JPWO2014084340A1 - Yogurt and method for producing the same, method for producing lactic acid bacteria extracellular functional product, and lactic acid bacteria extracellular functional product production agent - Google Patents

Yogurt and method for producing the same, method for producing lactic acid bacteria extracellular functional product, and lactic acid bacteria extracellular functional product production agent Download PDF

Info

Publication number
JPWO2014084340A1
JPWO2014084340A1 JP2014549909A JP2014549909A JPWO2014084340A1 JP WO2014084340 A1 JPWO2014084340 A1 JP WO2014084340A1 JP 2014549909 A JP2014549909 A JP 2014549909A JP 2014549909 A JP2014549909 A JP 2014549909A JP WO2014084340 A1 JPWO2014084340 A1 JP WO2014084340A1
Authority
JP
Japan
Prior art keywords
lactic acid
yogurt
acid bacteria
sample
buffer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014549909A
Other languages
Japanese (ja)
Other versions
JP6392668B2 (en
Inventor
圭介 古市
圭介 古市
聖也 牧野
聖也 牧野
浩文 後藤
浩文 後藤
紘子 川嶋
紘子 川嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiji Co Ltd
Original Assignee
Meiji Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiji Co Ltd filed Critical Meiji Co Ltd
Publication of JPWO2014084340A1 publication Critical patent/JPWO2014084340A1/en
Application granted granted Critical
Publication of JP6392668B2 publication Critical patent/JP6392668B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/12Fermented milk preparations; Treatment using microorganisms or enzymes
    • A23C9/13Fermented milk preparations; Treatment using microorganisms or enzymes using additives
    • A23C9/1322Inorganic compounds; Minerals, including organic salts thereof, oligo-elements; Amino-acids, peptides, protein-hydrolysates or derivatives; Nucleic acids or derivatives; Yeast extract or autolysate; Vitamins; Antibiotics; Bacteriocins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/12Fermented milk preparations; Treatment using microorganisms or enzymes
    • A23C9/123Fermented milk preparations; Treatment using microorganisms or enzymes using only microorganisms of the genus lactobacteriaceae; Yoghurt
    • A23C9/1234Fermented milk preparations; Treatment using microorganisms or enzymes using only microorganisms of the genus lactobacteriaceae; Yoghurt characterised by using a Lactobacillus sp. other than Lactobacillus Bulgaricus, including Bificlobacterium sp.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2400/00Lactic or propionic acid bacteria
    • A23V2400/11Lactobacillus
    • A23V2400/137Delbrueckii

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Nutrition Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Dairy Products (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本発明の課題は、乳酸菌由来の機能性産生物の産生量を効率的に増加させることができる新たな方法を提供することである。本発明に係るヨーグルト製造方法は、pH緩衝剤添加工程および発酵工程を備える。pH緩衝剤添加工程では、ヨーグルト原料にpH緩衝剤が添加される。発酵工程では、pH緩衝剤が添加されたヨーグルト原料が乳酸菌によって発酵させられる。The subject of this invention is providing the new method which can increase the production amount of the functional product derived from lactic acid bacteria efficiently. The yogurt production method according to the present invention includes a pH buffer addition step and a fermentation step. In the pH buffer addition step, a pH buffer is added to the yogurt raw material. In the fermentation process, the yogurt raw material to which the pH buffer is added is fermented by lactic acid bacteria.

Description

本発明は、乳酸菌由来の機能性産生物の産生量を増加させるヨーグルト製造方法、及び、そのヨーグルト製造方法によって製造されるヨーグルトに関する。また、本発明は、乳酸菌の菌体外機能性産生物の産生量を増加させる乳酸菌体外機能性産生物製造方法、並びに、その方法に使用される乳酸菌体外機能性産生物増産剤に関する。   The present invention relates to a yogurt production method for increasing the production amount of a functional product derived from lactic acid bacteria, and a yogurt produced by the yogurt production method. In addition, the present invention relates to a method for producing a lactic acid bacterium extracellular functional product that increases the production amount of the lactic acid bacterium extracellular functional product, and a lactic acid bacterium extracellular functional product enhancer used in the method.

乳酸菌および乳酸菌由来の機能性産生物を摂取することにより、消化管内の細菌叢を改善し、宿主に有益な作用(健康の維持・疾病リスクの低減)をすることが知られている。例えば、ラクトバチルス・デルブルエッキー・サブスピーシス・ブルガリクス(Lactobacillus delbruechii subsp. bulgaricus)(以下「ブルガリア菌」とも称する)は、ヨーグルトスターターとして発酵乳の製造に用いられている乳酸菌のひとつである。このブルガリア菌の中には、菌体外多糖体(exopolysaccharide:EPS)を産生する菌株も多く存在する。そして、このEPSは、発酵乳製品の物性や安定性に寄与するのみならず、プロバイオティクス効果の享受にも寄与することが知られている。例えば、Lactobacillus delbruechii subsp. bulgaricus OLL1073R−1株(以下「OLL1073R−1株」とも称する)が産生するEPSには、自己免疫疾患を予防する効果があることが知られている。また、本菌株を用いて製造された発酵乳には、NK細胞の活性化、感冒罹患の減少、抗インフルエンザ等の効果があることが知られている。(例えば、特許文献1〜3等参照)。このように、EPSを産生する乳酸菌や、乳酸菌などの産生するEPSを利用することにより、健康に寄与する機能性食品やサプリメントを提供することができることとなる。   It is known that by taking lactic acid bacteria and functional products derived from lactic acid bacteria, the bacterial flora in the gastrointestinal tract is improved and has beneficial effects on the host (maintenance of health and reduction of disease risk). For example, Lactobacillus delbruechii subsp. Bulgaricus (hereinafter also referred to as “Bulgaria bacterium”) is one of lactic acid bacteria used as a yogurt starter in the production of fermented milk. Among these Bulgarian bacteria, there are many strains that produce exopolysaccharide (EPS). And this EPS is known not only to contribute to the physical properties and stability of fermented milk products, but also to enjoy the probiotic effect. For example, Lactobacillus delbruechii subsp. It is known that EPS produced by Bulgaricus OLL1073R-1 strain (hereinafter also referred to as “OLL1073R-1 strain”) has an effect of preventing autoimmune diseases. In addition, it is known that fermented milk produced using this strain has effects such as activation of NK cells, reduction of common cold, and anti-influenza. (For example, refer to Patent Documents 1-3). Thus, functional foods and supplements that contribute to health can be provided by using lactic acid bacteria that produce EPS or EPS that is produced by lactic acid bacteria or the like.

ところで、このような機能性食品やサプリメントを効率的に製造するためには、同機能性食品中のEPS産生量を高める必要がある。   By the way, in order to efficiently manufacture such functional foods and supplements, it is necessary to increase the EPS production amount in the functional foods.

ブルガリア菌に限らず乳酸菌由来のEPSを高めるために、過去に様々な方法が提案されている。例えば、特許文献4には、ペプトン、酵母エキス、及び不飽和脂肪酸もしくはそのエステルを含む培地で、Lactobacillus kefiranofaciens等のケフィラン生産能を有する乳酸菌を培養することにより、培養液中に高濃度のEPSを産生することができることが開示されている。また、特許文献5には、牛乳に乳清タンパクや大豆タンパクを加え、ラクトコッカス・ラクティス・サブスピーシーズ・クレモリスで発酵させることにより、乳酸菌由来のEPSが顕著に増加することが開示されている。   In order to increase EPS derived from lactic acid bacteria as well as Bulgaria bacteria, various methods have been proposed in the past. For example, Patent Document 4 discloses that a high concentration of EPS is produced in a culture solution by culturing lactic acid bacteria having kefiran-producing ability such as Lactobacillus kefiranofaciens in a medium containing peptone, yeast extract, and unsaturated fatty acid or ester thereof. It is disclosed that it can be produced. Patent Document 5 discloses that EPS derived from lactic acid bacteria is remarkably increased by adding whey protein or soybean protein to milk and fermenting with lactococcus lactis subspecies cremolith.

特開2000−247895号公報JP 2000-247895 A 特開2005−194259号公報JP 2005-194259 A 国際公開パンフレットWO2011/065300International Publication Pamphlet WO2011 / 065300 特開2011−250756号公報JP 2011-250756 A 特開2011−51268号公報JP 2011-51268 A

本発明の課題は、乳酸菌由来の機能性産生物の産生量を効率的に増加させることができる新たな方法を提供することである。   The subject of this invention is providing the new method which can increase the production amount of the functional product derived from lactic acid bacteria efficiently.

本発明の一局面に係るヨーグルト製造方法は、pH緩衝剤添加工程および発酵工程を備える。pH緩衝剤添加工程では、ヨーグルト原料にpH緩衝剤が添加される。発酵工程では、pH緩衝剤が添加されたヨーグルト原料(以下「pH緩衝剤添加ヨーグルト原料」という)が乳酸菌によって発酵させられる。なお、ヨーグルト原料への乳酸菌の添加はpH緩衝剤の添加前であってもよいし、添加後であってもよい。   The yogurt manufacturing method which concerns on 1 aspect of this invention is equipped with a pH buffer addition process and a fermentation process. In the pH buffer addition step, a pH buffer is added to the yogurt raw material. In the fermentation process, a yogurt raw material to which a pH buffer is added (hereinafter referred to as “pH buffer added yogurt raw material”) is fermented by lactic acid bacteria. In addition, the addition of lactic acid bacteria to the yogurt raw material may be before the addition of the pH buffering agent or after the addition.

本願発明者らの鋭意検討の結果、上述のヨーグルト製造方法の通り、ヨーグルト原料にpH緩衝剤を添加してからそのヨーグルト原料を発酵させることによって、乳酸菌が増殖できるpH領域の時間を延長することができ、その結果、ヨーグルト中の乳酸菌由来の機能性産生物の産生量を高めることができることが明らかとなった。すなわち、このヨーグルト製造方法は、乳酸菌由来の機能性産生物の産生量を効率的に高めることができる。   As a result of intensive studies by the inventors of the present application, as described in the above-mentioned yogurt production method, by adding a pH buffer to the yogurt raw material and then fermenting the yogurt raw material, the time in the pH region where lactic acid bacteria can grow is extended. As a result, it was revealed that the production amount of functional products derived from lactic acid bacteria in yogurt can be increased. That is, this yogurt manufacturing method can efficiently increase the production amount of functional products derived from lactic acid bacteria.

ところで、このヨーグルト製造方法において、乳酸菌は、少なくとも、乳酸菌体外多糖体産生能力を有する乳酸菌を含むことが好ましい。そして、この乳酸菌体外多糖体産生能力を有する乳酸菌は、少なくとも、ラクトバチルス・デルブルエッキー・サブスピーシス・ブルガリクス種の乳酸菌を含むことが好ましい。なお、かかる場合、乳酸菌体外多糖体産生能力を有する乳酸菌は、ラクトバチルス・デルブルエッキー・サブスピーシス・ブルガリクス種の乳酸菌単体であってもよいし、ラクトバチルス・デルブルエッキー・サブスピーシス・ブルガリクス種と他の乳酸菌を含む乳酸菌混合物であってもよい。   By the way, in this yogurt manufacturing method, it is preferable that lactic acid bacteria contain at least lactic acid bacteria which have the ability to produce lactic acid bacteria extracellular polysaccharides. And it is preferable that the lactic acid bacteria which have the ability to produce lactic acid bacteria exopolysaccharides include at least Lactobacillus delbruecki subspice bulgaricus lactic acid bacteria. In such a case, the lactic acid bacteria having the ability to produce lactic acid bacteria exopolysaccharides may be Lactobacillus delbruecky subspice bulgaricus lactic acid bacteria alone, or Lactobacillus delbruecki subspice bulgaricus sp. And lactic acid bacteria mixture containing other lactic acid bacteria.

また、このヨーグルト製造方法において、pH緩衝剤はリン酸塩であることが好ましい。乳酸菌として、ラクトバチルス・デルブルエッキー・サブスピーシス・ブルガリクス種の乳酸菌とストレプトコッカス・サーモフィルス(Streptococcus thermophilus)種の乳酸菌(以下「サーモフィルス菌」とも称する)との混合物が使用される場合、サーモフィルス菌の増殖を抑制しつつラクトバチルス・デルブルエッキー・サブスピーシス・ブルガリクス種の乳酸菌の増殖を促進することができるからである。なお、このリン酸塩は、アルカリ金属塩であることが好ましい。さらに、リン酸塩は、リン酸水素二ナトリウムおよびリン酸水素二カリウムより成る群から選択される少なくとも一方のリン酸塩であることが好ましい。   Moreover, in this yogurt manufacturing method, it is preferable that a pH buffer is a phosphate. When a mixture of a lactic acid bacterium of Lactobacillus delbruecki subspice bulgaricus species and a lactic acid bacterium of Streptococcus thermophilus species (hereinafter also referred to as “thermophilus bacterium”) is used as the lactic acid bacterium, This is because it is possible to promote the growth of Lactobacillus delbruecki, subspice bulgaricus lactic acid bacteria while suppressing the growth of the bacteria. In addition, it is preferable that this phosphate is an alkali metal salt. Furthermore, the phosphate is preferably at least one phosphate selected from the group consisting of disodium hydrogen phosphate and dipotassium hydrogen phosphate.

さらに、このヨーグルト製造方法において、ヨーグルト原料には、8重量%以上20重量%以下の範囲内の無脂乳固形分が含まれていることが好ましい。なお、ここで、ヨーグルト原料とはpH緩衝剤添加前のものを意味する。   Furthermore, in this yogurt manufacturing method, it is preferable that the yogurt raw material contains non-fat milk solid content in the range of 8 wt% or more and 20 wt% or less. Here, the yoghurt raw material means that before adding the pH buffering agent.

加えて、このヨーグルト製造方法において、発酵工程では、pH緩衝剤添加ヨーグルト原料が30℃以上40℃以下の範囲内の温度下で乳酸菌によって発酵させられることが好ましい。   In addition, in this yogurt production method, in the fermentation step, it is preferable that the pH buffer-added yogurt raw material is fermented by lactic acid bacteria at a temperature within the range of 30 ° C. or higher and 40 ° C. or lower.

上述のヨーグルト製造方法によって製造されたヨーグルトには、乳酸菌およびpH緩衝剤が含有される。なお、このヨーグルトでは、pH緩衝剤が均一に溶解されている。ここで、乳酸菌およびpH緩衝剤は、上述の通りである。また、このヨーグルト中のpH緩衝剤は、例えば、高速液体クロマトグラフィー等のクロマトグラフィー技術や、核磁気共鳴(NMR)技術(例えば、Szlyk E, Hrynczyszyn P, 「Phosphate additives determination in meat products by 31-phosphorus nuclear magnetic resonance using new internal reference standard: hexamethylphosphoroamide phosphatesolution」, Talanta. 2011 Mar 15;84(1):199-203. doi: 10.1016/j.talanta.2010.12.046 参照)などによって検出することができる。   The yogurt produced by the above-mentioned yogurt production method contains lactic acid bacteria and a pH buffer. In this yogurt, the pH buffer is uniformly dissolved. Here, the lactic acid bacteria and the pH buffer are as described above. In addition, the pH buffer in this yogurt is, for example, a chromatography technique such as high performance liquid chromatography, or a nuclear magnetic resonance (NMR) technique (for example, Szlyk E, Hrynczyszyn P, “Phosphate additives determination in meat products by 31- It can be detected by, for example, phosphorus nuclear magnetic resonance using new internal reference standard: hexamethylphosphoroamide phosphate solution, Talanta. 2011 Mar 15; 84 (1): 199-203. doi: 10.1016 / j.talanta.2010.12.046).

また、上述のヨーグルトは乳酸菌体外機能性産生物(例えば、乳酸菌体外多糖体など)をさらに含有することが好ましい。かかる場合、乳酸菌体外機能性産生物は、ヨーグルト全量に対して40mg/kg以上100mg/kg以下の範囲内の量含まれていることが好ましい。   Moreover, it is preferable that the above-mentioned yogurt further contains a lactic acid bacterial extracellular functional product (for example, a lactic acid bacterial extracellular polysaccharide). In such a case, it is preferable that the lactic acid bacterial extracellular functional product is contained in an amount within the range of 40 mg / kg to 100 mg / kg with respect to the total amount of yogurt.

本発明の他の局面に係る乳酸菌体外機能性産生物製造方法は、pH緩衝剤添加工程および発酵工程を備える。pH緩衝剤添加工程では、乳原料にpH緩衝剤が添加される。発酵工程では、pH緩衝剤が添加された乳原料が、乳酸菌体外機能性産生物を産生する乳酸菌(以下「菌体外機能性産生物産生乳酸菌」ともいう)によって発酵させられる。なお、乳原料への乳酸菌の添加はpH緩衝剤の添加前であってもよいし、添加後であってもよい。   The method for producing an extracellular functional product of lactic acid bacteria according to another aspect of the present invention includes a pH buffer addition step and a fermentation step. In the pH buffer addition step, a pH buffer is added to the milk raw material. In the fermentation process, the milk raw material to which the pH buffer is added is fermented by a lactic acid bacterium that produces a lactic acid bacteria extracellular functional product (hereinafter also referred to as “extracellular functional product-producing lactic acid bacteria”). The lactic acid bacterium may be added to the milk raw material before or after the addition of the pH buffering agent.

本願発明者らの鋭意検討の結果、上述の乳酸菌体外機能性産生物製造方法の通り、乳原料にpH緩衝剤を添加してからその乳原料を発酵させることによって、菌体外機能性産生物産生乳酸菌が増殖できるpH領域の時間を延長することができ、その結果、乳酸菌由来の機能性産生物の産生量を高めることができることが明らかとなった。すなわち、この乳酸菌体外機能性産生物製造方法は、乳酸菌由来の機能性産生物の産生量を効率的に高めることができる。すなわち、本局面においてpH緩衝剤は、乳酸菌体外機能性産生物増産剤の有効成分として機能する。   As a result of intensive studies by the inventors of the present application, the extracellular functional product is produced by adding a pH buffer to the milk raw material and then fermenting the milk raw material in accordance with the above-described method for producing an extracellular functional product of lactic acid bacteria. It has been clarified that the time in the pH region where the produced lactic acid bacteria can grow can be extended, and as a result, the production amount of the functional product derived from the lactic acid bacteria can be increased. That is, this lactic acid bacteria extracorporeal functional product manufacturing method can efficiently increase the production amount of functional products derived from lactic acid bacteria. That is, in this aspect, the pH buffer functions as an active ingredient of the lactic acid bacteria extracellular functional product increaser.

なお、上述の乳酸菌体外機能性産生物製造方法は、別の観点から捉えると、「乳原料にpH緩衝剤を配合(添加)して乳酸菌によりその乳原料を発酵させる乳酸菌体外機能性産生物の増産方法」、「乳原料にpH緩衝剤を配合(添加)する乳酸菌体外機能性産生物の増産方法」、「乳酸菌体外機能性産生物を増産させるために乳原料にpH緩衝剤を配合(添加)する方法」、「乳酸菌体外機能性産生物を増産させるための乳原料に対するpH緩衝剤の使用(使用方法)」などとも表現することができる。   In addition, the above-mentioned method for producing an extracellular functional product of a lactic acid bacterium has a different viewpoint: “A lactic acid bacterial extracellular functional product in which a lactic acid bacterium is fermented by adding (adding) a pH buffer to the milk material. "Production method", "Production method of lactic acid bacteria functional product by adding (adding) a pH buffer to milk material", "Combination (addition of pH buffering agent to dairy material to increase production of lactic acid bacteria functional product" ) "And" use of pH buffering agent for milk raw material to increase production of lactic acid bacteria extracorporeal functional product (method of use) ".

