JPWO2014118829A1 - Oral composition - Google Patents

Oral composition Download PDF

Info

Publication number
JPWO2014118829A1
JPWO2014118829A1 JP2014559359A JP2014559359A JPWO2014118829A1 JP WO2014118829 A1 JPWO2014118829 A1 JP WO2014118829A1 JP 2014559359 A JP2014559359 A JP 2014559359A JP 2014559359 A JP2014559359 A JP 2014559359A JP WO2014118829 A1 JPWO2014118829 A1 JP WO2014118829A1
Authority
JP
Japan
Prior art keywords
mizuna
cold water
water extract
biofilm
extract
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014559359A
Other languages
Japanese (ja)
Other versions
JP6300736B2 (en
Inventor
彰太 毛利
彰太 毛利
貴則 津金
貴則 津金
洋二 佐伯
洋二 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lotte Co Ltd
Original Assignee
Lotte Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lotte Co Ltd filed Critical Lotte Co Ltd
Publication of JPWO2014118829A1 publication Critical patent/JPWO2014118829A1/en
Application granted granted Critical
Publication of JP6300736B2 publication Critical patent/JP6300736B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/105Plant extracts, their artificial duplicates or their derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/96Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution
    • A61K8/97Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution from algae, fungi, lichens or plants; from derivatives thereof
    • A61K8/9783Angiosperms [Magnoliophyta]
    • A61K8/9789Magnoliopsida [dicotyledons]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/02Stomatological preparations, e.g. drugs for caries, aphtae, periodontitis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q11/00Preparations for care of the teeth, of the oral cavity or of dentures; Dentifrices, e.g. toothpastes; Mouth rinses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/005Antimicrobial preparations

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Botany (AREA)
  • Mycology (AREA)
  • Chemical & Material Sciences (AREA)
  • Birds (AREA)
  • Microbiology (AREA)
  • Epidemiology (AREA)
  • Biotechnology (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dermatology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Cosmetics (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Confectionery (AREA)
  • Jellies, Jams, And Syrups (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Non-Alcoholic Beverages (AREA)

Abstract

既存の抗菌剤などと比較して、耐性菌出現リスクが低いなどのメリットを有する新しい着眼点での歯周病予防剤の提供。水菜冷水抽出物を含有する、バイオフィルム形成抑制作用を有する口腔用組成物。Providing a new preventive agent for periodontal disease that has advantages such as lower risk of appearance of resistant bacteria than existing antibacterial agents. The composition for oral cavity which has a biofilm formation inhibitory effect containing a mizuna cold water extract.

Description

本発明は、口腔疾患の原因である口腔バイオフィルムに対する歯周病改善効果に優れた口腔用組成物に関する。   The present invention relates to an oral composition excellent in periodontal disease improving effect on an oral biofilm which is a cause of oral diseases.

歯周病とは歯周組織に見られる疾患群の総称であり、狭義では歯肉炎、歯周炎および咬合性外傷が相当される疾患である。歯周病はデンタルプラークが主な原因となり引き起こされる口腔内感染症である。ヒトの口腔内には700種類以上の細菌が存在し、健康な口腔内ではStreptococcus属やActinomyces属といった初期付着菌が歯面に付着している。その中のActinomyces naeslundiiは出血性歯肉炎原因菌と言われており、初期付着したA. naeslundii がバイオフィルムを形成しプラークを作ることで歯肉に炎症を発症させる。Actinomyces による歯肉の炎症は、菌体膜上のリポタンパク質により歯肉上皮細胞やマクロファージのTLR2を介してIL-8やTNF-αの産生をさせることで引き起こされるという報告がなされている。歯肉に炎症が起こると、歯周ポケットが形成され、また出血や歯肉溝滲出液の滲出を伴い、歯周病原性細菌として知られるPorphyromonas gingivalisやAggregatibacter actinomycetemcomitans、Treponema denticolaなどが歯周ポケットに住み着く環境が整えられる。また、A. naeslundiiは歯面へ付着するだけでなく多くの口腔内細菌と共凝集することで、歯周病原性細菌のプラークへの定着の足場となる。これらのことから、A. naeslundiiは初期プラークから後期プラーク(歯周病バイオフィルム)へ移行させるため、歯周病発症に関わる重要な細菌として近年注目を集めている。   Periodontal disease is a general term for a group of diseases found in periodontal tissues, and in a narrow sense, it is a disease to which gingivitis, periodontitis, and occlusal trauma are equivalent. Periodontal disease is an oral infection caused mainly by dental plaque. There are more than 700 kinds of bacteria in the human oral cavity, and in the healthy oral cavity, early-adherent bacteria such as Streptococcus and Actinomyces are attached to the tooth surface. Among them, Actinomyces naeslundii is said to be a causative agent of hemorrhagic gingivitis, and A. naeslundii that initially adheres forms a biofilm and makes plaque, which causes inflammation in the gums. It has been reported that inflammation of the gingiva caused by Actinomyces is caused by the production of IL-8 and TNF-α through TLR2 of gingival epithelial cells and macrophages by lipoproteins on the cell membrane. When inflammation occurs in the gums, periodontal pockets are formed, and bleeding and gingival crevicular fluid exudate. Is arranged. A. naeslundii not only adheres to the tooth surface but also co-aggregates with many oral bacteria, providing a scaffold for periodontopathic bacterial colonization. From these facts, A. naeslundii has recently attracted attention as an important bacterium involved in the onset of periodontal disease since it shifts from early plaque to late plaque (periodontal disease biofilm).

従来の歯周病予防ではP. gingivalis などの歯周病原性細菌を殺菌することで歯周病を抑制する考え方が主流であったが、歯周病原性細菌は歯周ポケットの深部にバイオフィルムと共に存在するため、抗菌物質が浸透しにくく、思ったような効果を得られないことが多い。   In the conventional periodontal disease prevention, the idea of controlling periodontal disease by killing periodontopathic bacteria such as P. gingivalis was the mainstream, but periodontopathic bacteria are biofilms deep in the periodontal pocket. In many cases, antibacterial substances are difficult to penetrate, and the desired effect is often not obtained.

この点を改善するために、特許文献1には、(A)N−アシルサルコシン又はその塩と、(B)ベンジルイソチオシアネートとを配合し、かつ(A)/(B)の質量比が0.5〜20であることにより、口腔バイオフィルム抗菌効果及び歯肉炎改善効果を示すことが開示されている。しかしながら、特許文献1においても、耐性菌が出現する危険度が依然として高い。   In order to improve this point, Patent Document 1 includes (A) N-acyl sarcosine or a salt thereof and (B) benzylisothiocyanate, and the mass ratio of (A) / (B) is 0. It is disclosed that an oral biofilm antibacterial effect and a gingivitis improving effect are exhibited by being .5-20. However, even in Patent Document 1, the risk of appearance of resistant bacteria is still high.

歯周病は歯肉炎を発症することから進行するため、歯肉炎を予防することで、より効果的な歯周病予防が可能である。従って、A. naeslundiiのバイオフィルム形成を抑制する素材には効果的な歯周病予防効果が期待できる。   Since periodontal disease progresses from developing gingivitis, preventing gingivitis can prevent periodontal disease more effectively. Therefore, an effective periodontal disease prevention effect can be expected from a material that suppresses biofilm formation of A. naeslundii.

本発明者等は、A. naeslundii のバイオフィルム形成は酸ストレスにより促進されることを確認し、水菜や小松菜などの5種類のアブラナ科植物とアイスプラントの抽出物にA. naeslundii の酸誘導性バイオフィルムの形成量を50〜90%低下させる活性を確認している(特許文献2)。   The present inventors confirmed that the biofilm formation of A. naeslundii was promoted by acid stress, and the acid-inducibility of A. naeslundii was extracted from five kinds of cruciferous plants such as mizuna and komatsuna and ice plant extracts. The activity of reducing the amount of biofilm formed by 50 to 90% has been confirmed (Patent Document 2).

