JPWO2014136527A1 - Heat exchanger corrosion countermeasure method and heat exchanger corrosion countermeasure structure - Google Patents

Heat exchanger corrosion countermeasure method and heat exchanger corrosion countermeasure structure Download PDF

Info

Publication number
JPWO2014136527A1
JPWO2014136527A1 JP2015504213A JP2015504213A JPWO2014136527A1 JP WO2014136527 A1 JPWO2014136527 A1 JP WO2014136527A1 JP 2015504213 A JP2015504213 A JP 2015504213A JP 2015504213 A JP2015504213 A JP 2015504213A JP WO2014136527 A1 JPWO2014136527 A1 JP WO2014136527A1
Authority
JP
Japan
Prior art keywords
heat transfer
transfer tube
sleeve
corrosion
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015504213A
Other languages
Japanese (ja)
Other versions
JP6320992B2 (en
Inventor
庸孝 深海
庸孝 深海
藤井 幹也
幹也 藤井
修司 高田
修司 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Publication of JPWO2014136527A1 publication Critical patent/JPWO2014136527A1/en
Application granted granted Critical
Publication of JP6320992B2 publication Critical patent/JP6320992B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/082Heat exchange elements made from metals or metal alloys from steel or ferrous alloys
    • F28F21/083Heat exchange elements made from metals or metal alloys from steel or ferrous alloys from stainless steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/02Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/04Arrangements for sealing elements into header boxes or end plates
    • F28F9/16Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling
    • F28F9/18Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling by welding
    • F28F9/185Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling by welding with additional preformed parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/14Heat exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys

Abstract

熱交換器の腐食対策方法は、伝熱管固定部材より内側の流路を流れるガスと熱交換を行う伝熱管を備えた熱交換器の腐食対策方法であって、伝熱管に外挿又は内挿される筒状のスリーブを備える構成を採用し、伝熱管及びスリーブの少なくとも一方を伝熱管固定部材に対して移動させる。The heat exchanger corrosion countermeasure method is a heat exchanger corrosion countermeasure method provided with a heat transfer tube that exchanges heat with the gas flowing in the flow path inside the heat transfer tube fixing member, and is extrapolated or inserted into the heat transfer tube. A configuration including a cylindrical sleeve is adopted, and at least one of the heat transfer tube and the sleeve is moved with respect to the heat transfer tube fixing member.

Description

本発明は、熱交換器の腐食対策方法、及び熱交換器の腐食対策構造に関する。   The present invention relates to a heat exchanger corrosion countermeasure method and a heat exchanger corrosion countermeasure structure.

例えばボイラ等には、火炉で生じた燃焼排ガスの熱を回収するための熱交換器が付設されている。この熱交換器にあっては、平板状の管板を対向配置することで管板同士間に燃焼排ガスの流路を形成し、これらの管板同士間を流れる燃焼排ガスの流れに直交するように多数の伝熱管を配置すると共に、以下の特許文献1に記載のように、これらの伝熱管の両側を当該伝熱管に直交する上記両管板に通し、管板と伝熱管とを溶接により固定する構成が広く知られている。   For example, a boiler or the like is provided with a heat exchanger for recovering heat of combustion exhaust gas generated in a furnace. In this heat exchanger, a flow path of the combustion exhaust gas is formed between the tube plates by arranging the flat tube plates so as to be orthogonal to the flow of the combustion exhaust gas flowing between these tube plates. A large number of heat transfer tubes are disposed in the tube, and as described in Patent Document 1 below, both sides of these heat transfer tubes are passed through the tube plates orthogonal to the heat transfer tubes, and the tube plates and the heat transfer tubes are welded together. The fixing configuration is widely known.

ここで、以下の非特許文献1には、燃焼排ガスと熱交換し空気を予熱するガス式空気予熱器(Gas Air Heater)において、燃焼排ガス中にSOx、HClが含まれていると、伝熱管の特に空気(予熱空気)入口側の位置に、硫酸露点、塩酸露点による結露から低温腐食である硫酸露点腐食、塩酸露点腐食が生じることが記載されている。   Here, in Non-Patent Document 1 below, in a gas air preheater (Gas Air Heater) that exchanges heat with combustion exhaust gas and preheats air, if SOx and HCl are contained in the combustion exhaust gas, In particular, it is described that sulfuric acid dew point corrosion and hydrochloric acid dew point corrosion, which are low temperature corrosion, occur from condensation due to sulfuric acid dew point and hydrochloric acid dew point at a position on the air (preheated air) inlet side.

このように伝熱管に酸露点腐食が生じ減肉が進行すると、最悪穴が開いてしまうため、その前に伝熱管の交換が必要となる。この場合、管板と伝熱管とを接合している溶接部を例えばグラインダー等により除去し、新規の伝熱管と交換するのが一般的である。   As described above, when acid dew point corrosion occurs in the heat transfer tube and the thinning progresses, the worst hole is opened. Therefore, it is necessary to replace the heat transfer tube before that. In this case, it is common to remove the welded portion joining the tube plate and the heat transfer tube with, for example, a grinder and replace it with a new heat transfer tube.

また、以下の非特許文献2には、例えば燃焼排ガスと熱交換し空気を予熱するガス式空気予熱器(Gas Air Heater)において、燃焼排ガス中にSOx、HClが含まれていると、伝熱管に、硫酸露点、塩酸露点による結露から低温腐食である硫酸露点腐食、塩酸露点腐食が生じるが、伝熱管に新S-TEN1鋼管(登録商標)を用いることにより、上記酸露点腐食を防止できることが記載されている。   Further, in Non-Patent Document 2 below, for example, in a gas air preheater (Gas Air Heater) that exchanges heat with combustion exhaust gas and preheats air, if SOx and HCl are contained in the combustion exhaust gas, In addition, sulfuric acid dew point and hydrochloric acid dew point cause dew point corrosion and hydrochloric acid dew point corrosion, which are low temperature corrosion, but by using the new S-TEN1 steel pipe (registered trademark) as the heat transfer tube, the above acid dew point corrosion can be prevented. Have been described.

特開2007−296552号公報JP 2007-296552 A

「ボイラ燃焼排ガスによる高温腐食事例とその対策」2012年8月11日、株式会社テクノシステム発行、第4章第1節7.ガスエアヒータ管の腐食 P.281〜282“Examples of high-temperature corrosion caused by boiler combustion exhaust gas and countermeasures” August 11, 2012, published by Techno System Co., Ltd., Chapter 4, Section 1, 7. Corrosion of gas air heater pipe 281-282 「新日鉄技報第380号厚板・鋼管特集」2004年6月発行、18.新S-TEN1鋼管−耐硫酸露点腐食鋼S-TEN1リニューアル− P.86〜90"Nippon Steel Technical Report No. 380 Special Issue on Plates and Steel Pipes" issued in June 2004, 18. New S-TEN1 steel pipe-sulfuric acid dew-point corrosion steel S-TEN1 renewal- 86-90

ここで、伝熱管を交換すべく、管板と伝熱管との間の溶接を除去する場合、管板を傷付けてしまうため、改善が求められている。また、管板をできるだけ傷付けないように細心の注意を払うため、手間による工期と費用が問題である。   Here, when the welding between the tube sheet and the heat transfer tube is removed in order to replace the heat transfer tube, the tube sheet is damaged, and thus an improvement is required. In addition, since it takes great care not to damage the tube sheet as much as possible, the construction time and cost due to labor are problems.

また、伝熱管に新S-TEN1鋼管を用いる場合には、新S-TEN1鋼管は高価であり伝熱管は多数であるため、このような高価な伝熱管を用いずに長寿命化を図ることが求められている。   In addition, when using a new S-TEN1 steel pipe as the heat transfer pipe, the new S-TEN1 steel pipe is expensive and has a large number of heat transfer pipes. Therefore, the life should be extended without using such an expensive heat transfer pipe. Is required.

何れにしても、上記のような問題を解消する好適な腐食対策が求められている。   In any case, there is a need for a suitable corrosion countermeasure that solves the above-described problems.

本発明は、このような課題を解決するために成されたものであり、好適な熱交換器の腐食対策方法、及び熱交換器の腐食対策構造を提供することを目的とする。   The present invention has been made to solve such problems, and an object thereof is to provide a suitable heat exchanger corrosion countermeasure method and a heat exchanger corrosion countermeasure structure.

本発明の一形態による熱交換器の腐食対策方法は、伝熱管固定部材より内側の流路を流れるガスと熱交換を行う伝熱管を備えた熱交換器の腐食対策方法であって、伝熱管に外挿又は内挿される筒状のスリーブを備える構成を採用し、伝熱管及びスリーブの少なくとも一方を伝熱管固定部材に対して移動させる。   A corrosion countermeasure method for a heat exchanger according to an aspect of the present invention is a corrosion countermeasure method for a heat exchanger that includes a heat transfer tube that exchanges heat with a gas flowing in a flow path inside a heat transfer tube fixing member. A configuration including a cylindrical sleeve that is extrapolated or inserted into the tube is employed, and at least one of the heat transfer tube and the sleeve is moved with respect to the heat transfer tube fixing member.

このような熱交換器の腐食対策方法によれば、伝熱管及びスリーブの少なくとも一方が腐食するとその腐食に応じて、伝熱管及びスリーブの少なくとも一方が伝熱管固定部材に対して移動されるため、例えば、腐食を軸線方向に移動させることができ、高価な伝熱管を用いずに低コストにて腐食に対処でき長寿命化を図ることができ、又、例えば、スリーブに内挿され当該スリーブを介して伝熱管固定部材に固定された伝熱管を、スリーブを伝熱管固定部材に固定したままの状態で軸線方向に移動させて交換することができ、伝熱管固定部材を傷付けることなく腐食した伝熱管を容易に交換できる。このように、種々の好適な腐食対策を実現できる。   According to such a heat exchanger corrosion countermeasure method, when at least one of the heat transfer tube and the sleeve is corroded, according to the corrosion, at least one of the heat transfer tube and the sleeve is moved with respect to the heat transfer tube fixing member. For example, corrosion can be moved in the axial direction, corrosion can be dealt with at low cost without using an expensive heat transfer tube, and a long life can be achieved. The heat transfer tube fixed to the heat transfer tube fixing member can be exchanged by moving it in the axial direction while the sleeve is fixed to the heat transfer tube fixing member, and the heat transfer tube is corroded without damaging the heat transfer tube fixing member. Heat tubes can be easily replaced. Thus, various suitable corrosion countermeasures can be realized.