本発明の一局面に係るヨーグルト製造方法では、ヨーグルト原料にpH緩衝剤を添加してからそのヨーグルト原料を発酵させることによって、乳酸菌が増殖できるpH領域の時間を延長することができ、その結果、ヨーグルト中の乳酸菌由来の機能性産生物の産生量を高めることができる。すなわち、このヨーグルト製造方法は、乳酸菌由来の機能性産生物の産生量を効率的に高めることができる。   In the yogurt production method according to one aspect of the present invention, by adding a pH buffer to the yogurt raw material and then fermenting the yogurt raw material, the time in the pH region where the lactic acid bacteria can grow can be extended. The production amount of functional products derived from lactic acid bacteria in yogurt can be increased. That is, this yogurt manufacturing method can efficiently increase the production amount of functional products derived from lactic acid bacteria.

また、本発明の他の局面に係る乳酸菌体外機能性産生物製造方法では、乳原料にpH緩衝剤を添加してからその乳原料を発酵させることによって、乳酸菌が増殖できるpH領域の時間を延長することができ、その結果、乳酸菌由来の機能性産生物の産生量を高めることができる。すなわち、この乳酸菌体外機能性産生物製造方法は、乳酸菌由来の機能性産生物の産生量を効率的に高めることができる。   In addition, in the method for producing a lactic acid bacteria extracellular functional product according to another aspect of the present invention, by adding a pH buffer to the milk material and then fermenting the milk material, the time in the pH region where the lactic acid bacteria can grow is extended. As a result, the production amount of the functional product derived from lactic acid bacteria can be increased. That is, this lactic acid bacteria extracorporeal functional product manufacturing method can efficiently increase the production amount of functional products derived from lactic acid bacteria.

以下、本発明を実施するための形態を詳細に説明するが、本発明は、以下に述べる個々の実施の形態に限定されない。   Hereinafter, although the form for implementing this invention is demonstrated in detail, this invention is not limited to each embodiment described below.

−第1実施形態−
本実施形態に係るヨーグルトは、pH緩衝剤添加工程および発酵工程を経て製造される。pH緩衝剤添加工程では、ヨーグルト原料にpH緩衝剤が添加される。発酵工程では、pH緩衝剤が添加されたヨーグルト原料(以下「pH緩衝剤添加ヨーグルト原料」という)が乳酸菌によって発酵させられる。
-First embodiment-
The yogurt according to the present embodiment is manufactured through a pH buffer addition process and a fermentation process. In the pH buffer addition step, a pH buffer is added to the yogurt raw material. In the fermentation process, a yogurt raw material to which a pH buffer is added (hereinafter referred to as “pH buffer added yogurt raw material”) is fermented by lactic acid bacteria.

本実施形態において、ヨーグルトとは、乳等省令で定義される「発酵乳」および「乳酸菌飲料」を指す。乳等省令における「発酵乳」とは、「乳またはこれと同等以上の無脂乳固形分を含む乳などを乳酸菌または酵母で発酵させ、糊状または液状にしたもの」または「これらを凍結したもの」と定義されている。発酵乳は、「容器充填後に発酵させて固化させたハードヨーグルト(固形状発酵乳、セットタイプヨーグルト)」、「発酵後にカードを粉砕し、容器充填したソフトヨーグルト(糊状発酵乳)」、「ソフトヨーグルトを均質機でさらに細かく砕き、液状の性質を高めたドリンクヨーグルト(液状発酵乳)」に大別される。また、乳等省令における「乳酸菌飲料」とは、「乳等を乳酸菌又は酵母で発酵させたものを加工し、又は主要原料とした飲料(発酵乳を除く。)」をいう。   In the present embodiment, yogurt refers to “fermented milk” and “lactic acid bacteria beverage” as defined by a ministerial ordinance such as milk. “Fermented milk” in the ministerial ordinance of milk, etc. means “milk or milk containing non-fat milk solids equal to or higher than this, fermented with lactic acid bacteria or yeast to make paste or liquid” or “frozen Defined as "thing". Fermented milk is “hard yogurt fermented and solidified after filling in container (solid fermented milk, set type yogurt)”, “soft yogurt (fermented fermented milk) filled with container after fermentation and filled into containers”, “ Soft yogurt is roughly classified into drink yogurt (liquid fermented milk) that is further crushed with a homogenizer to enhance liquid properties. In addition, “lactic acid bacteria beverage” in a ministerial ordinance such as milk means “a beverage (excluding fermented milk) obtained by processing or fermenting milk or the like with lactic acid bacteria or yeast”.

ヨーグルト原料には、乳、乳製品、乳タンパクの少なくとも一種以上が含まれる。ヨーグルト原料としては、例えば、牛乳、羊、ヤギ等の獣乳や、その加工品、殺菌乳、脱脂乳、全脂粉乳、部分脱脂乳、脱脂粉乳、全脂濃縮乳、脱脂濃縮乳、クリーム、バター、バターミルク、ホエイ、ホエイタンパク質濃縮物(WPC)、ホエイタンパク質単離物(WPI)、α−ラクトアルブミン(α−La)、β−ラクトグロブリン(β−Lg)、α−カゼイン、β−カゼイン、κ−カゼイン、非たんぱく態窒素などの乳原料、砂糖、糖類、加工澱粉(デキストリンの他、可溶性澱粉、ブリティッシュスターチ、酸化澱粉、澱粉エステル、澱粉エーテル等)、食物繊維、甘味料、有機酸(リンゴ酸、クエン酸、乳酸、酒石酸など)、香料、水などを挙げることができる。なお、ヨーグルト原料は、上述のような常用の原料を混合し、加温させながら溶解させることで得られる。ヨーグルト原料には、ゼラチン、寒天、ペクチン、カルボキシメチルセルロース(CMC)等のゲル化剤、増粘剤、安定剤が添加されてもよい。かかる場合、ゼラチン等の安定剤などを水などの溶媒に予め加温して溶解させておき、この安定剤水溶液を他の成分と混合することによって、ヨーグルト原料を調製する。   The yogurt raw material includes at least one of milk, dairy products, and milk protein. Examples of yogurt ingredients include animal milk such as milk, sheep and goats, processed products thereof, sterilized milk, skim milk, full fat milk powder, partially skimmed milk, skim milk powder, full fat concentrated milk, skim concentrated milk, cream, Butter, buttermilk, whey, whey protein concentrate (WPC), whey protein isolate (WPI), α-lactalbumin (α-La), β-lactoglobulin (β-Lg), α-casein, β- Casein, κ-casein, non-protein nitrogen and other milk ingredients, sugar, sugar, modified starch (dextrin, soluble starch, British starch, oxidized starch, starch ester, starch ether, etc.), dietary fiber, sweetener, organic Examples include acids (malic acid, citric acid, lactic acid, tartaric acid, etc.), fragrances, and water. The yogurt raw material can be obtained by mixing conventional raw materials as described above and dissolving them while heating. Gelling agents such as gelatin, agar, pectin, and carboxymethylcellulose (CMC), thickeners, and stabilizers may be added to the yogurt raw material. In such a case, a raw material for yogurt is prepared by preliminarily heating and dissolving a stabilizer such as gelatin in a solvent such as water and mixing this aqueous stabilizer solution with other components.

また、このヨーグルト原料の無脂乳固形分(以下「SNF」という)は8重量%以上20重量%以下の範囲内であることが好ましい。本実施形態に係るヨーグルト製造方法において、乳酸菌としてEPSを産生するブルガリア菌とサーモフィルス菌を採用し、pH緩衝剤としてリン酸塩を採用した場合、ヨーグルトの風味を良好に保ちつつ、ヨーグルト中の菌体外多糖体(以下「EPS」という)含有量を高めることができるからである。なお、ヨーグルト原料のSNFは、8.5重量%以上18.5重量%以下の範囲内であることがより好ましく、9重量%以上15重量%以下の範囲内であることがさらに好ましく、9.5重量%以上14重量%以下の範囲内であることが特に好ましい。   Moreover, it is preferable that non-fat milk solid content (henceforth "SNF") of this yogurt raw material exists in the range of 8 weight% or more and 20 weight% or less. In the yogurt production method according to the present embodiment, when Bulgarian bacteria and Thermophilus bacteria that produce EPS are employed as lactic acid bacteria and phosphate is employed as a pH buffering agent, while maintaining the flavor of yogurt in a good manner, This is because the exopolysaccharide content (hereinafter referred to as “EPS”) can be increased. The SNF of the yogurt raw material is more preferably in the range of 8.5% by weight to 18.5% by weight, still more preferably in the range of 9% by weight to 15% by weight. It is particularly preferable that the amount be in the range of 5% by weight to 14% by weight.

本実施形態において、pH緩衝剤は、特に限定されないが、リン酸塩であることが特に好ましい。なお、本実施形態において、リン酸塩には水和物も含まれるものとする。リン酸塩としては、例えば、リン酸二水素一ナトリウム(NaHPO)、リン酸水素二ナトリウム(NaHPO)、リン酸二水素一カリウム(KHPO)、リン酸水素二カリウム(KHPO)等が挙げられる。なお、これらのリン酸塩は、単独で用いられてもよいし併用されてもよい。また、本実施形態に係るヨーグルト製造方法では、リン酸水素二ナトリウム(NaHPO)、リン酸水素二カリウム(KHPO)を単独あるいは組み合わせて用いることが好ましく、リン酸水素二ナトリウム(NaHPO)を単独で用いることが特に好ましい。In this embodiment, the pH buffer is not particularly limited, but is particularly preferably a phosphate. In the present embodiment, the phosphate includes a hydrate. Examples of the phosphate include monosodium dihydrogen phosphate (NaH 2 PO 4 ), disodium hydrogen phosphate (Na 2 HPO 4 ), dipotassium dihydrogen phosphate (KH 2 PO 4 ), and dihydrogen phosphate. potassium (K 2 HPO 4), and the like. In addition, these phosphates may be used independently and may be used together. In the yogurt production method according to the present embodiment, it is preferable to use disodium hydrogen phosphate (Na 2 HPO 4 ) and dipotassium hydrogen phosphate (K 2 HPO 4 ) alone or in combination, and disodium hydrogen phosphate. It is particularly preferred to use (Na 2 HPO 4 ) alone.

また、本実施形態に係るヨーグルト製造方法のpH緩衝剤添加工程において、ヨーグルト原料に対して0.05重量%以上0.55重量%以下の範囲内の量のpH緩衝剤が添加されるのが好ましい。本実施形態に係るヨーグルト製造方法において、乳酸菌としてEPSを産生するブルガリア菌とサーモフィルス菌を採用し、pH緩衝剤としてリン酸塩を採用した場合、pH緩衝剤の添加量がこの範囲内であれば、ヨーグルトのカード強度(カードテンション)や風味を良好に保ちつつ、ブルガリア菌の増殖を促進することができると共にブルガリア菌由来のEPSの産生量を増強することができるからである。なお、pH緩衝剤添加量は、0.08重量%以上0.45重量%以下の範囲内であることがより好ましく、0.1重量%以上0.35重量%以下の範囲内であることが特に好ましい。   In addition, in the pH buffer addition step of the yogurt production method according to this embodiment, an amount of the pH buffer in the range of 0.05 wt% or more and 0.55 wt% or less is added to the yogurt raw material. preferable. In the yogurt production method according to this embodiment, when Bulgarian bacteria and Thermophilus bacteria that produce EPS are employed as lactic acid bacteria and phosphate is employed as the pH buffering agent, the added amount of the pH buffering agent is within this range. This is because, while maintaining good yogurt card strength (card tension) and flavor, the growth of Bulgarian bacteria can be promoted and the production of EPS derived from Bulgarian bacteria can be enhanced. The addition amount of the pH buffering agent is more preferably in the range of 0.08 wt% or more and 0.45 wt% or less, and is preferably in the range of 0.1 wt% or more and 0.35 wt% or less. Particularly preferred.

本実施形態において、乳酸菌は、菌体外機能性産生物、例えばEPSを産生する乳酸菌(以下「菌体外機能性産生物産生乳酸菌」という)、例えば、ラクトバチルス・デルブルエッキー・サブスピーシス・ブルガリクス(Lactobacillus delbruechii subsp. bulgaricus)種の乳酸菌(以下「ブルガリア菌」ともいう)である。本実施の形態では、乳酸菌は、菌体外機能性産生物産生乳酸菌であれば菌株を問わないが、EPSを産生するLactobacillus delbruechii subsp. bulgaricus OLL1073R−1株(FERM BP−10741)が好適である。なお、本実施形態では、ブルガリア菌を主体とすることが好ましいが、その他のEPSを産生する乳酸菌(以下「EPS産生乳酸菌」という)、例えば、ラクトバチルス・ブルガリクス(Lactobacillus bulgaricus)や、ラクトコッカス・ラクティス・クレモリス(Lactococcus lactis ssp. cremoris)等をブルガリア菌と併用してもよい。   In the present embodiment, the lactic acid bacterium is an extracellular functional product such as lactic acid bacterium that produces EPS (hereinafter referred to as “extracellular functional product-producing lactic acid bacterium”), such as Lactobacillus delbruecki subspice bulgari. Lactobacillus species of Lactobacillus delbruechii subsp. Bulgaricus (hereinafter also referred to as “Bulgaria bacterium”). In the present embodiment, the lactic acid bacterium may be any strain as long as it is an extracellular functional product-producing lactic acid bacterium, but Lactobacillus delbruechii subsp. bulgaricus OLL1073R-1 strain (FERM BP-10741) is preferred. In this embodiment, it is preferable to mainly use a Bulgarian bacterium, but other lactic acid bacteria that produce EPS (hereinafter referred to as “EPS-producing lactic acid bacteria”), such as Lactobacillus bulgaricus, Lactococcus, etc. -Lactococcus lactis ssp. Cremoris etc. may be used in combination with Bulgarian bacteria.

また、EPS産生乳酸菌以外の乳酸菌、例えば、サーモフィルス菌、ラクトバチルス・ガッセリ(Lactobacillus gasseri)、ビフィズス菌、プロピオン酸菌などの発酵乳の製造に一般的に用いられるその他の乳酸菌を、EPS産生乳酸菌と併用してもよい。また、上記乳酸菌と共に酵母を添加してもよい。なお、本実施形態に係るヨーグルト製造方法では、乳酸菌として、EPSを産生するブルガリア菌とサーモフィルス菌を併用することが特に好ましい。   In addition, lactic acid bacteria other than EPS-producing lactic acid bacteria, such as Thermophilus bacteria, Lactobacillus gasseri (Lactobacillus gasseri), bifidobacteria, propionic acid bacteria and other lactic acid bacteria generally used for the production of fermented milk, You may use together. Moreover, you may add yeast with the said lactic acid bacteria. In addition, in the yogurt manufacturing method which concerns on this embodiment, it is especially preferable to use together the Bulgarian bacterium and Thermophilus bacterium which produce EPS as a lactic acid bacterium.

本実施形態に係るヨーグルト製造方法の発酵工程において、発酵温度を30℃以上40℃以下の範囲内とすることが好ましい。乳酸菌としてEPSを産生するブルガリア菌とサーモフィルス菌を採用し、pH緩衝剤としてリン酸塩を採用した場合、ヨーグルト中のEPS含有量を高めることができるからである。なお、発酵温度は、32℃以上39℃以下の範囲内とすることがより好ましく、34℃以上38℃以下の範囲内とすることがさらに好ましい。   In the fermentation process of the yogurt manufacturing method according to the present embodiment, it is preferable that the fermentation temperature be in the range of 30 ° C. or higher and 40 ° C. or lower. This is because, when Bulgarian bacteria and Thermophilus bacteria that produce EPS are employed as lactic acid bacteria and phosphate is employed as a pH buffering agent, the EPS content in yogurt can be increased. The fermentation temperature is more preferably in the range of 32 ° C. or more and 39 ° C. or less, and further preferably in the range of 34 ° C. or more and 38 ° C. or less.

本実施形態にかかる菌体外機能性産生物産生乳酸菌は、全量に対して40mg/kg以上100mg/kg以下の範囲内の量の菌体外機能性産生物を産生することが好ましい。例えば、乳酸菌としてEPSを産生するブルガリア菌とサーモフィルス菌を採用し、pH緩衝剤としてリン酸塩を採用した場合、上記範囲内の量のEPSが産生される場合においてpH緩衝剤非添加時のEPSの産生量に対するpH緩衝剤添加時のEPSの産生量の比が高くなる、すなわちpH緩衝剤の添加効果が高くなることが認められるからである。なお、菌体外機能性産生物産生乳酸菌は、全量に対して42mg/kg以上100mg/kg以下の範囲内の量の菌体外機能性産生物を産生することが好ましく、44mg/kg以上100mg/kg以下の範囲内の量の菌体外機能性産生物を産生することがより好ましく、48mg/kg以上100mg/kg以下の範囲内の量の菌体外機能性産生物を産生することがさらに好ましく、50mg/kg以上100mg/kg以下の範囲内の量の菌体外機能性産生物を産生することが特に好ましい。   The extracellular functional product-producing lactic acid bacterium according to this embodiment preferably produces an extracellular functional product in an amount within the range of 40 mg / kg to 100 mg / kg with respect to the total amount. For example, when Bulgarian bacteria and Thermophilus bacteria producing EPS are used as lactic acid bacteria and phosphate is used as a pH buffering agent, when an amount of EPS within the above range is produced, the pH buffering agent is not added. This is because it is recognized that the ratio of the EPS production amount when the pH buffer agent is added to the EPS production amount is increased, that is, the effect of adding the pH buffer agent is enhanced. The extracellular functional product-producing lactic acid bacterium preferably produces an extracellular functional product in an amount in the range of 42 mg / kg to 100 mg / kg, and more than 44 mg / kg to 100 mg. It is more preferable to produce an extracellular functional product in an amount within the range of / kg or less, and to produce an extracellular functional product in an amount within the range of 48 mg / kg or more and 100 mg / kg or less. More preferably, it is particularly preferable to produce an extracellular functional product in an amount in the range of 50 mg / kg to 100 mg / kg.

また、本実施形態に係るヨーグルト製造方法において、菌体外機能性産生物の産生量は、pH緩衝剤無添加時の産生量の1.05倍以上であることが好ましく、1.1倍以上であることがより好ましく、1.2倍以上であることがさらに好ましく、1.25倍以上であることが特に好ましい。例えば、乳酸菌としてEPSを産生するブルガリア菌とサーモフィルス菌を採用し、pH緩衝剤としてリン酸塩を採用した場合、pH緩衝剤添加時のEPS産生量は、pH緩衝剤無添加時のEPS産生量の1.25倍以上となる場合がある。   In the yogurt production method according to the present embodiment, the production amount of the extracellular functional product is preferably 1.05 times or more, 1.1 times or more of the production amount when no pH buffer is added. Is more preferably 1.2 times or more, and particularly preferably 1.25 times or more. For example, when Bulgarian bacteria and Thermophilus bacteria producing EPS are used as lactic acid bacteria, and phosphate is used as a pH buffering agent, the EPS production amount when adding a pH buffering agent is the EPS production when no pH buffering agent is added. It may be 1.25 times or more of the amount.

−第2実施形態−
本実施形態に係る乳酸菌体外機能性産生物は、pH緩衝剤添加工程および発酵工程を経て製造される。pH緩衝剤添加工程では、乳原料にpH緩衝剤が添加される。発酵工程では、pH緩衝剤が添加された乳原料が、乳酸菌体外機能性産生物を産生する乳酸菌によって発酵させられる。
-Second Embodiment-
The lactic acid bacterial extracellular functional product according to the present embodiment is produced through a pH buffer addition step and a fermentation step. In the pH buffer addition step, a pH buffer is added to the milk raw material. In the fermentation process, the milk raw material to which the pH buffer is added is fermented by lactic acid bacteria that produce lactic acid bacteria extracorporeal functional products.

