JPWO2014092076A1 - Hemiplegic forearm function recovery training device - Google Patents

Hemiplegic forearm function recovery training device Download PDF

Info

Publication number
JPWO2014092076A1
JPWO2014092076A1 JP2014552045A JP2014552045A JPWO2014092076A1 JP WO2014092076 A1 JPWO2014092076 A1 JP WO2014092076A1 JP 2014552045 A JP2014552045 A JP 2014552045A JP 2014552045 A JP2014552045 A JP 2014552045A JP WO2014092076 A1 JPWO2014092076 A1 JP WO2014092076A1
Authority
JP
Japan
Prior art keywords
forearm
torque
half cylinder
drive shaft
function recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014552045A
Other languages
Japanese (ja)
Other versions
JP6210644B2 (en
Inventor
永 余
永 余
洋介 仲西
洋介 仲西
和美 川平
和美 川平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kagoshima University NUC
Original Assignee
Kagoshima University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kagoshima University NUC filed Critical Kagoshima University NUC
Publication of JPWO2014092076A1 publication Critical patent/JPWO2014092076A1/en
Application granted granted Critical
Publication of JP6210644B2 publication Critical patent/JP6210644B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H1/00Apparatus for passive exercising; Vibrating apparatus; Chiropractic devices, e.g. body impacting devices, external devices for briefly extending or aligning unbroken bones
    • A61H1/02Stretching or bending or torsioning apparatus for exercising
    • A61H1/0274Stretching or bending or torsioning apparatus for exercising for the upper limbs
    • A61H1/0285Hand
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/00178Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices for active exercising, the apparatus being also usable for passive exercising
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/00181Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices comprising additional means assisting the user to overcome part of the resisting force, i.e. assisted-active exercising
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/005Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices using electromagnetic or electric force-resisters
    • A63B21/0058Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices using electromagnetic or electric force-resisters using motors
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/40Interfaces with the user related to strength training; Details thereof
    • A63B21/4001Arrangements for attaching the exercising apparatus to the user's body, e.g. belts, shoes or gloves specially adapted therefor
    • A63B21/4017Arrangements for attaching the exercising apparatus to the user's body, e.g. belts, shoes or gloves specially adapted therefor to the upper limbs
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/40Interfaces with the user related to strength training; Details thereof
    • A63B21/4041Interfaces with the user related to strength training; Details thereof characterised by the movements of the interface
    • A63B21/4049Rotational movement
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B23/00Exercising apparatus specially adapted for particular parts of the body
    • A63B23/035Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously
    • A63B23/03508For a single arm or leg
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B23/00Exercising apparatus specially adapted for particular parts of the body
    • A63B23/035Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously
    • A63B23/12Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously for upper limbs or related muscles, e.g. chest, upper back or shoulder muscles
    • A63B23/16Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously for upper limbs or related muscles, e.g. chest, upper back or shoulder muscles for hands or fingers
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B24/00Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
    • A63B24/0087Electric or electronic controls for exercising apparatus of groups A63B21/00 - A63B23/00, e.g. controlling load
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/01Constructive details
    • A61H2201/0157Constructive details portable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/12Driving means
    • A61H2201/1207Driving means with electric or magnetic drive
    • A61H2201/1215Rotary drive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/16Physical interface with patient
    • A61H2201/1657Movement of interface, i.e. force application means
    • A61H2201/1671Movement of interface, i.e. force application means rotational
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5007Control means thereof computer controlled
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5058Sensors or detectors
    • A61H2201/5061Force sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5058Sensors or detectors
    • A61H2201/5069Angle sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H23/00Percussion or vibration massage, e.g. using supersonic vibration; Suction-vibration massage; Massage with moving diaphragms
    • A61H23/02Percussion or vibration massage, e.g. using supersonic vibration; Suction-vibration massage; Massage with moving diaphragms with electric or magnetic drive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0408Use-related aspects
    • A61N1/0452Specially adapted for transcutaneous muscle stimulation [TMS]
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B24/00Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
    • A63B24/0087Electric or electronic controls for exercising apparatus of groups A63B21/00 - A63B23/00, e.g. controlling load
    • A63B2024/0093Electric or electronic controls for exercising apparatus of groups A63B21/00 - A63B23/00, e.g. controlling load the load of the exercise apparatus being controlled by performance parameters, e.g. distance or speed
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B71/00Games or sports accessories not covered in groups A63B1/00 - A63B69/00
    • A63B71/02Games or sports accessories not covered in groups A63B1/00 - A63B69/00 for large-room or outdoor sporting games
    • A63B71/023Supports, e.g. poles
    • A63B2071/025Supports, e.g. poles on rollers or wheels
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/20Distances or displacements
    • A63B2220/24Angular displacement
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/50Force related parameters
    • A63B2220/54Torque
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/80Special sensors, transducers or devices therefor
    • A63B2220/805Optical or opto-electronic sensors

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Epidemiology (AREA)
  • Pain & Pain Management (AREA)
  • Rehabilitation Therapy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Rehabilitation Tools (AREA)

Abstract

患者が握るスティック(16)と、患者の手首を支える手首支持部(17)と、スティック及び手首支持部を正転させ、停止させ、逆転させ、再停止させることを繰り返すサーボモータ(21)と、を備えた片麻痺前腕機能回復訓練装置(10)が開示される。A stick (16) held by the patient, a wrist support (17) that supports the patient's wrist, and a servo motor (21) that repeats forward, stop, reverse, and re-stop the stick and wrist support. , A hemiplegic forearm function recovery training device (10) is disclosed.

Description

本発明は、麻痺している方の前腕部を訓練して、前腕部の回転機能の回復を促す片麻痺前腕機能回復訓練装置に関する。前記回転は、前腕部を身体中心側に回す「回内」と身体外側に回す「回外」とからなる。   The present invention relates to a hemiplegic forearm function recovery training device that trains a paralyzed forearm to promote recovery of the rotational function of the forearm. The rotation includes “inward” in which the forearm is turned toward the center of the body and “outward” in which the forearm is turned outward.

脳卒中を発症すると左半身と右半身の一方に麻痺が残ることがある。左半身と右半身の一方に残る麻痺は、片麻痺と呼ばれる。
この片麻痺は、リハビリテーションにより、機能の一部を回復させることが可能である。このリハビリテーションは、熟練した医師の手や療養士の手で施されるが、訓練が長時間、長期間にわたるため、医師や療養士の身体的な負担が大きい。
この負担を解消することを目的に、従来、訓練装置が提案されている(例えば、特許文献1)。
When stroke occurs, paralysis may remain in one of the left and right body. Paralysis that remains in one of the left and right body is called hemiplegia.
This hemiplegia can be partially restored by rehabilitation. This rehabilitation is performed by skilled doctors or therapists, but the training takes a long time and a long period of time, so the physical burden on the doctors and therapists is great.
For the purpose of eliminating this burden, conventionally, a training apparatus has been proposed (for example, Patent Document 1).

特許文献1に開示されている訓練装置を次図に基づいて説明する。
図25に示されるように、従来の訓練装置100は、ベース101と、このベース101上の一端に設けられるモータ102と、このモータ102で支持され正転と逆転の一方に回される筒体103と、この筒体103に立っている把持部(スティック)104と、筒体103の入り口に設けられる第1バンド105と、ベース101上の他端に設けられる縦枠106と、この縦枠106から延びて前腕部107と上腕部108を各々支える前受け部109及び後受け部111と、前受け部109及び後受け部111の各々に設けられる第2バンド112及び第3バンド113とを備えている。
The training device disclosed in Patent Document 1 will be described with reference to the following diagram.
As shown in FIG. 25, a conventional training apparatus 100 includes a base 101, a motor 102 provided at one end on the base 101, and a cylindrical body that is supported by the motor 102 and rotated in one of forward rotation and reverse rotation. 103, a grip portion (stick) 104 standing on the cylinder 103, a first band 105 provided at the entrance of the cylinder 103, a vertical frame 106 provided at the other end on the base 101, and the vertical frame A front receiving portion 109 and a rear receiving portion 111 that extend from 106 and support the forearm portion 107 and the upper arm portion 108, respectively, and a second band 112 and a third band 113 provided in each of the front receiving portion 109 and the rear receiving portion 111. I have.

手首114が第1ハンド105でしっかり保持され、前腕部107が第2バンド112でしっかり保持され、上腕部108が第3バンド113でしっかり保持される。
この状態で、モータ102により、筒体103が所定の角度回され、次に所定の角度逆側に回される要領で、正転と逆転が繰り返される。
The wrist 114 is firmly held by the first hand 105, the forearm portion 107 is firmly held by the second band 112, and the upper arm portion 108 is firmly held by the third band 113.
In this state, forward rotation and reverse rotation are repeated in such a manner that the cylinder 103 is rotated by a predetermined angle by the motor 102 and then rotated to the opposite side by a predetermined angle.

特許文献1に開示される訓練装置100には、次に述べる問題点がある。
患者は健常者に比較して感情の起伏が大きいと言われる。訓練中に、訓練装置100から腕を外したいという衝動に駆られることがある。しかし、従来の訓練装置100では、第1バンド105、第2バンド112、第3バンド113で、腕が拘束されているため、患者の意志で腕を外すことができない。結果、患者にストレスが与えられ、患者は訓練を嫌がるようになる。訓練装置の普及を促す上で、患者にストレスを与えることが少ない訓練装置が求められる。
The training device 100 disclosed in Patent Document 1 has the following problems.
Patients are said to have greater emotional undulations than healthy individuals. During training, the user may be urged to remove his / her arm from the training device 100. However, in the conventional training apparatus 100, since the arm is restrained by the 1st band 105, the 2nd band 112, and the 3rd band 113, an arm cannot be removed by a patient's will. As a result, the patient is stressed and the patient becomes reluctant to train. In order to promote the spread of the training apparatus, a training apparatus that causes less stress on the patient is required.

また、この種の訓練では、身体に残っている機能を刺激し、強化させることが重要である。従来の訓練装置100では、モータ102の駆動力で筒体103は正転と逆転がなされる。患者が前腕から力を抜いた状態(脱力した状態)でも、見かけ上は、訓練が進行する。しかし、力を抜いた状態では訓練の効果は得られない。より確実に機能回復が図れる訓練装置が求められる。   In this type of training, it is important to stimulate and strengthen the functions remaining in the body. In the conventional training apparatus 100, the cylinder 103 is rotated forward and backward by the driving force of the motor 102. Even in a state where the patient has pulled out of the forearm (a state of weakness), the training seems to proceed. However, the training effect cannot be obtained in a state where power is exhausted. There is a need for a training device that can restore function more reliably.