ここで、熱交換器の腐食対策方法として、伝熱管固定部材に通され当該伝熱管固定部材に固定されたスリーブと、スリーブ内に通され当該スリーブに固定された伝熱管と、を備える構成を採用し、伝熱管の腐食に応じて、伝熱管とスリーブの固定を解除し、スリーブを伝熱管固定部材に固定したままの状態で、伝熱管を移動して交換する方法を採用してよい。   Here, as a corrosion countermeasure method of the heat exchanger, a configuration including a sleeve that is passed through the heat transfer tube fixing member and fixed to the heat transfer tube fixing member, and a heat transfer tube that is passed through the sleeve and fixed to the sleeve. A method may be adopted in which the heat transfer tube and the sleeve are released from being fixed in accordance with the corrosion of the heat transfer tube, and the heat transfer tube is moved and replaced while the sleeve is fixed to the heat transfer tube fixing member.

このような熱交換器の腐食対策方法によれば、伝熱管固定部材に固定されたスリーブと伝熱管とが固定されることで、伝熱管固定部材に対しスリーブを介して伝熱管が固定される構成が採用され、伝熱管が腐食するとその腐食に応じて、伝熱管とスリーブの固定が解除され、スリーブが伝熱管固定部材に固定されたままの状態で、伝熱管が移動して交換される。このため、伝熱管固定部材を傷付けることなく、腐食した伝熱管を容易に交換できる。   According to such a heat exchanger corrosion countermeasure method, the heat transfer tube is fixed to the heat transfer tube fixing member by fixing the sleeve and the heat transfer tube fixed to the heat transfer tube fixing member. When the heat transfer tube is corroded, the heat transfer tube and the sleeve are unfixed according to the corrosion, and the heat transfer tube is moved and replaced while the sleeve is fixed to the heat transfer tube fixing member. . For this reason, the corroded heat transfer tube can be easily replaced without damaging the heat transfer tube fixing member.

また、熱交換器の腐食対策方法として、伝熱管固定部材に通され当該伝熱管固定部材に固定されたスリーブと、スリーブ内に通され当該スリーブに固定された伝熱管と、を備える構成を採用し、伝熱管及びスリーブの少なくとも一方の腐食に応じて、スリーブと伝熱管固定部材の固定、又は、伝熱管とスリーブの固定を解除し、固定を解除したスリーブ又は伝熱管を軸線方向に移動し、移動したスリーブ又は伝熱管を、固定解除前に固定されていた相手側部材に固定する方法を採用してよい。   Further, as a corrosion countermeasure method of the heat exchanger, a configuration including a sleeve passed through the heat transfer tube fixing member and fixed to the heat transfer tube fixing member, and a heat transfer tube passed through the sleeve and fixed to the sleeve is adopted. Then, according to the corrosion of at least one of the heat transfer tube and the sleeve, the fixing of the sleeve and the heat transfer tube fixing member, or the fixing of the heat transfer tube and the sleeve is released, and the released sleeve or heat transfer tube is moved in the axial direction. A method may be adopted in which the moved sleeve or heat transfer tube is fixed to the mating member that has been fixed before the fixing is released.

このような熱交換器の腐食対策方法によれば、伝熱管固定部材に対しスリーブを介して伝熱管が固定される構成が採用され、伝熱管及びスリーブの少なくとも一方が腐食するとその腐食に応じて、一の方法では、スリーブと伝熱管固定部材の固定が解除され、伝熱管がスリーブに固定されたままの状態で、伝熱管及びスリーブが軸線方向に移動され、その後、スリーブが伝熱管固定部材に固定される。また、他の方法では、伝熱管とスリーブの固定が解除され、スリーブが伝熱管固定部材に固定されたままの状態で、伝熱管が軸線方向に移動され、その後、伝熱管がスリーブに固定される。何れにしても、腐食を軸線方向に移動させることができると共に腐食が形成されていた軸線方向位置に腐食していない部分を移動させることができる。その結果、高価な伝熱管を用いずに低コストにて腐食に対処でき長寿命化を図ることができる。   According to such a heat exchanger corrosion countermeasure method, a structure in which the heat transfer tube is fixed to the heat transfer tube fixing member via the sleeve is adopted, and if at least one of the heat transfer tube and the sleeve is corroded, In one method, the fixing of the sleeve and the heat transfer tube fixing member is released, and the heat transfer tube and the sleeve are moved in the axial direction while the heat transfer tube is fixed to the sleeve, and then the sleeve is moved to the heat transfer tube fixing member. Fixed to. In another method, the heat transfer tube and the sleeve are unfixed, the heat transfer tube is moved in the axial direction with the sleeve being fixed to the heat transfer tube fixing member, and then the heat transfer tube is fixed to the sleeve. The In any case, the corrosion can be moved in the axial direction, and the portion not corroded can be moved to the axial position where the corrosion has been formed. As a result, corrosion can be dealt with at a low cost without using an expensive heat transfer tube, and the life can be extended.

また、熱交換器の腐食対策方法として、伝熱管のスリーブ側の外周面に耐食材を配置する方法を採用してよい。   Further, as a corrosion countermeasure method for the heat exchanger, a method of arranging a corrosion-resistant material on the outer peripheral surface of the heat transfer tube on the sleeve side may be adopted.

このような熱交換器の腐食対策方法によれば、伝熱管のスリーブ側の外周面に配置された耐食材により、高価な伝熱管を用いずに低コストにて伝熱管の腐食を防止でき長寿命化を図ることができる。   According to such a heat exchanger corrosion countermeasure method, the corrosion resistant material disposed on the outer peripheral surface of the sleeve side of the heat transfer tube can prevent corrosion of the heat transfer tube at a low cost without using an expensive heat transfer tube. Life can be extended.

また、熱交換器の腐食対策方法として、伝熱管固定部材に通され当該伝熱管固定部材に固定されたスリーブと、スリーブ内に通され当該スリーブに固定された伝熱管と、を備える構成を採用し、耐食材は、伝熱管のスリーブ側の外周面に被覆され、その軸線方向外側の端部が、スリーブ内に位置すると共に、その軸線方向内側の端部が、スリーブの軸線方向内側の端部より軸線方向内側に延出し露出している方法を採用してよい。   Further, as a corrosion countermeasure method of the heat exchanger, a configuration including a sleeve passed through the heat transfer tube fixing member and fixed to the heat transfer tube fixing member, and a heat transfer tube passed through the sleeve and fixed to the sleeve is adopted. The corrosion-resistant material is coated on the outer peripheral surface of the heat transfer tube on the sleeve side, the axially outer end thereof is located in the sleeve, and the axially inner end thereof is the end of the sleeve axially inner side. You may employ | adopt the method of extending and exposing to an axial direction inner side from a part.

このような熱交換器の腐食対策方法によれば、伝熱管固定部材に対しスリーブを介して伝熱管が固定されると共に、伝熱管のスリーブ側の外周面に耐食材が被覆される。この耐食材は、その軸線方向内側の端部が、スリーブの軸線方向内側の端部より軸線方向内側に延出し露出していることから、当該耐食材により伝熱管の腐食が防止されると共に、耐食材の軸線方向外側の端部が、スリーブ内に位置することから、スリーブと伝熱管とが支障なく固定される。その結果、高価な伝熱管を用いずに低コストにて伝熱管の腐食を防止でき長寿命化を図ることができる。   According to such a heat exchanger corrosion countermeasure method, the heat transfer tube is fixed to the heat transfer tube fixing member via the sleeve, and the outer peripheral surface of the heat transfer tube on the sleeve side is coated with the corrosion resistant material. The corrosion-resistant material has an end portion on the inner side in the axial direction extending and exposed to the inner side in the axial direction from the end portion on the inner side in the axial direction of the sleeve, so that corrosion of the heat transfer tube is prevented by the corrosion-resistant material, Since the end portion on the outer side in the axial direction of the corrosion resistant material is located in the sleeve, the sleeve and the heat transfer tube are fixed without hindrance. As a result, corrosion of the heat transfer tube can be prevented at low cost without using an expensive heat transfer tube, and the life can be extended.

また、熱交換器の腐食対策方法として、伝熱管固定部材に通され当該伝熱管固定部材に固定された伝熱管と、伝熱管内に通されて支持され、ガスと熱交換を行う流体が内部を流れるスリーブと、を備える構成を採用し、伝熱管の腐食に応じて、スリーブを移動する方法を採用してよい。   Further, as a corrosion countermeasure method for a heat exchanger, a heat transfer tube that is passed through a heat transfer tube fixing member and fixed to the heat transfer tube fixing member, and a fluid that is passed through and supported in the heat transfer tube and exchanges heat with gas is contained inside. And a method of moving the sleeve according to the corrosion of the heat transfer tube.

このような熱交換器の腐食対策方法によれば、伝熱管固定部材に対し伝熱管を介してスリーブが係合する構成が採用され、伝熱管が腐食するとその腐食に応じて、伝熱管が伝熱管固定部材に固定されたままの状態で、伝熱管内のスリーブが軸線方向に移動され、一の方法では、スリーブ内を流れる流体の出口となるスリーブ出口の位置を、伝熱管に対して軸線方向に移動させることができ、スリーブ出口近傍に生じ伝熱管の腐食を招来する低温域を、軸線方向に移動させることができる。また、他の方法では、スリーブが軸線方向に移動され別の例えば長さの異なるスリーブに交換することで、伝熱管の腐食を招来するスリーブ出口の位置を、交換前のスリーブ出口の位置に対して軸線方向に移動することができる。何れにしても、スリーブ出口の位置を軸線方向に移動でき、招来する伝熱管の腐食位置を軸線方向に変えることができる。その結果、高価な伝熱管を用いずに低コストにて腐食に対処でき長寿命化を図ることができる。   According to such a heat exchanger corrosion countermeasure method, a structure in which the sleeve is engaged with the heat transfer tube fixing member via the heat transfer tube is adopted, and if the heat transfer tube corrodes, the heat transfer tube is transferred according to the corrosion. While being fixed to the heat tube fixing member, the sleeve in the heat transfer tube is moved in the axial direction. In one method, the position of the sleeve outlet serving as the outlet of the fluid flowing in the sleeve is set to the axis of the heat transfer tube. The low-temperature region that occurs near the sleeve outlet and causes corrosion of the heat transfer tube can be moved in the axial direction. In another method, the sleeve is moved in the axial direction and replaced with another sleeve having a different length, for example, so that the position of the sleeve outlet that causes corrosion of the heat transfer tube is changed from the position of the sleeve outlet before replacement. Can be moved in the axial direction. In any case, the position of the sleeve outlet can be moved in the axial direction, and the corrosion position of the incoming heat transfer tube can be changed in the axial direction. As a result, corrosion can be dealt with at a low cost without using an expensive heat transfer tube, and the life can be extended.