本出願では、バイオフィルム形成抑制活性が認められた植物抽出物のうち、最も活性が高く、また入手し易い水菜(水菜、Brassica rapa var. nipposinica)を候補素材とし、詳細な活性評価とその活性成分の性状特定を詳細に検討した。   In this application, among the plant extracts recognized to have biofilm formation inhibitory activity, the most active and easily available mizuna (Mizuna, Brassica rapa var. Nipposinica) is used as a candidate material. The properties of the ingredients were examined in detail.

特開2008−174542号公報JP 2008-174542 A 特開2013−056855号公報JP 2013-056855 A

歯周病原性細菌は歯周ポケットの深部にバイオフィルムと共に存在しており、従来からある歯周病原性細菌を標的とした抗菌剤を用いた歯周病抑制法では、口腔バイオフィルムが抗菌剤の浸透を妨げ、狙ったとおりの歯周病抑制効果を出すことが困難であった。また、抗菌剤の使用は耐性菌が出現する危険性が高く、好ましくない。従って、歯周病原性細菌の抗菌剤によるコントロールよりも、初期の歯周病原性細菌のバイオフィルム形成の制御を行なうことが、より安全で効果の高い歯周病予防法であると考えられる。   Periodontopathic bacteria are present in the deep part of the periodontal pocket along with biofilms. In the conventional periodontal disease control method using antibacterial agents targeting periodontopathic bacteria, oral biofilms are antibacterial agents. It was difficult to prevent periodontal disease as intended and prevent the penetration of Also, the use of antibacterial agents is not preferred because of the high risk of resistant bacteria appearing. Therefore, it is considered that the control of the initial periodontal pathogenic bacteria biofilm formation is a safer and more effective periodontal disease prevention method than the control of periodontopathic bacteria with antibacterial agents.

本発明者等が鋭意研究を進めた結果、水菜の抽出物が酸により誘導されるActinomyces naeslundiiのバイオフィルム形成に対して阻害効果を有することを見出した。この阻害効果は抽出温度が低温であるほど高かった。水菜抽出物の活性成分を分画した結果、活性成分は分子量10kDa以上の成分であると推定され、活性画分中に含まれる成分の80%以上がタンパク質であることを見出し、本発明を完成した。なお、水菜抽出物はA. naeslundiiの増殖には影響を及ぼさなかったため、作用機序は抗菌作用とは異なることが考えられた。   As a result of diligent research by the present inventors, it has been found that the extract of mizuna has an inhibitory effect on acid-induced biofilm formation of Actinomyces naeslundii. This inhibitory effect was higher as the extraction temperature was lower. As a result of fractionating the active ingredients of mizuna extract, the active ingredient is estimated to be a component having a molecular weight of 10 kDa or more, and it is found that 80% or more of the components contained in the active fraction are proteins, and the present invention is completed. did. The mizuna extract did not affect the growth of A. naeslundii, so the mechanism of action was considered to be different from the antibacterial action.

Actinomyces naeslundiiは、歯肉炎や根面う蝕部位から発見されるグラム陽性桿菌で、初期の歯周病原性細菌と言われている。連鎖球菌や歯周病原性細菌と共凝集するため、歯周病プラークへの菌叢遷移の鍵を握る細菌であり、A. naeslundiiのコントロールが歯周病予防に繋がると考えられる。本発明者等の研究では、歯周病原性細菌の産生する酪酸などの酸によりバイオフィルム形成が増加することを確認した。   Actinomyces naeslundii is a Gram-positive gonococci found in gingivitis and root caries sites and is said to be an early periodontopathogenic bacterium. Since it coaggregates with streptococci and periodontopathic bacteria, it is the key to the transition of flora to periodontal disease plaques, and control of A. naeslundii is thought to lead to periodontal disease prevention. In our study, we have confirmed that biofilm formation is increased by acids such as butyric acid produced by periodontopathic bacteria.

本発明の水菜抽出物を含有する口腔用組成物は、初期歯周病原性細菌のバイオフィルム形成を顕著に抑制することから、抗菌剤よりもより安全で効果の高い歯周病予防法として有用である。   The composition for oral cavity containing the mizuna extract of the present invention remarkably suppresses biofilm formation of early periodontal pathogenic bacteria, and is useful as a safer and more effective periodontal disease prevention method than antibacterial agents. It is.

抽出温度の相違によるバイオフィルム形成抑制活性の比較Comparison of biofilm formation inhibitory activity with different extraction temperatures 抽出温度の相違によるバイオフィルム形成抑制活性の比較Comparison of biofilm formation inhibitory activity with different extraction temperatures 水菜冷水抽出物のハイドロキシアパタイト上でのバイオフィルム形成抑制活性Biofilm formation inhibitory activity of mizuna cold water extract on hydroxyapatite 口腔内臨床分離株の系統解析Phylogenetic analysis of oral clinical isolates 口腔内臨床分離株の系統解析Phylogenetic analysis of oral clinical isolates 水菜冷水抽出物の臨床分離株に対するバイオフィルム形成抑制活性Biofilm formation inhibitory activity of clinical extract of mizuna cold water extract フローセルにおける水菜冷水抽出物のバイオフィルム形成抑制活性Biofilm formation inhibitory activity of mizuna cold water extract in flow cell 共焦点レーザー顕微鏡によるバイオフィルム観察図Biofilm observation with confocal laser microscope 水菜冷水抽出物、水菜冷水抽出物の透析処理による透析内液、透析外液のバイオフィルム形成抑制活性の比較Comparison of biofilm formation inhibitory activity of dialysis treatment of mizuna cold water extract and mizuna cold water extract by dialysis treatment 水菜冷水抽出物透析内液の陰イオン交換クロマトグラフィーの結果Results of anion exchange chromatography of dialysis internal solution of mizuna cold water extract 水菜冷水抽出物透析内液の硫安分画のバイオフィルム形成抑制活性Biofilm formation inhibitory activity of ammonium sulfate fraction in dialysis internal solution of mizuna cold water extract 水菜冷水抽出物透析内液の硫安分画物の陰イオン交換クロマトグラフィーの結果Results of Anion Exchange Chromatography of Ammonium Sulfate Fractionation in Mizuna Cold Water Extract Dialysis Internal Solution 水菜冷水抽出物配合チューインガムのバイオフィルム形成抑制活性Biofilm formation inhibitory activity of chewing gum containing mizuna cold water extract

本願発明は、水菜抽出物を含有する口腔用組成物に関する。
さらに、本願発明は、前記水菜抽出物が、冷水抽出物である口腔用組成物に関する。
さらにまた、本願発明は、水菜抽出物を含有する歯周病バイオフィルム形成抑制剤に関する。
さらに、本願発明は、前記水菜抽出物が、冷水抽出物である酸誘導バイオフィルム形成抑制剤に関する。
さらにまた、本願発明は、上記口腔用組成物からなる含そう剤、練り歯磨き剤、吸入剤、トローチ剤、及び食品に関する。
This invention relates to the composition for oral cavity containing a mizuna extract.
Furthermore, this invention relates to the composition for oral cavity whose said mizuna extract is a cold water extract.
Furthermore, this invention relates to the periodontal disease biofilm formation inhibitor containing a mizuna extract.
The present invention further relates to an acid-induced biofilm formation inhibitor, wherein the mizuna extract is a cold water extract.
Furthermore, the present invention relates to a mouthwash, a toothpaste, an inhalant, a troche, and a food comprising the oral composition.

以下、本発明を実施例により具体的に説明する。なお、本願発明はこれら実施例により限定されるものではない。   Hereinafter, the present invention will be specifically described by way of examples. The present invention is not limited to these examples.