特開平4−261657号公報JP-A-4-261657

本発明は、患者にストレスを与えることが少なく且つより確実に機能回復が図れる訓練装置を提供することを課題とする。   It is an object of the present invention to provide a training apparatus that is less stressful to a patient and that can achieve functional recovery more reliably.

本発明者らは、上記課題を解決するには、促進反復療法を実施できる訓練装置が有効であることを知見した。
促進反復療法とは、治療者(医師や療養士など)が患者の麻痺した手足を操作して必要な神経回路にピンポイントで刺激を伝え、引き起した筋の伸張反射により目標とする動作を誘発させることを言う。この動作を根気よく繰り返すことで、必要な神経回路を再建・強化して麻痺の回復を促進する新しいリハビリ法である。促進とは、患者が意図した動作をしやすいように、動かしたい部位に刺激を与えて運動を助ける手技を表す。
The present inventors have found that a training apparatus that can perform accelerated repeated therapy is effective in solving the above-described problems.
Accelerated repetitive therapy means that a therapist (such as a doctor or a medical practitioner) manipulates a patient's paralyzed limbs to pinpoint stimulation to the necessary neural circuits, and performs the targeted movement by stretching the reflexes of the muscles Say to trigger. It is a new rehabilitation method that reinforces and reinforces the necessary neural circuits and accelerates the recovery of paralysis by repeating this action patiently. The term “promotion” refers to a procedure for assisting exercise by giving a stimulus to a desired site so that the patient can easily perform the intended motion.

片麻痺患者は、自らの意志(脳からの指令)によって麻痺肢を動かすことは難しい。しかし、麻痺肢に刺激を与えることにより伸張反射を起こし、神経細胞が興奮し脳からの指令により麻痺肢を動かすことが可能となる。そこで目的となる運動に関与している神経回路に刺激を伝えるために、素早く目標の筋を伸張して筋緊張が高まった直後に伸張反射を起こし、その筋の収縮を命じることで目標となる動作を誘発させる。   It is difficult for hemiplegic patients to move their paralyzed limbs by their will (command from the brain). However, by applying a stimulus to the paralyzed limb, a stretch reflex is caused, and the nerve cells are excited, and the paralyzed limb can be moved by a command from the brain. Therefore, in order to transmit the stimulus to the neural circuit involved in the target movement, the target muscle is quickly stretched immediately after the target muscle is stretched and the muscle tone is increased, and the contraction of the muscle is ordered to become the target. Trigger action.

前腕の目標動作を誘発するためにピンポイントの刺激で伸張反射を引起さなければならない。現状(従来の技術)では、ピンポイントの伸張反射を簡単に引起せない。本発明では、この伸張反射を引起すために、他動的回転の第1角速度、急加速度、より高速の第2角速度をこの順に行うという刺激手法を開発することにより、課題を解決することに成功した。   In order to trigger the target movement of the forearm, a stretch reflex must be triggered by a pinpoint stimulus. In the current situation (prior art), pinpoint stretch reflection cannot be easily caused. In the present invention, in order to cause this extended reflection, the first angular velocity of the other dynamic rotation, the rapid acceleration, and the higher second angular velocity are developed in this order to solve the problem. Successful.

請求項1に係る発明は、半身が麻痺した患者において、麻痺している方の前腕部を訓練して回復を促す片麻痺前腕機能回復訓練装置であって、
装置ベースと、この装置ベースに水平軸廻りに回転可能に支持され上面が開放されている半割筒体と、この半割筒体内に設けられ前記前腕部の指で握ることができるスティックと、前記半割筒体内に設けられ手首を支える手首支持部と、一端が前記半割筒体に連結され水平に延びる駆動軸と、前記装置ベースに設けられ前記駆動軸を駆動するサーボモータと、このサーボモータに設けられモータ軸の回転角を計測するエンコーダと、このエンコーダから回転角情報を取得し前記半割筒体を正転させ、停止させ、逆転させ、再停止させることを繰り返し、前記正転では筋緊張とその上の伸張反射を引き起こす訓練目標筋を刺激とするために第1角速度と急加速度と前記第1角速度より高速の第2角速度に速度を制御し、前記逆転では筋の刺激を持続して筋緊張を維持するために抵抗力を付与する、一連の制御をなす制御部とからなる片麻痺前腕機能回復訓練装置が提供される。
The invention according to claim 1 is a hemiplegic forearm function recovery training apparatus that trains the forearm part of the paralyzed one to promote recovery in a patient whose body is paralyzed,
An apparatus base, a half cylinder that is supported by the apparatus base so as to be rotatable about a horizontal axis and whose upper surface is open, and a stick that is provided in the half cylinder and can be grasped by a finger of the forearm, A wrist support provided in the half cylinder for supporting the wrist; a drive shaft having one end connected to the half cylinder and extending horizontally; a servo motor provided in the apparatus base for driving the drive axis; An encoder provided in the servo motor for measuring the rotation angle of the motor shaft, and rotation angle information is acquired from the encoder, and the half cylinder is rotated forward, stopped, reversed, and restarted repeatedly. In the rotation, the speed is controlled to the first angular velocity, the rapid acceleration, and the second angular velocity higher than the first angular velocity in order to stimulate the training target muscle that causes the muscle tone and the stretch reflex above, and in the reverse rotation, the muscle is stimulated. The The resistance imparting to maintain connection to muscle tone, and a control unit which forms a series of control hemiplegic forearm rehabilitation device is provided.

請求項2に係る発明では、好ましくは、手首支持部は、ブラケットと、このブラケットにねじを介して支持され前記手首を挟む左右の湾曲部材とからなり、手首を上方へ抜くことができる構造になっている。   In the invention according to claim 2, preferably, the wrist support portion is composed of a bracket and left and right curved members that are supported by the bracket via screws and sandwich the wrist, so that the wrist can be pulled upward. It has become.

請求項3に係る発明は、好ましくは、半割円筒と駆動軸との間に、トルク検出機構が設けられ、このトルク検出機構で逆転時に患者がスティックへ付与するトルクを検出することができるようにしたことを特徴とする。   In the invention according to claim 3, preferably, a torque detection mechanism is provided between the half cylinder and the drive shaft so that the torque applied to the stick by the patient at the time of reverse rotation can be detected by this torque detection mechanism. It is characterized by that.

請求項4に係る発明では、好ましくは、トルク検出機構は、半割円筒の外周部から駆動軸まで延びる棒状部材と、この棒状部材の途中に設けるくびれ部と、このくびれ部に貼り付けた歪ゲージと、この歪ゲージからの歪情報をトルクに換算するトルク換算部とからなる。   In the invention according to claim 4, preferably, the torque detection mechanism includes a rod-shaped member extending from the outer peripheral portion of the half cylinder to the drive shaft, a constricted portion provided in the middle of the rod-shaped member, and a strain attached to the constricted portion. It consists of a gauge and a torque converter for converting strain information from the strain gauge into torque.

請求項5に係る発明では、好ましくは、装置ベースから延長部が延びており、この延長部に前腕部を支える載せ台が設けられ、この前腕載せ台に上腕部を支える肘固定部が取付けられている。   In the invention according to claim 5, preferably, an extension portion extends from the apparatus base, and a platform for supporting the forearm portion is provided on the extension portion, and an elbow fixing portion for supporting the upper arm portion is attached to the forearm platform. ing.

請求項6に係る発明では、好ましくは、延長部は、関節機構を介して装置ベースに水平移動・回転可能に繋がれている。   In the invention which concerns on Claim 6, Preferably, the extension part is connected with the apparatus base through the joint mechanism so that horizontal movement and rotation are possible.

請求項1に係る発明では、半割筒体を正転させ、停止させ、逆転させ、再停止させることを繰り返す。正転では機能回復を図る筋の伸ばす緊張と伸ばす速度の急速な加速変化で筋の伸張反射を起こして神経細胞を興奮させるために第1角速度と急加速度と第1角速度より高速の第2角速度で筋の刺激を与えるようにする。逆転では筋の刺激を持続して筋緊張を維持するために抵抗力を付与する。すなわち、逆転は患者自身が行うため、患者の機能回復を促すことができる。   In the invention according to claim 1, the half cylinder is normally rotated, stopped, reversed, and stopped again. In forward rotation, the first angular velocity, the rapid acceleration, and the second angular velocity faster than the first angular velocity are used to excite the nerve cells by causing the muscles to reflex by the rapid acceleration change of the muscle stretching tension and the stretching speed for functional recovery. To give muscle stimulation. In reversal, resistance is applied to maintain muscle tone by sustaining muscle stimulation. That is, since the reversal is performed by the patient himself, the recovery of the function of the patient can be promoted.

また、正転時の途中で急加速させ、引き続き高速の第2角速度で回転させる。筋が伸張して伸張反射を促す。伸張反射が筋緊張を誘発し、患者自身による逆転を促すことができる。   Further, the vehicle is accelerated rapidly during the forward rotation, and is subsequently rotated at the high second angular velocity. The muscles stretch and encourage stretch reflexes. Stretch reflex can induce muscle tone and promote reversal by the patient himself.

請求項2に係る発明では、手首を上方へ抜くことができる構造になっている。患者は何時でも腕を装置から外すことができるという安心感をもつ。そのため、患者はストレスを溜めることが無くなり、訓練を嫌う心配はなくなる。   The invention according to claim 2 has a structure in which the wrist can be pulled upward. The patient feels at ease that his arm can be removed from the device at any time. As a result, the patient is no longer stressed and no worries about training.

請求項3に係る発明は、半割円筒と駆動軸との間に、トルク検出機構が設けられ、このトルク検出機構で逆転時に患者がスティックへ付与するトルクを検出することができるようにした。
逆転時の抵抗力は、トルク検出機構で逆転時に患者がスティックへ付与するトルクに基づいて補正することができる。すなわち、患者の個人差に合致した抵抗力をサーボモータで発生させることができる。
In the invention according to claim 3, a torque detection mechanism is provided between the half cylinder and the drive shaft, and the torque applied to the stick by the patient at the time of reverse rotation can be detected by this torque detection mechanism.
The resistance force at the time of reverse rotation can be corrected based on the torque applied to the stick by the patient at the time of reverse rotation by the torque detection mechanism. That is, a resistance force that matches individual differences among patients can be generated by the servo motor.