ここで、伝熱管のスリーブ側の外周面に耐食材を配置してよい。これによれば、伝熱管のスリーブ側の外周面に配置された耐食材により、高価な伝熱管を用いずに低コストにて伝熱管の腐食を防止でき長寿命化を図ることができる。   Here, a corrosion-resistant material may be disposed on the outer peripheral surface of the heat transfer tube on the sleeve side. According to this, the corrosion resistant material disposed on the outer peripheral surface of the heat transfer tube on the sleeve side can prevent corrosion of the heat transfer tube at a low cost without using an expensive heat transfer tube, and can extend the life.

本発明の一形態による熱交換器の腐食対策構造は、伝熱管固定部材と、当該伝熱管固定部材より内側の流路を流れるガスと熱交換を行う伝熱管と、伝熱管に外挿又は内挿される筒状のスリーブと、を備え、伝熱管及びスリーブの少なくとも一方を伝熱管固定部材に対して移動可能に支持する。   The structure for preventing corrosion of a heat exchanger according to an aspect of the present invention includes a heat transfer tube fixing member, a heat transfer tube that exchanges heat with a gas flowing in a flow path inside the heat transfer tube fixing member, and an extrapolation or internalization of the heat transfer tube. A cylindrical sleeve to be inserted, and at least one of the heat transfer tube and the sleeve is movably supported with respect to the heat transfer tube fixing member.

このような熱交換器の腐食対策構造によれば、上述の熱交換器の腐食対策方法と同様な作用・効果を奏することができる。   According to such a heat exchanger corrosion countermeasure structure, the same actions and effects as the heat exchanger corrosion countermeasure method described above can be achieved.

このように本発明によれば、好適な腐食対策を実現できる熱交換器の腐食対策方法及び熱交換器の腐食対策構造を提供することができる。   Thus, according to the present invention, it is possible to provide a heat exchanger corrosion countermeasure method and a heat exchanger corrosion countermeasure structure capable of realizing a suitable corrosion countermeasure.

本発明の熱交換器の腐食対策方法が適用される循環流動床ボイラの概略構成図である。It is a schematic block diagram of the circulating fluidized bed boiler to which the corrosion countermeasure method of the heat exchanger of this invention is applied. 本発明の第1実施形態に係る熱交換器の腐食対策方法が適用される伝熱管の固定構造を示す縦断面図である。It is a longitudinal cross-sectional view which shows the fixing structure of the heat exchanger tube to which the corrosion countermeasure method of the heat exchanger which concerns on 1st Embodiment of this invention is applied. 本発明の第1実施形態に係る熱交換器の腐食対策方法の手順を示す説明図である。It is explanatory drawing which shows the procedure of the corrosion countermeasure method of the heat exchanger which concerns on 1st Embodiment of this invention. 図3に続く説明図である。It is explanatory drawing following FIG. 本発明の第2実施形態に係る熱交換器の腐食対策方法の手順を示す説明図である。It is explanatory drawing which shows the procedure of the corrosion countermeasure method of the heat exchanger which concerns on 2nd Embodiment of this invention. 図5に続く説明図である。It is explanatory drawing following FIG. 図6に続く説明図である。It is explanatory drawing following FIG. 本発明の第3実施形態に係る熱交換器の腐食対策方法が適用される伝熱管の固定構造を示す縦断面図である。It is a longitudinal cross-sectional view which shows the fixing structure of the heat exchanger tube to which the corrosion countermeasure method of the heat exchanger which concerns on 3rd Embodiment of this invention is applied. 本発明の第4実施形態に係る熱交換器の腐食対策方法が適用される伝熱管の固定構造を示す縦断面図である。It is a longitudinal cross-sectional view which shows the fixing structure of the heat exchanger tube to which the corrosion countermeasure method of the heat exchanger which concerns on 4th Embodiment of this invention is applied.

以下、本発明による熱交換器の腐食対策方法の好適な実施形態について図1〜図9を参照しながら説明する。図1〜図4は、本発明の第1実施形態を、図5〜図7は、本発明の第2実施形態を、図8は本発明の第3実施形態を、図9は本発明の第4実施形態を各々示すものであり、各図において、同一の要素には同一の符号を付し、重複する説明は省略する。   Hereinafter, a preferred embodiment of a heat exchanger corrosion countermeasure method according to the present invention will be described with reference to FIGS. 1 to 4 show the first embodiment of the present invention, FIGS. 5 to 7 show the second embodiment of the present invention, FIG. 8 shows the third embodiment of the present invention, and FIG. 9 shows the present invention. 4th Embodiment is shown, respectively, In each figure, the same code | symbol is attached | subjected to the same element and the overlapping description is abbreviate | omitted.

先ず、図1〜図4に示す第1実施形態を説明する。図1は、本発明の熱交換器の腐食対策方法が適用される循環流動床ボイラの概略構成図、図2は、本発明の第1実施形態に係る熱交換器の腐食対策方法が適用される伝熱管の固定構造を示す縦断面図、図3は、本発明の第1実施形態に係る熱交換器の腐食対策方法の手順を示す説明図、図4は、図3に続く説明図である。   First, a first embodiment shown in FIGS. 1 to 4 will be described. FIG. 1 is a schematic configuration diagram of a circulating fluidized bed boiler to which the heat exchanger corrosion countermeasure method of the present invention is applied, and FIG. 2 is a diagram of the heat exchanger corrosion countermeasure method according to the first embodiment of the present invention. FIG. 3 is an explanatory view showing the procedure of the corrosion countermeasure method for the heat exchanger according to the first embodiment of the present invention, and FIG. 4 is an explanatory view following FIG. is there.

図1に示すように、循環流動床ボイラ100は概略、燃焼炉となる火炉1と、この火炉1で生じる燃焼排ガスから固体粒子を分離するサイクロン2と、サイクロン2からの燃焼排ガスと熱交換し排熱を回収する熱交換部3とを備える。   As shown in FIG. 1, a circulating fluidized bed boiler 100 is generally heat-exchanged with a furnace 1 serving as a combustion furnace, a cyclone 2 that separates solid particles from the combustion exhaust gas generated in the furnace 1, and combustion exhaust gas from the cyclone 2. And a heat exchanging unit 3 for recovering exhaust heat.

火炉1は、炉壁内が燃焼室とされ、この燃焼室に、例えば珪砂等の流動材を収容すると共に、燃焼対象となる例えばバイオマスや石炭等の燃料、又は、廃タイヤやごみ等の焼却目的の廃棄物等の原料を導入し、これらを後述の燃焼用空気により流動させながら流動床を形成し原料を燃焼するものである。   The furnace 1 has a combustion chamber in the furnace wall. In the combustion chamber, a fluid material such as silica sand is accommodated, and fuel such as biomass and coal, or incineration of waste tires and garbage, which are to be combusted. A raw material such as a target waste is introduced, and a fluidized bed is formed while the raw material is flowed by combustion air described later to burn the raw material.

サイクロン2は、火炉1からの燃焼排ガスに随伴される流動材や燃焼灰、未燃灰等の固体粒子を分離し火炉1内の流動床に戻すものである。   The cyclone 2 separates solid particles such as fluidized material, combustion ash and unburned ash accompanying the combustion exhaust gas from the furnace 1 and returns them to the fluidized bed in the furnace 1.

熱交換部3は、サイクロン2より下流側の燃焼排ガスの流路に、上流側から下流側に向かって、過熱器4、節炭器5、空気予熱器6をこの順に備えている。   The heat exchange unit 3 includes a superheater 4, a economizer 5, and an air preheater 6 in this order from the upstream side to the downstream side in the flow path of the combustion exhaust gas downstream of the cyclone 2.

節炭器5は、燃焼排ガスの熱を伝熱管を介してボイラ給水に伝熱することでボイラ給水を予熱するものである。この節炭器5で予熱されたボイラ給水は、蒸気ドラムで蒸気とされ、当該蒸気は過熱器4に供給される。   The economizer 5 preheats the boiler feed water by transferring the heat of the combustion exhaust gas to the boiler feed water via the heat transfer pipe. The boiler feed water preheated by the economizer 5 is converted into steam by a steam drum, and the steam is supplied to the superheater 4.

過熱器4は、燃焼排ガスの熱を伝熱管を介して蒸気ドラムからの蒸気に伝熱することで過熱蒸気とするものである。この過熱器4で過熱された過熱蒸気は、発電タービン等に用いられる。   The superheater 4 transfers the heat of the combustion exhaust gas to the steam from the steam drum through the heat transfer tube, thereby making the superheated steam. The superheated steam heated by the superheater 4 is used for a power generation turbine or the like.

空気予熱器6は、燃焼排ガスの熱を伝熱管を介して空気に伝熱することで空気を予熱するものである。この空気予熱器6で予熱された空気は、火炉1に燃焼用空気として供給される。   The air preheater 6 preheats the air by transferring the heat of the combustion exhaust gas to the air through the heat transfer tube. The air preheated by the air preheater 6 is supplied to the furnace 1 as combustion air.

この空気予熱器6にあっては、図2に示すように、燃焼排ガスの流路が、対向配置された平板状の管板(伝熱管固定部材)7,7同士間に形成されており、伝熱管8は、管板7より内側(図示左側)の流路を流れる燃焼排ガスのその流れ(図示上下方向)に直交するように多数が配置されている。なお、図においては、管板7は空気入口側の1枚、伝熱管8は1本しか示されていない。   In this air preheater 6, as shown in FIG. 2, the flow path of the combustion exhaust gas is formed between the flat plate plates (heat transfer tube fixing members) 7, 7 arranged opposite to each other, A large number of heat transfer tubes 8 are arranged so as to be orthogonal to the flow (the vertical direction in the drawing) of the combustion exhaust gas flowing through the flow path on the inner side (the left side in the drawing) from the tube plate 7. In the figure, only one tube plate 7 is shown on the air inlet side, and only one heat transfer tube 8 is shown.