なお、本実施形態に係る乳酸菌体外機能性産生物は、ヨーグルト原料が乳原料とされること以外、第1実施形態に係るヨーグルト製造方法と同じである。また、本実施形態にいう「乳酸菌体外機能性産生物」は、第1実施形態にいう「菌体外機能性産生物」と同じものを示す。そして、ここにいう「乳原料」とは、牛乳、羊、ヤギ等の獣乳や、その加工品、殺菌乳、脱脂乳、全脂粉乳、部分脱脂乳、脱脂粉乳、全脂濃縮乳、脱脂濃縮乳、クリーム、バター、バターミルク、ホエイ、ホエイタンパク質濃縮物(WPC)、ホエイタンパク質単離物(WPI)、α−ラクトアルブミン(α−La)、β−ラクトグロブリン(β−Lg)、α−カゼイン、β−カゼイン、κ−カゼイン、非たんぱく態窒素などである。また、この乳原料の無脂乳固形分(以下「SNF」という)は8重量%以上20重量%以下の範囲内であることが好ましく、8.5重量%以上18.5重量%以下の範囲内であることがより好ましく、9重量%以上15重量%以下の範囲内であることがさらに好ましく、9.5重量%以上14重量%以下の範囲内であることが特に好ましい。   In addition, the lactic acid bacteria extracellular functional product which concerns on this embodiment is the same as the yogurt manufacturing method which concerns on 1st Embodiment except a yoghurt raw material being used as a milk raw material. Moreover, the “lactic acid extracellular functional product” referred to in the present embodiment is the same as the “extracellular functional product” referred to in the first embodiment. And the “milk raw material” here means animal milk such as cow's milk, sheep, goat, etc., processed products, sterilized milk, skim milk, whole milk powder, partially skimmed milk, skimmed milk powder, whole fat concentrated milk, skimmed milk Concentrated milk, cream, butter, buttermilk, whey, whey protein concentrate (WPC), whey protein isolate (WPI), α-lactalbumin (α-La), β-lactoglobulin (β-Lg), α -Casein, β-casein, κ-casein, non-protein nitrogen and the like. The non-fat milk solid content (hereinafter referred to as “SNF”) of the milk raw material is preferably in the range of 8% by weight to 20% by weight, and in the range of 8.5% by weight to 18.5% by weight. More preferably, it is more preferably in the range of 9% by weight to 15% by weight, and particularly preferably in the range of 9.5% by weight to 14% by weight.

また、本実施形態に係る乳酸菌体外機能性産生物の産生量は、pH緩衝剤無添加時の乳酸菌体外機能性産生物の産生量の1.05倍以上であることが好ましく、1.1倍以上であることがより好ましく、1.2倍以上であることがさらに好ましく、1.25倍以上であることが特に好ましい。   Further, the production amount of the lactic acid bacteria extracellular functional product according to the present embodiment is preferably 1.05 times or more, 1.1 times the production amount of the lactic acid bacteria extracellular functional product when no pH buffer is added. More preferably, it is 1.2 times or more, more preferably 1.25 times or more.

<実施例>
以下、本発明の好ましい実施例を説明するが、本発明は、前述した実施形態や以下の実施例に限定されることなく、特許請求の範囲の記載から把握される技術的範囲において種々に変更することが可能である。なお、実施例に用いられているLactobacillus delbruechii subsp. bulgaricus OLL1073R−1株(以下、OLL1073R−1株)は、2006年11月29日付(受託日)で、独立行政法人産業技術総合研究所特許生物寄託センター(茨城県つくば市東1−1−1 つくばセンター 中央第6)に、受託番号でFERM BP−10741としてブタペスト条約に基づき国際寄託されている乳酸菌である。また、Streptcoccus thermophilusOLS3059株は、2006年12月15日付(受託日)で、独立行政法人産業技術総合研究所特許生物寄託センター(茨城県つくば市東1−1−1 つくばセンター 中央第6)に、受託番号でFERM BP−10740として、ブタペスト条約に基づき国際寄託されている乳酸菌である。なお、独立行政法人産業技術総合研究所特許生物寄託センターの特許微生物寄託業務は2012年4月1日をもって独立行政法人製品評価技術基盤機構に承継されており、独立行政法人製品評価技術基盤機構特許生物寄託センターは2013年4月1日をもって日本国千葉県木更津市かずさ鎌足2−5−8の独立行政法人製品評価技術基盤機構事業所内に移転している。
<Example>
Hereinafter, preferred examples of the present invention will be described, but the present invention is not limited to the above-described embodiments and the following examples, and various modifications are made within the technical scope grasped from the description of the scope of claims. Is possible. Note that Lactobacillus delbruechii subsp. bulgaricus OLL1073R-1 strain (hereinafter referred to as OLL1073R-1 strain) was issued on November 29, 2006 (contract date), National Institute of Advanced Industrial Science and Technology, Patent Biological Deposit Center (1-1-1 Tsukuba, Tsukuba City, Ibaraki Prefecture) In the center center 6), it is a lactic acid bacterium that has been deposited internationally under the Budapest Treaty under the accession number FERM BP-10741. Streptococcus thermophilus OLS3059 strain was consigned to the National Institute of Advanced Industrial Science and Technology Patent Biological Deposit Center (Tsukuba Center 1-1-1 Tsukuba Center Central 6th, Ibaraki Prefecture) on December 15, 2006 (contract date). It is a lactic acid bacterium that has been deposited internationally under the Budapest Treaty as FERM BP-10740 by number. In addition, the patent microorganisms deposit work of the National Institute of Advanced Industrial Science and Technology patent biological depository center was succeeded by the National Institute of Technology and Evaluation on April 1, 2012. As of April 1, 2013, the Biological Depositary Center has been relocated to 2-5-8, Kazusa Kamashi, Kisarazu City, Chiba Prefecture, Japan.

(製造例)
(1)ヨーグルト原料ミックスA(SNF=9.4重量%)の調製
原料乳50kg、脱脂粉乳5.49kg、無塩バター1.5kgおよび水43.01kgを混合し、その混合物を95℃で5分間加熱殺菌した後に37℃前後まで冷却して、ヨーグルト原料ミックスAを調製した。
(Production example)
(1) Preparation of yogurt raw material mix A (SNF = 9.4% by weight) 50 kg of raw milk, 5.49 kg of skim milk powder, 1.5 kg of unsalted butter and 43.01 kg of water were mixed, and the mixture was mixed at 95 ° C. for 5 After sterilization by heating for minutes, the mixture was cooled to around 37 ° C. to prepare a yogurt raw material mix A.

(2)ヨーグルト原料ミックスB(SNF=10.2重量%)の調製
原料乳25kg、脱脂濃縮乳18.4kg、脱脂粉乳0.96kg、無塩バター1.31kgおよび水45.75kgを混合し、その混合物を95℃で5分間加熱殺菌した後に37℃前後まで冷却して、ヨーグルト原料ミックスAよりも無脂乳固形分(SNF)が高いヨーグルト原料ミックスBを調製した。
(2) Preparation of yogurt raw material mix B (SNF = 10.2% by weight) 25 kg raw milk, 18.4 kg nonfat concentrated milk, 0.96 kg nonfat dry milk, 1.31 kg unsalted butter and 45.75 kg water are mixed, The mixture was sterilized by heating at 95 ° C. for 5 minutes and then cooled to around 37 ° C. to prepare a yogurt raw material mix B having a non-fat milk solid content (SNF) higher than that of the yogurt raw material mix A.

−EPS産生量に及ぼすリン酸塩添加量の影響の検証−
サーモフィルス菌OLS3059株(Streptcoccus thermophilus OLS3059、以下OLS3059株とも称する)、及び、多糖体を産生するラクトバチルス・デルブルエッキー・サブスピーシス・ブルガリクス種の乳酸菌である1073R−1株の混合培養物である乳酸菌スターター(ヨーグルトスターター)を、乳酸菌スターターが全量に対して2重量%含まれるようにヨーグルト原料ミックスAに接種した後、その乳酸菌スターター入りヨーグルト原料ミックスAを5本の試験管に20mLずつ分注して、5つのサンプル1−1、1−2、1−3、1−4、1−5を準備した。そして、サンプル1−1には、NaHPOが全量に対して0.5重量%含まれるようにNaHPOを添加した。サンプル1−2には、NaHPOが全量に対して0.4重量%含み且つNaHPOが全量に対して0.1重量%含まれるようにNaHPOおよびNaHPOを添加した。サンプル1−3には、NaHPOとNaHPOが全量に対してそれぞれ0.25重量%含まれるようにNaHPOおよびNaHPOを添加した。サンプル1−4には、NaHPOとNaHPOが全量に対してそれぞれ0.5重量%含まれるようにNaHPOおよびNaHPOを添加した。なお、サンプル1−5(対照)には、リン酸塩を添加しなかった。その後、上記各サンプルを43℃の恒温水槽に浸漬して発酵させた。各サンプルのpHが4.4〜4.5となった時点でサンプルを10℃以下まで冷却し、そのサンプルの発酵を停止させた。各サンプルについて、発酵停止までの時間(発酵時間)、酸度、EPS含有量、ブルガリア菌数、サーモフィラス菌数を測定した(表1参照)。
-Verification of the effect of phosphate addition on EPS production-
It is a mixed culture of Thermophilus OLS3059 strain (Streptcoccus thermophilus OLS3059, hereinafter also referred to as OLS3059 strain) and 1073R-1 strain which is a lactic acid bacterium of Lactobacillus delbruecki subspice bulgaricus species that produces polysaccharides After inoculating the lactic acid bacteria starter (yoghurt starter) into the yogurt raw material mix A so that the lactic acid bacterium starter is contained in 2% by weight with respect to the total amount, dispense 20 mL of the yoghurt raw material mix A containing the lactic acid bacteria starter into 5 test tubes. Then, five samples 1-1, 1-2, 1-3, 1-4, and 1-5 were prepared. Then, the sample 1-1 was added Na 2 HPO 4 as Na 2 HPO 4 is contained 0.5 wt% of the total amount. The sample 1-2, Na 2 Na 2 HPO as HPO 4 comprises 0.4% by weight based on the total amount and NaH 2 PO 4 is contained 0.1% by weight based on the total amount 4 and NaH 2 PO 4 Was added. The Sample 1-3, was added Na 2 HPO 4 and NaH 2 PO 4 as Na 2 HPO 4 and NaH 2 PO 4 is contained 0.25 wt% respectively of the total amount. The sample 1-4 was added Na 2 HPO 4 and NaH 2 PO 4 as Na 2 HPO 4 and NaH 2 PO 4 is contained 0.5 wt% respectively of the total amount. In addition, phosphate was not added to Sample 1-5 (control). Then, each said sample was immersed in a 43 degreeC thermostat and fermented. When the pH of each sample reached 4.4 to 4.5, the sample was cooled to 10 ° C. or lower, and the fermentation of the sample was stopped. About each sample, time to fermentation stop (fermentation time), acidity, EPS content, the number of Bulgaria bacteria, and the number of thermophilus bacteria were measured (refer Table 1).

pHは、ガラス電極を用いたpHメーター(TOA−HM50V、東亜ディーケーケー社製)にて測定した。酸度は次の手順で測定した。各サンプルから9.00gを分取し、その分取サンプルに500μLのフェノールフタレインを添加した。そして、その分取サンプルを0.1Nの水酸化ナトリウムで滴定し、30秒間、微紅色の消失しない時点を終点とした。   The pH was measured with a pH meter (TOA-HM50V, manufactured by Toa DKK Corporation) using a glass electrode. The acidity was measured by the following procedure. 9.00 g was sampled from each sample, and 500 μL of phenolphthalein was added to the sample. Then, the preparative sample was titrated with 0.1N sodium hydroxide, and the end point was a time point at which the faint red color did not disappear for 30 seconds.

また、ヨーグルトのEPS含有量は次の手順で測定した。まず、各サンプルを10gずつ計り取ってそれぞれを50mLのチューブに入れ、そこに、100%のトリクロロ酢酸1mLを添加した。次に、その内容物を攪拌した後、その内容物を約4℃、約10分で静置した。次いで、4℃の温度下20分間、その内容物を12000×gの相対遠心力で遠心分離し、上清を新たな50mLのチューブに移した。そして、この上清を攪拌しながら、上清の2倍量の冷エタノールをその上清に徐々に添加して、上清と冷エタノールとを完全に混合した。続いて、その混合物を約4℃の温度下で一晩静置した後、前記と同様の条件下でその混合物を遠心分離した。その後、その混合物の上清を捨て、沈澱物に10mLの精製水を添加して、その沈殿物を精製水に完全に溶解させた。口径0.45μmのフィルター付きのシリンジを用いてその水溶液150μLをHPLCに注入した。そして、「注入開始時点から16分後付近においてRI検出器によって検出される単一ピークのピーク面積」の「全ピーク面積」に対する割合をEPS含有量とした。HPLCの分析操作条件は以下の通りである。
HPLCシステム: Aquity H−class(Waters)
カラム: OHpak 806HQ(Shodex)+SB−G(Shodex)
カラム温度: 40℃
溶媒: 0.2M NaCl水溶液
流速: 0.5mL/min
検出器:RI detector 2414(Waters)、検出温度40℃
サンプルインジェクション: 150μL
分析時間:50min
Moreover, the EPS content of yogurt was measured by the following procedure. First, 10 g of each sample was weighed and placed in a 50 mL tube, and 1 mL of 100% trichloroacetic acid was added thereto. Next, after the contents were stirred, the contents were allowed to stand at about 4 ° C. for about 10 minutes. The contents were then centrifuged at 12,000 × g relative centrifugal force for 20 minutes at a temperature of 4 ° C., and the supernatant was transferred to a new 50 mL tube. Then, while stirring this supernatant, cold ethanol twice the amount of the supernatant was gradually added to the supernatant, and the supernatant and cold ethanol were mixed thoroughly. Subsequently, the mixture was allowed to stand overnight at a temperature of about 4 ° C., and then the mixture was centrifuged under the same conditions as described above. Thereafter, the supernatant of the mixture was discarded, and 10 mL of purified water was added to the precipitate to completely dissolve the precipitate in purified water. 150 μL of the aqueous solution was injected into the HPLC using a syringe with a filter having a diameter of 0.45 μm. The ratio of the “peak area of a single peak detected by the RI detector around 16 minutes after the start of injection” to the “total peak area” was taken as the EPS content. The analytical operation conditions of HPLC are as follows.
HPLC system: Aquity H-class (Waters)
Column: OHpak 806HQ (Shodex) + SB-G (Shodex)
Column temperature: 40 ° C
Solvent: 0.2 M NaCl aqueous solution Flow rate: 0.5 mL / min
Detector: RI detector 2414 (Waters), detection temperature 40 ° C
Sample injection: 150 μL
Analysis time: 50 min

EPS含有量に及ぼすリン酸塩添加量の影響を表1に示す。リン酸塩を添加したサンプル1−1、1−2、1−3及び1−4では、対照サンプル1−5に比べて、発酵時間が長くなり、発酵終了時の酸度も1以上となった。リン酸塩の添加によって、ヨーグルトのEPS産生量が増加する結果となった。なお、リン酸塩としてNaHPOのみを添加した場合(サンプル1−1)に、EPS含有量が最も多かった。また、ブルガリア菌数はリン酸塩の添加によって増加したが、サーモフィルス菌はNaHPOの濃度の上昇に伴って減少した。Table 1 shows the influence of the phosphate addition amount on the EPS content. In Samples 1-1, 1-2, 1-3, and 1-4 to which phosphate was added, the fermentation time was longer than that of Control Sample 1-5, and the acidity at the end of fermentation was also 1 or more. . The addition of phosphate resulted in increased EPS production of yogurt. Incidentally, in the case of adding only Na 2 HPO 4 as a phosphate (Sample 1-1), EPS content was the highest. In addition, the number of Bulgarian bacteria increased with the addition of phosphate, whereas the number of Thermophilus decreased with increasing Na 2 HPO 4 concentration.

これらの結果から、リン酸塩の添加によって乳酸菌が増殖することができるpH域での発酵時間を延長することができ、この効果によってブルガリア菌の菌数が増加したと考えられる。さらに、リン酸塩、中でもNaHPOの添加によってサーモフィルス菌の増殖低下が観察されたことから、サーモフィルス菌の増殖低下もブルガリア菌由来のEPS増加に寄与したものと考えられる。

Figure 2014084340
From these results, the fermentation time in the pH range where lactic acid bacteria can grow can be extended by the addition of phosphate, and it is considered that the number of Bulgarian bacteria increased due to this effect. Furthermore, since a decrease in growth of Thermophilus was observed by the addition of phosphate, particularly Na 2 HPO 4 , it is considered that the decrease in growth of Thermophilus also contributed to an increase in EPS derived from Bulgaria.
Figure 2014084340

−EPS産生量に及ぼすリン酸塩の種類の影響の検証−
OLS3059株及び1073R−1株の混合培養物である乳酸菌スターター(ヨーグルトスターター)を、乳酸菌スターターが全量に対して2重量%含まれるように500gのヨーグルト原料ミックスAに接種した後、その乳酸菌スターター入りヨーグルト原料ミックスAを6本の試験管に20mLずつ分注して、6つのサンプル2−1、2−2、2−3、2−4、2−5、2−6を準備した。そして、サンプル2−1には、NaHPOが全量に対して0.5重量%含まれるようにNaHPOを添加した。サンプル2−2には、KHPOが全量に対して0.61重量%含まれるようにKHPOを添加した。なお、サンプル2−2におけるKHPOのモル濃度は、サンプル2−1におけるNaHPOのモル濃度と同じである。サンプル2−3には、NaClが全量に対して0.21重量%含まれるようにNaClを添加した。なお、サンプル2−3におけるNaClのモル濃度は、サンプル2−1におけるNaHPOのモル濃度と同じである。サンプル2−4には、NaHPOが全量に対して0.3重量%含まれるようにNaHPOを添加した。サンプル2−5には、NaHPOが全量に対して0.1重量%含まれるようにNaHPOを添加した。なお、サンプル2−6(対照)には、リン酸塩を添加しなかった。その後、上記各サンプルを43℃の恒温水槽に浸漬して発酵させた。各サンプルのpHが4.4〜4.5となった時点でサンプルを10℃以下まで冷却し、そのサンプルの発酵を停止させた。各サンプルについて、発酵停止までの時間(発酵時間)、酸度、EPS含有量、ブルガリア菌数、サーモフィルス菌数を測定した(表2参照)。なお、これらの物性値は実施例1と同様の方法で測定した。
-Verification of the effect of phosphate type on EPS production-
Lactic acid bacteria starter (yoghurt starter), which is a mixed culture of OLS 3059 and 1073R-1 strains, was inoculated into 500 g of yoghurt raw material mix A so that the lactic acid bacteria starter was contained at 2% by weight with respect to the total amount, and then entered into the lactic acid bacteria starter The yogurt raw material mix A was dispensed into 6 test tubes each 20 mL to prepare 6 samples 2-1, 2-2, 2-3, 2-4, 2-5, 2-6. Then, the sample 2-1 was added Na 2 HPO 4 as Na 2 HPO 4 is contained 0.5 wt% of the total amount. The sample 2-2 was added K 2 HPO 4 as K 2 HPO 4 is contained 0.61 wt% of the total amount. The molar concentration of K 2 HPO 4 in sample 2-2 is the same as the molar concentration of Na 2 HPO 4 in sample 2-1. In Sample 2-3, NaCl was added so that NaCl was contained in an amount of 0.21% by weight based on the total amount. The molar concentration of NaCl in Sample 2-3 is the same as the molar concentration of Na 2 HPO 4 in Sample 2-1. The sample 2-4 was added Na 2 HPO 4 as Na 2 HPO 4 is contained 0.3 wt% of the total amount. The sample 2-5 was added Na 2 HPO 4 as Na 2 HPO 4 is contained 0.1% by weight based on the total amount. In addition, phosphate was not added to Sample 2-6 (control). Then, each said sample was immersed in a 43 degreeC thermostat and fermented. When the pH of each sample reached 4.4 to 4.5, the sample was cooled to 10 ° C. or lower, and the fermentation of the sample was stopped. About each sample, time to fermentation stop (fermentation time), acidity, EPS content, the number of Bulgaria bacteria, and the number of thermophilus bacteria were measured (refer Table 2). These physical property values were measured in the same manner as in Example 1.

