
の需要が生じたときに水15等の液体を伝熱管13内に
通水し、この水15が高温の固液混合蓄熱材12と熱交
換して伝熱管13内部に水蒸気16等の高温流体を生成
して、外部に供給している。なお、符号17は水15の
通水用配管に設けられた膨張タンクであり、符号18は
蓄熱槽11の上部に形成された空間スペースである。
Such a conventional heat storage tank has a structure shown in FIG. In FIG. 4, the heat storage tank 11 is filled with the solid-liquid mixed heat storage material 12, and a heat transfer tube 13 and an electric heater 14 serving as a heating source are arranged inside the heat storage tank 11. The electric heater 14 is installed laterally at a relatively lower portion in the heat storage tank 11, and the heat transfer tube 13 is formed in a meander structure and is disposed entirely in the solid-liquid mixed heat storage material 12. The solid-liquid mixed heat storage material 12 in the heat storage tank 11 is heated to a high temperature by the electric heater 14. When a demand for heat output is generated, a liquid such as water 15 is passed through the heat transfer tube 13, the water 15 exchanges heat with the high temperature solid-liquid mixed heat storage material 12, and the steam 16 flows inside the heat transfer tube 13. A high temperature fluid such as is generated and supplied to the outside. Note that reference numeral 17 is an expansion tank provided in a water passage pipe for water 15, and reference numeral 18 is a space space formed above the heat storage tank 11.

【0004】このように構成された蓄熱槽11にあって
は、固液混合蓄熱材12と伝熱管13および固液混合蓄
熱材12と電気ヒータ14の間の空気層を上記硝酸塩が
液体となり熱媒体となって埋まるため、熱伝達が良好と
なる。このため蓄熱時においては、固液混合蓄熱材12
に対する急速加熱が可能となり、また、出熱時において
は、固液混合蓄熱材12から伝熱管13への急速熱伝達
が可能となる。
In the heat storage tank 11 constructed as described above, the nitrates become liquid and heat the air layer between the solid-liquid mixed heat storage material 12 and the heat transfer tube 13 and the solid-liquid mixed heat storage material 12 and the electric heater 14. Since it becomes a medium and is buried, the heat transfer is good. Therefore, during heat storage, the solid-liquid mixed heat storage material 12
Can be rapidly heated, and at the time of heat output, rapid heat transfer from the solid-liquid mixed heat storage material 12 to the heat transfer tube 13 is possible.

【0005】しかし、この固液混合材を蓄熱材12とし
て用いた蓄熱槽11を500℃で蓄熱し、100℃にな
るまで出熱する入出熱を繰返したところ、3回目の入熱
時において、蓄熱槽11のケーシングが轟音とともに破
損するトラプルが生じた。この蓄熱槽11の破損原因を
調べたところ、凝固した硝酸塩が融解するときに約13
%の体積膨張が生じ、この体積膨張によって蓄熱槽11
のケーシングが破損したことが分かった。
However, when the heat storage tank 11 using this solid-liquid mixed material as the heat storage material 12 stores heat at 500 ° C. and heat input / output is repeated until the temperature reaches 100 ° C., the heat input is repeated at the third heat input. A trap was generated in which the casing of the heat storage tank 11 was damaged along with a roar. When the cause of damage to the heat storage tank 11 was investigated, when the solidified nitrate melted, about 13
% Volume expansion occurs, and due to this volume expansion, the heat storage tank 11
It turned out that the casing of was damaged.

【0006】[0006]

【発明が解決しようとする課題】このような従来の蓄熱
槽11にあっては、硝酸塩の凝固・融解、即ち相変化に
おける体積変化については十分な配慮がされておらず、
このため、一旦凝固すると再融解の際に、硝酸塩の体積
増加によって蓄熱槽11のケーシングが破損するという
問題があった。
In such a conventional heat storage tank 11, sufficient consideration is not given to solidification / melting of nitrate, that is, volume change due to phase change.
Therefore, once solidified, there is a problem that the casing of the heat storage tank 11 is damaged due to an increase in the volume of nitrate when remelting.