ここで、本実施形態では、伝熱管8は、筒状のスリーブ9を介して管板7に固定されている。具体的には、スリーブ9は、管板7に通され当該管板7に溶接により固定されており、伝熱管8は、スリーブ9内に通され当該スリーブ9に溶接により固定されている。   Here, in the present embodiment, the heat transfer tube 8 is fixed to the tube plate 7 via a cylindrical sleeve 9. Specifically, the sleeve 9 is passed through the tube plate 7 and fixed to the tube plate 7 by welding, and the heat transfer tube 8 is passed through the sleeve 9 and fixed to the sleeve 9 by welding.

より具体的には、スリーブ9は、その外周面と、管板7の外側(図示右側)の端面とが例えば隅肉溶接による第1の溶接部10を介して接合されており、伝熱管8は、その外周面と、外挿されたスリーブ9の外側の端面とが例えば隅肉溶接による第2の溶接部11を介して接合されている。なお、管板7とスリーブ9との接合、スリーブ9と伝熱管8の接合は、溶接だけでなく、圧接、機械的設置等も可能である。また、伝熱管8、スリーブ9、管板7は、鋼より構成されているが、S-TEN1(登録商標)やSUS等の材質であっても何れは腐食するので、S-TEN1(登録商標)やSUS等の材質を使用しても良い。   More specifically, the outer peripheral surface of the sleeve 9 and the end surface on the outer side (the right side in the drawing) of the tube plate 7 are joined via a first welded portion 10 by fillet welding, for example, and the heat transfer tube 8. The outer peripheral surface and the outer end surface of the extrapolated sleeve 9 are joined via a second welded portion 11 by fillet welding, for example. The joining of the tube plate 7 and the sleeve 9 and the joining of the sleeve 9 and the heat transfer tube 8 can be performed not only by welding but also by pressure welding, mechanical installation, and the like. The heat transfer tube 8, the sleeve 9, and the tube plate 7 are made of steel. However, any material such as S-TEN1 (registered trademark) or SUS will corrode, so S-TEN1 (registered trademark). ) Or SUS or the like may be used.

ここで、組立手順としては、管板7にスリーブ9を通して管板7とスリーブ9を溶接し、次いで、管板7に固定されたスリーブ9に伝熱管8を通してスリーブ9と伝熱管8を溶接する手順でも、スリーブ9に伝熱管8を通してスリーブ9と伝熱管8を溶接し、次いで、伝熱管8を固定したスリーブ9を管板7に通してスリーブ9と管板7を溶接する手順でも良い。   Here, as an assembling procedure, the tube plate 7 and the sleeve 9 are welded to the tube plate 7 through the sleeve 9, and then the sleeve 9 and the heat transfer tube 8 are welded to the sleeve 9 fixed to the tube plate 7 through the heat transfer tube 8. Also in the procedure, the sleeve 9 and the heat transfer tube 8 are welded to the sleeve 9 through the heat transfer tube 8, and then the sleeve 9 to which the heat transfer tube 8 is fixed is passed through the tube plate 7 to weld the sleeve 9 and the tube plate 7.

そして、管板7とスリーブ9の固定、スリーブ9と伝熱管8の固定を溶接により行うことから、管板7より内側の流路が確実に封止され気密が確保されている。なお、ここでは、溶接部10,11が隅肉溶接により形成されているが、開先溶接により形成されていても勿論良い。   Since the tube plate 7 and the sleeve 9 are fixed and the sleeve 9 and the heat transfer tube 8 are fixed by welding, the flow path inside the tube plate 7 is reliably sealed to ensure airtightness. Here, the welds 10 and 11 are formed by fillet welding, but may of course be formed by groove welding.

このような構成を有する循環流動床ボイラ100によれば、火炉1から排出され、サイクロン2により固定粒子が固気分離された燃焼排ガスは、過熱器4、節炭器5、空気予熱器6を通ることで、それぞれの伝熱管と熱交換が行われ排熱が回収される。   According to the circulating fluidized bed boiler 100 having such a configuration, the combustion exhaust gas discharged from the furnace 1 and solid particles separated by the cyclone 2 is supplied to the superheater 4, the economizer 5, and the air preheater 6. By passing, heat exchange is performed with each heat transfer tube, and exhaust heat is recovered.

ここで、空気予熱器6は、燃焼排ガスが流れる流路の最も下流側に位置し、燃焼排ガスの排熱は、空気予熱器6より上流側の過熱器4、節炭器5で回収されているため、空気予熱器6と熱交換を行う燃焼排ガスの温度は低くなっている。特に空気予熱器6の伝熱管8の空気入口側(管板7寄り)の温度は低くなっており、伝熱管8やスリーブ9の表面が約120〜140°C以下になると硫酸露点腐食が生じやすく、60〜80°C以下になると塩酸露点腐食が生じやすくなる。   Here, the air preheater 6 is located on the most downstream side of the flow path through which the combustion exhaust gas flows, and the exhaust heat of the combustion exhaust gas is recovered by the superheater 4 and the economizer 5 upstream of the air preheater 6. Therefore, the temperature of the combustion exhaust gas that exchanges heat with the air preheater 6 is low. In particular, the temperature on the air inlet side (near the tube plate 7) of the heat transfer tube 8 of the air preheater 6 is low, and sulfuric acid dew point corrosion occurs when the surface of the heat transfer tube 8 or the sleeve 9 is about 120 to 140 ° C or less. Easily, hydrochloric acid dew point corrosion tends to occur when the temperature is 60 to 80 ° C or lower.

そして、図2に示すように、伝熱管8に酸露点腐食Cが生じた場合には、本実施形態では、腐食Cの程度に応じて(穴が開く前に)、伝熱管8を交換する。なお、図2には、腐食Cが伝熱管8の外周側に生じている例を示しているが、内周側に腐食Cが発生することもある。図3以降の図においても同様である。また、後述の図5等についても、スリーブ9の外周側に腐食Cが発生する例を示しているが、内周側に腐食Cが発生することもある。   Then, as shown in FIG. 2, when acid dew point corrosion C occurs in the heat transfer tube 8, in this embodiment, the heat transfer tube 8 is replaced according to the degree of the corrosion C (before the hole is opened). . Although FIG. 2 shows an example in which corrosion C occurs on the outer peripheral side of the heat transfer tube 8, corrosion C may occur on the inner peripheral side. The same applies to the drawings after FIG. Further, FIG. 5 and the like which will be described later also show an example in which the corrosion C occurs on the outer peripheral side of the sleeve 9, but the corrosion C may occur on the inner peripheral side.

具体的には、スリーブ9と伝熱管8とを接合している第2の溶接部11を例えばグラインダー等により図3に示すように除去し、スリーブ9を管板7に固定したままの状態で、伝熱管8を図示矢印方向に移動して引き抜き、次いで、図4に示すように、新規の伝熱管18に交換し、伝熱管18の外周面と、スリーブ9の外側の端面とを例えば隅肉溶接による第2の溶接部21を介して接合する。   Specifically, the second welded portion 11 that joins the sleeve 9 and the heat transfer tube 8 is removed as shown in FIG. 3 by, for example, a grinder, and the sleeve 9 remains fixed to the tube plate 7. Then, the heat transfer tube 8 is moved in the direction of the arrow shown in the drawing and pulled out. Then, as shown in FIG. 4, the heat transfer tube 18 is replaced with a new heat transfer tube 18, and the outer peripheral surface of the heat transfer tube 18 and the outer end surface of the sleeve 9 are It joins via the 2nd welding part 21 by meat welding.

なお、ここでは、伝熱管8の腐食Cを目視により認識しその腐食Cの程度に応じて伝熱管8を交換するようにしているが、例えばセンサやカメラ等により腐食Cの程度を自動的に認識し交換時期をコンピュータにより自動的に決めるようにしても良い。   Here, the corrosion C of the heat transfer tube 8 is visually recognized, and the heat transfer tube 8 is replaced according to the degree of the corrosion C. For example, the degree of the corrosion C is automatically detected by a sensor or a camera. It is also possible to automatically recognize the replacement time by a computer.

このように、本実施形態の腐食対策方法によれば、管板7に通され当該管板7に固定された筒状のスリーブ9と、スリーブ9内に通され当該スリーブ9に固定された伝熱管8と、を備える構成を採用し、伝熱管8が腐食するとその腐食Cに応じて、伝熱管8とスリーブ9の固定を解除し、スリーブ9を管板7に固定したままの状態で、伝熱管8を移動して交換するようにしているため、管板7を傷付けることなく、腐食した伝熱管8を容易に交換できる。   Thus, according to the corrosion countermeasure method of the present embodiment, the cylindrical sleeve 9 that is passed through the tube plate 7 and fixed to the tube plate 7, and the transmission that is passed through the sleeve 9 and fixed to the sleeve 9. When the heat transfer tube 8 is corroded and the heat transfer tube 8 corrodes, the heat transfer tube 8 and the sleeve 9 are unfixed according to the corrosion C, and the sleeve 9 remains fixed to the tube plate 7. Since the heat transfer tube 8 is moved and replaced, the corroded heat transfer tube 8 can be easily replaced without damaging the tube plate 7.

なお、伝熱管の繰り返し交換により、スリーブ9の外側の端部が変形する場合には、当該スリーブ9の外側の端部を切除し、続けて使用すれば良い。   When the outer end portion of the sleeve 9 is deformed by repeated replacement of the heat transfer tube, the outer end portion of the sleeve 9 may be cut off and used continuously.

図5は、本発明の第2実施形態に係る腐食対策方法の手順を示す説明図、図6は、図5に続く説明図、図7は、図6に続く説明図である。   FIG. 5 is an explanatory diagram showing the procedure of the corrosion countermeasure method according to the second embodiment of the present invention, FIG. 6 is an explanatory diagram following FIG. 5, and FIG. 7 is an explanatory diagram following FIG.

この第2実施形態に係る腐食対策方法が適用される伝熱管の固定構造は、第1実施形態の図2に示したものと同じである。   The heat transfer tube fixing structure to which the corrosion countermeasure method according to the second embodiment is applied is the same as that shown in FIG. 2 of the first embodiment.