(実施例1)
水菜抽出物の調製法:
市販されている水菜(茨城県産)を購入し、凍結乾燥することで水菜乾燥葉を調製した。水菜乾燥葉を細かく粉砕し、この粉砕した水菜乾燥葉1gに対して脱イオン蒸留水50mlの割合で70℃、室温、及び4℃にて2時間抽出を行った。得られた抽出液を吸引ろ過し、13,000×g・10分間で遠心し、その上清を凍結乾燥したものを水菜抽出物として試験に供した。
Example 1
Preparation method of mizuna extract:
Commercially available mizuna (produced in Ibaraki Prefecture) was purchased and freeze-dried to prepare dried mizuna leaves. The dried mizuna leaf was finely pulverized, and 1 g of the crushed dried mizuna leaf was extracted at a rate of 50 ml of deionized distilled water at 70 ° C., room temperature, and 4 ° C. for 2 hours. The obtained extract was subjected to suction filtration, centrifuged at 13,000 × g for 10 minutes, and the supernatant was freeze-dried and used for the test as a mizuna extract.

(実施例2)
バイオフィルム形成試験
(Example 2)
Biofilm formation test

(実施例2−1)
96ウェルマイクロタイタープレートを用いたバイオフィルム形成
A. naeslundii ATCC19039またはActinomyces spp.臨床分離株を5mlのBrain Heart Infusion(BHI)液体培地にて37℃の嫌気条件下で一晩定常期まで培養し、1,100×g・10分間遠心集菌した。同条件にてPBSで3回遠心洗浄し、PBSでO.D.660nm=0.3に調製したものを供試菌懸濁液として試験系に供した。
バイオフィルム形成は96ウェルマイクロタイタープレートを用いて行った。各ウェルに0. 5%スクロース添加2×Trypticase Soy Broth(TSB)培地100μl、試験サンプル50μl、125 mM酪酸20μl、供試菌懸濁液20μl、PBS 10μlを添加し、37℃、5%CO条件下にて16〜20時間培養を行った。
(Example 2-1)
Biofilm formation using 96-well microtiter plates
A. naeslundii ATCC19039 or Actinomyces spp. Clinical isolates were cultured in 5 ml of Brain Heart Infusion (BHI) liquid medium under anaerobic conditions at 37 ° C. overnight until stationary phase and centrifuged at 1,100 × g for 10 minutes. Under the same conditions, the plate was centrifuged 3 times with PBS, and prepared with PBS to an OD 660 nm of 0.3 was used as a test bacterial suspension in the test system.
Biofilm formation was performed using 96 well microtiter plates. To each well, 100 μl of 2 × Trypticase Soy Broth (TSB) medium supplemented with 0.5% sucrose, 50 μl of test sample, 20 μl of 125 mM butyric acid, 20 μl of the test bacterial suspension, 10 μl of PBS, 37 ° C., 5% CO 2 The culture was performed for 16 to 20 hours under the conditions.

(実施例2−2)
96ウェルマイクロタイタープレートでのバイオフィルム形成量の定量
実施例2−1に従い培養した培養上清をデカントし、PBS 200μlにて各ウェルを洗浄後に0.25%サフラニン溶液(日水製薬)100μlを添加し15分間静置することでバイオフィルムを染色した。サフラニン溶液をデカント後に脱イオン蒸留水にて2回洗浄し、乾燥後に70%エタノールを100μl添加し、30分間振とうすることで、サフラニンを溶出させ、マイクロプレートリーダーを用いて492nmの吸光度にてバイオフィルム量を定量した。
上記した実施例により、水菜から70℃、室温、4℃の各条件下で抽出したそれぞれの水菜抽出物の重量辺りの比活性を評価したところ、4℃の条件下で抽出した冷水抽出物の比活性が最も高かった(図1及び図2)。また、水菜冷水抽出物はA. naeslundii の増殖には影響を示さなかった。
そのため、水菜冷水抽出物をActinomyces バイオフィルム抑制素材の候補材料として、ヒト口腔内で活性を示す可能性があるのか更なる検討を行った。
(Example 2-2)
Quantification of amount of biofilm formed in 96-well microtiter plate Decant the culture supernatant cultured according to Example 2-1, wash each well with 200 μl of PBS and add 100 μl of 0.25% safranin solution (Nissui Pharmaceutical). The biofilm was stained by adding and allowing to stand for 15 minutes. The safranine solution was decanted and washed twice with deionized distilled water. After drying, 100 μl of 70% ethanol was added, and the mixture was shaken for 30 minutes to elute safranin, using a microplate reader at an absorbance of 492 nm. The amount of biofilm was quantified.
When the specific activity per weight of each mizuna extract extracted from mizuna under the conditions of 70 ° C., room temperature, and 4 ° C. was evaluated according to the above-mentioned examples, the cold water extract extracted under the condition of 4 ° C. Specific activity was the highest (FIGS. 1 and 2). Mizuna cold water extract did not affect the growth of A. naeslundii.
Therefore, we investigated further whether mizuna cold water extract may be active in human oral cavity as a candidate material for Actinomyces biofilm suppression material.

(実施例2−3)
ハイドロキシアパタイト(HA)上でのバイオフィルム形成
HAディスクはウシ歯を表面がエナメル質で覆われるように7mm×7mm×1.5mmの形に成形したものを用いた。HAディスクをオートクレーブにて滅菌した後、PBSにより室温で1時間平衡化し、無菌的に採取したヒト唾液400μlを室温で1時間静置することでペリクルを形成させ、PBSにて洗浄後に5mg/ml BSA溶液で室温で30分間ブロッキングしたものを試験に用いた。
バイオフィルム形成は24ウェルマイクロタイタープレートを用いて行った。各ウェルに0.5%スクロース添加2×TSB培地400μl、試験サンプル200μl、125mM酪酸 80μl、供試菌懸濁液 80μl、PBS 40μlを添加し、HAディスクを各ウェルに置き、実施例2−1に従い培養した。
(Example 2-3)
Biofilm Formation on Hydroxyapatite (HA) The HA disk used was a bovine tooth molded into a 7 mm x 7 mm x 1.5 mm shape so that the surface was covered with enamel. The HA disk was sterilized in an autoclave, equilibrated with PBS for 1 hour at room temperature, and 400 μl of aseptically collected human saliva was allowed to stand at room temperature for 1 hour to form a pellicle. After washing with PBS, 5 mg / ml A BSA solution blocked at room temperature for 30 minutes was used for the test.
Biofilm formation was performed using 24-well microtiter plates. To each well was added 400 μl of 2 × TSB medium supplemented with 0.5% sucrose, 200 μl of test sample, 80 μl of 125 mM butyric acid, 80 μl of the test bacterial suspension, and 40 μl of PBS, and the HA disk was placed in each well. Example 2-1 Incubated according to

(実施例2−4)
HA上のバイオフィルム形成量の定量
実施例2−3に従い培養した後にHAディスクをピンセットにて取り出し、PBSに一度浸すことで洗浄した。洗浄したHAディスクを新しいウェルに入れ、サフラニン溶液600μlを添加し15分間静置することでバイオフィルムを染色した。HAをピンセットにて取り出し、脱イオン蒸留水にて洗浄後に新しいウェルに置き70%エタノールを600μl添加し、30分間振とうすることでサフラニンを溶出させ、その溶出液300μlを96ウェルマイクロタイタープレートに移して実施例2−2に従いバイオフィルム量を定量した。
上記実施例によりペリクルを形成させたハイドロキシアパタイト上において、水菜冷水抽出物のバイオフィルム形成抑制活性を評価した結果を図3に示した。水菜冷水抽出物はハイドロキシアパタイト上においても、96ウェル上と同様にA. naeslundiiバイオフィルム形成抑制活性を示した。
(Example 2-4)
Quantification of biofilm formation on HA After culturing according to Example 2-3, the HA disk was taken out with tweezers and washed by immersing it once in PBS. The washed HA disk was placed in a new well, 600 μl of safranin solution was added, and the biofilm was stained by allowing to stand for 15 minutes. Remove HA with tweezers, place it in a new well after washing with deionized distilled water, add 600 μl of 70% ethanol, shake for 30 minutes to elute safranin, and add 300 μl of the eluate to a 96-well microtiter plate. The amount of biofilm was quantified according to Example 2-2.
FIG. 3 shows the results of evaluating the biofilm formation inhibitory activity of the mizuna cold water extract on the hydroxyapatite on which the pellicle was formed according to the above example. The mizuna cold water extract showed A. naeslundii biofilm formation inhibitory activity on hydroxyapatite as well as on 96 wells.