EPS含有量に及ぼすリン酸塩の種類の影響を表2に示す。NaHPOのみを添加したサンプル2−1、2−4、2−5では、NaHPOの添加量の増加に伴って発酵時間が長くなると共にEPS含有量が増加した。また、NaHPOの添加量の増加に伴ってブルガリア菌の菌数は増加し、サーモフィルス菌の菌数は減少した。ここで、サーモフィルス菌の菌数の減少に影響する要因を調べた。具体的には、サンプル2−1、サンプル2−2及びサンプル2−3について、サーモフィルス菌の菌数などを対比した。サンプル2−2のサーモフィルス菌の菌数およびEPS含有量は、サンプル2−1のサーモフィルス菌の菌数およびEPS含有量とほぼ同等であった。サンプル2−3では、サンプル2−6(対照)とほぼ同様に、EPS含有量の増加やサーモフィルス菌の菌数の減少は見られなかった。なお、これは、添加したNaClがpH緩衝作用を発揮しなかったためであると思われる。したがって、リン酸塩の添加がサーモフィルス菌の増殖を抑制している可能性が示唆された。

Figure 2014084340
Table 2 shows the influence of the type of phosphate on the EPS content. In Samples 2-1, 2-4, and 2-5 to which only Na 2 HPO 4 was added, the fermentation time was increased and the EPS content was increased as the amount of Na 2 HPO 4 added was increased. In addition, the number of Bulgarian bacteria increased and the number of Thermofilus bacteria decreased as the amount of Na 2 HPO 4 added increased. Here, the factors affecting the decrease in the number of thermophilus bacteria were examined. Specifically, the numbers of thermophilus bacteria were compared for sample 2-1, sample 2-2, and sample 2-3. The number and EPS content of Thermophilus bacteria in Sample 2-2 were almost the same as the number and EPS content of Thermophilus bacteria in Sample 2-1. In Sample 2-3, as in Sample 2-6 (control), an increase in EPS content and a decrease in the number of Thermophilus bacteria were not observed. This seems to be because the added NaCl did not exhibit the pH buffering action. Therefore, it was suggested that the addition of phosphate may suppress the growth of Thermophilus bacteria.
Figure 2014084340

−EPS産生量およびカードテンションに及ぼすリン酸塩添加量の影響の検証−
100kgのヨーグルト原料ミックスAを20kgずつに分け、5つのサンプル3−1、3−2、3−3、3−4、3−5を準備した。サンプル3−1(対照)には、リン酸塩を添加しなかった。サンプル3−2には、NaHPOが0.1重量%含まれるようにNaHPOを添加した。サンプル3−3には、NaHPOが0.3重量%含まれるようにNaHPOを添加した。サンプル3−4には、NaHPOが0.5重量%含まれるようにNaHPOを添加した。サンプル3−5には、NaHPOが1.0重量%含まれるようにNaHPOを添加した。そして、ヨーグルトの製造に一般的に使用されるサーモフィラス菌及び1073R−1株の混合培養物である乳酸菌スターターを、乳酸菌スターターが全量に対して2重量%含まれるように各サンプルに接種した。その後、乳酸菌スターター入りの各サンプルをそれぞれ85g容量の容器に85g充填して43℃の恒温室で発酵させた。各サンプルのpHが4.4になった時点でサンプルを10℃以下まで冷却し、そのサンプルの発酵を停止させた。
-Verification of the effect of phosphate addition on EPS production and card tension-
100 kg of yogurt raw material mix A was divided into 20 kg each, and five samples 3-1, 3-2, 3-3, 3-4, 3-5 were prepared. No phosphate was added to Sample 3-1 (control). The sample 3-2 was added Na 2 HPO 4 as Na 2 HPO 4 is contained 0.1 wt%. Na 2 HPO 4 was added to Sample 3-3 so that 0.3% by weight of Na 2 HPO 4 was contained. In Sample 3-4, Na 2 HPO 4 was added so that 0.5 wt% of Na 2 HPO 4 was contained. The sample 3-5 was added Na 2 HPO 4 as Na 2 HPO 4 is contained 1.0 wt%. Then, each sample was inoculated with a lactic acid bacteria starter which is a mixed culture of Thermophilus bacteria and 1073R-1 strain generally used in the production of yogurt so that the lactic acid bacteria starter was contained at 2% by weight with respect to the total amount. Thereafter, 85 g of each sample containing the lactic acid bacteria starter was filled in an 85 g capacity container and fermented in a thermostatic chamber at 43 ° C. When the pH of each sample reached 4.4, the sample was cooled to 10 ° C. or lower, and the fermentation of the sample was stopped.

そして、各サンプルについて、発酵停止までの時間(発酵時間)、EPS含有量、カードテンション(CT)を測定した(表3参照)。なお、各サンプル中のEPS含有量は、実施例1と同様に測定した。CTは次の手順で測定した。各サンプルに100gの錘をつけ、カードメーターマックス(ME−500、飛鳥機器社製)によって各サンプルが破断に至るときの弾力性を測定した。そして、この弾性力をCT指標値とした。   And about each sample, time to fermentation stop (fermentation time), EPS content, and card tension (CT) were measured (refer Table 3). The EPS content in each sample was measured in the same manner as in Example 1. CT was measured by the following procedure. A 100 g weight was attached to each sample, and the elasticity when each sample reached breakage was measured by a card meter max (ME-500, manufactured by Asuka Kikai Co., Ltd.). This elastic force was used as the CT index value.

各サンプルの発酵時間、EPS含有量、CTの結果を表3に示す。NaHPOの添加量が増加するに伴ってサンプル中のEPS含有量が増加し、CT値が減少した(すなわちサンプルが柔らかくなった)。

Figure 2014084340
Table 3 shows the fermentation time, EPS content, and CT results of each sample. As the amount of Na 2 HPO 4 added increased, the EPS content in the sample increased and the CT value decreased (ie the sample became softer).
Figure 2014084340

−EPS産生量に及ぼすヨーグルト原料ミックスのSNF含有量の影響の検証−
OLS−3059株及び1073R−1株の混合培養物である乳酸菌スターター(ヨーグルトスターター)を、乳酸菌スターターが全量に対して2重量%含まれるようにヨーグルト原料ミックスA及びヨーグルト原料ミックスBにそれぞれ接種した後、乳酸菌スターター入りの各ヨーグルト原料ミックスA,Bを85g容量の容器に85gずつ分注して、2種類のサンプル4−1(SNF=9.4重量%)、4−2(SNF=10.2重量%)を準備した。そして、これらのサンプル4−1,2を43℃の恒温室で発酵させた。各サンプルの酸度が0.8になった時点でサンプルを10℃以下まで冷却し、そのサンプルの発酵を停止させた。各サンプル中のEPS含有量を測定した。なお、EPS含有量は実施例1と同様の方法で測定した。
-Verification of influence of SNF content of yogurt raw material mix on EPS production-
Lactic acid bacteria starter (yogurt starter), which is a mixed culture of OLS-3059 strain and 1073R-1 strain, was inoculated into yogurt raw material mix A and yogurt raw material mix B so that the lactic acid bacteria starter was included at 2% by weight with respect to the total amount. Thereafter, 85 g of each yoghurt raw material mix A and B containing lactic acid bacteria starter was dispensed into a 85 g capacity container, and two types of samples 4-1 (SNF = 9.4 wt%), 4-2 (SNF = 10 2% by weight). And these samples 4-1 and 2 were fermented in a 43 degreeC thermostat. When the acidity of each sample reached 0.8, the sample was cooled to 10 ° C. or lower, and the fermentation of the sample was stopped. The EPS content in each sample was measured. The EPS content was measured by the same method as in Example 1.

サンプル4−1のEPS含有量は46.0mg/kgであった。これに対し、サンプル4−2のEPS含有量は48.6mg/kgであった。すなわち、サンプル4−2のEPS含有量は、サンプル4−1の1.1倍であった。したがって、高SNFのヨーグルト原料を使用することによりヨーグルト中のEPS含有量を高めることができることが明らかとなった。   The EPS content of Sample 4-1 was 46.0 mg / kg. On the other hand, the EPS content of Sample 4-2 was 48.6 mg / kg. That is, the EPS content of Sample 4-2 was 1.1 times that of Sample 4-1. Therefore, it became clear that the EPS content in yogurt can be increased by using a high SNF yogurt raw material.

−EPS産生量に及ぼす発酵温度の影響の検証−
OLS−3059株及び1073R−1株の混合培養物である乳酸菌スターター(ヨーグルトスターター)を、乳酸菌スターターが全量に対して2重量%含まれるようにヨーグルト原料ミックスAに接種した後、その乳酸菌スターター入りヨーグルト原料ミックスAを85g容量の容器に85gずつ分注して、2種類のサンプル5−1、5−2を準備した。そして、サンプル5−1を43℃で発酵させ、サンプル5−2を37℃で発酵させた。各サンプルの酸度が0.8になった時点でサンプルを10℃以下まで冷却し、そのサンプルの発酵を停止させた。各サンプル中のEPS含有量を測定した。なお、EPS含有量は実施例1と同様の方法で測定した。
-Verification of the effect of fermentation temperature on EPS production-
After inoculating the lactic acid bacteria starter (yogurt starter), which is a mixed culture of OLS-3059 and 1073R-1 strains, into the yogurt raw material mix A so that the lactic acid bacteria starter is contained in 2% by weight, the lactic acid bacteria starter is contained. The yoghurt raw material mix A was dispensed by 85 g into a 85 g capacity container to prepare two types of samples 5-1, 5-2. And sample 5-1 was fermented at 43 ° C., and sample 5-2 was fermented at 37 ° C. When the acidity of each sample reached 0.8, the sample was cooled to 10 ° C. or lower, and the fermentation of the sample was stopped. The EPS content in each sample was measured. The EPS content was measured by the same method as in Example 1.

サンプル5−1のEPS含有量は43.4mg/kgであった。これに対し、サンプル5−2のEPS含有量は51.1mg/kgであった。すなわち、サンプル5−2のEPS含有量は、サンプル5−1の1.2倍であった。したがって、発酵温度を低温にすることで、ヨーグルト中のEPS含有量を高めることができることが明らかとなった。   The EPS content of Sample 5-1 was 43.4 mg / kg. On the other hand, the EPS content of Sample 5-2 was 51.1 mg / kg. That is, the EPS content of Sample 5-2 was 1.2 times that of Sample 5-1. Therefore, it became clear that the EPS content in yogurt can be increased by lowering the fermentation temperature.

先ず、サンプル6−1(対照)としてヨーグルト原料ミックスAを準備した。また、ヨーグルト原料ミックスBを3つに分けて、3つのサンプル6−2、6−3、6−4を準備した。そして、ヨーグルトの製造に一般的に使用されるサーモフィラス菌及び1073R−1株の混合培養物である乳酸菌スターターを、乳酸菌スターターが全量に対して2重量%含まれるように各サンプルに接種した。また、サンプル6−4には、さらに、NaHPOが全量に対して0.3重量%含まれるようにNaHPOを添加した。そして、サンプル6−1および6−2を43℃で発酵させ、サンプル6−3および6−4を37℃で発酵させた。各サンプルの酸度が0.8になった時点でサンプルを10℃以下まで冷却し、そのサンプルの発酵を停止させた。各サンプル中のEPS含有量を測定した。なお、EPS含有量は実施例1と同様の方法で測定した。First, a yogurt raw material mix A was prepared as sample 6-1 (control). Further, the yogurt raw material mix B was divided into three to prepare three samples 6-2, 6-3, and 6-4. Then, each sample was inoculated with a lactic acid bacteria starter which is a mixed culture of Thermophilus bacteria and 1073R-1 strain generally used in the production of yogurt so that the lactic acid bacteria starter was contained at 2% by weight with respect to the total amount. Further, the sample 6-4 was further added Na 2 HPO 4 as Na 2 HPO 4 is contained 0.3 wt% of the total amount. Samples 6-1 and 6-2 were fermented at 43 ° C., and samples 6-3 and 6-4 were fermented at 37 ° C. When the acidity of each sample reached 0.8, the sample was cooled to 10 ° C. or lower, and the fermentation of the sample was stopped. The EPS content in each sample was measured. The EPS content was measured by the same method as in Example 1.

各サンプルのSNF、発酵温度、リン酸塩(NaHPO)添加量、ヨーグルト中のEPS含有量を表4に示す。サンプル6−2(高SNF含有量)ではEPS含有量が対照サンプル6−1の1.15倍に高められ、サンプル6−3(高SNF含有量,低発酵温度)ではEPS含有量が対照サンプル6−1の1.19倍にまで高められた。さらに、サンプル6−4(高SNF含有量,低発酵温度,リン酸塩添加)では、ヨーグルトのEPS含有量が対照サンプル6−1の1.37倍にまで高められた。

Figure 2014084340
Table 4 shows SNF, fermentation temperature, phosphate (Na 2 HPO 4 ) addition amount, and EPS content in yogurt for each sample. In sample 6-2 (high SNF content), the EPS content is increased 1.15 times that in the control sample 6-1, and in sample 6-3 (high SNF content, low fermentation temperature), the EPS content is increased in the control sample. It was increased to 1.19 times 6-1. Furthermore, in sample 6-4 (high SNF content, low fermentation temperature, phosphate addition), the EPS content of yogurt was increased to 1.37 times that of control sample 6-1.
Figure 2014084340

本発明に係るヨーグルトの製造方法は、乳酸菌由来の機能性産生物の含有量を効率的に増加させることができるため、乳酸菌由来の機能性産生物(多糖体など)が有する健康増進作用を高めたヨーグルトや、有効量の乳酸菌由来の機能性産生物を十分含有した小容量のヨーグルトを効率よく製造することができる。   Since the method for producing yogurt according to the present invention can efficiently increase the content of functional products derived from lactic acid bacteria, it enhances the health promoting action of functional products derived from lactic acid bacteria (polysaccharides, etc.). Yogurt and a small volume of yogurt sufficiently containing an effective amount of a functional product derived from lactic acid bacteria can be efficiently produced.

本発明は、乳酸菌由来の機能性産生物の産生量を増加させるヨーグルト製造方法、及び、そのヨーグルト製造方法によって製造されるヨーグルトに関する。また、本発明は、乳酸菌の菌体外機能性産生物の産生量を増加させる乳酸菌体外機能性産生物製造方法、並びに、その方法に使用される乳酸菌体外機能性産生物増産剤に関する。   The present invention relates to a yogurt production method for increasing the production amount of a functional product derived from lactic acid bacteria, and a yogurt produced by the yogurt production method. In addition, the present invention relates to a method for producing a lactic acid bacterium extracellular functional product that increases the production amount of the lactic acid bacterium extracellular functional product, and a lactic acid bacterium extracellular functional product enhancer used in the method.

乳酸菌および乳酸菌由来の機能性産生物を摂取することにより、消化管内の細菌叢を改善し、宿主に有益な作用(健康の維持・疾病リスクの低減)をすることが知られている。例えば、ラクトバチルス・デルブルエッキー・サブスピーシス・ブルガリクス(Lactobacillus delbruechii subsp. bulgaricus)(以下「ブルガリア菌」とも称する)は、ヨーグルトスターターとして発酵乳の製造に用いられている乳酸菌のひとつである。このブルガリア菌の中には、菌体外多糖体(exopolysaccharide:EPS)を産生する菌株も多く存在する。そして、このEPSは、発酵乳製品の物性や安定性に寄与するのみならず、プロバイオティクス効果の享受にも寄与することが知られている。例えば、Lactobacillus delbruechii subsp. bulgaricus OLL1073R−1株(以下「OLL1073R−1株」とも称する)が産生するEPSには、自己免疫疾患を予防する効果があることが知られている。また、本菌株を用いて製造された発酵乳には、NK細胞の活性化、感冒罹患の減少、抗インフルエンザ等の効果があることが知られている。(例えば、特許文献1〜3等参照)。このように、EPSを産生する乳酸菌や、乳酸菌などの産生するEPSを利用することにより、健康に寄与する機能性食品やサプリメントを提供することができることとなる。   It is known that by taking lactic acid bacteria and functional products derived from lactic acid bacteria, the bacterial flora in the gastrointestinal tract is improved and has beneficial effects on the host (maintenance of health and reduction of disease risk). For example, Lactobacillus delbruechii subsp. Bulgaricus (hereinafter also referred to as “Bulgaria bacterium”) is one of lactic acid bacteria used as a yogurt starter in the production of fermented milk. Among these Bulgarian bacteria, there are many strains that produce exopolysaccharide (EPS). And this EPS is known not only to contribute to the physical properties and stability of fermented milk products, but also to enjoy the probiotic effect. For example, Lactobacillus delbruechii subsp. It is known that EPS produced by Bulgaricus OLL1073R-1 strain (hereinafter also referred to as “OLL1073R-1 strain”) has an effect of preventing autoimmune diseases. In addition, it is known that fermented milk produced using this strain has effects such as activation of NK cells, reduction of common cold, and anti-influenza. (For example, refer to Patent Documents 1-3). Thus, functional foods and supplements that contribute to health can be provided by using lactic acid bacteria that produce EPS or EPS that is produced by lactic acid bacteria or the like.

ところで、このような機能性食品やサプリメントを効率的に製造するためには、同機能性食品中のEPS産生量を高める必要がある。   By the way, in order to efficiently manufacture such functional foods and supplements, it is necessary to increase the EPS production amount in the functional foods.

ブルガリア菌に限らず乳酸菌由来のEPSを高めるために、過去に様々な方法が提案されている。例えば、特許文献4には、ペプトン、酵母エキス、及び不飽和脂肪酸もしくはそのエステルを含む培地で、Lactobacillus kefiranofaciens等のケフィラン生産能を有する乳酸菌を培養することにより、培養液中に高濃度のEPSを産生することができることが開示されている。また、特許文献5には、牛乳に乳清タンパクや大豆タンパクを加え、ラクトコッカス・ラクティス・サブスピーシーズ・クレモリスで発酵させることにより、乳酸菌由来のEPSが顕著に増加することが開示されている。   In order to increase EPS derived from lactic acid bacteria as well as Bulgaria bacteria, various methods have been proposed in the past. For example, Patent Document 4 discloses that a high concentration of EPS is produced in a culture solution by culturing lactic acid bacteria having kefiran-producing ability such as Lactobacillus kefiranofaciens in a medium containing peptone, yeast extract, and unsaturated fatty acid or ester thereof. It is disclosed that it can be produced. Patent Document 5 discloses that EPS derived from lactic acid bacteria is remarkably increased by adding whey protein or soybean protein to milk and fermenting with lactococcus lactis subspecies cremolith.