そして、この第2実施形態にあっては、スリーブ9や伝熱管8に酸露点腐食Cが生じた場合には(図5ではスリーブ9に腐食Cが発生)、腐食Cの程度に応じて(例えば伝熱管8に穴が開く前に)、伝熱管8及びスリーブ9を軸線方向に移動する。   In the second embodiment, when acid dew point corrosion C occurs in the sleeve 9 or the heat transfer tube 8 (corrosion C occurs in the sleeve 9 in FIG. 5), depending on the degree of corrosion C ( For example, before the hole is formed in the heat transfer tube 8, the heat transfer tube 8 and the sleeve 9 are moved in the axial direction.

具体的には、管板7とスリーブ9とを接合している第1の溶接部10(図2参照)を例えばグラインダー等により図5に示すように除去し、伝熱管8をスリーブ9に固定したままの状態で、伝熱管8及びスリーブ9を、図6に矢印で示すように、軸線方向に移動する。ここでは、伝熱管8及びスリーブ9を内側(図示左側)に移動している。   Specifically, the first welded portion 10 (see FIG. 2) that joins the tube plate 7 and the sleeve 9 is removed by, for example, a grinder as shown in FIG. 5, and the heat transfer tube 8 is fixed to the sleeve 9. In this state, the heat transfer tube 8 and the sleeve 9 are moved in the axial direction as indicated by arrows in FIG. Here, the heat transfer tube 8 and the sleeve 9 are moved inward (left side in the figure).

そして、伝熱管8及びスリーブ9を移動したら、図7に示すように、スリーブ9の外周面と、管板7の外側(図示右側)の端面とを例えば隅肉溶接による第1の溶接部20を介して接合する。   Then, when the heat transfer tube 8 and the sleeve 9 are moved, as shown in FIG. 7, the outer peripheral surface of the sleeve 9 and the outer end surface (the right side in the drawing) of the tube plate 7 are, for example, a first weld 20 by fillet welding. Join through.

なお、ここでは、腐食Cを目視により認識しその腐食Cの程度に応じて伝熱管8及びスリーブ9を軸線方向に移動するようにしているが、例えばセンサやカメラ等により腐食Cの程度を自動的に認識し移動時期をコンピュータにより自動的に決めるようにしても良い。   Here, the corrosion C is visually recognized and the heat transfer tube 8 and the sleeve 9 are moved in the axial direction according to the degree of the corrosion C. However, the degree of the corrosion C is automatically detected by, for example, a sensor or a camera. It is also possible to automatically recognize the movement time and determine the movement time automatically by a computer.

また、スリーブ9及び伝熱管8の移動は、スリーブ9に酸露点腐食Cが生じた場合でも、伝熱管8に酸露点腐食Cが生じた場合でも、スリーブ9及び伝熱管8の両方に酸露点腐食Cが生じた場合でも良く、要は、伝熱管8及びスリーブ9の少なくとも一方に酸露点腐食Cが生じた場合に実施すれば良い。   Further, the movement of the sleeve 9 and the heat transfer tube 8 is such that the acid dew point corrosion C occurs in both the sleeve 9 and the heat transfer tube 8 regardless of whether the acid dew point corrosion C occurs in the sleeve 9 or the acid dew point corrosion C occurs in the heat transfer tube 8. Corrosion C may be generated. In short, it may be performed when acid dew point corrosion C occurs in at least one of the heat transfer tube 8 and the sleeve 9.

このように、第2実施形態の腐食対策方法によれば、管板7に通され当該管板7に固定された筒状のスリーブ9と、スリーブ9内に通され当該スリーブ9に固定された伝熱管8と、を備える構成を採用し、伝熱管8及びスリーブ9の少なくとも一方が腐食するとその腐食Cに応じて、スリーブ9と管板7の固定を解除し、伝熱管8をスリーブ9に固定したままの状態で、伝熱管8及びスリーブ9を軸線方向に移動し、その後、スリーブ9を管板7に固定するようにしているため、腐食Cを軸線方向に移動させることができると共に腐食Cが形成されていた軸線方向位置に腐食していない部分を移動させることができる。その結果、高価な伝熱管を用いずに低コストにて腐食に対処でき長寿命化を図ることができる。   Thus, according to the corrosion countermeasure method of the second embodiment, the tubular sleeve 9 passed through the tube plate 7 and fixed to the tube plate 7, and passed through the sleeve 9 and fixed to the sleeve 9. When at least one of the heat transfer tube 8 and the sleeve 9 is corroded, the sleeve 9 and the tube plate 7 are released according to the corrosion C, and the heat transfer tube 8 is attached to the sleeve 9. Since the heat transfer tube 8 and the sleeve 9 are moved in the axial direction in a state where they are fixed, and then the sleeve 9 is fixed to the tube plate 7, the corrosion C can be moved in the axial direction and is corroded. The part which has not corroded can be moved to the axial direction position where C was formed. As a result, corrosion can be dealt with at a low cost without using an expensive heat transfer tube, and the life can be extended.

なお、図5に示すようにスリーブ9が腐食する場合には、腐食Cが伝熱管8に達するまでの時間を稼げるため、一層長寿命化を図ることができる。   In addition, when the sleeve 9 corrodes as shown in FIG. 5, since it takes time until the corrosion C reaches the heat transfer tube 8, it is possible to further extend the life.

また、スリーブ9は腐食せず、伝熱管8のみが腐食した場合には、上記一の方法とは別の他の方法として、伝熱管8とスリーブ9の固定を解除し、スリーブ9を管板7に固定したままの状態で、伝熱管8を軸線方向に移動し、その後、伝熱管8をスリーブ9に固定するようにしても良い。この場合も、腐食Cを軸線方向に移動させることができると共に腐食Cが形成されていた軸線方向位置に腐食していない部分を移動させることができる。その結果、高価な伝熱管を用いずに低コストにて腐食に対処でき長寿命化を図ることができる。   When the sleeve 9 is not corroded and only the heat transfer tube 8 is corroded, the heat transfer tube 8 and the sleeve 9 are unfixed as another method different from the above one method, and the sleeve 9 is replaced with the tube plate. 7, the heat transfer tube 8 may be moved in the axial direction, and then the heat transfer tube 8 may be fixed to the sleeve 9. Also in this case, the corrosion C can be moved in the axial direction, and a portion that is not corroded can be moved to the axial position where the corrosion C was formed. As a result, corrosion can be dealt with at a low cost without using an expensive heat transfer tube, and the life can be extended.

以上のように図2に示す固定構造は、熱交換器の腐食対策構造200として機能する。腐食対策構造200は、伝熱管固定部材としての管板7と、当該管板7より内側の流路を流れるガスと熱交換を行う伝熱管8と、伝熱管8に外挿される筒状のスリーブ9と、を備え、伝熱管8及びスリーブ9の少なくとも一方を管板7に対して移動可能に支持する。熱交換器の腐食対策構造200は、管板7によってスリーブ9及び伝熱管8を支持している。図3に示すように、伝熱管8は、伝熱管8とスリーブ9との間の第2の溶接部11が除去されることにより、管板7(及びスリーブ9)に対して移動することができる。なお、除去可能な第2の溶接部11で一時的に伝熱管8の移動が規制されている状態は、第2の溶接部11の除去によって伝熱管8の移動が許容される状態であるため、伝熱管8が管板7に対して移動可能に支持される状態に該当する。図5に示すように、伝熱管8及びスリーブ9は、管板7とスリーブ9との間の第1の溶接部10が除去されることにより、管板7に対して移動することができる。なお、除去可能な第1の溶接部10で一時的に伝熱管8及びスリーブ9の移動が規制されている状態は、第1の溶接部10の除去によって伝熱管8及びスリーブ9の移動が許容される状態であるため、伝熱管8及びスリーブ9が管板7に対して移動可能に支持される状態に該当する。   As described above, the fixing structure shown in FIG. 2 functions as the corrosion countermeasure structure 200 of the heat exchanger. The anti-corrosion structure 200 includes a tube plate 7 as a heat transfer tube fixing member, a heat transfer tube 8 that exchanges heat with a gas flowing in a flow path inside the tube plate 7, and a cylindrical sleeve that is extrapolated to the heat transfer tube 8. 9, and at least one of the heat transfer tube 8 and the sleeve 9 is movably supported with respect to the tube plate 7. The heat exchanger anti-corrosion structure 200 supports the sleeve 9 and the heat transfer tube 8 by the tube plate 7. As shown in FIG. 3, the heat transfer tube 8 can move relative to the tube plate 7 (and the sleeve 9) by removing the second welded portion 11 between the heat transfer tube 8 and the sleeve 9. it can. The state in which the movement of the heat transfer tube 8 is temporarily restricted by the removable second welded portion 11 is a state in which the movement of the heat transfer tube 8 is allowed by the removal of the second welded portion 11. This corresponds to a state in which the heat transfer tube 8 is supported so as to be movable with respect to the tube plate 7. As shown in FIG. 5, the heat transfer tube 8 and the sleeve 9 can move with respect to the tube plate 7 by removing the first welded portion 10 between the tube plate 7 and the sleeve 9. In the state where the movement of the heat transfer tube 8 and the sleeve 9 is temporarily restricted by the removable first welded portion 10, the movement of the heat transfer tube 8 and the sleeve 9 is allowed by the removal of the first welded portion 10. Therefore, it corresponds to a state in which the heat transfer tube 8 and the sleeve 9 are supported so as to be movable with respect to the tube plate 7.

図8は、本発明の第3実施形態に係る腐食対策方法が適用される伝熱管の固定構造を示す縦断面図である。   FIG. 8 is a longitudinal sectional view showing a heat transfer tube fixing structure to which the corrosion countermeasure method according to the third embodiment of the present invention is applied.

この第3実施形態の伝熱管の固定構造が、図2に示す第1、第2実施形態の伝熱管の固定構造と違う点は、伝熱管8のスリーブ9側の外周面に耐食材12を配置した点である。なお、図8に示す固定構造は、図2に示す熱交換器の腐食対策構造200と同趣旨の作用・効果を奏する、腐食対策構造300として機能する。   The heat transfer tube fixing structure of the third embodiment is different from the heat transfer tube fixing structure of the first and second embodiments shown in FIG. 2 in that a corrosion resistant material 12 is provided on the outer peripheral surface of the heat transfer tube 8 on the sleeve 9 side. This is the point that was placed. Note that the fixing structure shown in FIG. 8 functions as a corrosion countermeasure structure 300 that has the same effect and effect as the corrosion countermeasure structure 200 of the heat exchanger shown in FIG.