(実施例3)
Actinomyces 臨床分離株の分離
(Example 3)
Actinomyces clinical isolate isolation

(実施例3−1)
PCR/マルチプレックスPCR
PCRは10×Ex Taq buffer 2.5μl、DNAテンプレート1μl、dNTP 2μl、プライマー 各0.025μl、Ex taq 0.125μl、MgCl 2μl、HO 16.88μl、を PCRチューブに加えて行った。マルチプレックスPCRは上記の組成を50μM Forward プライマー 3 つ、Reverse プライマー 3つを各 0. 1μl、HO 16.75μlへと変更して行った。反応条件は95℃で10分間にて熱処理後に95℃・30秒、50℃・30秒、72℃・30秒を30サイクル行ない、最後に72℃で7分間にて完全に伸長反応を完了させた。マルチプレックスPCRはアニーリング温度を53℃にて行った。
(Example 3-1)
PCR / multiplex PCR
PCR was performed by adding 2.5 μl of 10 × Ex Taq buffer, 1 μl of DNA template, 2 μl of dNTP, each primer 0.025 μl, Ex taq 0.125 μl, MgCl 2 2 μl, H 2 O 16.88 μl to the PCR tube. Multiplex PCR was performed by changing the above composition to three 50 μM Forward primers and three Reverse primers to 0.1 μl each and 16.75 μl H 2 O. The reaction conditions were 95 ° C for 30 minutes, 95 ° C for 30 seconds, 50 ° C for 30 seconds, 72 ° C for 30 seconds, and finally the extension reaction was completed completely at 72 ° C for 7 minutes. It was. Multiplex PCR was performed at an annealing temperature of 53 ° C.

(実施例3−2)
臨床分離株の分離
任意選択した健常人男女7人(男:3人、女:4人)よりプラークを採取し、Actinomyces 選択培地(CFAT寒天培地)にて培養し、形成されたコロニーをグラム染色後、顕微鏡観察によりグラム陽性桿菌を選別した。
各グラム陽性桿菌からゲノム抽出キット(sigma)にてゲノムを抽出し、実施例3−1に従いPCRを行い 16SrRNA遺伝子の上流の約500bpを増幅させた。PCRに用いたプライマー配列は表1に示した。
PCR産物は PCR Clean-Up キット(promega)にて精製し、塩基配列分析を(株)マクロジェンジャパン社に外部委託して行った。取得した16SrRNA遺伝子の塩基配列をGenBank上のデータベースとの相同性検索にて菌を推定した。上記にてActinomyces 属と推定された菌はatpAを実施例3−1に従いマルチプレックPCRにて増幅させ、同様に塩基配列分析を(株)マクロジェンジャパン社に外部委託して行った。用いたプライマー配列は表1に示した。取得した塩基配列をデータベース上のatpAの塩基配列と共に系統解析することで、種の同定を行ない、得られた A. naeslundii、A. oris を Actinomyces spp. 臨床分離株とした。
(Example 3-2)
Separation of clinical isolates Plaques were collected from 7 healthy males and females (man: 3 and female: 4) selected arbitrarily, cultured in Actinomyces selective medium (CFAT agar medium), and colonies formed were gram-stained Thereafter, Gram-positive rods were selected by microscopic observation.
A genome was extracted from each Gram-positive rod using a genome extraction kit (sigma), and PCR was performed according to Example 3-1, to amplify about 500 bp upstream of the 16SrRNA gene. The primer sequences used for PCR are shown in Table 1.
The PCR product was purified with a PCR Clean-Up kit (promega), and nucleotide sequence analysis was outsourced to Macrogen Japan. Bacteria were estimated by homology search of the obtained 16S rRNA gene base sequence with a database on GenBank. The bacteria presumed to belong to the genus Actinomyces were amplified atpA by multiplex PCR according to Example 3-1, and were similarly outsourced to Macrogen Japan Co., Ltd. for base sequence analysis. The primer sequences used are shown in Table 1. Species were identified by systematic analysis of the obtained nucleotide sequence together with the nucleotide sequence of atpA in the database, and the obtained A. naeslundii and A. oris were used as Actinomyces spp. Clinical isolates.

上記実施例により、ヒト口腔内から臨床分離株の分離を行った結果、7人から合計9株のActinomyces 臨床分離株(A. naeslundii:4株、A. oris:5株)の分離に成功した。さらに分離した Actinomyces 臨床分離株のうち7株に対して水菜冷水抽出物のバイオフィルム形成抑制活性を評価したところ、菌株によってバイオフィルム形成量は異なるものの、水菜冷水抽出物はすべての臨床分離株に対してバイオフィルム抑制活性を示した(図5)。図3の結果と合わせると、水菜冷水抽出物がヒト口腔内においてもバイオフィルム形成抑制活性を示す可能性が高いことが示唆された。   As a result of isolating clinical isolates from the human oral cavity according to the above example, a total of 9 Actinomyces clinical isolates (A. naeslundii: 4 strains, A. oris: 5 strains) were successfully isolated from 7 people. . Furthermore, when the biofilm formation inhibitory activity of mizuna cold water extract was evaluated for 7 isolates of Actinomyces clinical isolates, the amount of biofilm formation varied depending on the strain, but mizuna cold water extract was found in all clinical isolates. On the other hand, the biofilm inhibitory activity was shown (FIG. 5). When combined with the results in FIG. 3, it was suggested that the extract of cold water from mizuna is highly likely to exhibit biofilm formation inhibitory activity even in the human oral cavity.