請求項4に係る発明は、トルク検出機構は、くびれ部を有する棒状部材と、くびれ部に貼り付けた歪ゲージとからなる。駆動軸の外周面に歪ゲージを貼り付けると歪が僅かであるため、計測トルクに誤差が出やすい。この点、本発明では、くびれ部の弾性変形が大きく、そこに歪ゲージを貼ったので、計測トルクの誤差が小さくなる。   According to a fourth aspect of the present invention, the torque detection mechanism includes a rod-like member having a constricted portion and a strain gauge attached to the constricted portion. When a strain gauge is affixed to the outer peripheral surface of the drive shaft, there is a slight amount of distortion, and an error is likely to occur in the measured torque. In this respect, in the present invention, the elastic deformation of the constricted portion is large, and a strain gauge is attached thereto, so that an error in measurement torque is small.

請求項5に係る発明では、前腕載せ台に前腕部が載せられ、肘固定部に上腕部が嵌められるため、肘が安定する。   In the invention which concerns on Claim 5, since a forearm part is mounted on a forearm mount and an upper arm part is fitted by an elbow fixing | fixed part, an elbow is stabilized.

請求項6に係る発明では、前腕載せ台及び肘固定部が設けられている延長部が関節機構
を介して装置ベースに水平移動・回転可能に繋がれているため、患者は訓練時に肘の置く場所を水平移動させることができる。結果、回復させようとする筋を予め良く伸ばした状態になる。
In the invention according to claim 6, since the extension part provided with the forearm mount and the elbow fixing part is connected to the apparatus base through the joint mechanism so as to be horizontally movable and rotatable, the patient puts the elbow during training. The place can be moved horizontally. As a result, the muscles to be recovered are well stretched in advance.

本発明に係る片麻痺前腕機能回復訓練装置の側面図である。It is a side view of the hemiplegic forearm function recovery training apparatus concerning the present invention. 本発明に係る片麻痺前腕機能回復訓練装置の斜視図である。It is a perspective view of the hemiplegic forearm function recovery training apparatus concerning the present invention. 半割筒体の斜視図である。It is a perspective view of a half cylinder. 図1の4線断面図である。FIG. 4 is a sectional view taken along line 4 of FIG. 1. 図1の5線断面図である。FIG. 5 is a sectional view taken along line 5 in FIG. 1. 片麻痺前腕機能回復訓練装置の要部の分解斜視図である。It is a disassembled perspective view of the principal part of the hemiplegic forearm function recovery training apparatus. 図6の7−7線断面図である。FIG. 7 is a cross-sectional view taken along line 7-7 in FIG. 6. 手首支持部の正面図である。It is a front view of a wrist support part. 手首支持部の作用図である。It is an effect | action figure of a wrist support part. 片麻痺前腕機能回復訓練装置の作用図である。It is an action | operation figure of a hemiplegia forearm function recovery training apparatus. 半割筒体の作用図である。It is an effect | action figure of a half cylinder. 他動的回転運動を説明する図である。It is a figure explaining other dynamic rotation motion. トルク検出機構の正面図である。It is a front view of a torque detection mechanism. トルク検出機構の原理を説明する図である。It is a figure explaining the principle of a torque detection mechanism. 制御部の作用を説明する図である。It is a figure explaining the effect | action of a control part. 2つの実験における角速度グラフである。It is an angular velocity graph in two experiments. 2つの実験で得た最大角速度を示すグラフである。It is a graph which shows the maximum angular velocity obtained by two experiment. 2つの実験で得た最大回転角を示すグラフである。It is a graph which shows the maximum rotation angle obtained by two experiment. 図1に示された片麻痺前腕機能回復訓練装置の変更例を示す図である。It is a figure which shows the example of a change of the hemiplegic forearm function recovery training apparatus shown by FIG. 図19に示された片麻痺前腕機能回復訓練装置、特に関節機構の作用を説明する図である。It is a figure explaining the effect | action of the hemiplegic forearm function recovery training apparatus shown by FIG. 19, especially the joint mechanism. 図15に示された制御部の作用の変更例を示す図である。It is a figure which shows the example of a change of an effect | action of the control part shown by FIG. 図19に示された片麻痺前腕機能回復訓練装置の変更例を示す図である。It is a figure which shows the example of a change of the hemiplegic forearm function recovery training apparatus shown by FIG. 図19に示された片麻痺前腕機能回復訓練装置の更なる変更例を示す図である。It is a figure which shows the further example of a change of the hemiplegic forearm function recovery training apparatus shown by FIG. 図19に示された片麻痺前腕機能回復訓練装置の更なる変更例を示す図である。It is a figure which shows the further example of a change of the hemiplegic forearm function recovery training apparatus shown by FIG. 従来の訓練装置の構成図である。It is a block diagram of the conventional training apparatus.

以下、本発明の好ましい実施例について、添付した図面に基づいて説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.

図1に示されるように、片麻痺前腕機能回復訓練装置10は、キャスター(自在車輪)11を備える移動台12と、この移動台12上の一端に設けられる前腕載せ台13と、移動台12上に設けられる装置ベース14と、この装置ベース14に水平軸廻りに回転可能に支持され上面が開放されている半割筒体15と、この半割筒体15内に設けられているスティック16と、半割筒体15内に設けられている手首支持部17と、一端が半割筒体15に連結され水平軸に沿って延びている駆動軸18と、装置ベース14に設けられ駆動軸18を回転自在に支える軸受台19、19と、装置ベース14に設けられ駆動軸18を駆動するサーボモータ21と、このサーボモータ21に設けられモータ軸22の回転角を計測するエンコーダ23と、このエンコーダ23から回転角情報を取得し半割筒体15を左右の一方向に正転させ、停止させ、逆転させる制御部24と、スティック16に加えられるトルクを演算し制御部24へ送るトルク換算部25とを備えている。   As shown in FIG. 1, the hemiplegic forearm function recovery training apparatus 10 includes a moving table 12 including casters (universal wheels) 11, a forearm mounting table 13 provided at one end on the moving table 12, and a moving table 12. The apparatus base 14 provided on the upper side, the half cylinder 15 that is supported by the apparatus base 14 so as to be rotatable around a horizontal axis and the upper surface is opened, and the stick 16 provided in the half cylinder 15 A wrist support portion 17 provided in the half cylinder 15, a drive shaft 18 having one end connected to the half cylinder 15 and extending along the horizontal axis, and a drive shaft provided in the apparatus base 14. Bearing bases 19, 19 that rotatably support 18, a servo motor 21 provided on the apparatus base 14 for driving the drive shaft 18, an encoder 23 provided on the servo motor 21 for measuring the rotation angle of the motor shaft 22, This The rotation angle information is acquired from the encoder 23, and the half cylinder 15 is rotated forward, stopped in the left and right directions, stopped, and reversely rotated. The torque converted to the torque applied to the stick 16 is calculated and sent to the control unit 24. Part 25.

制御部24は、エンコーダ23から回転角情報を取得し半割筒体15を左右の一方向に正転させ、停止させ、逆転させ、再停止させることを繰り返えす。機能回復を図る筋の伸ばす緊張と伸ばす速度の急速な加速変化で筋の伸張反射を起こして神経細胞を興奮させるために、正転では、第1角速度と急加速度と第1角速度より高速の第2角速度で筋の刺激を与えるように速度を切り換える。前腕の動きを合わせるために、正転終了から伸張反射による前腕の逆転が動き始まるまで回転を数十ミリ秒停止する。筋の刺激を持続して筋緊張を維持するために、逆転では、抵抗力を付与する。   The control unit 24 obtains the rotation angle information from the encoder 23 and repeats the forward rotation, the stop, the reverse rotation, and the re-stop of the half cylinder 15 in the right and left directions. In order to excite the nerve cell by causing the muscle stretching reflex by the rapid acceleration change of the stretching tension and stretching speed of the muscle for functional recovery, in the normal rotation, the first angular velocity, the rapid acceleration, and the first angular velocity faster than the first angular velocity. The speed is switched so as to give muscle stimulation at two angular speeds. In order to match the movement of the forearm, the rotation is stopped for several tens of milliseconds from the end of the forward rotation until the reverse of the forearm starts to move due to stretch reflection. In order to sustain muscle stimulation and maintain muscle tone, reversal provides resistance.

なお、キャスター11の一部は、普通の車輪(非自在車輪)であってもよい。また、キャスター11を省いてもよい。この場合は、移動台12は、単なる台となる。
台であれば、適当なテーブルや机を台の替わりにすることができるため、移動台12を装置ベース14の下に配置するか否かは任意である。
ただし、サーボモータ21やエンコーダ23は重いため、人的負担を軽減する上で、本実施例のように装置ベース14と移動台12を一体化することが推奨される。
Note that a part of the caster 11 may be a normal wheel (non-universal wheel). Further, the caster 11 may be omitted. In this case, the movable table 12 is a simple table.
As long as it is a table, an appropriate table or desk can be used instead of the table, so whether or not the movable table 12 is arranged under the apparatus base 14 is arbitrary.
However, since the servo motor 21 and the encoder 23 are heavy, it is recommended that the apparatus base 14 and the movable table 12 be integrated as in this embodiment in order to reduce the human burden.

半割筒体15は、切り欠き率が50%になる。しかし、半割筒体15の切り欠き率は変更可能であり、筒体の一部が切り欠いてあればよい。すなわち、半割筒体15の切り欠き率は50%に限定されるものではない。さらには、半割筒体15の素材は、円筒を原則とするが、多角形筒であってもよい。
半割筒体15と駆動軸18との間に、トルク検出機構60が設けられる。
The half cylinder 15 has a notch ratio of 50%. However, the notch ratio of the half cylinder 15 can be changed, and it is sufficient that a part of the cylinder is notched. That is, the notch ratio of the half cylinder 15 is not limited to 50%. Furthermore, the material of the half cylinder 15 is basically a cylinder, but may be a polygonal cylinder.
A torque detection mechanism 60 is provided between the half cylinder 15 and the drive shaft 18.

図2に示されるように、移動台12は、4本の柱26で支えられる主台部分27と、この主台部分27から延びると共に先端が1本の柱28で支えられるサブ台部分29とを備えている。このサブ台部分29は細長く、それの左右にはスペース31、32があり、このスペース31とスペース32の一方に患者が入ることができる。柱26、28を軽量形鋼、具体的にはアルミニウムサッシで構成することで、移動台12の軽量化を図るとよい。その他の構成要素は、図1の符号を流用し、説明を省略する。   As shown in FIG. 2, the movable base 12 includes a main base portion 27 supported by four columns 26, and a sub-base portion 29 extending from the main base portion 27 and having a tip supported by a single column 28. It has. The sub-base portion 29 is elongated and has spaces 31 and 32 on the left and right sides thereof. A patient can enter one of the space 31 and the space 32. It is preferable to reduce the weight of the movable table 12 by configuring the columns 26 and 28 with lightweight section steel, specifically, an aluminum sash. The other constituent elements are the same as those in FIG.