具体的には、耐食材12は、伝熱管8のスリーブ9側の外周面に被覆され、スリーブ9の内周面との間の隙間13に進入するように設けられている。この耐食材12は、その軸線方向外側の端部が、スリーブ9内に位置すると共に、その軸線方向内側の端部が、スリーブ9の軸線方向内側の端部より軸線方向内側に延出し露出するように伝熱管8に被覆されている。   Specifically, the corrosion-resistant material 12 is provided on the outer peripheral surface of the heat transfer tube 8 on the sleeve 9 side so as to enter the gap 13 between the inner surface of the sleeve 9. The end portion on the outer side in the axial direction of the corrosion-resistant material 12 is located in the sleeve 9, and the end portion on the inner side in the axial direction extends from the end portion on the inner side in the axial direction of the sleeve 9 to the inner side in the axial direction. Thus, the heat transfer tube 8 is covered.

耐食材12は、ここでは、伝熱管8の外周面に施された耐食性のコーティングであり、具体的には、溶射、塗装、ライニング等によるものが挙げられる。また、例えば耐食材であるガラス管を伝熱管8とスリーブ9との間の隙間13に挿入し、ガラス管を伝熱管8に被覆する構成としても良い。なお、耐食材12は、耐食性に加えて耐摩耗性を有しているのが、より好ましい。   Here, the corrosion-resistant material 12 is a corrosion-resistant coating applied to the outer peripheral surface of the heat transfer tube 8, and specific examples thereof include thermal spraying, painting, lining, and the like. Further, for example, a glass tube which is a corrosion-resistant material may be inserted into the gap 13 between the heat transfer tube 8 and the sleeve 9 so that the glass tube is covered with the heat transfer tube 8. In addition, it is more preferable that the corrosion-resistant material 12 has wear resistance in addition to corrosion resistance.

ここで、組立手順としては、管板7にスリーブ9を通して管板7とスリーブ9を溶接し、次いで、管板7に固定されたスリーブ9に、耐食材12を被覆した伝熱管8を通してスリーブ9と伝熱管8を溶接する手順でも、スリーブ9に、耐食材12を被覆した伝熱管8を通してスリーブ9と伝熱管8を溶接し、次いで、伝熱管8を固定したスリーブ9を管板7に通してスリーブ9と管板7を溶接する手順でも良い。   Here, as an assembly procedure, the tube plate 7 and the sleeve 9 are welded to the tube plate 7 through the sleeve 9, and then the sleeve 9 fixed to the tube plate 7 is passed through the heat transfer tube 8 coated with the corrosion resistant material 12 to the sleeve 9. Also in the procedure of welding the heat transfer tube 8, the sleeve 9 and the heat transfer tube 8 are welded to the sleeve 9 through the heat transfer tube 8 coated with the corrosion resistant material 12, and then the sleeve 9 to which the heat transfer tube 8 is fixed is passed through the tube plate 7. Alternatively, the procedure of welding the sleeve 9 and the tube sheet 7 may be used.

そして、この第3実施形態にあっては、上記耐食材12を有する伝熱管8に対して、前述した第1、第2実施形態の腐食対策方法が適用される。   And in this 3rd Embodiment, the corrosion countermeasure method of 1st, 2nd embodiment mentioned above is applied with respect to the heat exchanger tube 8 which has the said corrosion-resistant material 12. FIG.

従って、第3実施形態によれば、第1、第2実施形態の作用・効果に加えて、伝熱管8のスリーブ9側の外周面に配置された耐食材12により、高価な伝熱管を用いずに低コストにて伝熱管8の腐食を防止でき長寿命化を図ることができる。   Therefore, according to the third embodiment, in addition to the operations and effects of the first and second embodiments, an expensive heat transfer tube is used by the corrosion resistant material 12 disposed on the outer peripheral surface of the heat transfer tube 8 on the sleeve 9 side. Therefore, corrosion of the heat transfer tube 8 can be prevented at low cost, and the life can be extended.

また、この第3実施形態によれば、管板7に通され当該管板7に固定されたスリーブ9と、スリーブ9内に通され当該スリーブ9に固定された伝熱管8と、を備える構成を採用し、伝熱管8のスリーブ9側の外周面に耐食材12を被覆し、この耐食材12の軸線方向内側の端部を、スリーブ9の軸線方向内側の端部より軸線方向内側に延出させ露出させているため、当該耐食材12により伝熱管8の腐食を防止できると共に、耐食材12の軸線方向外側の端部を、スリーブ9内に位置させているため、スリーブ9の軸線方向外側の端部と伝熱管8の外周面とを支障なく第2の溶接部11により溶接できる。溶接でない場合には、スリーブ9と伝熱管8とを支障なく固定できる。すなわち、第1、第2実施形態の作用・効果に加えて、耐食材12により、高価な伝熱管を用いずに低コストにて伝熱管8の腐食を防止でき長寿命化を図ることができる。   In addition, according to the third embodiment, the sleeve 9 is passed through the tube plate 7 and fixed to the tube plate 7, and the heat transfer tube 8 is passed through the sleeve 9 and fixed to the sleeve 9. And the outer peripheral surface of the heat transfer tube 8 on the sleeve 9 side is coated with a corrosion-resistant material 12, and the end portion on the inner side in the axial direction of the corrosion-resistant material 12 extends inward in the axial direction from the end portion on the inner side in the axial direction of the sleeve 9. Since the corrosion-resistant material 12 prevents the heat transfer tube 8 from being corroded and the end portion on the axially outer side of the corrosion-resistant material 12 is located in the sleeve 9, the axial direction of the sleeve 9 is exposed. The outer end portion and the outer peripheral surface of the heat transfer tube 8 can be welded by the second welding portion 11 without any hindrance. When not welding, the sleeve 9 and the heat transfer tube 8 can be fixed without hindrance. That is, in addition to the operations and effects of the first and second embodiments, the corrosion resistant material 12 can prevent corrosion of the heat transfer tube 8 at a low cost without using an expensive heat transfer tube, and can extend the life. .

なお、伝熱管8の外周面全部に耐食材12を被覆する構成は、熱交換効率が低下してしまうため採用できない。   In addition, since the heat exchange efficiency falls, the structure which coat | covers the corrosion-resistant material 12 in the whole outer peripheral surface of the heat exchanger tube 8 cannot be employ | adopted.

図9は、本発明の第4実施形態に係る腐食対策方法が適用される伝熱管の固定構造を示す縦断面図である。   FIG. 9 is a longitudinal sectional view showing a heat transfer tube fixing structure to which the corrosion countermeasure method according to the fourth embodiment of the present invention is applied.

この第4実施形態にあっては、伝熱管8が管板7に通され当該管板7に例えば溶接等により固定され、スリーブ19が伝熱管8に内挿され当該伝熱管8に支持された内スリーブとされている。   In the fourth embodiment, the heat transfer tube 8 is passed through the tube plate 7 and fixed to the tube plate 7 by, for example, welding, and the sleeve 19 is inserted into the heat transfer tube 8 and supported by the heat transfer tube 8. It is an inner sleeve.

スリーブ19は、具体的には、伝熱管8に内挿され、その軸線方向内側の端部が、空気入口側の管板7より内側に向かって短尺に延出するように配置される。このスリーブ19の外周面と伝熱管8の内周面との間には、軸線方向に離間して一対のOリング30,31が配設される。このOリング30,31は、管板7を挟んだ両側に位置し、当該Oリング30,31により、スリーブ19が伝熱管8に対してセンタリングされて支持される。また、このOリング30,31は、スリーブ19と伝熱管8との間を封止し、燃焼排ガスと熱交換を行う空気(流体)が、スリーブ19と伝熱管8との間から漏出するのを防止する。   Specifically, the sleeve 19 is inserted into the heat transfer tube 8 and is arranged so that the end portion on the inner side in the axial line direction extends inward from the tube plate 7 on the air inlet side. A pair of O-rings 30 and 31 are disposed between the outer peripheral surface of the sleeve 19 and the inner peripheral surface of the heat transfer tube 8 so as to be separated in the axial direction. The O-rings 30 and 31 are located on both sides of the tube plate 7, and the sleeve 19 is centered and supported by the O-rings 30 and 31 with respect to the heat transfer tube 8. Further, the O-rings 30 and 31 seal between the sleeve 19 and the heat transfer tube 8, and air (fluid) exchanging heat with the combustion exhaust gas leaks from between the sleeve 19 and the heat transfer tube 8. To prevent.

このような第4実施形態の伝熱管の固定構造では、熱交換を行うための空気が、スリーブ19の軸線方向外側の端部を入口として流入してスリーブ19内を流れ、スリーブ19の軸線方向内側の端部を出口として流出し、伝熱管8内を下流側に向かって流れることで、燃焼排ガスと熱交換が行われる。   In such a heat transfer tube fixing structure of the fourth embodiment, air for performing heat exchange flows in the sleeve 19 by entering the axially outer end of the sleeve 19 as an inlet. The inside end portion flows out as an outlet and flows through the heat transfer tube 8 toward the downstream side, whereby heat exchange with the combustion exhaust gas is performed.

ここで、スリーブ19の出口から、熱交換を行うための低温の空気が流出するため、伝熱管8のうちスリーブ19の出口近傍が最も低温域となり、ここに酸露点腐食Cを招来することになる。   Here, since low-temperature air for heat exchange flows out from the outlet of the sleeve 19, the vicinity of the outlet of the sleeve 19 in the heat transfer tube 8 becomes the lowest temperature region, and acid dew point corrosion C is caused here. Become.

そこで、この第4実施形態にあっては、伝熱管8に酸露点腐食Cが生じた場合には、腐食Cの程度に応じて(例えば伝熱管8に穴が開く前に)、スリーブ19を軸線方向に移動する。   Therefore, in this fourth embodiment, when acid dew point corrosion C occurs in the heat transfer tube 8, the sleeve 19 is attached according to the degree of the corrosion C (for example, before a hole is opened in the heat transfer tube 8). Move in the axial direction.