【0007】従って、本発明は上記問題点を解決するた
めになされたもので、その目的は、硝酸塩のような凝固
・融解という相変化の際の体積変化が大きい蓄熱材を使
用した蓄熱槽であっても、ケーシングが破損しない構造
の固液混合蓄熱材を用いた蓄熱槽を提供することにあ
る。
Therefore, the present invention has been made to solve the above problems, and an object thereof is to provide a heat storage tank using a heat storage material such as nitrate having a large volume change at the time of phase change of solidification and melting. Even if there is, it is to provide a heat storage tank using a solid-liquid mixed heat storage material having a structure that does not damage the casing.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明による固液混合蓄熱材を用いた蓄熱槽にあっ
ては以下の構成とした。即ち、固体の蓄熱材と常温で固
体であり昇温して蓄熱温度域で液体となる蓄熱材とが充
填され、蓄熱材の間に配設された加熱源である電気ヒー
タと、内部に液体が導入される伝熱管とを具備する固液
混合蓄熱材を用いた蓄熱槽において、前記電気ヒータを
蓄熱槽の上部から蓄熱材内に挿入することを特徴とす
る。
In order to achieve the above object, a heat storage tank using the solid-liquid mixed heat storage material according to the present invention has the following configuration. That is, a solid heat storage material and a heat storage material that is solid at normal temperature and becomes a liquid in the heat storage temperature range are filled, and an electric heater that is a heating source disposed between the heat storage materials and a liquid inside In a heat storage tank using a solid-liquid mixed heat storage material having a heat transfer tube to which is introduced, the electric heater is inserted into the heat storage material from an upper portion of the heat storage tank.

【0009】また、固体の蓄熱材と常温で固体であり昇
温して蓄熱温度域で液体となる蓄熱材とが充填され、蓄
熱材の間に配設された加熱源である電気ヒータと、内部
に液体が導入される伝熱管とを具備する固液混合蓄熱材
を用いた蓄熱槽において、前記伝熱管の管群内に配設さ
れる電気ヒータは、伝熱管から、常温で固体であり昇温
して蓄熱温度域で液体となる蓄熱材の相変化の際の体積
膨張を吸収するのに十分離れた位置に設置されることを
特徴とする。
An electric heater, which is a heating source, is filled with a solid heat storage material and a heat storage material that is solid at room temperature and is heated to become a liquid in the heat storage temperature range. In a heat storage tank using a solid-liquid mixed heat storage material having a heat transfer tube into which a liquid is introduced, an electric heater arranged in the tube group of the heat transfer tube is solid at room temperature from the heat transfer tube. It is characterized in that it is installed at a position sufficiently distant to absorb the volume expansion during the phase change of the heat storage material that rises in temperature and becomes liquid in the heat storage temperature range.

【0010】さらに、本発明において、固体の蓄熱材は
マグネシアであり、常温で固体であり昇温して蓄熱温度
域で液体となる蓄熱材は、硝酸ナトリウム、亜硝酸ナト
リウムおよび硝酸カリウムの混合物、または、硝酸ナト
リウムおよび硝酸カリウムの混合物であることを特徴と
する。
Further, in the present invention, the solid heat storage material is magnesia, and the heat storage material that is solid at normal temperature and becomes liquid in the heat storage temperature range by heating is a mixture of sodium nitrate, sodium nitrite and potassium nitrate, or , Sodium nitrate and potassium nitrate.

【0011】[0011]

【作用】上記構成によれば、加熱源である電気ヒータを
蓄熱槽の上部から蓄熱材内に挿入するので、常温で凝固
して固体となっている蓄熱材(硝酸塩の混合物)は、電
気ヒータの加熱によって、先ず、電気ヒータ表面の近傍
から融解される。この融解によって、電気ヒータ表面の
蓄熱材は液体になり流動状態となる。融解によって体積
が膨張した蓄熱材は、電気ヒータ表面に沿って上昇し、
蓄熱材の上面の空間スペースに逃げることができるよう
になる。このため、融解にともなって体積膨張する蓄熱
材を使用しても大きな応力が発生しないことから、蓄熱
槽のケーシングの破損は生じない。
According to the above structure, since the electric heater as a heating source is inserted into the heat storage material from the upper part of the heat storage tank, the heat storage material (mixture of nitrates) solidified at room temperature is mixed with the electric heater. First, the heat is melted from the vicinity of the surface of the electric heater. By this melting, the heat storage material on the surface of the electric heater becomes a liquid and becomes a fluid state. The heat storage material whose volume has expanded due to melting rises along the surface of the electric heater,
It is possible to escape to the space above the heat storage material. For this reason, even if a heat storage material that expands in volume with melting is used, no large stress is generated, so that the casing of the heat storage tank is not damaged.