図3に示されるように、半割筒体15は、上面が開放されている。
図4に示されるように、半割筒体15は、第1カムフォロア31と第2カムフォロア32で、水平軸廻りに回転自在に支えられる。
さらに、図5に示されるように、半割筒体15は、第3カムフォロア33と第4カムフォロア34と第5カムフォロア35で、水平軸廻りに回転自在に支えられる。
As shown in FIG. 3, the half cylinder 15 has an open top surface.
As shown in FIG. 4, the half cylinder 15 is supported by the first cam follower 31 and the second cam follower 32 so as to be rotatable around the horizontal axis.
Further, as shown in FIG. 5, the half cylinder 15 is supported by the third cam follower 33, the fourth cam follower 34, and the fifth cam follower 35 so as to be rotatable around the horizontal axis.

なお、中央の第4カムフォロア34は外すことができる。また、カムフォロア31〜35は、支軸とこの軸に取付けたニードルベアリングとこのニードルベアリングを囲うローラとからなる組立品であるが、いわゆる、フリーローラ(自由回転ローラ)であればよく、構造は任意である。   The central fourth cam follower 34 can be removed. The cam followers 31 to 35 are assemblies composed of a support shaft, a needle bearing attached to the shaft, and a roller surrounding the needle bearing. However, the cam followers 31 to 35 may be so-called free rollers (free rotating rollers), and the structure is Is optional.

図6に示されるように、サーボモータ21のモータ軸22に、カップリング36を介して、駆動軸18が連結される。この駆動軸18には、先端部に上方に延びる帯板状の棒状部材38が固定される。駆動軸18には、棒状部材38より先端側に角軸部39が形成される。駆動軸18には、角軸部39より先端側に雄ねじ部41が形成される。   As shown in FIG. 6, the drive shaft 18 is coupled to the motor shaft 22 of the servomotor 21 via a coupling 36. A belt-like bar member 38 extending upward is fixed to the drive shaft 18 at the tip. In the drive shaft 18, an angular shaft portion 39 is formed on the tip side from the rod-shaped member 38. A male screw portion 41 is formed on the drive shaft 18 on the tip side from the angular shaft portion 39.

半割筒体15の一端に円板42が固定され、この円板42に角穴43が設けられる。この角穴43に角軸部39が嵌められる。その後に、図3に示されるように、雄ねじ部41にナット44が取付けられる。以上により、半割筒体15に駆動軸18が連結され、半割筒体15の軸方向の位置決めがなされる。すなわち、半割筒体15が回転中に軸方向へ移動する心配はない。   A disc 42 is fixed to one end of the half cylinder 15, and a square hole 43 is provided in the disc 42. The square shaft portion 39 is fitted into the square hole 43. Thereafter, as shown in FIG. 3, a nut 44 is attached to the male screw portion 41. As described above, the drive shaft 18 is connected to the half cylinder 15 and the half cylinder 15 is positioned in the axial direction. That is, there is no concern that the half cylinder 15 moves in the axial direction during rotation.

図6に示されるように、駆動軸18は一対の軸受台19で回転自在に支持される。これらの軸受台19と軸受台19との間にて、駆動軸18にキー45が固定される。また、軸受台19と軸受台19との間にて、ストッパブロック46が装置ベース14に固定される。   As shown in FIG. 6, the drive shaft 18 is rotatably supported by a pair of bearing stands 19. A key 45 is fixed to the drive shaft 18 between the bearing base 19 and the bearing base 19. Further, the stopper block 46 is fixed to the apparatus base 14 between the bearing base 19 and the bearing base 19.

図7に示されるように、ストッパブロック46は上面に、ストップ面47、48を備え、これらのストップ面47、48が駆動軸18の下に配置される。中立状態ではキー45は駆動軸18の上にある。駆動軸18が中立位置から左右に各90°、合計で最大180°回される。すなわち、キー45は想像線で示す位置まで移動する。想像線で示すキー45であってもストップ面47から1.5mm程度の隙間αが存在する。したがって、通常はキー45がストップ面47に当たることはない。ストップ面48についても同様である。   As shown in FIG. 7, the stopper block 46 includes stop surfaces 47 and 48 on the upper surface, and these stop surfaces 47 and 48 are disposed below the drive shaft 18. In the neutral state, the key 45 is on the drive shaft 18. The drive shaft 18 is rotated 90 degrees left and right from the neutral position, a total of 180 degrees. That is, the key 45 moves to the position indicated by the imaginary line. Even with the key 45 indicated by the imaginary line, there is a gap α of about 1.5 mm from the stop surface 47. Therefore, normally, the key 45 does not hit the stop surface 47. The same applies to the stop surface 48.

制御系のトラブル等に起因して駆動軸18の回転量が変わったときには、キー45がストップ面47とストッパ面48の一方に当たり、それ以上は駆動軸18が回転しない。結果、半割筒体(図3、符号15)が所定角度を超えて回転する心配はなくなる。すなわち、本発明では回転量の制御はエンコーダで行うが、エンコーダの故障等に備えて、機械的なストッパを設け、安全性を高めた。   When the rotation amount of the drive shaft 18 changes due to a trouble in the control system, the key 45 hits one of the stop surface 47 and the stopper surface 48, and the drive shaft 18 does not rotate any more. As a result, there is no concern that the half cylinder (FIG. 3, reference numeral 15) rotates beyond a predetermined angle. That is, in the present invention, the amount of rotation is controlled by the encoder, but a mechanical stopper is provided to improve safety in preparation for a failure of the encoder.

図8に示されるように、手首支持部17は、上に開いているチャンネル状のブラケット49と、このブラケット49の壁部51、51にねじ52、52を介して支持され前記手首を挟む左右の湾曲部材53、54とを備えている。指掛け棒55でねじ52を回すことができる。   As shown in FIG. 8, the wrist support portion 17 includes a channel-shaped bracket 49 opened upward, and left and right sides sandwiching the wrist supported by screws 51, 52 on the wall portions 51, 51 of the bracket 49. The bending members 53 and 54 are provided. The screw 52 can be turned with the finger bar 55.

図9に示されるように、手首56が、クッション57、57を介して左右の湾曲部材53、54で挟まれた状態で、訓練が行われるが、ブラケット49及び左右の湾曲部材53、54は、上方が開放されているため、患者が望めば、手首56を、矢印のように上へ抜くことができる。すなわち、開放感に富む分だけ、圧迫感や拘束感が薄れ、より好ましい訓練が行える。   As shown in FIG. 9, training is performed in a state where the wrist 56 is sandwiched between the left and right curved members 53 and 54 via the cushions 57 and 57, but the bracket 49 and the left and right curved members 53 and 54 are Since the upper part is open, the wrist 56 can be pulled out as shown by the arrow if the patient desires. That is, the feeling of pressure and restraint is reduced by the amount rich in the feeling of opening, and more preferable training can be performed.

図10に示されるように、患者は、例えば左手に訓練を施す必要があり、手首56を手首支持部17に載せ、前腕部58を前腕載せ台13に載せる。
患者から見て左の手首56を、矢印(1)のように身体の中心へ回すことを「回内運動」と呼び、矢印(2)のように外側へ回すことを「回外運動」と呼ぶ。
As shown in FIG. 10, the patient needs to train the left hand, for example, and places the wrist 56 on the wrist support portion 17 and the forearm portion 58 on the forearm mount 13.
Turning the left wrist 56 viewed from the patient to the center of the body as indicated by the arrow (1) is called “pronation” and turning outward as indicated by the arrow (2) is called “extraversion”. Call.

矢印(1)と矢印(2)へ自分の意志で回す運動を「自動的回転運動」と呼ぶ。この自動的回転運動をより大きく引き起こすために、外部から力を与えて他方へ回転させる運動を「他動的回転運動」と呼ぶ。
例えば、矢印(1)の方向へ「他動的回転運動」を行うことで、矢印(2)の方向へ「自動的回転運動」を引き起こすことができる。
The movement to turn to the arrows (1) and (2) at will is called “automatic rotation movement”. In order to cause this automatic rotational motion to a greater extent, a motion in which a force is applied from the outside and rotated to the other is called “another dynamic rotational motion”.
For example, “automatic rotational motion” can be caused in the direction of arrow (2) by performing “other dynamic rotational motion” in the direction of arrow (1).

図11(a)には、図面が煩雑になるため手首は記載していないが、中立状態にあり、この状態から訓練が始められる。
図11(b)に示されるように、サーボモータ21により他動的回転運動を行う。
具体的には、図12に示されるように、先ず、第1角速度で他動的回転運動を行い、急加速度を行い、第2角速度で他動的回転運動を行う。例えば、第1角速度は2.5ラジアン/秒であり、第2角速度は11.0ラジアン/秒である。すなわち、第2角速度は第1角速度の2倍〜5倍程度にする。
In FIG. 11 (a), the wrist is not shown because the drawing becomes complicated, but it is in a neutral state, and training can be started from this state.
As shown in FIG. 11B, the servo motor 21 performs other dynamic rotational motion.
Specifically, as shown in FIG. 12, first, the other dynamic rotational motion is performed at the first angular velocity, the rapid acceleration is performed, and the other dynamic rotational motion is performed at the second angular velocity. For example, the first angular velocity is 2.5 radians / second, and the second angular velocity is 11.0 radians / second. That is, the second angular velocity is about 2 to 5 times the first angular velocity.

急加速度は、サーボモータ21が出し得る最大の加速度に設定する。例えば、0.01秒で、第1角速度から第2角速度へ移行させる。このとき角加速度は、(11.0−2.5)/0.01=約1000ラジアン/秒とする。The sudden acceleration is set to the maximum acceleration that the servo motor 21 can produce. For example, the transition is made from the first angular velocity to the second angular velocity in 0.01 seconds. At this time, the angular acceleration is (11.0−2.5) /0.01=about 1000 radians / second 2 .