特開2000−247895号公報JP 2000-247895 A 特開2005−194259号公報JP 2005-194259 A 国際公開パンフレットWO2011/065300International Publication Pamphlet WO2011 / 065300 特開2011−250756号公報JP 2011-250756 A 特開2011−51268号公報JP 2011-51268 A

本発明の課題は、乳酸菌由来の機能性産生物の産生量を効率的に増加させることができる新たな方法を提供することである。   The subject of this invention is providing the new method which can increase the production amount of the functional product derived from lactic acid bacteria efficiently.

本発明の一局面に係るヨーグルト製造方法は、pH緩衝剤添加工程および発酵工程を備える。pH緩衝剤添加工程では、ヨーグルト原料にpH緩衝剤が添加される。発酵工程では、pH緩衝剤が添加されたヨーグルト原料(以下「pH緩衝剤添加ヨーグルト原料」という)が乳酸菌によって発酵させられる。なお、ヨーグルト原料への乳酸菌の添加はpH緩衝剤の添加前であってもよいし、添加後であってもよい。   The yogurt manufacturing method which concerns on 1 aspect of this invention is equipped with a pH buffer addition process and a fermentation process. In the pH buffer addition step, a pH buffer is added to the yogurt raw material. In the fermentation process, a yogurt raw material to which a pH buffer is added (hereinafter referred to as “pH buffer added yogurt raw material”) is fermented by lactic acid bacteria. In addition, the addition of lactic acid bacteria to the yogurt raw material may be before the addition of the pH buffering agent or after the addition.

本願発明者らの鋭意検討の結果、上述のヨーグルト製造方法の通り、ヨーグルト原料にpH緩衝剤を添加してからそのヨーグルト原料を発酵させることによって、乳酸菌が増殖できるpH領域の時間を延長することができ、その結果、ヨーグルト中の乳酸菌由来の機能性産生物の産生量を高めることができることが明らかとなった。すなわち、このヨーグルト製造方法は、乳酸菌由来の機能性産生物の産生量を効率的に高めることができる。   As a result of intensive studies by the inventors of the present application, as described in the above-mentioned yogurt production method, by adding a pH buffer to the yogurt raw material and then fermenting the yogurt raw material, the time in the pH region where lactic acid bacteria can grow is extended. As a result, it was revealed that the production amount of functional products derived from lactic acid bacteria in yogurt can be increased. That is, this yogurt manufacturing method can efficiently increase the production amount of functional products derived from lactic acid bacteria.

ところで、このヨーグルト製造方法において、乳酸菌は、少なくとも、乳酸菌体外多糖体産生能力を有する乳酸菌を含むことが好ましい。そして、この乳酸菌体外多糖体産生能力を有する乳酸菌は、少なくとも、ラクトバチルス・デルブルエッキー・サブスピーシス・ブルガリクス種の乳酸菌を含むことが好ましい。なお、かかる場合、乳酸菌体外多糖体産生能力を有する乳酸菌は、ラクトバチルス・デルブルエッキー・サブスピーシス・ブルガリクス種の乳酸菌単体であってもよいし、ラクトバチルス・デルブルエッキー・サブスピーシス・ブルガリクス種と他の乳酸菌を含む乳酸菌混合物であってもよい。   By the way, in this yogurt manufacturing method, it is preferable that lactic acid bacteria contain at least lactic acid bacteria which have the ability to produce lactic acid bacteria extracellular polysaccharides. And it is preferable that the lactic acid bacteria which have the ability to produce lactic acid bacteria exopolysaccharides include at least Lactobacillus delbruecki subspice bulgaricus lactic acid bacteria. In such a case, the lactic acid bacteria having the ability to produce lactic acid bacteria exopolysaccharides may be Lactobacillus delbruecky subspice bulgaricus lactic acid bacteria alone, or Lactobacillus delbruecki subspice bulgaricus sp. And lactic acid bacteria mixture containing other lactic acid bacteria.

また、このヨーグルト製造方法において、pH緩衝剤はリン酸塩であることが好ましい。乳酸菌として、ラクトバチルス・デルブルエッキー・サブスピーシス・ブルガリクス種の乳酸菌とストレプトコッカス・サーモフィルス(Streptococcus thermophilus)種の乳酸菌(以下「サーモフィルス菌」とも称する)との混合物が使用される場合、サーモフィルス菌の増殖を抑制しつつラクトバチルス・デルブルエッキー・サブスピーシス・ブルガリクス種の乳酸菌の増殖を促進することができるからである。なお、このリン酸塩は、アルカリ金属塩であることが好ましい。さらに、リン酸塩は、リン酸水素二ナトリウムおよびリン酸水素二カリウムより成る群から選択される少なくとも一方のリン酸塩であることが好ましい。   Moreover, in this yogurt manufacturing method, it is preferable that a pH buffer is a phosphate. When a mixture of a lactic acid bacterium of Lactobacillus delbruecki subspice bulgaricus species and a lactic acid bacterium of Streptococcus thermophilus species (hereinafter also referred to as “thermophilus bacterium”) is used as the lactic acid bacterium, This is because it is possible to promote the growth of Lactobacillus delbruecki, subspice bulgaricus lactic acid bacteria while suppressing the growth of the bacteria. In addition, it is preferable that this phosphate is an alkali metal salt. Furthermore, the phosphate is preferably at least one phosphate selected from the group consisting of disodium hydrogen phosphate and dipotassium hydrogen phosphate.

さらに、このヨーグルト製造方法において、ヨーグルト原料には、8重量%以上20重量%以下の範囲内の無脂乳固形分が含まれていることが好ましい。なお、ここで、ヨーグルト原料とはpH緩衝剤添加前のものを意味する。   Furthermore, in this yogurt manufacturing method, it is preferable that the yogurt raw material contains non-fat milk solid content in the range of 8 wt% or more and 20 wt% or less. Here, the yoghurt raw material means that before adding the pH buffering agent.

加えて、このヨーグルト製造方法において、発酵工程では、pH緩衝剤添加ヨーグルト原料が30℃以上40℃以下の範囲内の温度下で乳酸菌によって発酵させられることが好ましい。   In addition, in this yogurt production method, in the fermentation step, it is preferable that the pH buffer-added yogurt raw material is fermented by lactic acid bacteria at a temperature within the range of 30 ° C. or higher and 40 ° C. or lower.

上述のヨーグルト製造方法によって製造されたヨーグルトには、乳酸菌およびpH緩衝剤が含有される。なお、このヨーグルトでは、pH緩衝剤が均一に溶解されている。ここで、乳酸菌およびpH緩衝剤は、上述の通りである。また、このヨーグルト中のpH緩衝剤は、例えば、高速液体クロマトグラフィー等のクロマトグラフィー技術や、核磁気共鳴(NMR)技術(例えば、Szlyk E, Hrynczyszyn P,「Phosphate additives determination in meat products by 31-phosphorus nuclear magnetic resonance using new internal reference standard:hexamethylphosphoroamide phosphatesolution」, Talanta. 2011 Mar 15;84(1):199-203. doi: 10.1016/j.talanta.2010.12.046 参照)などによって検出することができる。   The yogurt produced by the above-mentioned yogurt production method contains lactic acid bacteria and a pH buffer. In this yogurt, the pH buffer is uniformly dissolved. Here, the lactic acid bacteria and the pH buffer are as described above. In addition, the pH buffer in this yogurt is, for example, a chromatography technique such as high performance liquid chromatography or a nuclear magnetic resonance (NMR) technique (for example, Szlyk E, Hrynczyszyn P, “Phosphate additives determination in meat products by 31- for example, phosphorus nuclear magnetic resonance using new internal reference standard: hexamethylphosphoroamide phosphate solution ”, Talanta. 2011 Mar 15; 84 (1): 199-203. doi: 10.1016 / j.talanta.2010.12.046).

また、上述のヨーグルトは乳酸菌体外機能性産生物(例えば、乳酸菌体外多糖体など)をさらに含有することが好ましい。かかる場合、乳酸菌体外機能性産生物は、ヨーグルト全量に対して40mg/kg以上100mg/kg以下の範囲内の量含まれていることが好ましい。   Moreover, it is preferable that the above-mentioned yogurt further contains a lactic acid bacterial extracellular functional product (for example, a lactic acid bacterial extracellular polysaccharide). In such a case, it is preferable that the lactic acid bacterial extracellular functional product is contained in an amount within the range of 40 mg / kg to 100 mg / kg with respect to the total amount of yogurt.

本発明の他の局面に係る乳酸菌体外機能性産生物製造方法は、pH緩衝剤添加工程および発酵工程を備える。pH緩衝剤添加工程では、乳原料にpH緩衝剤が添加される。発酵工程では、pH緩衝剤が添加された乳原料が、乳酸菌体外機能性産生物を産生する乳酸菌(以下「菌体外機能性産生物産生乳酸菌」ともいう)によって発酵させられる。なお、乳原料への乳酸菌の添加はpH緩衝剤の添加前であってもよいし、添加後であってもよい。   The method for producing an extracellular functional product of lactic acid bacteria according to another aspect of the present invention includes a pH buffer addition step and a fermentation step. In the pH buffer addition step, a pH buffer is added to the milk raw material. In the fermentation process, the milk raw material to which the pH buffer is added is fermented by a lactic acid bacterium that produces a lactic acid bacteria extracellular functional product (hereinafter also referred to as “extracellular functional product-producing lactic acid bacteria”). The lactic acid bacterium may be added to the milk raw material before or after the addition of the pH buffering agent.

本願発明者らの鋭意検討の結果、上述の乳酸菌体外機能性産生物製造方法の通り、乳原料にpH緩衝剤を添加してからその乳原料を発酵させることによって、菌体外機能性産生物産生乳酸菌が増殖できるpH領域の時間を延長することができ、その結果、乳酸菌由来の機能性産生物の産生量を高めることができることが明らかとなった。すなわち、この乳酸菌体外機能性産生物製造方法は、乳酸菌由来の機能性産生物の産生量を効率的に高めることができる。すなわち、本局面においてpH緩衝剤は、乳酸菌体外機能性産生物増産剤の有効成分として機能する。   As a result of intensive studies by the inventors of the present application, the extracellular functional product is produced by adding a pH buffer to the milk raw material and then fermenting the milk raw material in accordance with the above-described method for producing an extracellular functional product of lactic acid bacteria. It has been clarified that the time in the pH region where the produced lactic acid bacteria can grow can be extended, and as a result, the production amount of the functional product derived from the lactic acid bacteria can be increased. That is, this lactic acid bacteria extracorporeal functional product manufacturing method can efficiently increase the production amount of functional products derived from lactic acid bacteria. That is, in this aspect, the pH buffer functions as an active ingredient of the lactic acid bacteria extracellular functional product increaser.

なお、上述の乳酸菌体外機能性産生物製造方法は、別の観点から捉えると、「乳原料にpH緩衝剤を配合(添加)して乳酸菌によりその乳原料を発酵させる乳酸菌体外機能性産生物の増産方法」、「乳原料にpH緩衝剤を配合(添加)する乳酸菌体外機能性産生物の増産方法」、「乳酸菌体外機能性産生物を増産させるために乳原料にpH緩衝剤を配合(添加)する方法」、「乳酸菌体外機能性産生物を増産させるための乳原料に対するpH緩衝剤の使用(使用方法)」などとも表現することができる。   In addition, the above-mentioned method for producing an extracellular functional product of a lactic acid bacterium has a different viewpoint: “A lactic acid bacterial extracellular functional product in which a lactic acid bacterium is fermented by adding (adding) a pH buffer to the milk material. "Production method", "Production method of lactic acid bacteria functional product by adding (adding) a pH buffer to milk material", "Combination (addition of pH buffering agent to dairy material to increase production of lactic acid bacteria functional product" ) "And" use of pH buffering agent for milk raw material to increase production of lactic acid bacteria extracorporeal functional product (method of use) ".

本発明の一局面に係るヨーグルト製造方法では、ヨーグルト原料にpH緩衝剤を添加してからそのヨーグルト原料を発酵させることによって、乳酸菌が増殖できるpH領域の時間を延長することができ、その結果、ヨーグルト中の乳酸菌由来の機能性産生物の産生量を高めることができる。すなわち、このヨーグルト製造方法は、乳酸菌由来の機能性産生物の産生量を効率的に高めることができる。   In the yogurt production method according to one aspect of the present invention, by adding a pH buffer to the yogurt raw material and then fermenting the yogurt raw material, the time in the pH region where the lactic acid bacteria can grow can be extended. The production amount of functional products derived from lactic acid bacteria in yogurt can be increased. That is, this yogurt manufacturing method can efficiently increase the production amount of functional products derived from lactic acid bacteria.

また、本発明の他の局面に係る乳酸菌体外機能性産生物製造方法では、乳原料にpH緩衝剤を添加してからその乳原料を発酵させることによって、乳酸菌が増殖できるpH領域の時間を延長することができ、その結果、乳酸菌由来の機能性産生物の産生量を高めることができる。すなわち、この乳酸菌体外機能性産生物製造方法は、乳酸菌由来の機能性産生物の産生量を効率的に高めることができる。   In addition, in the method for producing a lactic acid bacteria extracellular functional product according to another aspect of the present invention, by adding a pH buffer to the milk material and then fermenting the milk material, the time in the pH region where the lactic acid bacteria can grow is extended. As a result, the production amount of the functional product derived from lactic acid bacteria can be increased. That is, this lactic acid bacteria extracorporeal functional product manufacturing method can efficiently increase the production amount of functional products derived from lactic acid bacteria.

以下、本発明を実施するための形態を詳細に説明するが、本発明は、以下に述べる個々の実施の形態に限定されない。   Hereinafter, although the form for implementing this invention is demonstrated in detail, this invention is not limited to each embodiment described below.

−第1実施形態−
本実施形態に係るヨーグルトは、pH緩衝剤添加工程および発酵工程を経て製造される。pH緩衝剤添加工程では、ヨーグルト原料にpH緩衝剤が添加される。発酵工程では、pH緩衝剤が添加されたヨーグルト原料(以下「pH緩衝剤添加ヨーグルト原料」という)が乳酸菌によって発酵させられる。
-First embodiment-
The yogurt according to the present embodiment is manufactured through a pH buffer addition process and a fermentation process. In the pH buffer addition step, a pH buffer is added to the yogurt raw material. In the fermentation process, a yogurt raw material to which a pH buffer is added (hereinafter referred to as “pH buffer added yogurt raw material”) is fermented by lactic acid bacteria.

本実施形態において、ヨーグルトとは、乳等省令で定義される「発酵乳」および「乳酸菌飲料」を指す。乳等省令における「発酵乳」とは、「乳またはこれと同等以上の無脂乳固形分を含む乳などを乳酸菌または酵母で発酵させ、糊状または液状にしたもの」または「これらを凍結したもの」と定義されている。発酵乳は、「容器充填後に発酵させて固化させたハードヨーグルト(固形状発酵乳、セットタイプヨーグルト)」、「発酵後にカードを粉砕し、容器充填したソフトヨーグルト(糊状発酵乳)」、「ソフトヨーグルトを均質機でさらに細かく砕き、液状の性質を高めたドリンクヨーグルト(液状発酵乳)」に大別される。また、乳等省令における「乳酸菌飲料」とは、「乳等を乳酸菌又は酵母で発酵させたものを加工し、又は主要原料とした飲料(発酵乳を除く。)」をいう。   In the present embodiment, yogurt refers to “fermented milk” and “lactic acid bacteria beverage” as defined by a ministerial ordinance such as milk. “Fermented milk” in the ministerial ordinance of milk, etc. means “milk or milk containing non-fat milk solids equal to or higher than this, fermented with lactic acid bacteria or yeast to make paste or liquid” or “frozen Defined as "thing". Fermented milk is “hard yogurt fermented and solidified after filling in container (solid fermented milk, set type yogurt)”, “soft yogurt (fermented fermented milk) filled with container after fermentation and filled into containers”, “ Soft yogurt is roughly classified into drink yogurt (liquid fermented milk) that is further crushed with a homogenizer to enhance liquid properties. In addition, “lactic acid bacteria beverage” in a ministerial ordinance such as milk means “a beverage (excluding fermented milk) obtained by processing or fermenting milk or the like with lactic acid bacteria or yeast”.

ヨーグルト原料には、乳、乳製品、乳タンパクの少なくとも一種以上が含まれる。ヨーグルト原料としては、例えば、牛乳、羊、ヤギ等の獣乳や、その加工品、殺菌乳、脱脂乳、全脂粉乳、部分脱脂乳、脱脂粉乳、全脂濃縮乳、脱脂濃縮乳、クリーム、バター、バターミルク、ホエイ、ホエイタンパク質濃縮物(WPC)、ホエイタンパク質単離物(WPI)、α−ラクトアルブミン(α−La)、β−ラクトグロブリン(β−Lg)、α−カゼイン、β−カゼイン、κ−カゼイン、非たんぱく態窒素などの乳原料、砂糖、糖類、加工澱粉(デキストリンの他、可溶性澱粉、ブリティッシュスターチ、酸化澱粉、澱粉エステル、澱粉エーテル等)、食物繊維、甘味料、有機酸(リンゴ酸、クエン酸、乳酸、酒石酸など)、香料、水などを挙げることができる。なお、ヨーグルト原料は、上述のような常用の原料を混合し、加温させながら溶解させることで得られる。ヨーグルト原料には、ゼラチン、寒天、ペクチン、カルボキシメチルセルロース(CMC)等のゲル化剤、増粘剤、安定剤が添加されてもよい。かかる場合、ゼラチン等の安定剤などを水などの溶媒に予め加温して溶解させておき、この安定剤水溶液を他の成分と混合することによって、ヨーグルト原料を調製する。   The yogurt raw material includes at least one of milk, dairy products, and milk protein. Examples of yogurt ingredients include animal milk such as milk, sheep and goats, processed products thereof, sterilized milk, skim milk, full fat milk powder, partially skimmed milk, skim milk powder, full fat concentrated milk, skim concentrated milk, cream, Butter, buttermilk, whey, whey protein concentrate (WPC), whey protein isolate (WPI), α-lactalbumin (α-La), β-lactoglobulin (β-Lg), α-casein, β- Casein, κ-casein, non-protein nitrogen and other milk ingredients, sugar, sugar, modified starch (dextrin, soluble starch, British starch, oxidized starch, starch ester, starch ether, etc.), dietary fiber, sweetener, organic Examples include acids (malic acid, citric acid, lactic acid, tartaric acid, etc.), fragrances, and water. The yogurt raw material can be obtained by mixing conventional raw materials as described above and dissolving them while heating. Gelling agents such as gelatin, agar, pectin, and carboxymethylcellulose (CMC), thickeners, and stabilizers may be added to the yogurt raw material. In such a case, a raw material for yogurt is prepared by preliminarily heating and dissolving a stabilizer such as gelatin in a solvent such as water and mixing this aqueous stabilizer solution with other components.