(実施例4)
フローセルを用いた水菜冷水抽出物のバイオフィルム抑制評価
上記の実施例は、96ウェルプレートを用いた静止系による評価において、水菜冷水抽出物にActinomyces naeslundiiバイオフィルム抑制活性があることを示した。しかしながら実際の口腔内を考えると、唾液が絶えず分泌されており、口腔内に唾液の流動が存在する。そこで、水菜冷水抽出物が口腔内においてもA. naeslundiiのバイオフィルム抑制活性を示すか評価するため、口腔環境を模したフローセルシステムを用いて、水菜冷水抽出物のA. naeslundiiバイオフィルム抑制活性を評価した。
評価方法
(実施例4−1)評価菌株
Actinomyces naeslundii ATCC19039株を使用した。
(実施例4−2)水菜抽出物の調製
市販されている水菜を購入し、凍結乾燥にて水菜の乾燥葉を調製した。細かく粉砕した水菜乾燥葉1gに対して50mlの脱イオン蒸留水により、4℃条件下にて2時間抽出を行った。吸引濾過および遠心により水菜残渣を取り除いた上清を凍結乾燥し、水菜冷水抽出物を回収した。
(実施例4−3)フローセルを用いたバイオフィルム形成試験
A. naeslundiiを5mlのBHI培地にて一晩培養し、遠心集菌した後、PBSにて遠心洗浄を行ない、BHI培地にてO.D.660nm=0.4に調製し、これを供試菌液とした。供試菌液400μlをフローセルチャンバー(ACCFL0001:STOVALL LIFE SCIENCE社)に接種し、チャンバーの向きをバイオフィルム形成面を下側にした後、37℃条件下にて3時間静置し、バイオフィルム形成面に菌を付着させた。静置後、チャンバーの向きをバイオフィルム形成面を上側にし、0.25%スクロース・60mM酪酸を添加したTSB培地をペリスタポンプにより3ml/時間の流速にて流しながら48時間培養を行ない、バイオフィルムを形成させた。水菜冷水抽出物のバイオフィルム抑制活性は、終濃度1mg/mlの水菜冷水抽出物を上記培地に添加し、同様に培養することで評価した。
(実施例4−4)バイオフィルムの観察
形成されたバイオフィルムを脱イオン蒸留水にて洗浄し、LIVE/DEAE BIOFILM VIABILITY KIT(invitrogen社)によりLive/Dead染色を行った後、共焦点レーザー顕微鏡にてバイオフィルムを観察した。
上記した実施例により、フローセルを用いた流動系条件下にて水菜冷水抽出物のバイオフィルム形成抑制活性を評価したところ、水菜冷水抽出物はA. naeslundii のバイオフィルム形成を抑制した(図6、7)。また、共焦点レーザー顕微鏡による観察から、水菜冷水抽出物添加条件下にて形成されたバイオフィルムでは、死菌の占める割合が減少していた(図7)。
より詳細には、フローセルを用いた評価においても、酪酸を添加するとA. naeslundiiのバイオフィルム形成が増加し、そのバイオフィルムには生菌と死菌が同程度存在していた。バイオフィルムを構成する死菌の割合は、酪酸を添加しない場合に比べて高かった。1mg/mlの水菜冷水抽出物の存在下では、A. naeslundiiのバイオフィルム形成量が抑制され、特に死菌の付着量が減少した。従って、水菜冷水抽出物は、酪酸に依存したA. naeslundiiのバイオフィルム形成を抑制することが明らかとなった。
Example 4
Evaluation of Biofilm Inhibition of Mizuna Cold Water Extract Using Flow Cell The above examples showed that Mizuna cold water extract has Actinomyces naeslundii biofilm suppression activity in a static system evaluation using a 96-well plate. However, considering the actual oral cavity, saliva is constantly secreted, and there is a flow of saliva in the oral cavity. Therefore, in order to evaluate whether the mizuna cold water extract shows the biofilm inhibitory activity of A. naeslundii even in the oral cavity, the A. naeslundii biofilm inhibitory activity of the mizuna cold water extract was evaluated using a flow cell system that mimics the oral environment. evaluated.
Evaluation method (Example 4-1) Evaluation strain
Actinomyces naeslundii ATCC19039 strain was used.
(Example 4-2) Preparation of mizuna extract Commercially available mizuna was purchased, and dried leaves of mizuna were prepared by freeze-drying. Extraction was performed for 2 hours at 4 ° C. with 50 ml of deionized distilled water per 1 g of finely ground dried mizuna leaves. The supernatant from which the mizuna residue was removed by suction filtration and centrifugation was lyophilized to recover the mizuna cold water extract.
(Example 4-3) Biofilm formation test using flow cell
A. naeslundii was cultured overnight in 5 ml of BHI medium, collected by centrifugation, centrifuged and washed with PBS, and O.B. D. It adjusted to 660nm = 0.4, and this was made into the test microbe liquid. Inoculate 400 μl of the test bacterial solution into a flow cell chamber (ACCFL0001: STOVALL LIFE SCIENCE), set the direction of the chamber with the biofilm formation side down, and leave it at 37 ° C. for 3 hours to form a biofilm. Bacteria were attached to the surface. After standing, the biofilm was cultured for 48 hours while flowing the TSB medium with 0.25% sucrose and 60 mM butyric acid added at a flow rate of 3 ml / hour with a peristaltic pump. Formed. The biofilm inhibitory activity of the mizuna cold water extract was evaluated by adding the mizuna cold water extract having a final concentration of 1 mg / ml to the medium and culturing in the same manner.
(Example 4-4) Observation of biofilm The formed biofilm was washed with deionized distilled water and subjected to Live / Dead staining with LIVE / DEAE BIOFILM VIABILITY KIT (Invitrogen), followed by a confocal laser microscope. The biofilm was observed.
When the biofilm formation inhibitory activity of the mizuna cold water extract was evaluated under the flow system conditions using the flow cell according to the above-described examples, the mizuna cold water extract suppressed the biofilm formation of A. naeslundii (FIG. 6, 7). Moreover, from the observation with a confocal laser microscope, in the biofilm formed under the mizuna cold water extract addition conditions, the ratio for which dead bacteria occupied decreased (FIG. 7).
More specifically, in the evaluation using the flow cell, the addition of butyric acid increased the biofilm formation of A. naeslundii, and the biofilm was present with the same number of live and dead bacteria. The proportion of dead bacteria constituting the biofilm was higher than when no butyric acid was added. In the presence of 1 mg / ml mizuna cold water extract, the amount of A. naeslundii biofilm formed was suppressed, especially the amount of dead bacteria attached. Therefore, it was revealed that the mizuna cold water extract suppresses biofilm formation of A. naeslundii depending on butyric acid.

(実施例5)
水菜冷水抽出物の分画
(Example 5)
Fractionation of mizuna cold water extract

(実施例5−1)
透析
水菜冷水抽出物を脱イオン蒸留水に溶解し、13,000×g、10分間遠心して上清を回収し、分画分子量10kDaの透析用セルロースチューブ(アズワン)に入れ、脱イオン蒸留水に対して低温室内で透析を2日間行った。透析内液と透析外液の一部を凍結乾燥し回収した。
上記のように水菜冷水抽出物の分子量を推定するため、分画分子量10kDaの透析用セルロースチューブにより水菜冷水抽出物を透析し、透析内液と外液のバイオフィルム形成抑制活性を評価したところ、透析内液の活性の方が高かった。活性成分の分子量は10kDa以上であることが示唆された(図8)。
(Example 5-1)
Dialysis Mizuna cold water extract is dissolved in deionized distilled water, centrifuged at 13,000 xg for 10 minutes, the supernatant is recovered, put into a cellulose tube for dialysis with a molecular weight cut off of 10 kDa (As One), and against deionized distilled water Dialysis was performed in a cold room for 2 days. A portion of the dialyzed solution and the dialyzed solution were lyophilized and collected.
In order to estimate the molecular weight of the mizuna cold water extract as described above, the mizuna cold water extract was dialyzed with a cellulose tube for dialysis with a molecular weight cut off of 10 kDa, and the biofilm formation inhibitory activity of the dialysis internal solution and external solution was evaluated. The activity of the dialysis internal solution was higher. It was suggested that the molecular weight of the active ingredient is 10 kDa or more (FIG. 8).

(実施例5−2)
水菜冷水抽出物の透析内液のイオン交換クロマトグラフィー
サンプルを10mMリン酸カリウムバッファー(pH7.4)に溶解し、遠心分離後の上清を DEAE-TOYOPEARL 650M ( ψ1.6×70cm)にアプライした。同バッファーにて洗浄後、0-0.5M NaClリニアグラジエントにより溶出し、各フラクションに5mlずつ分取した。なお、すべての操作は流速1ml/分にて行った。
水菜冷水抽出物の透析内液を陰イオン交換クロマトグラフィーにより分画し、どの成分の溶出に依存して活性を示すか評価した(図9)。その結果、活性はタンパク質の第1ピークから第2ピークにかけてタンパク質の溶出パターンに依存して活性を示した。これらのことから活性成分はタンパク質である可能性が示唆された。
(Example 5-2)
Ion exchange chromatography of dialysis internal solution of mizuna cold water extract The sample was dissolved in 10 mM potassium phosphate buffer (pH 7.4), and the supernatant after centrifugation was applied to DEAE-TOYOPEARL 650M (ψ1.6 × 70 cm). . After washing with the same buffer, elution was performed with a 0-0.5M NaCl linear gradient, and 5 ml was fractionated into each fraction. All operations were performed at a flow rate of 1 ml / min.
The dialysis internal solution of the mizuna cold water extract was fractionated by anion exchange chromatography, and it was evaluated which component shows the activity depending on the elution (FIG. 9). As a result, the activity was shown to depend on the protein elution pattern from the first peak to the second peak of the protein. These facts suggested that the active ingredient may be a protein.