【0012】また、伝熱管の管群内に配設される電気ヒ
ータを、伝熱管から、常温で固体であり昇温して蓄熱温
度域で液体となる蓄熱材の相変化の際の体積膨張を吸収
するのに十分離れた位置に設置するので、蓄熱材が凝固
する際に伝熱管表面の近傍から凝固し、全ての蓄熱材が
凝固したときには電気ヒータの近傍には空隙が生じる。
従って、再び蓄熱材が融解してもこの空隙によって体積
膨張分を吸収できるので、蓄熱槽のケーシングの破損を
生じることがない。
Further, the electric heater arranged in the tube group of the heat transfer tubes is expanded from the heat transfer tubes in volume at the time of phase change of the heat storage material which is solid at room temperature and rises in temperature to become liquid in the heat storage temperature range. Since the heat storage material is installed at a position sufficiently distant from the heat transfer tube, it solidifies from the vicinity of the surface of the heat transfer tube when the heat storage material solidifies, and when all the heat storage material solidifies, a void is generated near the electric heater.
Therefore, even if the heat storage material melts again, the volume expansion can be absorbed by the voids, so that the casing of the heat storage tank is not damaged.

【0013】[0013]

【実施例】以下、本発明の一実施例を図面に基づいて説
明する。図1は本発明の概略構成図であり、前出の図4
と同一部材には同じ符号を付して示してある。図1にお
いて、蓄熱槽11には、固液混合蓄熱材12が充填され
ており、その内部に伝熱管13および加熱源である電気
ヒータ14が配設されている。電気ヒータ14は、蓄熱
槽11内の固液混合蓄熱材12の上部から空間スペース
18を通って固液混合蓄熱材12内部に配設されてい
る。なお、電気ヒータ14の発熱部分は、固液混合蓄熱
材12の内部に埋められている。また、伝熱管13はミ
アンダ構造に形成され固液混合蓄熱材12内に全体的に
配置されている。 固液混合蓄熱材12として、固体蓄
熱材にはマグネシアを用い、液体蓄熱材には硝酸塩を使
用した。この硝酸塩は、7重量%の硝酸ナトリウムと4
9重量%の亜硝酸ナトリウムと44重量%の硝酸カリウ
ムとからなる混合物であり、142℃(融解温度)以上
では液体であるが、この温度以下になると凝固して固体
となる。また、この硝酸塩は、固体のとき比重は2.2
であるが、温度が142℃になって融解すると比重が
1.95になり、その時体積が約13%膨張し増加す
る。この硝酸塩は約600℃以上で熱分解を開始するの
で、液体の熱媒体としては142℃以上600℃以下で
使用しなければならない。 この蓄熱槽11内の固液混
合蓄熱材12は、電気ヒータ14からの加熱によって高
温となる。そして、出熱の需要が生じたときに水15等
の液体を伝熱管13内に通水し、この水15が高温の固
液混合蓄熱材12と熱交換して伝熱管13内部に水蒸気
16等の高温流体を生成して、外部に供給している。こ
の水蒸気16は水道水と混合または熱交換して温水を生
成するか、または、水蒸気16がそのまま加熱流体とし
て利用される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic configuration diagram of the present invention, which is shown in FIG.
The same members as those are indicated by the same reference numerals. In FIG. 1, a heat storage tank 11 is filled with a solid-liquid mixed heat storage material 12, inside which a heat transfer tube 13 and an electric heater 14 as a heating source are arranged. The electric heater 14 is disposed inside the solid-liquid mixed heat storage material 12 through the space 18 from the upper part of the solid-liquid mixed heat storage material 12 in the heat storage tank 11. The heat generating portion of the electric heater 14 is buried inside the solid-liquid mixed heat storage material 12. Further, the heat transfer tube 13 is formed in a meander structure and is disposed entirely in the solid-liquid mixed heat storage material 12. As the solid-liquid mixed heat storage material 12, magnesia was used as the solid heat storage material and nitrate was used as the liquid heat storage material. The nitrate is 7% by weight sodium nitrate and 4%
It is a mixture of 9% by weight of sodium nitrite and 44% by weight of potassium nitrate. It is a liquid at 142 ° C. (melting temperature) or higher, but it solidifies at a temperature below this temperature to become a solid. When the nitrate is a solid, the specific gravity is 2.2.
However, when the temperature reaches 142 ° C. and melts, the specific gravity becomes 1.95, at which time the volume expands by about 13% and increases. Since this nitrate starts thermal decomposition at about 600 ° C. or higher, it must be used as a liquid heat medium at 142 ° C. or higher and 600 ° C. or lower. The solid-liquid mixed heat storage material 12 in the heat storage tank 11 is heated to a high temperature by the electric heater 14. When a demand for heat output is generated, a liquid such as water 15 is passed through the heat transfer tube 13, the water 15 exchanges heat with the high temperature solid-liquid mixed heat storage material 12, and the steam 16 flows inside the heat transfer tube 13. A high temperature fluid such as is generated and supplied to the outside. The steam 16 mixes with the tap water or exchanges heat with it to generate hot water, or the steam 16 is used as it is as a heating fluid.