また、このヨーグルト原料の無脂乳固形分(以下「SNF」という)は8重量%以上20重量%以下の範囲内であることが好ましい。本実施形態に係るヨーグルト製造方法において、乳酸菌としてEPSを産生するブルガリア菌とサーモフィルス菌を採用し、pH緩衝剤としてリン酸塩を採用した場合、ヨーグルトの風味を良好に保ちつつ、ヨーグルト中の菌体外多糖体(以下「EPS」という)含有量を高めることができるからである。なお、ヨーグルト原料のSNFは、8.5重量%以上18.5重量%以下の範囲内であることがより好ましく、9重量%以上15重量%以下の範囲内であることがさらに好ましく、9.5重量%以上14重量%以下の範囲内であることが特に好ましい。   Moreover, it is preferable that non-fat milk solid content (henceforth "SNF") of this yogurt raw material exists in the range of 8 weight% or more and 20 weight% or less. In the yogurt production method according to the present embodiment, when Bulgarian bacteria and Thermophilus bacteria that produce EPS are employed as lactic acid bacteria and phosphate is employed as a pH buffering agent, while maintaining the flavor of yogurt in a good manner, This is because the exopolysaccharide content (hereinafter referred to as “EPS”) can be increased. The SNF of the yogurt raw material is more preferably in the range of 8.5% by weight to 18.5% by weight, still more preferably in the range of 9% by weight to 15% by weight. It is particularly preferable that the amount be in the range of 5% by weight to 14% by weight.

本実施形態において、pH緩衝剤は、特に限定されないが、リン酸塩であることが特に好ましい。なお、本実施形態において、リン酸塩には水和物も含まれるものとする。リン酸塩としては、例えば、リン酸二水素一ナトリウム(NaHPO)、リン酸水素二ナトリウム(NaHPO)、リン酸二水素一カリウム(KHPO)、リン酸水素二カリウム(KHPO)等が挙げられる。なお、これらのリン酸塩は、単独で用いられてもよいし併用されてもよい。また、本実施形態に係るヨーグルト製造方法では、リン酸水素二ナトリウム(NaHPO)、リン酸水素二カリウム(KHPO)を単独あるいは組み合わせて用いることが好ましく、リン酸水素二ナトリウム(NaHPO)を単独で用いることが特に好ましい。 In this embodiment, the pH buffer is not particularly limited, but is particularly preferably a phosphate. In the present embodiment, the phosphate includes a hydrate. Examples of the phosphate include monosodium dihydrogen phosphate (NaH 2 PO 4 ), disodium hydrogen phosphate (Na 2 HPO 4 ), dipotassium dihydrogen phosphate (KH 2 PO 4 ), and dihydrogen phosphate. potassium (K 2 HPO 4), and the like. In addition, these phosphates may be used independently and may be used together. In the yogurt production method according to the present embodiment, it is preferable to use disodium hydrogen phosphate (Na 2 HPO 4 ) and dipotassium hydrogen phosphate (K 2 HPO 4 ) alone or in combination, and disodium hydrogen phosphate. It is particularly preferred to use (Na 2 HPO 4 ) alone.

また、本実施形態に係るヨーグルト製造方法のpH緩衝剤添加工程において、ヨーグルト原料に対して0.05重量%以上0.55重量%以下の範囲内の量のpH緩衝剤が添加されるのが好ましい。本実施形態に係るヨーグルト製造方法において、乳酸菌としてEPSを産生するブルガリア菌とサーモフィルス菌を採用し、pH緩衝剤としてリン酸塩を採用した場合、pH緩衝剤の添加量がこの範囲内であれば、ヨーグルトのカード強度(カードテンション)や風味を良好に保ちつつ、ブルガリア菌の増殖を促進することができると共にブルガリア菌由来のEPSの産生量を増強することができるからである。なお、pH緩衝剤添加量は、0.08重量%以上0.45重量%以下の範囲内であることがより好ましく、0.1重量%以上0.35重量%以下の範囲内であることが特に好ましい。   In addition, in the pH buffer addition step of the yogurt production method according to this embodiment, an amount of the pH buffer in the range of 0.05 wt% or more and 0.55 wt% or less is added to the yogurt raw material. preferable. In the yogurt production method according to this embodiment, when Bulgarian bacteria and Thermophilus bacteria that produce EPS are employed as lactic acid bacteria and phosphate is employed as the pH buffering agent, the added amount of the pH buffering agent is within this range. This is because, while maintaining good yogurt card strength (card tension) and flavor, the growth of Bulgarian bacteria can be promoted and the production of EPS derived from Bulgarian bacteria can be enhanced. The addition amount of the pH buffering agent is more preferably in the range of 0.08 wt% or more and 0.45 wt% or less, and is preferably in the range of 0.1 wt% or more and 0.35 wt% or less. Particularly preferred.

本実施形態において、乳酸菌は、菌体外機能性産生物、例えばEPSを産生する乳酸菌(以下「菌体外機能性産生物産生乳酸菌」という)、例えば、ラクトバチルス・デルブルエッキー・サブスピーシス・ブルガリクス(Lactobacillus delbruechii subsp. bulgaricus)種の乳酸菌(以下「ブルガリア菌」ともいう)である。本実施の形態では、乳酸菌は、菌体外機能性産生物産生乳酸菌であれば菌株を問わないが、EPSを産生するLactobacillus delbruechii subsp. bulgaricus OLL1073R−1株(FERM BP−10741)が好適である。なお、本実施形態では、ブルガリア菌を主体とすることが好ましいが、その他のEPSを産生する乳酸菌(以下「EPS産生乳酸菌」という)、例えば、ラクトバチルス・ブルガリクス(Lactobacillus bulgaricus)や、ラクトコッカス・ラクティス・クレモリス(Lactococcus lactis ssp. cremoris)等をブルガリア菌と併用してもよい。   In the present embodiment, the lactic acid bacterium is an extracellular functional product such as lactic acid bacterium that produces EPS (hereinafter referred to as “extracellular functional product-producing lactic acid bacterium”), such as Lactobacillus delbruecki subspice bulgari. Lactobacillus species of Lactobacillus delbruechii subsp. Bulgaricus (hereinafter also referred to as “Bulgaria bacterium”). In the present embodiment, the lactic acid bacterium may be any strain as long as it is an extracellular functional product-producing lactic acid bacterium, but Lactobacillus delbruechii subsp. bulgaricus OLL1073R-1 strain (FERM BP-10741) is preferred. In this embodiment, it is preferable to mainly use a Bulgarian bacterium, but other lactic acid bacteria that produce EPS (hereinafter referred to as “EPS-producing lactic acid bacteria”), such as Lactobacillus bulgaricus, Lactococcus, etc. -Lactococcus lactis ssp. Cremoris etc. may be used in combination with Bulgarian bacteria.

また、EPS産生乳酸菌以外の乳酸菌、例えば、サーモフィルス菌、ラクトバチルス・ガッセリ(Lactobacillus gasseri)、ビフィズス菌、プロピオン酸菌などの発酵乳の製造に一般的に用いられるその他の乳酸菌を、EPS産生乳酸菌と併用してもよい。また、上記乳酸菌と共に酵母を添加してもよい。なお、本実施形態に係るヨーグルト製造方法では、乳酸菌として、EPSを産生するブルガリア菌とサーモフィルス菌を併用することが特に好ましい。   In addition, lactic acid bacteria other than EPS-producing lactic acid bacteria, such as Thermophilus bacteria, Lactobacillus gasseri (Lactobacillus gasseri), bifidobacteria, propionic acid bacteria, and other lactic acid bacteria generally used for the production of fermented milk are used. You may use together. Moreover, you may add yeast with the said lactic acid bacteria. In addition, in the yogurt manufacturing method which concerns on this embodiment, it is especially preferable to use together the Bulgarian bacterium and Thermophilus bacterium which produce EPS as a lactic acid bacterium.

本実施形態に係るヨーグルト製造方法の発酵工程において、発酵温度を30℃以上40℃以下の範囲内とすることが好ましい。乳酸菌としてEPSを産生するブルガリア菌とサーモフィルス菌を採用し、pH緩衝剤としてリン酸塩を採用した場合、ヨーグルト中のEPS含有量を高めることができるからである。なお、発酵温度は、32℃以上39℃以下の範囲内とすることがより好ましく、34℃以上38℃以下の範囲内とすることがさらに好ましい。   In the fermentation process of the yogurt manufacturing method according to the present embodiment, it is preferable that the fermentation temperature be in the range of 30 ° C. or higher and 40 ° C. or lower. This is because, when Bulgarian bacteria and Thermophilus bacteria that produce EPS are employed as lactic acid bacteria and phosphate is employed as a pH buffering agent, the EPS content in yogurt can be increased. The fermentation temperature is more preferably in the range of 32 ° C. or more and 39 ° C. or less, and further preferably in the range of 34 ° C. or more and 38 ° C. or less.

本実施形態にかかる菌体外機能性産生物産生乳酸菌は、全量に対して40mg/kg以上100mg/kg以下の範囲内の量の菌体外機能性産生物を産生することが好ましい。例えば、乳酸菌としてEPSを産生するブルガリア菌とサーモフィルス菌を採用し、pH緩衝剤としてリン酸塩を採用した場合、上記範囲内の量のEPSが産生される場合においてpH緩衝剤非添加時のEPSの産生量に対するpH緩衝剤添加時のEPSの産生量の比が高くなる、すなわちpH緩衝剤の添加効果が高くなることが認められるからである。なお、菌体外機能性産生物産生乳酸菌は、全量に対して42mg/kg以上100mg/kg以下の範囲内の量の菌体外機能性産生物を産生することが好ましく、44mg/kg以上100mg/kg以下の範囲内の量の菌体外機能性産生物を産生することがより好ましく、48mg/kg以上100mg/kg以下の範囲内の量の菌体外機能性産生物を産生することがさらに好ましく、50mg/kg以上100mg/kg以下の範囲内の量の菌体外機能性産生物を産生することが特に好ましい。   The extracellular functional product-producing lactic acid bacterium according to this embodiment preferably produces an extracellular functional product in an amount within the range of 40 mg / kg to 100 mg / kg with respect to the total amount. For example, when Bulgarian bacteria and Thermophilus bacteria producing EPS are used as lactic acid bacteria and phosphate is used as a pH buffering agent, when an amount of EPS within the above range is produced, the pH buffering agent is not added. This is because it is recognized that the ratio of the EPS production amount when the pH buffer agent is added to the EPS production amount is increased, that is, the effect of adding the pH buffer agent is enhanced. The extracellular functional product-producing lactic acid bacterium preferably produces an extracellular functional product in an amount in the range of 42 mg / kg to 100 mg / kg, and more than 44 mg / kg to 100 mg. It is more preferable to produce an extracellular functional product in an amount within the range of / kg or less, and to produce an extracellular functional product in an amount within the range of 48 mg / kg or more and 100 mg / kg or less. More preferably, it is particularly preferable to produce an extracellular functional product in an amount in the range of 50 mg / kg to 100 mg / kg.

また、本実施形態に係るヨーグルト製造方法において、菌体外機能性産生物の産生量は、pH緩衝剤無添加時の産生量の1.05倍以上であることが好ましく、1.1倍以上であることがより好ましく、1.2倍以上であることがさらに好ましく、1.25倍以上であることが特に好ましい。例えば、乳酸菌としてEPSを産生するブルガリア菌とサーモフィルス菌を採用し、pH緩衝剤としてリン酸塩を採用した場合、pH緩衝剤添加時のEPS産生量は、pH緩衝剤無添加時のEPS産生量の1.25倍以上となる場合がある。   In the yogurt production method according to the present embodiment, the production amount of the extracellular functional product is preferably 1.05 times or more, 1.1 times or more of the production amount when no pH buffer is added. Is more preferably 1.2 times or more, and particularly preferably 1.25 times or more. For example, when Bulgarian bacteria and Thermophilus bacteria producing EPS are used as lactic acid bacteria, and phosphate is used as a pH buffering agent, the EPS production amount when adding a pH buffering agent is the EPS production when no pH buffering agent is added. It may be 1.25 times or more of the amount.

−第2実施形態−
本実施形態に係る乳酸菌体外機能性産生物は、pH緩衝剤添加工程および発酵工程を経て製造される。pH緩衝剤添加工程では、乳原料にpH緩衝剤が添加される。発酵工程では、pH緩衝剤が添加された乳原料が、乳酸菌体外機能性産生物を産生する乳酸菌によって発酵させられる。
-Second Embodiment-
The lactic acid bacterial extracellular functional product according to the present embodiment is produced through a pH buffer addition step and a fermentation step. In the pH buffer addition step, a pH buffer is added to the milk raw material. In the fermentation process, the milk raw material to which the pH buffer is added is fermented by lactic acid bacteria that produce lactic acid bacteria extracorporeal functional products.

なお、本実施形態に係る乳酸菌体外機能性産生物の製造方法は、ヨーグルト原料が乳原料とされること以外、第1実施形態に係るヨーグルト製造方法と同じである。また、本実施形態にいう「乳酸菌体外機能性産生物」は、第1実施形態にいう「菌体外機能性産生物」と同じものを示す。そして、ここにいう「乳原料」とは、牛乳、羊、ヤギ等の獣乳や、その加工品、殺菌乳、脱脂乳、全脂粉乳、部分脱脂乳、脱脂粉乳、全脂濃縮乳、脱脂濃縮乳、クリーム、バター、バターミルク、ホエイ、ホエイタンパク質濃縮物(WPC)、ホエイタンパク質単離物(WPI)、α−ラクトアルブミン(α−La)、β−ラクトグロブリン(β−Lg)、α−カゼイン、β−カゼイン、κ−カゼイン、非たんぱく態窒素などである。また、この乳原料の無脂乳固形分(以下「SNF」という)は8重量%以上20重量%以下の範囲内であることが好ましく、8.5重量%以上18.5重量%以下の範囲内であることがより好ましく、9重量%以上15重量%以下の範囲内であることがさらに好ましく、9.5重量%以上14重量%以下の範囲内であることが特に好ましい。 In addition, the manufacturing method of the lactic acid bacteria extracorporeal functional product which concerns on this embodiment is the same as the yogurt manufacturing method which concerns on 1st Embodiment except a yoghurt raw material being used as a milk raw material. Moreover, the “lactic acid extracellular functional product” referred to in the present embodiment is the same as the “extracellular functional product” referred to in the first embodiment. And the “milk raw material” here means animal milk such as cow's milk, sheep, goat, etc., processed products, sterilized milk, skim milk, whole milk powder, partially skimmed milk, skimmed milk powder, whole fat concentrated milk, skimmed milk Concentrated milk, cream, butter, buttermilk, whey, whey protein concentrate (WPC), whey protein isolate (WPI), α-lactalbumin (α-La), β-lactoglobulin (β-Lg), α -Casein, β-casein, κ-casein, non-protein nitrogen and the like. The non-fat milk solid content (hereinafter referred to as “SNF”) of the milk raw material is preferably in the range of 8% by weight to 20% by weight, and in the range of 8.5% by weight to 18.5% by weight. More preferably, it is more preferably in the range of 9% by weight to 15% by weight, and particularly preferably in the range of 9.5% by weight to 14% by weight.

また、本実施形態に係る乳酸菌体外機能性産生物の産生量は、pH緩衝剤無添加時の乳酸菌体外機能性産生物の産生量の1.05倍以上であることが好ましく、1.1倍以上であることがより好ましく、1.2倍以上であることがさらに好ましく、1.25倍以上であることが特に好ましい。   Further, the production amount of the lactic acid bacteria extracellular functional product according to the present embodiment is preferably 1.05 times or more, 1.1 times the production amount of the lactic acid bacteria extracellular functional product when no pH buffer is added. More preferably, it is 1.2 times or more, more preferably 1.25 times or more.

<実施例>
以下、本発明の好ましい実施例を説明するが、本発明は、前述した実施形態や以下の実施例に限定されることなく、特許請求の範囲の記載から把握される技術的範囲において種々に変更することが可能である。なお、実施例に用いられているLactobacillus delbruechii subsp. bulgaricus OLL1073R−1株(以下、OLL1073R−1株)は、2006年11月29日付(受託日)で、独立行政法人産業技術総合研究所特許生物寄託センター(茨城県つくば市東1−1−1 つくばセンター 中央第6)に、受託番号でFERM BP−10741としてブタペスト条約に基づき国際寄託されている乳酸菌である。また、Streptcoccus thermophilusOLS3059株は、2006年12月15日付(受託日)で、独立行政法人産業技術総合研究所特許生物寄託センター(茨城県つくば市東1−1−1 つくばセンター 中央第6)に、受託番号でFERM BP−10740として、ブタペスト条約に基づき国際寄託されている乳酸菌である。なお、独立行政法人産業技術総合研究所特許生物寄託センターの特許微生物寄託業務は2012年4月1日をもって独立行政法人製品評価技術基盤機構に承継されており、独立行政法人製品評価技術基盤機構特許生物寄託センターは2013年4月1日をもって日本国千葉県木更津市かずさ鎌足2−5−8の独立行政法人製品評価技術基盤機構事業所内に移転している。
<Example>
Hereinafter, preferred examples of the present invention will be described, but the present invention is not limited to the above-described embodiments and the following examples, and various modifications are made within the technical scope grasped from the description of the scope of claims. Is possible. Note that Lactobacillus delbruechii subsp. bulgaricus OLL1073R-1 strain (hereinafter referred to as OLL1073R-1 strain) was issued on November 29, 2006 (contract date), National Institute of Advanced Industrial Science and Technology, Patent Biological Deposit Center (1-1-1 Tsukuba, Tsukuba City, Ibaraki Prefecture) In the center center 6), it is a lactic acid bacterium that has been deposited internationally under the Budapest Treaty under the accession number FERM BP-10741. Streptococcus thermophilus OLS3059 strain was consigned to the National Institute of Advanced Industrial Science and Technology Patent Biological Deposit Center (Tsukuba Center 1-1-1 Tsukuba Center Central 6th, Ibaraki Prefecture) on December 15, 2006 (contract date). It is a lactic acid bacterium that has been deposited internationally under the Budapest Treaty as FERM BP-10740 by number. In addition, the patent microorganisms deposit work of the National Institute of Advanced Industrial Science and Technology patent biological depository center was succeeded by the National Institute of Technology and Evaluation on April 1, 2012. As of April 1, 2013, the Biological Depositary Center has been relocated to 2-5-8, Kazusa Kamashi, Kisarazu City, Chiba Prefecture, Japan.

(製造例)
(1)ヨーグルト原料ミックスA(SNF=9.4重量%)の調製
原料乳50kg、脱脂粉乳5.49kg、無塩バター1.5kgおよび水43.01kgを混合し、その混合物を95℃で5分間加熱殺菌した後に37℃前後まで冷却して、ヨーグルト原料ミックスAを調製した。
(Production example)
(1) Preparation of yogurt raw material mix A (SNF = 9.4% by weight) 50 kg of raw milk, 5.49 kg of skim milk powder, 1.5 kg of unsalted butter and 43.01 kg of water were mixed, and the mixture was mixed at 95 ° C. for 5 After sterilization by heating for minutes, the mixture was cooled to around 37 ° C. to prepare a yogurt raw material mix A.

(2)ヨーグルト原料ミックスB(SNF=10.2重量%)の調製
原料乳25kg、脱脂濃縮乳18.4kg、脱脂粉乳0.96kg、無塩バター1.31kgおよび水45.75kgを混合し、その混合物を95℃で5分間加熱殺菌した後に37℃前後まで冷却して、ヨーグルト原料ミックスAよりも無脂乳固形分(SNF)が高いヨーグルト原料ミックスBを調製した。
(2) Preparation of yogurt raw material mix B (SNF = 10.2% by weight) 25 kg raw milk, 18.4 kg nonfat concentrated milk, 0.96 kg nonfat dry milk, 1.31 kg unsalted butter and 45.75 kg water are mixed, The mixture was sterilized by heating at 95 ° C. for 5 minutes and then cooled to around 37 ° C. to prepare a yogurt raw material mix B having a non-fat milk solid content (SNF) higher than that of the yogurt raw material mix A.