(実施例5−3)
硫安分画
実施例5−1に従って調製した水菜冷水抽出物の透析内液サンプルをPBSに溶解し、硫酸アンモニウムの濃度を30%、45%、60%、75%と段階的に高め、各濃度での沈殿物を13,000×g・15分間遠心し回収した。回収した沈殿画分を脱イオン蒸留水に溶解し、透析後に凍結乾燥し回収した。また、75%未沈殿画分も透析後に凍結乾燥にて回収した。
上記のように、バイオフィルム形成抑制活性成分がタンパク質であれば硫安分画が有効であると考え、水菜冷水抽出物の透析内液を硫安により分画し、各濃度での沈殿画分のバイオフィルム形成抑制活性を評価した(図10)。硫安濃度45〜60%での沈殿画分に最も高いバイオフィルム形成抑制活性がみられた。
(Example 5-3)
Ammonium sulfate fraction The dialysis internal solution sample of the extract of cold water extract prepared according to Example 5-1 was dissolved in PBS, and the ammonium sulfate concentration was increased stepwise to 30%, 45%, 60%, and 75%. The precipitate was collected by centrifugation at 13,000 × g for 15 minutes. The collected precipitate fraction was dissolved in deionized distilled water, lyophilized after dialysis, and collected. The 75% unprecipitated fraction was also collected by lyophilization after dialysis.
As described above, if the biofilm formation inhibitory active ingredient is protein, ammonium sulfate fractionation is considered to be effective, and the dialysis internal solution of mizuna cold water extract is fractionated with ammonium sulfate, and the precipitate fraction bio at each concentration is separated. The film formation inhibitory activity was evaluated (FIG. 10). The highest biofilm formation inhibitory activity was observed in the precipitate fraction at an ammonium sulfate concentration of 45-60%.

(実施例5−4)
水菜冷水抽出物の硫安分画物のイオン交換クロマトグラフィー
実施例5−3に従い調製した硫安濃度45〜60%での沈殿画分を、実施例5−2に従い、陰イオン交換クロマトグラフィーにより分画した結果、2つのバイオフィルム形成抑制活性ピークがみられた(図11)。
(Example 5-4)
Ion Exchange Chromatography of Ammonium Sulfate Fraction of Mizuna Cold Water Extract Precipitate fraction prepared according to Example 5-3 at an ammonium sulfate concentration of 45-60% was fractionated by anion exchange chromatography according to Example 5-2. As a result, two biofilm formation inhibitory activity peaks were observed (FIG. 11).

(実施例6)
含有成分定量
(Example 6)
Content determination

(実施例6−1)
タンパク質定量
タンパク質の定量はBCA法を用いて行った。
(Example 6-1)
Protein quantification Protein quantification was performed using the BCA method.

(実施例6−2)
糖定量
糖の定量はフェノール硫酸法を用いて行った。
(Example 6-2)
Sugar quantification Sugar was quantified using the phenol-sulfuric acid method.

(実施例6−3)
ポリフェノール定量
ポリフェノールの定量はFolin-ciocalteu法を用いて行った。
上記、精製に関して、水菜冷水抽出物を透析、硫安分画および陰イオン交換クロマトグラフィーにより分画した結果のまとめを表2に示した。精製段階を進めるに従い、重量辺りの比活性が高くなっており、活性成分の精製は進んでいた。またイオン交換クロマトグラフィーの活性画分の含有成分は80%以上がタンパク質であり、活性成分がタンパク質である可能性が示唆された。
(Example 6-3)
Determination of polyphenols Polyphenols were determined using the Folin-ciocalteu method.
Regarding the above-mentioned purification, Table 2 shows a summary of the results of fractionation of mizuna cold water extract by dialysis, ammonium sulfate fractionation and anion exchange chromatography. As the purification step progressed, the specific activity per weight increased, and the purification of the active ingredient progressed. In addition, 80% or more of the components contained in the active fraction of ion exchange chromatography are proteins, suggesting the possibility that the active components are proteins.

(実施例7)
水菜抽出物配合チューインガムのバイオフィルム形成抑制活性評価
(Example 7)
Evaluation of biofilm formation inhibitory activity of chewing gum with mizuna extract

(実施例7−1)
水菜配合チューインガムの作成
表3の組成で水菜抽出物配合チューインガムを作成した。
(Example 7-1)
Preparation of Mizuna Mixed Chewing Gum Mizuna extract mixed chewing gum was prepared with the composition shown in Table 3.

BFI - 01:水菜冷水抽出物を投入し、12分間混練。
BFI - 02:12分間練成後に水菜冷水抽出物を投入し、その後3分間程度混練。
BFI-01: Mizuna cold water extract was added and kneaded for 12 minutes.
BFI-02: After brewing for 12 minutes, the mizuna cold water extract is added and then kneaded for about 3 minutes.

(実施例7−2)
チューインガム抽出液の調製
5gのチューインガムに37℃に加温したPBSを25ml加え、乳鉢内で5分間押しつぶすことで抽出を行い、1,100×g ・15分間遠心し、その上清を回収し、滅菌フィルター( 0.2μm ) にて滅菌処理を行った物をガム抽出液とした。
(Example 7-2)
Preparation of chewing gum extract solution 25 ml of PBS heated to 37 ° C is added to 5 g of chewing gum, extracted by crushing in a mortar for 5 minutes, centrifuged at 1,100 xg for 15 minutes, the supernatant is recovered, and a sterile filter The product sterilized with (0.2 μm) was used as a gum extract.

(実施例7−3)
チューインガム抽出液のバイオフィルム抑制活性評価
96ウェルマイクロタイタープレートを用いて行った。各ウェルに1%スクロース添加4×TSB培地50μl、チューインガム抽出液100μl、125 mM酪酸20μl、供試菌懸濁液20μl、PBS 10μlを添加し、37℃で5%CO条件下にて16〜20時間培養を行った。バイオフィルム形成量の定量は実施例2−2に従い行った。
(Example 7-3)
Evaluation of biofilm inhibitory activity of chewing gum extract A 96-well microtiter plate was used. To each well, 50 μl of 4 × TSB medium supplemented with 1% sucrose, 100 μl of chewing gum extract, 20 μl of 125 mM butyric acid, 20 μl of the test bacterial suspension, 10 μl of PBS was added at 37 ° C. under 5% CO 2 condition. Culture was performed for 20 hours. The amount of biofilm formed was determined according to Example 2-2.

(実施例7−4)
水菜抽出物のチューインガムからの溶出率評価
280nmの波長の吸光度 (Abs280nm) 測定を行い、以下の計算式により水菜抽出物の溶出率を評価した。
(A1)水菜抽出物を2000ppmの濃度でコントロールガム抽出液に溶解させたもののAbs280nm
(A2)水菜冷水抽出物配合チューインガム抽出液のAbs280nm
(A3)コントロールガムのAbs280nm
溶出率 (%)= ((A2−A3)/(A1−A3))×100
(Example 7-4)
Evaluation of dissolution rate of mizuna extract from chewing gum Absorbance at a wavelength of 280 nm (Abs 280 nm) was measured, and the dissolution rate of mizuna extract was evaluated by the following formula.
(A1) Abs 280 nm of mizuna extract dissolved in control gum extract at a concentration of 2000 ppm
(A2) Abs 280 nm of mizuna cold water extract mixed chewing gum extract
(A3) Abs 280 nm of control gum
Elution rate (%) = ((A2-A3) / (A1-A3)) × 100

上記の実施例により、水菜冷水抽出物配合チューンガム抽出液のバイオフィルム形成抑制活性について検討したところ、水菜冷水抽出物配合チューインガム抽出液はA. naeslundii のバイオフィルム形成を抑制した(図12)。また、水菜冷水抽出物をチューインガムに配合することによる活性の低下もみられなかった。なお、水菜冷水抽出物の溶出率はBFI-01が83.0%、BFI-02が85.7%であった。   According to the above examples, the biofilm formation inhibitory activity of the mizugam cold water extract-containing tune gum extract was examined. The mizuna cold water extract-containing chewing gum extract suppressed the biofilm formation of A. naeslundii (FIG. 12). Moreover, the fall of activity by mix | blending a mizuna cold water extract with chewing gum was not seen. In addition, the elution rate of Mizuna cold water extract was 83.0% for BFI-01 and 85.7% for BFI-02.