【0014】このように構成された蓄熱槽11の作用お
よび実施例を以下に示す。この高温蓄熱槽11を用い
て、500℃で蓄熱し、固液混合蓄熱材12が100℃
になるまで出熱する入出熱を繰り返した。固液混合蓄熱
材12の温度が100℃のとき硝酸塩は凝固状態にあ
り、電気ヒータ14への通電を開始し加熱を再開する
と、電気ヒータ14の近傍から温度が上昇する。温度が
142℃を越えると、硝酸塩が液体状になる。液体状に
なった硝酸塩は体積が増加するが、その体積増加分は電
気ヒータ14表面の液状部分を通って上方へ移動し、固
液混合蓄熱材12上部の空間スペース18に運ばれる。
このため、蓄熱槽11に大きな応力が発生しない。従っ
て、入熱時において、蓄熱槽11のケーシングが破損す
ることがなくなった。
The operation and embodiment of the heat storage tank 11 thus constructed will be described below. The high temperature heat storage tank 11 is used to store heat at 500 ° C., and the solid-liquid mixed heat storage material 12 is 100 ° C.
Heat input and output was repeated until heat was reached. When the temperature of the solid-liquid mixed heat storage material 12 is 100 ° C., the nitrate is in a solidified state, and when the electric heater 14 is energized and heating is resumed, the temperature rises from the vicinity of the electric heater 14. When the temperature exceeds 142 ° C., the nitrate becomes liquid. The volume of the liquid nitrate increases, but the increase in volume moves upward through the liquid portion of the surface of the electric heater 14 and is carried to the space space 18 above the solid-liquid mixed heat storage material 12.
Therefore, no large stress is generated in the heat storage tank 11. Therefore, the casing of the heat storage tank 11 will not be damaged during heat input.

【0015】図2および3には、本発明の他の実施例を
示しており、図2はその概略構成図であり、図3はその
伝熱管群と電気ヒータの関係を示す図である。図2にお
いて、蓄熱槽21には、固液混合蓄熱材22が充填され
ており、その内部に伝熱管23および加熱源である電気
ヒータ24が配設されている。電気ヒータ24は、蓄熱
槽21内の固液混合蓄熱材22の上部から空間スペース
28を通って固液混合蓄熱材22内部に設置されてい
る。なお、電気ヒータ24の発熱部分は、固液混合蓄熱
材22の内部に埋められている。また、伝熱管23はミ
アンダ構造に形成され固液混合蓄熱材22内に、主に電
気ヒータ24と同一方向に、かつ全体的に管群を形成す
るように配置されている。固液混合蓄熱材22として、
固体蓄熱材にはマグネシアを用い、液体蓄熱材には硝酸
塩を使用した。このような構成の蓄熱槽21において、
この実施例では、伝熱管23群内に電気ヒータ24を配
設する際は、伝熱管23から十分離れた位置に配設する
ようにしたものである。ここで、伝熱管23から十分離
れた位置とは、常温で固体であり昇温して蓄熱温度域で
液体となる蓄熱材(硝酸塩)の相変化の際の体積膨張を
吸収するのに十分離れた位置を意味し、具体的には伝熱
管23表面から凝固し始めた硝酸塩が凝固にともなう体
積減少のため、硝酸塩がなくなり、空隙が発生する領域
をいう。図3に、この電気ヒータ24と伝熱管23群の
位置関係の詳細を示す。電気ヒータ24は、伝熱管23
a、23b、23c、および23dで囲まれた中央部に
配設されている。 この蓄熱槽21内の固液混合蓄熱材
22は、電気ヒータ24からの加熱によって高温とな
る。そして、出熱の需要が生じたときに水25等の液体
を伝熱管23内に通水し、この水25が高温の固液混合
蓄熱材22と熱交換して伝熱管23内部に水蒸気26等
の高温流体を生成して、外部に供給して利用している。
2 and 3 show another embodiment of the present invention, FIG. 2 is a schematic configuration diagram thereof, and FIG. 3 is a diagram showing the relationship between the heat transfer tube group and the electric heater. In FIG. 2, a heat storage tank 21 is filled with a solid-liquid mixed heat storage material 22, and a heat transfer tube 23 and an electric heater 24 which is a heating source are arranged inside the heat storage tank 21. The electric heater 24 is installed inside the solid-liquid mixed heat storage material 22 through the space space 28 from the upper part of the solid-liquid mixed heat storage material 22 in the heat storage tank 21. The heat generating portion of the electric heater 24 is buried inside the solid-liquid mixed heat storage material 22. The heat transfer tubes 23 are formed in a meander structure and are arranged in the solid-liquid mixed heat storage material 22 mainly in the same direction as the electric heater 24 and so as to form a tube group as a whole. As the solid-liquid mixed heat storage material 22,
Magnesia was used as the solid heat storage material, and nitrate was used as the liquid heat storage material. In the heat storage tank 21 having such a configuration,
In this embodiment, when the electric heater 24 is arranged in the group of heat transfer tubes 23, it is arranged at a position sufficiently distant from the heat transfer tube 23. Here, the position sufficiently distant from the heat transfer tube 23 is sufficiently distant to absorb the volume expansion during the phase change of the heat storage material (nitrate) which is solid at normal temperature and rises in temperature to become liquid in the heat storage temperature range. This means a region where nitric acid begins to coagulate from the surface of the heat transfer tube 23 and the volume of nitric acid is reduced due to coagulation. FIG. 3 shows details of the positional relationship between the electric heater 24 and the heat transfer tube 23 group. The electric heater 24 is a heat transfer tube 23.
It is arranged in the central portion surrounded by a, 23b, 23c, and 23d. The solid-liquid mixed heat storage material 22 in the heat storage tank 21 is heated to a high temperature by the electric heater 24. Then, when a demand for heat output is generated, a liquid such as water 25 is passed through the heat transfer tube 23, and the water 25 exchanges heat with the high-temperature solid-liquid mixed heat storage material 22 to generate steam 26 inside the heat transfer tube 23. A high temperature fluid such as is produced and supplied to the outside for use.