−EPS産生量に及ぼすリン酸塩添加量の影響の検証−
サーモフィルス菌OLS3059株(Streptcoccus thermophilus OLS3059、以下OLS3059株とも称する)、及び、多糖体を産生するラクトバチルス・デルブルエッキー・サブスピーシス・ブルガリクス種の乳酸菌である1073R−1株の混合培養物である乳酸菌スターター(ヨーグルトスターター)を、乳酸菌スターターが全量に対して2重量%含まれるようにヨーグルト原料ミックスAに接種した後、その乳酸菌スターター入りヨーグルト原料ミックスAを5本の試験管に20mLずつ分注して、5つのサンプル1−1、1−2、1−3、1−4、1−5を準備した。そして、サンプル1−1には、NaHPOが全量に対して0.5重量%含まれるようにNaHPOを添加した。サンプル1−2には、NaHPOが全量に対して0.4重量%含み且つNaHPOが全量に対して0.1重量%含まれるようにNaHPOおよびNaHPOを添加した。サンプル1−3には、NaHPOとNaHPOが全量に対してそれぞれ0.25重量%含まれるようにNaHPOおよびNaHPOを添加した。サンプル1−4には、NaHPOとNaHPOが全量に対してそれぞれ0.5重量%含まれるようにNaHPOおよびNaHPOを添加した。なお、サンプル1−5(対照)には、リン酸塩を添加しなかった。その後、上記各サンプルを43℃の恒温水槽に浸漬して発酵させた。各サンプルのpHが4.4〜4.5となった時点でサンプルを10℃以下まで冷却し、そのサンプルの発酵を停止させた。各サンプルについて、発酵停止までの時間(発酵時間)、酸度、EPS含有量、ブルガリア菌数、サーモフィラス菌数を測定した(表1参照)。
-Verification of the effect of phosphate addition on EPS production-
It is a mixed culture of Thermophilus OLS3059 strain (Streptcoccus thermophilus OLS3059, hereinafter also referred to as OLS3059 strain) and 1073R-1 strain which is a lactic acid bacterium of Lactobacillus delbruecki subspice bulgaricus species that produces polysaccharides After inoculating the lactic acid bacteria starter (yoghurt starter) into the yogurt raw material mix A so that the lactic acid bacterium starter is contained in 2% by weight with respect to the total amount, dispense 20 mL of the yoghurt raw material mix A containing the lactic acid bacteria starter into 5 test tubes. Then, five samples 1-1, 1-2, 1-3, 1-4, and 1-5 were prepared. Then, the sample 1-1 was added Na 2 HPO 4 as Na 2 HPO 4 is contained 0.5 wt% of the total amount. The sample 1-2, Na 2 Na 2 HPO as HPO 4 comprises 0.4% by weight based on the total amount and NaH 2 PO 4 is contained 0.1% by weight based on the total amount 4 and NaH 2 PO 4 Was added. The Sample 1-3, was added Na 2 HPO 4 and NaH 2 PO 4 as Na 2 HPO 4 and NaH 2 PO 4 is contained 0.25 wt% respectively of the total amount. The sample 1-4 was added Na 2 HPO 4 and NaH 2 PO 4 as Na 2 HPO 4 and NaH 2 PO 4 is contained 0.5 wt% respectively of the total amount. In addition, phosphate was not added to Sample 1-5 (control). Then, each said sample was immersed in a 43 degreeC thermostat and fermented. When the pH of each sample reached 4.4 to 4.5, the sample was cooled to 10 ° C. or lower, and the fermentation of the sample was stopped. About each sample, time to fermentation stop (fermentation time), acidity, EPS content, the number of Bulgaria bacteria, and the number of thermophilus bacteria were measured (refer Table 1).

pHは、ガラス電極を用いたpHメーター(TOA−HM50V、東亜ディーケーケー社製)にて測定した。酸度は次の手順で測定した。各サンプルから9.00gを分取し、その分取サンプルに500μLのフェノールフタレインを添加した。そして、その分取サンプルを0.1Nの水酸化ナトリウムで滴定し、30秒間、微紅色の消失しない時点を終点とした。   The pH was measured with a pH meter (TOA-HM50V, manufactured by Toa DKK Corporation) using a glass electrode. The acidity was measured by the following procedure. 9.00 g was sampled from each sample, and 500 μL of phenolphthalein was added to the sample. Then, the preparative sample was titrated with 0.1N sodium hydroxide, and the end point was a time point at which the faint red color did not disappear for 30 seconds.

また、ヨーグルトのEPS含有量は次の手順で測定した。まず、各サンプルを10gずつ計り取ってそれぞれを50mLのチューブに入れ、そこに、100%のトリクロロ酢酸1mLを添加した。次に、その内容物を攪拌した後、その内容物を約4℃、約10分で静置した。次いで、4℃の温度下20分間、その内容物を12000×gの相対遠心力で遠心分離し、上清を新たな50mLのチューブに移した。そして、この上清を攪拌しながら、上清の2倍量の冷エタノールをその上清に徐々に添加して、上清と冷エタノールとを完全に混合した。続いて、その混合物を約4℃の温度下で一晩静置した後、前記と同様の条件下でその混合物を遠心分離した。その後、その混合物の上清を捨て、沈澱物に10mLの精製水を添加して、その沈殿物を精製水に完全に溶解させた。口径0.45μmのフィルター付きのシリンジを用いてその水溶液150μLをHPLCに注入した。そして、「注入開始時点から16分後付近においてRI検出器によって検出される単一ピークのピーク面積」の「全ピーク面積」に対する割合をEPS含有量とした。HPLCの分析操作条件は以下の通りである。
HPLCシステム: Aquity H−class(Waters)
カラム: OHpak 806HQ(Shodex)+SB−G(Shodex)
カラム温度: 40℃
溶媒: 0.2M NaCl水溶液
流速: 0.5mL/min
検出器:RI detector 2414(Waters)、検出温度40℃
サンプルインジェクション: 150μL
分析時間:50min
Moreover, the EPS content of yogurt was measured by the following procedure. First, 10 g of each sample was weighed and placed in a 50 mL tube, and 1 mL of 100% trichloroacetic acid was added thereto. Next, after the contents were stirred, the contents were allowed to stand at about 4 ° C. for about 10 minutes. The contents were then centrifuged at 12,000 × g relative centrifugal force for 20 minutes at a temperature of 4 ° C., and the supernatant was transferred to a new 50 mL tube. Then, while stirring this supernatant, cold ethanol twice the amount of the supernatant was gradually added to the supernatant, and the supernatant and cold ethanol were mixed thoroughly. Subsequently, the mixture was allowed to stand overnight at a temperature of about 4 ° C., and then the mixture was centrifuged under the same conditions as described above. Thereafter, the supernatant of the mixture was discarded, and 10 mL of purified water was added to the precipitate to completely dissolve the precipitate in purified water. 150 μL of the aqueous solution was injected into the HPLC using a syringe with a filter having a diameter of 0.45 μm. The ratio of the “peak area of a single peak detected by the RI detector around 16 minutes after the start of injection” to the “total peak area” was taken as the EPS content. The analytical operation conditions of HPLC are as follows.
HPLC system: Aquity H-class (Waters)
Column: OHpak 806HQ (Shodex) + SB-G (Shodex)
Column temperature: 40 ° C
Solvent: 0.2 M NaCl aqueous solution Flow rate: 0.5 mL / min
Detector: RI detector 2414 (Waters), detection temperature 40 ° C
Sample injection: 150 μL
Analysis time: 50 min

EPS含有量に及ぼすリン酸塩添加量の影響を表1に示す。リン酸塩を添加したサンプル1−1、1−2、1−3及び1−4では、対照サンプル1−5に比べて、発酵時間が長くなり、発酵終了時の酸度も1以上となった。リン酸塩の添加によって、ヨーグルトのEPS産生量が増加する結果となった。なお、リン酸塩としてNaHPOのみを添加した場合(サンプル1−1)に、EPS含有量が最も多かった。また、ブルガリア菌数はリン酸塩の添加によって増加したが、サーモフィルス菌はNaHPOの濃度の上昇に伴って減少した。 Table 1 shows the influence of the phosphate addition amount on the EPS content. In Samples 1-1, 1-2, 1-3, and 1-4 to which phosphate was added, the fermentation time was longer than that of Control Sample 1-5, and the acidity at the end of fermentation was also 1 or more. . The addition of phosphate resulted in increased EPS production of yogurt. Incidentally, in the case of adding only Na 2 HPO 4 as a phosphate (Sample 1-1), EPS content was the highest. In addition, the number of Bulgarian bacteria increased with the addition of phosphate, whereas the number of Thermophilus decreased with increasing Na 2 HPO 4 concentration.

これらの結果から、リン酸塩の添加によって乳酸菌が増殖することができるpH域での発酵時間を延長することができ、この効果によってブルガリア菌の菌数が増加したと考えられる。さらに、リン酸塩、中でもNaHPOの添加によってサーモフィルス菌の増殖低下が観察されたことから、サーモフィルス菌の増殖低下もブルガリア菌由来のEPS増加に寄与したものと考えられる。

Figure 2014084340
From these results, the fermentation time in the pH range where lactic acid bacteria can grow can be extended by the addition of phosphate, and it is considered that the number of Bulgarian bacteria increased due to this effect. Furthermore, since a decrease in growth of Thermophilus was observed by the addition of phosphate, particularly Na 2 HPO 4 , it is considered that the decrease in growth of Thermophilus also contributed to an increase in EPS derived from Bulgaria.
Figure 2014084340

−EPS産生量に及ぼすリン酸塩の種類の影響の検証−
OLS3059株及び1073R−1株の混合培養物である乳酸菌スターター(ヨーグルトスターター)を、乳酸菌スターターが全量に対して2重量%含まれるように500gのヨーグルト原料ミックスAに接種した後、その乳酸菌スターター入りヨーグルト原料ミックスAを6本の試験管に20mLずつ分注して、6つのサンプル2−1、2−2、2−3、2−4、2−5、2−6を準備した。そして、サンプル2−1には、NaHPOが全量に対して0.5重量%含まれるようにNaHPOを添加した。サンプル2−2には、KHPOが全量に対して0.61重量%含まれるようにKHPOを添加した。なお、サンプル2−2におけるKHPOのモル濃度は、サンプル2−1におけるNaHPOのモル濃度と同じである。サンプル2−3には、NaClが全量に対して0.21重量%含まれるようにNaClを添加した。なお、サンプル2−3におけるNaClのモル濃度は、サンプル2−1におけるNaHPOのモル濃度と同じである。サンプル2−4には、NaHPOが全量に対して0.3重量%含まれるようにNaHPOを添加した。サンプル2−5には、NaHPOが全量に対して0.1重量%含まれるようにNaHPOを添加した。なお、サンプル2−6(対照)には、リン酸塩を添加しなかった。その後、上記各サンプルを43℃の恒温水槽に浸漬して発酵させた。各サンプルのpHが4.4〜4.5となった時点でサンプルを10℃以下まで冷却し、そのサンプルの発酵を停止させた。各サンプルについて、発酵停止までの時間(発酵時間)、酸度、EPS含有量、ブルガリア菌数、サーモフィルス菌数を測定した(表2参照)。なお、これらの物性値は実施例1と同様の方法で測定した。
-Verification of the effect of phosphate type on EPS production-
Lactic acid bacteria starter (yoghurt starter), which is a mixed culture of OLS 3059 and 1073R-1 strains, was inoculated into 500 g of yoghurt raw material mix A so that the lactic acid bacteria starter was contained at 2% by weight with respect to the total amount, and then entered into the lactic acid bacteria starter The yogurt raw material mix A was dispensed into 6 test tubes each 20 mL to prepare 6 samples 2-1, 2-2, 2-3, 2-4, 2-5, 2-6. Then, the sample 2-1 was added Na 2 HPO 4 as Na 2 HPO 4 is contained 0.5 wt% of the total amount. The sample 2-2 was added K 2 HPO 4 as K 2 HPO 4 is contained 0.61 wt% of the total amount. The molar concentration of K 2 HPO 4 in sample 2-2 is the same as the molar concentration of Na 2 HPO 4 in sample 2-1. In Sample 2-3, NaCl was added so that NaCl was contained in an amount of 0.21% by weight based on the total amount. The molar concentration of NaCl in Sample 2-3 is the same as the molar concentration of Na 2 HPO 4 in Sample 2-1. The sample 2-4 was added Na 2 HPO 4 as Na 2 HPO 4 is contained 0.3 wt% of the total amount. The sample 2-5 was added Na 2 HPO 4 as Na 2 HPO 4 is contained 0.1% by weight based on the total amount. In addition, phosphate was not added to Sample 2-6 (control). Then, each said sample was immersed in a 43 degreeC thermostat and fermented. When the pH of each sample reached 4.4 to 4.5, the sample was cooled to 10 ° C. or lower, and the fermentation of the sample was stopped. About each sample, time to fermentation stop (fermentation time), acidity, EPS content, the number of Bulgaria bacteria, and the number of thermophilus bacteria were measured (refer Table 2). These physical property values were measured in the same manner as in Example 1.

EPS含有量に及ぼすリン酸塩の種類の影響を表2に示す。NaHPOのみを添加したサンプル2−1、2−4、2−5では、NaHPOの添加量の増加に伴って発酵時間が長くなると共にEPS含有量が増加した。また、NaHPOの添加量の増加に伴ってブルガリア菌の菌数は増加し、サーモフィルス菌の菌数は減少した。ここで、サーモフィルス菌の菌数の減少に影響する要因を調べた。具体的には、サンプル2−1、サンプル2−2及びサンプル2−3について、サーモフィルス菌の菌数などを対比した。サンプル2−2のサーモフィルス菌の菌数およびEPS含有量は、サンプル2−1のサーモフィルス菌の菌数およびEPS含有量とほぼ同等であった。サンプル2−3では、サンプル2−6(対照)とほぼ同様に、EPS含有量の増加やサーモフィルス菌の菌数の減少は見られなかった。なお、これは、添加したNaClがpH緩衝作用を発揮しなかったためであると思われる。したがって、リン酸塩の添加がサーモフィルス菌の増殖を抑制している可能性が示唆された。

Figure 2014084340
Table 2 shows the influence of the type of phosphate on the EPS content. In Samples 2-1, 2-4, and 2-5 to which only Na 2 HPO 4 was added, the fermentation time was increased and the EPS content was increased as the amount of Na 2 HPO 4 added was increased. In addition, the number of Bulgarian bacteria increased and the number of Thermofilus bacteria decreased as the amount of Na 2 HPO 4 added increased. Here, the factors affecting the decrease in the number of thermophilus bacteria were examined. Specifically, the numbers of thermophilus bacteria were compared for sample 2-1, sample 2-2, and sample 2-3. The number and EPS content of Thermophilus bacteria in Sample 2-2 were almost the same as the number and EPS content of Thermophilus bacteria in Sample 2-1. In Sample 2-3, as in Sample 2-6 (control), an increase in EPS content and a decrease in the number of Thermophilus bacteria were not observed. This seems to be because the added NaCl did not exhibit the pH buffering action. Therefore, it was suggested that the addition of phosphate may suppress the growth of Thermophilus bacteria.
Figure 2014084340

−EPS産生量およびカードテンションに及ぼすリン酸塩添加量の影響の検証−
100kgのヨーグルト原料ミックスAを20kgずつに分け、5つのサンプル3−1、3−2、3−3、3−4、3−5を準備した。サンプル3−1(対照)には、リン酸塩を添加しなかった。サンプル3−2には、NaHPOが0.1重量%含まれるようにNaHPOを添加した。サンプル3−3には、NaHPOが0.3重量%含まれるようにNaHPOを添加した。サンプル3−4には、NaHPOが0.5重量%含まれるようにNaHPOを添加した。サンプル3−5には、NaHPOが1.0重量%含まれるようにNaHPOを添加した。そして、ヨーグルトの製造に一般的に使用されるサーモフィラス菌及び1073R−1株の混合培養物である乳酸菌スターターを、乳酸菌スターターが全量に対して2重量%含まれるように各サンプルに接種した。その後、乳酸菌スターター入りの各サンプルをそれぞれ85g容量の容器に85g充填して43℃の恒温室で発酵させた。各サンプルのpHが4.4になった時点でサンプルを10℃以下まで冷却し、そのサンプルの発酵を停止させた。
-Verification of the effect of phosphate addition on EPS production and card tension-
100 kg of yogurt raw material mix A was divided into 20 kg each, and five samples 3-1, 3-2, 3-3, 3-4, 3-5 were prepared. No phosphate was added to Sample 3-1 (control). The sample 3-2 was added Na 2 HPO 4 as Na 2 HPO 4 is contained 0.1 wt%. Na 2 HPO 4 was added to Sample 3-3 so that 0.3% by weight of Na 2 HPO 4 was contained. In Sample 3-4, Na 2 HPO 4 was added so that 0.5 wt% of Na 2 HPO 4 was contained. The sample 3-5 was added Na 2 HPO 4 as Na 2 HPO 4 is contained 1.0 wt%. Then, each sample was inoculated with a lactic acid bacteria starter which is a mixed culture of Thermophilus bacteria and 1073R-1 strain generally used in the production of yogurt so that the lactic acid bacteria starter was contained at 2% by weight with respect to the total amount. Thereafter, 85 g of each sample containing the lactic acid bacteria starter was filled in an 85 g capacity container and fermented in a thermostatic chamber at 43 ° C. When the pH of each sample reached 4.4, the sample was cooled to 10 ° C. or lower, and the fermentation of the sample was stopped.

そして、各サンプルについて、発酵停止までの時間(発酵時間)、EPS含有量、カードテンション(CT)を測定した(表3参照)。なお、各サンプル中のEPS含有量は、実施例1と同様に測定した。CTは次の手順で測定した。各サンプルに100gの錘をつけ、カードメーターマックス(ME−500、飛鳥機器社製)によって各サンプルが破断に至るときの弾力性を測定した。そして、この弾性力をCT指標値とした。   And about each sample, time to fermentation stop (fermentation time), EPS content, and card tension (CT) were measured (refer Table 3). The EPS content in each sample was measured in the same manner as in Example 1. CT was measured by the following procedure. A 100 g weight was attached to each sample, and the elasticity when each sample reached breakage was measured by a card meter max (ME-500, manufactured by Asuka Kikai Co., Ltd.). This elastic force was used as the CT index value.

各サンプルの発酵時間、EPS含有量、CTの結果を表3に示す。NaHPOの添加量が増加するに伴ってサンプル中のEPS含有量が増加し、CT値が減少した(すなわちサンプルが柔らかくなった)。

Figure 2014084340
Table 3 shows the fermentation time, EPS content, and CT results of each sample. As the amount of Na 2 HPO 4 added increased, the EPS content in the sample increased and the CT value decreased (ie the sample became softer).
Figure 2014084340

−EPS産生量に及ぼすヨーグルト原料ミックスのSNF含有量の影響の検証−
OLS−3059株及び1073R−1株の混合培養物である乳酸菌スターター(ヨーグルトスターター)を、乳酸菌スターターが全量に対して2重量%含まれるようにヨーグルト原料ミックスA及びヨーグルト原料ミックスBにそれぞれ接種した後、乳酸菌スターター入りの各ヨーグルト原料ミックスA,Bを85g容量の容器に85gずつ分注して、2種類のサンプル4−1(SNF=9.4重量%)、4−2(SNF=10.2重量%)を準備した。そして、これらのサンプル4−1,2を43℃の恒温室で発酵させた。各サンプルの酸度が0.8になった時点でサンプルを10℃以下まで冷却し、そのサンプルの発酵を停止させた。各サンプル中のEPS含有量を測定した。なお、EPS含有量は実施例1と同様の方法で測定した。
-Verification of influence of SNF content of yogurt raw material mix on EPS production-
Lactic acid bacteria starter (yogurt starter), which is a mixed culture of OLS-3059 strain and 1073R-1 strain, was inoculated into yogurt raw material mix A and yogurt raw material mix B so that the lactic acid bacteria starter was included at 2% by weight with respect to the total amount. Thereafter, 85 g of each yoghurt raw material mix A and B containing lactic acid bacteria starter was dispensed into a 85 g capacity container, and two types of samples 4-1 (SNF = 9.4 wt%), 4-2 (SNF = 10 2% by weight). And these samples 4-1 and 2 were fermented in a 43 degreeC thermostat. When the acidity of each sample reached 0.8, the sample was cooled to 10 ° C. or lower, and the fermentation of the sample was stopped. The EPS content in each sample was measured. The EPS content was measured by the same method as in Example 1.