すなわち、第1角速度による一定の回転後に、急加速度及び第2角速度で素早く回転させ機能回復を図る筋の伸ばす緊張と伸ばす速度の急速な加速変化で刺激を高める。すると、筋の刺激により伸張反射が励起される。
この伸張反射により、筋の収縮が促され、図11(c)に示されるように、患者の意志で自動的回転運動が行われる。ただし、筋の刺激を持続して筋緊張を維持するために、サーボモータ21で軽い抵抗力を発生させる。
That is, after a certain rotation by the first angular velocity, the stimulation is enhanced by a rapid acceleration change in the stretching speed and the stretching speed of the muscle that quickly rotates at the rapid acceleration and the second angular speed to restore the function. Then, stretch reflexes are excited by muscle stimulation.
Due to this stretch reflex, the contraction of the muscle is promoted, and as shown in FIG. However, a slight resistance force is generated by the servo motor 21 in order to maintain muscle tone by sustaining muscle stimulation.

軽い抵抗力をサーボモータ21で発生させるには、患者が自動的回転時に発生するトルクを知る必要がある。すなわち、トルクが大きければ抵抗力(抵抗トルク)を高め、トルクが小さければ抵抗力を小さくすることで、患者の負担にならないようにする。   In order to generate a light resistance force with the servo motor 21, it is necessary for the patient to know the torque generated during automatic rotation. That is, if the torque is large, the resistance force (resistance torque) is increased, and if the torque is small, the resistance force is decreased, thereby avoiding a burden on the patient.

本発明では、そのためのトルク検出機構を備える。
なお、軸トルクは、駆動軸18に歪ゲージを貼ることで検出可能である。ただし、駆動軸18の外径が小さいときには、軸のねじれ量(図14、符号θa参照)が小さいため、測定が難しいと共に測定誤差が大きくなる。
本発明では、次に述べるように、測定精度が良好なトルク検出機構を採用した。
The present invention includes a torque detection mechanism for this purpose.
The shaft torque can be detected by attaching a strain gauge to the drive shaft 18. However, when the outer diameter of the drive shaft 18 is small, the amount of torsion of the shaft (see FIG. 14, reference sign θa) is small, so that measurement is difficult and measurement error increases.
In the present invention, as described below, a torque detection mechanism with good measurement accuracy is employed.

図13に示されるように、トルク検出機構60は、円板42の外周部に図面表へ延びるように立てたピン61と、このピン61に一端が嵌り円板42の回転中心へ延びる棒状部材38と、この棒状部材38の途中に設けたくびれ部62と、このくびれ部62に貼り付けた歪ケージ63と、この歪ケージ63で得た歪情報をトルクに換算するトルク換算部25とを備えている。   As shown in FIG. 13, the torque detection mechanism 60 includes a pin 61 erected on the outer periphery of the disc 42 so as to extend to the drawing table, and a rod-like member that has one end fitted on the pin 61 and extends to the rotation center of the disc 42. 38, a constricted portion 62 provided in the middle of the rod-shaped member 38, a strain cage 63 attached to the constricted portion 62, and a torque converting portion 25 for converting strain information obtained by the strain cage 63 into torque. I have.

棒状部材38の一端は、棒状部材38の長手方向へ延びる長穴64を介してピン61に嵌めることで、ピン61に対する棒状部材38の移動を許容するようにした。また、棒状部材38の他端は、フランジ65、66で駆動軸18の別の角軸部67に挟めるようにした。   One end of the rod-shaped member 38 is fitted into the pin 61 through a long hole 64 extending in the longitudinal direction of the rod-shaped member 38, thereby allowing the rod-shaped member 38 to move with respect to the pin 61. Further, the other end of the rod-shaped member 38 is sandwiched by another angular shaft portion 67 of the drive shaft 18 with flanges 65 and 66.

棒状部材38は、帯板の他、丸棒、角棒であってもよく、形状は任意である。ただし、帯板であれば、両端の幅が大きいため、この幅を利用して一端を円板42に容易に取付けることができると共に他端を駆動軸18に容易に取付けることができる。   The rod-shaped member 38 may be a round bar or a square bar in addition to the band plate, and the shape is arbitrary. However, since the width of both ends of the band plate is large, one end can be easily attached to the disc 42 by using this width, and the other end can be easily attached to the drive shaft 18.

このような構成のトルク検出機構60の作用を次に述べる。
図14(a)に示されるように、自動的回転運動により、スティック16を介してトルクTmが円板42に加えられる。このトルクTmは、駆動軸18に直接伝えられると共に棒状部材38を介しても駆動軸18に間接的に伝えられる。直接伝えられるトルクをTa、間接的に伝えられるトルクをTsとすると、Tm=Ta+Tsとなる。歪ケージ63は棒状部材38だけに設けられている。
The operation of the torque detection mechanism 60 having such a configuration will be described next.
As shown in FIG. 14A, torque Tm is applied to the disc 42 through the stick 16 by automatic rotational movement. The torque Tm is directly transmitted to the drive shaft 18 and indirectly transmitted to the drive shaft 18 through the rod-shaped member 38. If the directly transmitted torque is Ta and the indirectly transmitted torque is Ts, then Tm = Ta + Ts. The strain cage 63 is provided only on the rod-shaped member 38.

図14(b)に示されるように、トルクTsにより、棒状部材38はくびれ部62を折曲点にして、くの字に曲がる。トルクTsが大きいほど曲がりが大きくなる。この規則性により、トルクTsは構造力学的に算出することができる。
ここで、折曲点から駆動軸18までの長さをL1、折曲点からピン61までの長さをL2、くびれ部62の長さをLx、くびれ部62の幅をbとする。くびれ部62の厚さ(図面表裏寸法)をhとする。また、くびれ部62の縦弾性係数(ヤング率)をEとする。
As shown in FIG. 14 (b), the rod-shaped member 38 bends in a dogleg shape with the constricted portion 62 as a bending point due to the torque Ts. As the torque Ts increases, the bending increases. Due to this regularity, the torque Ts can be calculated structurally.
Here, the length from the bending point to the drive shaft 18 is L1, the length from the bending point to the pin 61 is L2, the length of the constricted portion 62 is Lx, and the width of the constricted portion 62 is b. The thickness of the constricted part 62 (drawing front and back dimensions) is h. Further, let E be the longitudinal elastic modulus (Young's modulus) of the constricted portion 62.

図14(c)に示されるように、駆動軸18にトルクTaが作用すると、僅かにねじれる。図中の角度θaは、トルクTaが大きいほど大きくなる。この規則性により、トルクTaが構造力学的に算出される。
ここで、駆動軸18の長さをLL、直径をRとする。また、駆動軸18の横弾性係数をGとする。
As shown in FIG. 14C, when the torque Ta acts on the drive shaft 18, it is slightly twisted. The angle θa in the figure increases as the torque Ta increases. Due to this regularity, the torque Ta is calculated structurally.
Here, the drive shaft 18 has a length LL and a diameter R. Further, the lateral elastic modulus of the drive shaft 18 is G.

詳しい説明は省略するが、トルクTaは、次に示されるように、Tsの関数になる。   Although detailed description is omitted, the torque Ta is a function of Ts as shown below.

Figure 2014092076
Figure 2014092076

トルクTsは、歪ゲージ63で求めることができるため、歪ゲージ63で得た歪情報に基づいて、トルク換算部25でトルクTmを求める。このトルクTmに応じて、サーボモータ21で抵抗トルクを発生させる。
自動的回転運動の際に、適度な大きさの抵抗力を付与すると、患者の前腕は刺激を持続して筋緊張を維持し、より大きく回転することができる。
Since the torque Ts can be obtained by the strain gauge 63, the torque conversion unit 25 obtains the torque Tm based on the strain information obtained by the strain gauge 63. Resistive torque is generated by the servo motor 21 in accordance with the torque Tm.
If an appropriate amount of resistance is applied during the automatic rotational movement, the patient's forearm can sustain stimulation and maintain muscle tone, and can rotate more greatly.

なお、図14(b)において、くびれ部64の幅bが小さいほど、棒状部材38は大きく折り曲がり、くびれ部64に大きな歪が発生する。この様なくびれ部64に歪ゲージ63を貼り付けたので、トルクTmは精度よく求まる。すなわち、図14(c)に示される駆動軸18に歪ゲージを直接貼り付けるよりは、格段に高い精度でトルクを検出することができる。   In FIG. 14B, as the width b of the constricted portion 64 is smaller, the rod-shaped member 38 is bent more greatly, and the constricted portion 64 is greatly distorted. Since the strain gauge 63 is attached to the constricted portion 64 in this way, the torque Tm can be obtained with high accuracy. That is, it is possible to detect torque with much higher accuracy than directly attaching a strain gauge to the drive shaft 18 shown in FIG.

次に、抵抗トルクの求め方を、説明する。
サーボモータの現在の角度をθ、仮想慣性をI、仮想粘性をC、仮想弾性をKとしたときに、センシングされたトルクTmに対するインピーダンス式は次式になる。
Next, how to obtain the resistance torque will be described.
When the current angle of the servo motor is θ, the virtual inertia is I, the virtual viscosity is C, and the virtual elasticity is K, the impedance equation for the sensed torque Tm is as follows.

Figure 2014092076
Figure 2014092076

等速時において、Cの値を調整することで抵抗力の大きさを決定する。加速・減速時において、K1、K2を調整することで抵抗トルクを決定できる。特に、時間の遅れを低減させたと場合は、Cを決定した後にIの値をK2=0に近づくように設定すればよい。
以上により、抵抗トルクTnが適当な値に設定される。
At the constant speed, the magnitude of the resistance force is determined by adjusting the value of C. During acceleration / deceleration, the resistance torque can be determined by adjusting K1 and K2. In particular, when the time delay is reduced, after determining C, the value of I may be set to approach K2 = 0.
Thus, the resistance torque Tn is set to an appropriate value.

図12に示される第1角速度、急加速度、第2角速度を設定し、上記の抵抗トルクを設定した上で、次に述べるサイクルで訓練を実施する。なお、図15では他動的回動運動をマイナス(−)領域とした。
図15に示されるように、第1角速度、急加速度、第2角速度からなる他動的回動運動を実施する。すなわち、サーボモータにより、患者の前腕部を回転させる。このときに、急加速度及び第2角速度により、筋の緊張が高まる。
The first angular velocity, the rapid acceleration, and the second angular velocity shown in FIG. 12 are set, and the above-described resistance torque is set, and then training is performed in the following cycle. In FIG. 15, the other dynamic rotation motion is a minus (−) region.
As shown in FIG. 15, the other dynamic rotation motion including the first angular velocity, the rapid acceleration, and the second angular velocity is performed. That is, the patient's forearm is rotated by the servo motor. At this time, muscle tension increases due to the rapid acceleration and the second angular velocity.