【0016】この実施例の蓄熱槽21によれば、熱を取
り出す際、伝熱管23の表面近傍の硝酸塩から凝固をは
じめ、全ての硝酸塩が凝固したときには電気ヒータ24
近傍に空隙が生じる。この空隙が占める容積は全体の約
13%である。この13%の領域の空隙域に電気ヒータ
24を配設するようにしている。従って、凝固した硝酸
塩が再び融解したときの体積膨張分は電気ヒータ24の
周囲の空隙によって吸収できることから、電気ヒータ2
4を必ず固液混合蓄熱材22の上部から蓄熱材22内部
に配設しなければならなくなる制限がなくなる。
According to the heat storage tank 21 of this embodiment, when heat is taken out, the electric heater 24 starts when solidification of all the nitrates starts from the nitrates near the surface of the heat transfer tube 23.
Voids occur in the vicinity. The volume occupied by these voids is about 13% of the total volume. The electric heater 24 is arranged in the void area of this 13% area. Therefore, the volume expansion when the solidified nitrate is melted again can be absorbed by the voids around the electric heater 24.
There is no limitation that 4 must be arranged inside the heat storage material 22 from the upper part of the solid-liquid mixed heat storage material 22 without fail.

【0017】この実施例の蓄熱槽21を用いた具体例を
以下に示す。 マグネシアを120kg、および図1に
おいて説明した硝酸塩の混合物を45kg用いた固液混
合蓄熱材22を充填し、伝熱管23の縦・横のピッチを
70mmとし、この伝熱管23を上下方向に管群を形成
するようにミアンダ構造に設置し、伝熱管23に囲まれ
た中央部に電気ヒータ24を配設した蓄熱槽21を構成
した。この電気ヒータ24は、固液混合蓄熱材22の上
部から蓄熱材22内部に挿入されている。この蓄熱槽2
1を、蓄熱材22の温度100℃と500℃の間で入出
熱を繰り返した。その結果、1000回の入出熱におい
ても、蓄熱槽21のケーシングの破損は生じなかった。
A specific example using the heat storage tank 21 of this embodiment is shown below. 120 kg of magnesia and 45 kg of the mixture of nitrates described in FIG. 1 were used to fill the solid-liquid mixture heat storage material 22, and the vertical and horizontal pitches of the heat transfer tubes 23 were set to 70 mm. Was formed in a meander structure so as to form a heat storage tank 21 in which an electric heater 24 was disposed in a central portion surrounded by a heat transfer tube 23. The electric heater 24 is inserted into the heat storage material 22 from above the solid-liquid mixed heat storage material 22. This heat storage tank 2
Example 1 was repeated heat input / output at a temperature of the heat storage material 22 between 100 ° C and 500 ° C. As a result, the casing of the heat storage tank 21 was not damaged even when the heat input / output was 1000 times.