具体的には、伝熱管8を管板7に固定したままの状態で、スリーブ19を、図9に矢印で示すように、軸線方向に移動する。ここでは、スリーブ19を内側(図示左側)に移動する。このとき、スリーブ19は、Oリング30,31を介して伝熱管8に支持されているため、軸線方向に容易に移動できる。   Specifically, the sleeve 19 is moved in the axial direction as indicated by an arrow in FIG. 9 with the heat transfer tube 8 fixed to the tube plate 7. Here, the sleeve 19 is moved inward (left side in the figure). At this time, since the sleeve 19 is supported by the heat transfer tube 8 via the O-rings 30 and 31, it can be easily moved in the axial direction.

そして、このようなスリーブ19の移動により、スリーブ19の出口が伝熱管8に対して軸線方向に移動するため、腐食を招来する伝熱管8の低温域を軸線方向に移動させることができる。   Since the sleeve 19 moves in such a manner that the outlet of the sleeve 19 moves in the axial direction with respect to the heat transfer tube 8, the low temperature region of the heat transfer tube 8 that causes corrosion can be moved in the axial direction.

なお、ここでは、伝熱管8の腐食Cを目視により認識しその腐食Cの程度に応じてスリーブ19を軸線方向に移動するようにしているが、例えばセンサやカメラ等により伝熱管8の腐食Cの程度を自動的に認識し移動時期をコンピュータにより自動的に決めるようにしても良い。   Here, the corrosion C of the heat transfer tube 8 is visually recognized and the sleeve 19 is moved in the axial direction in accordance with the degree of the corrosion C. For example, the corrosion C of the heat transfer tube 8 is detected by a sensor or a camera. It is also possible to automatically recognize the degree of movement and automatically determine the movement time by a computer.

このような第4実施形態によれば、管板7に対し伝熱管8を介してスリーブ19が係合する構成を採用し、伝熱管8が腐食するとその腐食Cに応じて、伝熱管8を管板7に固定したままの状態で、伝熱管8内のスリーブ19を軸線方向に移動するようにしているため、スリーブ19内を流れる空気の出口となるスリーブ19の出口の位置を、伝熱管8に対して軸線方向に移動させることができ、スリーブ19の出口近傍に生じ伝熱管8の腐食を招来する低温域を、軸線方向に移動させることができる。すなわち、スリーブ19の出口の位置を軸線方向に移動することで、招来する伝熱管8の腐食位置を軸線方向に変えることができる。その結果、高価な伝熱管を用いずに低コストにて腐食に対処でき長寿命化を図ることができる。   According to such 4th Embodiment, the structure which the sleeve 19 engages with the tube plate 7 via the heat exchanger tube 8 is employ | adopted, and when the heat exchanger tube 8 corrodes, according to the corrosion C, the heat exchanger tube 8 is made. Since the sleeve 19 in the heat transfer tube 8 is moved in the axial direction while being fixed to the tube plate 7, the position of the outlet of the sleeve 19 serving as an outlet for the air flowing in the sleeve 19 is set to the heat transfer tube. 8 can be moved in the axial direction, and a low temperature region that occurs near the outlet of the sleeve 19 and causes corrosion of the heat transfer tube 8 can be moved in the axial direction. That is, by moving the position of the outlet of the sleeve 19 in the axial direction, the corrosion position of the incoming heat transfer tube 8 can be changed in the axial direction. As a result, corrosion can be dealt with at a low cost without using an expensive heat transfer tube, and the life can be extended.

また、上記一の方法とは別の他の方法として、スリーブ19を軸線方向に移動して別の例えば長さの異なるスリーブに交換するようにしても良い。この場合も、伝熱管8の腐食を招来するスリーブ19の出口の位置を、交換前のスリーブ19の出口の位置に対して軸線方向に移動することができる。すなわち、スリーブ19の出口の位置を軸線方向に移動することで、招来する伝熱管8の腐食位置を軸線方向に変えることができる。その結果、高価な伝熱管を用いずに低コストにて腐食に対処でき長寿命化を図ることができる。   As another method different from the above-described one method, the sleeve 19 may be moved in the axial direction and replaced with another sleeve having a different length, for example. Also in this case, the position of the outlet of the sleeve 19 that causes corrosion of the heat transfer tube 8 can be moved in the axial direction with respect to the position of the outlet of the sleeve 19 before replacement. That is, by moving the position of the outlet of the sleeve 19 in the axial direction, the corrosion position of the incoming heat transfer tube 8 can be changed in the axial direction. As a result, corrosion can be dealt with at a low cost without using an expensive heat transfer tube, and the life can be extended.

なお、伝熱管8のスリーブ19側(腐食を招来する位置)の内周面に、第3実施形態で説明した耐食材を配置するのが好ましい。これによれば、耐食材により、高価な伝熱管を用いずに低コストにて伝熱管8の腐食を防止でき長寿命化を図ることができる。   In addition, it is preferable to arrange the corrosion-resistant material described in the third embodiment on the inner peripheral surface of the heat transfer tube 8 on the sleeve 19 side (position causing corrosion). According to this, the corrosion resistant material can prevent corrosion of the heat transfer tube 8 at a low cost without using an expensive heat transfer tube, and can extend the life.

以上のように図9に示す固定構造は、熱交換器の腐食対策構造400として機能する。腐食対策構造400は、伝熱管固定部材としての管板7と、当該管板7より内側の流路を流れるガスと熱交換を行う伝熱管8と、伝熱管8に内挿される筒状のスリーブ19と、を備え、伝熱管8及びスリーブ19の少なくとも一方を管板7に対して移動可能に支持する。熱交換器の腐食対策構造400は、管板7によってスリーブ19及び伝熱管8を支持している。図9に示すように、スリーブ19は、Oリング30,31に支持された状態で、管板7(及び伝熱管8)に対して移動することができる。   As described above, the fixing structure shown in FIG. 9 functions as the corrosion countermeasure structure 400 of the heat exchanger. The anti-corrosion structure 400 includes a tube plate 7 as a heat transfer tube fixing member, a heat transfer tube 8 that exchanges heat with a gas flowing in a flow path inside the tube plate 7, and a cylindrical sleeve that is inserted into the heat transfer tube 8. 19, and at least one of the heat transfer tube 8 and the sleeve 19 is movably supported with respect to the tube plate 7. The heat exchanger anti-corrosion structure 400 supports the sleeve 19 and the heat transfer tube 8 by the tube plate 7. As shown in FIG. 9, the sleeve 19 can move with respect to the tube plate 7 (and the heat transfer tube 8) while being supported by the O-rings 30 and 31.

以上、本発明をその実施形態に基づき具体的に説明したが、本発明は上記実施形態に限定されるものではなく、例えば、上記実施形態においては、循環流動床ボイラ100の燃焼排ガスに対する適用を述べているが、他のボイラの燃焼排ガスや、焼却炉、溶融炉等の燃焼排ガスに対しても適用でき、また、ガス化炉の熱分解ガス(可燃性ガス)等に対しても適用できる。   The present invention has been specifically described above based on the embodiment. However, the present invention is not limited to the above embodiment. For example, in the above embodiment, the circulating fluidized bed boiler 100 is applied to the combustion exhaust gas. Although described, it can be applied to combustion exhaust gas from other boilers, combustion exhaust gas from incinerators, melting furnaces, etc., and can also be applied to pyrolysis gas (combustible gas) of gasification furnaces, etc. .

また、上記実施形態においては、特に好適であるとして、空気予熱器6の伝熱管8に対する適用を述べているが、低温腐食となる酸露点腐食に対してだけではなく、高温腐食となる溶融塩腐食が生じる例えば過熱器の伝熱管等に対しても適用可能であり、要は、ガスと熱交換を行う熱交換器の伝熱管であって腐食が生じる又は腐食が生じる虞がある伝熱管に対して適用できる。   Moreover, in the said embodiment, although application to the heat exchanger tube 8 of the air preheater 6 is described as being especially suitable, not only the acid dew point corrosion which becomes low temperature corrosion but the molten salt which becomes high temperature corrosion It can also be applied to, for example, a heat exchanger tube of a superheater where corrosion occurs. In short, it is a heat exchanger tube for heat exchange that exchanges heat with gas. It can be applied to.

7…管板(伝熱管固定部材)、8,18…伝熱管、9,19…スリーブ、10,20…第1の溶接部、11,21…第2の溶接部、12…耐食材、200,300,400…熱交換器の腐食対策構造、C…腐食。   7 ... Tube plate (heat transfer tube fixing member), 8, 18 ... Heat transfer tube, 9, 19 ... Sleeve, 10, 20 ... First weld, 11, 21 ... Second weld, 12 ... Corrosion resistant material, 200 , 300, 400 ... Corrosion countermeasure structure of heat exchanger, C ... Corrosion.

Claims (8)