水菜冷水抽出物がActinomyces 臨床株に対してもバイオフィルム形成抑制活性を示し、またハイドロキシアパタイト上およびフローセルを用いた評価においてバイオフィルム形成を抑制したことから、水菜冷水抽出物がヒト口腔内においてもバイオフィルム形成抑制活性を示す可能性が示唆された。
水菜冷水抽出物の活性成分の分画によりタンパク質が活性成分である可能性が示唆された。一方、データでは示していないが、BSAや乳タンパク製剤にバイオフィルム抑制活性がみられなかったことから、タンパク質すべてに活性がみられるわけではなく、水菜抽出物中に含まれるタンパク質に特異的な Actinomyces バイオフィルム形成抑制活性がみられると考えられた。
Mizuna cold water extract also showed biofilm formation inhibitory activity against Actinomyces clinical strains, and also suppressed biofilm formation on hydroxyapatite and flow cell evaluation. The possibility of exhibiting biofilm formation inhibitory activity was suggested.
The fractionation of the active ingredient in the extract of cold water extract of mizuna suggested that protein may be the active ingredient. On the other hand, although not shown in the data, since BSA and milk protein preparations did not show biofilm inhibitory activity, not all proteins showed activity, and they were specific to the protein contained in mizuna extract. Actinomyces Biofilm formation inhibitory activity was considered.

水菜冷水抽出物に Actinomyces バイオフィルム形成抑制活性がみられ、Actinomyces 臨床分離株に対しても効果はみられた。水菜冷水抽出物はハイドロキシアパタイト上において、またフローセルを用いた評価においてもバイオフィルム形成抑制活性を示し、ヒト口腔内において活性を示す可能性が示唆された。また、水菜冷水抽出物配合チューインガムはA. naeslundii バイオフィルム形成抑制活性を示した。
水菜冷水抽出物を透析・硫安分画・陰イオン交換クロマトグラフィーにより分画したところ、活性成分は分子量10kDa以上のタンパク質であることが示唆された。
The mizuna cold water extract showed the activity of inhibiting the formation of Actinomyces biofilm and was also effective against Actinomyces clinical isolates. Mizuna cold water extract showed biofilm formation inhibitory activity on hydroxyapatite and in evaluation using a flow cell, suggesting the possibility of activity in the human oral cavity. In addition, chewing gum containing mizuna cold water extract showed A. naeslundii biofilm formation inhibitory activity.
The mizuna cold water extract was fractionated by dialysis, ammonium sulfate fractionation, and anion exchange chromatography, suggesting that the active ingredient is a protein having a molecular weight of 10 kDa or more.

次に、上記したチューインガム以外の製品である、本発明の水菜冷水抽出物を含有するバイオフィルム形成抑制剤を含有する含そう剤、練り歯磨き、口臭用スプレー、トローチ、キャンディ、錠菓、グミゼリー、飲料を常法にて製造した。以下にそれらの処方を示した。なお、これらによって本発明品の範囲を制限するものではない。   Next, it is a product other than the above-mentioned chewing gum, a dressing containing a biofilm formation inhibitor containing the mizuna cold water extract of the present invention, toothpaste, spray for halitosis, troche, candy, tablet confectionery, gummy jelly, Beverages were produced in a conventional manner. Their formulations are shown below. Note that the scope of the present invention is not limited by these.

(実施例8)
下記処方に従って含そう剤を製造した。
エタノール 2.0重量%
水菜冷水抽出物 1.0
香料 1.0
水 残
100.0
(Example 8)
A mouthwash was prepared according to the following formulation.
Ethanol 2.0% by weight
Mizuna cold water extract 1.0
Fragrance 1.0
Water remaining
100.0

(実施例9)
下記処方に従って練り歯磨きを製造した。
炭酸カルシウム 50.0重量%
グリセリン 19.0
水菜冷水抽出物 1.0
カルボオキシメチルセルロース 2.0
ラルリル硫酸ナトリウム 2.0
香料 1.0
サッカリン 0.1
クロルヘキシジン 0.01
水 残
100.0
Example 9
A toothpaste was produced according to the following formulation.
Calcium carbonate 50.0% by weight
Glycerin 19.0
Mizuna cold water extract 1.0
Carboxymethylcellulose 2.0
Sodium ralyl sulfate 2.0
Fragrance 1.0
Saccharin 0.1
Chlorhexidine 0.01
Water remaining
100.0

(実施例10)
下記処方に従って口臭用スプレーを製造した。
エタノール 10.0重量%
グリセリン 5.0
水菜冷水抽出物 1.0
香料 0.05
着色料 0.001
水 残
100.0
(Example 10)
A spray for halitosis was produced according to the following formulation.
Ethanol 10.0% by weight
Glycerin 5.0
Mizuna cold water extract 1.0
Fragrance 0.05
Coloring 0.001
Water remaining
100.0

(実施例11)
下記処方に従ってトローチを製造した。
水菜冷水抽出物 92.3重量%
アラビアガム 6.0
香料 1.0
モノフルオロリン酸ナトリウム 0.7
100.0
(Example 11)
A lozenge was produced according to the following formulation.
Mizuna cold water extract 92.3% by weight
Gum arabic 6.0
Fragrance 1.0
Sodium monofluorophosphate 0.7
100.0

(実施例12)
下記処方に従ってキャンディを製造した。
砂糖 51.0重量%
還元水あめ 32.0
クエン酸 1.0
香料 0.2
L-メントール 1.0
水菜冷水抽出物 0.4
水 残
100.0
(Example 12)
Candy was manufactured according to the following prescription.
51.0% by weight sugar
Reduced water candy 32.0
Citric acid 1.0
Fragrance 0.2
L-Menthol 1.0
Mizuna cold water extract 0.4
Water remaining
100.0

(実施例13)
下記処方に従って錠菓を製造した。
砂糖 74.7重量%
乳糖 18.9
水菜冷水抽出物 2.0
ショ糖脂肪酸エステル 0.15
水 4.25
100.0
(Example 13)
Tablet confectionery was produced according to the following prescription.
74.7% by weight sugar
Lactose 18.9
Mizuna cold water extract 2.0
Sucrose fatty acid ester 0.15
Water 4.25
100.0

(実施例14)
下記処方に従ってグミゼリーを製造した。
ゼラチン 60.0重量%
還元水あめ 32.4
水菜冷水抽出物 0.5
植物油脂 4.5
リンゴ酸 2.0
香料 0.5
100.0
(Example 14)
Gummy jelly was manufactured according to the following prescription.
Gelatin 60.0% by weight
Reduced water candy 32.4
Mizuna cold water extract 0.5
Vegetable oil 4.5
Malic acid 2.0
Fragrance 0.5
100.0

(実施例15)
下記処方に従って飲料を製造した。
オレンジ果汁 30.0重量%
水菜冷水抽出物 0.5
クエン酸 0.1
ビタミンC 0.04
香料 0.1
水 残
100.0
(Example 15)
A beverage was produced according to the following formulation.
Orange juice 30.0% by weight
Mizuna cold water extract 0.5
Citric acid 0.1
Vitamin C 0.04
Fragrance 0.1
Water remaining
100.0

本願発明の水菜冷水抽出物を含有する口腔用組成物は、従来の歯周病原性細菌に対する抗菌剤と異なる作用である、バイオフィルム形成抑制作用を示す歯周病予防作用を有することから、新しい着眼点での歯周病予防剤である。従って、既存の抗菌剤などと比較して、耐性菌出現リスクが低いなどのメリットが考えられ、種々の製品への応用化が可能である。   The composition for oral cavity containing the mizuna cold water extract of the present invention has a periodontal disease preventive action showing a biofilm formation inhibitory action, which is an action different from that of the conventional antibacterial agent against periodontal pathogenic bacteria. It is a preventive agent for periodontal disease in terms of eyes. Therefore, there are merits such that the risk of appearance of resistant bacteria is low compared to existing antibacterial agents and the like, and application to various products is possible.