【0018】なお、上記実施例においては、常温で固体
であり昇温して蓄熱温度域で液体となる蓄熱材として、
硝酸ナトリウムと亜硝酸ナトリウムおよび硝酸カリウム
とからなる硝酸塩の混合物の例で説明したが、これに限
定されるものではない。例えば、硝酸ナトリウムおよび
硝酸カリウムとからなる硝酸塩の混合物等を用いてもよ
い。
In the above embodiment, as the heat storage material which is solid at room temperature and becomes a liquid in the heat storage temperature range by raising the temperature,
Although the example of the mixture of nitrates consisting of sodium nitrate and sodium nitrite and potassium nitrate has been described, the present invention is not limited thereto. For example, a mixture of nitrates composed of sodium nitrate and potassium nitrate may be used.

【0019】[0019]

【発明の効果】以上に説明したように、本発明の固液混
合蓄熱材を用いた蓄熱槽によれば、硝酸塩のような凝固
・融解という相変化の際の体積変化の大きい物質を蓄熱
材として用いて蓄熱槽を構成しても、ケーシングが破損
しない構造の蓄熱槽を提供でき、もって、大きな蓄熱容
量、良好な伝熱特性を有する蓄熱槽を提供できる効果が
得られる。
As described above, according to the heat storage tank using the solid-liquid mixed heat storage material of the present invention, a substance such as nitrate having a large volume change at the time of phase change such as solidification / melting is used as the heat storage material. Even if it is used as a heat storage tank, it is possible to provide a heat storage tank having a structure in which the casing is not damaged, and thus it is possible to provide a heat storage tank having a large heat storage capacity and good heat transfer characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による固液混合蓄熱材を用いた蓄熱槽の
一実施例の概略構成図を示すものである。
FIG. 1 is a schematic configuration diagram of an embodiment of a heat storage tank using a solid-liquid mixed heat storage material according to the present invention.

【図2】本発明による固液混合蓄熱材を用いた蓄熱槽の
他の一実施例の概略構成図を示すものである。
FIG. 2 is a schematic configuration diagram of another embodiment of a heat storage tank using the solid-liquid mixed heat storage material according to the present invention.

【図3】図2における伝熱管群と電気ヒータの関係を示
す図である。
FIG. 3 is a diagram showing a relationship between a heat transfer tube group and an electric heater in FIG.

【図4】従来技術の蓄熱槽の概略構成図を示すものであ
る。
FIG. 4 is a schematic configuration diagram of a conventional heat storage tank.

【符号の説明】[Explanation of symbols]

11 蓄熱槽 12 固液混合蓄熱材 13 伝熱管 14 電気ヒータ 15 水 16 水蒸気 17 膨張タンク 18 空間スペース 21 蓄熱槽 22 固液混合蓄熱材 23 伝熱管 24 電気ヒータ 25 水 26 水蒸気 27 膨張タンク 28 空間スペース 11 heat storage tank 12 solid-liquid mixed heat storage material 13 heat transfer tube 14 electric heater 15 water 16 steam 17 expansion tank 18 space space 21 heat storage tank 22 solid-liquid mixed heat storage material 23 heat transfer tube 24 electric heater 25 water 26 steam 27 expansion tank 28 space space