サンプル4−1のEPS含有量は46.0mg/kgであった。これに対し、サンプル4−2のEPS含有量は48.6mg/kgであった。すなわち、サンプル4−2のEPS含有量は、サンプル4−1の1.1倍であった。したがって、高SNFのヨーグルト原料を使用することによりヨーグルト中のEPS含有量を高めることができることが明らかとなった。   The EPS content of Sample 4-1 was 46.0 mg / kg. On the other hand, the EPS content of Sample 4-2 was 48.6 mg / kg. That is, the EPS content of Sample 4-2 was 1.1 times that of Sample 4-1. Therefore, it became clear that the EPS content in yogurt can be increased by using a high SNF yogurt raw material.

−EPS産生量に及ぼす発酵温度の影響の検証−
OLS−3059株及び1073R−1株の混合培養物である乳酸菌スターター(ヨーグルトスターター)を、乳酸菌スターターが全量に対して2重量%含まれるようにヨーグルト原料ミックスAに接種した後、その乳酸菌スターター入りヨーグルト原料ミックスAを85g容量の容器に85gずつ分注して、2種類のサンプル5−1、5−2を準備した。そして、サンプル5−1を43℃で発酵させ、サンプル5−2を37℃で発酵させた。各サンプルの酸度が0.8になった時点でサンプルを10℃以下まで冷却し、そのサンプルの発酵を停止させた。各サンプル中のEPS含有量を測定した。なお、EPS含有量は実施例1と同様の方法で測定した。
-Verification of the effect of fermentation temperature on EPS production-
After inoculating the lactic acid bacteria starter (yogurt starter), which is a mixed culture of OLS-3059 and 1073R-1 strains, into the yogurt raw material mix A so that the lactic acid bacteria starter is contained in 2% by weight, the lactic acid bacteria starter is contained. The yoghurt raw material mix A was dispensed by 85 g into a 85 g capacity container to prepare two types of samples 5-1, 5-2. And sample 5-1 was fermented at 43 ° C., and sample 5-2 was fermented at 37 ° C. When the acidity of each sample reached 0.8, the sample was cooled to 10 ° C. or lower, and the fermentation of the sample was stopped. The EPS content in each sample was measured. The EPS content was measured by the same method as in Example 1.

サンプル5−1のEPS含有量は43.4mg/kgであった。これに対し、サンプル5−2のEPS含有量は51.1mg/kgであった。すなわち、サンプル5−2のEPS含有量は、サンプル5−1の1.2倍であった。したがって、発酵温度を低温にすることで、ヨーグルト中のEPS含有量を高めることができることが明らかとなった。   The EPS content of Sample 5-1 was 43.4 mg / kg. On the other hand, the EPS content of Sample 5-2 was 51.1 mg / kg. That is, the EPS content of Sample 5-2 was 1.2 times that of Sample 5-1. Therefore, it became clear that the EPS content in yogurt can be increased by lowering the fermentation temperature.

先ず、サンプル6−1(対照)としてヨーグルト原料ミックスAを準備した。また、ヨーグルト原料ミックスBを3つに分けて、3つのサンプル6−2、6−3、6−4を準備した。そして、ヨーグルトの製造に一般的に使用されるサーモフィラス菌及び1073R−1株の混合培養物である乳酸菌スターターを、乳酸菌スターターが全量に対して2重量%含まれるように各サンプルに接種した。また、サンプル6−4には、さらに、NaHPOが全量に対して0.3重量%含まれるようにNaHPOを添加した。そして、サンプル6−1および6−2を43℃で発酵させ、サンプル6−3および6−4を37℃で発酵させた。各サンプルの酸度が0.8になった時点でサンプルを10℃以下まで冷却し、そのサンプルの発酵を停止させた。各サンプル中のEPS含有量を測定した。なお、EPS含有量は実施例1と同様の方法で測定した。 First, a yogurt raw material mix A was prepared as sample 6-1 (control). Further, the yogurt raw material mix B was divided into three to prepare three samples 6-2, 6-3, and 6-4. Then, each sample was inoculated with a lactic acid bacteria starter which is a mixed culture of Thermophilus bacteria and 1073R-1 strain generally used in the production of yogurt so that the lactic acid bacteria starter was contained at 2% by weight with respect to the total amount. Further, the sample 6-4 was further added Na 2 HPO 4 as Na 2 HPO 4 is contained 0.3 wt% of the total amount. Samples 6-1 and 6-2 were fermented at 43 ° C., and samples 6-3 and 6-4 were fermented at 37 ° C. When the acidity of each sample reached 0.8, the sample was cooled to 10 ° C. or lower, and the fermentation of the sample was stopped. The EPS content in each sample was measured. The EPS content was measured by the same method as in Example 1.

各サンプルのSNF、発酵温度、リン酸塩(NaHPO)添加量、ヨーグルト中のEPS含有量を表4に示す。サンプル6−2(高SNF含有量)ではEPS含有量が対照サンプル6−1の1.15倍に高められ、サンプル6−3(高SNF含有量,低発酵温度)ではEPS含有量が対照サンプル6−1の1.19倍にまで高められた。さらに、サンプル6−4(高SNF含有量,低発酵温度,リン酸塩添加)では、ヨーグルトのEPS含有量が対照サンプル6−1の1.37倍にまで高められた。

Figure 2014084340
Table 4 shows SNF, fermentation temperature, phosphate (Na 2 HPO 4 ) addition amount, and EPS content in yogurt for each sample. In sample 6-2 (high SNF content), the EPS content is increased 1.15 times that in the control sample 6-1, and in sample 6-3 (high SNF content, low fermentation temperature), the EPS content is increased in the control sample. It was increased to 1.19 times 6-1. Furthermore, in sample 6-4 (high SNF content, low fermentation temperature, phosphate addition), the EPS content of yogurt was increased to 1.37 times that of control sample 6-1.
Figure 2014084340

本発明に係るヨーグルトの製造方法は、乳酸菌由来の機能性産生物の含有量を効率的に増加させることができるため、乳酸菌由来の機能性産生物(多糖体など)が有する健康増進作用を高めたヨーグルトや、有効量の乳酸菌由来の機能性産生物を十分含有した小容量のヨーグルトを効率よく製造することができる。   Since the method for producing yogurt according to the present invention can efficiently increase the content of functional products derived from lactic acid bacteria, it enhances the health promoting action of functional products derived from lactic acid bacteria (polysaccharides, etc.). Yogurt and a small volume of yogurt sufficiently containing an effective amount of a functional product derived from lactic acid bacteria can be efficiently produced.

Claims (12)

ヨーグルト原料にpH緩衝剤を添加するpH緩衝剤添加工程と、
前記pH緩衝剤が添加された前記ヨーグルト原料(以下「pH緩衝剤添加ヨーグルト原料」という)を乳酸菌によって発酵させる発酵工程と
を備える、ヨーグルト製造方法。
A pH buffering agent adding step of adding a pH buffering agent to the yogurt raw material;
A yogurt production method comprising: a fermentation step of fermenting the yogurt material to which the pH buffer is added (hereinafter referred to as “pH buffer added yogurt material”) with lactic acid bacteria.
前記乳酸菌は、少なくとも、菌体外多糖体産生能力を有する乳酸菌を含む
請求項1に記載のヨーグルト製造方法。
The method for producing yogurt according to claim 1, wherein the lactic acid bacterium includes at least a lactic acid bacterium having an exopolysaccharide-producing ability.
前記菌体外多糖体産生能力を有する乳酸菌は、少なくとも、ラクトバチルス・デルブルエッキー・サブスピーシス・ブルガリクス種の乳酸菌を含む
請求項2に記載のヨーグルト製造方法。
The method for producing yogurt according to claim 2, wherein the lactic acid bacteria having the ability to produce exopolysaccharides include at least a lactic acid bacterium of Lactobacillus delbruecky subspices bulgaricus species.
前記pH緩衝剤は、リン酸塩である
請求項1から3のいずれかに記載のヨーグルト製造方法。
The yogurt production method according to any one of claims 1 to 3, wherein the pH buffer is a phosphate.
前記リン酸塩は、リン酸水素二ナトリウムおよびリン酸水素二カリウムより成る群から選択される少なくとも一方のリン酸塩である
請求項4に記載のヨーグルト製造方法。
The method for producing yogurt according to claim 4, wherein the phosphate is at least one phosphate selected from the group consisting of disodium hydrogen phosphate and dipotassium hydrogen phosphate.
前記ヨーグルト原料には、8重量%以上20重量%以下の範囲内の無脂乳固形分が含まれている
請求項1から5のいずれか1項に記載のヨーグルト製造方法。
The yogurt manufacturing method according to any one of claims 1 to 5, wherein the yogurt raw material contains a non-fat milk solid content in a range of 8 wt% to 20 wt%.
前記発酵工程では、前記pH緩衝剤添加ヨーグルト原料が30℃以上40℃以下の範囲内の温度下で前記乳酸菌によって発酵させられる
請求項1から6のいずれか1項に記載のヨーグルト製造方法。
The method for producing yogurt according to any one of claims 1 to 6, wherein, in the fermentation step, the yogurt raw material to which the pH buffer is added is fermented by the lactic acid bacteria at a temperature within a range of 30 ° C or higher and 40 ° C or lower.
請求項1から7のいずれか1項に記載のヨーグルト製造方法によって得られるヨーグルト。   The yogurt obtained by the yogurt manufacturing method of any one of Claim 1 to 7. 乳酸菌と、
pH緩衝剤と
を含有するヨーグルト。
Lactic acid bacteria,
Yogurt containing a pH buffer.
前記乳酸菌は、乳酸菌体外機能性産生物を産生する乳酸菌であり、
全量に対して40mg/kg以上100mg/kg以下の範囲内の量の乳酸菌体外機能性産生物をさらに含有する
請求項9に記載のヨーグルト。
The lactic acid bacterium is a lactic acid bacterium that produces a lactic acid bacterium extracorporeal functional product,
The yoghurt of Claim 9 which further contains the lactic-acid-bacteria extracellular functional product of the quantity within the range of 40 mg / kg or more and 100 mg / kg or less with respect to the whole quantity.
乳原料にpH緩衝剤を添加するpH緩衝剤添加工程と、
前記pH緩衝剤が添加された前記乳原料を、乳酸菌体外機能性産生物を産生する乳酸菌によって発酵させる発酵工程と
を備える、乳酸菌体外機能性産生物製造方法。
A pH buffering agent adding step of adding a pH buffering agent to the milk raw material;
A method for producing a lactic acid bacterial extracellular functional product, comprising a fermentation step of fermenting the milk material to which the pH buffer is added with a lactic acid bacterium producing a lactic acid bacterial extracellular functional product.
pH緩衝剤を有効成分とする乳酸菌体外機能性産生物増産剤。   A lactic acid bacterium extracorporeal functional product enhancer comprising a pH buffer as an active ingredient.
JP2014549909A 2012-11-29 2013-11-29 Method for increasing production of extraneous functional product of lactic acid bacteria and method for producing yogurt Active JP6392668B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012261776 2012-11-29
JP2012261776 2012-11-29
PCT/JP2013/082154 WO2014084340A1 (en) 2012-11-29 2013-11-29 Yogurt and production method therefor, production method for extracellular functional product of lactic acid bacteria, and production-increasing agent for extracellular functional product of lactic acid bacteria

Publications (2)

Publication Number Publication Date
JPWO2014084340A1 true JPWO2014084340A1 (en) 2017-01-05
JP6392668B2 JP6392668B2 (en) 2018-09-19

Family

ID=50827968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014549909A Active JP6392668B2 (en) 2012-11-29 2013-11-29 Method for increasing production of extraneous functional product of lactic acid bacteria and method for producing yogurt

Country Status (5)

Country Link
JP (1) JP6392668B2 (en)
CN (1) CN104780767B (en)
HK (1) HK1206560A1 (en)
SG (1) SG11201503729QA (en)
WO (1) WO2014084340A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6641275B2 (en) * 2014-07-14 2020-02-05 株式会社明治 Fermented milk with enhanced growth of Bulgarian bacteria and method for producing the same
TW201608987A (en) * 2014-09-08 2016-03-16 明治股份有限公司 Method for manufacturing ingredient material-containing fermented milk and method for utilizing thereof, ingredient material-containing acidic water and method for utilizing the same, method for manufacturing fermented milk and preservation thereof
JPWO2017057319A1 (en) * 2015-09-30 2018-07-19 株式会社明治 Method for preparing lactic acid bacteria starter and method for producing fermented milk
CN109310103B (en) * 2016-04-22 2023-04-25 睿普食品公司 Dairy product analogue and method for making same
JP6813312B2 (en) * 2016-09-09 2021-01-13 株式会社明治 Fermented milk production method
CN106912602B (en) * 2017-01-24 2020-10-02 深圳市大百汇技术有限公司 Lactobacillus acidophilus fermented milk containing succulent lactarius polysaccharide and preparation method of lactobacillus acidophilus fermented milk
CN107047762B (en) * 2017-03-22 2020-09-22 华南理工大学 Lactobacillus casei fermented milk with succulent lactarius polysaccharide and preparation method thereof
CN107019043B (en) * 2017-03-22 2020-10-27 华南理工大学 Lactobacillus plantarum fermented milk containing succulent lactarius polysaccharide and preparation method of lactobacillus plantarum fermented milk
JP7109895B2 (en) 2017-09-29 2022-08-01 株式会社明治 Fermented milk and method for producing fermented milk
EP4083187A4 (en) * 2019-12-27 2024-01-24 Meiji Co Ltd Lactic acid bacterium fermentation promoter
WO2022220154A1 (en) * 2021-04-13 2022-10-20 株式会社明治 Detection method of exopolysaccharide
CN114891842B (en) * 2022-04-15 2023-09-08 武汉轻工大学 Method for producing lactic acid by lactic acid bacteria fermentation method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003158997A (en) * 2001-11-22 2003-06-03 Snow Brand Milk Prod Co Ltd Post-fermentated yogurt
JP2005194259A (en) * 2003-12-12 2005-07-21 Meiji Milk Prod Co Ltd Nk cell activator
JP2006262893A (en) * 2005-02-25 2006-10-05 Meiji Milk Prod Co Ltd Fermented milk for preventing and/or treating oral cavity disease, fermented milk for preventing and/or suppressing oral odor
WO2007032459A1 (en) * 2005-09-16 2007-03-22 Meiji Dairies Corporation Method of improving the texture of fermented milk
WO2008068893A1 (en) * 2006-12-01 2008-06-12 Meiji Dairies Corporation Process for production of fermented milk, and fermented milk
WO2010113680A1 (en) * 2009-03-31 2010-10-07 株式会社ヤクルト本社 Method for culturing lactic acid bacterium, and food or beverage
WO2012069546A1 (en) * 2010-11-23 2012-05-31 Chr. Hansen A/S Use of glycosidase in preparation of a milk product
WO2012121090A1 (en) * 2011-03-04 2012-09-13 株式会社明治 Method for producing fermented milk having improved physical properties

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003158997A (en) * 2001-11-22 2003-06-03 Snow Brand Milk Prod Co Ltd Post-fermentated yogurt
JP2005194259A (en) * 2003-12-12 2005-07-21 Meiji Milk Prod Co Ltd Nk cell activator
JP2006262893A (en) * 2005-02-25 2006-10-05 Meiji Milk Prod Co Ltd Fermented milk for preventing and/or treating oral cavity disease, fermented milk for preventing and/or suppressing oral odor
WO2007032459A1 (en) * 2005-09-16 2007-03-22 Meiji Dairies Corporation Method of improving the texture of fermented milk
WO2008068893A1 (en) * 2006-12-01 2008-06-12 Meiji Dairies Corporation Process for production of fermented milk, and fermented milk
WO2010113680A1 (en) * 2009-03-31 2010-10-07 株式会社ヤクルト本社 Method for culturing lactic acid bacterium, and food or beverage
WO2012069546A1 (en) * 2010-11-23 2012-05-31 Chr. Hansen A/S Use of glycosidase in preparation of a milk product
WO2012121090A1 (en) * 2011-03-04 2012-09-13 株式会社明治 Method for producing fermented milk having improved physical properties

Also Published As

Publication number Publication date
CN104780767B (en) 2018-07-06
WO2014084340A1 (en) 2014-06-05
SG11201503729QA (en) 2015-06-29
HK1206560A1 (en) 2016-01-15
JP6392668B2 (en) 2018-09-19
CN104780767A (en) 2015-07-15

Similar Documents

Publication Publication Date Title
JP6392668B2 (en) Method for increasing production of extraneous functional product of lactic acid bacteria and method for producing yogurt
Casarotti et al. Evaluation of the effect of supplementing fermented milk with quinoa flour on probiotic activity
JP6506688B2 (en) Fermented milk with suppressed acidity rise and method for producing the same
CN106061275B (en) Acidity rises the acidified milk being inhibited by and its manufacturing method
Prasanna et al. Screening human intestinal Bifidobacterium strains for growth, acidification, EPS production and viscosity potential in low-fat milk
KR101018274B1 (en) Fermented Milk Production Method
FI3821712T3 (en) Fermented milk product obtained by an improved process
JP6952609B2 (en) Fermented milk production method and fermented milk
WO2013133313A1 (en) Yoghurt with limited rise in acidity and method for producing same
CA2984466A1 (en) Manufacture of strained fermented dairy products
US20220248699A1 (en) Fermented milk and method for manufacturing fermented milk
JPWO2010113680A1 (en) Lactic acid bacteria culture method and food and drink
JP2021072846A (en) Method for preparing lactobacillus starter and method of producing fermented milk
WO2013017905A1 (en) Composition comprising gellan gum, buttermilk and lactic acid bacteria process of making the same
JP4248993B2 (en) Method for producing pasteurized fermented milk having stringing viscosity
JP3993322B2 (en) Lactic acid bacteria growth promoter and use thereof
JP2020048510A (en) Method for producing fermented milk, method for shortening production time for fermented milk, and method for increasing acidity of fermented milk
US20200352187A1 (en) Fermented milk and method for manufacturing fermented milk
WO2023112941A1 (en) Fermented composition and method for producing same
JP2019058105A (en) Manufacturing method of fermented milk
JP6862238B2 (en) How to make drink yogurt
WO2016121899A9 (en) Cream cheese having superior baking suitability, and method for manufacturing same
JP2021073936A (en) Method for producing fermented milk, fermented milk, fermented milk product, and method for enhancing flavor of fermented milk
RU2570549C2 (en) Soft curd production method
JP2023027479A (en) Method for producing fermented food

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180823

R150 Certificate of patent or registration of utility model

Ref document number: 6392668

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150