点P1で、サーボモータによる駆動を止める。すると、患者は、自己の意志で前腕部を逆方向に回そうとする(自動的回転運動に相当)。
ただし、点P1以降はサーボモータで軽い抵抗を付与する。点P1では、それまでの慣性により、角速度は−(マイナス)であるが、他動的回転終了により角速度は急減し、+(プラス)に転じる。他動的回転終了過程末期において回転が遅くなり、ついには角速度がゼロになる。
At the point P1, the drive by the servo motor is stopped. Then, the patient tries to turn the forearm in the reverse direction at his own will (corresponding to an automatic rotational movement).
However, light resistance is applied by a servo motor after the point P1. At the point P1, the angular velocity is − (minus) due to the inertia so far, but the angular velocity is suddenly decreased by the end of the other dynamic rotation and turns to + (plus). At the end of the other dynamic rotation end process, the rotation becomes slow, and finally the angular velocity becomes zero.

制御部(図1、符号24)は、正転時の他動的回転運動と、逆転時の自動的回転運動とを1サイクルとして、このサイクルを数十回繰り返す。   The control unit (FIG. 1, reference numeral 24) repeats this cycle several tens of times, with the other dynamic rotational motion during normal rotation and the automatic rotational motion during reverse rotation as one cycle.

本発明の作用・効果を確認するために、以下に示される比較実験を行った。
麻痺度が4である右方麻痺患者(男、50代)に対して、次の二通りの実験を行った。
○第1実験(実施例):
実験装置:図1に示される装置。
実験条件:第1角速度、急加速度、第2角速度
結果:図16(a)に示される。
In order to confirm the operation and effect of the present invention, the following comparative experiment was performed.
The following two experiments were performed on a right-sided paralytic patient (male, 50s) with a paralysis degree of 4.
○ First experiment (Example):
Experimental apparatus: apparatus shown in FIG.
Experimental conditions: first angular velocity, sudden acceleration, second angular velocity Result: shown in FIG.

実施例では、図16(a)に示されるように、第1角速度、急加速度、第2角速度からなる他動的回転運動の後に、自動的回転運動が引起こされる。自動的回転運動での最大角速度θa・maxは、約6ラジアン/秒であった。
また、角速度と時間の積が角度になるため、積分値、すなわち、曲線と時間軸とで囲われる面積Saが回転角になる。
In the embodiment, as shown in FIG. 16A, the automatic rotational motion is caused after the other dynamic rotational motion including the first angular velocity, the rapid acceleration, and the second angular velocity. The maximum angular velocity θa · max in the automatic rotational motion was about 6 radians / second.
Further, since the product of the angular velocity and time becomes an angle, an integral value, that is, an area Sa surrounded by the curve and the time axis becomes a rotation angle.

○第2実験(比較例):
実験装置:図1に示される装置。
実験条件:第1角速度のみ(すなわち、急加速度、第2角速度なし)
結果:図16(b)に示される。比較のために図16(a)の曲線の一部を想像線で示す。
○ Second experiment (comparative example):
Experimental apparatus: apparatus shown in FIG.
Experimental conditions: First angular velocity only (ie, sudden acceleration, no second angular velocity)
Results: Shown in FIG. For comparison, a part of the curve in FIG.

比較例では、図16(b)に示されるように、第1角速度のみからなる他動的回転運動の後に、自動的回転運動が引起こされる。自動的回転運動での最大角速度θb・maxは、約3ラジアン/秒であった。
曲線と時間軸とで囲われる面積Sbが回転角になる。
In the comparative example, as shown in FIG. 16B, the automatic rotational motion is caused after the other dynamic rotational motion including only the first angular velocity. The maximum angular velocity θb · max in the automatic rotational motion was about 3 radians / second.
An area Sb surrounded by the curve and the time axis is a rotation angle.

上記2つの実験を所定回数(数十回)繰り返した。
すると、図17に示されるように、実施例での最大角速度θa・maxは、4.5〜7.0ラジアン/秒であり、比較例での最大角速度θb・maxは、2.5〜5.2ラジアン/秒であった。
また、図18に示されるように、実施例での最大回転角Saは、1.9〜2.0ラジアンであり、比較例での最大回転角Sbは、1.65〜1.75ラジアンであった。
The above two experiments were repeated a predetermined number of times (tens of times).
Then, as shown in FIG. 17, the maximum angular velocity θa · max in the example is 4.5 to 7.0 radians / second, and the maximum angular velocity θb · max in the comparative example is 2.5 to 5 .2 radians / second.
Further, as shown in FIG. 18, the maximum rotation angle Sa in the example is 1.9 to 2.0 radians, and the maximum rotation angle Sb in the comparative example is 1.65 to 1.75 radians. there were.

自動的回転運動において、最大回転角が大きいほど、筋の収縮が大きい。
すなわち、図16(a)に示されるように、急加速度を含む他動的回転を実施することで、図18に示されるように、回転角が大きくなり、大きな伸張反射が得られることが確認できた。
In the automatic rotational movement, the larger the maximum rotation angle, the larger the muscle contraction.
That is, as shown in FIG. 16 (a), it is confirmed that by performing other dynamic rotation including sudden acceleration, as shown in FIG. 18, the rotation angle becomes large and a large stretched reflection can be obtained. did it.

次に、片麻痺前腕機能回復訓練装置10の変更例を、図面に基づいて説明する。
図19は、図1に示される片麻痺前腕機能回復訓練装置10の変更例を示す側面図である。図1に対する変更点は次の通りであり、その他は図1と同一であるため、図1の符号を流用し説明を省略する。
Next, a modified example of the hemiplegic forearm function recovery training device 10 will be described based on the drawings.
FIG. 19 is a side view showing a modified example of the hemiplegic forearm function recovery training device 10 shown in FIG. Changes to FIG. 1 are as follows, and the others are the same as those in FIG. 1, and thus the reference numerals in FIG.

第1の変更点は、図19に示されるように、装置ベース14に、関節機構70が設けられ、この関節機構70から延長部71が延びており、この延長部71の先端に前腕載せ台13が取付けられた点にある。   As shown in FIG. 19, the first change is that a joint mechanism 70 is provided on the apparatus base 14, and an extension portion 71 extends from the joint mechanism 70. 13 is attached.

関節機構70は、装置ベース14から水平に延びている舌片14a、14bと、これらの舌片14a、14bに重なるように延長部71から延びている舌片71a、71bと、鉛直線に沿って延びている連結ピンネジ72と、を備えている。舌片14a、14bの間に舌片71bを差し込み、舌片14aの上面に舌片71aを沿わせる。この状態で、連結ピンネジ72により舌片14a、14bに舌片71a、71bを連結する。延長部71は、連結ピンネジ72を回転中心にしてネジを緩めると、水平に旋回可能となる。また、連結ピンネジ72を締めると、旋回した角度を固定できる。   The joint mechanism 70 includes tongue pieces 14a and 14b extending horizontally from the device base 14, tongue pieces 71a and 71b extending from the extension portion 71 so as to overlap the tongue pieces 14a and 14b, and along the vertical line. And a connecting pin screw 72 extending. The tongue piece 71b is inserted between the tongue pieces 14a and 14b, and the tongue piece 71a is placed along the upper surface of the tongue piece 14a. In this state, the tongue pieces 71 a and 71 b are connected to the tongue pieces 14 a and 14 b by the connecting pin screw 72. The extension portion 71 can turn horizontally when the screw is loosened with the connecting pin screw 72 as the center of rotation. Further, when the connecting pin screw 72 is tightened, the pivoted angle can be fixed.

第2の変更点は、前腕載せ台13に、肘固定部材75を付設した点にある。肘固定部材75は、U字部材76と、このU字部材76を前腕載せ台13に連結する連結部材77とからなる。
図19にて、前腕載せ台13に前腕部58が載せられ、U字部材76に上腕部78が嵌められる。
The second change is that an elbow fixing member 75 is attached to the forearm mount 13. The elbow fixing member 75 includes a U-shaped member 76 and a connecting member 77 that connects the U-shaped member 76 to the forearm mount 13.
In FIG. 19, the forearm portion 58 is placed on the forearm mount 13, and the upper arm portion 78 is fitted to the U-shaped member 76.

連結ピンネジ72を中心にして、前腕載せ台13が図面表裏方向へ移動する場合、前腕部58が前腕載せ台13から横に滑ることが心配される。この場合、上腕部78がU字部材76に嵌っていれば、その心配は無くなる。   When the forearm platform 13 moves in the drawing front and back direction around the connection pin screw 72, it is feared that the forearm portion 58 slides sideways from the forearm platform 13. In this case, if the upper arm portion 78 is fitted to the U-shaped member 76, the worry is eliminated.

第3の変更点は、前腕部58に電気刺激を与える電極81と、前腕部58に機械振動を与える振動子82を、片麻痺前腕機能回復訓練装置10に備えた点にある。
従来の機能回復訓練では、医師や療養士が、患者の前腕部58を回転すると同時に指先で前腕部58の筋を引っ掻くように擦る。
徒手訓練での皮膚筋摩擦の代わりに、本発明では、電気的刺激と振動刺激とを前腕部58に付与することで筋に刺激を与える。なお、振動刺激は他動的回転運動の第二速度の開始あたりから自動的回転運動の終了までにのみ与える。電気刺激は訓練中連続して与える。電気刺激の強さは、関節運動のしきい値を超えないように設定される。
The third change is that the hemiplegic forearm function recovery training device 10 includes an electrode 81 for applying electrical stimulation to the forearm 58 and a vibrator 82 for applying mechanical vibration to the forearm 58.
In the conventional function recovery training, a doctor or a medical practitioner rubs the patient's forearm 58 while rotating the patient's forearm 58 with the fingertips.
Instead of skin muscle friction in manual training, in the present invention, electrical stimulation and vibration stimulation are applied to the forearm portion 58 to stimulate the muscle. The vibration stimulus is given only from the start of the second speed of the other dynamic rotational motion to the end of the automatic rotational motion. Electrical stimulation is given continuously during training. The strength of the electrical stimulation is set so as not to exceed the joint motion threshold.