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉屋 文雄 広島県広島市中区小町4番33号 中国電力 株式会社営業部内 (72)発明者 石田 哲義 広島県呉市宝町3番36号 バブコック日立 株式会社呉研究所内 (72)発明者 日高 秀則 広島県呉市宝町3番36号 バブコック日立 株式会社呉研究所内 (72)発明者 森本 信夫 広島県呉市宝町3番36号 バブコック日立 株式会社呉研究所内 (72)発明者 森川 優 広島県呉市宝町6番9号 バブコック日立 株式会社呉工場内 (72)発明者 藤原 忠幸 東京都千代田区大手町二丁目6番2号 バ ブコック日立株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Fumio Yoshiya, 4-33 Komachi, Naka-ku, Hiroshima City, Hiroshima Prefecture, Chugoku Electric Power Co., Inc. Sales Department (72) Tetsuyoshi Ishida 3-36, Takaramachi, Kure City, Hiroshima Prefecture Babcock-Hitachi Stock Company Kure Research Institute (72) Inventor Hidenori Hidaka No. 36 Takaracho, Kure City, Hiroshima Prefecture Babcock Hitachi Co., Ltd. Kure Research Institute (72) Nobuo Morimoto No. 36 Takaracho, Kure City, Hiroshima Prefecture Babcock Hitachi Kure Research Co., Ltd. (72) Inventor Yu Morikawa 6-9 Takaracho, Kure-shi, Hiroshima Babcock Hitachi Kure Factory (72) Inventor Tadayuki Fujiwara 2-6-2 Otemachi, Chiyoda-ku, Tokyo Babcock Hitachi Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 固体の蓄熱材と常温で固体であり昇温し
て蓄熱温度域で液体となる蓄熱材とが充填され、蓄熱材
の間に配設された加熱源である電気ヒータと、内部に液
体が導入される伝熱管とを具備する固液混合蓄熱材を用
いた蓄熱槽において、前記電気ヒータを蓄熱槽の上部か
ら蓄熱材内に挿入することを特徴とする固液混合蓄熱材
を用いた蓄熱槽。
1. An electric heater, which is a heating source, is filled with a solid heat storage material and a heat storage material that is solid at room temperature and becomes a liquid in a heat storage temperature range, and is a heating source disposed between the heat storage materials, In a heat storage tank using a solid-liquid mixed heat storage material having a heat transfer tube into which a liquid is introduced, the electric heater is inserted into the heat storage material from above the heat storage tank. Heat storage tank using.
【請求項2】 固体の蓄熱材と常温で固体であり昇温し
て蓄熱温度域で液体となる蓄熱材とが充填され、蓄熱材
の間に配設された加熱源である電気ヒータと、内部に液
体が導入される伝熱管とを具備する固液混合蓄熱材を用
いた蓄熱槽において、前記伝熱管の管群内に配設される
電気ヒータは、伝熱管から、常温で固体であり昇温して
蓄熱温度域で液体となる蓄熱材の相変化の際の体積膨張
を吸収するのに十分離れた位置に設置されることを特徴
とする固液混合蓄熱材を用いた蓄熱槽。
2. An electric heater, which is a heating source, is filled with a solid heat storage material and a heat storage material that is solid at room temperature and is heated to become a liquid in the heat storage temperature range. In a heat storage tank using a solid-liquid mixed heat storage material having a heat transfer tube into which a liquid is introduced, an electric heater arranged in the tube group of the heat transfer tube is solid at room temperature from the heat transfer tube. A heat storage tank using a solid-liquid mixed heat storage material, characterized in that the heat storage material is installed at a position sufficiently distant to absorb the volume expansion of the heat storage material that becomes liquid in the heat storage temperature range during the phase change.
【請求項3】 請求項1または2において、固体の蓄熱
材はマグネシアであり、常温で固体であり昇温して蓄熱
温度域で液体となる蓄熱材は、硝酸ナトリウム、亜硝酸
ナトリウムおよび硝酸カリウムの混合物、または、硝酸
ナトリウムおよび硝酸カリウムの混合物であることを特
徴とする固液混合蓄熱材を用いた蓄熱槽。
3. The heat storage material according to claim 1 or 2, wherein the solid heat storage material is magnesia, and the heat storage material that is solid at room temperature and becomes a liquid in a heat storage temperature range is sodium nitrate, sodium nitrite and potassium nitrate. A heat storage tank using a solid-liquid mixed heat storage material, which is a mixture or a mixture of sodium nitrate and potassium nitrate.
JP4051951A 1992-03-10 1992-03-10 Thermal storage tank using solid-liquid mixed thermal storage material Expired - Lifetime JP2736580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4051951A JP2736580B2 (en) 1992-03-10 1992-03-10 Thermal storage tank using solid-liquid mixed thermal storage material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4051951A JP2736580B2 (en) 1992-03-10 1992-03-10 Thermal storage tank using solid-liquid mixed thermal storage material

Publications (2)

Publication Number Publication Date
JPH05256591A true JPH05256591A (en) 1993-10-05
JP2736580B2 JP2736580B2 (en) 1998-04-02

Family

ID=12901188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4051951A Expired - Lifetime JP2736580B2 (en) 1992-03-10 1992-03-10 Thermal storage tank using solid-liquid mixed thermal storage material

Country Status (1)