伝熱管固定部材より内側の流路を流れるガスと熱交換を行う伝熱管を備えた熱交換器の腐食対策方法であって、
前記伝熱管に外挿又は内挿される筒状のスリーブを備える構成を採用し、
前記伝熱管及び前記スリーブの少なくとも一方を前記伝熱管固定部材に対して移動させる、熱交換器の腐食対策方法。
It is a corrosion countermeasure method for a heat exchanger provided with a heat transfer tube for exchanging heat with a gas flowing through a flow path inside the heat transfer tube fixing member,
Adopting a configuration comprising a cylindrical sleeve extrapolated or inserted into the heat transfer tube,
A corrosion countermeasure method for a heat exchanger, wherein at least one of the heat transfer tube and the sleeve is moved relative to the heat transfer tube fixing member.
前記伝熱管固定部材に通され当該伝熱管固定部材に固定された前記スリーブと、前記スリーブ内に通され当該スリーブに固定された前記伝熱管と、を備える構成を採用し、
前記伝熱管の腐食に応じて、前記伝熱管と前記スリーブの固定を解除し、
前記スリーブを前記伝熱管固定部材に固定したままの状態で、前記伝熱管を移動して交換する、請求項1記載の熱交換器の腐食対策方法。
Adopting a configuration comprising the sleeve passed through the heat transfer tube fixing member and fixed to the heat transfer tube fixing member, and the heat transfer tube passed through the sleeve and fixed to the sleeve,
In response to corrosion of the heat transfer tube, release the fixing of the heat transfer tube and the sleeve,
The heat exchanger corrosion countermeasure method according to claim 1, wherein the heat transfer tube is moved and replaced while the sleeve is fixed to the heat transfer tube fixing member.
前記伝熱管固定部材に通され当該伝熱管固定部材に固定された前記スリーブと、前記スリーブ内に通され当該スリーブに固定された前記伝熱管と、を備える構成を採用し、
前記伝熱管及び前記スリーブの少なくとも一方の腐食に応じて、前記スリーブと前記伝熱管固定部材の固定、又は、前記伝熱管と前記スリーブの固定を解除し、固定を解除した前記スリーブ又は前記伝熱管を軸線方向に移動し、
移動した前記スリーブ又は前記伝熱管を、固定解除前に固定されていた相手側部材に固定する、請求項1記載の熱交換器の腐食対策方法。
Adopting a configuration comprising the sleeve passed through the heat transfer tube fixing member and fixed to the heat transfer tube fixing member, and the heat transfer tube passed through the sleeve and fixed to the sleeve,
In response to corrosion of at least one of the heat transfer tube and the sleeve, the sleeve and the heat transfer tube fixing member are fixed, or the heat transfer tube and the sleeve are fixed and the sleeve or the heat transfer tube is released. Move in the axial direction,
The corrosion countermeasure method for a heat exchanger according to claim 1, wherein the sleeve or the heat transfer tube that has moved is fixed to a counterpart member that has been fixed before the fixing is released.
前記伝熱管の前記スリーブ側の外周面に耐食材を配置する、請求項1〜3の何れか一項に記載の熱交換器の腐食対策方法。   The corrosion countermeasure method of the heat exchanger as described in any one of Claims 1-3 which arrange | positions a corrosion-resistant material in the outer peripheral surface at the said sleeve side of the said heat exchanger tube. 前記伝熱管固定部材に通され当該伝熱管固定部材に固定された前記スリーブと、前記スリーブ内に通され当該スリーブに固定された前記伝熱管と、を備える構成を採用し、
前記耐食材は、前記伝熱管の前記スリーブ側の外周面に被覆され、その軸線方向外側の端部が、前記スリーブ内に位置すると共に、その軸線方向内側の端部が、前記スリーブの軸線方向内側の端部より軸線方向内側に延出し露出している、請求項4記載の熱交換器の腐食対策方法。
Adopting a configuration comprising the sleeve passed through the heat transfer tube fixing member and fixed to the heat transfer tube fixing member, and the heat transfer tube passed through the sleeve and fixed to the sleeve,
The corrosion-resistant material is coated on the outer peripheral surface of the heat transfer tube on the sleeve side, and its axially outer end is located in the sleeve, and its axially inner end is in the axial direction of the sleeve. 5. The heat exchanger corrosion countermeasure method according to claim 4, wherein the heat exchanger is exposed to extend inward in the axial direction from the inner end.
前記伝熱管固定部材に通され当該伝熱管固定部材に固定された前記伝熱管と、前記伝熱管内に通されて支持され、前記ガスと熱交換を行う流体が内部を流れるスリーブと、を備える構成を採用し、
前記伝熱管の腐食に応じて、前記スリーブを移動する、請求項1記載の熱交換器の腐食対策方法。
The heat transfer tube that is passed through the heat transfer tube fixing member and is fixed to the heat transfer tube fixing member, and a sleeve that is passed through and supported by the heat transfer tube and in which a fluid that exchanges heat with the gas flows. Adopt the configuration,
The heat exchanger corrosion countermeasure method according to claim 1, wherein the sleeve is moved in accordance with corrosion of the heat transfer tube.
前記伝熱管の前記スリーブ側の外周面に耐食材を配置する、請求項6記載の熱交換器の腐食対策方法。   The corrosion countermeasure method for a heat exchanger according to claim 6, wherein a corrosion-resistant material is disposed on the outer peripheral surface of the heat transfer tube on the sleeve side. 伝熱管固定部材と、当該伝熱管固定部材より内側の流路を流れるガスと熱交換を行う伝熱管と、
前記伝熱管に外挿又は内挿される筒状のスリーブと、を備え、
前記伝熱管及び前記スリーブの少なくとも一方を前記伝熱管固定部材に対して移動可能に支持する、熱交換器の腐食対策構造。
A heat transfer tube fixing member, and a heat transfer tube that exchanges heat with the gas flowing in the flow path inside the heat transfer tube fixing member,
A tubular sleeve extrapolated or inserted into the heat transfer tube,
A structure for preventing corrosion of a heat exchanger, wherein at least one of the heat transfer tube and the sleeve is movably supported with respect to the heat transfer tube fixing member.
JP2015504213A 2013-03-08 2014-02-07 Heat exchanger corrosion countermeasure method and heat exchanger corrosion countermeasure structure Active JP6320992B2 (en)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
JP2013046962 2013-03-08
JP2013046963 2013-03-08
JP2013046961 2013-03-08
JP2013046963 2013-03-08
JP2013046962 2013-03-08
JP2013046961 2013-03-08
JP2013095529 2013-04-30
JP2013095529 2013-04-30
PCT/JP2014/052929 WO2014136527A1 (en) 2013-03-08 2014-02-07 Corrosion control method for heat exchanger and corrosion control structure for heat exchanger

Publications (2)

Publication Number Publication Date
JPWO2014136527A1 true JPWO2014136527A1 (en) 2017-02-09
JP6320992B2 JP6320992B2 (en) 2018-05-09

Family

ID=51491052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015504213A Active JP6320992B2 (en) 2013-03-08 2014-02-07 Heat exchanger corrosion countermeasure method and heat exchanger corrosion countermeasure structure

Country Status (5)

Country Link
JP (1) JP6320992B2 (en)
MY (1) MY177269A (en)
PH (1) PH12015501977A1 (en)
TW (1) TWI520894B (en)
WO (1) WO2014136527A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102415825B1 (en) * 2020-06-30 2022-07-01 비에이치아이(주) Structure and method for intalling reheater for cfbc boiler
JPWO2022265118A1 (en) * 2021-06-18 2022-12-22

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5599587A (en) * 1979-01-25 1980-07-29 Gadelius Kk Rotary type heat exchanger with heat pipe
JPS5761389U (en) * 1980-09-27 1982-04-12
JPS60193288U (en) * 1984-06-04 1985-12-23 福山共同機工株式会社 Pipe inner surface cleaning device
JP2002062081A (en) * 2000-08-10 2002-02-28 Ishikawajima Harima Heavy Ind Co Ltd Multi-tubular heat exchanger
JP2010191494A (en) * 2009-02-16 2010-09-02 Mitsubishi Heavy Ind Ltd System and method for diagnosing remaining life of high temperature plant equipment
JP2011027289A (en) * 2009-07-22 2011-02-10 Chugoku Electric Power Co Inc:The Repair method of heat exchanger

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4865256B2 (en) * 2005-06-06 2012-02-01 三菱重工業株式会社 HEAT EXCHANGER AND HEAT EXCHANGER MANUFACTURING METHOD
JP3180377U (en) * 2012-10-04 2012-12-13 三菱重工環境・化学エンジニアリング株式会社 Heat exchanger

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5599587A (en) * 1979-01-25 1980-07-29 Gadelius Kk Rotary type heat exchanger with heat pipe
JPS5761389U (en) * 1980-09-27 1982-04-12
JPS60193288U (en) * 1984-06-04 1985-12-23 福山共同機工株式会社 Pipe inner surface cleaning device
JP2002062081A (en) * 2000-08-10 2002-02-28 Ishikawajima Harima Heavy Ind Co Ltd Multi-tubular heat exchanger
JP2010191494A (en) * 2009-02-16 2010-09-02 Mitsubishi Heavy Ind Ltd System and method for diagnosing remaining life of high temperature plant equipment
JP2011027289A (en) * 2009-07-22 2011-02-10 Chugoku Electric Power Co Inc:The Repair method of heat exchanger

Also Published As

Publication number Publication date
PH12015501977B1 (en) 2016-01-18
TWI520894B (en) 2016-02-11
WO2014136527A1 (en) 2014-09-12
MY177269A (en) 2020-09-10
TW201434728A (en) 2014-09-16
JP6320992B2 (en) 2018-05-09
PH12015501977A1 (en) 2016-01-18

Similar Documents

Publication Publication Date Title
KR101732782B1 (en) Heat exchanger having enhanced corrosion resistance
JP6357706B2 (en) Heat exchanger
CN105953231A (en) High-parameter waste incineration boiler with reheating function
JP6320992B2 (en) Heat exchanger corrosion countermeasure method and heat exchanger corrosion countermeasure structure
JP2007155233A (en) Boiler furnace and manufacturing method of panel for boiler furnace
CN101225961A (en) Anticorrosion superheater for refuse incineration exhaust-heating boiler
CN205560784U (en) Four unification sulfur recovery waste heat utilization processing apparatus
JP3180377U (en) Heat exchanger
CN207584803U (en) The protector of heat-transfer pipe, the heat exchanger and boiler for having the protector
CN209386313U (en) Segmented water- to-water heat exchanger
JP2023533908A (en) Systems and methods for heat exchanger control based on real-time corrosion monitoring
JP5134393B2 (en) Marine boiler
JP2020101320A (en) Seal structure of boiler, boiler, and method for operating boiler
JP2020176760A (en) Boiler device
JP2005069575A (en) Heat exchanger
JP7237653B2 (en) Boiler heat transfer tube support device, boiler, boiler heat transfer tube support method, boiler heat transfer tube replacement method, and boiler heat transfer tube support device replacement method
JP7130569B2 (en) HEAT EXCHANGER, BOILER, AND METHOD FOR ADJUSTING HEAT EXCHANGER
KR101508755B1 (en) A HRSG of mono drum type
JP7187529B2 (en) System and method for connecting conduit components in a boiler
JP7005361B2 (en) How to install heat exchangers, boilers and heat exchangers
JP2017044394A (en) Guard protector for heat transfer pipe, boiler with guard protector, additional installation method for guard protector for heat transfer pipe
JP5366851B2 (en) Heat exchanger
RU2597355C1 (en) Fire-tube multiple pass boiler
JP3177117U (en) Repair jig for heat exchanger
JP2007147159A (en) Membrane wall for boiler, and boiler device using it

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180404

R150 Certificate of patent or registration of utility model

Ref document number: 6320992

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150