図20は、図19で説明した片麻痺前腕機能回復訓練装置10、関節機構70の作用説明図である。
図20(a)に示されるように、右腕での自動回内運動時に前腕部58を、前腕載せ台13と延長部71とを繋いでいる関節機構70により角度δ1だけ外転して角度δ1に固定させ、回復させる回内筋を予め良く伸ばした状態にすることができる。図20(b)に示されるように、自動回外運動時に前腕部58を関節機構70で角度δ2だけ内転して角度δ2に固定させ、回復させる回外筋を予め良く伸ばした状態にすることができる。
伸張反射をより効率よく引き起こすためには、回復させる筋を良く伸ばした状態で訓練を行うべきである。本発明により、回復させようとする筋を予め良く伸ばした状態になり、伸張反射をより効率よく引き起こすことができる。
FIG. 20 is an operation explanatory diagram of the hemiplegic forearm function recovery training device 10 and the joint mechanism 70 described in FIG.
As shown in FIG. 20A, the forearm portion 58 is rotated outwardly by an angle δ1 by an articulation mechanism 70 that connects the forearm mount 13 and the extension portion 71 during an automatic pronation motion with the right arm, and an angle δ1 is obtained. The progenitor muscle to be fixed and recovered can be in a state of being well stretched in advance. As shown in FIG. 20B, the forearm portion 58 is internally inverted by the angle δ2 by the joint mechanism 70 during the automatic supination movement, and is fixed at the angle δ2, and the supination muscle to be recovered is sufficiently stretched in advance. be able to.
In order to cause stretch reflexes more efficiently, training should be done with the stretched muscles stretched well. According to the present invention, the muscle to be restored is well stretched in advance, and stretch reflection can be caused more efficiently.

図21は、図15に示された制御部の作用の変更例が示される図である。
点P1の直後に伸張反射待ち時間を置いた点が、図15と異なり、その他は図15と同一である。
他動的回転運動から自動的回転運動に変わるときに、患者の伸張反射による動きが発生するまでに時間がかかる。いわゆるタイムラグが発生する。そこで、他動的回転運動が終わり、自動的回転運動が始まる前の装置制御に、短い伸張反射待ち時間を設ける。これにより、患者の自動的な動きやリズムに訓練装置10の作動をうまく同調させ、訓練効果を向上させることができる。なお、伸張反射待ち時間は患者によって異なるが、0.05〜0.10秒の範囲に設定される。
FIG. 21 is a diagram showing a modification of the operation of the control unit shown in FIG.
FIG. 15 is different from FIG. 15 in that an extended reflection waiting time is placed immediately after the point P1, and the other points are the same as those in FIG.
When changing from the other dynamic rotational motion to the automatic rotational motion, it takes time until the motion due to the stretch reflex of the patient occurs. A so-called time lag occurs. Therefore, a short stretch reflection waiting time is provided in the device control before the other dynamic rotational motion ends and the automatic rotational motion starts. Thereby, the operation | movement of the training apparatus 10 can synchronize well with a patient's automatic motion and rhythm, and a training effect can be improved. The stretch reflection waiting time varies depending on the patient, but is set in the range of 0.05 to 0.10 seconds.

図22は、図19に示された片麻痺前腕機能回復訓練装置の変更例を示す側面図である。片麻痺前腕機能回復訓練装置10は、卓上タイプの装置である。片麻痺前腕機能回復訓練装置10は、上面が平らな机84に載せて、クランパ85、85で固定される。机84は市販の事務机や作業机で十分である。卓上タイプであるため、片麻痺前腕機能回復訓練装置10は軽くなり、運搬と設置が容易になる。その他は図19の符号を流用し、説明を省略する。   FIG. 22 is a side view showing a modification of the hemiplegic forearm function recovery training device shown in FIG. The hemiplegic forearm function recovery training device 10 is a table-type device. The hemiplegic forearm function recovery training device 10 is placed on a desk 84 having a flat upper surface and fixed by clampers 85, 85. As the desk 84, a commercially available office desk or work desk is sufficient. Since it is a tabletop type, the hemiplegic forearm function recovery training device 10 becomes lighter and can be easily transported and installed. In other respects, the reference numerals in FIG.

図23は、図19に示された片麻痺前腕機能回復訓練装置の更なる変更例を示す側面図である。図19に示されるカップリング36とサーボモータ21は、図23では装置ベース14の下に配置されている。そのために、装置ベース14の下に、モータ軸22と同軸の第1駆動軸18Aを配置し、この第1駆動軸18Aの先端に第1プーリ86を取付けた。また、装置ベース14の上に第2駆動軸18Bを設け、この第2駆動軸18Bに第2プーリ87を取付けた。そして、第1プーリ86と第2プーリ87にベルト88を渡した。
結果、片麻痺前腕機能回復訓練装置10の長手寸法L3は、大幅に小さくなった。
FIG. 23 is a side view showing a further modified example of the hemiplegic forearm function recovery training device shown in FIG. 19. The coupling 36 and the servo motor 21 shown in FIG. 19 are arranged below the apparatus base 14 in FIG. For this purpose, a first drive shaft 18A coaxial with the motor shaft 22 is disposed under the apparatus base 14, and a first pulley 86 is attached to the tip of the first drive shaft 18A. A second drive shaft 18B is provided on the apparatus base 14, and a second pulley 87 is attached to the second drive shaft 18B. Then, the belt 88 was passed to the first pulley 86 and the second pulley 87.
As a result, the longitudinal dimension L3 of the hemiplegic forearm function recovery training device 10 was significantly reduced.

プーリ86、87とベルト88は、スプロケットとチェーンであってもよい。または、第1駆動軸18Aと第2駆動軸18Bを繋ぐ伝動機構であれば種類は問わない。   The pulleys 86 and 87 and the belt 88 may be sprockets and chains. Alternatively, the type is not limited as long as it is a transmission mechanism that connects the first drive shaft 18A and the second drive shaft 18B.

図24は、図19に示された片麻痺前腕機能回復訓練装置の更なる変更例を示す図である。
図24に示されるように、延長部71の撓みを防止するために、延長部71の先端に、柱28Aが設けられ、この柱28Aの下にキャスター11Aを設けられている。
FIG. 24 is a diagram showing a further modification of the hemiplegic forearm function recovery training device shown in FIG.
As shown in FIG. 24, in order to prevent the extension portion 71 from bending, a column 28A is provided at the tip of the extension portion 71, and a caster 11A is provided under the column 28A.

また、舌片14a、14bに、延長部71の延び方向に沿って延びる長穴が設けられている。長穴を設けることにより、前腕部58の長さに応じて、スティック16と前腕載せ台13との距離を変更することができる。長穴は舌片71a、71b側に設けても良い。
なお、図1においても、移動台12の水平フレームにスライド機構を設け、スティック16と前腕載せ台13との距離を変更するようにしても良い。
The tongue pieces 14 a and 14 b are provided with elongated holes extending along the extending direction of the extension portion 71. By providing the long hole, the distance between the stick 16 and the forearm mount 13 can be changed according to the length of the forearm portion 58. The elongated holes may be provided on the tongue pieces 71a and 71b side.
Also in FIG. 1, a slide mechanism may be provided on the horizontal frame of the movable table 12 to change the distance between the stick 16 and the forearm platform 13.

さらに、延長部71に前腕載せ台13が上下移動可能に取付けられている。レバー73でネジを緩めると上又は下への移動が可能となり、ネジを締めると固定される。   Further, the forearm mount 13 is attached to the extension portion 71 so as to be vertically movable. When the screw is loosened with the lever 73, it can be moved upward or downward, and is fixed when the screw is tightened.

また、連結部材77は、下部材77aと上部材77bとネジ79とで構成される。ネジ79を緩めると、下部材77aに対して上部材77bは図面表裏方向へ傾く。ネジ79を締めることで下部材77aに上部材77bを固定することができる。U字部材76のポジションを、上腕部78の左右姿勢に合わせることができる。   The connecting member 77 includes a lower member 77a, an upper member 77b, and a screw 79. When the screw 79 is loosened, the upper member 77b is inclined in the drawing front and back direction with respect to the lower member 77a. By tightening the screw 79, the upper member 77b can be fixed to the lower member 77a. The position of the U-shaped member 76 can be adjusted to the left and right posture of the upper arm portion 78.

尚、請求項3でのトルク検出機構は、駆動軸に歪ゲージを直接貼り付けたものであってもよい。   The torque detection mechanism according to claim 3 may be one in which a strain gauge is directly attached to the drive shaft.

本発明は、左半身と右半身の一方が麻痺した患者の前腕部を訓練して回復を促す訓練装置に好適である。   INDUSTRIAL APPLICABILITY The present invention is suitable for a training apparatus that trains the forearm of a patient who is paralyzed in either the left half or the right half and promotes recovery.

10…片麻痺前腕機能回復訓練装置、14…装置ベース、15…半割筒体、16…スティク、17…手首支持部、18…駆動軸、19…軸受台、21…サーボモータ、22…モータ軸、23…エンコーダ、24…制御部、25…トルク換算部、38…棒状部材、49…ブラケット、52…ねじ、53、54…湾曲部材、58…前腕部、60…トルク検出機構、62…くびれ部、63…歪ゲージ、70…関節機構、71…延長部、75…肘固定部、78…上腕部。   DESCRIPTION OF SYMBOLS 10 ... Hemiplegic forearm function recovery training apparatus, 14 ... Device base, 15 ... Half cylinder, 16 ... Stick, 17 ... Wrist support part, 18 ... Drive shaft, 19 ... Bearing stand, 21 ... Servo motor, 22 ... Motor Shaft, 23 ... encoder, 24 ... control unit, 25 ... torque conversion unit, 38 ... rod-shaped member, 49 ... bracket, 52 ... screw, 53, 54 ... curved member, 58 ... forearm portion, 60 ... torque detection mechanism, 62 ... Constriction part, 63 ... strain gauge, 70 ... joint mechanism, 71 ... extension part, 75 ... elbow fixing part, 78 ... upper arm part.