Country Link
JP (1) JP2736580B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000019154A1 (en) * 1998-09-25 2000-04-06 Hokuriku Electric Power Company High temperature heat storage tank
EP1300630A1 (en) * 2000-07-11 2003-04-09 Kabushiki Kaisha Tiyoda Seisakusho Saturated steam generator, steam sterilizer, and steam sterilization method
CN100371414C (en) * 2006-04-24 2008-02-27 沈阳建筑大学 Method of producing nitre emusified asphalt phase changing energy accumulating material
CN100441656C (en) * 2006-04-24 2008-12-10 沈阳建筑大学 Method of producing emusified asphalt phase changing energy accumulating material
WO2014185178A1 (en) 2013-05-17 2014-11-20 株式会社Ihi Heat storage system
WO2014185179A1 (en) 2013-05-17 2014-11-20 株式会社Ihi Heat storage system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6355640A (en) * 1986-08-27 1988-03-10 Nec Corp Branch instruction processor
JPH0252951A (en) * 1988-08-12 1990-02-22 Kawasaki Heavy Ind Ltd Latent heat storage device
JPH0311266A (en) * 1989-06-09 1991-01-18 Chubu Electric Power Co Inc Latent heat accumulator
JPH03282101A (en) * 1990-03-30 1991-12-12 Babcock Hitachi Kk Steam generating device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6355640A (en) * 1986-08-27 1988-03-10 Nec Corp Branch instruction processor
JPH0252951A (en) * 1988-08-12 1990-02-22 Kawasaki Heavy Ind Ltd Latent heat storage device
JPH0311266A (en) * 1989-06-09 1991-01-18 Chubu Electric Power Co Inc Latent heat accumulator
JPH03282101A (en) * 1990-03-30 1991-12-12 Babcock Hitachi Kk Steam generating device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000019154A1 (en) * 1998-09-25 2000-04-06 Hokuriku Electric Power Company High temperature heat storage tank
EP1300630A1 (en) * 2000-07-11 2003-04-09 Kabushiki Kaisha Tiyoda Seisakusho Saturated steam generator, steam sterilizer, and steam sterilization method
EP1300630A4 (en) * 2000-07-11 2005-07-27 Tiyoda Seisakusho Kk Saturated steam generator, steam sterilizer, and steam sterilization method
CN100371414C (en) * 2006-04-24 2008-02-27 沈阳建筑大学 Method of producing nitre emusified asphalt phase changing energy accumulating material
CN100441656C (en) * 2006-04-24 2008-12-10 沈阳建筑大学 Method of producing emusified asphalt phase changing energy accumulating material
WO2014185178A1 (en) 2013-05-17 2014-11-20 株式会社Ihi Heat storage system
WO2014185179A1 (en) 2013-05-17 2014-11-20 株式会社Ihi Heat storage system
JPWO2014185178A1 (en) * 2013-05-17 2017-02-23 株式会社Ihi Heat storage system
EP3282215A1 (en) 2013-05-17 2018-02-14 IHI Corporation Heat storage system
US10451358B2 (en) 2013-05-17 2019-10-22 Ihi Corporation Heat storage system

Also Published As

Publication number Publication date
JP2736580B2 (en) 1998-04-02

Similar Documents

Publication Publication Date Title
Velraj et al. Heat transfer enhancement in a latent heat storage system
US20120168126A1 (en) Heat-storage device
JPH0198996A (en) Liquid metal cooled reactor and preheating of closed bottom of sodium tank thereof
JPH05256591A (en) Heat accumulating tank using solid/liquid mixture heat accumulating material
JP2000097498A (en) High temperature heat storage tank
SK288292A3 (en) Accessories for cooling of core and for protection of concrete structure of nuclear reactor
JP2018071217A (en) Concrete placing method
EP0141158B1 (en) Double tank type fast breeder reactor
JP4714923B2 (en) Heat storage device
Ansyah et al. Thermal behavior of melting paraffin wax process in cylindrical capsule by experimental study
US3537515A (en) Power system with heat pipe liquid coolant lines
US3447321A (en) Uncontrolled nuclear decay propulsion and/or power systems
JPS60149893A (en) Heat exchanger
JPS6355640B2 (en)
JPH1144495A (en) Heat storage device
JPH02126193A (en) Furnace block for fast furnace
JPH0252951A (en) Latent heat storage device
JP2736579B2 (en) Filling method of solid-liquid heat storage material
RU2017907C1 (en) Fire-resistant metal construction
SU981751A1 (en) Boiler cold funnel bearing structure
JPS58106243A (en) Anti-quake device for double structural construction
RU17165U1 (en) THERMAL PIPE TANK FOR THE TRANSPORT OF THICKENING LIQUID
JPS6149197B2 (en)
JPS61128005A (en) Boiler
SU1188298A1 (en) High-pressure housing

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090116

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100116

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110116

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 15