この出願は2013年2月1日に出願された日本国特許出願第2013−018728号からの優先権を主張するものであり、その内容を引用してこの出願の一部とするものである。


This application claims priority from Japanese Patent Application No. 2013-018728 filed on Feb. 1, 2013, the contents of which are incorporated herein by reference.


Claims (11)

アブラナ科植物の冷水抽出物を含有する口腔用組成物。   An oral composition containing a cold water extract of a cruciferous plant. 前記アブラナ科植物の冷水抽出物が、水菜冷水抽出物である請求項1に記載の口腔用組成物。   The composition for oral cavity according to claim 1, wherein the cold water extract of the cruciferous plant is a mizuna cold water extract. アブラナ科植物の冷水抽出物を含有するバイオフィルム形成抑制剤。   Biofilm formation inhibitor containing cold water extract of cruciferous plant. 前記アブラナ科植物の抽出物が、水菜冷水抽出物である請求項3に記載のバイオフィルム形成抑制剤。   The biofilm formation inhibitor according to claim 3, wherein the cruciferous plant extract is a mizuna cold water extract. 請求項3記載のバイオフィルム形成抑制剤が歯周病バイオフィルム抑制剤   The biofilm formation inhibitor according to claim 3 is a periodontal disease biofilm inhibitor. 請求項3記載のバイオフィルム形成抑制剤が酸誘導バイオフィルム抑制剤   The biofilm formation inhibitor according to claim 3 is an acid-derived biofilm inhibitor. 請求項1または2に記載の口腔用組成物からなる含そう剤。   A mouthwash comprising the oral composition according to claim 1 or 2. 請求項1または2に記載の口腔用組成物からなる練り歯磨き剤。   A toothpaste comprising the oral composition according to claim 1 or 2. 請求項1または2に記載の口腔用組成物からなる吸入剤。   An inhalant comprising the oral composition according to claim 1 or 2. 請求項1または2に記載の口腔用組成物からなるトローチ剤。   A lozenge comprising the oral composition according to claim 1. 請求項1または2に記載の口腔用組成物を含有する食品。


A food containing the composition for oral cavity according to claim 1 or 2.


JP2014559359A 2013-02-01 2013-09-05 Oral composition Active JP6300736B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013018728 2013-02-01
JP2013018728 2013-02-01
PCT/JP2013/005282 WO2014118829A1 (en) 2013-02-01 2013-09-05 Composition for oral cavity

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018031798A Division JP6564084B2 (en) 2013-02-01 2018-02-26 Oral composition

Publications (2)

Publication Number Publication Date
JPWO2014118829A1 true JPWO2014118829A1 (en) 2017-01-26
JP6300736B2 JP6300736B2 (en) 2018-03-28

Family

ID=51261580

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2014559359A Active JP6300736B2 (en) 2013-02-01 2013-09-05 Oral composition
JP2018031798A Active JP6564084B2 (en) 2013-02-01 2018-02-26 Oral composition

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2018031798A Active JP6564084B2 (en) 2013-02-01 2018-02-26 Oral composition

Country Status (5)

Country Link
JP (2) JP6300736B2 (en)
KR (1) KR20150114521A (en)
CN (1) CN104968327A (en)
TW (1) TWI620576B (en)
WO (1) WO2014118829A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6300736B2 (en) * 2013-02-01 2018-03-28 株式会社ロッテ Oral composition
TWI702224B (en) * 2018-11-30 2020-08-21 國立成功大學 Aptamers of surface proteins of periodontal pathogens and uses thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10259136A (en) * 1997-03-17 1998-09-29 Taiyo Koryo Kk Virus proliferation suppressor and pharmaceutical composition containing the same virus proliferation suppressor
JP2007320926A (en) * 2006-06-02 2007-12-13 Sanei Gen Ffi Inc Plaque formation inhibitor, or cariostatic agent
JP2009027926A (en) * 2007-07-24 2009-02-12 Sunstar Inc Powdery beverage containing plant as raw material
JP2013056855A (en) * 2011-09-08 2013-03-28 Lotte Co Ltd Oral composition

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2397483A1 (en) * 2009-02-13 2011-12-21 Kaneka Corporation Plant extract containing antifreeze substance and method for producing same
TWI445671B (en) * 2010-03-24 2014-07-21 Sony Corp Cation exchanger and method of removing heavy metal ions in wastewater
JP6300736B2 (en) * 2013-02-01 2018-03-28 株式会社ロッテ Oral composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10259136A (en) * 1997-03-17 1998-09-29 Taiyo Koryo Kk Virus proliferation suppressor and pharmaceutical composition containing the same virus proliferation suppressor
JP2007320926A (en) * 2006-06-02 2007-12-13 Sanei Gen Ffi Inc Plaque formation inhibitor, or cariostatic agent
JP2009027926A (en) * 2007-07-24 2009-02-12 Sunstar Inc Powdery beverage containing plant as raw material
JP2013056855A (en) * 2011-09-08 2013-03-28 Lotte Co Ltd Oral composition

Also Published As

Publication number Publication date
JP6300736B2 (en) 2018-03-28
JP2018127455A (en) 2018-08-16
WO2014118829A1 (en) 2014-08-07
TWI620576B (en) 2018-04-11
CN104968327A (en) 2015-10-07
JP6564084B2 (en) 2019-08-21
KR20150114521A (en) 2015-10-12
TW201431565A (en) 2014-08-16

Similar Documents

Publication Publication Date Title
Libério et al. The potential use of propolis as a cariostatic agent and its actions on mutans group streptococci
KR102627029B1 (en) oral care composition
JP5906011B2 (en) Oral composition
JP2006199661A (en) Coaggregation inhibitor
FR2916634A1 (en) Synergistic combination, useful e.g. as regulating agent of microbial flora of skin and to prepare cosmetic or pharmaceutical composition to treat oily or mixed skin, of fructo-oligosaccharides and inducer of antimicrobial peptide
Abdulbaqi et al. Anti-plaque effect of a synergistic combination of green tea and Salvadora persica L. against primary colonizers of dental plaque
JP6564084B2 (en) Oral composition
Andrade et al. Subgingival irrigation with a solution of 20% propolis extract as an adjunct to non-surgical periodontal treatment: A preliminary study
WO2012001347A1 (en) Products with oral health benefits
JPWO2003099304A1 (en) Anti-periodontal disease bacteria composition, anti-periodontal disease food and drink containing the anti-periodontal disease bacteria composition, and oral cleanser
JP5705537B2 (en) Composition comprising the use of an aqueous grape seed extract in combination with at least one fluoride salt and combinations thereof to address the formation or accumulation of dental biofilms
CN107073053B (en) Growth promoter for nonpathogenic resident bacteria in oral cavity, flora improving agent in oral cavity, and oral composition
Hendiani et al. Inhibitory and bactericidal power of mangosteen rind extract towards Porphyromonas Gingivalis and Actinobacillus Actinomycetemcomitans (Laboratory test)
JPWO2004026273A1 (en) Oral composition
JP2014047157A (en) Oral antibacterial composition
JP6016343B2 (en) Oral composition
KR20220004328A (en) Composition for maintaining the balance of microbiome in the skin comprising hampseed oil
JPH04164021A (en) Composition for oral cavity
JP2021020869A (en) Oral indigenous bacteria growth promoter, and oral composition
JP6631223B2 (en) Oral antibacterial agent and oral composition
KR20130085620A (en) Composition for treating oral disease and inhibiting halitosis comprising the extract of alder tree
JP2016104797A (en) Oral cavity composition
Wessel et al. Magnolia bark extract increases oral bacterial cell surface hydrophobicity and improves self-perceived breath freshness when added to chewing gum
Shafiei In Vitro Study on the Effect of Plant Extract Mixture and Its Individual Constituents Towards Single-And Dual-Species Biofilms
Zaleha In vitro study on the effect of plant extract mixture and its individual constituents towards single-and dual-species biofilms/Zaleha Shafiei

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171003

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20171128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180227

R150 Certificate of patent or registration of utility model

Ref document number: 6300736

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250