Claims (6)

半身が麻痺した患者において、麻痺している方の前腕部を訓練して回復を促す片麻痺前腕機能回復訓練装置であって、
装置ベースと、この装置ベースに水平軸廻りに回転可能に支持され上面が開放されている半割筒体と、この半割筒体内に設けられ前記前腕部の指を添える又は指で握ることができるスティックと、前記半割筒体内に設けられ手首を支える手首支持部と、一端が前記半割筒体に連結され水平に延びる駆動軸と、前記装置ベースに設けられ前記駆動軸を駆動するサーボモータと、このサーボモータに設けられモータ軸の回転角を計測するエンコーダと、このエンコーダから回転角情報を取得し前記半割筒体を正転させ、停止させ、逆転させ、停止させることを繰り返し、前記正転では筋緊張とその上の伸張反射を引き起こす訓練目標筋を刺激とするために第1角速度と急加速度と前記第1角速度より高速の第2角速度に速度を制御し、前記逆転では筋の刺激を持続して筋緊張を維持するために抵抗力を付与する、一連の制御をなす制御部とからなる片麻痺前腕機能回復訓練装置。
A hemiplegic forearm function recovery training device that trains the paralyzed forearm and promotes recovery in a patient whose body is paralyzed,
An apparatus base, a half cylinder that is supported by the apparatus base so as to be rotatable about a horizontal axis and whose upper surface is open, and a finger of the forearm portion provided in the half cylinder is attached or grasped by a finger Stick, a wrist support portion provided in the half cylinder and supporting the wrist, a drive shaft having one end connected to the half cylinder and extending horizontally, and a servo provided on the apparatus base for driving the drive shaft A motor, an encoder provided in the servo motor for measuring the rotation angle of the motor shaft, and obtaining rotation angle information from the encoder to rotate the half cylinder forward, stop, reverse, and stop repeatedly. In the forward rotation, the speed is controlled to a first angular velocity, a rapid acceleration, and a second angular velocity that is faster than the first angular velocity in order to stimulate a muscle to be trained and a training target muscle that causes a stretch reflex on the muscle. Sustained stimulation of muscle resistant to impart to maintain muscle tone, and a control unit which forms a series of control hemiplegic forearm rehabilitation device.
前記手首支持部は、ブラケットと、このブラケットにねじを介して支持され前記手首を挟む左右の湾曲部材とからなり、前記手首を上方へ抜くことができる構造になっている請求項1記載の片麻痺前腕機能回復訓練装置。   The piece according to claim 1, wherein the wrist support portion includes a bracket and left and right curved members that are supported by the bracket via screws and sandwich the wrist, and has a structure that allows the wrist to be pulled upward. Paralysis forearm function recovery training device. 前記半割円筒と前記駆動軸との間に、トルク検出機構が設けられ、このトルク検出機構で前記逆転時に前記患者が前記スティックへ付与するトルクを検出することができるようにした請求項1記載の片麻痺前腕機能回復訓練装置。   The torque detection mechanism is provided between the said half cylinder and the said drive shaft, The torque which the said patient gives to the said stick at the time of the said reverse rotation can be detected with this torque detection mechanism. Hemiplegic forearm function recovery training device. 前記トルク検出機構は、前記半割円筒の外周部から前記駆動軸まで延びる棒状部材と、この棒状部材の途中に設けるくびれ部と、このくびれ部に貼り付けた歪ゲージと、この歪ゲージからの歪情報をトルクに換算するトルク換算部とからなる請求項1記載の片麻痺前腕機能回復訓練装置。   The torque detection mechanism includes a rod-shaped member extending from the outer peripheral portion of the half cylinder to the drive shaft, a constricted portion provided in the middle of the rod-shaped member, a strain gauge attached to the constricted portion, and a strain gauge. The hemiplegic forearm function recovery training device according to claim 1, comprising a torque conversion unit that converts strain information into torque. 前記装置ベースから延長部が延びており、この延長部に前記前腕部を支える前腕載せ台が設けられ、この前腕載せ台に上腕部を支える肘固定部が取付けられている請求項1記載の片麻痺前腕機能回復訓練装置。   The piece according to claim 1, wherein an extension portion extends from the device base, and a forearm mount for supporting the forearm portion is provided on the extension portion, and an elbow fixing portion for supporting the upper arm portion is attached to the forearm mount. Paralysis forearm function recovery training device. 前記延長部は、関節機構を介して前記装置ベースに水平・回転移動可能に繋がれている請求項5記載の片麻痺前腕機能回復訓練装置。   The hemiplegic forearm function recovery training device according to claim 5, wherein the extension portion is connected to the device base via a joint mechanism so as to be horizontally and rotationally movable.
JP2014552045A 2012-12-14 2013-12-10 Hemiplegic forearm function recovery training device Active JP6210644B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012273334 2012-12-14
JP2012273334 2012-12-14
PCT/JP2013/083068 WO2014092076A1 (en) 2012-12-14 2013-12-10 Hemiplegic forearm function recovery training device

Publications (2)

Publication Number Publication Date
JPWO2014092076A1 true JPWO2014092076A1 (en) 2017-01-12
JP6210644B2 JP6210644B2 (en) 2017-10-11

Family

ID=50934364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014552045A Active JP6210644B2 (en) 2012-12-14 2013-12-10 Hemiplegic forearm function recovery training device

Country Status (2)

Country Link
JP (1) JP6210644B2 (en)
WO (1) WO2014092076A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6655235B2 (en) * 2014-11-17 2020-02-26 国立大学法人 鹿児島大学 Non-horizontal load type upper limb weight release training device
CN105520820B (en) * 2016-01-11 2018-01-19 上海交通大学 A kind of Three Degree Of Freedom wrist functional rehabilitation robot
US11583463B2 (en) 2017-08-31 2023-02-21 Kagoshima University Hemiplegic forearm function recovery training device and method
CN108836750B (en) * 2018-07-06 2020-12-25 韩海霞 Active and passive dual-purpose finger rehabilitation training device
JP7475620B2 (en) * 2018-08-23 2024-04-30 オージー技研株式会社 Motor function recovery training device
CN109925677A (en) * 2019-03-28 2019-06-25 安徽中科裕田智能科技有限公司 A kind of super isometric exercise device of intelligentized upper-limb muscle strength
CN112494273A (en) * 2020-11-27 2021-03-16 山东海天智能工程有限公司 Control device, method and system for brain-controlled wrist training
CN113577703B (en) * 2021-07-14 2022-10-28 陈志成 Rehabilitation department resumes trainer with grip that has an elasticity control function

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04261657A (en) * 1991-02-15 1992-09-17 Masaki Takahashi Turning motion apparatus for front arm
US6506172B1 (en) * 2000-10-10 2003-01-14 Dynasplint Systems, Inc. Supinator/pronator therapy system to bring mobility to wrist, forearm and/or elbow
JP2003526470A (en) * 2000-03-14 2003-09-09 オーサーハブ インコーポレーテッド Pronation / supination / flexion therapy exercise device
JP3884077B2 (en) * 1995-11-20 2007-02-21 オーサーハブ インコーポレーテッド Continuous passive motion device for joints
WO2009150854A1 (en) * 2008-06-12 2009-12-17 株式会社フィジオン Device for training range of joint motion
JP2010529874A (en) * 2007-06-12 2010-09-02 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Forearm rotation mechanism and straightener including the mechanism
JP2011056079A (en) * 2009-09-10 2011-03-24 Kagoshima Univ Device for functional recovery training of hemiplegic finger

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04261657A (en) * 1991-02-15 1992-09-17 Masaki Takahashi Turning motion apparatus for front arm
JP3884077B2 (en) * 1995-11-20 2007-02-21 オーサーハブ インコーポレーテッド Continuous passive motion device for joints
JP2003526470A (en) * 2000-03-14 2003-09-09 オーサーハブ インコーポレーテッド Pronation / supination / flexion therapy exercise device
US6506172B1 (en) * 2000-10-10 2003-01-14 Dynasplint Systems, Inc. Supinator/pronator therapy system to bring mobility to wrist, forearm and/or elbow
JP2010529874A (en) * 2007-06-12 2010-09-02 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Forearm rotation mechanism and straightener including the mechanism
WO2009150854A1 (en) * 2008-06-12 2009-12-17 株式会社フィジオン Device for training range of joint motion
JP2011056079A (en) * 2009-09-10 2011-03-24 Kagoshima Univ Device for functional recovery training of hemiplegic finger

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
余永(外2名): "歪変形拡大メカニズムを用いた指関節トルクの高感度センシング", 日本ロボット学会誌, vol. 20, no. 5, JPN6014000963, 15 July 2002 (2002-07-15), JP, pages 528 - 536, ISSN: 0003632114 *
余永(外4名): "片麻痺前腕機能回復訓練装置の研究", ロボティクス・メカトロニクス講演会2012講演論文集, vol. No.12-3, JPN6014000962, 27 May 2012 (2012-05-27), JP, pages 2 - 10, ISSN: 0003632113 *

Also Published As

Publication number Publication date
WO2014092076A1 (en) 2014-06-19
JP6210644B2 (en) 2017-10-11

Similar Documents

Publication Publication Date Title
JP6210644B2 (en) Hemiplegic forearm function recovery training device
JP6657083B2 (en) Paralysis recovery training device
US7850579B2 (en) Bilateral arm trainer and method of use
KR100817827B1 (en) Training apparatus
KR102018566B1 (en) Upper limb rehabilitation robot connectable with end-effector type robot
US10123929B2 (en) Wrist and forearm exoskeleton
Varoqui et al. Ankle voluntary movement enhancement following robotic-assisted locomotor training in spinal cord injury
US11266876B2 (en) Ankle muscle resistance-training apparatus
US20110021955A1 (en) Training Device
US10470961B2 (en) Multifunctional apparatus for passive physical rehabilitation
Kadivar et al. RiceWrist robotic device for upper limb training: feasibility study and case report of two tetraplegic persons with spinal cord injury
JP6061300B2 (en) Training effect evaluation method, training effect evaluation calculation device, and program using hemiplegic motor function recovery training device
CN106798627A (en) A kind of hand knee-joint rehabilitation training mechanism
KR102338936B1 (en) hand rehabilitation apparatus for neurological disease and nuscular skeletal disease
JP6512704B2 (en) Hemiplegia motor function recovery training device and program
JP5297516B2 (en) Spasticity measuring device
WO2009150854A1 (en) Device for training range of joint motion
Schroeder et al. Development of a series wrapping cam mechanism for energy transfer in wearable arm support applications
CN110974626A (en) Arm rehabilitation auxiliary robot
Tanabe et al. Application of a Robotic Rehabilitation Training System for Recovery of Severe Plegie Hand Motor Function after a Stroke
JP7461516B2 (en) Exercise therapy equipment
CN211382517U (en) Arm rehabilitation auxiliary robot
KR20150049848A (en) Assisting device for rehabilitation
Tanabe et al. Clinical Evaluation of UR-System-PARKO for Recovery of Motor Function of Severe Plegic Hand after Stroke.
Munih et al. Activity of arm muscles during machine therapeutic exercise

Legal Events

Date Code Title Description
A529 Written submission of copy of amendment under article 34 pct

Free format text: JAPANESE INTERMEDIATE CODE: A5211

Effective date: 20150522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150723

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170911

R150 Certificate of patent or registration of utility model

Ref document number: 6210644

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250